Inorganic salts of sulfuric acid.
Derivatives of chondroitin which have a sulfate moiety esterified to the galactosamine moiety of chondroitin. Chondroitin sulfate A, or chondroitin 4-sulfate, and chondroitin sulfate C, or chondroitin 6-sulfate, have the sulfate esterified in the 4- and 6-positions, respectively. Chondroitin sulfate B (beta heparin; DERMATAN SULFATE) is a misnomer and this compound is not a true chondroitin sulfate.
A heteropolysaccharide that is similar in structure to HEPARIN. It accumulates in individuals with MUCOPOLYSACCHARIDOSIS.
Organic esters of sulfuric acid.
Heteropolysaccharides which contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages consisting of either N-acetylglucosamine or N-acetylgalactosamine.
A naturally occurring glycosaminoglycan found mostly in the skin and in connective tissue. It differs from CHONDROITIN SULFATE A (see CHONDROITIN SULFATES) by containing IDURONIC ACID in place of glucuronic acid, its epimer, at carbon atom 5. (from Merck, 12th ed)
Inorganic and organic derivatives of sulfuric acid (H2SO4). The salts and esters of sulfuric acid are known as SULFATES and SULFURIC ACID ESTERS respectively.
Enzymes which catalyze the elimination of glucuronate residues from chondroitin A,B, and C or which catalyze the hydrolysis of sulfate groups of the 2-acetamido-2-deoxy-D-galactose 6-sulfate units of chondroitin sulfate. EC 4.2.2.-.
Enzymes which transfer sulfate groups to various acceptor molecules. They are involved in posttranslational sulfation of proteins and sulfate conjugation of exogenous chemicals and bile acids. EC 2.8.2.
A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts.
An enzyme that catalyzes the eliminative degradation of polysaccharides containing 1,4-beta-D-hexosaminyl and 1,3-beta-D-glucuronosyl or 1,3-alpha-L-iduronosyl linkages to disaccharides containing 4-deoxy-beta-D-gluc-4-enuronosyl groups. (Enzyme Nomenclature, 1992)
Oligosaccharides containing two monosaccharide units linked by a glycosidic bond.
A sulfated mucopolysaccharide initially isolated from bovine cornea. At least two types are known. Type I, found mostly in the cornea, contains D-galactose and D-glucosamine-6-O-sulfate as the repeating unit; type II, found in skeletal tissues, contains D-galactose and D-galactosamine-6-O-sulfate as the repeating unit.
An arylsulfatase with high specificity towards sulfated steroids. Defects in this enzyme are the cause of ICHTHYOSIS, X-LINKED.
A mucopolysaccharide constituent of chondrin. (Grant & Hackh's Chemical Dictionary, 5th ed)
Sulfatases are a group of enzymes that catalyze the hydrolysis of sulfate ester bonds in various substrates, playing crucial roles in the metabolism and homeostasis of carbohydrates, proteoglycans, neurotransmitters, and steroid hormones within the body.
Component of dermatan sulfate. Differs in configuration from glucuronic acid only at the C-5 position.
A group of carbon-oxygen lyases. These enzymes catalyze the breakage of a carbon-oxygen bond in polysaccharides leading to an unsaturated product and the elimination of an alcohol. EC 4.2.2.
An enzyme of the isomerase class that catalyzes the eliminative cleavage of polysaccharides containing 1,4-linked D-glucuronate or L-iduronate residues and 1,4-alpha-linked 2-sulfoamino-2-deoxy-6-sulfo-D-glucose residues to give oligosaccharides with terminal 4-deoxy-alpha-D-gluc-4-enuronosyl groups at their non-reducing ends. (From Enzyme Nomenclature, 1992) EC 4.2.2.7.
A calcium salt that is used for a variety of purposes including: building materials, as a desiccant, in dentistry as an impression material, cast, or die, and in medicine for immobilizing casts and as a tablet excipient. It exists in various forms and states of hydration. Plaster of Paris is a mixture of powdered and heat-treated gypsum.
Electrophoresis in which cellulose acetate is the diffusion medium.
Enzymes which catalyze the elimination of delta-4,5-D-glucuronate residues from polysaccharides containing 1,4-beta-hexosaminyl and 1,3-beta-D-glucuronosyl or 1,3-alpha-L-iduronosyl linkages thereby bringing about depolymerization. EC 4.2.2.4 acts on chondroitin sulfate A and C as well as on dermatan sulfate and slowly on hyaluronate. EC 4.2.2.5 acts on chondroitin sulfate A and C.
The fourth planet in order from the sun. Its two natural satellites are Deimos and Phobos. It is one of the four inner or terrestrial planets of the solar system.
Inorganic salts of chloric acid that contain the ClO3- ion.
Derivatives of GLUCURONIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the 6-carboxy glucose structure.
Glycoproteins which have a very high polysaccharide content.
A class of acids containing a ring structure in which at least one atom other than CARBON is incorporated.
Glucosamine is a naturally occurring amino sugar that plays a crucial role in the formation and maintenance of various tissues, particularly in the synthesis of proteoglycans and glycosaminoglycans, which are essential components of cartilage and synovial fluid in joints.
A genus of GREEN ALGAE in the family Scenedesmaceae. It forms colonies of usually four or eight cylindrical cells that are widely distributed in freshwater and SOIL.
Devices, manned and unmanned, which are designed to be placed into an orbit about the Earth or into a trajectory to another celestial body. (NASA Thesaurus, 1988)
Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form.
The environment outside the earth or its atmosphere. The environment may refer to a closed cabin (such as a space shuttle or space station) or to space itself, the moon, or other planets.
Ubiquitous macromolecules associated with the cell surface and extracellular matrix of a wide range of cells of vertebrate and invertebrate tissues. They are essential cofactors in cell-matrix adhesion processes, in cell-cell recognition systems, and in receptor-growth factor interactions. (From Cancer Metastasis Rev 1996; 15(2): 177-86; Hepatology 1996; 24(3): 524-32)
GLYCOSPHINGOLIPIDS with a sulfate group esterified to one of the sugar groups.
Organic esters or salts of sulfonic acid derivatives containing an aliphatic hydrocarbon radical.
The carbohydrate-rich zone on the cell surface. This zone can be visualized by a variety of stains as well as by its affinity for lectins. Although most of the carbohydrate is attached to intrinsic plasma membrane molecules, the glycocalyx usually also contains both glycoproteins and proteoglycans that have been secreted into the extracellular space and then adsorbed onto the cell surface. (Alberts et al., Molecular Biology of the Cell, 3d ed, p502)
Proteoglycans consisting of proteins linked to one or more CHONDROITIN SULFATE-containing oligosaccharide chains.
The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS.
A subphylum of chordates intermediate between the invertebrates and the true vertebrates. It includes the Ascidians.
A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria whose organisms occur in the lower part of the intestine of warm-blooded animals. The species are either nonpathogenic or opportunistic pathogens.
Acids derived from monosaccharides by the oxidation of the terminal (-CH2OH) group farthest removed from the carbonyl group to a (-COOH) group. (From Stedmans, 26th ed)
Enzymes that catalyze the hydrolysis of a phenol sulfate to yield a phenol and sulfate. Arylsulfatase A, B, and C have been separated. A deficiency of arylsulfatases is one of the causes of metachromatic leukodystrophy (LEUKODYSTROPHY, METACHROMATIC). EC 3.1.6.1.
A natural high-viscosity mucopolysaccharide with alternating beta (1-3) glucuronide and beta (1-4) glucosaminidic bonds. It is found in the UMBILICAL CORD, in VITREOUS BODY and in SYNOVIAL FLUID. A high urinary level is found in PROGERIA.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
A sulfated plasma protein with a MW of approximately 66kDa that resembles ANTITHROMBIN III. The protein is an inhibitor of thrombin in plasma and is activated by dermatan sulfate or heparin. It is a member of the serpin superfamily.
A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE.
The conjugation of exogenous substances with various hydrophilic substituents to form water soluble products that are excretable in URINE. Phase II modifications include GLUTATHIONE conjugation; ACYLATION; and AMINATION. Phase II enzymes include GLUTATHIONE TRANSFERASE and GLUCURONOSYLTRANSFERASE. In a sense these reactions detoxify phase I reaction products.
Steroid acids and salts. The primary bile acids are derived from cholesterol in the liver and usually conjugated with glycine or taurine. The secondary bile acids are further modified by bacteria in the intestine. They play an important role in the digestion and absorption of fat. They have also been used pharmacologically, especially in the treatment of gallstones.
3'-Phosphoadenosine-5'-phosphosulfate. Key intermediate in the formation by living cells of sulfate esters of phenols, alcohols, steroids, sulfated polysaccharides, and simple esters, such as choline sulfate. It is formed from sulfate ion and ATP in a two-step process. This compound also is an important step in the process of sulfur fixation in plants and microorganisms.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Large marine mammals of the order CETACEA. In the past, they were commercially valued for whale oil, for their flesh as human food and in ANIMAL FEED and FERTILIZERS, and for baleen. Today, there is a moratorium on most commercial whaling, as all species are either listed as endangered or threatened.
The N-acetyl derivative of galactosamine.
An enzyme that catalyzes the random hydrolysis of 1,4-linkages between N-acetyl-beta-D-glucosamine and D-glucuronate residues in hyaluronate. (From Enzyme Nomenclature, 1992) There has been use as ANTINEOPLASTIC AGENTS to limit NEOPLASM METASTASIS.
Glycosides of GLUCURONIC ACID formed by the reaction of URIDINE DIPHOSPHATE GLUCURONIC ACID with certain endogenous and exogenous substances. Their formation is important for the detoxification of drugs, steroid excretion and BILIRUBIN metabolism to a more water-soluble compound that can be eliminated in the URINE and BILE.
Endogenous factors and drugs that directly inhibit the action of THROMBIN, usually by blocking its enzymatic activity. They are distinguished from INDIRECT THROMBIN INHIBITORS, such as HEPARIN, which act by enhancing the inhibitory effects of antithrombins.
A sugar acid formed by the oxidation of the C-6 carbon of GLUCOSE. In addition to being a key intermediate metabolite of the uronic acid pathway, glucuronic acid also plays a role in the detoxification of certain drugs and toxins by conjugating with them to form GLUCURONIDES.
A group of elongate elasmobranchs. Sharks are mostly marine fish, with certain species large and voracious.
A fibroblast growth factor receptor that is found in two isoforms. One receptor isoform is found in the MESENCHYME and is activated by FIBROBLAST GROWTH FACTOR 2. A second isoform of fibroblast growth factor receptor 2 is found mainly in EPITHELIAL CELLS and is activated by FIBROBLAST GROWTH FACTOR 7 and FIBROBLAST GROWTH FACTOR 10. Mutation of the gene for fibroblast growth factor receptor 2 can result in craniosynostotic syndromes (e.g., APERT SYNDROME; and CROUZON SYNDROME).
Polysaccharides are complex carbohydrates consisting of long, often branched chains of repeating monosaccharide units joined together by glycosidic bonds, which serve as energy storage molecules (e.g., glycogen), structural components (e.g., cellulose), and molecular recognition sites in various biological systems.
Specific molecular sites or structures on cell membranes that react with FIBROBLAST GROWTH FACTORS (both the basic and acidic forms), their analogs, or their antagonists to elicit or to inhibit the specific response of the cell to these factors. These receptors frequently possess tyrosine kinase activity.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
Systemic lysosomal storage disease marked by progressive physical deterioration and caused by a deficiency of L-sulfoiduronate sulfatase. This disease differs from MUCOPOLYSACCHARIDOSIS I by slower progression, lack of corneal clouding, and X-linked rather than autosomal recessive inheritance. The mild form produces near-normal intelligence and life span. The severe form usually causes death by age 15.
Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis.
Inorganic or organic oxy acids of sulfur which contain the RSO2(OH) radical.
Agents that modify interfacial tension of water; usually substances that have one lipophilic and one hydrophilic group in the molecule; includes soaps, detergents, emulsifiers, dispersing and wetting agents, and several groups of antiseptics.
Term used to designate tetrahydroxy aldehydic acids obtained by oxidation of hexose sugars, i.e. glucuronic acid, galacturonic acid, etc. Historically, the name hexuronic acid was originally given to ascorbic acid.
An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from ANDROSTENEDIONE directly, or from TESTOSTERONE via ESTRADIOL. In humans, it is produced primarily by the cyclic ovaries, PLACENTA, and the ADIPOSE TISSUE of men and postmenopausal women.
Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins.
The characteristic 3-dimensional shape of a carbohydrate.
A 17-kDa single-chain polypeptide growth factor that plays a significant role in the process of WOUND HEALING and is a potent inducer of PHYSIOLOGIC ANGIOGENESIS. It binds to HEPARIN, which potentiates its biological activity and protects it from proteolysis. The growth factor is an extremely potent inducer of DNA synthesis in a variety of cell types from mesoderm and neuroectoderm lineages, and also has chemotactic and mitogenic activities. It was originally named acidic fibroblast growth factor based upon its chemical properties and to distinguish it from basic fibroblast growth factor (FIBROBLAST GROWTH FACTOR 2).
A fibroblast growth factor that is a mitogen for KERATINOCYTES. It activates FIBROBLAST GROWTH FACTOR RECEPTOR 2B and is involved in LUNG and limb development.
A family of galactoside hydrolases that hydrolyze compounds with an O-galactosyl linkage. EC 3.2.1.-.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
Chromatography on non-ionic gels without regard to the mechanism of solute discrimination.
A single-chain polypeptide growth factor that plays a significant role in the process of WOUND HEALING and is a potent inducer of PHYSIOLOGIC ANGIOGENESIS. Several different forms of the human protein exist ranging from 18-24 kDa in size due to the use of alternative start sites within the fgf-2 gene. It has a 55 percent amino acid residue identity to FIBROBLAST GROWTH FACTOR 1 and has potent heparin-binding activity. The growth factor is an extremely potent inducer of DNA synthesis in a variety of cell types from mesoderm and neuroectoderm lineages. It was originally named basic fibroblast growth factor based upon its chemical properties and to distinguish it from acidic fibroblast growth factor (FIBROBLAST GROWTH FACTOR 1).
Long-chain polymer of glucose containing 17-20% sulfur. It has been used as an anticoagulant and also has been shown to inhibit the binding of HIV-1 to CD4-POSITIVE T-LYMPHOCYTES. It is commonly used as both an experimental and clinical laboratory reagent and has been investigated for use as an antiviral agent, in the treatment of hypolipidemia, and for the prevention of free radical damage, among other applications.
The composition, conformation, and properties of atoms and molecules, and their reaction and interaction processes.
Glucuronidase is an enzyme (specifically, a glycosidase) that catalyzes the hydrolysis of glucuronic acid from various substrates, playing crucial roles in metabolic processes like detoxification and biotransformation within organisms.
The rate dynamics in chemical or physical systems.
"Esters are organic compounds that result from the reaction between an alcohol and a carboxylic acid, playing significant roles in various biological processes and often used in pharmaceutical synthesis."
A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes.
A syndecan that interacts with EXTRACELLULAR MATRIX PROTEINS and plays a role CELL PROLIFERATION and CELL MIGRATION.
Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The sum of the weight of all the atoms in a molecule.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The time required for the appearance of FIBRIN strands following the mixing of PLASMA with phospholipid platelet substitute (e.g., crude cephalins, soybean phosphatides). It is a test of the intrinsic pathway (factors VIII, IX, XI, and XII) and the common pathway (fibrinogen, prothrombin, factors V and X) of BLOOD COAGULATION. It is used as a screening test and to monitor HEPARIN therapy.
Any compound that contains a constituent sugar, in which the hydroxyl group attached to the first carbon is substituted by an alcoholic, phenolic, or other group. They are named specifically for the sugar contained, such as glucoside (glucose), pentoside (pentose), fructoside (fructose), etc. Upon hydrolysis, a sugar and nonsugar component (aglycone) are formed. (From Dorland, 28th ed; From Miall's Dictionary of Chemistry, 5th ed)
An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family.
A phylum of the kingdom Metazoa. Mollusca have soft, unsegmented bodies with an anterior head, a dorsal visceral mass, and a ventral foot. Most are encased in a protective calcareous shell. It includes the classes GASTROPODA; BIVALVIA; CEPHALOPODA; Aplacophora; Scaphopoda; Polyplacophora; and Monoplacophora.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells.
The process of cleaving a chemical compound by the addition of a molecule of water.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
The transparent anterior portion of the fibrous coat of the eye consisting of five layers: stratified squamous CORNEAL EPITHELIUM; BOWMAN MEMBRANE; CORNEAL STROMA; DESCEMET MEMBRANE; and mesenchymal CORNEAL ENDOTHELIUM. It serves as the first refracting medium of the eye. It is structurally continuous with the SCLERA, avascular, receiving its nourishment by permeation through spaces between the lamellae, and is innervated by the ophthalmic division of the TRIGEMINAL NERVE via the ciliary nerves and those of the surrounding conjunctiva which together form plexuses. (Cline et al., Dictionary of Visual Science, 4th ed)
Established cell cultures that have the potential to propagate indefinitely.
An emulsifying agent produced in the LIVER and secreted into the DUODENUM. Its composition includes BILE ACIDS AND SALTS; CHOLESTEROL; and ELECTROLYTES. It aids DIGESTION of fats in the duodenum.
NMR spectroscopy on small- to medium-size biological macromolecules. This is often used for structural investigation of proteins and nucleic acids, and often involves more than one isotope.
Any substance in the air which could, if present in high enough concentration, harm humans, animals, vegetation or material. Substances include GASES; PARTICULATE MATTER; and volatile ORGANIC CHEMICALS.
The presence of contaminants or pollutant substances in the air (AIR POLLUTANTS) that interfere with human health or welfare, or produce other harmful environmental effects. The substances may include GASES; PARTICULATE MATTER; or volatile ORGANIC CHEMICALS.
Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts.
Macromolecular organic compounds that contain carbon, hydrogen, oxygen, nitrogen, and usually, sulfur. These macromolecules (proteins) form an intricate meshwork in which cells are embedded to construct tissues. Variations in the relative types of macromolecules and their organization determine the type of extracellular matrix, each adapted to the functional requirements of the tissue. The two main classes of macromolecules that form the extracellular matrix are: glycosaminoglycans, usually linked to proteins (proteoglycans), and fibrous proteins (e.g., COLLAGEN; ELASTIN; FIBRONECTINS; and LAMININ).
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
A mass spectrometry technique used for analysis of nonvolatile compounds such as proteins and macromolecules. The technique involves preparing electrically charged droplets from analyte molecules dissolved in solvent. The electrically charged droplets enter a vacuum chamber where the solvent is evaporated. Evaporation of solvent reduces the droplet size, thereby increasing the coulombic repulsion within the droplet. As the charged droplets get smaller, the excess charge within them causes them to disintegrate and release analyte molecules. The volatilized analyte molecules are then analyzed by mass spectrometry.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
Proteins prepared by recombinant DNA technology.
The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Agents that prevent clotting.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
Adherence of cells to surfaces or to other cells.
A chromatographic technique that utilizes the ability of biological molecules to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids.
A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed)
Elements of limited time intervals, contributing to particular results or situations.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
The relationship between the dose of an administered drug and the response of the organism to the drug.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
Sites on an antigen that interact with specific antibodies.
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.

Variations in 35SO4 incorporation into glycosaminoglycans along canine coronary arteries. A possible index of artery wall stress. (1/3500)

Focal areas of accentuated wall stress along the course of canine coronary arteries may be revealed by the level of 35SO4 incorporation into glycosaminoglycans (GAG). In the anterior descending artery, 35SO4 incorporation in higher in the proximal than in the distal region and may be extraordinarily high as the vessel enters a proximally located muscle bridge and at the takeoff region of multidirectional branches. In the circumflex artery, the incorporation also is higher in the proximal than in the distal region and is high at the genu where the posterior descending artery forms. There are differences in uptake of 35SO4 in vessels even when the arteries arise from the same vascular bed.this was shown by the higher incorporation in the left coronary artery than in the right coronary artery. A general anatomical agreement exists between these sites of high 35SO4 incorporation and previously described locations of interval elastic disruption ans proliferation of intimal connective tissue in the dog.  (+info)

Sulphated and unsulphated bile acids in serum, bile, and urine of patients with cholestasis. (2/3500)

Samples of serum, bile, and urine were collected simultaneously from patients with cholestasis of varying aetiology and from patients with cirrhosis; their bile acid composition was determined by gas/liquid chromatography and mass spectrometry. In cholestasis, the patterns in all three body fluids differed consistently and strikingly. In serum, cholic acid was the major bile acid and most bile acids (greater than 93%) were unsulphated, whereas, in urine, chenodeoxycholic was the major bile acid, and the majority of bile acids (greater than 60%) were sulphated. Secondary bile acids were virtually absent in bile, serum, and urine. The total amount of bile acids excreted for 24 hours correlated highly with the concentration of serum bile acids; in patients with complete obstruction, urinary excretion averaged 71-6 mg/24 h. In cirrhotic patients, serum bile acids were less raised, and chenodeoxycholic acid was the predominant acid. In healthy controls, serum bile acids were consistently richer in chenodeoxycholic acid than biliary bile acids, and no bile acids were present in urine. No unusual monohydroxy bile acids were present in patients with primary biliary cirrhosis, but, in several patients, there was a considerable amount of hyocholic acid present in the urinary bile acids. The analyses of individual bile acids in serum and urine did not appear to provide helpful information in the differential diagnosis of cholestasis. Thus, in cholestasis, conjugation of chenodeoxycholic acid with sulphate becomes a major biochemical pathway, urine becomes a major route of bile acid excretion, and abnormal bile acids are formed.  (+info)

The sialylation of bronchial mucins secreted by patients suffering from cystic fibrosis or from chronic bronchitis is related to the severity of airway infection. (3/3500)

Bronchial mucins were purified from the sputum of 14 patients suffering from cystic fibrosis and 24 patients suffering from chronic bronchitis, using two CsBr density-gradient centrifugations. The presence of DNA in each secretion was used as an index to estimate the severity of infection and allowed to subdivide the mucins into four groups corresponding to infected or noninfected patients with cystic fibrosis, and to infected or noninfected patients with chronic bronchitis. All infected patients suffering from cystic fibrosis were colonized by Pseudomonas aeruginosa. As already observed, the mucins from the patients with cystic fibrosis had a higher sulfate content than the mucins from the patients with chronic bronchitis. However, there was a striking increase in the sialic acid content of the mucins secreted by severely infected patients as compared to noninfected patients. Thirty-six bronchial mucins out of 38 contained the sialyl-Lewis x epitope which was even expressed by subjects phenotyped as Lewis negative, indicating that at least one alpha1,3 fucosyltransferase different from the Lewis enzyme was involved in the biosynthesis of this epitope. Finally, the sialyl-Lewis x determinant was also overexpressed in the mucins from severely infected patients. Altogether these differences in the glycosylation process of mucins from infected and noninfected patients suggest that bacterial infection influences the expression of sialyltransferases and alpha1,3 fucosyltransferases in the human bronchial mucosa.  (+info)

Anticoagulant heparan sulfate precursor structures in F9 embryonal carcinoma cells. (4/3500)

To understand the mechanisms that control anticoagulant heparan sulfate (HSact) biosynthesis, we previously showed that HSact production in the F9 system is determined by the abundance of 3-O-sulfotransferase-1 as well as the size of the HSact precursor pool. In this study, HSact precursor structures have been studied by characterizing [6-3H]GlcN metabolically labeled F9 HS tagged with 3-O-sulfates in vitro by 3'-phosphoadenosine 5'-phospho-35S and purified 3-O-sulfotransferase-1. This later in vitro labeling allows the regions of HS destined to become the antithrombin (AT)-binding sites to be tagged for subsequent structural studies. It was shown that six 3-O-sulfation sites exist per HSact precursor chain. At least five out of six 3-O-sulfate-tagged oligosaccharides in HSact precursors bind AT, whereas none of 3-O-sulfate-tagged oligosaccharides from HSinact precursors bind AT. When treated with low pH nitrous or heparitinase, 3-O-sulfate-tagged HSact and HSinact precursors exhibit clearly different structural features. 3-O-Sulfate-tagged HSact hexasaccharides were AT affinity purified and sequenced by chemical and enzymatic degradations. The 3-O-sulfate-tagged HSact hexasaccharides exhibited the following structures, DeltaUA-[6-3H]GlcNAc6S-GlcUA-[6-3H]GlcNS3(35)S+/-6S-++ +IdceA2S-[6-3H]Glc NS6S. The underlined 6- and 3-O-sulfates constitute the most critical groups for AT binding in view of the fact that the precursor hexasaccharides possess all the elements for AT binding except for the 3-O-sulfate moiety. The presence of five potential AT-binding precursor hexasaccharides in all HSact precursor chains demonstrates for the first time the processive assembly of specific sequence in HS. The difference in structures around potential 3-O-sulfate acceptor sites in HSact and HSinact precursors suggests that these precursors might be generated by different concerted assembly mechanisms in the same cell. This study permits us to understand better the nature of the HS biosynthetic pathway that leads to the generation of specific saccharide sequences.  (+info)

Desulfocella halophila gen. nov., sp. nov., a halophilic, fatty-acid-oxidizing, sulfate-reducing bacterium isolated from sediments of the Great Salt Lake. (5/3500)

A new halophilic sulfate-reducing bacterium, strain GSL-But2T, was isolated from surface sediment of the Southern arm of the Great Salt Lake, UT, USA. The organism grew with a number of straight-chain fatty acids (C4-C16), 2-methylbutyrate, L-alanine and pyruvate as electron donors. Butyrate was oxidized incompletely to acetate. Sulfate, but not sulfite or thiosulfate, served as an electron acceptor. Growth was observed between 2 and 19% (w/v) NaCl with an optimum at 4-5% (w/v) NaCl. The optimal temperature and pH for growth were around 34 degrees C and pH 6.5-7.3, respectively. The generation time under optimal conditions in defined medium was around 28 h, compared to 20 h in complex medium containing yeast extract. The G+C content was 35.0 mol%. 16S rRNA gene sequence analysis revealed that strain GSL-But2T belongs to the family Desulfobacteriaceae within the delta-subclass of the Proteobacteria and suggested that strain GSL-But2T represents a member of a new genus. The name Desulfocella halophila gen. nov., sp. nov. is proposed for this organism. The type strain of D. halophila is strain GSL-But2T (= DSM 11763T = ATCC 700426T).  (+info)

Improved antibody detection by the use of range expansion and longer filter wavelength in a low ionic strength-protamine sulphate Auto-Analyzer system. (6/3500)

Range expansion, achieved by insertion of a variable resistance between the colorimeter and the recorder together with the use of 550 nm colorimeter filters, has resulted in markedly improved sensitivity for antibody detection, and improved sample identification, in a low ionic strength-protamine sulphate (LISPS) system. Range expansion also permits a lower concentration of red cells to be used, thus economizing on fully typed cells. Glycerol stored frozen cells were found to be only slightly less sensitive than fresh cells in this system.  (+info)

The localisation of 2-carboxy-D-arabinitol 1-phosphate and inhibition of Rubisco in leaves of Phaseolus vulgaris L. (7/3500)

A recent controversial report suggests that the nocturnal inhibitor of Rubisco, 2-carboxy-D-arabinitol 1-phosphate (CAIP), does not bind to Rubisco in vivo and therefore that CA1P has no physiological relevance to photosynthetic regulation. It is now proved that a direct rapid assay can be used to distinguish between Rubisco-bound and free CA1P, as postulated in the controversial report. Application of this direct assay demonstrates that CA1P is bound to Rubisco in vivo in dark-adapted leaves. Furthermore, CA1P is shown to be in the chloroplasts of mesophyll cells. Thus, CA1P does play a physiological role in the regulation of Rubisco.  (+info)

Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. (8/3500)

Various alkylbenzenes were depleted during growth of an anaerobic, sulfate-reducing enrichment culture with crude oil as the only source of organic substrates. From this culture, two new types of mesophilic, rod-shaped sulfate-reducing bacteria, strains oXyS1 and mXyS1, were isolated with o-xylene and m-xylene, respectively, as organic substrates. Sequence analyses of 16S rRNA genes revealed that the isolates affiliated with known completely oxidizing sulfate-reducing bacteria of the delta subclass of the class Proteobacteria. Strain oXyS1 showed the highest similarities to Desulfobacterium cetonicum and Desulfosarcina variabilis (similarity values, 98.4 and 98.7%, respectively). Strain mXyS1 was less closely related to known species, the closest relative being Desulfococcus multivorans (similarity value, 86.9%). Complete mineralization of o-xylene and m-xylene was demonstrated in quantitative growth experiments. Strain oXyS1 was able to utilize toluene, o-ethyltoluene, benzoate, and o-methylbenzoate in addition to o-xylene. Strain mXyS1 oxidized toluene, m-ethyltoluene, m-isoproyltoluene, benzoate, and m-methylbenzoate in addition to m-xylene. Strain oXyS1 did not utilize m-alkyltoluenes, whereas strain mXyS1 did not utilize o-alkyltoluenes. Like the enrichment culture, both isolates grew anaerobically on crude oil with concomitant reduction of sulfate to sulfide.  (+info)

In the context of medicine and biology, sulfates are ions or compounds that contain the sulfate group (SO4−2). Sulfate is a polyatomic anion with the structure of a sphere. It consists of a central sulfur atom surrounded by four oxygen atoms in a tetrahedral arrangement.

Sulfates can be found in various biological molecules, such as glycosaminoglycans and proteoglycans, which are important components of connective tissue and the extracellular matrix. Sulfate groups play a crucial role in these molecules by providing negative charges that help maintain the structural integrity and hydration of tissues.

In addition to their biological roles, sulfates can also be found in various medications and pharmaceutical compounds. For example, some laxatives contain sulfate salts, such as magnesium sulfate (Epsom salt) or sodium sulfate, which work by increasing the water content in the intestines and promoting bowel movements.

It is important to note that exposure to high levels of sulfates can be harmful to human health, particularly in the form of sulfur dioxide (SO2), a common air pollutant produced by burning fossil fuels. Prolonged exposure to SO2 can cause respiratory problems and exacerbate existing lung conditions.

Chondroitin sulfates are a type of complex carbohydrate molecules known as glycosaminoglycans (GAGs). They are a major component of cartilage, the tissue that cushions and protects the ends of bones in joints. Chondroitin sulfates are composed of repeating disaccharide units made up of glucuronic acid and N-acetylgalactosamine, which can be sulfated at various positions.

Chondroitin sulfates play a crucial role in the biomechanical properties of cartilage by attracting water and maintaining the resiliency and elasticity of the tissue. They also interact with other molecules in the extracellular matrix, such as collagen and proteoglycans, to form a complex network that provides structural support and regulates cell behavior.

Chondroitin sulfates have been studied for their potential therapeutic benefits in osteoarthritis, a degenerative joint disease characterized by the breakdown of cartilage. Supplementation with chondroitin sulfate has been shown to reduce pain and improve joint function in some studies, although the evidence is not consistent across all trials. The mechanism of action is thought to involve inhibition of enzymes that break down cartilage, as well as stimulation of cartilage repair and synthesis.

Heparin sulfate is not exactly referred to as "heparitin sulfate" in medical terminology. The correct term is heparan sulfate, which is a type of glycosaminoglycan (GAG), a long unbranched chain of repeating disaccharide units composed of a hexuronic acid and a hexosamine.

Heparan sulfate is found on the cell surface and in the extracellular matrix, where it plays crucial roles in various biological processes, including cell signaling, regulation of growth factor activity, and control of blood coagulation. It is also an important component of the proteoglycans, which are complex molecules that help to maintain the structural integrity and function of tissues and organs.

Like heparin, heparan sulfate has a high negative charge due to the presence of sulfate groups, which allows it to bind to and interact with various proteins and growth factors. However, heparan sulfate has a more diverse structure than heparin, with variations in the pattern of sulfation along the chain, which leads to specificity in its interactions with different proteins.

Defects in heparan sulfate biosynthesis or function have been implicated in various human diseases, including certain forms of cancer, developmental disorders, and infectious diseases.

Sulfuric acid esters, also known as sulfate esters, are chemical compounds formed when sulfuric acid reacts with alcohols or phenols. These esters consist of a organic group linked to a sulfate group (SO4). They are widely used in industry, for example, as detergents, emulsifiers, and solvents. In the body, they can be found as part of various biomolecules, such as glycosaminoglycans and steroid sulfates. However, excessive exposure to sulfuric acid esters can cause irritation and damage to tissues.

Glycosaminoglycans (GAGs) are long, unbranched polysaccharides composed of repeating disaccharide units. They are a major component of the extracellular matrix and connective tissues in the body. GAGs are negatively charged due to the presence of sulfate and carboxyl groups, which allows them to attract positively charged ions and water molecules, contributing to their ability to retain moisture and maintain tissue hydration and elasticity.

GAGs can be categorized into four main groups: heparin/heparan sulfate, chondroitin sulfate/dermatan sulfate, keratan sulfate, and hyaluronic acid. These different types of GAGs have varying structures and functions in the body, including roles in cell signaling, inflammation, and protection against enzymatic degradation.

Heparin is a highly sulfated form of heparan sulfate that is found in mast cells and has anticoagulant properties. Chondroitin sulfate and dermatan sulfate are commonly found in cartilage and contribute to its resiliency and ability to withstand compressive forces. Keratan sulfate is found in corneas, cartilage, and bone, where it plays a role in maintaining the structure and function of these tissues. Hyaluronic acid is a large, nonsulfated GAG that is widely distributed throughout the body, including in synovial fluid, where it provides lubrication and shock absorption for joints.

Dermatan sulfate is a type of glycosaminoglycan, which is a long, unbranched sugar chain found on the proteoglycan core protein in the extracellular matrix of animal tissues. It is composed of repeating disaccharide units of iduronic acid and N-acetylgalactosamine, with alternating sulfation at the 4-position of the iduronic acid and the 6-position of the galactosamine.

Dermatan sulfate is found in various tissues, including skin, heart valves, and blood vessels, where it plays important roles in regulating cell behavior, tissue development, and homeostasis. It also binds to a variety of growth factors, cytokines, and enzymes, modulating their activities and contributing to the regulation of various biological processes.

Abnormalities in dermatan sulfate metabolism can lead to several genetic disorders, such as Hunter syndrome and Hurler-Scheie syndrome, which are characterized by skeletal abnormalities, cardiac defects, and neurological impairment.

I believe there might be a slight confusion in your question. Sulfuric acid is not a medical term, but instead a chemical compound with the formula H2SO4. It's one of the most important industrial chemicals, being a strong mineral acid with numerous applications.

If you are asking for a definition related to human health or medicine, I can tell you that sulfuric acid has no physiological role in humans. Exposure to sulfuric acid can cause irritation and burns to the skin, eyes, and respiratory tract. Prolonged exposure may lead to more severe health issues. However, it is not a term typically used in medical diagnoses or treatments.

Chondroitinases and chondroitin lyases are enzymes that break down chondroitin sulfate, a type of glycosaminoglycan (GAG) found in connective tissues such as cartilage. Glycosaminoglycans are long, unbranched polysaccharides made up of repeating disaccharide units. In the case of chondroitin sulfate, the disaccharide unit consists of a glucuronic acid residue and a N-acetylgalactosamine residue that may be sulfated at various positions.

Chondroitinases are enzymes that cleave the linkage between the two sugars in the chondroitin sulfate chain, specifically between the carbon atom in the fourth position of the glucuronic acid and the nitrogen atom in the first position of the N-acetylgalactosamine. This results in the formation of unsaturated disaccharides. Chondroitinases are produced by certain bacteria and are used in research to study the structure and function of chondroitin sulfate and other GAGs.

Chondroitin lyases, on the other hand, are enzymes that cleave the same linkage but in the opposite direction, resulting in the formation of 4,5-unsaturated disaccharides. Chondroitin lyases are also produced by certain bacteria and are used in research to study the structure and function of chondroitin sulfate and other GAGs.

It is important to note that while both chondroitinases and chondroitin lyases break down chondroitin sulfate, they do so through different mechanisms and produce different products.

Sulfotransferases (STs) are a group of enzymes that play a crucial role in the process of sulfoconjugation, which is the transfer of a sulfo group (-SO3H) from a donor molecule to an acceptor molecule. These enzymes are widely distributed in nature and are found in various organisms, including humans.

In humans, STs are involved in the metabolism and detoxification of numerous xenobiotics, such as drugs, food additives, and environmental pollutants, as well as endogenous compounds, such as hormones, neurotransmitters, and lipids. The sulfoconjugation reaction catalyzed by STs can increase the water solubility of these compounds, facilitating their excretion from the body.

STs can be classified into several families based on their sequence similarity and cofactor specificity. The largest family of STs is the cytosolic sulfotransferases, which use 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a cofactor to transfer the sulfo group to various acceptor molecules, including phenols, alcohols, amines, and steroids.

Abnormalities in ST activity have been implicated in several diseases, such as cancer, cardiovascular disease, and neurological disorders. Therefore, understanding the function and regulation of STs is essential for developing new therapeutic strategies to treat these conditions.

Heparin is defined as a highly sulfated glycosaminoglycan (a type of polysaccharide) that is widely present in many tissues, but is most commonly derived from the mucosal tissues of mammalian lungs or intestinal mucosa. It is an anticoagulant that acts as an inhibitor of several enzymes involved in the blood coagulation cascade, primarily by activating antithrombin III which then neutralizes thrombin and other clotting factors.

Heparin is used medically to prevent and treat thromboembolic disorders such as deep vein thrombosis, pulmonary embolism, and certain types of heart attacks. It can also be used during hemodialysis, cardiac bypass surgery, and other medical procedures to prevent the formation of blood clots.

It's important to note that while heparin is a powerful anticoagulant, it does not have any fibrinolytic activity, meaning it cannot dissolve existing blood clots. Instead, it prevents new clots from forming and stops existing clots from growing larger.

Chondroitin ABC lyase, also known as chondroitinase ABC or chondroitin sulfate eliminase, is an enzyme that breaks down chondroitin sulfate proteoglycans (CSPGs), which are major components of the extracellular matrix in various tissues including cartilage. CSPGs contain chondroitin sulfate chains, which are long, negatively charged polysaccharides composed of alternating sugars (N-acetylgalactosamine and glucuronic acid) with sulfate groups attached at specific positions.

Chondroitin ABC lyase cleaves chondroitin sulfate chains by removing a disaccharide unit from the polymer, resulting in the formation of unsaturated bonds between the remaining sugars. This enzymatic activity has been used in research to study the structure and function of CSPGs and their role in various biological processes, such as cell migration, tissue repair, and neural plasticity. Additionally, chondroitin ABC lyase has potential therapeutic applications for treating conditions associated with excessive accumulation of CSPGs, such as fibrosis and some neurological disorders.

Disaccharides are a type of carbohydrate that is made up of two monosaccharide units bonded together. Monosaccharides are simple sugars, such as glucose, fructose, or galactose. When two monosaccharides are joined together through a condensation reaction, they form a disaccharide.

The most common disaccharides include:

* Sucrose (table sugar), which is composed of one glucose molecule and one fructose molecule.
* Lactose (milk sugar), which is composed of one glucose molecule and one galactose molecule.
* Maltose (malt sugar), which is composed of two glucose molecules.

Disaccharides are broken down into their component monosaccharides during digestion by enzymes called disaccharidases, which are located in the brush border of the small intestine. These enzymes catalyze the hydrolysis of the glycosidic bond that links the two monosaccharides together, releasing them to be absorbed into the bloodstream and used for energy.

Disorders of disaccharide digestion and absorption can lead to various symptoms, such as bloating, diarrhea, and abdominal pain. For example, lactose intolerance is a common condition in which individuals lack sufficient levels of the enzyme lactase, leading to an inability to properly digest lactose and resulting in gastrointestinal symptoms.

Keratan sulfate is a type of glycosaminoglycan (GAG), which is a complex carbohydrate found in connective tissues, including the cornea and cartilage. It is composed of repeating disaccharide units of galactose and N-acetylglucosamine, with sulfate groups attached to some of the sugar molecules.

Keratan sulfate is unique among GAGs because it contains a high proportion of non-sulfated sugars and is often found covalently linked to proteins in structures called proteoglycans. In the cornea, keratan sulfate plays important roles in maintaining transparency and regulating hydration. In cartilage, it contributes to the elasticity and resilience of the tissue.

Abnormalities in keratan sulfate metabolism have been associated with several genetic disorders, including corneal dystrophies and skeletal dysplasias.

Stearyl-sulfatase is a type of enzyme that is responsible for breaking down certain types of fatty substances called lipids in the body. Specifically, it helps to break down a substance called stearyl sulfate, which is a type of sulfated lipid.

Stearyl-sulfatase is found in various tissues throughout the body, including the brain, skin, and kidneys. Mutations in the gene that provides instructions for making this enzyme can lead to a condition called X-linked ichthyosis, which is characterized by dry, scaly skin. This is because the body is unable to properly break down stearyl sulfate and other related lipids, leading to their accumulation in the skin.

In medical terminology, steruly-sulfatase may also be referred to as arylsulfatase C or Arylsulfatase-C.

Chondroitin is a type of molecule known as a glycosaminoglycan, which is found in the connective tissues of the body, including cartilage. It is a major component of proteoglycans, which are complex molecules that provide structural support and help retain water within the cartilage, allowing it to function as a cushion between joints.

Chondroitin sulfate, a form of chondroitin, is commonly used in dietary supplements for osteoarthritis, a condition characterized by the breakdown of cartilage in joints. The idea behind using chondroitin sulfate as a treatment for osteoarthritis is that it may help to rebuild damaged cartilage and reduce inflammation in the affected joints. However, research on the effectiveness of chondroitin sulfate for osteoarthritis has had mixed results, with some studies showing modest benefits while others have found no significant effects.

It's important to note that dietary supplements containing chondroitin are not regulated by the U.S. Food and Drug Administration (FDA) in the same way that drugs are, so the quality and purity of these products can vary widely. As with any supplement, it's a good idea to talk to your doctor before starting to take chondroitin, especially if you have any medical conditions or are taking other medications.

Sulfatases are a group of enzymes that play a crucial role in the metabolism of sulfated steroids, glycosaminoglycans (GAGs), and other sulfated molecules. These enzymes catalyze the hydrolysis of sulfate groups from these substrates, converting them into their respective unsulfated forms.

The human genome encodes for several different sulfatases, each with specificity towards particular types of sulfated substrates. For instance, some sulfatases are responsible for removing sulfate groups from steroid hormones and neurotransmitters, while others target GAGs like heparan sulfate, dermatan sulfate, and keratan sulfate.

Defects in sulfatase enzymes can lead to various genetic disorders, such as multiple sulfatase deficiency (MSD), X-linked ichthyosis, and mucopolysaccharidosis (MPS) type IIIC (Sanfilippo syndrome type C). These conditions are characterized by the accumulation of sulfated molecules in different tissues, resulting in progressive damage to multiple organs and systems.

Iduronic acid is a type of uronic acid, which is a derivative of glucose. It is a component of certain complex carbohydrates known as glycosaminoglycans (GAGs) or mucopolysaccharides, which are found in the extracellular matrix and on the surface of cells in the body. Specifically, iduronic acid is a component of dermatan sulfate and heparan sulfate, two types of GAGs that play important roles in various biological processes such as cell signaling, growth factor regulation, and blood clotting.

Iduronic acid has an unusual structure compared to other sugars because it contains a five-membered ring instead of the more common six-membered ring found in most other sugars. This unique structure allows iduronic acid to form complex structures with other sugar molecules, which is important for the biological activity of GAGs.

Abnormalities in the metabolism of iduronic acid and other GAG components can lead to various genetic disorders known as mucopolysaccharidoses (MPS), which are characterized by a range of symptoms including developmental delays, coarse facial features, skeletal abnormalities, and cardiac problems.

Polysaccharide-lyases are a class of enzymes that cleave polysaccharides through a β-elimination mechanism, leading to the formation of unsaturated sugars. These enzymes are also known as depolymerizing enzymes and play an essential role in the breakdown and modification of complex carbohydrates found in nature. They have important applications in various industries such as food, pharmaceuticals, and biofuels.

Polysaccharide-lyases specifically target polysaccharides containing uronic acid residues, such as pectins, alginates, and heparin sulfate. The enzymes cleave the glycosidic bond between two sugar residues by breaking the alpha configuration at carbon 4 of the uronic acid residue, resulting in a double bond between carbons 4 and 5 of the non-reducing end of the polysaccharide chain.

Polysaccharide-lyases are classified into several subclasses based on their substrate specificity and reaction mechanism. These enzymes have potential therapeutic applications, such as in the treatment of bacterial infections, cancer, and other diseases associated with abnormal glycosylation.

Heparin Lyase, also known as Heparan Sulfate Lyase or Heparanase, is an enzyme that cleaves heparan sulfate proteoglycans (HSPGs), which are complex sugar-protein molecules found on the surface of many cells and in the extracellular matrix. These molecules play important roles in various biological processes such as cell growth, differentiation, and migration.

Heparin Lyase specifically cleaves heparan sulfate chains at a specific site, forming two unsaturated sugar residues. This enzyme is involved in the degradation of HSPGs during physiological processes like tissue remodeling and pathological conditions such as cancer metastasis, inflammation, and diabetic complications.

It's important to note that there are two main types of heparin lyases (heparin lyase I, II, and III) that differ in their substrate specificity and tissue distribution. Heparin Lyase I primarily acts on highly sulfated regions of heparan sulfate chains, while Heparin Lyase III prefers less sulfated domains. Heparin Lyase II has intermediate properties between the other two isoforms.

Calcium sulfate is an inorganic compound with the chemical formula CaSO4. It is a white, odorless, and tasteless solid that is insoluble in alcohol but soluble in water. Calcium sulfate is commonly found in nature as the mineral gypsum, which is used in various industrial applications such as plaster, wallboard, and cement.

In the medical field, calcium sulfate may be used as a component of some pharmaceutical products or as a surgical material. For example, it can be used as a bone void filler to promote healing after bone fractures or surgeries. Calcium sulfate is also used in some dental materials and medical devices.

It's important to note that while calcium sulfate has various industrial and medical uses, it should not be taken as a dietary supplement or medication without the guidance of a healthcare professional.

Electrophoresis, cellulose acetate is a laboratory technique used to separate and analyze proteins or other charged molecules based on their size and charge. The sample is applied to a sheet of cellulose acetate, a type of porous plastic film, and an electric field is applied. The proteins migrate through the film towards the electrode with the opposite charge, with smaller and more negatively charged molecules moving faster than larger and less negatively charged ones. This allows for the separation and identification of different protein components in a mixture. It is a simple and rapid method for routine protein separations and is commonly used in biochemistry and molecular biology research.

Chondroitin lyases are a group of enzymes that breakdown chondroitin, which is a type of proteoglycan found in connective tissues such as cartilage. These enzymes cleave chondroitin at specific points by removing certain sugar units, thereby breaking down the large, complex molecule into smaller fragments. Chondroitin lyases are classified based on their site of action and the type of fragment they produce. They play important roles in various biological processes, including tissue remodeling, growth, and development. In some cases, chondroitin lyases may also be used in research and medical settings to study the structure and function of proteoglycans or for the production of smaller chondroitin fragments with therapeutic potential.

I'm sorry for any confusion, but "Mars" is not a medical term. It is the fourth planet from the Sun in our solar system and is often called the "Red Planet" due to its reddish appearance from iron oxide (rust) on its surface. If you have any medical questions or terms you would like defined, I'd be happy to help!

Chlorates are salts or esters of chloric acid (HClO3). They contain the chlorate ion (ClO3-) in their chemical structure. Chlorates are strong oxidizing agents and can be hazardous if mishandled. They have various uses, including in matches, explosives, and disinfectants, but they can also pose health risks if ingested or come into contact with the skin or eyes. Exposure to chlorates can cause irritation, burns, and other harmful effects. It is important to handle chlorates with care and follow proper safety precautions when using them.

Glucuronates are not a medical term per se, but they refer to salts or esters of glucuronic acid, a organic compound that is a derivative of glucose. In the context of medical and biological sciences, glucuronidation is a common detoxification process in which glucuronic acid is conjugated to a wide variety of molecules, including drugs, hormones, and environmental toxins, to make them more water-soluble and facilitate their excretion from the body through urine or bile.

The process of glucuronidation is catalyzed by enzymes called UDP-glucuronosyltransferases (UGTs), which are found in various tissues, including the liver, intestines, and kidneys. The resulting glucuronides can be excreted directly or further metabolized before excretion.

Therefore, "glucuronates" can refer to the chemical compounds that result from this process of conjugation with glucuronic acid, as well as the therapeutic potential of enhancing or inhibiting glucuronidation for various clinical applications.

Proteoglycans are complex, highly negatively charged macromolecules that are composed of a core protein covalently linked to one or more glycosaminoglycan (GAG) chains. They are a major component of the extracellular matrix (ECM) and play crucial roles in various biological processes, including cell signaling, regulation of growth factor activity, and maintenance of tissue structure and function.

The GAG chains, which can vary in length and composition, are long, unbranched polysaccharides that are composed of repeating disaccharide units containing a hexuronic acid (either glucuronic or iduronic acid) and a hexosamine (either N-acetylglucosamine or N-acetylgalactosamine). These GAG chains can be sulfated to varying degrees, which contributes to the negative charge of proteoglycans.

Proteoglycans are classified into four major groups based on their core protein structure and GAG composition: heparan sulfate/heparin proteoglycans, chondroitin/dermatan sulfate proteoglycans, keratan sulfate proteoglycans, and hyaluronan-binding proteoglycans. Each group has distinct functions and is found in specific tissues and cell types.

In summary, proteoglycans are complex macromolecules composed of a core protein and one or more GAG chains that play important roles in the ECM and various biological processes, including cell signaling, growth factor regulation, and tissue structure maintenance.

Heterocyclic acids are organic compounds containing a heterocyclic ring, which is a cyclic molecule made up of at least one atom that is not carbon, and one or more carboxylic acid groups (-COOH). These compounds can have various biological activities and may be found in natural sources or synthesized for use in pharmaceuticals, agrochemicals, and other applications. Examples of heterocyclic acids include nucleic acids (DNA and RNA), certain amino acids, and many drugs such as tetracycline and sulfonamides.

Glucosamine is a natural compound found in the body, primarily in the fluid around joints. It is a building block of cartilage, which is the tissue that cushions bones and allows for smooth joint movement. Glucosamine can also be produced in a laboratory and is commonly sold as a dietary supplement.

Medical definitions of glucosamine describe it as a type of amino sugar that plays a crucial role in the formation and maintenance of cartilage, ligaments, tendons, and other connective tissues. It is often used as a supplement to help manage osteoarthritis symptoms, such as pain, stiffness, and swelling in the joints, by potentially reducing inflammation and promoting cartilage repair.

There are different forms of glucosamine available, including glucosamine sulfate, glucosamine hydrochloride, and N-acetyl glucosamine. Glucosamine sulfate is the most commonly used form in supplements and has been studied more extensively than other forms. While some research suggests that glucosamine may provide modest benefits for osteoarthritis symptoms, its effectiveness remains a topic of ongoing debate among medical professionals.

I'm sorry for any confusion, but "Scenedesmus" is not a medical term. It is actually the name of a genus of green algae that are commonly found in freshwater environments. These algae are single-celled, but they can exist in colonies, and they are often used in research and industry due to their ability to produce various useful compounds. If you have any questions about biology or another non-medical topic, I'd be happy to try to help!

I'm sorry for any confusion, but "spacecraft" is not a term typically used in medical definitions. A spacecraft is a vehicle or machine designed to fly in outer space. It may be used to transport humans or cargo to and from space stations, conduct scientific research, or explore other celestial bodies such as the moon, planets, and asteroids. If you have any questions related to medical terminology, I'd be happy to help!

Oligosaccharides are complex carbohydrates composed of relatively small numbers (3-10) of monosaccharide units joined together by glycosidic linkages. They occur naturally in foods such as milk, fruits, vegetables, and legumes. In the body, oligosaccharides play important roles in various biological processes, including cell recognition, signaling, and protection against pathogens.

There are several types of oligosaccharides, classified based on their structures and functions. Some common examples include:

1. Disaccharides: These consist of two monosaccharide units, such as sucrose (glucose + fructose), lactose (glucose + galactose), and maltose (glucose + glucose).
2. Trisaccharides: These contain three monosaccharide units, like maltotriose (glucose + glucose + glucose) and raffinose (galactose + glucose + fructose).
3. Oligosaccharides found in human milk: Human milk contains unique oligosaccharides that serve as prebiotics, promoting the growth of beneficial bacteria in the gut. These oligosaccharides also help protect infants from pathogens by acting as decoy receptors and inhibiting bacterial adhesion to intestinal cells.
4. N-linked and O-linked glycans: These are oligosaccharides attached to proteins in the body, playing crucial roles in protein folding, stability, and function.
5. Plant-derived oligosaccharides: Fructooligosaccharides (FOS) and galactooligosaccharides (GOS) are examples of plant-derived oligosaccharides that serve as prebiotics, promoting the growth of beneficial gut bacteria.

Overall, oligosaccharides have significant impacts on human health and disease, particularly in relation to gastrointestinal function, immunity, and inflammation.

The term "extraterrestrial environment" is not typically used in a medical context, but rather in the fields of astronomy and astrobiology. It generally refers to any physical environment outside of Earth, including the surfaces and atmospheres of other planets, moons, asteroids, comets, and interstellar space.

In a broader sense, one might use the term "extraterrestrial environment" to refer to any physical conditions that are not found naturally on Earth, such as extreme temperatures, radiation levels, or atmospheric compositions. However, this is not a standard medical definition.

It's worth noting that there may be potential health implications for humans who travel to extraterrestrial environments, as they would be exposed to new and potentially hazardous conditions. As such, space medicine is a growing field of research that aims to understand and mitigate the health risks associated with space travel.

Heparan sulfate proteoglycans (HSPGs) are complex molecules composed of a core protein to which one or more heparan sulfate (HS) glycosaminoglycan chains are covalently attached. They are widely distributed in animal tissues and play crucial roles in various biological processes, including cell-cell communication, growth factor signaling, viral infection, and cancer metastasis.

The HS chains are long, linear polysaccharides composed of repeating disaccharide units of glucosamine and uronic acid (either glucuronic or iduronic acid). These chains contain sulfate groups at various positions, which give them a negative charge and allow them to interact with numerous proteins, growth factors, and enzymes.

HSPGs can be found on the cell surface (syndecans and glypicans) or in the extracellular matrix (perlecans and agrin). They act as co-receptors for many signaling molecules, such as fibroblast growth factors (FGFs), wingless-type MMTV integration site family members (WNTs), and hedgehog proteins. By modulating the activity of these signaling pathways, HSPGs help regulate various cellular functions, including proliferation, differentiation, migration, and adhesion.

Dysregulation of HSPGs has been implicated in several diseases, such as cancer, fibrosis, and viral infections (e.g., HIV and herpes simplex virus). Therefore, understanding the structure and function of HSPGs is essential for developing new therapeutic strategies to target these diseases.

Sulfoglycosphingolipids are a type of glycosphingolipid that contain a sulfate ester group in their carbohydrate moiety. They are important components of animal cell membranes and play a role in various biological processes, including cell recognition, signal transduction, and cell adhesion.

The most well-known sulfoglycosphingolipids are the sulfatides, which contain a 3'-sulfate ester on the galactose residue of the glycosphingolipid GalCer (galactosylceramide). Sulfatides are abundant in the nervous system and have been implicated in various neurological disorders.

Other sulfoglycosphingolipids include the seminolipids, which contain a 3'-sulfate ester on the galactose residue of lactosylceramide (Galβ1-4Glcβ1-Cer), and are found in high concentrations in the testis.

Abnormalities in sulfoglycosphingolipid metabolism have been associated with several genetic disorders, such as metachromatic leukodystrophy (MLD) and globoid cell leukodystrophy (GLD), which are characterized by progressive neurological deterioration.

Alkanesulfonates are organic compounds that consist of a hydrocarbon chain, typically consisting of alkane molecules, which is bonded to a sulfonate group. The sulfonate group (-SO3-) consists of a sulfur atom bonded to three oxygen atoms, with one of the oxygen atoms carrying a negative charge.

Alkanesulfonates are commonly used as detergents and surfactants due to their ability to reduce surface tension and improve the wetting, emulsifying, and dispersing properties of liquids. They are also used in various industrial applications, such as in the production of paper, textiles, and leather.

In medical terms, alkanesulfonates may be used as topical antimicrobial agents or as ingredients in personal care products. However, some alkanesulfonates have been found to have potential health and environmental hazards, such as irritation of the skin and eyes, respiratory effects, and potential toxicity to aquatic life. Therefore, their use is subject to regulatory oversight and safety assessments.

The glycocalyx is a complex, thin layer of sugars, proteoglycans, and glycoproteins that covers the exterior surface of many cell types, including the endothelial cells that line the interior of blood vessels. It plays crucial roles in various biological processes such as cell adhesion, recognition, signaling, and protection against mechanical stress and pathogens. The glycocalyx also contributes to the regulation of vascular permeability, coagulation, and inflammation. Damage to the endothelial glycocalyx has been implicated in several diseases, including cardiovascular disorders and diabetes.

Chondroitin sulfate proteoglycans (CSPGs) are complex molecules found in the extracellular matrix of various connective tissues, including cartilage. They are composed of a core protein covalently linked to one or more glycosaminoglycan (GAG) chains, such as chondroitin sulfate and dermatan sulfate.

CSPGs play important roles in the structure and function of tissues, including:

1. Regulating water content and providing resilience to tissues due to their high negative charge, which attracts cations and bound water molecules.
2. Interacting with other matrix components, such as collagen and elastin, to form a highly organized network that provides tensile strength and elasticity.
3. Modulating cell behavior by interacting with various growth factors, cytokines, and cell surface receptors, thereby influencing processes like cell adhesion, proliferation, differentiation, and migration.
4. Contributing to the maintenance of the extracellular matrix homeostasis through their involvement in matrix turnover and remodeling.

In articular cartilage, CSPGs are particularly abundant and contribute significantly to its load-bearing capacity and overall health. Dysregulation of CSPGs has been implicated in various pathological conditions, such as osteoarthritis, where altered proteoglycan composition and content can lead to cartilage degradation and joint dysfunction.

A "carbohydrate sequence" refers to the specific arrangement or order of monosaccharides (simple sugars) that make up a carbohydrate molecule, such as a polysaccharide or an oligosaccharide. Carbohydrates are often composed of repeating units of monosaccharides, and the sequence in which these units are arranged can have important implications for the function and properties of the carbohydrate.

For example, in glycoproteins (proteins that contain carbohydrate chains), the specific carbohydrate sequence can affect how the protein is processed and targeted within the cell, as well as its stability and activity. Similarly, in complex carbohydrates like starch or cellulose, the sequence of glucose units can determine whether the molecule is branched or unbranched, which can have implications for its digestibility and other properties.

Therefore, understanding the carbohydrate sequence is an important aspect of studying carbohydrate structure and function in biology and medicine.

Urochordata is a phylum in the animal kingdom that includes sessile, marine organisms commonly known as tunicates or sea squirts. The name "Urochordata" means "tail-cord animals," which refers to the notochord, a flexible, rod-like structure found in the tails of these animals during their larval stage.

Tunicates are filter feeders that draw water into their bodies through a siphon and extract plankton and other organic particles for nutrition. They have a simple body plan, consisting of a protective outer covering called a tunic, an inner body mass with a muscular pharynx, and a tail-like structure called the post-anal tail.

Urochordates are of particular interest to biologists because they are considered to be the closest living relatives to vertebrates (animals with backbones), sharing a common ancestor with them around 550 million years ago. Despite their simple appearance, tunicates have complex developmental processes that involve the formation of notochords, dorsal nerve cords, and other structures that are similar to those found in vertebrate embryos.

Overall, Urochordata is a fascinating phylum that provides important insights into the evolutionary history of animals and their diverse body plans.

"Escherichia" is a genus of gram-negative, facultatively anaerobic, rod-shaped bacteria that are commonly found in the intestines of warm-blooded organisms. The most well-known species in this genus is "Escherichia coli," or "E. coli," which is a normal inhabitant of the human gut and is often used as an indicator of fecal contamination in water and food. Some strains of E. coli can cause illness, however, including diarrhea, urinary tract infections, and meningitis. Other species in the genus "Escherichia" are less well-known and are not typically associated with disease.

Uronic acids are a type of organic compound that are carboxylic acids derived from sugars (carbohydrates). They are formed by the oxidation of the primary alcohol group (-CH2OH) on a pentose sugar, resulting in a carboxyl group (-COOH) at that position.

The most common uronic acid is glucuronic acid, which is derived from glucose. Other examples include galacturonic acid (derived from galactose), iduronic acid (derived from glucose or galactose), and mannuronic acid (derived from mannose).

Uronic acids play important roles in various biological processes, such as the formation of complex carbohydrates like glycosaminoglycans, which are major components of connective tissues. They also serve as important intermediates in the metabolism of sugars and other carbohydrates.

Arylsulfatases are a group of enzymes that play a role in the breakdown and recycling of complex molecules in the body. Specifically, they catalyze the hydrolysis of sulfate ester bonds in certain types of large sugar molecules called glycosaminoglycans (GAGs).

There are several different types of arylsulfatases, each of which targets a specific type of sulfate ester bond. For example, arylsulfatase A is responsible for breaking down sulfate esters in a GAG called cerebroside sulfate, while arylsulfatase B targets a different GAG called dermatan sulfate.

Deficiencies in certain arylsulfatases can lead to genetic disorders. For example, a deficiency in arylsulfatase A can cause metachromatic leukodystrophy, a progressive neurological disorder that affects the nervous system and causes a range of symptoms including muscle weakness, developmental delays, and cognitive decline. Similarly, a deficiency in arylsulfatase B can lead to Maroteaux-Lamy syndrome, a rare genetic disorder that affects the skeleton, eyes, ears, heart, and other organs.

Hyaluronic acid is a glycosaminoglycan, a type of complex carbohydrate, that is naturally found in the human body. It is most abundant in the extracellular matrix of soft connective tissues, including the skin, eyes, and joints. Hyaluronic acid is known for its remarkable capacity to retain water, which helps maintain tissue hydration, lubrication, and elasticity. Its functions include providing structural support, promoting wound healing, and regulating cell growth and differentiation. In the medical field, hyaluronic acid is often used in various forms as a therapeutic agent for conditions like osteoarthritis, dry eye syndrome, and skin rejuvenation.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Heparin Cofactor II (HCII), also known as serine protease inhibitor E2 or labile factor, is a member of the serpin family of proteins. It is primarily produced in the liver and secreted into the bloodstream. HCII functions as a anticoagulant protein by inhibiting certain serine proteases involved in the coagulation cascade, particularly thrombin and factor Xa. The inhibitory activity of HCII is greatly enhanced in the presence of heparin or other glycosaminoglycans, hence its name.

HCII plays a crucial role in regulating blood clotting by controlling the levels of active thrombin and factor Xa in the circulation, thereby preventing excessive clot formation and maintaining normal hemostasis. Deficiencies or dysfunctions in HCII have been associated with an increased risk of thrombosis and other coagulation-related disorders.

Cartilage is a type of connective tissue that is found throughout the body in various forms. It is made up of specialized cells called chondrocytes, which are embedded in a firm, flexible matrix composed of collagen fibers and proteoglycans. This unique structure gives cartilage its characteristic properties of being both strong and flexible.

There are three main types of cartilage in the human body: hyaline cartilage, elastic cartilage, and fibrocartilage.

1. Hyaline cartilage is the most common type and is found in areas such as the articular surfaces of bones (where they meet to form joints), the nose, trachea, and larynx. It has a smooth, glassy appearance and provides a smooth, lubricated surface for joint movement.
2. Elastic cartilage contains more elastin fibers than hyaline cartilage, which gives it greater flexibility and resilience. It is found in structures such as the external ear and parts of the larynx and epiglottis.
3. Fibrocartilage has a higher proportion of collagen fibers and fewer chondrocytes than hyaline or elastic cartilage. It is found in areas that require high tensile strength, such as the intervertebral discs, menisci (found in joints like the knee), and the pubic symphysis.

Cartilage plays a crucial role in supporting and protecting various structures within the body, allowing for smooth movement and providing a cushion between bones to absorb shock and prevent wear and tear. However, cartilage has limited capacity for self-repair and regeneration, making damage or degeneration of cartilage tissue a significant concern in conditions such as osteoarthritis.

Metabolic Detoxification, Phase II, also known as conjugation, is the second step in the body's process of neutralizing and eliminating potentially harmful substances. During this phase, the liver cells add a molecule, such as glucuronic acid, sulfuric acid, glycine, or glutathione, to the substance, which has been previously modified during Phase I. This conjugation makes the substance water-soluble, allowing it to be excreted from the body through urine or bile.

In this process, various enzymes, such as UDP-glucuronosyltransferases (UGTs), sulfotransferases (SULTs), N-acetyltransferases (NATs), glutathione S-transferases (GSTs), and methyltransferases, play a crucial role in the transfer of these molecules to the substrate. Proper functioning of Phase II detoxification is essential for the effective elimination of drugs, environmental toxins, endogenous waste products, and other harmful substances from the body.

Bile acids and salts are naturally occurring steroidal compounds that play a crucial role in the digestion and absorption of lipids (fats) in the body. They are produced in the liver from cholesterol and then conjugated with glycine or taurine to form bile acids, which are subsequently converted into bile salts by the addition of a sodium or potassium ion.

Bile acids and salts are stored in the gallbladder and released into the small intestine during digestion, where they help emulsify fats, allowing them to be broken down into smaller molecules that can be absorbed by the body. They also aid in the elimination of waste products from the liver and help regulate cholesterol metabolism.

Abnormalities in bile acid synthesis or transport can lead to various medical conditions, such as cholestatic liver diseases, gallstones, and diarrhea. Therefore, understanding the role of bile acids and salts in the body is essential for diagnosing and treating these disorders.

Phosphoadenosine phosphosulfate (PAPS) is not exactly a medical term, but a biochemical term. However, it is often referred to in the context of medical and biological research.

PAPS is a crucial molecule in the metabolism of living organisms and serves as the primary donor of sulfate groups in the process of sulfonation, which is a type of enzymatic modification that adds a sulfate group to various substrates such as proteoglycans, hormones, neurotransmitters, and xenobiotics. This process plays an essential role in several biological processes, including detoxification, signal transduction, and cell-cell recognition.

Therefore, PAPS is a critical molecule for maintaining proper physiological functions in the body, and its dysregulation has been implicated in various diseases, such as cancer, inflammation, and neurodevelopmental disorders.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

I believe there may be some confusion in your question. Whales are not a medical term but rather large marine mammals. They belong to the Cetacean family, which includes dolphins and porpoises. If you're asking about a medical condition or something similar that might be associated with the word "whales," I would need more information to provide an accurate response.

Acetylgalactosamine (also known as N-acetyl-D-galactosamine or GalNAc) is a type of sugar molecule called a hexosamine that is commonly found in glycoproteins and proteoglycans, which are complex carbohydrates that are attached to proteins and lipids. It plays an important role in various biological processes, including cell-cell recognition, signal transduction, and protein folding.

In the context of medical research and biochemistry, Acetylgalactosamine is often used as a building block for synthesizing glycoconjugates, which are molecules that consist of a carbohydrate attached to a protein or lipid. These molecules play important roles in many biological processes, including cell-cell recognition, signaling, and immune response.

Acetylgalactosamine is also used as a target for enzymes called glycosyltransferases, which add sugar molecules to proteins and lipids. In particular, Acetylgalactosamine is the acceptor substrate for a class of glycosyltransferases known as galactosyltransferases, which add galactose molecules to Acetylgalactosamine-containing structures.

Defects in the metabolism of Acetylgalactosamine have been linked to various genetic disorders, including Schindler disease and Kanzaki disease, which are characterized by neurological symptoms and abnormal accumulation of glycoproteins in various tissues.

I'm sorry for any confusion, but "Hyaluronoglucosaminidase" appears to be a made-up term or a typographical error. The correct term related to hyaluronic acid metabolism is "hyaluronidase," which is an enzyme that degrades hyaluronic acid, a component of the extracellular matrix in various tissues. If you meant to ask about this enzyme or its functions, I'd be happy to provide more information on that. However, if "Hyaluronoglucosaminidase" is intended to represent another medical term, could you please clarify so I can provide an accurate and helpful response?

Glucuronides are conjugated compounds formed in the liver by the attachment of glucuronic acid to a variety of molecules, including drugs, hormones, and environmental toxins. This process, known as glucuronidation, is catalyzed by enzymes called UDP-glucuronosyltransferases (UGTs) and increases the water solubility of these compounds, allowing them to be more easily excreted from the body through urine or bile.

Glucuronidation plays a crucial role in the detoxification and elimination of many substances, including drugs and toxins. However, in some cases, glucuronides can also be hydrolyzed back into their original forms by enzymes called β-glucuronidases, which can lead to reabsorption of the parent compound and prolong its effects or toxicity.

Overall, understanding the metabolism and disposition of glucuronides is important for predicting drug interactions, pharmacokinetics, and potential adverse effects.

Antithrombins are substances that prevent the formation or promote the dissolution of blood clots (thrombi). They include:

1. Anticoagulants: These are medications that reduce the ability of the blood to clot. Examples include heparin, warfarin, and direct oral anticoagulants (DOACs) such as apixaban, rivaroxaban, and dabigatran.
2. Thrombolytic agents: These are medications that break down existing blood clots. Examples include alteplase, reteplase, and tenecteplase.
3. Fibrinolytics: These are a type of thrombolytic agent that specifically target fibrin, a protein involved in the formation of blood clots.
4. Natural anticoagulants: These are substances produced by the body to regulate blood clotting. Examples include antithrombin III, protein C, and protein S.

Antithrombins are used in the prevention and treatment of various thromboembolic disorders, such as deep vein thrombosis (DVT), pulmonary embolism (PE), stroke, and myocardial infarction (heart attack). It is important to note that while antithrombins can help prevent or dissolve blood clots, they also increase the risk of bleeding, so their use must be carefully monitored.

Glucuronic acid is a physiological important organic acid, which is a derivative of glucose. It is formed by the oxidation of the primary alcohol group of glucose to form a carboxyl group at the sixth position. Glucuronic acid plays a crucial role in the detoxification process in the body as it conjugates with toxic substances, making them water-soluble and facilitating their excretion through urine or bile. This process is known as glucuronidation. It is also a component of various polysaccharides, such as heparan sulfate and chondroitin sulfate, which are found in the extracellular matrix of connective tissues.

I'm sorry for any confusion, but "sharks" are not a medical term. Sharks are a group of elasmobranch fish characterized by a cartilaginous skeleton, five to seven gill slits on the sides of the head, and pectoral and dorsal fins without spines.

If you have any medical questions or terms that you would like defined, I'd be happy to help!

Fibroblast Growth Factor Receptor 2 (FGFR2) is a type of receptor tyrosine kinase that plays a crucial role in various biological processes such as cell survival, proliferation, differentiation, and migration. Specifically, FGFR2 is activated by binding to its specific ligands, fibroblast growth factors (FGFs), leading to the activation of downstream signaling pathways.

FGFR2 has several isoforms generated by alternative splicing, including FGFR2-IIIb and FGFR2-IIIc. These isoforms differ in their extracellular ligand-binding domains and have distinct expression patterns and functions. FGFR2-IIIb is primarily expressed in epithelial cells and binds to FGFs 1, 3, 7, 10, and 22, while FGFR2-IIIc is mainly expressed in mesenchymal cells and binds to FGFs 1, 2, 4, 6, 9, 10, and 22.

Mutations in the FGFR2 gene have been associated with various human diseases, including developmental disorders, cancers, and fibrosis. In particular, activating mutations or amplifications of FGFR2 have been identified in several types of cancer, such as breast, lung, gastric, and endometrial cancers, making it an attractive therapeutic target for cancer treatment.

Polysaccharides are complex carbohydrates consisting of long chains of monosaccharide units (simple sugars) bonded together by glycosidic linkages. They can be classified based on the type of monosaccharides and the nature of the bonds that connect them.

Polysaccharides have various functions in living organisms. For example, starch and glycogen serve as energy storage molecules in plants and animals, respectively. Cellulose provides structural support in plants, while chitin is a key component of fungal cell walls and arthropod exoskeletons.

Some polysaccharides also have important roles in the human body, such as being part of the extracellular matrix (e.g., hyaluronic acid) or acting as blood group antigens (e.g., ABO blood group substances).

Fibroblast growth factor (FGF) receptors are a group of cell surface tyrosine kinase receptors that play crucial roles in various biological processes, including embryonic development, tissue repair, and tumor growth. There are four high-affinity FGF receptors (FGFR1-4) in humans, which share a similar structure, consisting of an extracellular ligand-binding domain, a transmembrane region, and an intracellular tyrosine kinase domain.

These receptors bind to FGFs with different specificities and affinities, triggering a cascade of intracellular signaling events that regulate cell proliferation, differentiation, migration, and survival. Aberrant FGFR signaling has been implicated in several diseases, such as cancer, developmental disorders, and fibrotic conditions. Dysregulation of FGFRs can occur through various mechanisms, including genetic mutations, amplifications, or aberrant expression, leading to uncontrolled cell growth and malignant transformation. Therefore, FGFRs are considered promising targets for therapeutic intervention in several diseases.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

Mucopolysaccharidosis II (MPS II), also known as Hunter syndrome, is a rare X-linked recessive genetic disorder caused by the deficiency of an enzyme called iduronate sulfatase. This enzyme is responsible for breaking down complex sugars called glycosaminoglycans (GAGs) or mucopolysaccharides in the body.

When this enzyme is missing or not functioning properly, GAGs accumulate in various tissues and organs, leading to progressive cellular damage and organ dysfunction. The symptoms of MPS II can vary widely but often include developmental delays, coarse facial features, hearing loss, airway obstruction, heart problems, enlarged liver and spleen, and joint stiffness.

The severity of the disease can range from mild to severe, with some individuals experiencing only moderate symptoms while others may have significant intellectual disability and life-threatening complications. Treatment options for MPS II include enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT), but there is currently no cure for the disease.

An anion is an ion that has a negative electrical charge because it has more electrons than protons. The term "anion" is derived from the Greek word "anion," which means "to go up" or "to move upward." This name reflects the fact that anions are attracted to positively charged electrodes, or anodes, and will move toward them during electrolysis.

Anions can be formed when a neutral atom or molecule gains one or more extra electrons. For example, if a chlorine atom gains an electron, it becomes a chloride anion (Cl-). Anions are important in many chemical reactions and processes, including the conduction of electricity through solutions and the formation of salts.

In medicine, anions may be relevant in certain physiological processes, such as acid-base balance. For example, the concentration of anions such as bicarbonate (HCO3-) and chloride (Cl-) in the blood can affect the pH of the body fluids and help maintain normal acid-base balance. Abnormal levels of anions may indicate the presence of certain medical conditions, such as metabolic acidosis or alkalosis.

I'm sorry for any confusion, but "sulfonic acids" are not a medical term. They are a type of compound in chemistry, specifically strong organic acids that contain the functional group -SO3H. Sulfonic acids are widely used in industry and research, including the production of detergents, dyes, and pharmaceuticals.

If you have any questions related to medical terminology or concepts, please don't hesitate to ask!

Surfactants, also known as surface-active agents, are amphiphilic compounds that reduce the surface tension between two liquids or between a liquid and a solid. They contain both hydrophilic (water-soluble) and hydrophobic (water-insoluble) components in their molecular structure. This unique property allows them to interact with and stabilize interfaces, making them useful in various medical and healthcare applications.

In the medical field, surfactants are commonly used in pulmonary medicine, particularly for treating respiratory distress syndrome (RDS) in premature infants. The lungs of premature infants often lack sufficient amounts of natural lung surfactant, which can lead to RDS and other complications. Exogenous surfactants, derived from animal sources or synthetically produced, are administered to replace the missing or dysfunctional lung surfactant, improving lung compliance and gas exchange.

Surfactants also have applications in topical formulations for dermatology, as they can enhance drug penetration into the skin, reduce irritation, and improve the spreadability of creams and ointments. Additionally, they are used in diagnostic imaging to enhance contrast between tissues and improve visualization during procedures such as ultrasound and X-ray examinations.

Hexuronic acids are a type of uronic acid that contains six carbon atoms and is commonly found in various biological tissues and polysaccharides, such as pectins, heparin, and certain glycoproteins. The most common hexuronic acids are glucuronic acid and iduronic acid, which are formed from the oxidation of the corresponding hexoses, glucose and galactose, respectively. Hexuronic acids play important roles in various biological processes, including the detoxification and excretion of xenobiotics, the formation of proteoglycans, and the regulation of cell growth and differentiation.

Estrone is a type of estrogen, which is a female sex hormone. It's one of the three major naturally occurring estrogens in women, along with estradiol and estriol. Estrone is weaker than estradiol but has a longer half-life, meaning it remains active in the body for a longer period of time.

Estrone is produced primarily in the ovaries, adrenal glands, and fat tissue. In postmenopausal women, when the ovaries stop producing estradiol, estrone becomes the dominant form of estrogen. It plays a role in maintaining bone density, regulating the menstrual cycle, and supporting the development and maintenance of female sexual characteristics.

Like other forms of estrogen, estrone can also have effects on various tissues throughout the body, including the brain, heart, and breast tissue. Abnormal levels of estrone, either too high or too low, can contribute to a variety of health issues, such as osteoporosis, menstrual irregularities, and increased risk of certain types of cancer.

Ion exchange chromatography is a type of chromatography technique used to separate and analyze charged molecules (ions) based on their ability to exchange bound ions in a solid resin or gel with ions of similar charge in the mobile phase. The stationary phase, often called an ion exchanger, contains fixed ated functional groups that can attract counter-ions of opposite charge from the sample mixture.

In this technique, the sample is loaded onto an ion exchange column containing the charged resin or gel. As the sample moves through the column, ions in the sample compete for binding sites on the stationary phase with ions already present in the column. The ions that bind most strongly to the stationary phase will elute (come off) slower than those that bind more weakly.

Ion exchange chromatography can be performed using either cation exchangers, which exchange positive ions (cations), or anion exchangers, which exchange negative ions (anions). The pH and ionic strength of the mobile phase can be adjusted to control the binding and elution of specific ions.

Ion exchange chromatography is widely used in various applications such as water treatment, protein purification, and chemical analysis.

Carbohydrate conformation refers to the three-dimensional shape and structure of a carbohydrate molecule. Carbohydrates, also known as sugars, can exist in various conformational states, which are determined by the rotation of their component bonds and the spatial arrangement of their functional groups.

The conformation of a carbohydrate molecule can have significant implications for its biological activity and recognition by other molecules, such as enzymes or antibodies. Factors that can influence carbohydrate conformation include the presence of intramolecular hydrogen bonds, steric effects, and intermolecular interactions with solvent molecules or other solutes.

In some cases, the conformation of a carbohydrate may be stabilized by the formation of cyclic structures, in which the hydroxyl group at one end of the molecule forms a covalent bond with the carbonyl carbon at the other end, creating a ring structure. The most common cyclic carbohydrates are monosaccharides, such as glucose and fructose, which can exist in various conformational isomers known as anomers.

Understanding the conformation of carbohydrate molecules is important for elucidating their biological functions and developing strategies for targeting them with drugs or other therapeutic agents.

Fibroblast Growth Factor 1 (FGF-1), also known as acidic fibroblast growth factor, is defined medically as a protein with mitogenic and chemotactic properties that play an essential role in various biological processes such as embryonic development, wound healing, tissue repair, and angiogenesis. It is produced by many cell types, including fibroblasts, endothelial cells, and macrophages. FGF-1 binds to specific tyrosine kinase receptors (FGFRs) on the cell surface, leading to intracellular signaling cascades that regulate cell proliferation, differentiation, and survival. It is involved in several diseases, including cancer, fibrotic disorders, and neurological conditions.

Fibroblast Growth Factor 10 (FGF10) is a growth factor that belongs to the fibroblast growth factor family. It is a protein involved in cell signaling and plays a crucial role in embryonic development, tissue repair, and regeneration. Specifically, FGF10 binds to its receptor, FGFR2b, and activates intracellular signaling pathways that regulate various biological processes such as cell proliferation, differentiation, migration, and survival. In the developing embryo, FGF10 is essential for the normal development of organs, including the lungs, teeth, and limbs. In adults, it contributes to tissue repair and regeneration in various organs.

Galactosidases are a group of enzymes that catalyze the hydrolysis of galactose-containing sugars, specifically at the beta-glycosidic bond. There are several types of galactosidases, including:

1. Beta-galactosidase: This is the most well-known type of galactosidase and it catalyzes the hydrolysis of lactose into glucose and galactose. It has important roles in various biological processes, such as lactose metabolism in animals and cell wall biosynthesis in plants.
2. Alpha-galactosidase: This enzyme catalyzes the hydrolysis of alpha-galactosides, which are found in certain plant-derived foods like legumes. A deficiency in this enzyme can lead to a genetic disorder called Fabry disease.
3. N-acetyl-beta-glucosaminidase: This enzyme is also known as hexosaminidase and it catalyzes the hydrolysis of N-acetyl-beta-D-glucosamine residues from glycoproteins, glycolipids, and other complex carbohydrates.

Galactosidases are widely used in various industrial applications, such as food processing, biotechnology, and biofuel production. They also have potential therapeutic uses, such as in the treatment of lysosomal storage disorders like Fabry disease.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

In the context of medicine, "chemistry" often refers to the field of study concerned with the properties, composition, and structure of elements and compounds, as well as their reactions with one another. It is a fundamental science that underlies much of modern medicine, including pharmacology (the study of drugs), toxicology (the study of poisons), and biochemistry (the study of the chemical processes that occur within living organisms).

In addition to its role as a basic science, chemistry is also used in medical testing and diagnosis. For example, clinical chemistry involves the analysis of bodily fluids such as blood and urine to detect and measure various substances, such as glucose, cholesterol, and electrolytes, that can provide important information about a person's health status.

Overall, chemistry plays a critical role in understanding the mechanisms of diseases, developing new treatments, and improving diagnostic tests and techniques.

Gel chromatography is a type of liquid chromatography that separates molecules based on their size or molecular weight. It uses a stationary phase that consists of a gel matrix made up of cross-linked polymers, such as dextran, agarose, or polyacrylamide. The gel matrix contains pores of various sizes, which allow smaller molecules to penetrate deeper into the matrix while larger molecules are excluded.

In gel chromatography, a mixture of molecules is loaded onto the top of the gel column and eluted with a solvent that moves down the column by gravity or pressure. As the sample components move down the column, they interact with the gel matrix and get separated based on their size. Smaller molecules can enter the pores of the gel and take longer to elute, while larger molecules are excluded from the pores and elute more quickly.

Gel chromatography is commonly used to separate and purify proteins, nucleic acids, and other biomolecules based on their size and molecular weight. It is also used in the analysis of polymers, colloids, and other materials with a wide range of applications in chemistry, biology, and medicine.

Fibroblast Growth Factor 2 (FGF-2), also known as basic fibroblast growth factor, is a protein involved in various biological processes such as cell growth, proliferation, and differentiation. It plays a crucial role in wound healing, embryonic development, and angiogenesis (the formation of new blood vessels). FGF-2 is produced and secreted by various cells, including fibroblasts, and exerts its effects by binding to specific receptors on the cell surface, leading to activation of intracellular signaling pathways. It has been implicated in several diseases, including cancer, where it can contribute to tumor growth and progression.

Dextran sulfate is a type of polysaccharide (a complex carbohydrate) that is made up of repeating units of the sugar dextran, which has been sulfonated (introduced with a sulfonic acid group). It is commonly used as a molecular weight standard in laboratory research and can also be found in some medical products.

In medicine, dextran sulfate is often used as a treatment for hemodialysis patients to prevent the formation of blood clots in the dialyzer circuit. It works by binding to and inhibiting the activity of certain clotting factors in the blood. Dextran sulfate may also have anti-inflammatory effects, and it has been studied as a potential treatment for conditions such as inflammatory bowel disease and hepatitis.

It is important to note that dextran sulfate can have side effects, including allergic reactions, low blood pressure, and bleeding. It should be used under the close supervision of a healthcare professional.

Chemical phenomena refer to the changes and interactions that occur at the molecular or atomic level when chemicals are involved. These phenomena can include chemical reactions, in which one or more substances (reactants) are converted into different substances (products), as well as physical properties that change as a result of chemical interactions, such as color, state of matter, and solubility. Chemical phenomena can be studied through various scientific disciplines, including chemistry, biochemistry, and physics.

Glucuronidase is an enzyme that catalyzes the hydrolysis of glucuronic acid from various substrates, including molecules that have been conjugated with glucuronic acid as part of the detoxification process in the body. This enzyme plays a role in the breakdown and elimination of certain drugs, toxins, and endogenous compounds, such as bilirubin. It is found in various tissues and organisms, including humans, bacteria, and insects. In clinical contexts, glucuronidase activity may be measured to assess liver function or to identify the presence of certain bacterial infections.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Esters are organic compounds that are formed by the reaction between an alcohol and a carboxylic acid. They are widely found in nature and are used in various industries, including the production of perfumes, flavors, and pharmaceuticals. In the context of medical definitions, esters may be mentioned in relation to their use as excipients in medications or in discussions of organic chemistry and biochemistry. Esters can also be found in various natural substances such as fats and oils, which are triesters of glycerol and fatty acids.

Dextrans are a type of complex glucose polymers that are formed by the action of certain bacteria on sucrose. They are branched polysaccharides consisting of linear chains of α-1,6 linked D-glucopyranosyl units with occasional α-1,3 branches.

Dextrans have a wide range of applications in medicine and industry. In medicine, dextrans are used as plasma substitutes, volume expanders, and anticoagulants. They are also used as carriers for drugs and diagnostic agents, and in the manufacture of immunoadsorbents for the removal of toxins and pathogens from blood.

Dextrans can be derived from various bacterial sources, but the most common commercial source is Leuconostoc mesenteroides B-512(F) or L. dextranicum. The molecular weight of dextrans can vary widely, ranging from a few thousand to several million Daltons, depending on the method of preparation and purification.

Dextrans are generally biocompatible and non-toxic, but they can cause allergic reactions in some individuals. Therefore, their use as medical products requires careful monitoring and testing for safety and efficacy.

Syndecan-1 is a type of transmembrane heparan sulfate proteoglycan that is widely expressed in various tissues, including epithelial cells and platelets. It plays a crucial role in cell proliferation, differentiation, migration, and angiogenesis by interacting with extracellular matrix components, growth factors, and cytokines. Syndecan-1 is also known as CD138 or Leu-19 and can be used as a marker for plasma cells in the diagnosis of certain diseases such as multiple myeloma.

Thin-layer chromatography (TLC) is a type of chromatography used to separate, identify, and quantify the components of a mixture. In TLC, the sample is applied as a small spot onto a thin layer of adsorbent material, such as silica gel or alumina, which is coated on a flat, rigid support like a glass plate. The plate is then placed in a developing chamber containing a mobile phase, typically a mixture of solvents.

As the mobile phase moves up the plate by capillary action, it interacts with the stationary phase and the components of the sample. Different components of the mixture travel at different rates due to their varying interactions with the stationary and mobile phases, resulting in distinct spots on the plate. The distance each component travels can be measured and compared to known standards to identify and quantify the components of the mixture.

TLC is a simple, rapid, and cost-effective technique that is widely used in various fields, including forensics, pharmaceuticals, and research laboratories. It allows for the separation and analysis of complex mixtures with high resolution and sensitivity, making it an essential tool in many analytical applications.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Partial Thromboplastin Time (PTT) is a medical laboratory test that measures the time it takes for blood to clot. It's more specifically a measure of the intrinsic and common pathways of the coagulation cascade, which are the series of chemical reactions that lead to the formation of a clot.

The test involves adding a partial thromboplastin reagent (an activator of the intrinsic pathway) and calcium to plasma, and then measuring the time it takes for a fibrin clot to form. This is compared to a control sample, and the ratio of the two times is calculated.

The PTT test is often used to help diagnose bleeding disorders or abnormal blood clotting, such as hemophilia or disseminated intravascular coagulation (DIC). It can also be used to monitor the effectiveness of anticoagulant therapy, such as heparin. Prolonged PTT results may indicate a bleeding disorder or an increased risk of bleeding, while shortened PTT results may indicate a hypercoagulable state and an increased risk of thrombosis.

Glycosides are organic compounds that consist of a glycone (a sugar component) linked to a non-sugar component, known as an aglycone, via a glycosidic bond. They can be found in various plants, microorganisms, and some animals. Depending on the nature of the aglycone, glycosides can be classified into different types, such as anthraquinone glycosides, cardiac glycosides, and saponin glycosides.

These compounds have diverse biological activities and pharmacological effects. For instance:

* Cardiac glycosides, like digoxin and digitoxin, are used in the treatment of heart failure and certain cardiac arrhythmias due to their positive inotropic (contractility-enhancing) and negative chronotropic (heart rate-slowing) effects on the heart.
* Saponin glycosides have potent detergent properties and can cause hemolysis (rupture of red blood cells). They are used in various industries, including cosmetics and food processing, and have potential applications in drug delivery systems.
* Some glycosides, like amygdalin found in apricot kernels and bitter almonds, can release cyanide upon hydrolysis, making them potentially toxic.

It is important to note that while some glycosides have therapeutic uses, others can be harmful or even lethal if ingested or otherwise introduced into the body in large quantities.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Chromatography, gas (GC) is a type of chromatographic technique used to separate, identify, and analyze volatile compounds or vapors. In this method, the sample mixture is vaporized and carried through a column packed with a stationary phase by an inert gas (carrier gas). The components of the mixture get separated based on their partitioning between the mobile and stationary phases due to differences in their adsorption/desorption rates or solubility.

The separated components elute at different times, depending on their interaction with the stationary phase, which can be detected and quantified by various detection systems like flame ionization detector (FID), thermal conductivity detector (TCD), electron capture detector (ECD), or mass spectrometer (MS). Gas chromatography is widely used in fields such as chemistry, biochemistry, environmental science, forensics, and food analysis.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Fibroblast Growth Factors (FGFs) are a family of growth factors that play crucial roles in various biological processes, including cell survival, proliferation, migration, and differentiation. They bind to specific tyrosine kinase receptors (FGFRs) on the cell surface, leading to intracellular signaling cascades that regulate gene expression and downstream cellular responses. FGFs are involved in embryonic development, tissue repair, and angiogenesis (the formation of new blood vessels). There are at least 22 distinct FGFs identified in humans, each with unique functions and patterns of expression. Some FGFs, like FGF1 and FGF2, have mitogenic effects on fibroblasts and other cell types, while others, such as FGF7 and FGF10, are essential for epithelial-mesenchymal interactions during organ development. Dysregulation of FGF signaling has been implicated in various pathological conditions, including cancer, fibrosis, and developmental disorders.

Mollusca is not a medical term per se, but a major group of invertebrate animals that includes snails, clams, octopuses, and squids. However, medically, some mollusks can be relevant as they can act as vectors for various diseases, such as schistosomiasis (transmitted by freshwater snails) and fascioliasis (transmitted by aquatic snails). Therefore, a medical definition might describe Mollusca as a phylum of mostly marine invertebrates that can sometimes play a role in the transmission of certain infectious diseases.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

CHO cells, or Chinese Hamster Ovary cells, are a type of immortalized cell line that are commonly used in scientific research and biotechnology. They were originally derived from the ovaries of a female Chinese hamster (Cricetulus griseus) in the 1950s.

CHO cells have several characteristics that make them useful for laboratory experiments. They can grow and divide indefinitely under appropriate conditions, which allows researchers to culture large quantities of them for study. Additionally, CHO cells are capable of expressing high levels of recombinant proteins, making them a popular choice for the production of therapeutic drugs, vaccines, and other biologics.

In particular, CHO cells have become a workhorse in the field of biotherapeutics, with many approved monoclonal antibody-based therapies being produced using these cells. The ability to genetically modify CHO cells through various methods has further expanded their utility in research and industrial applications.

It is important to note that while CHO cells are widely used in scientific research, they may not always accurately represent human cell behavior or respond to drugs and other compounds in the same way as human cells do. Therefore, results obtained using CHO cells should be validated in more relevant systems when possible.

Hydrolysis is a chemical process, not a medical one. However, it is relevant to medicine and biology.

Hydrolysis is the breakdown of a chemical compound due to its reaction with water, often resulting in the formation of two or more simpler compounds. In the context of physiology and medicine, hydrolysis is a crucial process in various biological reactions, such as the digestion of food molecules like proteins, carbohydrates, and fats. Enzymes called hydrolases catalyze these hydrolysis reactions to speed up the breakdown process in the body.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

The cornea is the clear, dome-shaped surface at the front of the eye. It plays a crucial role in focusing vision. The cornea protects the eye from harmful particles and microorganisms, and it also serves as a barrier against UV light. Its transparency allows light to pass through and get focused onto the retina. The cornea does not contain blood vessels, so it relies on tears and the fluid inside the eye (aqueous humor) for nutrition and oxygen. Any damage or disease that affects its clarity and shape can significantly impact vision and potentially lead to blindness if left untreated.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Bile is a digestive fluid that is produced by the liver and stored in the gallbladder. It plays an essential role in the digestion and absorption of fats and fat-soluble vitamins in the small intestine. Bile consists of bile salts, bilirubin, cholesterol, phospholipids, electrolytes, and water.

Bile salts are amphipathic molecules that help to emulsify fats into smaller droplets, increasing their surface area and allowing for more efficient digestion by enzymes such as lipase. Bilirubin is a breakdown product of hemoglobin from red blood cells and gives bile its characteristic greenish-brown color.

Bile is released into the small intestine in response to food, particularly fats, entering the digestive tract. It helps to break down large fat molecules into smaller ones that can be absorbed through the walls of the intestines and transported to other parts of the body for energy or storage.

Nuclear Magnetic Resonance (NMR) Biomolecular is a research technique that uses magnetic fields and radio waves to study the structure and dynamics of biological molecules, such as proteins and nucleic acids. This technique measures the magnetic properties of atomic nuclei within these molecules, specifically their spin, which can be influenced by the application of an external magnetic field.

When a sample is placed in a strong magnetic field, the nuclei absorb and emit electromagnetic radiation at specific frequencies, known as resonance frequencies, which are determined by the molecular structure and environment of the nuclei. By analyzing these resonance frequencies and their interactions, researchers can obtain detailed information about the three-dimensional structure, dynamics, and interactions of biomolecules.

NMR spectroscopy is a non-destructive technique that allows for the study of biological molecules in solution, which makes it an important tool for understanding the function and behavior of these molecules in their natural environment. Additionally, NMR can be used to study the effects of drugs, ligands, and other small molecules on biomolecular structure and dynamics, making it a valuable tool in drug discovery and development.

Air pollutants are substances or mixtures of substances present in the air that can have negative effects on human health, the environment, and climate. These pollutants can come from a variety of sources, including industrial processes, transportation, residential heating and cooking, agricultural activities, and natural events. Some common examples of air pollutants include particulate matter, nitrogen dioxide, sulfur dioxide, ozone, carbon monoxide, and volatile organic compounds (VOCs).

Air pollutants can cause a range of health effects, from respiratory irritation and coughing to more serious conditions such as bronchitis, asthma, and cancer. They can also contribute to climate change by reacting with other chemicals in the atmosphere to form harmful ground-level ozone and by directly absorbing or scattering sunlight, which can affect temperature and precipitation patterns.

Air quality standards and regulations have been established to limit the amount of air pollutants that can be released into the environment, and efforts are ongoing to reduce emissions and improve air quality worldwide.

Air pollution is defined as the contamination of air due to the presence of substances or harmful elements that exceed the acceptable limits. These pollutants can be in the form of solid particles, liquid droplets, gases, or a combination of these. They can be released from various sources, including industrial processes, vehicle emissions, burning of fossil fuels, and natural events like volcanic eruptions.

Exposure to air pollution can have significant impacts on human health, contributing to respiratory diseases, cardiovascular issues, and even premature death. It can also harm the environment, damaging crops, forests, and wildlife populations. Stringent regulations and measures are necessary to control and reduce air pollution levels, thereby protecting public health and the environment.

Chromatography is a technique used in analytical chemistry for the separation, identification, and quantification of the components of a mixture. It is based on the differential distribution of the components of a mixture between a stationary phase and a mobile phase. The stationary phase can be a solid or liquid, while the mobile phase is a gas, liquid, or supercritical fluid that moves through the stationary phase carrying the sample components.

The interaction between the sample components and the stationary and mobile phases determines how quickly each component will move through the system. Components that interact more strongly with the stationary phase will move more slowly than those that interact more strongly with the mobile phase. This difference in migration rates allows for the separation of the components, which can then be detected and quantified.

There are many different types of chromatography, including paper chromatography, thin-layer chromatography (TLC), gas chromatography (GC), liquid chromatography (LC), and high-performance liquid chromatography (HPLC). Each type has its own strengths and weaknesses, and is best suited for specific applications.

In summary, chromatography is a powerful analytical technique used to separate, identify, and quantify the components of a mixture based on their differential distribution between a stationary phase and a mobile phase.

Extracellular matrix (ECM) proteins are a group of structural and functional molecules that provide support, organization, and regulation to the cells in tissues and organs. The ECM is composed of a complex network of proteins, glycoproteins, and carbohydrates that are secreted by the cells and deposited outside of them.

ECM proteins can be classified into several categories based on their structure and function, including:

1. Collagens: These are the most abundant ECM proteins and provide strength and stability to tissues. They form fibrils that can withstand high tensile forces.
2. Proteoglycans: These are complex molecules made up of a core protein and one or more glycosaminoglycan (GAG) chains. The GAG chains attract water, making proteoglycans important for maintaining tissue hydration and resilience.
3. Elastin: This is an elastic protein that allows tissues to stretch and recoil, such as in the lungs and blood vessels.
4. Fibronectins: These are large glycoproteins that bind to cells and ECM components, providing adhesion, migration, and signaling functions.
5. Laminins: These are large proteins found in basement membranes, which provide structural support for epithelial and endothelial cells.
6. Tenascins: These are large glycoproteins that modulate cell adhesion and migration, and regulate ECM assembly and remodeling.

Together, these ECM proteins create a microenvironment that influences cell behavior, differentiation, and function. Dysregulation of ECM proteins has been implicated in various diseases, including fibrosis, cancer, and degenerative disorders.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Mass spectrometry with electrospray ionization (ESI-MS) is an analytical technique used to identify and quantify chemical species in a sample based on the mass-to-charge ratio of charged particles. In ESI-MS, analytes are ionized through the use of an electrospray, where a liquid sample is introduced through a metal capillary needle at high voltage, creating an aerosol of charged droplets. As the solvent evaporates, the analyte molecules become charged and can be directed into a mass spectrometer for analysis.

ESI-MS is particularly useful for the analysis of large biomolecules such as proteins, peptides, and nucleic acids, due to its ability to gently ionize these species without fragmentation. The technique provides information about the molecular weight and charge state of the analytes, which can be used to infer their identity and structure. Additionally, ESI-MS can be interfaced with separation techniques such as liquid chromatography (LC) for further purification and characterization of complex samples.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

"Competitive binding" is a term used in pharmacology and biochemistry to describe the behavior of two or more molecules (ligands) competing for the same binding site on a target protein or receptor. In this context, "binding" refers to the physical interaction between a ligand and its target.

When a ligand binds to a receptor, it can alter the receptor's function, either activating or inhibiting it. If multiple ligands compete for the same binding site, they will compete to bind to the receptor. The ability of each ligand to bind to the receptor is influenced by its affinity for the receptor, which is a measure of how strongly and specifically the ligand binds to the receptor.

In competitive binding, if one ligand is present in high concentrations, it can prevent other ligands with lower affinity from binding to the receptor. This is because the higher-affinity ligand will have a greater probability of occupying the binding site and blocking access to the other ligands. The competition between ligands can be described mathematically using equations such as the Langmuir isotherm, which describes the relationship between the concentration of ligand and the fraction of receptors that are occupied by the ligand.

Competitive binding is an important concept in drug development, as it can be used to predict how different drugs will interact with their targets and how they may affect each other's activity. By understanding the competitive binding properties of a drug, researchers can optimize its dosage and delivery to maximize its therapeutic effect while minimizing unwanted side effects.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Solubility is a fundamental concept in pharmaceutical sciences and medicine, which refers to the maximum amount of a substance (solute) that can be dissolved in a given quantity of solvent (usually water) at a specific temperature and pressure. Solubility is typically expressed as mass of solute per volume or mass of solvent (e.g., grams per liter, milligrams per milliliter). The process of dissolving a solute in a solvent results in a homogeneous solution where the solute particles are dispersed uniformly throughout the solvent.

Understanding the solubility of drugs is crucial for their formulation, administration, and therapeutic effectiveness. Drugs with low solubility may not dissolve sufficiently to produce the desired pharmacological effect, while those with high solubility might lead to rapid absorption and short duration of action. Therefore, optimizing drug solubility through various techniques like particle size reduction, salt formation, or solubilization is an essential aspect of drug development and delivery.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Anticoagulants are a class of medications that work to prevent the formation of blood clots in the body. They do this by inhibiting the coagulation cascade, which is a series of chemical reactions that lead to the formation of a clot. Anticoagulants can be given orally, intravenously, or subcutaneously, depending on the specific drug and the individual patient's needs.

There are several different types of anticoagulants, including:

1. Heparin: This is a naturally occurring anticoagulant that is often used in hospitalized patients who require immediate anticoagulation. It works by activating an enzyme called antithrombin III, which inhibits the formation of clots.
2. Low molecular weight heparin (LMWH): LMWH is a form of heparin that has been broken down into smaller molecules. It has a longer half-life than standard heparin and can be given once or twice daily by subcutaneous injection.
3. Direct oral anticoagulants (DOACs): These are newer oral anticoagulants that work by directly inhibiting specific clotting factors in the coagulation cascade. Examples include apixaban, rivaroxaban, and dabigatran.
4. Vitamin K antagonists: These are older oral anticoagulants that work by inhibiting the action of vitamin K, which is necessary for the formation of clotting factors. Warfarin is an example of a vitamin K antagonist.

Anticoagulants are used to prevent and treat a variety of conditions, including deep vein thrombosis (DVT), pulmonary embolism (PE), atrial fibrillation, and prosthetic heart valve thrombosis. It is important to note that anticoagulants can increase the risk of bleeding, so they must be used with caution and regular monitoring of blood clotting times may be required.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Cell adhesion refers to the binding of cells to extracellular matrices or to other cells, a process that is fundamental to the development, function, and maintenance of multicellular organisms. Cell adhesion is mediated by various cell surface receptors, such as integrins, cadherins, and immunoglobulin-like cell adhesion molecules (Ig-CAMs), which interact with specific ligands in the extracellular environment. These interactions lead to the formation of specialized junctions, such as tight junctions, adherens junctions, and desmosomes, that help to maintain tissue architecture and regulate various cellular processes, including proliferation, differentiation, migration, and survival. Disruptions in cell adhesion can contribute to a variety of diseases, including cancer, inflammation, and degenerative disorders.

Affinity chromatography is a type of chromatography technique used in biochemistry and molecular biology to separate and purify proteins based on their biological characteristics, such as their ability to bind specifically to certain ligands or molecules. This method utilizes a stationary phase that is coated with a specific ligand (e.g., an antibody, antigen, receptor, or enzyme) that selectively interacts with the target protein in a sample.

The process typically involves the following steps:

1. Preparation of the affinity chromatography column: The stationary phase, usually a solid matrix such as agarose beads or magnetic beads, is modified by covalently attaching the ligand to its surface.
2. Application of the sample: The protein mixture is applied to the top of the affinity chromatography column, allowing it to flow through the stationary phase under gravity or pressure.
3. Binding and washing: As the sample flows through the column, the target protein selectively binds to the ligand on the stationary phase, while other proteins and impurities pass through. The column is then washed with a suitable buffer to remove any unbound proteins and contaminants.
4. Elution of the bound protein: The target protein can be eluted from the column using various methods, such as changing the pH, ionic strength, or polarity of the buffer, or by introducing a competitive ligand that displaces the bound protein.
5. Collection and analysis: The eluted protein fraction is collected and analyzed for purity and identity, often through techniques like SDS-PAGE or mass spectrometry.

Affinity chromatography is a powerful tool in biochemistry and molecular biology due to its high selectivity and specificity, enabling the efficient isolation of target proteins from complex mixtures. However, it requires careful consideration of the binding affinity between the ligand and the protein, as well as optimization of the elution conditions to minimize potential damage or denaturation of the purified protein.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Medical definitions of water generally describe it as a colorless, odorless, tasteless liquid that is essential for all forms of life. It is a universal solvent, making it an excellent medium for transporting nutrients and waste products within the body. Water constitutes about 50-70% of an individual's body weight, depending on factors such as age, sex, and muscle mass.

In medical terms, water has several important functions in the human body:

1. Regulation of body temperature through perspiration and respiration.
2. Acting as a lubricant for joints and tissues.
3. Facilitating digestion by helping to break down food particles.
4. Transporting nutrients, oxygen, and waste products throughout the body.
5. Helping to maintain healthy skin and mucous membranes.
6. Assisting in the regulation of various bodily functions, such as blood pressure and heart rate.

Dehydration can occur when an individual does not consume enough water or loses too much fluid due to illness, exercise, or other factors. This can lead to a variety of symptoms, including dry mouth, fatigue, dizziness, and confusion. Severe dehydration can be life-threatening if left untreated.

Estradiol is a type of estrogen, which is a female sex hormone. It is the most potent and dominant form of estrogen in humans. Estradiol plays a crucial role in the development and maintenance of secondary sexual characteristics in women, such as breast development and regulation of the menstrual cycle. It also helps maintain bone density, protect the lining of the uterus, and is involved in cognition and mood regulation.

Estradiol is produced primarily by the ovaries, but it can also be synthesized in smaller amounts by the adrenal glands and fat cells. In men, estradiol is produced from testosterone through a process called aromatization. Abnormal levels of estradiol can contribute to various health issues, such as hormonal imbalances, infertility, osteoporosis, and certain types of cancer.

A ligand, in the context of biochemistry and medicine, is a molecule that binds to a specific site on a protein or a larger biomolecule, such as an enzyme or a receptor. This binding interaction can modify the function or activity of the target protein, either activating it or inhibiting it. Ligands can be small molecules, like hormones or neurotransmitters, or larger structures, like antibodies. The study of ligand-protein interactions is crucial for understanding cellular processes and developing drugs, as many therapeutic compounds function by binding to specific targets within the body.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Cell division is the process by which a single eukaryotic cell (a cell with a true nucleus) divides into two identical daughter cells. This complex process involves several stages, including replication of DNA, separation of chromosomes, and division of the cytoplasm. There are two main types of cell division: mitosis and meiosis.

Mitosis is the type of cell division that results in two genetically identical daughter cells. It is a fundamental process for growth, development, and tissue repair in multicellular organisms. The stages of mitosis include prophase, prometaphase, metaphase, anaphase, and telophase, followed by cytokinesis, which divides the cytoplasm.

Meiosis, on the other hand, is a type of cell division that occurs in the gonads (ovaries and testes) during the production of gametes (sex cells). Meiosis results in four genetically unique daughter cells, each with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction and genetic diversity. The stages of meiosis include meiosis I and meiosis II, which are further divided into prophase, prometaphase, metaphase, anaphase, and telophase.

In summary, cell division is the process by which a single cell divides into two daughter cells, either through mitosis or meiosis. This process is critical for growth, development, tissue repair, and sexual reproduction in multicellular organisms.

Tissue distribution, in the context of pharmacology and toxicology, refers to the way that a drug or xenobiotic (a chemical substance found within an organism that is not naturally produced by or expected to be present within that organism) is distributed throughout the body's tissues after administration. It describes how much of the drug or xenobiotic can be found in various tissues and organs, and is influenced by factors such as blood flow, lipid solubility, protein binding, and the permeability of cell membranes. Understanding tissue distribution is important for predicting the potential effects of a drug or toxin on different parts of the body, and for designing drugs with improved safety and efficacy profiles.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

An epitope is a specific region on the surface of an antigen (a molecule that can trigger an immune response) that is recognized by an antibody, B-cell receptor, or T-cell receptor. It is also commonly referred to as an antigenic determinant. Epitopes are typically composed of linear amino acid sequences or conformational structures made up of discontinuous amino acids in the antigen. They play a crucial role in the immune system's ability to differentiate between self and non-self molecules, leading to the targeted destruction of foreign substances like viruses and bacteria. Understanding epitopes is essential for developing vaccines, diagnostic tests, and immunotherapies.

A lung is a pair of spongy, elastic organs in the chest that work together to enable breathing. They are responsible for taking in oxygen and expelling carbon dioxide through the process of respiration. The left lung has two lobes, while the right lung has three lobes. The lungs are protected by the ribcage and are covered by a double-layered membrane called the pleura. The trachea divides into two bronchi, which further divide into smaller bronchioles, leading to millions of tiny air sacs called alveoli, where the exchange of gases occurs.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Fibroblasts are specialized cells that play a critical role in the body's immune response and wound healing process. They are responsible for producing and maintaining the extracellular matrix (ECM), which is the non-cellular component present within all tissues and organs, providing structural support and biochemical signals for surrounding cells.

Fibroblasts produce various ECM proteins such as collagens, elastin, fibronectin, and laminins, forming a complex network of fibers that give tissues their strength and flexibility. They also help in the regulation of tissue homeostasis by controlling the turnover of ECM components through the process of remodeling.

In response to injury or infection, fibroblasts become activated and start to proliferate rapidly, migrating towards the site of damage. Here, they participate in the inflammatory response, releasing cytokines and chemokines that attract immune cells to the area. Additionally, they deposit new ECM components to help repair the damaged tissue and restore its functionality.

Dysregulation of fibroblast activity has been implicated in several pathological conditions, including fibrosis (excessive scarring), cancer (where they can contribute to tumor growth and progression), and autoimmune diseases (such as rheumatoid arthritis).

Exceptions include calcium sulfate, strontium sulfate, lead(II) sulfate, barium sulfate, silver sulfate, and mercury sulfate, ... Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many are prepared from that acid. "Sulfate" is ... Radium sulfate is the most insoluble sulfate known. The barium derivative is useful in the gravimetric analysis of sulfate: if ... Consequently the product sulfates are hydrated, corresponding to zinc sulfate ZnSO4·7H2O, [[copper(II) sulfate}} CuSO4·5H2O, ...
Gatehouse, B. M.; Platts, S. N.; Williams, T. B. (1993). "Structure of Anhydrous Titanyl Sulfate, Titanyl Sulfate Monohydrate ... Titanyl sulfate is the inorganic compound with the formula TiOSO4. It is a white solid that forms by treatment of titanium ... The six ligands attached to titanium are derived from four different sulfate moieties and a bridging oxide. A monohydrate is ... Portions of the structure of titanyl sulfate Heinz Sibum; Volker Günther; Oskar Roidl; Fathi Habashi; Hans Uwe Wolf (2005). " ...
Iodate sulfates can be produced from water solutions of iodic acid and sulfate salts. Lu, Huangjie; Guo, Xiaojing; Wang, Yaxing ... Iodate sulfrates are mixed anion compounds that contain both iodate and sulfate anions. Iodate sulfates have been investigated ... Li, Yilin; Hu, Chunli; Chen, Jin; Mao, Jianggao (2021). "Two bismuth iodate sulfates with enhanced optical anisotropy". Dalton ... CS1 maint: multiple names: authors list, Iodates, Sulfates, Mixed anion compounds). ...
"Chondroitin sulfate B" is an old name for dermatan sulfate, and it is no longer classified as a form of chondroitin sulfate. ... Although the name "chondroitin sulfate" suggests a salt with a sulfate counter-anion, this is not the case, as sulfate is ... Furthermore, marine chondroitin sulfate chains tend to be longer, with molecular weight of up to 70 kDa in chondroitin sulfate ... Chondroitin sulfate is not metabolized by cytochrome P450. The effect of chondroitin sulfate in people with osteoarthritis is ...
... , like many zinc compounds, can be used to control moss growth on roofs. Zinc sulfate can be used to supplement ... Anhydrous zinc sulfate is isomorphous with anhydrous copper(II) sulfate. It exists as the mineral zincosite. A monohydrate is ... "Zinc Sulphate Zinc Sulfate MSDS Sheet of Manufacturers". Mubychem.com. 5 May 2013. Retrieved 8 June 2013. Wildner, M.; Giester ... Zinc sulfate powder is an eye irritant. Ingestion of trace amounts is considered safe, and zinc sulfate is added to animal feed ...
In solution, the sulfate ion dissociates rapidly. Being widely available, vanadyl sulfate is a common precursor to other ... Vanadyl sulfate exhibits insulin-like effects. Vanadyl sulfate has been extensively studied in the field of diabetes research ... Like most water-soluble sulfates, vanadyl sulfate is only rarely found in nature. Anhydrous form is pauflerite, a mineral of ... Vanadyl(IV) sulfate describes a collection of inorganic compounds of vanadium with the formula, VOSO4(H2O)x where 0 ≤ x ≤ 6. ...
... and anhydrous sodium sulfate adopt the same structure. The synthesis of silver(II) sulfate (AgSO4) with a ... "MSDS of Silver sulfate". Fisher Scientific, Inc. Retrieved 2014-07-19. Sigma-Aldrich Co., Silver sulfate. Retrieved on 2014-07- ... Silver sulfate is the inorganic compound with the formula Ag2SO4. It is a white solid with low solubility in water. Silver ... "silver sulfate". Retrieved 2014-07-19. Morris, Marlene C.; McMurdie, Howard F.; Evans, Eloise H.; Paretzkin, Boris; Groot, ...
the hydrogen sulfate. potassium uranyl sulfate, K2UO2(SO4)2, is a double salt used by Henri Becquerel in his discovery of ... Uranyl sulfate describes a family of inorganic compounds with the formula UO2SO4(H2O)n. These salts consist of sulfate, the ... in the form of uranyl sulfate. The acid process of milling uranium ores involves precipitating uranyl sulfate from the pregnant ... Uranyl sulfates are intermediates in some extraction methods used for uranium ores. These compounds can also take the form of ...
... (NH3OH)2SO4, is the sulfuric acid salt of hydroxylamine. It is primarily used as an easily handled ... Hydroxylammonium sulfate is also used to generate hydroxylamine-O-sulfonic acid from oleum or chlorosulfuric acid. ... Hydroxylammonium sulfate is used in the production of anti-skinning agents, pharmaceuticals, rubber, textiles, plastics and ... Hydroxylammonium sulfate is prepared industrially via the Raschig hydroxylamine process, which involves the reduction of ...
This solution is allowed to stand for some time (in order that any calcium sulfate and basic iron(III) sulfate may separate), ... Aluminium sulfate is a salt with the formula Al2(SO4)3. It is soluble in water and is mainly used as a coagulating agent ( ... Aluminium sulfate is sometimes used in the human food industry as a firming agent, where it takes on E number E520, and in ... Aluminium sulfate may be made by adding aluminium hydroxide, Al(OH)3, to sulfuric acid, H2SO4: 2 Al(OH)3 + 3 H2SO4 → Al2(SO4)3 ...
... (or calcium sulphate) is the inorganic compound with the formula CaSO4 and related hydrates. In the form of γ- ... from anhydrous calcium sulfate. Upon being mixed with shale or marl, and roasted, the sulfate liberates sulfur dioxide gas, a ... The calcium sulfate hydrates are used as a coagulant in products such as tofu. For the FDA, it is permitted in cheese and ... Calcium sulfate has a long history of use in dentistry. It has been used in bone regeneration as a graft material and graft ...
An acid sulfate of rubidium (rubidium hydrogen sulfate) can be formed. It is soluble in water and is an aqueous solution. Y2( ... Rubidium sulfate is a sulfate of rubidium. The molecular formula of the compound is Rb2SO4. The molecular weight of this ... SO4)3 + Rb2SO4 → Rb3[Y(SO4)3] Rb2SO4 + H2SO4 → 2 RbHSO4 "Rubidium sulfate". "Y2(SO4)3 + Rb2SO4 + H2O = RbY(SO4)2•H2O , Chemical ... Sulfates, Rubidium compounds, All stub articles, Inorganic compound stubs). ...
Estrone sulfate is the most abundant of all the estrogens in the human body. Estrone sulfate is synthesized by the enzyme ... Quercetin 3-O-sulfate Pang, K; Schwab, A; Goresky, C; Chiba, M (1994). "Transport, binding, and metabolism of sulfate ... Sulfate conjugates commonly result from the metabolic conjugation of endogenous and exogenous compounds with sulfate (-OSO3−). ... Sulfate esters may be hydrolyzed by sulfatase enzyme to release the parent alcohol and a sulfate ion. Steroid sulfation is one ...
... 23 October 2017. Retrieved 15 November 2017. {{cite encyclopedia}}: ,work= ignored (help) Indoxyl sulfate. 11 ... Indoxyl sulfate, also known as 3-indoxylsulfate and 3-indoxylsulfuric acid, is a metabolite of dietary L-tryptophan that acts ... Indoxyl sulfate is also a product of indole metabolism, which is produced from tryptophan by intestinal flora, such as ... Indoxyl sulfate is a metabolite of dietary L-tryptophan that is synthesized through the following metabolic pathway: L- ...
... can exist in salt forms, such as sodium ethyl sulfate, potassium ethyl sulfate, and calcium ethyl sulfate. The ... Ethyl sulfate (IUPAC name: ethyl hydrogen sulfate), also known as sulfovinic acid, is an organic chemical compound used as an ... CH3-CH2-O-SO3H + K2CO3 → CH3-CH2-O-SO3K + KHCO3 Methyl sulfate Diethyl sulfate Dr. Frobenius (1730) "An account of a spiritus ... As an example, ethyl sulfate and potassium carbonate forms potassium ethyl sulfate and potassium bicarbonate. ...
... can be used as a fungicide and antiseptic. Hydrazine sulfate has been used as an alternative medical ... 19-21 Hydrazine sulfate / Hydrazine sulphate Archived 2009-09-19 at the Wayback Machine from the British Columbia Cancer Agency ... Hydrazine sulphate British Columbia Cancer Agency What is rocket fuel treatment? Cancer Research UK Hydrazine Sulfate Archived ... Hydrazine sulfate was first proposed as an anti-cancer agent by U.S. physician Joseph Gold in the mid-1970s. Gold's arguments ...
Galante LL, Schwarzbauer JE (December 2007). "Requirements for sulfate transport and the diastrophic dysplasia sulfate ... The sulfate transporter is a solute carrier family protein that in humans is encoded by the SLC26A2 gene. SLC26A2 is also ... A defect in sulfate activation described by Superti-Furga in achondrogenesis type 1B was subsequently also found to be caused ... This sulfate (SO42−) transporter also accepts chloride, hydroxyl ions (OH−), and oxalate as substrates. SLC26A2 is expressed at ...
The sulfate carbonates are a compound carbonates, or mixed anion compounds that contain sulfate and carbonate ions. Sulfate ... Silvialite can substitute about half its sulfate with carbonate and the high temperature hexagonal form of sodium sulfate (I) ... Sulfates, Sulfate minerals, Carbonate minerals, Carbonates, Mixed anion compounds). ... In some structures carbonate and sulfate can substitute for each other. For example a range from 1.4 to 2.2 Na2SO4•Na2CO3 is ...
As a cyclic sulfate ester, it is an alkylating agent. Hydrolysis affords ethionic acid, which retains one sulfate ester group. ... Carbyl sulfate is an organosulfur compound. The white solid is the product of the reaction of sulfur trioxide and ethylene. It ... Carbyl sulfate is produced in the highly exothermic (about 800 kcal/kg) reaction of ethylene and sulfur trioxide in the vapor ... Carbyl sulfate is a colorless, crystalline, hygroscopic substance although commercial product can appear as a liquid. Because ...
The sulfate fluorides are double salts that contain both sulfate and fluoride anions. They are in the class of mixed anion ... Fluoride sulfates were first discovered by Jean Charles de Marignac in 1859. Some elements such as cobalt or uranium can form ... Gong, Ya-Ping; Ma, Yun-Xiang; Ying, Shao-Ming; Mao, Jiang-Gao; Kong, Fang (2019-08-19). "Two Indium Sulfate Tellurites: ... Wang, Xiqu; Liu, Lumei; Ross, Kent; Jacobson, Allan J. (January 2000). "Synthesis and crystal structures of yttrium sulfates Y( ...
... (EE sulfate), also known as 17α-ethynylestradiol 3-sulfate, is an estrogen ester - specifically, the ... the EE sulfate pool with EE is far smaller than the pool of estrone sulfate that occurs with estradiol (with estrone sulfate ... EE sulfate can be transformed back into EE (14-21%) via steroid sulfatase, and it has been suggested that EE sulfate may serve ... in contrast to the case of estrone sulfate and estrone, the conversion rate of EE sulfate back into EE is relatively low, and ...
Mo uptake by MOT1 in yeast is not affected by the presence of sulfate. MOT1 did not complement a sulfate transporter-deficient ... The sulfate permease (SulP) family (TC# 2.A.53) is a member of the large APC superfamily of secondary carriers. The SulP family ... Maeda S, Sugita C, Sugita M, Omata T (March 2006). "Latent nitrate transport activity of a novel sulfate permease-like protein ... Another has SulP fused to Rhodanese, a sulfate:cyanide sulfotransferase (TC# 2.A.53.9.1). This SulP homologue is presumably a ...
... (US) or potassium sulphate (UK), also called sulphate of potash (SOP), arcanite, or archaically potash of ... The mineral form of potassium sulfate, arcanite, is relatively rare. Natural resources of potassium sulfate are minerals ... For information about other salts that contain sulfate, see sulfate. Patnaik, Pradyot (2002). Handbook of Inorganic Chemicals. ... These are cocrystallizations of potassium sulfate and sulfates of magnesium, calcium, and sodium. Relevant minerals are: ...
Protamine+Sulfate at the U.S. National Library of Medicine Medical Subject Headings (MeSH) "Protamine Sulfate". Drug ... In large doses, protamine sulfate may also have an independent - however weak - anticoagulant effect. Protamine sulfate ... Protamine sulfate was approved for medical use in the United States in 1969. It is on the World Health Organization's List of ... Protamine sulfate is a medication that is used to reverse the effects of heparin. It is specifically used in heparin overdose, ...
The antibody binds heparan sulfate, not chondroitin sulfate. The binding of HS20 to heparan sulfate requires sulfation at both ... "Biosynthesis of 3-O-sulfated heparan sulfate: unique substrate specificity of heparan sulfate 3-O-sulfotransferase isoform 5". ... Duncan MB, Chen J, Krise JP, Liu J (March 2004). "The biosynthesis of anticoagulant heparan sulfate by the heparan sulfate 3-O- ... Also the function of the heparan sulfate analogues is the same as heparan sulfate, protecting a variety of protein ligands such ...
"Dimethyl Sulfate 77-78-1". EPA. "Poison Facts: Low Chemicals: Dimethyl Sulfate". The University of Kansas Hospital. Sartori, ... dimethyl sulfate decomposes. The reaction of methyl nitrite and methyl chlorosulfonate also results in dimethyl sulfate: CH3ONO ... Dimethyl sulfate (DMS) is a chemical compound with formula (CH3O)2SO2. As the diester of methanol and sulfuric acid, its ... Dimethyl sulfate was discovered in the early 19th century in an impure form. J. P. Claesson later extensively studied its ...
... may refer to: Chromium(II) sulfate Chromium(III) sulfate This set index article lists chemical compounds ...
In the laboratory barium sulfate is generated by combining solutions of barium ions and sulfate salts. Because barium sulfate ... Barium sulfate (or sulphate) is the inorganic compound with the chemical formula BaSO4. It is a white crystalline solid that is ... Barium sulfate is commonly used as a component of "strobe" pyrotechnic compositions. As barium sulfate has a high melting point ... Barium sulfate is one of the most insoluble salts of sulfate. Its low solubility is exploited in qualitative inorganic analysis ...
This band is absent in beryllium sulfate, and the sulfate modes are perturbed. The data support the existence of Be(OH2)3OSO3. ... Beryllium sulfate normally encountered as the tetrahydrate, [Be(H2O)4]SO4 is a white crystalline solid. It was first isolated ... Beryllium sulfate may be prepared by treating an aqueous solution of many beryllium salts with sulfuric acid, followed by ... A mixture of beryllium and radium sulfate was used as the neutron source in the discovery of nuclear fission. Weast, Robert C ...
... , abbreviated as DHEA sulfate or DHEA-S, also known as androstenolone sulfate, is an endogenous ... DHEA-S, also known as androst-5-en-3β-ol-17-one 3β-sulfate, is a naturally occurring androstane steroid and the C3β sulfate ... Prasterone sodium sulfate, Teloin Jianqiu Y (1992). "Clinical Application of Prasterone Sodium Sulfate". Chinese Journal of New ... As the sodium salt, prasterone sodium sulfate, DHEA-S is used as a pharmaceutical drug in Japan in the treatment of ...
Exceptions include calcium sulfate, strontium sulfate, lead(II) sulfate, barium sulfate, silver sulfate, and mercury sulfate, ... Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many are prepared from that acid. "Sulfate" is ... Radium sulfate is the most insoluble sulfate known. The barium derivative is useful in the gravimetric analysis of sulfate: if ... Consequently the product sulfates are hydrated, corresponding to zinc sulfate ZnSO4·7H2O, [[copper(II) sulfate}} CuSO4·5H2O, ...
Chondroitin sulfate is a chemical found in human and animal cartilage. It is commonly used by mouth with glucosamine or other ... Chondroïtine Sulfate A, Chondroïtine Sulfate B, Chondroïtine Sulfate C, Chondroïtine 4-Sulfate, Chondroïtine 4- et 6- Sulfate, ... Chondroitin Sulfate A, Chondroitin Sulfates, Chondroitin Sulfate B, Chondroitin Sulfate C, Chondroitin Sulphates, Chondroitin ... Sulfate de Chondroïtine, Sulfate de Galactosaminoglucuronoglycane, Sulfates de Chondroïtine, Sulfato de Condroitina.. ...
... brewed with water rich in calcium sulfate, are made with top-fermenting yeast, and are processed at higher temperatures than ... Other articles where calcium sulfate is discussed: ale: … ... ammonium sulfate production*. In chemical industry: Sources of ... the world, abundant supplies of calcium sulfate in any of several mineral forms can be used to make the ammonium sulfate by ... effect converts calcium carbonate to calcium sulfate. The volume of the sulfate crystal is almost twice that of the original ...
Hydrazine sulfate, a simple, off-the-shelf chemical, dra ... While hydrazine sulfate may not be a sure-fire cancer cure, ... Hydrazine sulfate was finally removed from the list the next time the list was revised, in July 1982.3. Tim Hansen, now in his ... They see hydrazine sulfate as mainly an adjunctive treatment, albeit a potentially powerful one.. Critics have made much of the ... For further information on hydrazine sulfate and details on treatment.. Reading Material. The Cancer Industry: Unravelling the ...
The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database ...
See examples of AMMONIUM SULPHATE used in a sentence. ... Ammonium sulphate definition: a white soluble crystalline solid ... ammonium sulphate. in a sentence. *. Aldehyde gives a carmine red unaltered by ammonium sulphate. ... This plate absorbs more than 200 times its volume of hydrogen when electrolyzed in a solution of ammonium sulphate. ... Add a few drops of sodium nitroprusside solution, make alkaline with ammonia, then saturate with ammonium sulphate crystals. ...
... was 91039293 US Dollars. Discover more data with NationMaster! ... Belgium - Import of Potassium Sulphate US Dollars - 1999 to 2019. Since 2014, Belgium Import of Potassium Sulphate increased ... How does Belgium rank in Import of Potassium Sulphate?. #. 140 Countries. US Dollars. Last. YoY. 5‑years CAGR. ... In 2019, the country was ranked number 1 among other countries in Import of Potassium Sulphate with $91,039,292.66. Netherlands ...
The chemical name of ephedrine sulfate is benzenemethanol, α-[1-(methylamino)ethyl]-, [R-(R*,S*)]-, sulfate (2:1) (salt), and ... EPHEDRINE SULFATE (UNII: U6X61U5ZEG) (EPHEDRINE - UNII:GN83C131XS) EPHEDRINE SULFATE. 50 mg in 1 mL. ... See full prescribing information for EPHEDRINE SULFATE INJECTION.. EPHEDRINE SULFATE injection, for intravenous use. Initial U. ... Ephedrine sulfate injection, USP is a clear, colorless, sterile solution for intravenous injection supplied as follows: NDC ...
Sodium lauryl sulfate is a surface-active agent (or surfactant) that makes thick, rich foam and helps cleanse the hair and skin ... Sodium lauryl sulfate is a surface-active agent (or surfactant) that makes thick, rich foam and helps cleanse the hair and skin ... Were also particularly keen to reduce our use of these sulfates because palm oil is involved in their production. Since 2008, ... Despite being used safely and successfully since the 1930s, sulfates (also spelt sulphates) like SLS and SLES have a bad ...
For adults, the dosage range for quinidine sulfate is from 400 to 4000 mg/day. ...
... was 226907 US Dollars. Discover more data with NationMaster! ... Thailand - Export of Potassium Sulphate US Dollars - 1991 to 2019. Since 2014, Thailand Export of Potassium Sulphate fell by ... How does Thailand rank in Export of Potassium Sulphate?. #. 75 Countries. US Dollars. Last. YoY. 5‑years CAGR. ... In 2019, the country was number 39 comparing other countries in Export of Potassium Sulphate at $226,907.18. Thailand is ...
Sodium coco sulfate creates a rich foam and cleanses hair and skin. Made from the fatty acids of coconut oil, its a good palm- ... Why use sulfates?. Sulfates (also spelt sulphates) became widely used in the 1930s and started the development of the modern ... The most known and widely used sulfates, namely sodium lauryl (SLS) and sodium laureth (SLES) sulfates, are obtained from palm ... Despite their effectiveness, sulfates have a bad reputation. Experts agree that its safe to use, but have confirmed that these ...
Terbutaline sulfate is ±-α-[(tert -butylamino) methyl]-3,5-dihydroxybenzyl alcohol sulfate (2:1) (salt). The molecular formula ... The action of terbutaline sulfate should last up to 6 hours or longer. Terbutaline sulfate should not be used more frequently ... Oral administration of 5-mg terbutaline sulfate tablets or 5 mg terbutaline sulfate in solution in 17 healthy, adult, male ... TERBUTALINE SULFATE tablet. To receive this label RSS feed. Copy the URL below and paste it into your RSS Reader application. ...
Read customer reviews on Sulfate-free and other Facial Cleansers at HSN.com. ... Shop the latest Sulfate-free Facial Cleansers at HSN.com. ... Sulfate-free Facial Cleansers. Page Filters. Featuring * ...
Final report of the amended safety assessment of sodium laureth sulfate and related salts of sulfated ethoxylated alcohols. ... A Cosmetic Ingredient Review safety assessment found ethoxylated alkyl sulfates like sodium laureth sulfate do not cause skin ... Final report of the amended safety assessment of sodium laureth sulfate and related salts of sulfated ethoxylated alcohols. ... Final report of the amended safety assessment of sodium laureth sulfate and related salts of sulfated ethoxylated alcohols. ...
Morphine Sulfate 60 mg Extended Release Tablets. SUGGESTED ACTION: No Classification; Morphine Sulfate 60mg Extended Release ... Oversized tablets may contain as much as two times the labeled level of active morphine sulfate. The lot was distributed by ... ETHEX Corporation Voluntarily Recalls a Single Lot of Morphine Sulfate 60 mg Extended Release Tablets Due to the Potential for ... ETHEX Corporation announced today that it has voluntarily recalled a single lot of morphine sulfate 60 mg extended release ...
Structure, properties, spectra, suppliers and links for: Ammonium sulfate, Ammonium bisulfate, 7783-20-2, 7803-63-6, 10043-02-4.
Global Market Study on Cobalt Sulfate: High Use as Additive to Enhance Soil Nutrition... ... Global Market Study on Cobalt Sulfate: High Use as Additive to Enhance Soil Nutrition... ... Cobalt Sulfate Market Battery Grade Industrial Grade Agriculture & Feed Grade lithium-ion batteries Sulfate pigments ceramics ... Cobalt sulfate, also known as cobaltous sulfate, is an inorganic compound with the chemical formula CoSO₄. It is widely used as ...
... sodium lauryl sulfate, or SLS, is an additive that allows cleansing products to foam. According to the Environmental Working ... Mercola: Sodium Lauryl Sulfate: Facts vs. Fairy Tales * National Institute for Occupational Safety and Health: Sodium Lauryl ... A common ingredient in personal care products, sodium lauryl sulfate, or SLS, is an additive that allows cleansing products to ... SLS may also be listed as sodium dodecyl sulfate, sulfuric acid, monododecyl ester, sodium salt, sodium salt sulfuric acid, ...
DBL Morphine Sulfate Injection contains the active ingredient morphine sulfate pentahydrate. DBL Morphine Sulfate Injection is ... What DBL Morphine Sulfate Injection contains. Active ingredient. (main ingredient). Morphine sulfate pentahydrate. ... 2. What should I know before treatment with DBL Morphine Sulfate Injection?. Warnings. Do not use DBL Morphine Sulfate ... What DBL Morphine Sulfate Injection looks like. DBL Morphine Sulfate Injection is a clear slightly yellow to clear yellow ...
Maker: Eli Lilly and Company. Location: Currently not on view. Place Made: United States: Indiana, Indianapolis. See more items in: Medicine and Science: Medicine. Exhibition: Exhibition Location: Credit Line: From Eli Lilly and Company. Data Source: National Museum of American History. Id Number: MG.M-03155Catalog Number: M-03155Accession Number: 117808. Object Name: PharmaceuticalpharmaceuticalOther Terms: Powder, Unidentified; Pharmaceutical; Pharmaceuticals; Drugs; Non-Liquid. Measurements: overall: 2 1/4 in x 1 1/4 in; 5.715 cm x 3.175 cm. Metadata Usage: CC0. Guid: http://n2t.net/ark:/65665/ng49ca746a5-4f77-704b-e053-15f76fa0b4fa. Record Id: nmah_718413 ...
Citation: Engler, B., Lox, E., Ostgathe, K., Cartellieri, W. et al., "Diesel Oxidation Catalysts with Low Sulfate Formation for ... The evaluation which was conducted on both model gases and engine test benches with different engine types shows sulfate ... Diesel Oxidation Catalysts with Low Sulfate Formation for HD-Diesel Engine Application 932499. ...
Codeine Sulfate (Codeine) may treat, side effects, dosage, drug interactions, warnings, patient labeling, reviews, and related ... Codeine sulfate is available in generic form.. What Are Side Effects of Codeine Sulfate?. Codeine Sulfate may cause serious ... Codeine sulfate is an opioid agonist and is a Schedule II controlled substance. Codeine sulfate can be abused and is subject to ... What Is Codeine Sulfate?. Codeine sulfate is an opioid analgesic (pain reliever) drug used to treat mild to moderate pain. ...
Chemical Analysis Component Test Stand Typical Test Result Apperance White or Slighty Yellow Pour able gel ...
Inter Farma is branding its South American bovine-sourced chondroitin sulfate as Dynatin CS, and is marketing it on the dual ... Chondroitin Sulfate is found in human tissue and is essential to joint health. Along with glucosamine, it has been sold for use ... Inter Farma introduces certified chondroitin sulfate brand. By Clarisse Douaud 08-Feb-2007. - Last updated on 13-Mar-2017 at 18 ... chondroitin sulfate as Dynatin CS, and is marketing it on the dual platforms of US Pharmacopoeia certification and hailing from ...
Decrease quantity for Iron Sulfate 20 (50 lb) Increase quantity for Iron Sulfate 20 (50 lb) ... BRANDT FERROUS SULFATE - CRYSTAL will stain porous surfaces including concrete, wood and metal when exposed to free moisture ... BRANDT FERROUS SULFATE - CRYSTAL will stain porous surfaces including concrete, wood and metal when exposed to free moisture ... BRANDT FERROUS SULFATE - CRYSTAL is intended for agricultural use for plant nutrition. For the agronomic application rates ...
TRUNNANO is a reliable supplier for Monobranch C8 Alcohol Sulphate. ... Monobranch Alcohol Sulfate (C8): Monobranch Alcohol Sulphate (C8 Alcohol) is an anionic sulfate ester salt. It is easily ... Monobranch C8 Alcohol Sulphate packing: 1kg per bottle, 25kg per barrel, or 200kg per barrel. Monobranch C8 Alcohol Sulphate ... Prices of Monobranch C8 Alcohol Sulphate If you want to buy Monobranch C8 Alcoholsulfate in bulk. Monobranch Alcohol Sulphate ...
heparan-sulfate 6-O-sulfotransferase 1. Names. HS6ST-1. heparan-sulfate 6-sulfotransferase. NP_004798.3. *EC 2.8.2.- ... HS6ST1 heparan sulfate 6-O-sulfotransferase 1 [Homo sapiens] HS6ST1 heparan sulfate 6-O-sulfotransferase 1 [Homo sapiens]. Gene ... Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that ... heparan sulfate 6-O-sulfotransferase 1provided by HGNC. Primary source. HGNC:HGNC:5201 See related. Ensembl:ENSG00000136720 MIM ...
... potassium sulfate / sodium sulfate during pregnancy. FDA Pregnancy Category C - Risk cannot be ruled out ... Advice and warnings for the use of Magnesium sulfate / ... Magnesium sulfate/potassium sulfate/sodium sulfate. *Pregnancy ... Magnesium sulfate / potassium sulfate / sodium sulfate Pregnancy and Breastfeeding Warnings. Brand names: ColPrep Kit, Suprep ... Magnesium sulfate / potassium sulfate / sodium sulfate Pregnancy Warnings. Animal studies have not been reported. There are no ...
... Cialis is indicated for the treatment of erectile dysfunction clopidogrel sulfate msds. Prix Du ... Pharmacie online discount clopidogrel sulfate msds. Get Free Delivery On Prescriptions.. clopidogrel sulfate msds. . Visit us ... Buy generic medications online in Singapore without a prescription clopidogrel sulfate msds.S.S clopidogrel sulfate msds. ... Vélizy - Villacoublay clopidogrel sulfate msds.apothecaris.. clopidogrel sulfate msds. . MegaPharma est une parapharmacie en ...
  • Aluminum sulfate is a water-soluble, odorless, white crystalline compound. (openpr.com)
  • Aluminum sulfate may burn, but it will not ignite. (openpr.com)
  • Aluminum sulfate is an important aluminum salt. (openpr.com)
  • It is also widely used in food and textile fields.Increasing demand in developing countriesThe growth of downstream demand, especially in urban areas and metropolises of developing economies, has had a positive impact on the growth of the aluminum sulfate market. (openpr.com)
  • The substantial increase in water-borne diseases in some areas has promoted the demand for water purification, coupled with the increasing emphasis on clean water and government initiatives in developing countries, which is promoting the development of the aluminum sulfate market. (openpr.com)
  • In addition, the development of papermaking, textile, medicine, food, and other industries in developing countries has also increased the demand for the use of aluminum sulfate. (openpr.com)
  • Therefore, the growing demand for aluminum sulfate in developing countries is also one of the main factors driving market growth.The challenge of safe productionBecause of its acidity, aluminum sulfate will seriously pollute and pollute the wildlife and vegetation in the area, so environmental spills of aluminum sulfate should be cleared immediately. (openpr.com)
  • In addition, when aluminum sulfate is mixed with water, sulfuric acid is formed, which burns human skin and eyes. (openpr.com)
  • If a safety production accident occurs during the operation process, it may have a certain impact on the normal production and operation and business performance of the aluminum sulfate industry enterprises. (openpr.com)
  • Aluminum Sulfate market reached a value of USD 1153.25 million in 2022. (openpr.com)
  • The Aluminum Sulfate Market Report has 115 pages and has a detailed table of contents, a list of data, tables, and charts, along with an in-depth analysis. (openpr.com)
  • COVID-19 - Amid the COVID-19 crisis, the Aluminum Sulfate market has definitely taken a hit. (openpr.com)
  • We've been tracking the direct and indirect consequences of the COVID-19 outbreak on the Aluminum Sulfate market. (openpr.com)
  • Before planting, work in conifer bark chips, organic compost, peat moss or aluminum sulfate. (feministlawprofessors.com)
  • This aluminum sulfate-based fertilizer is perfect for gardenias and not only them but for the rest acid-loving plants, since it causes the soil pH to … Using Alum in the Garden. (feministlawprofessors.com)
  • Powdered aluminum sulfate has been a standard soil additive for gardeners growing blueberries and many other plants since it is quick-acting and convenient to dig in around individual plants. (feministlawprofessors.com)
  • In cases where the soil pH was raised above 7.0 due to the application of lime, water soluble sulfur or aluminum sulfate can be applied to the soil beneath the shrub. (feministlawprofessors.com)
  • Before using Hi-Yield Aluminum Sulfate test your soil pH and if the pH is above 7.0 then this product will be effective in bringing the pH down towards 5.5 which is desirable for plants that require more acidic soils. (feministlawprofessors.com)
  • Gardenia jasminoides Ellis can be used as a cut flower, with a vase life in excess of five days, by simply including 200 mg L −1 of aluminum sulfate (AS) or citric acid (CA) in the vase solution. (feministlawprofessors.com)
  • If you determine your soil is too alkaline, you may want to adjust it by adding aluminum sulfate. (feministlawprofessors.com)
  • Use 1/4 to 1/2 cup of aluminum sulfate spread around under the gardenia and water it in. (feministlawprofessors.com)
  • You particularly might need to … Alum powder (Potassium aluminum sulfate) is typically found in the spice department of supermarkets, as well as most garden centers. (feministlawprofessors.com)
  • Some gardeners recommend a one-off dosing, others a … If you use aluminum sulfate, follow all package directions for the correct amount to apply. (feministlawprofessors.com)
  • Aluminum Sulfate helps lower soil pH to this target. (feministlawprofessors.com)
  • The barium derivative is useful in the gravimetric analysis of sulfate: if one adds a solution of most barium salts, for instance barium chloride, to a solution containing sulfate ions, barium sulfate will precipitate out of solution as a whitish powder. (wikipedia.org)
  • BARIUM SULFATE (many brands) is a radiopaque agent used to diagnose problems with the gastrointestinal (GI) tract. (health.am)
  • Generic barium sulfate oral suspensions are available. (health.am)
  • What should my health care professional know before I receive Barium Sulfate? (health.am)
  • Barium sulfate oral suspension is taken by mouth (swallowed). (health.am)
  • What drug(s) may interact with Barium Sulfate? (health.am)
  • No drug interactions have been documented between barium sulfate and other medications. (health.am)
  • What side effects may I notice from receiving Barium Sulfate? (health.am)
  • What should I watch for while taking Barium Sulfate? (health.am)
  • The professional barium sulphate supplier! (chinabarite.com)
  • Co., Ltd. the new natural barium sulfate manufacturer, focus on natural barium sulafte(barite powder or barytes powder) producing and processing , it is a professional barium sulfate supplier in both oversea and domestic market. (chinabarite.com)
  • Co., Ltd. is located in the rich baryte area--Guizhou, China, under the owned excellent barite mine, Guizhou Toli star to supply TOLIBARI Barium Sulfate products since 2009. (chinabarite.com)
  • Guizhou Toli got it's export lincese from Chinese Government in 2009, and extending business from Barium sulphate to Calcined Kaolin, Mica,Titanium Dioxide , Talc, Barium Carbonate and Wollastonite trade business. (chinabarite.com)
  • Consequently the product sulfates are hydrated, corresponding to zinc sulfate ZnSO4·7H2O, [[copper(II) sulfate}} CuSO4·5H2O, and cadmium sulfate CdSO4·H2O. (wikipedia.org)
  • If you are iron-deficient or have anemia, you should talk to your doctor before using ferrous sulfate together with omeprazole. (drugs.com)
  • By reducing stomach acid, omeprazole may reduce the absorption of iron and make ferrous sulfate less effective in treating your condition. (drugs.com)
  • Your doctor or pharmacist may be able to offer suggestions on safer alternatives if you require treatment for stomach acid or ulcer while you are being treated with ferrous sulfate. (drugs.com)
  • Food may reduce the absorption and blood levels of ferrous sulfate. (drugs.com)
  • In addition, some oral medications can also interfere with ferrous sulfate absorption into the bloodstream, which may make the medication less effective in treating your condition. (drugs.com)
  • Likewise, ferrous sulfate may interfere with the absorption of other orally administered medications. (drugs.com)
  • You should take ferrous sulfate on an empty stomach at least one hour before or two hours after a meal. (drugs.com)
  • Ferrous Sulfate is used to prevent or treat anemia caused by iron deficiency. (northwestpharmacy.com)
  • Ferrous Sulfate is recommended to treat or prevent iron anemia caused by a lack of red blood cells due to pregnancy, poor diet, excessive bleeding or other related medical problem. (northwestpharmacy.com)
  • Ferrous Sulfate Heptahydrate is a reducing agent with many other applications. (sciencelab.com)
  • Radium sulfate is the most insoluble sulfate known. (wikipedia.org)
  • The copper sulfide is transformed into water-soluble copper sulfate and the iron sulfide into insoluble iron oxide. (metso.com)
  • Ephedrine sulfate is freely soluble in water and ethanol, very slightly soluble in chloroform, and practically insoluble in ether. (rxlist.com)
  • This effect has not been shown with chondroitin sulfate supplements. (nih.gov)
  • Inadequate response to first line treatment with three doses intravenous magnesium sulphate involving children below 18 years of age patients conducted in EDs and of beta2-agonists for treating acute asthma. (nih.gov)
  • magnesium sulfate in Magnesium sulfate (MgSO4) administered in acute asthma on beta2-agonist beta2-agonist vs. the treatment of acute pulmonary functions and admissions vs.beta2-agonist beta2-agonist alone asthma. (nih.gov)
  • Ice mixed with magnesium sulfate , on the other hand, was brighter. (dictionary.com)
  • magnesium sulfate has been around since 1906 and has since been proven to be a superior medication. (dictionary.com)
  • We are supplying ammonium sulphate *****0 direct manufacturer. (tradekey.com)
  • Our brand-new strategy report focuses on ammonium sulphate - also referred to in the industry as amsul and AS - a commodity fertilizer used as a source of nitrogen and sulphur for crops (21N+24S). (argusmedia.com)
  • With growing agronomic demand for 'sulphur as a nutrient', ammonium sulphate has a key place in this delivery, whether it is directly applied, blended or used as a feedstock in the production of more advanced N+S products or NPK+S. (argusmedia.com)
  • Produced by the relatively simple reaction between common chemicals ammonia and sulphuric acid, ammonium sulphate emerges as a by-product of a wide variety of industrial processes - including caprolactam, coke-oven gas, flue-gas desulphurisation and many more - all of which are explored in this report, as are potential sources of supply. (argusmedia.com)
  • Understand the long-term trends for ammonium sulphate. (argusmedia.com)
  • Develop more robust strategies to enter the ammonium sulphate and associated industries, and how to optimise trade. (argusmedia.com)
  • These are Gluclosamine HCE, Glucosamine Sulfate Sodium and Glucosamine Sulfate Potassium. (ihealthdirectory.com)
  • An injectable solution containing chondroitin sulfate and sodium hyaluronate is approved by the FDA to protect the eye during cataract surgery. (nih.gov)
  • Each mL contains ephedrine sulfate, USP 5 mg (equivalent to 3.8 mg ephedrine base), 0.9% sodium chloride, USP in water for injection. (rxlist.com)
  • Indeed, sulfates such as sodium lauryl sulfate (one of the most common sulfates found in hair products) are harsh and can strip hair of moisture, leaving strands dull, frizzy, and tangled. (marieclaire.com)
  • She explains, "It will balance the moisture of your hair and scalp, so you won't over produce sebum, while providing a sulfate-free, sodium chloride-free and vegan experience. (marieclaire.com)
  • Sodium dodecyl sulfate (SDS)/lauryl sulfate, an ionic detergent has the ability to distract biological membranes. (sigmaaldrich.com)
  • As global demand for nickel sulphate is set to grow by 22% annually between 2020 and 2030, the nickel sulphate futures contract will aim to ensure access to EV battery metals for producers. (mining-technology.com)
  • These highlights do not include all the information needed to use MORPHINE SULFATE TABLETS safely and effectively. (nih.gov)
  • See full prescribing information for MORPHINE SULFATE TABLETS. (nih.gov)
  • Morphine Sulfate Tablets expose users to risks of addiction, abuse, and misuse, which can lead to overdose and death. (nih.gov)
  • Accidental ingestion of Morphine Sulfate Tablets, especially by children, can result in a fatal overdose of morphine. (nih.gov)
  • Prolonged use of Morphine Sulfate Tablets during pregnancy can result in neonatal opioid withdrawal syndrome, which may be life-threatening if not recognized and treated. (nih.gov)
  • Discuss availability of naloxone with the patient and caregiver and assess each patient's need for access to naloxone, both when initiating and renewing treatment with Morphine Sulfate Tablets. (nih.gov)
  • Do not abruptly discontinue Morphine Sulfate Tablets in a physically dependent patient because rapid discontinuation of opioid analgesics has resulted in serious withdrawal symptoms, uncontrolled pain, and suicide. (nih.gov)
  • Short UV cutoff edges of 206 nm and below 190 nm are observed for bulk ZFSO and HFSO crystals, respectively, together with the strongest powder SHG responses (3.2 × (ZFSO) and 2.5 × KDP (HFSO)) for solar-blind UV/DUV NLO sulfates , as well as suitable birefringence . (bvsalud.org)
  • There are numerous examples of ionic sulfates, many of which are highly soluble in water. (wikipedia.org)
  • Our Emerphed (ephedrine sulfate) Injection, for Intravenous Use Side Effects Drug Center provides a comprehensive view of available drug information on the potential side effects when taking this medication. (rxlist.com)
  • EMERPHED (ephedrine sulfate) injection is a clear, colorless, sterile solution for intravenous injection. (rxlist.com)
  • EMERPHED (ephedrine sulfate) injection is a clear, colorless solution available as a single-dose vial that contains 50 mg/10 mL ephedrine sulfate, equivalent to 38 mg/10mL ephedrine base (5 mg/mL ephedrine sulfate, equivalent to 3.8 mg/mL ephedrine base). (rxlist.com)
  • Because of lack of specificity of the clinical syndrome, the identification of patients with pulmonary toxicity due to BLENOXANE (bleomycin sulfate for injection, USP) has been extremely difficult. (cancermonthly.com)
  • Most mines discharge wastewater with high sulfate levels, but as the largest taconite producer, Minntac discharges the most contaminants. (minnpost.com)
  • The new sensor was calibrated in the laboratory by studying the strength and stiffness behavior of three chemically treated high-sulfate soils. (astm.org)
  • Bordeaux mixture is prepared in various strengths from copper sulphate, hydrated lime (calcium hydroxide) and water. (copper.org)
  • This case series evaluated the clinical outcomes of a commercially pure, synthetic, antibiotic-loaded calcium sulfate for the management of diabetic foot ulcers (DFUs) complicated by osteomyelitis. (medscape.com)
  • A total of 106 patients requiring either major or minor debridement, amputation of 1 or more toes, forefoot amputation, or below-knee amputation received calcium sulfate combined with combinations of meropenem, colistin, or vancomycin based on antibiotic susceptibility from microbiological cultures. (medscape.com)
  • Calcium sulfate beads were mixed with meropenem in 64 cases, colistin in 35 cases, and vancomycin in 7 cases. (medscape.com)
  • The use of locally released antibiotics from synthetic recrystallized calcium sulfate may offer significant benefits in the management of DFU infection compromised by poor circulation, polymicrobial growth, and associated renal and cardiac comorbidities. (medscape.com)
  • Taking chondroitin sulfate together with glucosamine hydrochloride might reduce blood levels of glucosamine. (nih.gov)
  • It's also not clear if this interaction occurs with other forms of glucosamine, such as glucosamine sulfate. (nih.gov)
  • Glucosamine, chondroitin sulfate , and the two in combination for painful knee osteoarthritis. (nih.gov)
  • Effect of glucosamine and chondroitin sulfate in symptomatic knee osteoarthritis: a systematic review and meta-analysis of randomized placebo-controlled trials. (nih.gov)
  • Glucosamine Sulfate is a naturally occurring amino sugar. (vitacost.com)
  • Glucosamine sulfate is one of the most popular nutritional supplements that many people take to help relieve the pain of arthritis. (ihealthdirectory.com)
  • In the case of Glucosamine Sulfate, the sulfate acts as a carrier molecule for the glucosamine in the supplements. (ihealthdirectory.com)
  • It is now thought that sulfate is needed in the body to form cartilage so this may be why Glucosamine sulfate works the best out of the three forms of glucosomine. (ihealthdirectory.com)
  • As mentioned, the most popular of the three forms of Glucosamine is Glucosamine sulfate. (ihealthdirectory.com)
  • Claims that Glucosamine sulfate can cause the restoration of cartilage in joints have not been substantiated scientifically and many studies show conflicting results. (ihealthdirectory.com)
  • However, the EULAR, the government organization in Europe similar to the FDA in the United States, has approved Glucosamine sulfate as a medical drug. (ihealthdirectory.com)
  • That approval is for Glucosamine sulfate only and not the other two forms of Glucosamine. (ihealthdirectory.com)
  • In fact, the OARSI now recommends Glucosamine Sulfate as the second most effective treatment of mild to moderate cases of osteoarthritis. (ihealthdirectory.com)
  • There are very little side effects associated with the usage of Glucosamine Sulfate. (ihealthdirectory.com)
  • It is best to purchase these supplements from a reliable source to ensure you are actually getting Glucosamine Sulfate. (ihealthdirectory.com)
  • You can buy Glucosamine Sulfate without a prescription at many drug stores, health foods stores and various websites. (ihealthdirectory.com)
  • In Europe you can only buy Glucosamine Sulfate with a prescription. (ihealthdirectory.com)
  • Some people claim that Glucosamine sulfate can help relieve the pain of rheumatoid arthritis as well as osteoarthritis. (ihealthdirectory.com)
  • One of the few still selling Glucosamine Sulfate. (wonderlabs.com)
  • Prior to that trial, only small trials had studied chondroitin sulfate alone or in combination with glucosamine to treat osteoarthritis. (msdmanuals.com)
  • Chondroitin sulfate is most commonly used by adults in doses of 800-1200 mg per day, for up to 2 years. (nih.gov)
  • Actually 1 kg copper sulphate requires only 0.225 kg of chemically pure hydrated lime to precipitate all the copper. (copper.org)
  • Chemically, ammonium sulfate [(NH4)2SO4] is a salt that contains 21% nitrogen and 24% sulfur. (feministlawprofessors.com)
  • The sulfate anion consists of a central sulfur atom surrounded by four equivalent oxygen atoms in a tetrahedral arrangement. (wikipedia.org)
  • Typically metal sulfates are prepared by treating metal oxides, metal carbonates, or the metal itself with sulfuric acid: Zn + H2SO4 → ZnSO4 + H2 Cu(OH)2 + H2SO4 → CuSO4 + 2 H2O CdCO3 + H2SO4 → CdSO4 + H2O + CO2 Although written with simple anhydrous formulas, these conversions generally are conducted in the presence of water. (wikipedia.org)
  • The MPCA's new sulfate standard is expected to go through a rule-making process, which typically takes two years. (minnpost.com)
  • Organic sulfate esters, such as dimethyl sulfate, are covalent compounds and esters of sulfuric acid. (wikipedia.org)
  • Copper sulphate dissolves in cold water to the extent of about 3 kg per 10 litres. (copper.org)
  • Chondroitin sulfate is used for osteoarthritis and cataracts. (nih.gov)
  • Taking chondroitin sulfate by mouth seems to provide some relief from osteoarthritis pain and improve function. (nih.gov)
  • Get excellent metals recovery with Metso's copper cobalt sulfating roasting solution. (metso.com)
  • Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide / IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (who.int)
  • This monograph evaluates the evidence of carcinogenicity of metallic cobalt particles with or without tungsten carbide, to which workers in the hard-metal industry are exposed, and of cobalt sulfate and other soluble cobalt (II) salts. (who.int)
  • Because of their importance to farmers, instructions concerning the dissolving of copper sulphate and the preparation of both Bordeaux and Burgundy mixtures have been included in the text. (copper.org)
  • Iron or galvanised vessels must not be used for the preparation of copper sulphate solutions. (copper.org)
  • To make a strong solution, hang a jute sack of copper sulphate so that the bottom of it dips a few inches only in the water. (copper.org)
  • The copper sulphate will dissolve overnight. (copper.org)
  • If more than this is placed in the sack described above, then a saturated solution will be obtained and it may be used without serious error on the basis that it contains 3 kg copper sulphate per 10 litres. (copper.org)
  • The conventional method of describing its composition is to give the weight of copper sulphate, the weight of hydrated lime and the volume of water in that order. (copper.org)
  • The percentage of the weight of copper sulphate to the weight of water employed determines the concentration of the Bordeaux mixture. (copper.org)
  • Thus a 1% Bordeaux mixture, which is the normal, would have the formula 1 :1:100the first 1 representing 1 kg copper sulphate, the second representing 1 kg hydrated lime, and the 100 representing 100 litres (100 kg) water. (copper.org)
  • As copper sulphate contains 25% copper metal, the copper content of a 1% Bordeaux mixture would be 0-25 % copper. (copper.org)
  • In preparing Bordeaux mixture, the copper sulphate is dissolved in half the required amount of water in a wooden or plastic vessel. (copper.org)
  • Dissolve separately 1 kg copper sulphate in 50 litres water and 1.25 kg washing soda (or 0.475 kg soda ash) in 50 litres water and slowly add the soda solution to the copper sulphate solution with stirring. (copper.org)
  • Whether you're looking for Tri Basic Lead Sulphate, Copper Sulphate, Blue Copper Sulphate etc, you can explore and find the best products from Tradeindia. (tradeindia.com)
  • A 40-year-old man presented with haematemesis after ingestion of 1 g mercuric sulphate and rapidly deteriorated in the emergency department, requiring intubation and ventilation. (medscape.com)
  • Ammonium nitrate and other fast-release fertilizers such as urea and ammonium sulfate should should be applied in smaller amounts and more frequently than slow-release fertilizer. (gardenguides.com)
  • A real-time monitoring of the sulfate heaving phenomenon in the test section in the real field environment would provide a quick performance evaluation of sulfate soils treated with chemical additives. (astm.org)
  • A thorough evaluation of sulfate-related risks for subgrades involves time-consuming laboratory tests. (astm.org)
  • Salts, acid derivatives, and peroxides of sulfate are widely used in industry. (wikipedia.org)
  • Sulfates are salts of sulfuric acid and many are prepared from that acid. (wikipedia.org)
  • Chondroitin sulfate is a chemical found in human and animal cartilage. (nih.gov)
  • Chondroitin sulfate is one of the building blocks of cartilage. (nih.gov)
  • Chondroitin sulfate is a glycosaminoglycan, a natural component of cartilage. (msdmanuals.com)
  • References Chondroitin sulfate is a glycosaminoglycan, a natural component of cartilage. (msdmanuals.com)
  • Pharmacie en ligne autorisée à vendre des médicaments .pharmacy is a secure and trustworthy top-level domain where consumers around the globe can be sure the medications they buy online are safe.com est géré par la Pharmacie du Centre. (terminally-incoherent.com)
  • The tetrahedral molecular geometry of the sulfate ion is as predicted by VSEPR theory. (wikipedia.org)
  • The chemical name of ephedrine sulfate is benzenemethanol, α-[1-(methylamino)ethyl]-, [R-(R*,S*)]-, sulfate (2:1) (salt), and the molecular weight is 428.5 g/mol. (rxlist.com)
  • Why a Sulfate-Free Shampoo? (marieclaire.com)
  • Therefore, if you're looking for a deep cleanse that doesn't cause harm, opt for a sulfate-free clarifying shampoo instead. (marieclaire.com)
  • Finn calls this shampoo the ideal sulfate-free choice "for the everyday washer. (marieclaire.com)
  • EverPure Sulfate-Free Moisture Shampoo deeply replenishes dry hair with 2X more moisture than non-conditioning shampoo. (lorealparisusa.com)
  • EverPure Sulfate-Free Moisture Shampoo is suitable for all hair types. (lorealparisusa.com)
  • EverPure Sulfate-Free Moisture Shampoo is safe to use daily. (lorealparisusa.com)
  • Each actuation of Proventil HFA Inhalation Aerosol delivers 108 mcg of albuterol sulfate (equivalent to 90 mcg of albuterol base) from the mouthpiece. (centerwatch.com)
  • The sulfate or sulphate ion is a polyatomic anion with the empirical formula SO2−4. (wikipedia.org)
  • To make this process easier, we've tapped Finn to unpack everything there is to know about sulfate-free shampoos, from understanding the importance of finding a sulfate-free formula to discovering the best product for you. (marieclaire.com)
  • MPCA has been studying the effects of sulfate on wild rice for three years, and in late March the agency announced that it wants to eliminate the current standard of 10 milligrams of sulfate per liter of water in wild rice waters, and begin to apply different standards to different waters based on their chemical makeup. (minnpost.com)
  • While there are existing futures exchanges trading in nickel, such as the London Metal Exchange, these only trade in Class 1 refined nickel, most commonly in stainless steel, as opposed to nickel sulphate, which is vital in electric vehicle (EV) batteries. (mining-technology.com)
  • Lead Sulphate product price in India ranges from 120 to 10,000 INR and minimum order requirements from 1 to 2,000. (tradeindia.com)