Succinates: Derivatives of SUCCINIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,4-carboxy terminated aliphatic structure.Succinate Dehydrogenase: A flavoprotein containing oxidoreductase that catalyzes the dehydrogenation of SUCCINATE to fumarate. In most eukaryotic organisms this enzyme is a component of mitochondrial electron transport complex II.Succinic Acid: A water-soluble, colorless crystal with an acid taste that is used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. (Hawley's Condensed Chemical Dictionary, 12th ed, p1099; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1851)Electron Transport Complex II: A flavoprotein oxidase complex that contains iron-sulfur centers. It catalyzes the oxidation of SUCCINATE to fumarate and couples the reaction to the reduction of UBIQUINONE to ubiquinol.Fumarates: Compounds based on fumaric acid.MalatesSuccinate Cytochrome c Oxidoreductase: An electron transport chain complex that catalyzes the transfer of electrons from SUCCINATE to CYTOCHROME C. It includes ELECTRON TRANSPORT COMPLEX II and ELECTRON TRANSPORT COMPLEX III.Citric Acid Cycle: A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds.Dicarboxylic Acid Transporters: A family of organic anion transporters that specifically transport DICARBOXYLIC ACIDS such as alpha-ketoglutaric acid across cellular membranes.Tocopherols: A collective name for a group of closely related lipids that contain substitutions on the 2H-1-benzopyran-6-ol nucleus and a long hydrocarbon chain of isoprenoid units. They are antioxidants by virtue of the phenolic hydrogen. Tocopherols react with the most reactive form of oxygen and protect unsaturated fatty acids from oxidation.Ketoglutaric Acids: A family of compounds containing an oxo group with the general structure of 1,5-pentanedioic acid. (From Lehninger, Principles of Biochemistry, 1982, p442)MalonatesDicarboxylic AcidsParaganglioma: A neural crest tumor usually derived from the chromoreceptor tissue of a paraganglion, such as the carotid body, or medulla of the adrenal gland (usually called a chromaffinoma or pheochromocytoma). It is more common in women than in men. (Stedman, 25th ed; from Segen, Dictionary of Modern Medicine, 1992)Methylprednisolone Hemisuccinate: A water-soluble ester of METHYLPREDNISOLONE used for cardiac, allergic, and hypoxic emergencies.Electron Transport: The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270)Oxygen Consumption: The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346)Mitochondria: Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)Oxidoreductases: The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)Succinate-CoA Ligases: Enzymes that catalyze the first step leading to the oxidation of succinic acid by the reversible formation of succinyl-CoA from succinate and CoA with the concomitant cleavage of ATP to ADP (EC 6.2.1.5) or GTP to GDP (EC 6.2.1.4) and orthophosphate. Itaconate can act instead of succinate and ITP instead of GTP.EC 6.2.1.-.Oxidation-Reduction: A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).Acetates: Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure.Mitochondria, Liver: Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4)Oxidative Phosphorylation: Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds.Ubiquinone: A lipid-soluble benzoquinone which is involved in ELECTRON TRANSPORT in mitochondrial preparations. The compound occurs in the majority of aerobic organisms, from bacteria to higher plants and animals.Antimycin A: An antibiotic substance produced by Streptomyces species. It inhibits mitochondrial respiration and may deplete cellular levels of ATP. Antimycin A1 has been used as a fungicide, insecticide, and miticide. (From Merck Index, 12th ed)Succinate-Semialdehyde Dehydrogenase: An enzyme that plays a role in the GLUTAMATE and butanoate metabolism pathways by catalyzing the oxidation of succinate semialdehyde to SUCCINATE using NAD+ as a coenzyme. Deficiency of this enzyme, causes 4-hydroxybutyricaciduria, a rare inborn error in the metabolism of the neurotransmitter 4-aminobutyric acid (GABA).Propionates: Derivatives of propionic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxyethane structure.Anaerobiosis: The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)Dodecanol: A saturated 12-carbon fatty alcohol obtained from coconut oil fatty acids. It has a floral odor and is used in detergents, lubricating oils, and pharmaceuticals. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)NAD: A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)PyruvatesParaganglioma, Extra-Adrenal: A relatively rare, usually benign neoplasm originating in the chemoreceptor tissue of the CAROTID BODY; GLOMUS JUGULARE; GLOMUS TYMPANICUM; AORTIC BODIES; and the female genital tract. It consists histologically of rounded or ovoid hyperchromatic cells that tend to be grouped in an alveolus-like pattern within a scant to moderate amount of fibrous stroma and a few large thin-walled vascular channels. (From Stedman, 27th ed)Cytochromes: Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands.Thenoyltrifluoroacetone: Chelating agent and inhibitor of cellular respiration.Kinetics: The rate dynamics in chemical or physical systems.Iron-Sulfur Proteins: A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation.Submitochondrial Particles: The various filaments, granules, tubules or other inclusions within mitochondria.Oxaloacetates: Derivatives of OXALOACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include a 2-keto-1,4-carboxy aliphatic structure.Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.Rotenone: A botanical insecticide that is an inhibitor of mitochondrial electron transport.Carboxin: A systemic agricultural fungicide and seed treatment agent.Fumarate Hydratase: An enzyme that catalyzes the reversible hydration of fumaric acid to yield L-malic acid. It is one of the citric acid cycle enzymes. EC 4.2.1.2.Formates: Derivatives of formic acids. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are formed with a single carbon carboxy group.FlavoproteinsGram-Negative Anaerobic Bacteria: A large group of anaerobic bacteria which show up as pink (negative) when treated by the Gram-staining method.Culture Media: Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.CitratesVitamin E: A generic descriptor for all TOCOPHEROLS and TOCOTRIENOLS that exhibit ALPHA-TOCOPHEROL activity. By virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus, these compounds exhibit varying degree of antioxidant activity, depending on the site and number of methyl groups and the type of ISOPRENOIDS.Carboxylic Acids: Organic compounds containing the carboxy group (-COOH). This group of compounds includes amino acids and fatty acids. Carboxylic acids can be saturated, unsaturated, or aromatic.Mitochondria, Heart: The mitochondria of the myocardium.Dinitrophenols: Organic compounds that contain two nitro groups attached to a phenol.Glucose: A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.Aerobiosis: Life or metabolic reactions occurring in an environment containing oxygen.Hydroxyquinolines: The 8-hydroxy derivatives inhibit various enzymes and their halogenated derivatives, though neurotoxic, are used as topical anti-infective agents, among other uses.Fermentation: Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID.Doxylamine: Histamine H1 antagonist with pronounced sedative properties. It is used in allergies and as an antitussive, antiemetic, and hypnotic. Doxylamine has also been administered in veterinary applications and was formerly used in PARKINSONISM.Mitochondria, Muscle: Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available.Metabolic Engineering: Methods and techniques used to genetically modify cells' biosynthetic product output and develop conditions for growing the cells as BIOREACTORS.Uncoupling Agents: Chemical agents that uncouple oxidation from phosphorylation in the metabolic cycle so that ATP synthesis does not occur. Included here are those IONOPHORES that disrupt electron transfer by short-circuiting the proton gradient across mitochondrial membranes.Hydrogen-Ion Concentration: The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)Wolinella: A genus of gram-negative, anaerobic, rod-shaped bacteria isolated from the bovine RUMEN, the human gingival sulcus, and dental PULPITIS infections.Veillonella: A genus of gram-negative, anaerobic cocci parasitic in the mouth and in the intestinal and respiratory tracts of man and other animals.Pyruvic Acid: An intermediate compound in the metabolism of carbohydrates, proteins, and fats. In thiamine deficiency, its oxidation is retarded and it accumulates in the tissues, especially in nervous structures. (From Stedman, 26th ed)Carbon Isotopes: Stable carbon atoms that have the same atomic number as the element carbon, but differ in atomic weight. C-13 is a stable carbon isotope.Adenosine Triphosphate: An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.Isocitrate Lyase: A key enzyme in the glyoxylate cycle. It catalyzes the conversion of isocitrate to succinate and glyoxylate. EC 4.1.3.1.Coenzyme A-Transferases: Enzymes which transfer coenzyme A moieties from acyl- or acetyl-CoA to various carboxylic acceptors forming a thiol ester. Enzymes in this group are instrumental in ketone body metabolism and utilization of acetoacetate in mitochondria. EC 2.8.3.Glutamates: Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure.Hydroxybutyrates: Salts and esters of hydroxybutyric acid.Malate Dehydrogenase: An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37.Lactates: Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.Electron Transport Complex I: A flavoprotein and iron sulfur-containing oxidoreductase complex that catalyzes the conversion of UBIQUINONE to ubiquinol. In MITOCHONDRIA the complex also couples its reaction to the transport of PROTONS across the internal mitochondrial membrane. The NADH DEHYDROGENASE component of the complex can be isolated and is listed as EC 1.6.99.3.Industrial Microbiology: The study, utilization, and manipulation of those microorganisms capable of economically producing desirable substances or changes in substances, and the control of undesirable microorganisms.Multienzyme Complexes: Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Nitro Compounds: Compounds having the nitro group, -NO2, attached to carbon. When attached to nitrogen they are nitramines and attached to oxygen they are NITRATES.Cyanides: Inorganic salts of HYDROGEN CYANIDE containing the -CN radical. The concept also includes isocyanides. It is distinguished from NITRILES, which denotes organic compounds containing the -CN radical.Oxaloacetic Acid: A dicarboxylic acid ketone that is an important metabolic intermediate of the CITRIC ACID CYCLE. It can be converted to ASPARTIC ACID by ASPARTATE TRANSAMINASE.Quinone Reductases: NAD(P)H:(quinone acceptor) oxidoreductases. A family that includes three enzymes which are distinguished by their sensitivity to various inhibitors. EC 1.6.99.2 (NAD(P)H DEHYDROGENASE (QUINONE);) is a flavoprotein which reduces various quinones in the presence of NADH or NADPH and is inhibited by dicoumarol. EC 1.6.99.5 (NADH dehydrogenase (quinone)) requires NADH, is inhibited by AMP and 2,4-dinitrophenol but not by dicoumarol or folic acid derivatives. EC 1.6.99.6 (NADPH dehydrogenase (quinone)) requires NADPH and is inhibited by dicoumarol and folic acid derivatives but not by 2,4-dinitrophenol.Spectrophotometry: The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.GlutaratesCell Respiration: The metabolic process of all living cells (animal and plant) in which oxygen is used to provide a source of energy for the cell.Aconitate Hydratase: An enzyme that catalyzes the reversible hydration of cis-aconitate to yield citrate or isocitrate. It is one of the citric acid cycle enzymes. EC 4.2.1.3.Oligomycins: A closely related group of toxic substances elaborated by various strains of Streptomyces. They are 26-membered macrolides with lactone moieties and double bonds and inhibit various ATPases, causing uncoupling of phosphorylation from mitochondrial respiration. Used as tools in cytochemistry. Some specific oligomycins are RUTAMYCIN, peliomycin, and botrycidin (formerly venturicidin X).Electron Spin Resonance Spectroscopy: A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING.Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone: A proton ionophore that is commonly used as an uncoupling agent in biochemical studies.Flavins: Derivatives of the dimethylisoalloxazine (7,8-dimethylbenzo[g]pteridine-2,4(3H,10H)-dione) skeleton. Flavin derivatives serve an electron transfer function as ENZYME COFACTORS in FLAVOPROTEINS.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Cytochrome b Group: Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group.Dithionite: Dithionite. The dithionous acid ion and its salts.Electron Transport Complex IV: A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane.Carbon: A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel.Corynebacterium glutamicum: A species of gram-positive, asporogenous, non-pathogenic, soil bacteria that produces GLUTAMIC ACID.Enzyme Repression: The interference in synthesis of an enzyme due to the elevated level of an effector substance, usually a metabolite, whose presence would cause depression of the gene responsible for enzyme synthesis.Bacterial Proteins: Proteins found in any species of bacterium.Biological Transport, Active: The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy.Oxygen: An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.NADH Dehydrogenase: A flavoprotein and iron sulfur-containing oxidoreductase that catalyzes the oxidation of NADH to NAD. In eukaryotes the enzyme can be found as a component of mitochondrial electron transport complex I. Under experimental conditions the enzyme can use CYTOCHROME C GROUP as the reducing cofactor. The enzyme was formerly listed as EC 1.6.2.1.Pseudomonas: A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants.Citrate (si)-Synthase: Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7.Citric Acid: A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability.Glycerol: A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, and sweetening agent.Aspartic Acid: One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter.Ketoglutarate Dehydrogenase ComplexIsocitrate Dehydrogenase: An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC 1.1.1.42.) EC 1.1.1.41.Encephalomalacia: Softening or loss of brain tissue following CEREBRAL INFARCTION; cerebral ischemia (see BRAIN ISCHEMIA), infection, CRANIOCEREBRAL TRAUMA, or other injury. The term is often used during gross pathologic inspection to describe blurred cortical margins and decreased consistency of brain tissue following infarction. Multicystic encephalomalacia refers to the formation of multiple cystic cavities of various sizes in the cerebral cortex of neonates and infants following injury, most notably perinatal hypoxia-ischemic events. (From Davis et al., Textbook of Neuropathology, 2nd ed, p665; J Neuropathol Exp Neurol, 1995 Mar;54(2):268-75)Flavin-Adenine Dinucleotide: A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972)Glycerolphosphate DehydrogenasePheochromocytoma: A usually benign, well-encapsulated, lobular, vascular tumor of chromaffin tissue of the ADRENAL MEDULLA or sympathetic paraganglia. The cardinal symptom, reflecting the increased secretion of EPINEPHRINE and NOREPINEPHRINE, is HYPERTENSION, which may be persistent or intermittent. During severe attacks, there may be HEADACHE; SWEATING, palpitation, apprehension, TREMOR; PALLOR or FLUSHING of the face, NAUSEA and VOMITING, pain in the CHEST and ABDOMEN, and paresthesias of the extremities. The incidence of malignancy is as low as 5% but the pathologic distinction between benign and malignant pheochromocytomas is not clear. (Dorland, 27th ed; DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1298)Carbohydrate Metabolism: Cellular processes in biosynthesis (anabolism) and degradation (catabolism) of CARBOHYDRATES.Hydroxybutyrate DehydrogenaseGlyoxylatesRhodopseudomonas: A genus of gram-negative, rod-shaped, phototrophic bacteria found in aquatic environments. Internal photosynthetic membranes are present as lamellae underlying the cytoplasmic membrane.Spirillum: A genus of gram-negative, curved and spiral-shaped bacteria found in stagnant, freshwater environments. These organisms are motile by bipolar tufts of flagella having a long wavelength and about one helical turn. Some species of Spirillum cause a form of RAT-BITE FEVER.Cattle: Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.Rutamycin: A macrolide antibiotic of the oligomycin group, obtained from Streptomyces rutgersensis. It is used in cytochemistry as a tool to inhibit various ATPases and to uncouple oxidative phosphorylation from electron transport and also clinically as an antifungal agent.Decarboxylation: The removal of a carboxyl group, usually in the form of carbon dioxide, from a chemical compound.Methylobacterium extorquens: A species of METHYLOBACTERIUM which can utilize acetate, ethanol, or methylamine as a sole carbon source. (From Bergey's Manual of Determinative Bacteriology, 9th ed)IsocitratesElectron Transport Complex III: A multisubunit enzyme complex that contains CYTOCHROME B GROUP; CYTOCHROME C1; and iron-sulfur centers. It catalyzes the oxidation of ubiquinol to UBIQUINONE, and transfers the electrons to CYTOCHROME C. In MITOCHONDRIA the redox reaction is coupled to the transport of PROTONS across the inner mitochondrial membrane.Polarography: An electrochemical technique for measuring the current that flows in solution as a function of an applied voltage. The observed polarographic wave, resulting from the electrochemical response, depends on the way voltage is applied (linear sweep or differential pulse) and the type of electrode used. Usually a mercury drop electrode is used.Energy Metabolism: The chemical reactions involved in the production and utilization of various forms of energy in cells.Methanol: A colorless, flammable liquid used in the manufacture of FORMALDEHYDE and ACETIC ACID, in chemical synthesis, antifreeze, and as a solvent. Ingestion of methanol is toxic and may cause blindness.Biological Transport: The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.Organic Anion Transporters, Sodium-Dependent: A subclass of ORGANIC ANION TRANSPORTERS whose transport of organic anions is driven either directly or indirectly by a gradient of sodium ions.Methylcellulose: Methylester of cellulose. Methylcellulose is used as an emulsifying and suspending agent in cosmetics, pharmaceutics and the chemical industry. It is used therapeutically as a bulk laxative.NADH, NADPH Oxidoreductases: A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6.Magnetic Resonance Spectroscopy: Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).Carbonyl Cyanide m-Chlorophenyl Hydrazone: A proton ionophore. It is commonly used as an uncoupling agent and inhibitor of photosynthesis because of its effects on mitochondrial and chloroplast membranes.Paracoccus denitrificans: A species of bacteria isolated from soil.Potassium Cyanide: A highly poisonous compound that is an inhibitor of many metabolic processes, but has been shown to be an especially potent inhibitor of heme enzymes and hemeproteins. It is used in many industrial processes.IndophenolRhizobium: A genus of gram-negative, aerobic, rod-shaped bacteria that activate PLANT ROOT NODULATION in leguminous plants. Members of this genus are nitrogen-fixing and common soil inhabitants.Protons: Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion.Bacteroides: A genus of gram-negative, anaerobic, rod-shaped bacteria. Its organisms are normal inhabitants of the oral, respiratory, intestinal, and urogenital cavities of humans, animals, and insects. Some species may be pathogenic.Metalloproteins: Proteins that have one or more tightly bound metal ions forming part of their structure. (Dorland, 28th ed)Metabolism: The chemical reactions that occur within the cells, tissues, or an organism. These processes include both the biosynthesis (ANABOLISM) and the breakdown (CATABOLISM) of organic materials utilized by the living organism.Carbon Dioxide: A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals.NADP: Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed)Mitochondrial Swelling: An increase in MITOCHONDRIAL VOLUME due to an influx of fluid; it occurs in hypotonic solutions due to osmotic pressure and in isotonic solutions as a result of altered permeability of the membranes of respiring mitochondria.Rhodospirillum: A genus of gram-negative, spiral bacteria that possesses internal photosynthetic membranes. Its organisms divide by binary fission, are motile by means of polar flagella, and are found in aquatic environments.Adenosine Diphosphate: Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position.Hydrogen: The first chemical element in the periodic table. It has the atomic symbol H, atomic number 1, and atomic weight [1.00784; 1.00811]. It exists, under normal conditions, as a colorless, odorless, tasteless, diatomic gas. Hydrogen ions are PROTONS. Besides the common H1 isotope, hydrogen exists as the stable isotope DEUTERIUM and the unstable, radioactive isotope TRITIUM.Methylphenazonium Methosulfate: Used as an electron carrier in place of the flavine enzyme of Warburg in the hexosemonophosphate system and also in the preparation of SUCCINIC DEHYDROGENASE.Metabolic Networks and Pathways: Complex sets of enzymatic reactions connected to each other via their product and substrate metabolites.Cell Membrane: The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.Gene Expression Regulation, Bacterial: Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.Acetyl Coenzyme A: Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent.Genes, Bacterial: The functional hereditary units of BACTERIA.Acyl Coenzyme A: S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation.Aspartate Carbamoyltransferase: An enzyme that catalyzes the conversion of carbamoyl phosphate and L-aspartate to yield orthophosphate and N-carbamoyl-L-aspartate. (From Enzyme Nomenclature, 1992) EC 2.1.3.2.Tetramethylphenylenediamine: Used in the form of the hydrochloride as a reagent in ANALYTICAL CHEMISTRY TECHNIQUES.alpha-Tocopherol: A natural tocopherol and one of the most potent antioxidant tocopherols. It exhibits antioxidant activity by virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus. It has four methyl groups on the 6-chromanol nucleus. The natural d form of alpha-tocopherol is more active than its synthetic dl-alpha-tocopherol racemic mixture.Bacillus subtilis: A species of gram-positive bacteria that is a common soil and water saprophyte.Amino Acids: Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.Biodegradation, Environmental: Elimination of ENVIRONMENTAL POLLUTANTS; PESTICIDES and other waste using living organisms, usually involving intervention of environmental or sanitation engineers.Metoprolol: A selective adrenergic beta-1 blocking agent that is commonly used to treat ANGINA PECTORIS; HYPERTENSION; and CARDIAC ARRHYTHMIAS.Heme: The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Mycobacterium phlei: A saprophytic bacterium widely distributed in soil and dust and on plants.Coenzyme ALactic Acid: A normal intermediate in the fermentation (oxidation, metabolism) of sugar. The concentrated form is used internally to prevent gastrointestinal fermentation. (From Stedman, 26th ed)Phosphates: Inorganic salts of phosphoric acid.Glutamate Dehydrogenase: An enzyme that catalyzes the conversion of L-glutamate and water to 2-oxoglutarate and NH3 in the presence of NAD+. (From Enzyme Nomenclature, 1992) EC 1.4.1.2.Carbamyl Phosphate: The monoanhydride of carbamic acid with PHOSPHORIC ACID. It is an important intermediate metabolite and is synthesized enzymatically by CARBAMYL-PHOSPHATE SYNTHASE (AMMONIA) and CARBAMOYL-PHOSPHATE SYNTHASE (GLUTAMINE-HYDROLYZING).Phosphoenolpyruvate Carboxykinase (ATP): An enzyme of the lyase class that catalyzes the conversion of ATP and oxaloacetate to ADP, phosphoenolpyruvate, and carbon dioxide. The enzyme is found in some bacteria, yeast, and Trypanosoma, and is important for the photosynthetic assimilation of carbon dioxide in some plants. EC 4.1.1.49.Acetate Kinase: An enzyme that catalyzes reversibly the phosphorylation of acetate in the presence of a divalent cation and ATP with the formation of acetylphosphate and ADP. It is important in the glycolysis process. EC 2.7.2.1.Mersalyl: A toxic thiol mercury salt formerly used as a diuretic. It inhibits various biochemical functions, especially in mitochondria, and is used to study those functions.Adipates: Derivatives of adipic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,6-carboxy terminated aliphatic structure.Binding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.Batch Cell Culture Techniques: Methods for cultivation of cells, usually on a large-scale, in a closed system for the purpose of producing cells or cellular products to harvest.Coenzyme A Ligases: Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1.Benzoates: Derivatives of BENZOIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxybenzene structure.Substrate Specificity: A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.Adenosine Triphosphatases: A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA.

Activity in saline of phthalylated or succinylated derivatives of mycobacterial water-soluble adjuvant. (1/1470)

A water-soluble fraction (WSA) of the cell wall can substitute for mycobacterial cells in Freund complete adjuvant. However, when WSA is administered in saline instead of in a water-in-oil emulsion, its adjuvant activity is very weak, and under certain experimental conditions it can even inhibit the humoral immune response. The data reported in the present study show that after treatment by phthalic or succinic anhydride the adjuvant activity of WSA was markedly changed, since high levels of circulating antibodies were produced when these derivatives were administered with an antigen in an aqueous medium. Moreover, the antigenic determinants of WSA were modified and acylated WSA had no tuberculin-like activity.  (+info)

Control of ketogenesis from amino acids. IV. Tissue specificity in oxidation of leucine, tyrosine, and lysine. (2/1470)

In vitro and in vivo studies were made on the tissue specificity of oxidation of the ketogenic amino acids, leucine, tyrosine, and lysine. In in vitro studies the abilities of slices of various tissues of rats to form 14CO2 from 14C-amino acids were examined. With liver, but not kidney slices, addition of alpha-ketoglutarate was required for the maximum activities with these amino acids. Among the various tissues tested, kidney had the highest activity for lysine oxidation, followed by liver; other tissues showed very low activity. Kidney also had the highest activity for leucine oxidation, followed by diaphragm; liver and adipose tissue had lower activities. Liver had the highest activity for tyrosine oxidation, but kidney also showed considerable activity; other tissues had negligible activity. In in vivo studies the blood flow through the liver or kidney was stopped by ligation of the blood vessels. Then labeled amino acids were injected and recovery of radioactivity in respiratory 14CO2 was measured. In contrast to results with slices, no difference was found in the respiratory 14CO2 when the renal blood vessels were or were not ligated. On the contrary ligation of the hepatic vessels suppressed the oxidations of lysine and tyrosine completely and that of leucine partially. Thus in vivo, lysine and tyrosine seem to be metabolized mainly in the liver, whereas leucine is metabolized mostly in extrahepatic tissues and partly in liver. Use of tissue slices seems to be of only limited value in elucidating the metabolisms of these amino acids.  (+info)

Relationship between succinate transport and production of extracellular poly(3-hydroxybutyrate) depolymerase in Pseudomonas lemoignei. (3/1470)

The relationship between extracellular poly(3-hydroxybutyrate) (PHB) depolymerase synthesis and the unusual properties of a succinate uptake system was investigated in Pseudomonas lemoignei. Growth on and uptake of succinate were highly pH dependent, with optima at pH 5.6. Above pH 7, growth on and uptake of succinate were strongly reduced with concomitant derepression of PHB depolymerase synthesis. The specific succinate uptake rates were saturable by high concentrations of succinate, and maximal transport rates of 110 nmol/mg of cell protein per min were determined between pH 5.6 and 6. 8. The apparent KS0.5 values increased with increasing pH from 0.2 mM succinate at pH 5.6 to more than 10 mM succinate at pH 7.6. The uptake of [14C]succinate was strongly inhibited by several monocarboxylates. Dicarboxylates also inhibited the uptake of succinate but only at pH values near the dissociation constant of the second carboxylate function (pKa2). We conclude that the succinate carrier is specific for the monocarboxylate forms of various carboxylic acids and is not able to utilize the dicarboxylic forms. The inability to take up succinate2- accounts for the carbon starvation of P. lemoignei observed during growth on succinate at pH values above 7. As a consequence the bacteria produce high levels of extracellular PHB depolymerase activity in an effort to escape carbon starvation by utilization of PHB hydrolysis products.  (+info)

One-carbon metabolism in methanogenic bacteria: analysis of short-term fixation products of 14CO2 and 14CH3OH incorporated into whole cells. (4/1470)

Methanobacterium thermoautotrophicum, M. ruminantium, and Methanosarcina barkeri were labeled with 14CO2 (14CO2 + H14CO3- + 14CO32-) for from 2 to 45 s. Radioactivity was recovered in coenzyme M derivatives, alanine, aspartate, glutamate, and several unidentified compounds. The properties of one important structurally unidentified intermediate (yellow fluorescent compound) displayed UV absorbance maxima at pH 1 of 290 and 335 nm, no absorbance in the visible region, and a fluorescence maximum at 460 nm. Label did not appear in organic phosphates until after 1 min. 14CH3OH was converted by M. barkeri primarily into coenzyme M derivatives at 25 s. [2-14C]acetate was assimilated by M. thermoautotrophicum mainly into alanine and succinate during 2 to 240 s, but not into coenzyme M derivatives or yellow fluorescent compound. Cell-free extracts of M. thermoautotrophicum lacked ribulose 1,5-bisphosphate carboxylase activity. The data indicated the absence of the Calvin, serine, and hexulose phosphate paths of C1 assimilation in the methanogens examined and indicated that pyruvate was an early intermediate product of net CO2 fixation. The in vivo importance of coenzyme M derivatives in methanogenesis was demonstrated.  (+info)

Targeted delivery and improved therapeutic potential of catalase by chemical modification: combination with superoxide dismutase derivatives. (5/1470)

Four types of bovine liver catalase (CAT) derivatives, succinylated (Suc-CAT), galactosylated (Gal-CAT), mannosylated (Man-CAT), and polyethylene glycol conjugate (PEG-CAT), were synthesized and their pharmacokinetics and therapeutic potential in a hepatic ischemia/reperfusion injury model were studied in mice. About 90% of the CAT enzymatic activity was retained after chemical modification. Biodistribution studies showed that 111indium (111In)-Gal-CAT accumulated selectively in the liver parenchymal cells as 111In-CAT, whereas an increased amount of 111In-Suc-CAT and 111In-Man-CAT was delivered to liver nonparenchymal cells. 111In-PEG-CAT exhibited prolonged retention in plasma. Pharmacokinetic analysis revealed that the hepatic uptake clearances of 111In-Suc-CAT, 111In-Gal-CAT, and 111In-Man-CAT were much greater than that of 111In-CAT, whereas that of 111In-PEG-CAT was very small. In the ischemia/reperfusion injury model, in which hepatic injury was induced by occlusion of the portal vein for 30 min followed by 1 h reperfusion, the elevation of plasma glutamic pyruvic transaminase and glutamic oxaloacetic transaminase levels was slightly inhibited by treatment with native CAT or Gal-CAT. PEG-CAT was less potent. In contrast, Suc-CAT and Man-CAT effectively suppressed the increase in plasma glutamic pyruvic transaminase and glutamic oxaloacetic transaminase. Coinjection of mannosylated superoxide dismutase marginally improved the inhibitory effects of CAT derivatives. These results demonstrate that targeted CAT delivery to liver nonparenchymal cells via chemical modification is a promising approach to prevent hepatic injuries caused by reactive oxygen species. The potential usefulness of combining of CAT and superoxide dismutase derivatives is also demonstrated.  (+info)

Pseudo-proteinuria following gelofusine infusion. (6/1470)

Transient massive proteinuria following cardiopulmonary bypass surgery was observed. It was characterized and attributed to post-operative gelofusine infusion. Gelofusine was found to interfere with dye binding but not immunochemical assays of proteinuria. Proteinuria following gelofusine infusion may not reflect underlying glomerular pathology.  (+info)

Comparative disposition of the nephrotoxicant N-(3, 5-dichlorophenyl)succinimide and the non-nephrotoxicant N-(3, 5-difluorophenyl)succinimide in Fischer 344 rats. (7/1470)

Disposition of the nephrotoxicant N-(3,5-dichlorophenyl)succinimide (NDPS) was compared with that of a nontoxic analog, N-(3, 5-difluorophenyl)succinimide (DFPS). Male Fischer 344 rats were administered 0.2 or 0.6 mmol/kg [14C]NDPS or [14C]DFPS (i.p. in corn oil). Plasma concentrations were determined from blood samples obtained through the carotid artery. Urine samples were analyzed for metabolite content by HPLC. Rats were sacrificed at 3 h (DFPS) or 6 h (NDPS) and tissue radiolabel content and covalent binding were determined. [14C]NDPS-derived plasma radioactivity levels were 6- to 21-fold higher and peaked later than those from [14C]DFPS. Six hours after dosing, NDPS was 40% eliminated in the urine compared with approximately 90% for DFPS. By 48 h, only 67% of the NDPS dose was eliminated in urine. In contrast, DFPS excretion was virtually complete within 24 h. NDPS underwent oxidative metabolism to a slightly greater extent than DFPS. Distribution of [14C]NDPS-derived radioactivity into the kidneys was 3- to 6-fold higher than that into the liver or heart, and was more extensive than with [14C]DFPS. NDPS also covalently bound to plasma, renal, and hepatic proteins to a greater extent than DFPS. In summary, NDPS achieves higher tissue and plasma concentrations, covalently binds to a greater extent, and is eliminated more slowly than DFPS. Differences in the lipid solubility of NDPS metabolites and DFPS metabolites may help explain these results. The overall greater tissue exposure of NDPS and its metabolites may contribute to differential toxicity of these analogs.  (+info)

Uptake of bromosulfophthalein via SO2-4/OH- exchange increases the K+ conductance of rat hepatocytes. (8/1470)

In confluent primary cultures of rat hepatocytes, micromolar concentrations of bromosulfophthalein (BSP) lead to a sizeable hyperpolarization of membrane voltage. The effect is a saturable function of BSP concentration yielding an apparent value of 226 micromol/l and a Vmax of -10.3 mV. The BSP-induced membrane hyperpolarization is inhibited by the K+ channel blocker Ba2+, and in cable-analysis and ion-substitution experiments it becomes evident that the effect is due to a significant increase in cell membrane K+ conductance. Voltage changes were attenuated by the simultaneous administration of SO2-4, succinate, and cholate (cis-inhibition) and increased after preincubation with SO2-4 and succinate (trans-stimulation), suggesting that the effect occurs via BSP uptake through the known SO2-4/OH- exchanger. Microfluorometric measurements reveal that BSP-induced activation of K+ conductance is not mediated by changes in cell pH, cell Ca2+, or cell volume. It is concluded that K+ channel activation by BSP (as well as by DIDS and indocyanine green) may reflect a physiological mechanism linking the sinusoidal uptake of certain anions to their electrogenic canalicular secretion.  (+info)

  • Nandrolone hydrogen succinate (brand name Anabolico, Menidrabol), or nandrolone hemisuccinate, also known as 19-nortestosterone 17β-(3-carboxy)propionate, is a synthetic androgen and anabolic steroid and a nandrolone ester that is or has been marketed in Italy. (wikipedia.org)
  • Succistearin (stearoyl propylene glycol hydrogen succinate). (cornell.edu)
  • There are some conditions which may increase the risk of taking metoprolol succinate or at least require an adjusted dosage or increased doctor observation during treatment. (wisegeek.com)
  • It is not recommended to stop taking Metopropol Succinate ER without first consulting a doctor, as the dosage should be tapered down slowly, rather than abruptly stopping the medication. (reference.com)
  • Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids. (bioportfolio.com)
  • We show that, as M. tuberculosis adapts to hypoxia, it slows and remodels its tricarboxylic acid cycle to increase production of succinate, which is used to flexibly sustain membrane potential, ATP synthesis, and anaplerosis, in response to varying degrees of O 2 limitation and the presence or absence of the alternate electron acceptor nitrate. (pnas.org)
  • Isocitrate lyase-dependent production of succinate affords M. tuberculosis with a unique and bioenergetically efficient metabolic means of entry into and exit from hypoxia-induced quiescence. (pnas.org)
  • The research study properties of the starch-based foam from mixed between tapioca starch and octenyl succinate starch (OSA starch), have addition alpha-chitin prepared by hot compression molding method. (scirp.org)
  • An alternative way is using modified starch in order to improve hydrophobicity of the starch as octenyl succinate starch (OSA). (scirp.org)
  • In this study, morphology, chemical structure, density, flexural and thermal properties of tapioca starch/octenyl succinate starch blended starch/chitin composite foams were investigated. (scirp.org)
  • VESIcare® (solifenacin succinate) is a muscarinic receptor antagonist . (rxlist.com)
  • Solifenacin succinate is a white to pale-yellowish-white crystal or crystalline powder. (rxlist.com)
  • Each VESIcare tablet contains 5 or 10 mg of solifenacin succinate and is formulated for oral administration. (rxlist.com)
  • solifenacin succinate manufacturers and suppliers with contacts and product range are mentioned in the study. (marketpublishers.com)
  • Furthermore, solifenacin succinate prices in regional markets can be found in the report with regards to countries and companies. (marketpublishers.com)
  • The report also focuses on solifenacin succinate consumers by providing data on companies that use it. (marketpublishers.com)
  • Solifenacin Succinate (CAS 24278-38-2) Market Research Report 2018 contents were worked out and placed on the website in February, 2018. (marketpublishers.com)
  • Please note that Solifenacin Succinate (CAS 24278-38-2) Market Research Report 2018 is a half ready publication and contents are subject to change. (marketpublishers.com)
  • According to a survey report from MarketsandMarkets, the market of succinate is expected to grow at a rate of 18.7% from 2011 to 2016 [ 7 ]. (hindawi.com)
  • The global market for succinate in terms of revenue was estimated to be worth $182.8 million in 2010 and is expected to reach $496.0 million by 2016. (hindawi.com)
  • Conventional mice colonized with the succinate producer Prevotella copri exhibited metabolic benefits, which could be related to succinate-activated IGN. (nih.gov)
  • However, most prominently, the role of locally increased succinate levels and succinate receptor activation in the kidney, stimulating the systemic and local renin-angiotensin system, starts to unfold: the succinate receptor is a key mediator in the development of hypertension and possibly fibrosis in diabetes mellitus and metabolic syndrome. (frontiersin.org)
  • A relative lack of endogenous coenzyme Q, as well as a circadian rhythm of this coenzyme, highly influenced the activity of succinate dehydrogenase. (springer.com)
  • It is concluded that succinate dehydrogenase activity in the pineal gland of the rat is regulated by changing the concentration of the active enzyme itself as well as the level of the endogenous coenzyme Q. Whether this is caused by a circadian rhythm in the synthesis or in the catabolism of the enzyme and the coenzyme was not revealed by the present study. (springer.com)
  • In this review, recent attempts and experiences devoted to reduce the production cost of biobased succinate are summarized, including strain improvement, fermentation engineering, and downstream processing. (hindawi.com)
  • Succinamide, C 2 H 4(CONH2)2, best obtained by the action of ammonia on diethyl succinate , crystallizes in needles which melt at 242243° C., and is soluble in hot water. (yourdictionary.com)
  • Hello, I am looking for a protocol to detect succinate semialdehyde content in yeast cells after heat stress by not using HPLC, could anybody offer some suggestions? (bio.net)
  • Thus, microbiota-produced succinate is a previously unsuspected bacterial metabolite improving glycemic control through activation of IGN. (nih.gov)