Tetraethylammonium compounds refer to a group of organic salts containing the tetraethylammonium ion (N(C2H5)4+), which is characterized by four ethyl groups bonded to a central nitrogen atom, and are commonly used in research and medicine as pharmacological tools for studying ion channels.
A potassium-selective ion channel blocker. (From J Gen Phys 1994;104(1):173-90)
One of the POTASSIUM CHANNEL BLOCKERS, with secondary effect on calcium currents, which is used mainly as a research tool and to characterize channel subtypes.
A class of drugs that act by inhibition of potassium efflux through cell membranes. Blockade of potassium channels prolongs the duration of ACTION POTENTIALS. They are used as ANTI-ARRHYTHMIA AGENTS and VASODILATOR AGENTS.
Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits.
An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
Pyridines substituted in any position with an amino group. May be hydrogenated, but must retain at least one double bond.
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization).
A 37-amino acid residue peptide isolated from the scorpion Leiurus quinquestriatus hebraeus. It is a neurotoxin that inhibits calcium activated potassium channels.
A family of proteins involved in the transport of organic cations. They play an important role in the elimination of a variety of endogenous substances, xenobiotics, and their metabolites from the body.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
The ability of a substrate to allow the passage of ELECTRONS.
A highly neurotoxic polypeptide from the venom of the honey bee (Apis mellifera). It consists of 18 amino acids with two disulfide bridges and causes hyperexcitability resulting in convulsions and respiratory paralysis.
An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.
Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS.
An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction.
An organic cation transporter found in kidney. It is localized to the basal lateral membrane and is likely to be involved in the renal secretion of organic cations.
Derivatives of ammonium compounds, NH4+ Y-, in which all four of the hydrogens bonded to nitrogen have been replaced with hydrocarbyl groups. These are distinguished from IMINES which are RN=CR2.
Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli.
The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
Potassium channels whose activation is dependent on intracellular calcium concentrations.
An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used.
A member of the alkali metals. It has an atomic symbol Cs, atomic number 50, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency.
Potassium channel whose permeability to ions is extremely sensitive to the transmembrane potential difference. The opening of these channels is induced by the membrane depolarization of the ACTION POTENTIAL.
An antidiabetic sulfonylurea derivative with actions similar to those of chlorpropamide.
An alkaloid derived from the bark of the cinchona tree. It is used as an antimalarial drug, and is the active ingredient in extracts of the cinchona that have been used for that purpose since before 1633. Quinine is also a mild antipyretic and analgesic and has been used in common cold preparations for that purpose. It was used commonly and as a bitter and flavoring agent, and is still useful for the treatment of babesiosis. Quinine is also useful in some muscular disorders, especially nocturnal leg cramps and myotonia congenita, because of its direct effects on muscle membrane and sodium channels. The mechanisms of its antimalarial effects are not well understood.
Venoms from animals of the order Scorpionida of the class Arachnida. They contain neuro- and hemotoxins, enzymes, and various other factors that may release acetylcholine and catecholamines from nerve endings. Of the several protein toxins that have been characterized, most are immunogenic.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis.
Inorganic compounds that contain barium as an integral part of the molecule.
A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23.
An optical isomer of quinine, extracted from the bark of the CHINCHONA tree and similar plant species. This alkaloid dampens the excitability of cardiac and skeletal muscles by blocking sodium and potassium currents across cellular membranes. It prolongs cellular ACTION POTENTIALS, and decreases automaticity. Quinidine also blocks muscarinic and alpha-adrenergic neurotransmission.
A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research.
The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability.
A major class of calcium activated potassium channels whose members are voltage-dependent. MaxiK channels are activated by either membrane depolarization or an increase in intracellular Ca(2+). They are key regulators of calcium and electrical signaling in a variety of tissues.
The rate dynamics in chemical or physical systems.
Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized.
An element that is an alkali metal. It has an atomic symbol Rb, atomic number 37, and atomic weight 85.47. It is used as a chemical reagent and in the manufacture of photoelectric cells.
The physiological widening of BLOOD VESSELS by relaxing the underlying VASCULAR SMOOTH MUSCLE.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
A subfamily of shaker potassium channels that shares homology with its founding member, Shab protein, Drosophila. They regulate delayed rectifier currents in the NERVOUS SYSTEM of DROSOPHILA and in the SKELETAL MUSCLE and HEART of VERTEBRATES.
A shaker subfamily that is prominently expressed in NEURONS and are necessary for high-frequency, repetitive firing of ACTION POTENTIALS.
A group of slow opening and closing voltage-gated potassium channels. Because of their delayed activation kinetics they play an important role in controlling ACTION POTENTIAL duration.
A class of drugs that act by selective inhibition of calcium influx through cellular membranes.
Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed)
A potassium-channel opening vasodilator that has been investigated in the management of hypertension. It has also been tried in patients with asthma. (Martindale, The Extra Pharmacopoeia, 30th ed, p352)
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
Use of electric potential or currents to elicit biological responses.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system.
Inorganic or organic compounds that contain sulfur as an integral part of the molecule.
Endogenously-synthesized compounds that influence biological processes not otherwise classified under ENZYMES; HORMONES or HORMONE ANTAGONISTS.
Inorganic compounds derived from hydrochloric acid that contain the Cl- ion.
A phylum of the kingdom Metazoa. Mollusca have soft, unsegmented bodies with an anterior head, a dorsal visceral mass, and a ventral foot. Most are encased in a protective calcareous shell. It includes the classes GASTROPODA; BIVALVIA; CEPHALOPODA; Aplacophora; Scaphopoda; Polyplacophora; and Monoplacophora.
A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments.
Organic compounds that have a relatively high VAPOR PRESSURE at room temperature.
Compounds with a core of fused benzo-pyran rings.
Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue.
Elements of limited time intervals, contributing to particular results or situations.
That phase of a muscle twitch during which a muscle returns to a resting position.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis.
The nonstriated involuntary muscle tissue of blood vessels.
A delayed rectifier subtype of shaker potassium channels that is commonly mutated in human episodic ATAXIA and MYOKYMIA.
Drugs used to cause dilation of the blood vessels.
A quality of cell membranes which permits the passage of solvents and solutes into and out of cells.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.
The movement of ions across energy-transducing cell membranes. Transport can be active, passive or facilitated. Ions may travel by themselves (uniport), or as a group of two or more ions in the same (symport) or opposite (antiport) directions.
The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals.
An element with atomic symbol Cd, atomic number 48, and atomic weight 114. It is a metal and ingestion will lead to CADMIUM POISONING.
A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA.
A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure.
A histamine congener, it competitively inhibits HISTAMINE binding to HISTAMINE H2 RECEPTORS. Cimetidine has a range of pharmacological actions. It inhibits GASTRIC ACID secretion, as well as PEPSIN and GASTRIN output.
Drugs that interrupt transmission at the skeletal neuromuscular junction by causing sustained depolarization of the motor end plate. These agents are primarily used as adjuvants in surgical anesthesia to cause skeletal muscle relaxation.
Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM).
Agents having as their major action the interruption of neural transmission at nicotinic receptors on postganglionic autonomic neurons. Because their actions are so broad, including blocking of sympathetic and parasympathetic systems, their therapeutic use has been largely supplanted by more specific drugs. They may still be used in the control of blood pressure in patients with acute dissecting aortic aneurysm and for the induction of hypotension in surgery.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP.
A cytotoxic sulfhydryl reagent that inhibits several subcellular metabolic systems and is used as a tool in cellular physiology.
Potassium channels that contain two pores in tandem. They are responsible for baseline or leak currents and may be the most numerous of all K channels.
A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE.
Compounds containing polymethylene bis-trimethylammonium cations. Members of this group frequently act as ganglionic blockers and neuromuscular depolarizing agents.
Precursor of epinephrine that is secreted by the adrenal medulla and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers and of the diffuse projection system in the brain arising from the locus ceruleus. It is also found in plants and is used pharmacologically as a sympathomimetic.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
An opisthobranch mollusk of the order Anaspidea. It is used frequently in studies of nervous system development because of its large identifiable neurons. Aplysiatoxin and its derivatives are not biosynthesized by Aplysia, but acquired by ingestion of Lyngbya (seaweed) species.
Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current.
Voltage-gated potassium channels whose primary subunits contain six transmembrane segments and form tetramers to create a pore with a voltage sensor. They are related to their founding member, shaker protein, Drosophila.
Established cell cultures that have the potential to propagate indefinitely.
Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed)
Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard.
A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID.
Lanthanum. The prototypical element in the rare earth family of metals. It has the atomic symbol La, atomic number 57, and atomic weight 138.91. Lanthanide ion is used in experimental biology as a calcium antagonist; lanthanum oxide improves the optical properties of glass.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
Preclinical testing of drugs in experimental animals or in vitro for their biological and toxic effects and potential clinical applications.
The cartilaginous and membranous tube descending from the larynx and branching into the right and left main bronchi.
An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy.
A major class of calcium-activated potassium channels that are found primarily in excitable CELLS. They play important roles in the transmission of ACTION POTENTIALS and generate a long-lasting hyperpolarization known as the slow afterhyperpolarization.
A delayed rectifier subtype of shaker potassium channels that is the predominant VOLTAGE-GATED POTASSIUM CHANNEL of T-LYMPHOCYTES.
A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc.

Further evidence that prostaglandins inhibit the release of noradrenaline from adrenergic nerve terminals by restriction of availability of calcium. (1/952)

1 Guinea-pig vasa deferentia were continuously superfused after labelling the transmitter stores with [3H](-)-noradrenaline. Release of [3H]-(-)-noradrenaline was induced by transmural nerve stimulation. 2 Prostglandin E2 (14 nM) drastically reduced the release of [3H]-(-)-noradrenaline, while tetraethylammonium (2 mM), rubidium (6 mM), phenoxybenzamine (3 muM) each in the presence or absence of Uptake 1 or 2 blockade, and prolonged pulse duration (from 0.5 to 2.0 ms) all significantly increased the release of [3H]-(-)-noradrenaline per nerve impulse. 3 The inhibitory effect of prostaglandin E2 on evoked release of [3H]-(-)-noradrenaline was significantly reduced by tetraethylammonium, rubidium and prolonged pulse duration, whilst it was actually enhanced by phenoxybenzamine. This indicates that increased release of noradrenaline per nerve impulse does not per se counteract the inhibitory effect of prostaglandin E2. 4 It is concluded that tetraethylammonium, rubidium and prolonged pulse duration counteracted the inhibitory effect of prostaglandin E2 on T3H]-(-)-noradrenaline release by promoting calcium influx during the nerve action potential. The results are consistent with, and add more weight to the view that prostaglandins inhibit the release of noradrenaline by restriction of calcium availability.  (+info)

The interaction of n-tetraalkylammonium compounds with a human organic cation transporter, hOCT1. (2/952)

Polyspecific organic cation transporters in epithelia play an important role in the elimination of many endogenous bioactive amines and therapeutically important drugs. Recently, the first human organic cation transporter (hOCT1) was cloned from liver. The purpose of the current study was to determine the effect of molecular size and hydrophobicity on the transport of organic cations by hOCT1. We studied the interaction of a series of n-tetraalkylammonium (n-TAA) compounds (alkyl chain length, N, ranging from 1 to 6 carbons) with hOCT1 in a transiently transfected human cell line, HeLa. [14C]tetraethylammonium (TEA) uptake was measured under different experimental conditions. Both cis-inhibition and trans-stimulation studies were carried out. With the exception of tetramethylammonium, all of the n-TAAs significantly inhibited [14C]TEA uptake. A reversed correlation of IC50 values (range, 3.0-260 microM) with alkyl chain lengths or partition coefficients (LogP) was observed. trans-Stimulation studies revealed that TEA, tetrapropylammonium, tetrabutylammonium, as well as tributylmethylammonium trans-stimulated TEA uptake mediated by hOCT1. In contrast, tetramethylammonium and tetrapentylammonium did not trans-stimulate [14C]TEA uptake, and tetrahexylammonium demonstrated an apparent "trans-inhibition" effect. These data indicate that with increasing alkyl chain lengths (N >/= 2), n-TAA compounds are more poorly translocated by hOCT1 although their potency of inhibition increases. Similar findings were obtained with nonaliphatic hydrocarbons. These data suggest that a balance between hydrophobic and hydrophilic properties is necessary for binding and subsequent translocation by hOCT1.  (+info)

Arterial flow conditions downregulate thrombomodulin on saphenous vein endothelium. (3/952)

BACKGROUND: The antithrombogenic properties of venous endothelium may be attenuated when vein is implanted in the arterial circulation. Such changes may facilitate thrombosis, which is the final common pathway for saphenous vein arterial bypass graft occlusion. METHODS AND RESULTS: Using human saphenous vein in a validated ex vivo flow circuit, we investigated (1) the possibility that arterial flow conditions (mean pressure, 100 mm Hg, 90 cpm, approximately 200 mL/min) alter the concentration of proteins involved in regulating thrombosis at the vessel wall and (2) the influence of ion channel blockade on such effects. Concentrations of thrombomodulin and tissue factor were quantified by Western blotting (ratio of von Willebrand factor staining) and immunohistochemistry (as a percentage of CD31-staining area). Thrombomodulin concentrations after 90 minutes of venous and arterial flow conditions were quantified by immunostaining (68.9+/-4.8% and 41.0+/-3.0% CD31, respectively; P<0.01) and by Western blotting (1.35+/-0.20 and 0. 15+/-0.03 ratio of von Willebrand factor, respectively; P<0.01). The ability of endothelial cells to generate activated protein C also decreased from 62+/-14 to 19+/-10 ng. min-1. 1000 cells-1 (P=0.01). The significant reduction in thrombomodulin was attenuated if calcium was removed from the perfusate but not by external vein stenting. Inclusion in the vein perfusate of drugs that reduce calcium entry (including Gd3+, to block stretch-activated ion channels, and nifedipine) abolished the reduction in thrombomodulin concentration observed after arterial flow conditions. In freshly excised vein, negligible concentrations of tissue factor were detected on the endothelium and concentrations did not increase after 90 minutes of arterial flow conditions, although the inclusion of nifedipine caused the immunostaining to increase from 3.0+/-0.4% to 8.5+/-0.7% CD31 (P<0.02). CONCLUSIONS: In saphenous vein endothelium exposed to arterial flow conditions, there is rapid downregulation of thrombomodulin, sufficient to limit protein C activation, by a calcium-dependent mechanism.  (+info)

Metabotropic GABA receptors facilitate L-type and inhibit N-type calcium channels in single salamander retinal neurons. (4/952)

1. Whole-cell voltage clamp experiments were performed on isolated spiking retinal neurons from the salamander retina. Calcium channel currents were studied using barium as the charge carrier while potassium and sodium currents were suppressed with TEA and TTX, respectively. 2. Baclofen, a metabotropic GABA receptor agonist, both enhanced and suppressed high-voltage-activated calcium channel current. Baclofen facilitated an L-type channel current, and this effect was not voltage dependent. As reported previously, baclofen inhibited an N-type channel current and this action was voltage dependent. 3. While the suppressive effect was mediated by a fast-acting, direct G-protein action, the facilitatory effect was slower and was blocked by inhibitors of protein kinase C (PKC), either GF-109203x or the PKC (19-36) sequence fragment. 4. The pharmacology of the inhibitory and facilitatory responses differed. Commonly used antagonists of metabotropic GABA receptors, CGP35348 and CGP55845, were more potent antagonists of the inhibitory response. Similarly, a selective agonist at the metabotropic GABA receptor, APMPA, was also more effective in eliciting the inhibitory response. 5. These observations indicate that there may be two baclofen-sensitive metabotropic GABA receptors with opposing effects on calcium channel current. This is the first description of a facilitatory action of GABAB receptors and indicates that GABA may not function exclusively as an inhibitory transmitter.  (+info)

Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. (5/952)

In the present study, functional characteristics of organic cation transporter (OCTN)1, which was cloned as the pH-dependent tetraethylammonium (TEA) transporter when expressed in mammalian human embryonic kidney (HEK)293 cells, were further investigated using Xenopus oocytes as well as HEK293 cells as gene expression systems. When OCTN1-derived complementary RNA was injected into Xenopus oocytes, pH-dependent transport of [14C]TEA was observed as the same in HEK293 cells. In contrast, a replacement of sodium ions with potassium ions in the surrounding medium did not cause any change in [14C]TEA uptake in Xenopus oocytes expressed with OCTN1. In addition, when OCTN1 was expressed in HEK293 cells, efflux of TEA from the cells was pH dependent, with an accelerated rate at acidic external medium pH. Accordingly, membrane potential or sodium ions are suggested to have no influence on [14C]TEA transport and the transport activity of OCTN1 is directly affected by pH itself. Furthermore, addition of the unlabeled TEA in external medium enhanced the efflux of preloaded [14C]TEA. These observations suggest that OCTN1 is a pH-dependent and bidirectional TEA transporter. OCTN1-mediated [14C]TEA uptake was inhibited by various organic cations such as cimetidine, procainamide, pyrilamine, quinidine, quinine, and verapamil. In addition, uptakes of cationic compounds such as [3H]pyrilamine, [3H]quinidine, and [3H]verapamil and zwitterionic L-[3H]carnitine were increased by expression of OCTN1 in Xenopus oocytes. Accordingly, OCTN1 was functionally demonstrated to be a multispecific and pH-dependent organic cation transporter, which presumably functions as a proton/organic cation antiporter at the renal apical membrane and other tissues.  (+info)

A transfected cell model for the renal toxin transporter, rOCT2. (6/952)

A cDNA for the organic cation transporter (rOCT2) of the rat kidney was inserted into the retroviral plasmid pLXSN. This plasmid was used to stably transfect NIH3T3 cells. The transfected cell line exhibited an enhanced rate of tetraethylammonium (TEA) uptake and efflux compared to wild-type NIH3T3 cells. Uptake of TEA by the transfected cells was markedly reduced upon incubation at 4 degrees C. When the extracellular pH was lowered from 8.1 to 5.9, uptake was also reduced, suggesting inhibition of rOCT2 by extracellular protons. The apparent K(m) for TEA in the transfected cells was 141 microM. The classical organic cation transport inhibitors, cyanine 863 and cimetidine, produced noncompetitive inhibition with apparent Ki values of 0.81 and 198 microM, respectively. Daunomycin, vinblastine, and the deoxyadenosine analogs, 2'-deoxytubercidin and 2-chlorodeoxyadenosine, did not appear to be substrates for rOCT2. However, the anticancer drug, cisplatin, competitively inhibited TEA uptake by rOCT2 with an apparent Ki value of 925 microM, suggesting that rOCT2 may play a role in its renal secretion. In summary, transfected NIH3T3 cells provide a facile system by which this and other organic ion transporters can be studied.  (+info)

The effect of deep pore mutations on the action of phenylalkylamines on the Kv1.3 potassium channel. (7/952)

We investigated the action of the phenylalkylamines verapamil and N-methyl-verapamil on the Kv1.3 potassium channel using the whole-cell configuration of the patch-clamp technique. Our goal was to identify their binding as a prerequisite for using the phenylalkylamines as small, well-defined molecular probes, not only to expand the structural findings made with peptide toxins or by crystallization, but also to use them as lead compounds for the generation of more potent and therefore more specific K+ channel modulators. Competition experiments with charybdotoxin, known to interact with external residues of Kv1.3, showed no interaction with verapamil. The internal application of quarternary N-methyl-verapamil in combination with verapamil suggested competition for the same internal binding site. Verapamil affinity was decreased 6 fold by a mutation (M395V) in a region of the internal pore which forms part of the internal tetraethylammonium (TEA+) binding site, although mutations at neighbouring residues (T396 and T397) were without effect. Modification of C-type inactivation by mutations in the internal pore suggest that this region participates in the inactivation process. The action of phenylalkylamines and local anaesthetics on L-type Ca2+ channels and Na channels, respectively, and verapamil on Kv1.3 indicate very similar blocking mechanisms. This might allow the use of these compounds as molecular probes to map the internal vestibule of all three channel types.  (+info)

Activity-dependent modulation of K+ currents at presynaptic terminals of mammalian central synapses. (8/952)

1. The activity-dependent regulation of presynaptic K+ currents at the CA3-CA1 synapse in the rat hippocampus was investigated during a train of evoked afferent action potentials. The waveforms of presynaptic compound action potentials (cAPs) and presynaptic Ca2+ transients ([Ca2+]pre,t) were measured with fluorescent voltage-sensitive and Ca2+-sensitive indicators in rat brain slices. 2. Under control conditions, presynaptic cAPs and the accompanying [Ca2+]pre,t displayed similar amplitudes for each stimulus, suggesting that there was no cumulative change of K+ and Ca2+ currents during the test train. However, when a subgroup of presynaptic K+ channels was blocked by a low concentration of 4-aminopyridine (4-AP, 40 microM), a significant facilitation of the [Ca2+]pre,t was observed. 3. This phenomenon was not due to a direct action of 4-AP on presynaptic Ca2+ channels, but to cumulative suppression of the K+ conductance as indicated by the corresponding change in waveforms of the cAP and presynaptic fibre volley. The observed facilitation was not an artifact by virtue of increased fibre recruitment, nor was it related to the accumulation of extracellular K+; rather, it was dependent on Ca2+ influx and stimulation frequency. The time course of recovery from facilitation was closely related to the decay of the intracellular Ca2+ concentration. 4. The facilitation was not blocked by a saturating concentration of 4-AP (8 mM) but was reduced during the application of the K+ channel blocker tetraethylammonium (TEA, 10 mM), implicating the involvement of TEA-sensitive K+ channels. Such activity-dependent suppression of presynaptic K+ conductance could lead to excessive transmitter release and might explain the hippocampal epileptiform activity that can be induced by application of 4-AP.  (+info)

Tetraethylammonium compounds refer to chemical substances that contain the tetraethylammonium cation (N(C2H5)4+). This organic cation is derived from tetraethylammonium hydroxide, which in turn is produced by the reaction of ethyl alcohol with ammonia and then treated with a strong acid.

Tetraethylammonium compounds are used in various biomedical research applications as they can block certain types of ion channels, making them useful for studying neuronal excitability and neurotransmission. However, these compounds have also been associated with toxic effects on the nervous system and other organs, and their use is therefore subject to strict safety regulations.

Tetraethylammonium (TEA) is not typically defined in the context of medical terminology, but rather it is a chemical compound with the formula (C2H5)4N+. It is used in research and development, particularly in the field of electrophysiology where it is used as a blocking agent for certain types of ion channels.

Medically, TEA may be mentioned in the context of its potential toxicity or adverse effects on the human body. Exposure to TEA can cause symptoms such as nausea, vomiting, diarrhea, abdominal pain, headache, dizziness, and confusion. Severe exposure can lead to more serious complications, including seizures, respiratory failure, and cardiac arrest.

Therefore, while Tetraethylammonium is not a medical term per se, it is important for healthcare professionals to be aware of its potential health hazards and take appropriate precautions when handling or working with this compound.

4-Aminopyridine is a type of medication that is used to treat symptoms of certain neurological disorders, such as multiple sclerosis or spinal cord injuries. It works by blocking the action of potassium channels in nerve cells, which helps to improve the transmission of nerve impulses and enhance muscle function.

The chemical name for 4-Aminopyridine is 4-AP or fampridine. It is available as a prescription medication in some countries and can be taken orally in the form of tablets or capsules. Common side effects of 4-Aminopyridine include dizziness, lightheadedness, and numbness or tingling sensations in the hands or feet.

It is important to note that 4-Aminopyridine should only be used under the supervision of a healthcare professional, as it can have serious side effects if not used properly.

Potassium channel blockers are a class of medications that work by blocking potassium channels, which are proteins in the cell membrane that control the movement of potassium ions into and out of cells. By blocking these channels, potassium channel blockers can help to regulate electrical activity in the heart, making them useful for treating certain types of cardiac arrhythmias (irregular heart rhythms).

There are several different types of potassium channel blockers, including:

1. Class III antiarrhythmic drugs: These medications, such as amiodarone and sotalol, are used to treat and prevent serious ventricular arrhythmias (irregular heart rhythms that originate in the lower chambers of the heart).
2. Calcium channel blockers: While not strictly potassium channel blockers, some calcium channel blockers also have effects on potassium channels. These medications, such as diltiazem and verapamil, are used to treat hypertension (high blood pressure), angina (chest pain), and certain types of arrhythmias.
3. Non-selective potassium channel blockers: These medications, such as 4-aminopyridine and tetraethylammonium, have a broader effect on potassium channels and are used primarily in research settings to study the electrical properties of cells.

It's important to note that potassium channel blockers can have serious side effects, particularly when used in high doses or in combination with other medications that affect heart rhythms. They should only be prescribed by a healthcare provider who is familiar with their use and potential risks.

Potassium channels are membrane proteins that play a crucial role in regulating the electrical excitability of cells, including cardiac, neuronal, and muscle cells. These channels facilitate the selective passage of potassium ions (K+) across the cell membrane, maintaining the resting membrane potential and shaping action potentials. They are composed of four or six subunits that assemble to form a central pore through which potassium ions move down their electrochemical gradient. Potassium channels can be modulated by various factors such as voltage, ligands, mechanical stimuli, or temperature, allowing cells to fine-tune their electrical properties and respond to different physiological demands. Dysfunction of potassium channels has been implicated in several diseases, including cardiac arrhythmias, epilepsy, and neurodegenerative disorders.

Potassium is a essential mineral and an important electrolyte that is widely distributed in the human body. The majority of potassium in the body (approximately 98%) is found within cells, with the remaining 2% present in blood serum and other bodily fluids. Potassium plays a crucial role in various physiological processes, including:

1. Regulation of fluid balance and maintenance of normal blood pressure through its effects on vascular tone and sodium excretion.
2. Facilitation of nerve impulse transmission and muscle contraction by participating in the generation and propagation of action potentials.
3. Protein synthesis, enzyme activation, and glycogen metabolism.
4. Regulation of acid-base balance through its role in buffering systems.

The normal serum potassium concentration ranges from 3.5 to 5.0 mEq/L (milliequivalents per liter) or mmol/L (millimoles per liter). Potassium levels outside this range can have significant clinical consequences, with both hypokalemia (low potassium levels) and hyperkalemia (high potassium levels) potentially leading to serious complications such as cardiac arrhythmias, muscle weakness, and respiratory failure.

Potassium is primarily obtained through the diet, with rich sources including fruits (e.g., bananas, oranges, and apricots), vegetables (e.g., leafy greens, potatoes, and tomatoes), legumes, nuts, dairy products, and meat. In cases of deficiency or increased needs, potassium supplements may be recommended under the guidance of a healthcare professional.

Aminopyridines are a group of organic compounds that contain an amino group (-NH2) attached to a pyridine ring, which is a six-membered aromatic heterocycle containing one nitrogen atom. Aminopyridines have various pharmacological properties and are used in the treatment of several medical conditions.

The most commonly used aminopyridines in medicine include:

1. 4-Aminopyridine (also known as Fampridine): It is a potassium channel blocker that is used to improve walking ability in patients with multiple sclerosis (MS) and other neurological disorders. It works by increasing the conduction of nerve impulses in demyelinated nerves, thereby improving muscle strength and coordination.
2. 3,4-Diaminopyridine: It is a potassium channel blocker that is used to treat Lambert-Eaton myasthenic syndrome (LEMS), a rare autoimmune disorder characterized by muscle weakness. It works by increasing the release of acetylcholine from nerve endings, thereby improving muscle strength and function.
3. 2-Aminopyridine: It is an experimental drug that has been studied for its potential use in treating various neurological disorders, including MS, Parkinson's disease, and stroke. It works by increasing the release of neurotransmitters from nerve endings, thereby improving neuronal communication.

Like all medications, aminopyridines can have side effects, including gastrointestinal symptoms, headache, dizziness, and in rare cases, seizures. It is important to use these drugs under the supervision of a healthcare provider and follow their dosage instructions carefully.

Membrane potential is the electrical potential difference across a cell membrane, typically for excitable cells such as nerve and muscle cells. It is the difference in electric charge between the inside and outside of a cell, created by the selective permeability of the cell membrane to different ions. The resting membrane potential of a typical animal cell is around -70 mV, with the interior being negative relative to the exterior. This potential is generated and maintained by the active transport of ions across the membrane, primarily through the action of the sodium-potassium pump. Membrane potentials play a crucial role in many physiological processes, including the transmission of nerve impulses and the contraction of muscle cells.

Charybdotoxin is a neurotoxin that is derived from the venom of the death stalker scorpion (Leiurus quinquestriatus). It specifically binds to and blocks certain types of ion channels called "big potassium" or "BK" channels, which are found in various tissues including smooth muscle, nerve, and endocrine cells. By blocking these channels, charybdotoxin can alter the electrical activity of cells and potentially affect a variety of physiological processes. It is an important tool in basic research for studying the structure and function of BK channels and their role in various diseases.

Organic cation transport proteins (OCTs) are a group of membrane transporters that facilitate the movement of organic cations across biological membranes. These transporters play an essential role in the absorption, distribution, and elimination of various endogenous and exogenous substances, including drugs and toxins.

There are four main types of OCTs, namely OCT1, OCT2, OCT3, and OCTN1 (also known as novel organic cation transporter 1 or OCT6). These proteins belong to the solute carrier (SLC) family, specifically SLC22A.

OCTs have a broad substrate specificity and can transport various organic cations, such as neurotransmitters (e.g., serotonin, dopamine, histamine), endogenous compounds (e.g., creatinine, choline), and drugs (e.g., metformin, quinidine, morphine). The transport process is typically sodium-independent and can occur in both directions, depending on the concentration gradient of the substrate.

OCTs are widely expressed in various tissues, including the liver, kidney, intestine, brain, heart, and placenta. Their expression patterns and functions vary among different OCT types, contributing to their diverse roles in physiology and pharmacology. Dysfunction of OCTs has been implicated in several diseases, such as drug toxicity, neurodegenerative disorders, and cancer.

In summary, organic cation transport proteins are membrane transporters that facilitate the movement of organic cations across biological membranes, playing crucial roles in the absorption, distribution, and elimination of various substances, including drugs and toxins.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Electric conductivity, also known as electrical conductance, is a measure of a material's ability to allow the flow of electric current through it. It is usually measured in units of Siemens per meter (S/m) or ohm-meters (Ω-m).

In medical terms, electric conductivity can refer to the body's ability to conduct electrical signals, which is important for various physiological processes such as nerve impulse transmission and muscle contraction. Abnormalities in electrical conductivity can be associated with various medical conditions, including neurological disorders and heart diseases.

For example, in electrocardiography (ECG), the electric conductivity of the heart is measured to assess its electrical activity and identify any abnormalities that may indicate heart disease. Similarly, in electromyography (EMG), the electric conductivity of muscles is measured to diagnose neuromuscular disorders.

Apamin is a neurotoxin found in the venom of the honeybee (Apis mellifera). It is a small peptide consisting of 18 amino acids and has a molecular weight of approximately 2000 daltons. Apamin is known to selectively block certain types of calcium-activated potassium channels, which are involved in the regulation of neuronal excitability. It has been used in scientific research to study the role of these ion channels in various physiological processes.

Clinically, apamin has been investigated for its potential therapeutic effects in a variety of neurological disorders, such as epilepsy and Parkinson's disease. However, its use as a therapeutic agent is not yet approved by regulatory agencies due to the lack of sufficient clinical evidence and concerns about its potential toxicity.

Barium is a naturally occurring, silvery-white metallic chemical element with the symbol Ba and atomic number 56. In medical terms, barium is commonly used as a contrast agent in radiology, particularly in X-ray examinations such as an upper GI series or barium enema. The barium sulfate powder is mixed with water to create a liquid or thick paste that is swallowed or inserted through the rectum. This provides a white coating on the inside lining of the digestive tract, allowing it to be seen more clearly on X-ray images and helping doctors diagnose various conditions such as ulcers, tumors, or inflammation.

It's important to note that barium is not absorbed by the body and does not cause any harm when used in medical imaging procedures. However, if it is accidentally inhaled or aspirated into the lungs during administration, it can cause chemical pneumonitis, a potentially serious condition. Therefore, it should only be administered under the supervision of trained medical professionals.

Ion channels are specialized transmembrane proteins that form hydrophilic pores or gaps in the lipid bilayer of cell membranes. They regulate the movement of ions (such as sodium, potassium, calcium, and chloride) across the cell membrane by allowing these charged particles to pass through selectively in response to various stimuli, including voltage changes, ligand binding, mechanical stress, or temperature changes. This ion movement is essential for many physiological processes, including electrical signaling, neurotransmission, muscle contraction, and maintenance of resting membrane potential. Ion channels can be categorized based on their activation mechanisms, ion selectivity, and structural features. Dysfunction of ion channels can lead to various diseases, making them important targets for drug development.

Tetrodotoxin (TTX) is a potent neurotoxin that is primarily found in certain species of pufferfish, blue-ringed octopuses, and other marine animals. It blocks voltage-gated sodium channels in nerve cell membranes, leading to muscle paralysis and potentially respiratory failure. TTX has no known antidote, and medical treatment focuses on supportive care for symptoms. Exposure can occur through ingestion, inhalation, or skin absorption, depending on the route of toxicity.

Organic Cation Transporter 1 (OCT1) is a protein that belongs to the solute carrier family 22 (SLC22A). It is primarily expressed in the liver and plays an essential role in the uptake and elimination of various organic cations, including many drugs, from the systemic circulation into hepatocytes. OCT1 also transports some endogenous substances such as neurotransmitters and hormones. Mutations or variants in the OCT1 gene can affect drug response and disposition, making it an important factor to consider in personalized medicine.

Quaternary ammonium compounds (QACs) are a group of disinfectants and antiseptics that contain a nitrogen atom surrounded by four organic groups, resulting in a charged "quat" structure. They are widely used in healthcare settings due to their broad-spectrum activity against bacteria, viruses, fungi, and spores. QACs work by disrupting the cell membrane of microorganisms, leading to their death. Common examples include benzalkonium chloride and cetyltrimethylammonium bromide. It is important to note that some microorganisms have developed resistance to QACs, and they may not be effective against all types of pathogens.

An action potential is a brief electrical signal that travels along the membrane of a nerve cell (neuron) or muscle cell. It is initiated by a rapid, localized change in the permeability of the cell membrane to specific ions, such as sodium and potassium, resulting in a rapid influx of sodium ions and a subsequent efflux of potassium ions. This ion movement causes a brief reversal of the electrical potential across the membrane, which is known as depolarization. The action potential then propagates along the cell membrane as a wave, allowing the electrical signal to be transmitted over long distances within the body. Action potentials play a crucial role in the communication and functioning of the nervous system and muscle tissue.

Electrophysiology is a branch of medicine that deals with the electrical activities of the body, particularly the heart. In a medical context, electrophysiology studies (EPS) are performed to assess abnormal heart rhythms (arrhythmias) and to evaluate the effectiveness of certain treatments, such as medication or pacemakers.

During an EPS, electrode catheters are inserted into the heart through blood vessels in the groin or neck. These catheters can record the electrical activity of the heart and stimulate it to help identify the source of the arrhythmia. The information gathered during the study can help doctors determine the best course of treatment for each patient.

In addition to cardiac electrophysiology, there are also other subspecialties within electrophysiology, such as neuromuscular electrophysiology, which deals with the electrical activity of the nervous system and muscles.

Calcium-activated potassium channels are a type of ion channel found in the membranes of cells. These channels are activated by an increase in intracellular calcium levels and play a crucial role in regulating various cellular processes, including electrical excitability, neurotransmitter release, hormone secretion, and vascular tone.

Once activated, calcium-activated potassium channels allow potassium ions (K+) to flow out of the cell, which can lead to membrane hyperpolarization or stabilization of the resting membrane potential. This process helps control the frequency and duration of action potentials in excitable cells such as neurons and muscle fibers.

There are several subtypes of calcium-activated potassium channels, including:

1. Large conductance calcium-activated potassium (BK) channels: These channels have a large single-channel conductance and are activated by both voltage and intracellular calcium. They play essential roles in regulating vascular tone, neurotransmitter release, and neuronal excitability.
2. Small conductance calcium-activated potassium (SK) channels: These channels have a smaller single-channel conductance and are primarily activated by intracellular calcium. They contribute to the regulation of neuronal excitability and neurotransmitter release.
3. Intermediate conductance calcium-activated potassium (IK) channels: These channels have an intermediate single-channel conductance and are activated by both voltage and intracellular calcium. They play a role in regulating epithelial ion transport, smooth muscle cell excitability, and neurotransmitter release.

Dysfunction of calcium-activated potassium channels has been implicated in various pathological conditions, such as hypertension, epilepsy, chronic pain, and neurological disorders.

Patch-clamp techniques are a group of electrophysiological methods used to study ion channels and other electrical properties of cells. These techniques were developed by Erwin Neher and Bert Sakmann, who were awarded the Nobel Prize in Physiology or Medicine in 1991 for their work. The basic principle of patch-clamp techniques involves creating a high resistance seal between a glass micropipette and the cell membrane, allowing for the measurement of current flowing through individual ion channels or groups of channels.

There are several different configurations of patch-clamp techniques, including:

1. Cell-attached configuration: In this configuration, the micropipette is attached to the outer surface of the cell membrane, and the current flowing across a single ion channel can be measured. This configuration allows for the study of the properties of individual channels in their native environment.
2. Whole-cell configuration: Here, the micropipette breaks through the cell membrane, creating a low resistance electrical connection between the pipette and the inside of the cell. This configuration allows for the measurement of the total current flowing across all ion channels in the cell membrane.
3. Inside-out configuration: In this configuration, the micropipette is pulled away from the cell after establishing a seal, resulting in the exposure of the inner surface of the cell membrane to the solution in the pipette. This configuration allows for the study of the properties of ion channels in isolation from other cellular components.
4. Outside-out configuration: Here, the micropipette is pulled away from the cell after establishing a seal, resulting in the exposure of the outer surface of the cell membrane to the solution in the pipette. This configuration allows for the study of the properties of ion channels in their native environment, but with the ability to control the composition of the extracellular solution.

Patch-clamp techniques have been instrumental in advancing our understanding of ion channel function and have contributed to numerous breakthroughs in neuroscience, pharmacology, and physiology.

Cesium is a chemical element with the symbol "Cs" and atomic number 55. It is a soft, silvery-golden alkali metal that is highly reactive. Cesium is never found in its free state in nature due to its high reactivity. Instead, it is found in minerals such as pollucite.

In the medical field, cesium-137 is a radioactive isotope of cesium that has been used in certain medical treatments and diagnostic procedures. For example, it has been used in the treatment of cancer, particularly in cases where other forms of radiation therapy have not been effective. It can also be used as a source of radiation in brachytherapy, a type of cancer treatment that involves placing radioactive material directly into or near tumors.

However, exposure to high levels of cesium-137 can be harmful and may increase the risk of cancer and other health problems. Therefore, its use in medical treatments is closely regulated and monitored to ensure safety.

Voltage-gated potassium channels are a type of ion channel found in the membrane of excitable cells such as nerve and muscle cells. They are called "voltage-gated" because their opening and closing is regulated by the voltage, or electrical potential, across the cell membrane. Specifically, these channels are activated when the membrane potential becomes more positive, a condition that occurs during the action potential of a neuron or muscle fiber.

When voltage-gated potassium channels open, they allow potassium ions (K+) to flow out of the cell down their electrochemical gradient. This outward flow of K+ ions helps to repolarize the membrane, bringing it back to its resting potential after an action potential has occurred. The precise timing and duration of the opening and closing of voltage-gated potassium channels is critical for the normal functioning of excitable cells, and abnormalities in these channels have been linked to a variety of diseases, including cardiac arrhythmias, epilepsy, and neurological disorders.

Glyburide is a medication that falls under the class of drugs known as sulfonylureas. It is primarily used to manage type 2 diabetes by lowering blood sugar levels. Glyburide works by stimulating the release of insulin from the pancreas, thereby increasing the amount of insulin available in the body to help glucose enter cells and decrease the level of glucose in the bloodstream.

The medical definition of Glyburide is:
A second-generation sulfonylurea antidiabetic drug (oral hypoglycemic) used in the management of type 2 diabetes mellitus. It acts by stimulating pancreatic beta cells to release insulin and increases peripheral glucose uptake and utilization, thereby reducing blood glucose levels. Glyburide may also decrease glucose production in the liver.

It is important to note that Glyburide should be used as part of a comprehensive diabetes management plan that includes proper diet, exercise, regular monitoring of blood sugar levels, and other necessary lifestyle modifications. As with any medication, it can have side effects and potential interactions with other drugs, so it should only be taken under the supervision of a healthcare provider.

Quinine is defined as a bitter crystalline alkaloid derived from the bark of the Cinchona tree, primarily used in the treatment of malaria and other parasitic diseases. It works by interfering with the reproduction of the malaria parasite within red blood cells. Quinine has also been used historically as a muscle relaxant and analgesic, but its use for these purposes is now limited due to potential serious side effects. In addition, quinine can be found in some beverages like tonic water, where it is present in very small amounts for flavoring purposes.

Scorpion venoms are complex mixtures of neurotoxins, enzymes, and other bioactive molecules that are produced by the venom glands of scorpions. These venoms are primarily used for prey immobilization and defense. The neurotoxins found in scorpion venoms can cause a variety of symptoms in humans, including pain, swelling, numbness, and in severe cases, respiratory failure and death.

Scorpion venoms are being studied for their potential medical applications, such as in the development of new pain medications and insecticides. Additionally, some components of scorpion venom have been found to have antimicrobial properties and may be useful in the development of new antibiotics.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

A cation is a type of ion, which is a charged particle, that has a positive charge. In chemistry and biology, cations are formed when a neutral atom loses one or more electrons during chemical reactions. The removal of electrons results in the atom having more protons than electrons, giving it a net positive charge.

Cations are important in many biological processes, including nerve impulse transmission, muscle contraction, and enzyme function. For example, sodium (Na+), potassium (K+), calcium (Ca2+), and magnesium (Mg2+) are all essential cations that play critical roles in various physiological functions.

In medical contexts, cations can also be relevant in the diagnosis and treatment of various conditions. For instance, abnormal levels of certain cations, such as potassium or calcium, can indicate specific diseases or disorders. Additionally, medications used to treat various conditions may work by altering cation concentrations or activity within the body.

Barium compounds are inorganic substances that contain the metallic element barium (Ba) combined with one or more other elements. Barium is an alkaline earth metal that is highly reactive and toxic in its pure form. However, when bound with other elements to form barium compounds, it can be used safely for various medical and industrial purposes.

In medicine, barium compounds are commonly used as a contrast material for X-ray examinations of the digestive system. When a patient swallows a preparation containing barium sulfate, the dense compound coats the lining of the esophagus, stomach, and intestines, making them visible on an X-ray image. This allows doctors to diagnose conditions such as ulcers, tumors, or blockages in the digestive tract.

Other barium compounds include barium carbonate, barium chloride, and barium hydroxide, which are used in various industrial applications such as drilling muds, flame retardants, and pigments for paints and plastics. However, these compounds can be toxic if ingested or inhaled, so they must be handled with care.

Sodium is an essential mineral and electrolyte that is necessary for human health. In a medical context, sodium is often discussed in terms of its concentration in the blood, as measured by serum sodium levels. The normal range for serum sodium is typically between 135 and 145 milliequivalents per liter (mEq/L).

Sodium plays a number of important roles in the body, including:

* Regulating fluid balance: Sodium helps to regulate the amount of water in and around your cells, which is important for maintaining normal blood pressure and preventing dehydration.
* Facilitating nerve impulse transmission: Sodium is involved in the generation and transmission of electrical signals in the nervous system, which is necessary for proper muscle function and coordination.
* Assisting with muscle contraction: Sodium helps to regulate muscle contractions by interacting with other minerals such as calcium and potassium.

Low sodium levels (hyponatremia) can cause symptoms such as confusion, seizures, and coma, while high sodium levels (hypernatremia) can lead to symptoms such as weakness, muscle cramps, and seizures. Both conditions require medical treatment to correct.

Quinidine is a Class IA antiarrhythmic medication that is primarily used to treat and prevent various types of cardiac arrhythmias (abnormal heart rhythms). It works by blocking the rapid sodium channels in the heart, which helps to slow down the conduction of electrical signals within the heart and stabilize its rhythm.

Quinidine is derived from the bark of the Cinchona tree and has been used for centuries as a treatment for malaria. However, its antiarrhythmic properties were discovered later, and it became an important medication in cardiology.

In addition to its use in treating arrhythmias, quinidine may also be used off-label for other indications such as the treatment of nocturnal leg cramps or myasthenia gravis. It is available in various forms, including tablets and injectable solutions.

It's important to note that quinidine has a narrow therapeutic index, meaning that there is only a small difference between an effective dose and a toxic one. Therefore, it must be carefully monitored to ensure that the patient is receiving a safe and effective dose. Common side effects of quinidine include gastrointestinal symptoms such as nausea, vomiting, and diarrhea, as well as visual disturbances, headache, and dizziness. More serious side effects can include QT prolongation, which can lead to dangerous arrhythmias, and hypersensitivity reactions.

I must clarify that the term "Guinea Pigs" is not typically used in medical definitions. However, in colloquial or informal language, it may refer to people who are used as the first to try out a new medical treatment or drug. This is known as being a "test subject" or "in a clinical trial."

In the field of scientific research, particularly in studies involving animals, guinea pigs are small rodents that are often used as experimental subjects due to their size, cost-effectiveness, and ease of handling. They are not actually pigs from Guinea, despite their name's origins being unclear. However, they do not exactly fit the description of being used in human medical experiments.

Ion channel gating refers to the process by which ion channels in cell membranes open and close in response to various stimuli, allowing ions such as sodium, potassium, and calcium to flow into or out of the cell. This movement of ions is crucial for many physiological processes, including the generation and transmission of electrical signals in nerve cells, muscle contraction, and the regulation of hormone secretion.

Ion channel gating can be regulated by various factors, including voltage changes across the membrane (voltage-gated channels), ligand binding (ligand-gated channels), mechanical stress (mechanosensitive channels), or other intracellular signals (second messenger-gated channels). The opening and closing of ion channels are highly regulated and coordinated processes that play a critical role in maintaining the proper functioning of cells and organ systems.

Large-conductance calcium-activated potassium channels (BK channels) are a type of ion channel found in the membranes of many types of cells, including excitable cells such as neurons and muscle cells. These channels are characterized by their large conductance to potassium ions (K+), which allows them to significantly impact the electrical excitability of cells.

BK channels are activated by both voltage and intracellular calcium ions (Ca2+). They are therefore also known as Ca2+-activated K+ (KCa) channels. When the membrane potential becomes more positive (depolarized), and/or when intracellular Ca2+ levels rise, BK channels open, allowing K+ to flow out of the cell. This efflux of K+ tends to hyperpolarize the membrane potential, making it more difficult for the cell to generate further action potentials or contractile responses.

BK channels play important roles in regulating a variety of physiological processes, including neuronal excitability, neurotransmitter release, vascular tone, and cardiac electrical activity. Dysfunction of BK channels has been implicated in several diseases, such as hypertension, epilepsy, and chronic pain.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Elapid venoms are the toxic secretions produced by elapid snakes, a family of venomous snakes that includes cobras, mambas, kraits, and coral snakes. These venoms are primarily composed of neurotoxins, which can cause paralysis and respiratory failure in prey or predators.

Elapid venoms work by targeting the nervous system, disrupting communication between the brain and muscles. This results in muscle weakness, paralysis, and eventually respiratory failure if left untreated. Some elapid venoms also contain hemotoxins, which can cause tissue damage, bleeding, and other systemic effects.

The severity of envenomation by an elapid snake depends on several factors, including the species of snake, the amount of venom injected, the location of the bite, and the size and health of the victim. Prompt medical treatment is essential in cases of elapid envenomation, as the effects of the venom can progress rapidly and lead to serious complications or death if left untreated.

I'm sorry for any confusion, but "Rubidium" is not a medical term. It is a chemical element with the symbol Rb and atomic number 37. Rubidium is a soft, silvery-white metal that is highly reactive and flammable. It is found in trace amounts in minerals such as leucite and pollucite.

While rubidium itself does not have a direct medical application, its radioisotopes (such as rubidium-82) are used in medical imaging, particularly in positron emission tomography (PET) scans, to study heart function and blood flow. However, the term "Rubidium" itself is not used in a medical context to define a condition or disease.

Vasodilation is the widening or increase in diameter of blood vessels, particularly the involuntary relaxation of the smooth muscle in the tunica media (middle layer) of the arteriole walls. This results in an increase in blood flow and a decrease in vascular resistance. Vasodilation can occur due to various physiological and pathophysiological stimuli, such as local metabolic demands, neural signals, or pharmacological agents. It plays a crucial role in regulating blood pressure, tissue perfusion, and thermoregulation.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Shaker-related Kv1.5 potassium channels, also known as "Shab potassium channels," are a type of voltage-gated potassium channel that play a crucial role in regulating the electrical activity of cells, particularly in the heart and nervous system. These channels are named after the Shaker gene in Drosophila melanogaster (fruit flies) where they were first discovered and characterized.

The Kv1.5 channel is composed of four pore-forming α-subunits that assemble to form a tetrameric complex. Each α-subunit contains six transmembrane domains, with the voltage-sensing domain located in the fourth transmembrane segment and the potassium selectivity filter located in the pore region between the fifth and sixth transmembrane segments.

Kv1.5 channels are activated by membrane depolarization and contribute to the repolarization phase of the action potential in cardiac myocytes, helping to maintain the normal rhythm of the heart. In addition, Kv1.5 channels play a role in regulating neuronal excitability and neurotransmitter release in the nervous system.

Mutations in the KCNA5 gene, which encodes the Kv1.5 channel, have been associated with various cardiac arrhythmias, including atrial fibrillation and Brugada syndrome. Pharmacological blockade of Kv1.5 channels has also been shown to have potential therapeutic benefits in the treatment of atrial fibrillation and other cardiovascular disorders.

Shaw potassium channels, also known as KCNA4 channels, are a type of voltage-gated potassium channel that is encoded by the KCNA4 gene in humans. These channels play a crucial role in regulating the electrical excitability of cells, particularly in the heart and nervous system.

Shaw channels are named after James E. Shaw, who first identified them in 1996. They are composed of four subunits that arrange themselves to form a central pore through which potassium ions can flow. The channels are activated by depolarization of the cell membrane and help to repolarize the membrane during action potentials.

Mutations in the KCNA4 gene have been associated with various cardiac arrhythmias, including familial atrial fibrillation and long QT syndrome type 3. These conditions can cause irregular heart rhythms and may increase the risk of sudden cardiac death. Therefore, understanding the function and regulation of Shaw potassium channels is important for developing therapies to treat these disorders.

Delayed rectifier potassium channels are a type of ion channel found in the membrane of excitable cells, such as nerve and muscle cells. They are called "delayed rectifiers" because they activate and allow the flow of potassium ions (K+) out of the cell after a short delay following an action potential, or electrical signal.

These channels play a crucial role in regulating the duration and frequency of action potentials, helping to restore the resting membrane potential of the cell after it has fired. By allowing K+ to flow out of the cell, delayed rectifier potassium channels help to repolarize the membrane and bring it back to its resting state.

There are several different types of delayed rectifier potassium channels, which are classified based on their biophysical and pharmacological properties. These channels are important targets for drugs used to treat a variety of conditions, including cardiac arrhythmias, epilepsy, and psychiatric disorders.

Calcium channel blockers (CCBs) are a class of medications that work by inhibiting the influx of calcium ions into cardiac and smooth muscle cells. This action leads to relaxation of the muscles, particularly in the blood vessels, resulting in decreased peripheral resistance and reduced blood pressure. Calcium channel blockers also have anti-arrhythmic effects and are used in the management of various cardiovascular conditions such as hypertension, angina, and certain types of arrhythmias.

Calcium channel blockers can be further classified into two main categories based on their chemical structure: dihydropyridines (e.g., nifedipine, amlodipine) and non-dihydropyridines (e.g., verapamil, diltiazem). Dihydropyridines are more selective for vascular smooth muscle and have a greater effect on blood pressure than heart rate or conduction. Non-dihydropyridines have a more significant impact on cardiac conduction and contractility, in addition to their vasodilatory effects.

It is important to note that calcium channel blockers may interact with other medications and should be used under the guidance of a healthcare professional. Potential side effects include dizziness, headache, constipation, and peripheral edema.

Smooth muscle, also known as involuntary muscle, is a type of muscle that is controlled by the autonomic nervous system and functions without conscious effort. These muscles are found in the walls of hollow organs such as the stomach, intestines, bladder, and blood vessels, as well as in the eyes, skin, and other areas of the body.

Smooth muscle fibers are shorter and narrower than skeletal muscle fibers and do not have striations or sarcomeres, which give skeletal muscle its striped appearance. Smooth muscle is controlled by the autonomic nervous system through the release of neurotransmitters such as acetylcholine and norepinephrine, which bind to receptors on the smooth muscle cells and cause them to contract or relax.

Smooth muscle plays an important role in many physiological processes, including digestion, circulation, respiration, and elimination. It can also contribute to various medical conditions, such as hypertension, gastrointestinal disorders, and genitourinary dysfunction, when it becomes overactive or underactive.

Cromakalim is a pharmacological agent, specifically a potassium channel opener, that was investigated for its potential therapeutic effects in the treatment of cardiovascular diseases such as hypertension and angina. Potassium channel openers work by relaxing smooth muscle cells in blood vessels, which leads to vasodilation and decreased blood pressure. However, cromakalim was never approved for clinical use due to its associated side effects, including negative inotropic effects on the heart and potential proarrhythmic properties.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Electric stimulation, also known as electrical nerve stimulation or neuromuscular electrical stimulation, is a therapeutic treatment that uses low-voltage electrical currents to stimulate nerves and muscles. It is often used to help manage pain, promote healing, and improve muscle strength and mobility. The electrical impulses can be delivered through electrodes placed on the skin or directly implanted into the body.

In a medical context, electric stimulation may be used for various purposes such as:

1. Pain management: Electric stimulation can help to block pain signals from reaching the brain and promote the release of endorphins, which are natural painkillers produced by the body.
2. Muscle rehabilitation: Electric stimulation can help to strengthen muscles that have become weak due to injury, illness, or surgery. It can also help to prevent muscle atrophy and improve range of motion.
3. Wound healing: Electric stimulation can promote tissue growth and help to speed up the healing process in wounds, ulcers, and other types of injuries.
4. Urinary incontinence: Electric stimulation can be used to strengthen the muscles that control urination and reduce symptoms of urinary incontinence.
5. Migraine prevention: Electric stimulation can be used as a preventive treatment for migraines by applying electrical impulses to specific nerves in the head and neck.

It is important to note that electric stimulation should only be administered under the guidance of a qualified healthcare professional, as improper use can cause harm or discomfort.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Acetylcholine is a neurotransmitter, a type of chemical messenger that transmits signals across a chemical synapse from one neuron (nerve cell) to another "target" neuron, muscle cell, or gland cell. It is involved in both peripheral and central nervous system functions.

In the peripheral nervous system, acetylcholine acts as a neurotransmitter at the neuromuscular junction, where it transmits signals from motor neurons to activate muscles. Acetylcholine also acts as a neurotransmitter in the autonomic nervous system, where it is involved in both the sympathetic and parasympathetic systems.

In the central nervous system, acetylcholine plays a role in learning, memory, attention, and arousal. Disruptions in cholinergic neurotransmission have been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, and myasthenia gravis.

Acetylcholine is synthesized from choline and acetyl-CoA by the enzyme choline acetyltransferase and is stored in vesicles at the presynaptic terminal of the neuron. When a nerve impulse arrives, the vesicles fuse with the presynaptic membrane, releasing acetylcholine into the synapse. The acetylcholine then binds to receptors on the postsynaptic membrane, triggering a response in the target cell. Acetylcholine is subsequently degraded by the enzyme acetylcholinesterase, which terminates its action and allows for signal transduction to be repeated.

Sulfur compounds refer to chemical substances that contain sulfur atoms. Sulfur can form bonds with many other elements, including carbon, hydrogen, oxygen, and nitrogen, among others. As a result, there is a wide variety of sulfur compounds with different structures and properties. Some common examples of sulfur compounds include hydrogen sulfide (H2S), sulfur dioxide (SO2), and sulfonic acids (R-SO3H).

In the medical field, sulfur compounds have various applications. For instance, some are used as drugs or drug precursors, while others are used in the production of medical devices or as disinfectants. Sulfur-containing amino acids, such as methionine and cysteine, are essential components of proteins and play crucial roles in many biological processes.

However, some sulfur compounds can also be harmful to human health. For example, exposure to high levels of hydrogen sulfide or sulfur dioxide can cause respiratory problems, while certain organosulfur compounds found in crude oil and coal tar have been linked to an increased risk of cancer. Therefore, it is essential to handle and dispose of sulfur compounds properly to minimize potential health hazards.

Biological factors are the aspects related to living organisms, including their genes, evolution, physiology, and anatomy. These factors can influence an individual's health status, susceptibility to diseases, and response to treatments. Biological factors can be inherited or acquired during one's lifetime and can interact with environmental factors to shape a person's overall health. Examples of biological factors include genetic predisposition, hormonal imbalances, infections, and chronic medical conditions.

Chlorides are simple inorganic ions consisting of a single chlorine atom bonded to a single charged hydrogen ion (H+). Chloride is the most abundant anion (negatively charged ion) in the extracellular fluid in the human body. The normal range for chloride concentration in the blood is typically between 96-106 milliequivalents per liter (mEq/L).

Chlorides play a crucial role in maintaining electrical neutrality, acid-base balance, and osmotic pressure in the body. They are also essential for various physiological processes such as nerve impulse transmission, maintenance of membrane potentials, and digestion (as hydrochloric acid in the stomach).

Chloride levels can be affected by several factors, including diet, hydration status, kidney function, and certain medical conditions. Increased or decreased chloride levels can indicate various disorders, such as dehydration, kidney disease, Addison's disease, or diabetes insipidus. Therefore, monitoring chloride levels is essential for assessing a person's overall health and diagnosing potential medical issues.

Mollusca is not a medical term per se, but a major group of invertebrate animals that includes snails, clams, octopuses, and squids. However, medically, some mollusks can be relevant as they can act as vectors for various diseases, such as schistosomiasis (transmitted by freshwater snails) and fascioliasis (transmitted by aquatic snails). Therefore, a medical definition might describe Mollusca as a phylum of mostly marine invertebrates that can sometimes play a role in the transmission of certain infectious diseases.

Muscle contraction is the physiological process in which muscle fibers shorten and generate force, leading to movement or stability of a body part. This process involves the sliding filament theory where thick and thin filaments within the sarcomeres (the functional units of muscles) slide past each other, facilitated by the interaction between myosin heads and actin filaments. The energy required for this action is provided by the hydrolysis of adenosine triphosphate (ATP). Muscle contractions can be voluntary or involuntary, and they play a crucial role in various bodily functions such as locomotion, circulation, respiration, and posture maintenance.

Volatile Organic Compounds (VOCs) are organic chemicals that have a low boiling point and easily evaporate at room temperature. They can be liquids or solids. VOCs include a variety of chemicals, such as benzene, toluene, xylene, and formaldehyde, which are found in many household products, including paints, paint strippers, and other solvents; cleaning supplies; pesticides; building materials and furnishings; office equipment such as copiers and printers, correction fluids and carbonless copy paper; and glues and adhesives.

VOCs can cause both short- and long-term health effects. Short-term exposure to high levels of VOCs can cause headaches, dizziness, visual disturbances, and memory problems. Long-term exposure can cause damage to the liver, kidneys, and central nervous system. Some VOCs are also suspected or known carcinogens.

It is important to properly use, store, and dispose of products that contain VOCs to minimize exposure. Increasing ventilation by opening windows and doors or using fans can also help reduce exposure to VOCs.

Benzopyrans are a class of chemical compounds that contain a benzene ring fused to a pyran ring. They are also known as chromenes. Benzopyrans can be found in various natural sources, including plants and fungi, and have been studied for their potential biological activities. Some benzopyrans have been found to have anti-inflammatory, antioxidant, and anticancer properties. However, some benzopyrans can also be toxic or have other adverse health effects, so it is important to study their properties and potential uses carefully.

Calcium channels are specialized proteins that span the membrane of cells and allow calcium ions (Ca²+) to flow in and out of the cell. They are crucial for many physiological processes, including muscle contraction, neurotransmitter release, hormone secretion, and gene expression.

There are several types of calcium channels, classified based on their biophysical and pharmacological properties. The most well-known are:

1. Voltage-gated calcium channels (VGCCs): These channels are activated by changes in the membrane potential. They are further divided into several subtypes, including L-type, P/Q-type, N-type, R-type, and T-type. VGCCs play a critical role in excitation-contraction coupling in muscle cells and neurotransmitter release in neurons.
2. Receptor-operated calcium channels (ROCCs): These channels are activated by the binding of an extracellular ligand, such as a hormone or neurotransmitter, to a specific receptor on the cell surface. ROCCs are involved in various physiological processes, including smooth muscle contraction and platelet activation.
3. Store-operated calcium channels (SOCCs): These channels are activated by the depletion of intracellular calcium stores, such as those found in the endoplasmic reticulum. SOCCs play a critical role in maintaining calcium homeostasis and signaling within cells.

Dysregulation of calcium channel function has been implicated in various diseases, including hypertension, arrhythmias, migraine, epilepsy, and neurodegenerative disorders. Therefore, calcium channels are an important target for drug development and therapy.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Muscle relaxation, in a medical context, refers to the process of reducing tension and promoting relaxation in the skeletal muscles. This can be achieved through various techniques, including progressive muscle relaxation (PMR), where individuals consciously tense and then release specific muscle groups in a systematic manner.

PMR has been shown to help reduce anxiety, stress, and muscle tightness, and improve overall well-being. It is often used as a complementary therapy in conjunction with other treatments for conditions such as chronic pain, headaches, and insomnia.

Additionally, muscle relaxation can also be facilitated through pharmacological interventions, such as the use of muscle relaxant medications. These drugs work by inhibiting the transmission of signals between nerves and muscles, leading to a reduction in muscle tone and spasticity. They are commonly used to treat conditions such as multiple sclerosis, cerebral palsy, and spinal cord injuries.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Cobalt is a chemical element with the symbol Co and atomic number 27. It is a hard, silver-white, lustrous, and brittle metal that is found naturally only in chemically combined form, except for small amounts found in meteorites. Cobalt is used primarily in the production of magnetic, wear-resistant, and high-strength alloys, as well as in the manufacture of batteries, magnets, and pigments.

In a medical context, cobalt is sometimes used in the form of cobalt-60, a radioactive isotope, for cancer treatment through radiation therapy. Cobalt-60 emits gamma rays that can be directed at tumors to destroy cancer cells. Additionally, small amounts of cobalt are present in some vitamin B12 supplements and fortified foods, as cobalt is an essential component of vitamin B12. However, exposure to high levels of cobalt can be harmful and may cause health effects such as allergic reactions, lung damage, heart problems, and neurological issues.

A smooth muscle within the vascular system refers to the involuntary, innervated muscle that is found in the walls of blood vessels. These muscles are responsible for controlling the diameter of the blood vessels, which in turn regulates blood flow and blood pressure. They are called "smooth" muscles because their individual muscle cells do not have the striations, or cross-striped patterns, that are observed in skeletal and cardiac muscle cells. Smooth muscle in the vascular system is controlled by the autonomic nervous system and by hormones, and can contract or relax slowly over a period of time.

Kv1.1 potassium channel, also known as KCNA1, is a type of voltage-gated potassium channel that plays a crucial role in the regulation of electrical excitability in neurons and other excitable cells. It is encoded by the KCNA1 gene located on chromosome 12p13.

The Kv1.1 channel is composed of four α-subunits, each containing six transmembrane domains with a pore-forming region between the fifth and sixth domains. These channels are responsible for the rapid repolarization of action potentials in neurons, which helps to control the frequency and pattern of neural activity.

Mutations in the KCNA1 gene have been associated with various neurological disorders, including episodic ataxia type 1 (EA1) and familial hemiplegic migraine (FHM). EA1 is characterized by brief episodes of cerebellar ataxia, myokymia, and neuromyotonia, while FHM is a severe form of migraine with aura that can cause temporary paralysis on one side of the body.

Overall, Kv1.1 potassium channels play an essential role in maintaining normal neural excitability and are critical for proper neurological function.

Vasodilator agents are pharmacological substances that cause the relaxation or widening of blood vessels by relaxing the smooth muscle in the vessel walls. This results in an increase in the diameter of the blood vessels, which decreases vascular resistance and ultimately reduces blood pressure. Vasodilators can be further classified based on their site of action:

1. Systemic vasodilators: These agents cause a generalized relaxation of the smooth muscle in the walls of both arteries and veins, resulting in a decrease in peripheral vascular resistance and preload (the volume of blood returning to the heart). Examples include nitroglycerin, hydralazine, and calcium channel blockers.
2. Arterial vasodilators: These agents primarily affect the smooth muscle in arterial vessel walls, leading to a reduction in afterload (the pressure against which the heart pumps blood). Examples include angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and direct vasodilators like sodium nitroprusside.
3. Venous vasodilators: These agents primarily affect the smooth muscle in venous vessel walls, increasing venous capacitance and reducing preload. Examples include nitroglycerin and other organic nitrates.

Vasodilator agents are used to treat various cardiovascular conditions such as hypertension, heart failure, angina, and pulmonary arterial hypertension. It is essential to monitor their use carefully, as excessive vasodilation can lead to orthostatic hypotension, reflex tachycardia, or fluid retention.

Cell membrane permeability refers to the ability of various substances, such as molecules and ions, to pass through the cell membrane. The cell membrane, also known as the plasma membrane, is a thin, flexible barrier that surrounds all cells, controlling what enters and leaves the cell. Its primary function is to protect the cell's internal environment and maintain homeostasis.

The permeability of the cell membrane depends on its structure, which consists of a phospholipid bilayer interspersed with proteins. The hydrophilic (water-loving) heads of the phospholipids face outward, while the hydrophobic (water-fearing) tails face inward, creating a barrier that is generally impermeable to large, polar, or charged molecules.

However, specific proteins within the membrane, called channels and transporters, allow certain substances to cross the membrane. Channels are protein structures that span the membrane and provide a pore for ions or small uncharged molecules to pass through. Transporters, on the other hand, are proteins that bind to specific molecules and facilitate their movement across the membrane, often using energy in the form of ATP.

The permeability of the cell membrane can be influenced by various factors, such as temperature, pH, and the presence of certain chemicals or drugs. Changes in permeability can have significant consequences for the cell's function and survival, as they can disrupt ion balances, nutrient uptake, waste removal, and signal transduction.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

Ion transport refers to the active or passive movement of ions, such as sodium (Na+), potassium (K+), chloride (Cl-), and calcium (Ca2+) ions, across cell membranes. This process is essential for various physiological functions, including nerve impulse transmission, muscle contraction, and maintenance of resting membrane potential.

Ion transport can occur through several mechanisms, including:

1. Diffusion: the passive movement of ions down their concentration gradient, from an area of high concentration to an area of low concentration.
2. Facilitated diffusion: the passive movement of ions through specialized channels or transporters in the cell membrane.
3. Active transport: the energy-dependent movement of ions against their concentration gradient, requiring the use of ATP. This process is often mediated by ion pumps, such as the sodium-potassium pump (Na+/K+-ATPase).
4. Co-transport or symport: the coupled transport of two or more different ions or molecules in the same direction, often driven by an electrochemical gradient.
5. Counter-transport or antiport: the coupled transport of two or more different ions or molecules in opposite directions, also often driven by an electrochemical gradient.

Abnormalities in ion transport can lead to various medical conditions, such as cystic fibrosis (which involves defective chloride channel function), hypertension (which may be related to altered sodium transport), and certain forms of heart disease (which can result from abnormal calcium handling).

"Xenopus laevis" is not a medical term itself, but it refers to a specific species of African clawed frog that is often used in scientific research, including biomedical and developmental studies. Therefore, its relevance to medicine comes from its role as a model organism in laboratories.

In a broader sense, Xenopus laevis has contributed significantly to various medical discoveries, such as the understanding of embryonic development, cell cycle regulation, and genetic research. For instance, the Nobel Prize in Physiology or Medicine was awarded in 1963 to John R. B. Gurdon and Sir Michael J. Bishop for their discoveries concerning the genetic mechanisms of organism development using Xenopus laevis as a model system.

Cadmium is a toxic heavy metal that is a byproduct of the mining and smelting of zinc, lead, and copper. It has no taste or smell and can be found in small amounts in air, water, and soil. Cadmium can also be found in some foods, such as kidneys, liver, and shellfish.

Exposure to cadmium can cause a range of health effects, including kidney damage, lung disease, fragile bones, and cancer. Cadmium is classified as a known human carcinogen by the International Agency for Research on Cancer (IARC) and the National Toxicology Program (NTP).

Occupational exposure to cadmium can occur in industries that produce or use cadmium, such as battery manufacturing, metal plating, and pigment production. Workers in these industries may be exposed to cadmium through inhalation of cadmium-containing dusts or fumes, or through skin contact with cadmium-containing materials.

The general population can also be exposed to cadmium through the environment, such as by eating contaminated food or breathing secondhand smoke. Smoking is a major source of cadmium exposure for smokers and those exposed to secondhand smoke.

Prevention measures include reducing occupational exposure to cadmium, controlling emissions from industrial sources, and reducing the use of cadmium in consumer products. Regular monitoring of air, water, and soil for cadmium levels can also help identify potential sources of exposure and prevent health effects.

Potassium chloride is an essential electrolyte that is often used in medical settings as a medication. It's a white, crystalline salt that is highly soluble in water and has a salty taste. In the body, potassium chloride plays a crucial role in maintaining fluid and electrolyte balance, nerve function, and muscle contraction.

Medically, potassium chloride is commonly used to treat or prevent low potassium levels (hypokalemia) in the blood. Hypokalemia can occur due to various reasons such as certain medications, kidney diseases, vomiting, diarrhea, or excessive sweating. Potassium chloride is available in various forms, including tablets, capsules, and liquids, and it's usually taken by mouth.

It's important to note that potassium chloride should be used with caution and under the supervision of a healthcare provider, as high levels of potassium (hyperkalemia) can be harmful and even life-threatening. Hyperkalemia can cause symptoms such as muscle weakness, irregular heartbeat, and cardiac arrest.

Nifedipine is an antihypertensive and calcium channel blocker medication. It works by relaxing the muscles of the blood vessels, which helps to lower blood pressure and improve the supply of oxygen and nutrients to the heart. Nifedipine is used to treat high blood pressure (hypertension), angina (chest pain), and certain types of heart rhythm disorders.

In medical terms, nifedipine can be defined as: "A dihydropyridine calcium channel blocker that is used in the treatment of hypertension, angina pectoris, and Raynaud's phenomenon. It works by inhibiting the influx of calcium ions into vascular smooth muscle and cardiac muscle, which results in relaxation of the vascular smooth muscle and decreased workload on the heart."

Cimetidine is a histamine-2 (H2) receptor antagonist, which is a type of medication that reduces the production of stomach acid. It works by blocking the action of histamine on the H2 receptors in the stomach, which are responsible for stimulating the release of stomach acid. By blocking these receptors, cimetidine reduces the amount of stomach acid produced and can help to relieve symptoms such as heartburn, indigestion, and stomach ulcers.

Cimetidine is available by prescription in various forms, including tablets, capsules, and liquid. It is typically taken two or three times a day, depending on the specific condition being treated. Common side effects of cimetidine may include headache, dizziness, diarrhea, and constipation.

In addition to its use in treating stomach acid-related conditions, cimetidine has also been studied for its potential anti-cancer properties. Some research suggests that it may help to enhance the immune system's response to cancer cells and reduce the growth of certain types of tumors. However, more research is needed to confirm these effects and determine the optimal dosage and duration of treatment.

Neuromuscular depolarizing agents are a type of muscle relaxant used in anesthesia and critical care medicine. These drugs work by causing depolarization of the post-synaptic membrane at the neuromuscular junction, which is the site where nerve impulses are transmitted to muscles. This results in the binding of the drug to the receptor and the activation of ion channels, leading to muscle contraction.

The most commonly used depolarizing agent is suxamethonium (also known as succinylcholine), which has a rapid onset and short duration of action. It is often used during rapid sequence intubation, where there is a need for immediate muscle relaxation to facilitate endotracheal intubation.

However, the use of depolarizing agents can also lead to several side effects, including increased potassium levels in the blood (hyperkalemia), muscle fasciculations, and an increase in intracranial and intraocular pressure. Therefore, these drugs should be used with caution and only under the close supervision of a trained healthcare provider.

An oocyte, also known as an egg cell or female gamete, is a large specialized cell found in the ovary of female organisms. It contains half the number of chromosomes as a normal diploid cell, as it is the product of meiotic division. Oocytes are surrounded by follicle cells and are responsible for the production of female offspring upon fertilization with sperm. The term "oocyte" specifically refers to the immature egg cell before it reaches full maturity and is ready for fertilization, at which point it is referred to as an ovum or egg.

Ganglionic blockers are a type of medication that blocks the activity of the ganglia, which are clusters of nerve cells located outside the central nervous system. These medications work by blocking the transmission of nerve impulses between the ganglia and the effector organs they innervate, such as muscles or glands.

Ganglionic blockers were once used in the treatment of various conditions, including hypertension (high blood pressure), peptic ulcers, and certain types of pain. However, their use has largely been abandoned due to their significant side effects, which can include dry mouth, blurred vision, constipation, difficulty urinating, and dizziness or lightheadedness upon standing.

There are two main types of ganglionic blockers: nicotinic and muscarinic. Nicotinic ganglionic blockers block the action of acetylcholine at nicotinic receptors in the ganglia, while muscarinic ganglionic blockers block the action of acetylcholine at muscarinic receptors in the ganglia.

Examples of ganglionic blockers include trimethaphan, hexamethonium, and pentolinium. These medications are typically administered intravenously in a hospital setting due to their short duration of action and potential for serious side effects.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Nitric oxide (NO) is a molecule made up of one nitrogen atom and one oxygen atom. In the body, it is a crucial signaling molecule involved in various physiological processes such as vasodilation, immune response, neurotransmission, and inhibition of platelet aggregation. It is produced naturally by the enzyme nitric oxide synthase (NOS) from the amino acid L-arginine. Inhaled nitric oxide is used medically to treat pulmonary hypertension in newborns and adults, as it helps to relax and widen blood vessels, improving oxygenation and blood flow.

4-Chloromercuribenzenesulfonate is a chemical compound with the formula C6H5ClHgSO3. It is an organomercury compound, where mercury is bonded to a phenyl ring and a sulfonate group. This compound is an white crystalline powder that is soluble in water and denser than water.

It has been used historically as a diuretic and antiseptic, but its use in medicine has been discontinued due to the toxicity of mercury. Exposure to mercury can have serious health consequences, including damage to the nervous system, kidneys, and digestive system. Therefore, handling and disposal of 4-chloromercuribenzenesulfonate should be done with caution and in accordance with local regulations for hazardous materials.

Tandem pore domain potassium (K2P) channels are a subfamily of potassium channels that contain two pore-forming domains in a single polypeptide chain. These channels are also known as "double-barreled" or "leak" potassium channels because they provide a background leak conductance for potassium ions across the cell membrane. They are involved in regulating the resting membrane potential and excitability of cells, and are targets for various therapeutic agents. Examples of K2P channels include TREK, TRAAK, TASK, TWIK, and THIK families.

Ouabain is defined as a cardiac glycoside, a type of steroid, that is found in the seeds and roots of certain plants native to Africa. It is used in medicine as a digitalis-like agent to increase the force of heart contractions and slow the heart rate, particularly in the treatment of congestive heart failure and atrial fibrillation. Ouabain functions by inhibiting the sodium-potassium pump (Na+/K+-ATPase) in the cell membrane, leading to an increase in intracellular sodium and calcium ions, which ultimately enhances cardiac muscle contractility. It is also known as g-strophanthin or ouabaine.

Bis-trimethylammonium compounds are a type of organic compound that contain two positively charged trimethylammonium groups ([CH3]3N+) in their structure. These compounds are often used as disinfectants, antimicrobial agents, and cationic surfactants due to their ability to interact with negatively charged cell membranes and disrupt their function.

The general formula for a bis-trimethylammonium compound is [(CH3)3N+]2X-, where X- represents anions that balance the positive charge of the two trimethylammonium groups. Examples of bis-trimethylammonium compounds include benzalkonium chloride, didecyldimethylammonium chloride, and cetylpyridinium chloride.

It is important to note that while these compounds can be effective at killing microorganisms, they can also have harmful effects on human health and the environment. Therefore, they should be used with caution and in accordance with recommended guidelines.

Norepinephrine, also known as noradrenaline, is a neurotransmitter and a hormone that is primarily produced in the adrenal glands and is released into the bloodstream in response to stress or physical activity. It plays a crucial role in the "fight-or-flight" response by preparing the body for action through increasing heart rate, blood pressure, respiratory rate, and glucose availability.

As a neurotransmitter, norepinephrine is involved in regulating various functions of the nervous system, including attention, perception, motivation, and arousal. It also plays a role in modulating pain perception and responding to stressful or emotional situations.

In medical settings, norepinephrine is used as a vasopressor medication to treat hypotension (low blood pressure) that can occur during septic shock, anesthesia, or other critical illnesses. It works by constricting blood vessels and increasing heart rate, which helps to improve blood pressure and perfusion of vital organs.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

A ganglion is a cluster of neuron cell bodies in the peripheral nervous system. Ganglia are typically associated with nerves and serve as sites for sensory processing, integration, and relay of information between the periphery and the central nervous system (CNS). The two main types of ganglia are sensory ganglia, which contain pseudounipolar neurons that transmit sensory information to the CNS, and autonomic ganglia, which contain multipolar neurons that control involuntary physiological functions.

Examples of sensory ganglia include dorsal root ganglia (DRG), which are associated with spinal nerves, and cranial nerve ganglia, such as the trigeminal ganglion. Autonomic ganglia can be further divided into sympathetic and parasympathetic ganglia, which regulate different aspects of the autonomic nervous system.

It's worth noting that in anatomy, "ganglion" refers to a group of nerve cell bodies, while in clinical contexts, "ganglion" is often used to describe a specific type of cystic structure that forms near joints or tendons, typically in the wrist or foot. These ganglia are not related to the peripheral nervous system's ganglia but rather are fluid-filled sacs that may cause discomfort or pain due to their size or location.

'Aplysia' is a genus of marine mollusks belonging to the family Aplysiidae, also known as sea hares. These are large, slow-moving herbivores that inhabit temperate and tropical coastal waters worldwide. They have a unique appearance with a soft, ear-like parapodia on either side of their body and a rhinophore at the front end, which they use to detect chemical cues in their environment.

One of the reasons 'Aplysia' is well-known in the medical and scientific community is because of its use as a model organism in neuroscience research. The simple nervous system of 'Aplysia' has made it an ideal subject for studying the basic principles of learning and memory at the cellular level.

In particular, the work of Nobel laureate Eric Kandel and his colleagues on 'Aplysia' helped to establish important concepts in synaptic plasticity, a key mechanism underlying learning and memory. By investigating how sensory stimulation can modify the strength of connections between neurons in 'Aplysia', researchers have gained valuable insights into the molecular and cellular mechanisms that underlie learning and memory processes in all animals, including humans.

Iontophoresis is a medical technique in which a mild electrical current is used to deliver medications through the skin. This process enhances the absorption of medication into the body, allowing it to reach deeper tissues that may not be accessible through topical applications alone. Iontophoresis is often used for local treatment of conditions such as inflammation, pain, or spasms, and is particularly useful in treating conditions affecting the hands and feet, like hyperhidrosis (excessive sweating). The medications used in iontophoresis are typically anti-inflammatory drugs, anesthetics, or corticosteroids.

The Shaker superfamily of potassium channels, also known as Kv channels (voltage-gated potassium channels), refers to a group of ion channels that are responsible for the selective transport of potassium ions across the cell membrane. These channels are crucial for regulating the electrical excitability of cells, particularly in neurons and muscle cells.

The Shaker superfamily is named after the Drosophila melanogaster (fruit fly) gene shaker, which was the first voltage-gated potassium channel to be identified and cloned. The channels in this family share a common structure, consisting of four subunits that each contain six transmembrane domains. The fourth domain contains the voltage sensor, which responds to changes in membrane potential and triggers the opening or closing of the channel pore.

The Shaker superfamily is further divided into several subfamilies based on their sequence similarity and functional properties. These include the Shaw, Shab, and Shal subfamilies, among others. Each subfamily has distinct biophysical and pharmacological properties that allow for selective activation or inhibition by various drugs and toxins.

Overall, the Shaker superfamily of potassium channels plays a critical role in maintaining the electrical excitability of cells and is involved in a wide range of physiological processes, including nerve impulse transmission, muscle contraction, and hormone secretion.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

A microelectrode is a small electrode with dimensions ranging from several micrometers to a few tens of micrometers in diameter. They are used in various biomedical applications, such as neurophysiological studies, neuromodulation, and brain-computer interfaces. In these applications, microelectrodes serve to record electrical activity from individual or small groups of neurons or deliver electrical stimuli to specific neural structures with high spatial resolution.

Microelectrodes can be fabricated using various materials, including metals (e.g., tungsten, stainless steel, platinum), metal alloys, carbon fibers, and semiconductor materials like silicon. The design of microelectrodes may vary depending on the specific application, with some common types being sharpened metal wires, glass-insulated metal microwires, and silicon-based probes with multiple recording sites.

The development and use of microelectrodes have significantly contributed to our understanding of neural function in health and disease, enabling researchers and clinicians to investigate the underlying mechanisms of neurological disorders and develop novel therapies for conditions such as Parkinson's disease, epilepsy, and hearing loss.

A plant extract is a preparation containing chemical constituents that have been extracted from a plant using a solvent. The resulting extract may contain a single compound or a mixture of several compounds, depending on the extraction process and the specific plant material used. These extracts are often used in various industries including pharmaceuticals, nutraceuticals, cosmetics, and food and beverage, due to their potential therapeutic or beneficial properties. The composition of plant extracts can vary widely, and it is important to ensure their quality, safety, and efficacy before use in any application.

I apologize, but I am not able to provide a medical definition for "Egtazic Acid" because it is not a term that is recognized in the field of medicine or pharmacology. It is possible that you may have meant "Egтарic Acid," which also does not have a specific medical meaning, or "Ethylene Glycol Tetraacetic Acid (EGTA)," which is a chemical compound used in research and medicine for its ability to bind calcium ions. If you have any other questions, I would be happy to try to help answer them.

Lanthanum is not a medical term itself, but it is a chemical element with the symbol "La" and atomic number 57. It is a soft, ductile, silvery-white metal that belongs to the lanthanide series in the periodic table.

However, in medical contexts, lanthanum may be mentioned as a component of certain medications or medical devices. For example, lanthanum carbonate (trade name Fosrenol) is a medication used to treat hyperphosphatemia (elevated levels of phosphate in the blood) in patients with chronic kidney disease. Lanthanum carbonate works by binding to phosphate in the gastrointestinal tract, preventing its absorption into the bloodstream.

It is important to note that lanthanum compounds are not biologically active and do not have any specific medical effects on their own. Any medical uses of lanthanum are related to its physical or chemical properties, rather than its biological activity.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Preclinical drug evaluation refers to a series of laboratory tests and studies conducted to determine the safety and effectiveness of a new drug before it is tested in humans. These studies typically involve experiments on cells and animals to evaluate the pharmacological properties, toxicity, and potential interactions with other substances. The goal of preclinical evaluation is to establish a reasonable level of safety and understanding of how the drug works, which helps inform the design and conduct of subsequent clinical trials in humans. It's important to note that while preclinical studies provide valuable information, they may not always predict how a drug will behave in human subjects.

The trachea, also known as the windpipe, is a tube-like structure in the respiratory system that connects the larynx (voice box) to the bronchi (the two branches leading to each lung). It is composed of several incomplete rings of cartilage and smooth muscle, which provide support and flexibility. The trachea plays a crucial role in directing incoming air to the lungs during inspiration and outgoing air to the larynx during expiration.

"Anura" is a term used in the field of zoology, particularly in the study of amphibians. It refers to a order that includes frogs and toads. The name "Anura" comes from the Greek language, with "an-" meaning "without," and "oura" meaning "tail." This is a reference to the fact that members of this order lack tails in their adult form.

The Anura order is characterized by several distinct features:

1. They have short, powerful legs that are well adapted for jumping or leaping.
2. Their forelimbs are smaller and less specialized than their hind limbs.
3. Most anurans have a moist, glandular skin, which helps them to breathe and absorb water.
4. Anura includes both aquatic and terrestrial species, with varying degrees of adaptations for each environment.
5. They lay their eggs in water, and their larvae (tadpoles) are aquatic, undergoing a process called metamorphosis to transform into the adult form.

Anura contains approximately 7,000 known species, making it one of the largest orders of vertebrates. They have a cosmopolitan distribution and can be found on every continent except Antarctica. Anurans play essential roles in many ecosystems as both predators and prey, contributing to the regulation of insect populations and serving as indicators of environmental health.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Biological transport, active is the process by which cells use energy to move materials across their membranes from an area of lower concentration to an area of higher concentration. This type of transport is facilitated by specialized proteins called transporters or pumps that are located in the cell membrane. These proteins undergo conformational changes to physically carry the molecules through the lipid bilayer of the membrane, often against their concentration gradient.

Active transport requires energy because it works against the natural tendency of molecules to move from an area of higher concentration to an area of lower concentration, a process known as diffusion. Cells obtain this energy in the form of ATP (adenosine triphosphate), which is produced through cellular respiration.

Examples of active transport include the uptake of glucose and amino acids into cells, as well as the secretion of hormones and neurotransmitters. The sodium-potassium pump, which helps maintain resting membrane potential in nerve and muscle cells, is a classic example of an active transporter.

Small-conductance calcium-activated potassium channels (SK channels) are a type of ion channel found in the membranes of excitable cells, such as neurons and muscle cells. They are called "calcium-activated" because their opening is triggered by an increase in intracellular calcium ions (Ca2+), and "potassium channels" because they are selectively permeable to potassium ions (K+).

SK channels have a small conductance, meaning that they allow only a relatively small number of ions to pass through them at any given time. This makes them less influential in shaping the electrical properties of cells compared to other types of potassium channels with larger conductances.

SK channels play important roles in regulating neuronal excitability and neurotransmitter release, as well as controlling the contraction and relaxation of smooth muscle cells. They are activated by calcium ions that enter the cell through voltage-gated calcium channels or other types of Ca2+ channels, and their opening leads to an efflux of K+ ions from the cell. This efflux of positive charges tends to hyperpolarize the membrane potential, making it more difficult for the cell to generate action potentials and release neurotransmitters.

There are three subtypes of SK channels, designated as SK1, SK2, and SK3, which differ in their biophysical properties and sensitivity to pharmacological agents. These channels have been implicated in a variety of physiological processes, including learning and memory, pain perception, blood pressure regulation, and the pathogenesis of certain neurological disorders.

The Kv1.3 potassium channel is a type of voltage-gated potassium channel that is widely expressed in various tissues, including immune cells such as T lymphocytes. It plays a crucial role in regulating the electrical activity of cells and controlling the flow of potassium ions across the cell membrane.

Kv1.3 channels are composed of four pore-forming alpha subunits, each containing six transmembrane domains. These channels open and close in response to changes in the membrane potential, allowing potassium ions to flow out of the cell when the channel is open. This movement of ions helps to restore the resting membrane potential and regulate the excitability of the cell.

In T lymphocytes, Kv1.3 channels are involved in the regulation of calcium signaling and activation of immune responses. They play a critical role in maintaining the membrane potential and controlling the release of calcium from intracellular stores, which is necessary for T-cell activation and proliferation. Inhibition or blockade of Kv1.3 channels has been shown to suppress T-cell activation and could have potential therapeutic implications in the treatment of autoimmune diseases and transplant rejection.

"Rana temporaria" is the scientific name for the common European frog, also known as the grass frog. It's a widespread species found throughout Europe and into western Asia. These frogs are typically brown or green in color with darker spots, and they can change their color to some extent based on their environment. They are semi-aquatic, spending time both in water and on land, and are known for their distinctive mating call.

However, if you're looking for a medical definition, there isn't one for "Rana temporaria." The term is strictly biological and refers to this specific species of frog.

... is the organic compound with the formula (C2H5)4NCN. It is a "quat salt" of cyanide. It is a ... Tetraethylammonium cyanide is prepared by ion exchange from tetraethylammonium bromide. The corresponding tetraphenylarsonium ... Tetraethylammonium Tetramethylammonium chloride Entley, William R.; Treadway, Christopher R.; Wilson, Scott R.; Girolami, ... Dieck, R. L.; Peterson, E. J.; Galliart, A.; Brown, T. M.; Moeller, T. (1976). "Tetraethylammonium, Tetraphenylarsonium, and ...
... is the chemical compound with the formula (N(C2H5)4)2NiCl4. It is the ... Stucky, G. D.; Folkers, J. B.; Kistenmacher, T. J. (1967). "The Crystal and Molecular Structure of Tetraethylammonium ... tetraethylammonium salt of the blue-colored tetrahedral anion [NiCl4]2-. Several tetrachloronickelate salts are known. They are ...
The compound is a common reagent in organic synthesis. It is also employed in the preparation of zeolites. Tetraethylammonium ... Tetraethylammonium hydroxide is the organic compound with the formula (C2H5)4NOH, abbreviated Et4NOH. It is the ... Anhydrous Tetraethylammonium hydroxide has not been isolated. It is prepared from tetraethylammonium bromide by salt metathesis ... Treatment of Et4NOH with a wide range of acids gives water and the other tetraethylammonium salts: Et 4 NOH + HX ⟶ Et 4 NX + H ...
... is the chemical compound with the formula (N(C2H5)4)FeCl4. It is the tetraethylammonium ...
... is the chemical compound with the formula (N(C2H5)4)2Fe2OCl6. It is the ... The salt can be prepared by treatment of tetraethylammonium tetrachloroferrate with sodium trimethylsiloxide. Do, Y.; Simhon, E ... compounds, Metal halides, Coordination complexes, Tetraethylammonium salts). ... tetraethylammonium salt of [Fe2OCl6]2-. Many related salts of [Fe2OCl6]2- are known. The anion consists of a pair of ...
He prepared three ethylamines and tetraethylammonium compounds and established their structural relationship to ammonia. After ... Hofmann successfully converted ammonia into ethylamine and the compounds diethylamine, triethylamine, and tetraethylammonium. ... The inner cylinder is open at the top to allow addition of water and an ionic compound to improve conductivity, such as a small ... Heating quaternary tetraethylammonium hydroxide yielded tertiary triethylamine vapour. This became the basis of what is now ...
Chlorotetrafluorosilicate (IV) (SiClF4−) can form a stable a pale yellow crystalline compound tetraethylammonium ... Chlorotrifluorosilane can form an addition compound with pyridine with formula SiClF3.2py (py=pyridine) An addition compound ... This addition compound is made by mixing trimethylamine vapour with Chlorotrifluorosilane and condensing out a solid at -78 °C ... Chlorotrifluorosilane is an inorganic gaseous compound with formula SiClF3 composed of silicon, fluorine and chlorine. It is a ...
... form isomorphous salts the tetrahedral metatellurate ion is only found in a few compounds such as the tetraethylammonium salt ... The compound Cs2K2TeO5 contains TeO4− 5 ions which are trigonal bipyramidal. The compound Rb6Te2O9 contains both TeO4− 5 and ... Other compounds whose stoichiometry suggests the presence of TeO4− 5 may contain either the dimeric Te 2O8− 10 made up of two ... Compounds containing the octahedral TeO6− 6 anion are known, these include Ag6TeO6, Na6TeO6 and Hg3TeO6. There are also ...
Quaternary ammonium compounds, Cations, Tetraethylammonium salts). ... doses of 32 mg/kg of tetraethylammonium chloride. Tetraethylammonium bromide Tetraethylammonium chloride Tetraethylammonium ... TEA salts such as tetraethylammonium tetrafluoroborate and tetraethylammonium methylsulfonate are used in supercapacitors as ... Most tetraethylammonium salts are prepared by salt metathesis reactions. For example, the synthesis of tetraethylammonium ...
... (also known as Mioskowski reagent) is a chemical compound with the formula [NEt4][Cl3] ... Commonly, tetraethylammonium trichloride is prepared by the reaction of tetraethylammonium chloride and elemental chlorine in ... an alternative preparation of tetraethylammonium trichloride has been described using tetraethylammonium chloride and potassium ... As tetraethylammonium trichloride is a solid and can be dissolved in methylene chloride or acetonitrile, it is used as an ...
In refluxing water, it forms the triaquo cation: Re(CO)5Br + 3 H2O → [Re(CO)3(H2O)3]Br + 2 CO With tetraethylammonium bromide ... Rhenium compounds are compounds formed by the transition metal rhenium (Re). Rhenium can form in many oxidation states, and ... CS1 German-language sources (de), CS1 maint: others, Rhenium, Rhenium compounds, Chemical compounds by element). ... This compound has been used as a catalyst in some laboratory experiments. It can be prepared by many routes, a typical method ...
... (TEAC) is a quaternary ammonium compound with the chemical formula [N(CH2CH3)4]+Cl−, sometimes ... In common with tetraethylammonium bromide and tetraethylammonium iodide, TEAC has been used as a source of tetraethylammonium ... Tetraethylammonium Tetraethylammonium bromide Tetraethylammonium iodide Tetramethylammonium chloride The Merck Index, 10th Ed ... The acute toxicity of TEAC is comparable to that of tetraethylammonium bromide and tetraethylammonium iodide. These data are ...
Australia Tetraethylammonium chloride, a chemical compound Trolox equivalent antioxidant capacity, a measure of antioxidant ...
Tetraethylammonium (TEA) is a compound that, like a number of neurotoxins, was first identified through its damaging effects to ... From this basic understanding, the use of common compounds such as tetrodotoxin, tetraethylammonium, and bungarotoxins have led ... Botulinum toxin (BTX) is a group of neurotoxins consisting of eight distinct compounds, referred to as BTX-A,B,C,D,E,F,G,H, ... As neurotoxins are compounds which adversely affect the nervous system, a number of mechanisms through which they function are ...
... (TEAB) is a quaternary ammonium compound with the chemical formula C8H20N+Br−, often written as " ... Tetraethylammonium Tetraethylammonium chloride Tetraethylammonium iodide "Tetraethylammonium bromide". pubchem.ncbi.nlm.nih.gov ... The overall reaction is: 2R1Br + 2KO2 → R1-O-O-R1 + 2KBr + O2 In common with tetraethylammonium chloride and tetraethylammonium ... The acute toxicity of TEAB is comparable to that of tetraethylammonium chloride and tetraethylammonium iodide. These data, ...
... tetraethylammonium compounds MeSH D02.092.877.787.500 - tetraethylammonium MeSH D02.092.877.844 - toxiferine MeSH D02.092. ... tetraethylammonium compounds MeSH D02.675.276.787.500 - tetraethylammonium MeSH D02.675.276.844 - toxiferine MeSH D02.675. ... trialkyltin compounds MeSH D02.691.850.900.910 - triethyltin compounds MeSH D02.691.850.900.950 - trimethyltin compounds MeSH ... mustard compounds MeSH D02.455.526.728.468 - mustard gas MeSH D02.455.526.728.650 - nitrogen mustard compounds MeSH D02.455. ...
... is a quaternary ammonium compound with the chemical formula C8H20N+I−. It has been used as the source ... Tetraethylammonium Tetraethylammonium bromide Tetraethylammonium chloride The Merck Index, 10th Ed., p.1316, Rahway: Merck & Co ... Tetraethylammonium iodide is commercially available, but can be prepared by the reaction between triethylamine and ethyl iodide ... E. Wait and H. M. Powell (1958). "The crystal and molecular structure of tetraethylammonium iodide." J. Chem. Soc. 1872-1875. N ...
Gold(III) azide is known as the tetraethylammonium salt [Et4N][Au(N3)4] and also adopts a square planar structure. However ... Homoleptic azido compounds are chemical compounds in which the only anion or ligand is the azide group, -N3. The breadth of ... Group 7 azide compounds are dominated by manganese chemistry. The first Mn polyazide compound was reported by Wöhler et al. in ... This compound has largely been studied in terms of its optical properties. Tetraazido cobalt(II) compounds have been isolated ...
"bis(tetraethylammonium) tetraiodonickelate". webbook.nist.gov. Retrieved 14 June 2016. (Nickel complexes, Iodine compounds). ... The red flakes that precipitate must be filtered before the alcohol cools, else the compound decomposes. Bis(tetraethylammonium ...
Specifically, all known compounds containing MnCl3 are known to be solvent or ligand-stabilized adducts. MnCl3 can be ... Tetraethylammonium pentachloromanganate(III), [Et4N]2[MnCl5], can be prepared and isolated by treating suspension of [Mn12O12( ... This compound has a monoclinic crystal structure, reacts with water, and decomposes at room temperature. The most readily ... Jacobson's catalyst is an example of a coordination compound containing the Mn(III)-Cl moiety and is stabilized by N,N,O,O ...
"Ethanolamine Compounds (MEA, DEA, TEA And Others)". Safe Cosmetics. Retrieved 2020-06-17. "tetraethylammonium , Ligand page , ... Triethylamine is the chemical compound with the formula N(CH2CH3)3, commonly abbreviated Et3N. It is also abbreviated TEA, yet ... Triethylamine is mainly used in the production of quaternary ammonium compounds for textile auxiliaries and quaternary ammonium ... this abbreviation must be used carefully to avoid confusion with triethanolamine or tetraethylammonium, for which TEA is also a ...
... may refer to: Tetraethylammonium chloride Triethylammonium chloride, the hydrochloride salt of triethylamine This ... set index article lists chemical compounds articles associated with the same name. If an internal link led you here, you may ...
... is an inorganic compound of rhenium, commonly used for the syntheses of other rhenium complexes. ... ZnBrO2CCH3 It also reacts with tetraethylammonium bromide in diglyme to give [NEt4]2[ReBr3(CO)3)], an important precursor to ... 2 CO This route avoids the formation of the tetraethylammonium bromide byproduct, which is often difficult to remove from ... compounds containing the rhenium tricarbonyl fragment. Heating bromopentacarbonylrhenium(I) in water give the triaquo complex: ...
This compound exhibits strongly reducing properties, and slowly yields hydrogen gas when dissolved in water. The lithium and ... Via cation exchange, it can be converted to the corresponding tetraethylammonium salt, (N(C2H5)4)2ReH9. Isostructural with TcH2 ... ISBN 0130-39913-2), p.254 Abrahams, S. C.; Ginsberg, A. P.; Knox, K. (1964). "Transition Metal-Hydrogen Compounds. II. The ... Potassium nonahydridorhenate(VII) is an inorganic compound having the formula K2ReH9. This colourless salt is soluble in water ...
Quaternary ammonium compounds have antimicrobial activity. Quaternary ammonium compounds, especially those containing long ... Tetramethylammonium ion: (CH3)4N+, also denoted Me4N+ (Me = methyl group) Tetraethylammonium ion: (C2H5)4N+, also denoted Et4N+ ... This compound was discontinued because the cation biodegrades too slowly. Contemporary fabric softeners are based on salts of ... Quaternary ammonium compounds are prepared by the alkylation of tertiary amine. Industrial production of commodity quat salts ...
... are often readily available precursors for other inorganic compounds. Mentioned above, the halide compounds can ... G. D. Stucky; J. B. Folkers; T. J. Kistenmacher (1967). "The Crystal and Molecular Structure of Tetraethylammonium ... Metal halides are compounds between metals and halogens. Some, such as sodium chloride are ionic, while others are covalently ... For example, the chloride ligands of aluminium chloride bridge two aluminium centers, thus the compound with the empirical ...
The compound is prepared by treating solutions of molybdate, [MoO4]2− with hydrogen sulfide in the presence of ammonia: (NH4) ... Goodman, JT; Rauchfuss, TB (2002). Tetraethylammonium-tetrathioperrhenate [Et4N][ReS4]. Inorganic Syntheses. Vol. 33. pp. 107- ... Compound Summary for Bis-choline tetrathiomolybdate Brewer, GJ; Hedera, P; Kluin, KJ; Carlson, M; et al. (2003). "Treatment of ... Ammonium tetrathiomolybdate is the chemical compound with the formula (NH4)2MoS4. This bright red ammonium salt is an important ...
Compounds of an onium cation and some other anion are known as onium compounds or onium salts. Onium ions and onium compounds ... 4N+ tetraethylammonium, (CH3CH2)4N+ tetrapropylammonium, (CH3(CH2)2)4N+ tetrabutylammonium, (CH3(CH2)3)4N+ or abbreviated Bu4N+ ... Cations, Queen Mary University of London) Ions and Radicals, Queen Mary University of London Onium compounds at the U.S. ... a deprotonated solvent molecule Onium compounds, IUPAC Gold Book George A. Olah (1998). Onium Ions. John Wiley & Sons. p. 509. ...
... refers to inorganic compounds with the chemical formula FeBr2(H2O)x. The anhydrous compound (x = 0) is a ... FeBr2 reacts with two equivalents of tetraethylammonium bromide to give [(C2H5)4N]2FeBr4. FeBr2 reacts with bromide and bromine ... They are common precursor to other iron compounds. Like most metal halides, FeBr2 adopts a polymeric structure consisting of ... Chemical articles with multiple compound IDs, Multiple chemicals in an infobox that need indexing, Chemical articles with ...
On Earth the compound is encountered mainly as a solution, not as the solid, but [NH4]SH ice is believed to be a substantial ... Goodman, J. T.; Rauchfuss, T. B. (2002). "Tetraethylammonium-tetrathioperrhenate [Et4N][ReS4]". Inorganic Syntheses. 33: 107- ... Ammonium hydrosulfide is the chemical compound with the formula [NH4]SH. It is the salt derived from the ammonium cation and ... 1990). "Physical Constants of Inorganic Compounds". CRC Handbook of Chemistry and Physics (71st ed.). CRC Press, inc. p. 4-45. ...
"Tetraethylammonium Compounds" by people in UAMS Profiles by year, and whether "Tetraethylammonium Compounds" was a major or ... "Tetraethylammonium Compounds" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH ( ... Below are the most recent publications written about "Tetraethylammonium Compounds" by people in Profiles over the past ten ... Below are MeSH descriptors whose meaning is more general than "Tetraethylammonium Compounds". ...
Tetraethylammonium Compounds / pharmacology* * Trachea / physiology* * Transducers Substances * Tetraethylammonium Compounds * ... Induction of a myogenic response in tonic airway smooth muscle by tetraethylammonium Am J Physiol. 1975 Feb;228(2):628-32. doi ... However, tetraethylammonium chloride (TEA, 0.4-67 mM) produces 1) spontaneous phasic contractions and 2) a MR to quick stretch ...
Tetraethylammonium cyanide is the organic compound with the formula (C2H5)4NCN. It is a "quat salt" of cyanide. It is a ... Tetraethylammonium cyanide is prepared by ion exchange from tetraethylammonium bromide. The corresponding tetraphenylarsonium ... Tetraethylammonium Tetramethylammonium chloride Entley, William R.; Treadway, Christopher R.; Wilson, Scott R.; Girolami, ... Dieck, R. L.; Peterson, E. J.; Galliart, A.; Brown, T. M.; Moeller, T. (1976). "Tetraethylammonium, Tetraphenylarsonium, and ...
POLYCYCLIC AROMATIC COMPOUNDS - Compound Group. incomplete. This compound group has not yet been assigned a structural ... Compound Groups. COMPOUND GROUP NAME POPULATION STATUS DATE POPULATED DESCRIPTION. PROFILE TYPE # MEMBERS. # HAZARDS. ... Sepiolite compounds. incomplete. This compound group has not yet been assigned a structural definition.. other. 3. 1. ... TIN COMPOUNDS, INORGANIC. in progress. This compound group is defined by the SMILES string [Sn] and subsequently filtered to ...
Tetraethylammonium Compounds ...
Tetraethylammonium Compounds. 1. 1993. 9. 0.030. Why? Tetraethylammonium. 1. 1993. 15. 0.030 ...
Tetraethylammonium. Tetraethylammonium Compounds -- pharmacology. Note générale:. Comparative Study. In Vitro. Journal Article ...
... and bicuculline and additional compounds: Cd2+ (200 μm), tetraethylammonium-chloride (10 mm), 4-aminopiridine (100 μm), and ... p , 0.01; ***p , 0.001; ****p , 0.0001; significant influence of treatment with the compound (repeated-measures two-way ANOVA ... repeated RXFP3 application with no additional compound, in B) increased extracellular [K+] in the ACSF (in C), presence of Cd2+ ... tetraethylammonium-chloride (Tocris Bioscience, catalog #3068), 4-aminopiridine (Tocris Bioscience, catalog #0940), and XE991 ...
... configurations of the patch-clamp technique were used to study the mechanisms of block produced by external tetraethylammonium ... Tetraethylammonium, Tetraethylammonium Compounds ... Effects of external tetraethylammonium ions and quinine on ... Effects of external tetraethylammonium ions and quinine on delayed rectifying K+ channels in mouse pancreatic beta-cells. ... configurations of the patch-clamp technique were used to study the mechanisms of block produced by external tetraethylammonium ...
Under K25- or K60-induced depolarization, compound 3 displayed antispasmodic effects not reversed by tetraethylammonium. Under ... The vasorelaxing effect of isolates (compounds 1, 2, 3, and 4 (homoisoflavanones), compound 5 (sesquiterpenoid), compounds 6 ... compound 3 being the most potent. Compounds 5, 6, and 7 caused a modest concentration-dependent relaxation, whereas compound 1 ... Tetraethylammonium did not reverse the antispasmodic effect of DTCAT in rings stimulated with either 25 or 60 mM K(+). DTCAT ...
hOAT3 interacted with chemically heterogeneous anionic compounds, such as nonsteroidal anti-inflammatory drugs, diuretics, ... sulfobromophthalein, penicillin G, bile salts and tetraethyl ammonium bromide. The hOAT3 protein was shown to be localized in ...
Organic oxygen compound / Organonitrogen compound / Organooxygen compound / Oxacycle / Oxane / Phenol ether / Phenoxy compound ... Solute transporter for tetraethylammonium (TEA), 1-methyl-4-phenylpyridinium (MPP), cimetidine, N-methylnicotinamide (NMN), ... This compound belongs to the class of organic compounds known as phenylpiperidines. These are compounds containing a ... Organic compounds. Super Class. Organoheterocyclic compounds. Class. Piperidines. Sub Class. Phenylpiperidines. Direct Parent. ...
... Name. Class. Tetraethylammonium. Type. Quaternary compound. Other_Name. TEAB. ...
Amine compounds Suppliers, Amine compounds Manufacturers, and Amine compounds Exporters provided by ChemNet ... Amine compounds Catalog with China Amine compounds Products, ... Bromure de tetraethylammonium;br...>>>. Changzhou Huadong ... Tetraethylammonium bromide (71-91-0) tetrylammonium bromide;Tetra Ethyl Ammonium Bromide;TEAB;TEA BROMIDE;Ammonium, tetraethyl ...
This compound belongs to the class of organic compounds known as benzonitriles. These are organic compounds containing a ... Solute transporter for tetraethylammonium (TEA), 1-methyl-4-phenylpyridinium (MPP), cimetidine, N-methylnicotinamide (NMN), ... Fluorobenzenes / N-substituted imidazoles / Aryl fluorides / Heteroaromatic compounds / Nitriles / Azacyclic compounds / ... Aromatic heteropolycyclic compound / Aryl fluoride / Aryl halide / Azacycle / Azole / Benzonitrile / Carbonitrile / Cyanide / ...
However, mushrooms also contain many other compounds (such as β- Glucan, polysaccharides, etc.), which may also be beneficial. ... tetraethylammonium, spermine, L-carnitine, cytarabine, gemcitabine, gabapentin, oxaliplatin, and metformin. However, many of ... Consistent with recent attention to ET, publications mentioning this compound have shown exponential growth (Figure 1). These ... many other studies have shown that OCTN1 is involved in the transport of compounds such as nucleoside, acetylcholine, ...
Phenylammonium Compounds. Propantheline. Tetraethylammonium Compounds. Toxiferine. Trimethyl Ammonium Compounds. Tubocurarine. ...
PubChem Compound ID:. 11057. Description:. A dye that is a mixture of violet rosanilinis with antibacterial, antifungal, and ... tetraethylammonium (TEA), N-1-methylnicotinamide (NMN), 4-(4-(dimethylamino)styryl)- N-methylpyridinium (ASP), the endogenous ... Translocates a broad array of organic cations with various structures and molecular weights including the model compounds 1- ... The transport of organic cations is inhibited by a broad array of compounds like tetramethylammonium (TMA), cocaine, lidocaine ...
Additionally, this compound has a reversible transition to dielectric. This is caused by the movement of tetraethylammonium ( ... The compound is therefore a potential application as a temperature-switching molecular dielectric material. Nickel Titanium ... This compound is an attractive strategy for finding new materials. ... cations) Temperature increases will cause the dielectric constant of the compound (e), to increase by a slight amount. ...
Tetraethylammonium Compounds. *Toxiferine. *Tubocurarine. *Trimethyl Ammonium Compounds. *Betaine. *Bethanechol Compounds. * ...
Tetraethylammonium Compounds [D02.092.877.787] * Toxiferine [D02.092.877.844] * Trimethyl Ammonium Compounds [D02.092.877.883] ... Heterocyclic Compounds [D03] * Heterocyclic Compounds, 1-Ring [D03.383] * Pyrrolidines [D03.383.773] * Anisomycin [D03.383. ... Onium Compounds [D02.675] * Quaternary Ammonium Compounds [D02.675.276] * Ambenonium Chloride [D02.675.276.046] ...
Tetraethylammonium Compounds [D02.092.877.787] * Toxiferine [D02.092.877.844] * Trimethyl Ammonium Compounds [D02.092.877.883] ... Heterocyclic Compounds [D03] * Heterocyclic Compounds, Fused-Ring [D03.633] * Heterocyclic Compounds, 2-Ring [D03.633.100] * ... Heterocyclic Compounds [D03] * Heterocyclic Compounds, Fused-Ring [D03.633] * Heterocyclic Compounds, 2-Ring [D03.633.100] * ... Onium Compounds [D02.675] * Quaternary Ammonium Compounds [D02.675.276] * Ambenonium Chloride [D02.675.276.046] ...
Acting on the sarcoplasmic reticulum, nitrosactive compounds activate the inclusion of calcium in this compartment and inhibit ... The 2 mM extracellular calcium administration to spermatozoa pretreated with tetraethylammonium did not result in a detectable ... Responsiveness to progesterone and potassium channel blockers 4-aminopyridine, tetraethylammonium and free Ca(2+) contentration ... and tetraethylammonium. The [Ca2+]i reached after the extracellular calcium treatment was always higher in normozoospermic ...
Tetraethylammonium Compounds. *Toxiferine. *Tubocurarine. Below are MeSH descriptors whose meaning is more specific than " ... "Benzalkonium Compounds" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH (Medical ... This graph shows the total number of publications written about "Benzalkonium Compounds" by people in this website by year, and ... A mixture of alkylbenzyldimethylammonium compounds. It is a bactericidal quaternary ammonium detergent used topically in ...
inhibition by various compounds.. J Pharm Pharm Sci 2009;12:388-96. 41. Nies AT, Koepsell H, Damme K,. Schwab M. Organic cation ... tetraethylammonium in rat renal. brush-border and basolateral membrane. vesicles. Biochim Biophys Acta. 1984;773:113-24. 30. ... and toxic compound extrusion. transporter. Nature 2010;467:991-4. 24. Choi JH, Yee SW, Ramirez AH, et al.. A common 5-UTR ... compounds and drugs and determine the relevance of. transporters in vivo [48]. Data from knockout mouse models. may also help ...
... or tetraethylammonium halides. Treatment of W(CO)3PMTA or W(CO)3(CH3CN)3 with NaOPh provides after cation exchange a substance ... Compounds of the general formula [NR4]n[M(CO)3(XR)]n (n = 3 or 4) (M = Cr, Mo, W; XR = OMe, OEt, SPh) have been prepared by ... N2 - Compounds of the general formula [NR4]n[M(CO)3(XR)]n (n = 3 or 4) (M = Cr, Mo, W; XR = OMe, OEt, SPh) have been prepared ... AB - Compounds of the general formula [NR4]n[M(CO)3(XR)]n (n = 3 or 4) (M = Cr, Mo, W; XR = OMe, OEt, SPh) have been prepared ...
Stable or at least largely stable onium compounds, i.e. the onium compounds of the elements N, S and P, play a major part in ... The quaternary ammonium hydroxides, e.g. tetramethylammonium hydroxide (TMAH) and tetraethylammonium hydroxide (TEAH) are ... The onium compounds of nitrogen in particular, i.e. the quaternary ammonium compounds, cover a wide spectrum of applications. ... The quaternary ammonium hydroxides are prepared by Electrodialysis of a salt of a quaternary ammonium compound. The quaternary ...
Some compounds of hexavalent chromium are well-established carcinogens. Chromium enters mammalian cells in the hexavalent form ... We tested the hypothesis that AE conditions [60 mM tetraethyl ammonium hydroxide (TEA), 20 mM EDTA, pH 12.6, for 16 h at room ...
Chemical compound and disease context of Action Potentials. *The present study was performed to examine the influence of ... Broadening the presynaptic action potential with the potassium-channel blocker tetraethylammonium, which increases Ca2+ entry, ... evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound ... Associations of Action Potentials with chemical compounds. * ... Chemical compound and disease context of Action Potentials. * ...

No FAQ available that match "tetraethylammonium compounds"

No images available that match "tetraethylammonium compounds"