A polysaccharide-producing species of STREPTOCOCCUS isolated from human dental plaque.
A genus of gram-positive, coccoid bacteria whose organisms occur in pairs or chains. No endospores are produced. Many species exist as commensals or parasites on man or animals with some being highly pathogenic. A few species are saprophytes and occur in the natural environment.
A species of gram-positive, coccoid bacteria isolated from skin lesions, blood, inflammatory exudates, and the upper respiratory tract of humans. It is a group A hemolytic Streptococcus that can cause SCARLET FEVER and RHEUMATIC FEVER.
Localized destruction of the tooth surface initiated by decalcification of the enamel followed by enzymatic lysis of organic structures and leading to cavity formation. If left unchecked, the cavity may penetrate the enamel and dentin and reach the pulp.
A gram-positive organism found in the upper respiratory tract, inflammatory exudates, and various body fluids of normal and/or diseased humans and, rarely, domestic animals.
A film that attaches to teeth, often causing DENTAL CARIES and GINGIVITIS. It is composed of MUCINS, secreted from salivary glands, and microorganisms.
Enzymes that catalyze the transfer of glucose from a nucleoside diphosphate glucose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-.
Infections with bacteria of the genus STREPTOCOCCUS.
A species of gram-positive, coccoid bacteria isolated from the human tooth surface. Strains have been shown to be cariogenic in experimental animals and may be associated with human dental caries.
Dextranase is an enzyme that catalyzes the hydrolysis of dextran, a glucose polymer, into smaller oligosaccharides or simple sugars, primarily used in clinical settings to prevent or treat dextran-induced complications such as anaphylaxis and renal dysfunction.
The clear, viscous fluid secreted by the SALIVARY GLANDS and mucous glands of the mouth. It contains MUCINS, water, organic salts, and ptylin.
A bacterium which causes mastitis in cattle and occasionally in man.
The oval-shaped oral cavity located at the apex of the digestive tract and consisting of two parts: the vestibule and the oral cavity proper.
Proteins found in any species of bacterium.
A species of gram-positive, coccoid bacteria commensal in the respiratory tract.
Polysaccharides composed of repeating glucose units. They can consist of branched or unbranched chains in any linkages.
A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener.
A species of gram-positive, coccoid bacteria that is numerous in the mouth and throat. It is a common cause of endocarditis and is also implicated in dental plaque formation.
Encrustations, formed from microbes (bacteria, algae, fungi, plankton, or protozoa) embedding in extracellular polymers, that adhere to surfaces such as teeth (DENTAL DEPOSITS); PROSTHESES AND IMPLANTS; and catheters. Biofilms are prevented from forming by treating surfaces with DENTIFRICES; DISINFECTANTS; ANTI-INFECTIVE AGENTS; and antifouling agents.
A diet that contributes to the development and advancement of DENTAL CARIES.
A species of STREPTOCOCCUS isolated from pigs. It is a pathogen of swine but rarely occurs in humans.
A species of gram-positive, facultatively anaerobic bacteria in the family STREPTOCOCCACEAE. It is a normal inhabitant of the human oral cavity, and causes DENTAL PLAQUE and ENDOCARDITIS. It is being investigated as a vehicle for vaccine delivery.
A genus of gram-positive, rod-shaped bacteria whose organisms are nonmotile. Filaments that may be present in certain species are either straight or wavy and may have swollen or clubbed heads.
A species of gram-positive, coccoid bacteria commonly found in the alimentary tract of cows, sheep, and other ruminants. It occasionally is encountered in cases of human endocarditis. This species is nonhemolytic.
Substances elaborated by specific strains of bacteria that are lethal against other strains of the same or related species. They are protein or lipopolysaccharide-protein complexes used in taxonomy studies of bacteria.
Physicochemical property of fimbriated (FIMBRIAE, BACTERIAL) and non-fimbriated bacteria of attaching to cells, tissue, and nonbiological surfaces. It is a factor in bacterial colonization and pathogenicity.
A gram-positive organism found in dental plaque, in blood, on heart valves in subacute endocarditis, and infrequently in saliva and throat specimens. L-forms are associated with recurrent aphthous stomatitis.
Polysaccharides found in bacteria and in capsules thereof.
A species of gram-positive, coccoid bacteria isolated from abscesses in submaxillary glands and mucopurulent discharges of the upper respiratory tract of horses. This organism belongs to Group C streptococci with regards to antigen response and is known to cause strangles. The subspecies S. zooepidemicus is also considered a pathogen of horses.
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
Substances, usually of biological origin, that cause cells or other organic particles to aggregate and stick to each other. They include those ANTIBODIES which cause aggregation or agglutination of particulate or insoluble ANTIGENS.
Viruses whose host is Streptococcus.
Substances elaborated by bacteria that have antigenic activity.
The ability of bacterial cells to take up exogenous DNA and be genetically transformed by it.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
The functional hereditary units of BACTERIA.
Process of determining and distinguishing species of bacteria or viruses based on antigens they share.
A methylpentose whose L- isomer is found naturally in many plant glycosides and some gram-negative bacterial lipopolysaccharides.
The principle immunoglobulin in exocrine secretions such as milk, respiratory and intestinal mucin, saliva and tears. The complete molecule (around 400 kD) is composed of two four-chain units of IMMUNOGLOBULIN A, one SECRETORY COMPONENT and one J chain (IMMUNOGLOBULIN J-CHAINS).
A thin protein film on the surface of DENTAL ENAMEL. It is widely believed to result from the selective adsorption of precursor proteins present in SALIVA onto tooth surfaces, and to reduce microbial adherence to the TEETH.
A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes.
Substances that promote DENTAL CARIES.
Infections with bacteria of the species STREPTOCOCCUS PNEUMONIAE.
Immunoglobulins produced in a response to BACTERIAL ANTIGENS.
Substances that reduce the growth or reproduction of BACTERIA.
The bacterial sugar phosphotransferase system (PTS) that catalyzes the transfer of the phosphoryl group from phosphoenolpyruvate to its sugar substrates (the PTS sugars) concomitant with the translocation of these sugars across the bacterial membrane. The phosphorylation of a given sugar requires four proteins, two general proteins, Enzyme I and HPr and a pair of sugar-specific proteins designated as the Enzyme II complex. The PTS has also been implicated in the induction of synthesis of some catabolic enzyme systems required for the utilization of sugars that are not substrates of the PTS as well as the regulation of the activity of ADENYLYL CYCLASES. EC 2.7.1.-.
A species of thermophilic, gram-positive bacteria found in MILK and milk products.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A complex of cyclic peptide antibiotics produced by the Tracy-I strain of Bacillus subtilis. The commercial preparation is a mixture of at least nine bacitracins with bacitracin A as the major constituent. It is used topically to treat open infections such as infected eczema and infected dermal ulcers. (From Goodman and Gilman, The Pharmacological Basis of Therapeutics, 8th ed, p1140)
A group of compounds with the general formula M10(PO4)6(OH)2, where M is barium, strontium, or calcium. The compounds are the principal mineral in phosphorite deposits, biological tissue, human bones, and teeth. They are also used as an anticaking agent and polymer catalysts. (Grant & Hackh's Chemical Dictionary, 5th ed)
Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.
Vaccines or candidate vaccines used to prevent STREPTOCOCCAL INFECTIONS.
A disinfectant and topical anti-infective agent used also as mouthwash to prevent oral plaque.
A species of gram-positive, coccoid bacteria commonly isolated from clinical specimens and the human intestinal tract. Most strains are nonhemolytic.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses).
Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing.
One of a set of bone-like structures in the mouth used for biting and chewing.
The heritable modification of the properties of a competent bacterium by naked DNA from another source. The uptake of naked DNA is a naturally occuring phenomenon in some bacteria. It is often used as a GENE TRANSFER TECHNIQUE.
The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents.
A property of the surface of an object that makes it stick to another surface.
Chemical compounds which yield hydrogen ions or protons when dissolved in water, whose hydrogen can be replaced by metals or basic radicals, or which react with bases to form salts and water (neutralization). An extension of the term includes substances dissolved in media other than water. (Grant & Hackh's Chemical Dictionary, 5th ed)
Animals not contaminated by or associated with any foreign organisms.
Cell-surface components or appendages of bacteria that facilitate adhesion (BACTERIAL ADHESION) to other cells or to inanimate surfaces. Most fimbriae (FIMBRIAE, BACTERIAL) of gram-negative bacteria function as adhesins, but in many cases it is a minor subunit protein at the tip of the fimbriae that is the actual adhesin. In gram-positive bacteria, a protein or polysaccharide surface layer serves as the specific adhesin. What is sometimes called polymeric adhesin (BIOFILMS) is distinct from protein adhesin.
The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS.
A genus of gram-negative, anaerobic cocci parasitic in the mouth and in the intestinal and respiratory tracts of man and other animals.
Substances used on humans and other animals that destroy harmful microorganisms or inhibit their activity. They are distinguished from DISINFECTANTS, which are used on inanimate objects.
A monosaccharide in sweet fruits and honey that is soluble in water, alcohol, or ether. It is used as a preservative and an intravenous infusion in parenteral feeding.
'Sucrase' is an intestinal brush-border enzyme that catalyzes the hydrolysis of sucrose into glucose and fructose in the digestive process.
The mineral component of bones and teeth; it has been used therapeutically as a prosthetic aid and in the prevention and treatment of osteoporosis.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Enzymes that catalyze the transfer of hexose groups. EC 2.4.1.-.
Bacterial polysaccharides that are rich in phosphodiester linkages. They are the major components of the cell walls and membranes of many bacteria.
A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.
Measurable quantity of bacteria in an object, organism, or organism compartment.
Techniques used in studying bacteria.
The clumping together of suspended material resulting from the action of AGGLUTININS.
A natural association between organisms that is detrimental to at least one of them. This often refers to the production of chemicals by one microorganism that is harmful to another.
A bacteriostatic antibiotic macrolide produced by Streptomyces erythreus. Erythromycin A is considered its major active component. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins.
Rupture of bacterial cells due to mechanical force, chemical action, or the lytic growth of BACTERIOPHAGES.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The inter- and intra-relationships between various microorganisms. This can include both positive (like SYMBIOSIS) and negative (like ANTIBIOSIS) interactions. Examples include virus - bacteria and bacteria - bacteria.
Solutions for rinsing the mouth, possessing cleansing, germicidal, or palliative properties. (From Boucher's Clinical Dental Terminology, 4th ed)
Esculin is a glucoside of esculetin, a coumarin derivative found in the horse chestnut tree (Aesculus hippocastanum) and some other plants, used in medical research for its anticoagulant properties and as a substrate in susceptibility testing of certain bacteria.
A genus of gram-positive, microaerophilic, rod-shaped bacteria occurring widely in nature. Its species are also part of the many normal flora of the mouth, intestinal tract, and vagina of many mammals, including humans. Pathogenicity from this genus is rare.
Ability of a microbe to survive under given conditions. This can also be related to a colony's ability to replicate.
Inorganic salts of hydrofluoric acid, HF, in which the fluorine atom is in the -1 oxidation state. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Sodium and stannous salts are commonly used in dentifrices.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
"Decayed, missing and filled teeth," a routinely used statistical concept in dentistry.
Exotoxins produced by certain strains of streptococci, particularly those of group A (STREPTOCOCCUS PYOGENES), that cause HEMOLYSIS.
Substances that inhibit or arrest DENTAL CARIES formation. (Boucher's Clinical Dental Terminology, 4th ed)
A species of gram-positive bacteria in the STREPTOCOCCUS MILLERI GROUP. It is commonly found in the oropharynx flora and has a proclivity for abscess formation, most characteristically in the CENTRAL NERVOUS SYSTEM and LIVER.
Proteins and peptides found in SALIVA and the SALIVARY GLANDS. Some salivary proteins such as ALPHA-AMYLASES are enzymes, but their composition varies in different individuals.
Inflammation of the throat (PHARYNX).
The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction.
Inflammation of the ENDOCARDIUM caused by BACTERIA that entered the bloodstream. The strains of bacteria vary with predisposing factors, such as CONGENITAL HEART DEFECTS; HEART VALVE DISEASES; HEART VALVE PROSTHESIS IMPLANTATION; or intravenous drug use.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Hard, amorphous, brittle, inorganic, usually transparent, polymerous silicate of basic oxides, usually potassium or sodium. It is used in the form of hard sheets, vessels, tubing, fibers, ceramics, beads, etc.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Bacteria which retain the crystal violet stain when treated by Gram's method.
Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen.
The predisposition to tooth decay (DENTAL CARIES).
A species of ACTINOMYCES found in the oral cavity of man and hamsters. It has been isolated from actinomycotic lesions in swine, cats, and dogs and has been identified as a causative agent of animal diseases.
Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection.
In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION.
Cellular processes in biosynthesis (anabolism) and degradation (catabolism) of CARBOHYDRATES.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
A febrile disease caused by STREPTOCOCCUS PNEUMONIAE.
A disaccharide of GLUCOSE and GALACTOSE in human and cow milk. It is used in pharmacy for tablets, in medicine as a nutrient, and in industry.
The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive.
Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation.
Glycoside Hydrolases are a class of enzymes that catalyze the hydrolysis of glycosidic bonds, resulting in the breakdown of complex carbohydrates and oligosaccharides into simpler sugars.
An autolytic enzyme bound to the surface of bacterial cell walls. It catalyzes the hydrolysis of the link between N-acetylmuramoyl residues and L-amino acid residues in certain cell wall glycopeptides, particularly peptidoglycan. EC
Polysaccharides composed of D-fructose units.
Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen.
Process by which micro-organisms adapt quickly to a preferred rapidly-metabolizable intermediate through the inhibition or repression of genes related to CATABOLISM of less preferred source(s).
Nonsusceptibility of an organism to the action of penicillins.
Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow).
A tetraiodofluorescein used as a red coloring in some foods (cherries, fish), as a disclosure of DENTAL PLAQUE, and as a stain of some cell types. It has structural similarity to THYROXINE.
Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis.
The sum of the weight of all the atoms in a molecule.
A resinous substance obtained from beehives that is used traditionally as an antimicrobial. It is a heterogeneous mixture of many substances.
Phosphoenolpyruvate (PEP) is a high-energy organic compound, an intermediate in the glycolytic pathway, that plays a crucial role in the transfer of energy during metabolic processes, and serves as a substrate for various biosynthetic reactions.
Suspensions of attenuated or killed bacteria administered for the prevention or treatment of infectious bacterial disease.
The adhesion of gases, liquids, or dissolved solids onto a surface. It includes adsorptive phenomena of bacteria and viruses onto surfaces as well. ABSORPTION into the substance may follow but not necessarily.

Interaction of inflammatory cells and oral microorganisms. II. Modulation of rabbit polymorphonuclear leukocyte hydrolase release by polysaccharides in response to Streptococcus mutans and Streptococcus sanguis. (1/1717)

The release of lysosomal hydrolases from polymorphonuclear leukocytes (PMNs) has been postulated in the pathogenesis of tissue injury in periodontal disease. In the present study, lysosomal enzyme release was monitored from rabbit peritoneal exudate PMNs exposed to Streptocccus mutans or Streptococcus sanguis. S. mutans grown in brain heart infusion (BHI) broth failed to promote significant PMN enzyme release. S. sanguis grown in BHI broth, although more effective than S. mutants, was a weak stimulus for promotion of PMN hydrolase release. Preincubation of washed, viable S. mutans in sucrose or in different-molecular-weight dextrans resulted in the ability of the organisms to provoke PMN release reactions. This effect could bot be demonstrated with boiled or trypsinized S. mutans or with viable S. sanguis. However, when grown in BHI broth supplemented with sucrose, but not with glucose, both S. mutans and S. sanguis triggered discharge of PMN enzymes. The mechanism(s) whereby dextran or sucrose modulates PMN-bacterial interaction may in some manner be related to promotion of microbial adhesiveness or aggregation by dextran and by bacterial synthesis of glucans from sucrose.  (+info)

Interaction of inflammatory cells and oral microorganisms. III. Modulation of rabbit polymorphonuclear leukocyte hydrolase release response to Actinomyces viscosus and Streptococcus mutans by immunoglobulins and complement. (2/1717)

In the absence of antiserum, rabbit polymorphonuclear leukocytes (PMNs) released lysosomal enzymes in response to Actinomyces viscosus (19246) but not to Streptococcus mutans (6715). Antibodies had a marked modulating influence on these reactions. PMN hydrolase release was significantly enhanced to both organisms when specific rabbit antiserum and isolated immunoglobulin G (IgG) were included in the incubations. Immune complex F(ab')2 fragments of IgG directed against S. mutans agglutinated bacteria. Immune complexes consisting of S. mutans and F(ab')2 fragments of IgG directed against this organism were not effective as bacteria-IgG complexes in stimulating PMN release. The intensity of the release response to bacteria-IgG complexes was also diminished when PMNs were preincubated with isolated Fc fragments derived from IgG. Fresh serum as a source of complement components had no demonstrable effect on PMN release either alone or in conjuction with antiserum in these experiments. These data may be relevant to the mechanisms and consequences of the interaction of PMNs and plaque bacteria in the pathogenesis of periodontal disease.  (+info)

Virulence of a spaP mutant of Streptococcus mutans in a gnotobiotic rat model. (3/1717)

Streptococcus mutans, the principal etiologic agent of dental caries in humans, possesses a variety of virulence traits that enable it to establish itself in the oral cavity and initiate disease. A 185-kDa cell surface-localized protein known variously as antigen I/II, antigen B, PAc, and P1 has been postulated to be a virulence factor in S. mutans. We showed previously that P1 expression is necessary for in vitro adherence of S. mutans to salivary agglutinin-coated hydroxyapatite as well as for fluid-phase aggregation. Since adherence of the organism is a necessary first step toward colonization of the tooth surface, we sought to determine what effect deletion of the gene for P1, spaP, has on the colonization and subsequent cariogenicity of this organism in vivo. Germ-free Fischer rats fed a diet containing 5% sucrose were infected with either S. mutans NG8 or an NG8-derived spaP mutant strain, PC3370, which had been constructed by allelic exchange mutagenesis. At 1-week intervals for 6 weeks after infection, total organisms recovered from mandibles were enumerated. At week 6, caries lesions also were scored. A significantly lower number of enamel and dentinal carious lesions was observed for the mutant-infected rats, although there was no difference between parent and mutant in the number of organisms recovered from teeth through 6 weeks postinfection. Coinfection of animals with both parent and mutant strains resulted in an increasing predominance of the mutant strain being recovered over time, suggesting that P1 is not a necessary prerequisite for colonization. These data do, however, suggest a role for P1 in the virulence of S. mutans, as reflected by a decrease in the cariogenicity of bacteria lacking this surface protein.  (+info)

The specific genes for lantibiotic mutacin II biosynthesis in Streptococcus mutans T8 are clustered and can be transferred en bloc. (4/1717)

Mutacin II is a ribosomally synthesized peptide lantibiotic produced by group II Streptococcus mutans. DNA sequencing has revealed that the mutacin II biosynthetic gene cluster consists of seven specific open reading frames: a regulator (mutR), the prepromutacin structural gene (mutA), a modifying protein (mutM), an ABC transporter (mutT), and an immunity cluster (mutFEG). Transformations of a non-mutacin-producing strain, S. mutans UA159, and a mutacin I-producing strain, S. mutans UA140, with chromosomal DNA from S. mutans T8 with an aphIII marker inserted upstream of the mutacin II structural gene yielded transformants producing mutacin II and mutacins I and II, respectively.  (+info)

Purification and properties of bacteriolytic enzymes from Bacillus licheniformis YS-1005 against Streptococcus mutans. (5/1717)

To find a novel lytic enzyme against cariogenic Streptococci, strains showing strong lytic activity have been screened from soil using Streptococcus mutans. A strain identified as Bacillus licheniformis secreted two kinds of lytic enzymes, which were purified by methanol precipitation, CM-cellulose chromatography, gel filtration, and hydroxyapatite chromatography. The molecular weights of these two enzymes, L27 and L45, were 27,000 and 45,000, respectively. Optimum pH and temperature of both enzymes for lytic activity were pH 8 and 37 degrees C. L27 and L45 digest the peptide linkage between L-Ala and D-Glu in peptidoglycan of Streptococcus mutans. The lytic activity was highly specific for Streptococcus mutans, suggesting their potential use as a dental care product.  (+info)

Streptococcus mutans ffh, a gene encoding a homologue of the 54 kDa subunit of the signal recognition particle, is involved in resistance to acid stress. (6/1717)

The ability of Streptococcus mutans, a bacterial pathogen associated with dental caries, to tolerate rapid drops in plaque pH (acidurance), is considered an important virulence factor. To study this trait, Tn917 mutants of S. mutans strain JH1005 which display acid sensitivity have been isolated and partially characterized. In this paper, the characterization of one of these mutants, AS17, is reported. Preliminary sequence analysis revealed that the transposon insertion in AS17 occurred in the intergenic region of a two-gene locus which has been named sat for secretion and acid tolerance. This locus displays a high degree of homology to the ylxM-ffh operon of Bacillus subtilis. The sat+ locus was cloned by complementation of a conditional Escherichia coli ffh mutant with an S. mutans genomic library. Sequencing of the complementing clone identified the intact ylxM and ffh genes as well as a partial ORF with homology to the proUlopuAC gene of B. subtilis which encodes the binding protein of the ProU/OpuA osmoregulated glycine betaine transport system. RNA dot blot experiments indicated steady-state levels of ffh mRNA in the mutant that were approximately eightfold lower compared to parental levels. This suggests a partial polar effect of the sat-1::Tn917 mutation on ffh expression. Upon acid shock (pH 5), wild-type ffh mRNA levels were found to increase approximately four- to eightfold compared to unstressed (pH 7.5) levels. Mutant levels remained unaltered under the same conditions. Experiments designed to investigate the origins of the acid-sensitivity of the mutant revealed a lack of an acid-adaptive/tolerance response. Assays of proton-extruding ATPase (H+/ATPase) specific activity measured with purified membranes derived from acid-shocked AS17 showed twofold lower levels compared to the parent strain. Also, AS17 was found to be unable to ferment sorbitol although it was able to grow in glucose and a variety of other sugar substrates. These findings suggest that Ffh may be involved in the maintenance of a functional membrane protein composition during adaptation of S. mutans to changing environmental conditions.  (+info)

Lipoteichoic acid acts as an antagonist and an agonist of lipopolysaccharide on human gingival fibroblasts and monocytes in a CD14-dependent manner. (7/1717)

CD14 has been implicated as a receptor of lipoteichoic acid (LTA) and other bacterial components as well as lipopolysaccharide (LPS). Since the structures of LTAs from various gram-positive bacteria are heterogeneous, we analyzed the effects of LTAs on the secretion of interleukin-8 (IL-8) by high- and low-CD14-expressing (CD14(high) and CD14(low)) human gingival fibroblasts (HGF). While Bacillus subtilis LTA had an IL-8-inducing effect on CD14(high) HGF which was considerably weaker than that of LPS, Streptococcus sanguis and Streptococcus mutans LTAs had practically no effect on the cells. B. subtilis LTA had only a weak effect on CD14(low) HGF, as did LPS. S. sanguis and S. mutans LTAs at a 1,000-fold excess each completely inhibited the IL-8-inducing activities of both LPS and a synthetic lipid A on CD14(high) HGF. The effect of LPS was also inhibited by the presence of an LPS antagonist, synthetic lipid A precursor IVA (LA-14-PP), with a 100-fold higher potency than S. sanguis and S. mutans LTAs and by anti-CD14 monoclonal antibody (MAb). S. sanguis and S. mutans LTAs, LA-14-PP, and anti-CD14 MAb had no significant effect on phorbol myristate acetate-stimulated IL-8 secretion by HGF. These LTAs also inhibited the IL-8-inducing activity of B. subtilis LTA on CD14(high) HGF, as did LA-14-PP and anti-CD14 MAb. The antagonistic and agonistic functions of LTAs were also observed with human monocytes. Binding of fluorolabeled LPS to human monocytes was inhibited by S. sanguis LTA, although the inhibition was 100 times weaker than that of LPS itself, and anti-CD14 MAb inhibited fluorolabeled LPS and S. sanguis LTA binding. Binding of LTAs to CD14 was also observed with nondenaturing polyacrylamide gel electrophoresis. These results indicate that LTAs act as antagonists or agonists via a CD14-dependent mechanism, probably due to the heterogeneous structure of LTAs, and that an antagonistic LTA might be a useful agent for suppressing the periodontal disease caused by gram-negative bacteria.  (+info)

Humoral immunity to commensal oral bacteria in human infants: salivary secretory immunoglobulin A antibodies reactive with Streptococcus mitis biovar 1, Streptococcus oralis, Streptococcus mutans, and Enterococcus faecalis during the first two years of life. (8/1717)

Secretory immunoglobulin A (SIgA) antibodies reactive with the pioneer oral streptococci Streptococcus mitis biovar 1 and Streptococcus oralis, the late oral colonizer Streptococcus mutans, and the pioneer enteric bacterium Enterococcus faecalis in saliva samples from 10 human infants from birth to age 2 years were analyzed. Low levels of salivary SIgA1 and SIgA2 antibodies reactive with whole cells of all four species were detected within the first month after birth, even though S. mutans and E. faecalis were not recovered from the mouths of the infants during the study period. Although there was a fivefold increase in the concentration of SIgA between birth and age 2 years, there were no differences between the concentrations of SIgA1 and SIgA2 antibodies reactive with the four species over this time period. When the concentrations of SIgA1 and SIgA2 antibodies reactive with all four species were normalized to the concentrations of SIgA1 and SIgA2 in saliva, SIgA1 and SIgA2 antibodies reactive with these bacteria showed a significant decrease from birth to 2 years of age. Adsorption of each infant's saliva with cells of one species produced a dramatic reduction of antibodies recognizing the other three species. Sequential adsorption of saliva samples removed all SIgA antibody to the bacteria, indicating that the SIgA antibodies were directed to antigens shared by all four species. The induction by the host of a limited immune response to common antigens that are likely not involved in adherence may be among the mechanisms that commensal streptococci employ to persist in the oral cavity.  (+info)

Streptococcus mutans is a gram-positive, facultatively anaerobic, beta-hemolytic species of bacteria that's part of the normal microbiota of the oral cavity in humans. It's one of the primary etiological agents associated with dental caries, or tooth decay, due to its ability to produce large amounts of acid as a byproduct of sugar metabolism, which can lead to demineralization of tooth enamel and dentin. The bacterium can also adhere to tooth surfaces and form biofilms, further contributing to the development of dental caries.

Streptococcus is a genus of Gram-positive, spherical bacteria that typically form pairs or chains when clustered together. These bacteria are facultative anaerobes, meaning they can grow in the presence or absence of oxygen. They are non-motile and do not produce spores.

Streptococcus species are commonly found on the skin and mucous membranes of humans and animals. Some strains are part of the normal flora of the body, while others can cause a variety of infections, ranging from mild skin infections to severe and life-threatening diseases such as sepsis, meningitis, and toxic shock syndrome.

The pathogenicity of Streptococcus species depends on various virulence factors, including the production of enzymes and toxins that damage tissues and evade the host's immune response. One of the most well-known Streptococcus species is Streptococcus pyogenes, also known as group A streptococcus (GAS), which is responsible for a wide range of clinical manifestations, including pharyngitis (strep throat), impetigo, cellulitis, necrotizing fasciitis, and rheumatic fever.

It's important to note that the classification of Streptococcus species has evolved over time, with many former members now classified as different genera within the family Streptococcaceae. The current classification system is based on a combination of phenotypic characteristics (such as hemolysis patterns and sugar fermentation) and genotypic methods (such as 16S rRNA sequencing and multilocus sequence typing).

Streptococcus pyogenes is a Gram-positive, beta-hemolytic streptococcus bacterium that causes various suppurative (pus-forming) and nonsuppurative infections in humans. It is also known as group A Streptococcus (GAS) due to its ability to produce the M protein, which confers type-specific antigenicity and allows for serological classification into more than 200 distinct Lancefield groups.

S. pyogenes is responsible for a wide range of clinical manifestations, including pharyngitis (strep throat), impetigo, cellulitis, erysipelas, scarlet fever, rheumatic fever, and acute poststreptococcal glomerulonephritis. In rare cases, it can lead to invasive diseases such as necrotizing fasciitis (flesh-eating disease) and streptococcal toxic shock syndrome (STSS).

The bacterium is typically transmitted through respiratory droplets or direct contact with infected skin lesions. Effective prevention strategies include good hygiene practices, such as frequent handwashing and avoiding sharing personal items, as well as prompt recognition and treatment of infections to prevent spread.

Dental caries, also known as tooth decay or cavities, refers to the damage or breakdown of the hard tissues of the teeth (enamel, dentin, and cementum) due to the activity of acid-producing bacteria. These bacteria ferment sugars from food and drinks, producing acids that dissolve and weaken the tooth structure, leading to cavities.

The process of dental caries development involves several stages:

1. Demineralization: The acidic environment created by bacterial activity causes minerals (calcium and phosphate) to be lost from the tooth surface, making it weaker and more susceptible to decay.
2. Formation of a white spot lesion: As demineralization progresses, a chalky white area appears on the tooth surface, indicating early caries development.
3. Cavity formation: If left untreated, the demineralization process continues, leading to the breakdown and loss of tooth structure, resulting in a cavity or hole in the tooth.
4. Infection and pulp involvement: As the decay progresses deeper into the tooth, it can reach the dental pulp (the soft tissue containing nerves and blood vessels), causing infection, inflammation, and potentially leading to toothache, abscess, or even tooth loss.

Preventing dental caries involves maintaining good oral hygiene, reducing sugar intake, using fluoride toothpaste and mouthwash, and having regular dental check-ups and cleanings. Early detection and treatment of dental caries can help prevent further progression and more severe complications.

Streptococcus pneumoniae, also known as the pneumococcus, is a gram-positive, alpha-hemolytic bacterium frequently found in the upper respiratory tract of healthy individuals. It is a leading cause of community-acquired pneumonia and can also cause other infectious diseases such as otitis media (ear infection), sinusitis, meningitis, and bacteremia (bloodstream infection). The bacteria are encapsulated, and there are over 90 serotypes based on variations in the capsular polysaccharide. Some serotypes are more virulent or invasive than others, and the polysaccharide composition is crucial for vaccine development. S. pneumoniae infection can be treated with antibiotics, but the emergence of drug-resistant strains has become a significant global health concern.

Dental plaque is a biofilm or mass of bacteria that accumulates on the surface of the teeth, restorative materials, and prosthetic devices such as dentures. It is initiated when bacterial colonizers attach to the smooth surfaces of teeth through van der Waals forces and specific molecular adhesion mechanisms.

The microorganisms within the dental plaque produce extracellular polysaccharides that help to stabilize and strengthen the biofilm, making it resistant to removal by simple brushing or rinsing. Over time, if not regularly removed through oral hygiene practices such as brushing and flossing, dental plaque can mineralize and harden into tartar or calculus.

The bacteria in dental plaque can cause tooth decay (dental caries) by metabolizing sugars and producing acid that demineralizes the tooth enamel. Additionally, certain types of bacteria in dental plaque can cause periodontal disease, an inflammation of the gums that can lead to tissue damage and bone loss around the teeth. Regular professional dental cleanings and good oral hygiene practices are essential for preventing the buildup of dental plaque and maintaining good oral health.

Glucosyltransferases (GTs) are a group of enzymes that catalyze the transfer of a glucose molecule from an activated donor to an acceptor molecule, resulting in the formation of a glycosidic bond. These enzymes play crucial roles in various biological processes, including the biosynthesis of complex carbohydrates, cell wall synthesis, and protein glycosylation. In some cases, GTs can also contribute to bacterial pathogenesis by facilitating the attachment of bacteria to host tissues through the formation of glucans, which are polymers of glucose molecules.

GTs can be classified into several families based on their sequence similarities and catalytic mechanisms. The donor substrates for GTs are typically activated sugars such as UDP-glucose, TDP-glucose, or GDP-glucose, which serve as the source of the glucose moiety that is transferred to the acceptor molecule. The acceptor can be a wide range of molecules, including other sugars, proteins, lipids, or small molecules.

In the context of human health and disease, GTs have been implicated in various pathological conditions, such as cancer, inflammation, and microbial infections. For example, some GTs can modify proteins on the surface of cancer cells, leading to increased cell proliferation, migration, and invasion. Additionally, GTs can contribute to bacterial resistance to antibiotics by modifying the structure of bacterial cell walls or by producing biofilms that protect bacteria from host immune responses and antimicrobial agents.

Overall, Glucosyltransferases are essential enzymes involved in various biological processes, and their dysregulation has been associated with several human diseases. Therefore, understanding the structure, function, and regulation of GTs is crucial for developing novel therapeutic strategies to target these enzymes and treat related pathological conditions.

Streptococcal infections are a type of infection caused by group A Streptococcus bacteria (Streptococcus pyogenes). These bacteria can cause a variety of illnesses, ranging from mild skin infections to serious and potentially life-threatening conditions such as sepsis, pneumonia, and necrotizing fasciitis (flesh-eating disease).

Some common types of streptococcal infections include:

* Streptococcal pharyngitis (strep throat) - an infection of the throat and tonsils that can cause sore throat, fever, and swollen lymph nodes.
* Impetigo - a highly contagious skin infection that causes sores or blisters on the skin.
* Cellulitis - a bacterial infection of the deeper layers of the skin and underlying tissue that can cause redness, swelling, pain, and warmth in the affected area.
* Scarlet fever - a streptococcal infection that causes a bright red rash on the body, high fever, and sore throat.
* Necrotizing fasciitis - a rare but serious bacterial infection that can cause tissue death and destruction of the muscles and fascia (the tissue that covers the muscles).

Treatment for streptococcal infections typically involves antibiotics to kill the bacteria causing the infection. It is important to seek medical attention if you suspect a streptococcal infection, as prompt treatment can help prevent serious complications.

Streptococcus sobrinus is a gram-positive, facultatively anaerobic coccus that belongs to the viridans group of streptococci. It's a type of bacteria commonly found in the oral cavity and is one of the primary causative agents of dental caries (tooth decay) along with Streptococcus mutans.

S. sobrinus has the ability to metabolize sugars and produce acid as a byproduct, which can lower the pH of the oral environment and contribute to tooth demineralization and cavity formation. This organism is often found in higher numbers in individuals with a high risk of caries and is associated with a more severe form of the disease.

It's important to note that while S. sobrinus is a significant contributor to dental caries, good oral hygiene practices, such as regular brushing and flossing, limiting sugar intake, and receiving professional dental care can help prevent the negative effects of this bacteria on oral health.

Dextranase is an enzyme that breaks down dextran, a type of complex sugar (polysaccharide) consisting of many glucose molecules linked together in a chain. Dextran is produced by certain bacteria and can be found in some foods, as well as in the body during infections or after surgery. Dextranase is used medically to help prevent or treat complications associated with dextran, such as blockages in blood vessels caused by the accumulation of dextran molecules. It may also be used in research and industry for various purposes, including the production of clarified fruit juices and wine.

Saliva is a complex mixture of primarily water, but also electrolytes, enzymes, antibacterial compounds, and various other substances. It is produced by the salivary glands located in the mouth. Saliva plays an essential role in maintaining oral health by moistening the mouth, helping to digest food, and protecting the teeth from decay by neutralizing acids produced by bacteria.

The medical definition of saliva can be stated as:

"A clear, watery, slightly alkaline fluid secreted by the salivary glands, consisting mainly of water, with small amounts of electrolytes, enzymes (such as amylase), mucus, and antibacterial compounds. Saliva aids in digestion, lubrication of oral tissues, and provides an oral barrier against microorganisms."

Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a type of bacteria that commonly colonizes the gastrointestinal and genitourinary tracts of humans. It is Gram-positive, facultatively anaerobic, and forms chains when viewed under the microscope.

While S. agalactiae can be carried asymptomatically by many adults, it can cause serious infections in newborns, pregnant women, elderly individuals, and people with weakened immune systems. In newborns, GBS can lead to sepsis, pneumonia, and meningitis, which can result in long-term health complications or even be fatal if left untreated.

Pregnant women are often screened for GBS colonization during the third trimester of pregnancy, and those who test positive may receive intrapartum antibiotics to reduce the risk of transmission to their newborns during delivery.

In medical terms, the mouth is officially referred to as the oral cavity. It is the first part of the digestive tract and includes several structures: the lips, vestibule (the space enclosed by the lips and teeth), teeth, gingiva (gums), hard and soft palate, tongue, floor of the mouth, and salivary glands. The mouth is responsible for several functions including speaking, swallowing, breathing, and eating, as it is the initial point of ingestion where food is broken down through mechanical and chemical processes, beginning the digestive process.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Streptococcus mitis is a species of gram-positive, beta-hemolytic streptococci that are part of the viridans group streptococci (VGS). It is a normal commensal of the human oral cavity, upper respiratory tract, and gastrointestinal tract. However, it can occasionally cause invasive infections such as bacteremia, endocarditis, and meningitis, particularly in immunocompromised individuals or those with underlying medical conditions. S. mitis is also known to be a significant contributor to dental caries. It is often misidentified as Streptococcus sanguinis due to their similar phenotypic characteristics. Accurate identification of this organism is important because of its potential to cause invasive disease and its resistance to some antibiotics.

Glucans are polysaccharides (complex carbohydrates) that are made up of long chains of glucose molecules. They can be found in the cell walls of certain plants, fungi, and bacteria. In medicine, beta-glucans derived from yeast or mushrooms have been studied for their potential immune-enhancing effects. However, more research is needed to fully understand their role and effectiveness in human health.

Sucrose is a type of simple sugar, also known as a carbohydrate. It is a disaccharide, which means that it is made up of two monosaccharides: glucose and fructose. Sucrose occurs naturally in many fruits and vegetables and is often extracted and refined for use as a sweetener in food and beverages.

The chemical formula for sucrose is C12H22O11, and it has a molecular weight of 342.3 g/mol. In its pure form, sucrose is a white, odorless, crystalline solid that is highly soluble in water. It is commonly used as a reference compound for determining the sweetness of other substances, with a standard sucrose solution having a sweetness value of 1.0.

Sucrose is absorbed by the body through the small intestine and metabolized into glucose and fructose, which are then used for energy or stored as glycogen in the liver and muscles. While moderate consumption of sucrose is generally considered safe, excessive intake can contribute to weight gain, tooth decay, and other health problems.

Streptococcus oralis is a type of gram-positive, facultatively anaerobic coccus (round-shaped bacterium) that belongs to the viridans group of streptococci. It is commonly found in the human oral cavity, particularly on the surface of the teeth and gums.

S. oralis is generally considered to be a commensal organism, meaning that it can exist harmlessly in the mouth without causing any negative effects. However, under certain circumstances, such as when the immune system is weakened or when there is damage to the oral tissues, S. oralis can cause infections. These infections may include dental caries (cavities), periodontal disease, and endocarditis (inflammation of the inner lining of the heart).

Like other streptococci, S. oralis is able to form biofilms, which are complex communities of bacteria that adhere to surfaces and can be difficult to remove. This ability to form biofilms may contribute to its ability to cause infections.

It's important to note that while S. oralis is a normal part of the oral microbiome, good oral hygiene practices such as brushing and flossing regularly can help prevent an overgrowth of this bacterium and reduce the risk of infection.

Biofilms are defined as complex communities of microorganisms, such as bacteria and fungi, that adhere to surfaces and are enclosed in a matrix made up of extracellular polymeric substances (EPS). The EPS matrix is composed of polysaccharides, proteins, DNA, and other molecules that provide structural support and protection to the microorganisms within.

Biofilms can form on both living and non-living surfaces, including medical devices, implants, and biological tissues. They are resistant to antibiotics, disinfectants, and host immune responses, making them difficult to eradicate and a significant cause of persistent infections. Biofilms have been implicated in a wide range of medical conditions, including chronic wounds, urinary tract infections, middle ear infections, and device-related infections.

The formation of biofilms typically involves several stages, including initial attachment, microcolony formation, maturation, and dispersion. Understanding the mechanisms underlying biofilm formation and development is crucial for developing effective strategies to prevent and treat biofilm-associated infections.

A cariogenic diet is a type of diet that increases the risk of dental caries, also known as tooth decay or cavities. This occurs when the bacteria in the mouth break down sugars and other fermentable carbohydrates in the food we eat to produce acid, which can erode the enamel of the teeth and cause cavities.

Foods and drinks that are high in sugar and sticky or retain in the mouth for a longer time, such as candy, cookies, cakes, dried fruits, sodas, and fruit juices, are considered cariogenic. Frequent consumption of these types of food and drinks can increase the risk of tooth decay.

It is important to maintain a balanced diet that includes plenty of fruits, vegetables, whole grains, lean proteins, and dairy products, as well as limiting sugary snacks and beverages, to promote good oral health. Regular dental check-ups and good oral hygiene practices, such as brushing twice a day and flossing daily, can also help prevent tooth decay.

Streptococcus suis is a Gram-positive, beta-hemolytic streptococcus that is a significant pathogen in pig populations worldwide. It can cause a variety of clinical manifestations in pigs, including meningitis, arthritis, endocarditis, and septicemia. Transmission to humans can occur through contact with infected pigs or contaminated pork products, resulting in diseases such as meningitis, sepsis, endocarditis, and arthritis. There are 35 serotypes of S. suis, but only a few (including serotypes 1, 2, 4, 5, 9, 14, 16, 21, 24, and 31) are commonly associated with disease in pigs and humans.

Streptococcus gordonii is a species of gram-positive, non-spore forming, facultatively anaerobic bacteria that belongs to the viridans group of streptococci. It is part of the normal flora in the oral cavity and is commonly found on the teeth and mucous membranes.

S. gordonii is a commensal organism, meaning it usually exists harmoniously with its human host without causing harm. However, under certain circumstances, such as when the immune system is compromised or there is damage to the oral tissues, S. gordonii can cause infections. It has been implicated in dental caries (cavities), endocarditis (inflammation of the inner lining of the heart), and other invasive infections.

Like other streptococci, S. gordonii is a coccus-shaped bacterium that tends to occur in pairs or chains. It is catalase-negative, which means it does not produce the enzyme catalase, and it ferments various sugars to produce acid as a byproduct. These characteristics help distinguish S. gordonii from other types of bacteria.

It's important to note that maintaining good oral hygiene practices, such as brushing and flossing regularly, can help prevent the overgrowth of S. gordonii and reduce the risk of dental caries and other infections.

Actinomyces is a genus of gram-positive, rod-shaped bacteria that are normal inhabitants of the human mouth, colon, and urogenital tract. Under certain conditions, such as poor oral hygiene or tissue trauma, these bacteria can cause infections known as actinomycosis. These infections often involve the formation of abscesses or granulomas and can affect various tissues, including the lungs, mouth, and female reproductive organs. Actinomyces species are also known to form complex communities called biofilms, which can contribute to their ability to cause infection.

Streptococcus bovis is a type of bacteria that is part of the Streptococcus genus. It is a gram-positive, facultatively anaerobic coccus (spherical) bacterium that is commonly found in the gastrointestinal tracts of animals, including cattle, and can also be found in the human gastrointestinal tract, particularly in the colon.

There are several subspecies of Streptococcus bovis, including S. bovis biotype I (also known as Streptococcus gallolyticus), S. bovis biotype II/2, and S. bovis biotype II/1. Some strains of these bacteria have been associated with human diseases, such as endocarditis, bacteremia, and abscesses in various organs. Additionally, there is evidence to suggest that S. bovis biotype I may be associated with an increased risk of colorectal cancer.

It's important to note that Streptococcus bovis is not a common cause of infection in healthy individuals, but it can cause serious infections in people with underlying medical conditions, such as valvular heart disease or a weakened immune system.

Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria as a defense mechanism against other competing bacterial strains. They primarily target and inhibit the growth of closely related bacterial species, although some have a broader spectrum of activity. Bacteriocins can be classified into different types based on their structural features, molecular masses, and mechanisms of action.

These antimicrobial peptides often interact with the cell membrane of target bacteria, causing pore formation, depolarization, or disrupting cell wall biosynthesis, ultimately leading to bacterial cell death. Bacteriocins have gained interest in recent years as potential alternatives to conventional antibiotics due to their narrow spectrum of activity and reduced likelihood of inducing resistance. They are being explored for use in food preservation, agricultural applications, and as therapeutic agents in the medical field.

Bacterial adhesion is the initial and crucial step in the process of bacterial colonization, where bacteria attach themselves to a surface or tissue. This process involves specific interactions between bacterial adhesins (proteins, fimbriae, or pili) and host receptors (glycoproteins, glycolipids, or extracellular matrix components). The attachment can be either reversible or irreversible, depending on the strength of interaction. Bacterial adhesion is a significant factor in initiating biofilm formation, which can lead to various infectious diseases and medical device-associated infections.

Streptococcus sanguis is a gram-positive, facultatively anaerobic, beta-hemolytic bacterium that belongs to the Streptococcaceae family. It's part of the viridans group streptococci (VGS) and is commonly found in the oral cavity of humans, residing on the surface of teeth and mucous membranes.

S. sanguis is generally considered a commensal organism; however, it can contribute to dental plaque formation and cause endocarditis, particularly in people with pre-existing heart conditions. It's important to note that there are several subspecies of S. sanguis, including S. sanguis I, II, III, and IV, which may have different characteristics and clinical implications.

Medical Definition: Streptococcus sanguis is a gram-positive, facultatively anaerobic, beta-hemolytic bacterium that belongs to the viridans group streptococci (VGS). It is commonly found in the oral cavity and can cause endocarditis in susceptible individuals.

Bacterial polysaccharides are complex carbohydrates that consist of long chains of sugar molecules (monosaccharides) linked together by glycosidic bonds. They are produced and used by bacteria for various purposes such as:

1. Structural components: Bacterial polysaccharides, such as peptidoglycan and lipopolysaccharide (LPS), play a crucial role in maintaining the structural integrity of bacterial cells. Peptidoglycan is a major component of the bacterial cell wall, while LPS forms the outer layer of the outer membrane in gram-negative bacteria.
2. Nutrient storage: Some bacteria synthesize and store polysaccharides as an energy reserve, similar to how plants store starch. These polysaccharides can be broken down and utilized by the bacterium when needed.
3. Virulence factors: Bacterial polysaccharides can also function as virulence factors, contributing to the pathogenesis of bacterial infections. For example, certain bacteria produce capsular polysaccharides (CPS) that surround and protect the bacterial cells from host immune defenses, allowing them to evade phagocytosis and persist within the host.
4. Adhesins: Some polysaccharides act as adhesins, facilitating the attachment of bacteria to surfaces or host cells. This is important for biofilm formation, which helps bacteria resist environmental stresses and antibiotic treatments.
5. Antigenic properties: Bacterial polysaccharides can be highly antigenic, eliciting an immune response in the host. The antigenicity of these molecules can vary between different bacterial species or even strains within a species, making them useful as targets for vaccines and diagnostic tests.

In summary, bacterial polysaccharides are complex carbohydrates that serve various functions in bacteria, including structural support, nutrient storage, virulence factor production, adhesion, and antigenicity.

Streptococcus equi is a gram-positive, beta-hemolytic bacterium that belongs to the Lancefield group C. It is a significant pathogen in horses, causing a respiratory disease known as "strangles." The bacterium can spread through direct contact with infected horses or contaminated objects and can lead to severe complications such as purpura hemorrhagica and bastard strangles.

While Streptococcus equi is not typically associated with human infections, there have been rare cases of zoonotic transmission from horses to humans, causing respiratory tract infections, endocarditis, and soft tissue infections. However, it is essential to note that this bacterium is primarily a pathogen of horses and not a common cause of infection in humans.

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

Agglutinins are antibodies that cause the particles (such as red blood cells, bacteria, or viruses) to clump together. They recognize and bind to specific antigens on the surface of these particles, forming a bridge between them and causing them to agglutinate or clump. Agglutinins are an important part of the immune system's response to infection and help to eliminate pathogens from the body.

There are two main types of agglutinins:

1. Naturally occurring agglutinins: These are present in the blood serum of most individuals, even before exposure to an antigen. They can agglutinate some bacteria and red blood cells without prior sensitization. For example, anti-A and anti-B agglutinins are naturally occurring antibodies found in people with different blood groups (A, B, AB, or O).
2. Immune agglutinins: These are produced by the immune system after exposure to an antigen. They develop as part of the adaptive immune response and target specific antigens that the body has encountered before. Immunization with vaccines often leads to the production of immune agglutinins, which can provide protection against future infections.

Agglutination reactions are widely used in laboratory tests for various diagnostic purposes, such as blood typing, detecting bacterial or viral infections, and monitoring immune responses.

I'm sorry for any confusion, but "Streptococcus Phages" is not a standard medical term. The term "Streptococcus" refers to a genus of gram-positive bacteria that can cause various infections in humans, such as strep throat and skin infections. A "phage," on the other hand, is a virus that infects and replicates within bacteria.

Therefore, if you are referring to bacteriophages that infect Streptococcus bacteria, then the term would be "Streptococcus phages" or more specifically, the name of the particular phage species that infect Streptococcus bacteria (e.g., Streptococcus phage C1, Streptococcus phage Φ29). However, it's important to note that there are many different types of bacteriophages that can infect various strains of Streptococcus bacteria, so the specific phage would need to be identified.

Bacterial antigens are substances found on the surface or produced by bacteria that can stimulate an immune response in a host organism. These antigens can be proteins, polysaccharides, teichoic acids, lipopolysaccharides, or other molecules that are recognized as foreign by the host's immune system.

When a bacterial antigen is encountered by the host's immune system, it triggers a series of responses aimed at eliminating the bacteria and preventing infection. The host's immune system recognizes the antigen as foreign through the use of specialized receptors called pattern recognition receptors (PRRs), which are found on various immune cells such as macrophages, dendritic cells, and neutrophils.

Once a bacterial antigen is recognized by the host's immune system, it can stimulate both the innate and adaptive immune responses. The innate immune response involves the activation of inflammatory pathways, the recruitment of immune cells to the site of infection, and the production of antimicrobial peptides.

The adaptive immune response, on the other hand, involves the activation of T cells and B cells, which are specific to the bacterial antigen. These cells can recognize and remember the antigen, allowing for a more rapid and effective response upon subsequent exposures.

Bacterial antigens are important in the development of vaccines, as they can be used to stimulate an immune response without causing disease. By identifying specific bacterial antigens that are associated with virulence or pathogenicity, researchers can develop vaccines that target these antigens and provide protection against infection.

DNA transformation competence is a state of being in which a cell or organism is capable of taking up and incorporating exogenous (foreign) DNA into its own genome through the process of transformation. This natural process was first discovered in bacteria, particularly strains of Streptococcus pneumoniae and Escherichia coli.

In bacterial DNA transformation, competence is often a transient and regulated developmental stage that certain bacterial populations can enter under specific environmental conditions. During this phase, the bacterial cell membrane becomes more permeable to allow for the uptake of external DNA, typically in the form of short, linear DNA fragments.

Once inside the cell, these exogenous DNA segments can recombine with the host's genome through homologous recombination, leading to genetic alterations. This process has been extensively exploited in molecular biology research and biotechnological applications for cloning, gene editing, and genetic engineering purposes.

It is important to note that DNA transformation competence can also be induced artificially by chemical or physical treatments, such as calcium chloride (CaCl2) treatment or electroporation, which temporarily increase cell membrane permeability to facilitate DNA uptake in various cell types, including eukaryotic cells.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Serotyping is a laboratory technique used to classify microorganisms, such as bacteria and viruses, based on the specific antigens or proteins present on their surface. It involves treating the microorganism with different types of antibodies and observing which ones bind to its surface. Each distinct set of antigens corresponds to a specific serotype, allowing for precise identification and characterization of the microorganism. This technique is particularly useful in epidemiology, vaccine development, and infection control.

Rhamnose is a naturally occurring sugar or monosaccharide, that is commonly found in various plants and some fruits. It is a type of deoxy sugar, which means it lacks one hydroxyl group (-OH) compared to a regular hexose sugar. Specifically, rhamnose has a hydrogen atom instead of a hydroxyl group at the 6-position of its structure.

Rhamnose is an essential component of various complex carbohydrates and glycoconjugates found in plant cell walls, such as pectins and glycoproteins. It also plays a role in bacterial cell wall biosynthesis and is used in the production of some antibiotics.

In medical contexts, rhamnose may be relevant to research on bacterial infections, plant-derived medicines, or the metabolism of certain sugars. However, it is not a commonly used term in clinical medicine.

Immunoglobulin A (IgA), Secretory is a type of antibody that plays a crucial role in the immune function of mucous membranes. These membranes line various body openings, such as the respiratory and gastrointestinal tracts, and serve to protect the body from potential pathogens by producing mucus.

Secretory IgA (SIgA) is the primary immunoglobulin found in secretions of the mucous membranes, and it is produced by a special type of immune cell called plasma cells located in the lamina propria, a layer of tissue beneath the epithelial cells that line the mucosal surfaces.

SIgA exists as a dimer, consisting of two IgA molecules linked together by a protein called the J chain. This complex is then transported across the epithelial cell layer to the luminal surface, where it becomes associated with another protein called the secretory component (SC). The SC protects the SIgA from degradation by enzymes and helps it maintain its function in the harsh environment of the mucosal surfaces.

SIgA functions by preventing the attachment and entry of pathogens into the body, thereby neutralizing their infectivity. It can also agglutinate (clump together) microorganisms, making them more susceptible to removal by mucociliary clearance or peristalsis. Furthermore, SIgA can modulate immune responses and contribute to the development of oral tolerance, which is important for maintaining immune homeostasis in the gut.

The dental pellicle is a thin, acid-resistant salivary film that naturally forms on the surface of teeth. It begins to form within minutes after cleaning and is fully formed in about 2 hours. The pellicle is composed mainly of glycoproteins and helps protect the tooth enamel by acting as a barrier against acids and enzymes found in saliva and food, reducing the risk of dental erosion and caries. It also serves as a conditioning film that facilitates bacterial adhesion, which can lead to plaque formation if not regularly removed through oral hygiene practices like brushing and flossing.

Dextrans are a type of complex glucose polymers that are formed by the action of certain bacteria on sucrose. They are branched polysaccharides consisting of linear chains of α-1,6 linked D-glucopyranosyl units with occasional α-1,3 branches.

Dextrans have a wide range of applications in medicine and industry. In medicine, dextrans are used as plasma substitutes, volume expanders, and anticoagulants. They are also used as carriers for drugs and diagnostic agents, and in the manufacture of immunoadsorbents for the removal of toxins and pathogens from blood.

Dextrans can be derived from various bacterial sources, but the most common commercial source is Leuconostoc mesenteroides B-512(F) or L. dextranicum. The molecular weight of dextrans can vary widely, ranging from a few thousand to several million Daltons, depending on the method of preparation and purification.

Dextrans are generally biocompatible and non-toxic, but they can cause allergic reactions in some individuals. Therefore, their use as medical products requires careful monitoring and testing for safety and efficacy.

Cariogenic agents are substances that contribute to the development of dental caries, or tooth decay. The primary culprit is typically oral bacteria, especially mutans streptococci, which metabolize sugars and produce acid as a byproduct. This acid can erode the enamel of teeth, leading to cavities. Other factors, such as certain dietary habits (e.g., frequent consumption of sugary or starchy foods) and poor oral hygiene, can also contribute to the cariogenic process.

Pneumococcal infections are illnesses caused by the bacterium Streptococcus pneumoniae, also known as pneumococcus. This bacterium can infect different parts of the body, including the lungs (pneumonia), blood (bacteremia or sepsis), and the covering of the brain and spinal cord (meningitis). Pneumococcal infections can also cause ear infections and sinus infections. The bacteria spread through close contact with an infected person, who may spread the bacteria by coughing or sneezing. People with weakened immune systems, children under 2 years of age, adults over 65, and those with certain medical conditions are at increased risk for developing pneumococcal infections.

Bacterial antibodies are a type of antibodies produced by the immune system in response to an infection caused by bacteria. These antibodies are proteins that recognize and bind to specific antigens on the surface of the bacterial cells, marking them for destruction by other immune cells. Bacterial antibodies can be classified into several types based on their structure and function, including IgG, IgM, IgA, and IgE. They play a crucial role in the body's defense against bacterial infections and provide immunity to future infections with the same bacteria.

Anti-bacterial agents, also known as antibiotics, are a type of medication used to treat infections caused by bacteria. These agents work by either killing the bacteria or inhibiting their growth and reproduction. There are several different classes of anti-bacterial agents, including penicillins, cephalosporins, fluoroquinolones, macrolides, and tetracyclines, among others. Each class of antibiotic has a specific mechanism of action and is used to treat certain types of bacterial infections. It's important to note that anti-bacterial agents are not effective against viral infections, such as the common cold or flu. Misuse and overuse of antibiotics can lead to antibiotic resistance, which is a significant global health concern.

The Phosphoenolpyruvate (PEP) sugar phosphotransferase system (PTS) is not exactly a "sugar," but rather a complex molecular machinery used by certain bacteria for the transport and phosphorylation of sugars. The PTS system is a major carbohydrate transport system in many gram-positive and gram-negative bacteria, which allows them to take up and metabolize various sugars for energy and growth.

The PTS system consists of several protein components, including the enzyme I (EI), histidine phosphocarrier protein (HPr), and sugar-specific enzymes II (EII). The process begins when PEP transfers a phosphate group to EI, which then passes it on to HPr. The phosphorylated HPr then interacts with the sugar-specific EII complex, which is composed of two domains: the membrane-associated domain (EIIA) and the periplasmic domain (EIIC).

When a sugar molecule binds to the EIIC domain, it induces a conformational change that allows the phosphate group from HPr to be transferred to the sugar. This phosphorylation event facilitates the translocation of the sugar across the membrane and into the cytoplasm, where it undergoes further metabolic reactions.

In summary, the Phosphoenolpyruvate Sugar Phosphotransferase System (PEP-PTS) is a bacterial transport system that utilizes phosphoryl groups from phosphoenolpyruvate to facilitate the uptake and phosphorylation of sugars, allowing bacteria to efficiently metabolize and utilize various carbon sources for energy and growth.

Streptococcus thermophilus is a gram-positive, facultatively anaerobic, non-motile, non-spore forming bacterium that belongs to the Streptococcaceae family. It is a species of streptococcus that is mesophilic, meaning it grows best at moderate temperatures, typically between 30-45°C. S. thermophilus is commonly found in milk and dairy products and is one of the starter cultures used in the production of yogurt and other fermented dairy products. It is also used as a probiotic due to its potential health benefits, such as improving lactose intolerance and enhancing the immune system. S. thermophilus is not considered pathogenic and does not normally cause infections in humans.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Bacitracin is an antibiotic drug that is primarily used topically, in the form of ointments or creams, to prevent and treat skin infections caused by bacteria. It works by inhibiting the bacterial protein synthesis necessary for their growth and multiplication. Bacitracin is not typically used systemically due to its potential nephrotoxicity (kidney toxicity) when given internally.

The medical definition of 'Bacitracin' is:

A polypeptide antibiotic derived from a strain of Bacillus subtilis, with a molecular weight of about 1450 daltons. It is used topically for its antibacterial properties and is often combined with other agents such as neomycin and polymyxin B in ointments or creams to treat skin infections. Bacitracin inhibits bacterial cell wall synthesis by blocking the transfer of amino acids during peptidoglycan formation, thereby exerting a bacteriostatic effect on susceptible organisms. It is not used systemically due to its potential nephrotoxicity.

Hydroxyapatite is a calcium phosphate mineral that makes up about 70% of the inorganic component of bone and teeth in humans and other animals. It has the chemical formula Ca10(PO4)6(OH)2. Hydroxyapatite is a naturally occurring mineral form of calcium apatite, with the idealized crystal structure consisting of alternating calcium and phosphate layers.

In addition to its natural occurrence in bone and teeth, hydroxyapatite has various medical applications due to its biocompatibility and osteoconductive properties. It is used as a coating on orthopedic implants to promote bone growth and integration with the implant, and it is also used in dental and oral healthcare products for remineralization of tooth enamel. Furthermore, hydroxyapatite has been studied for its potential use in drug delivery systems, tissue engineering, and other biomedical applications.

Culture media is a substance that is used to support the growth of microorganisms or cells in an artificial environment, such as a petri dish or test tube. It typically contains nutrients and other factors that are necessary for the growth and survival of the organisms being cultured. There are many different types of culture media, each with its own specific formulation and intended use. Some common examples include blood agar, which is used to culture bacteria; Sabouraud dextrose agar, which is used to culture fungi; and Eagle's minimum essential medium, which is used to culture animal cells.

Streptococcal vaccines are immunizations designed to protect against infections caused by Streptococcus bacteria. These vaccines contain antigens, which are substances that trigger an immune response and help the body recognize and fight off specific types of Streptococcus bacteria. There are several different types of streptococcal vaccines available or in development, including:

1. Pneumococcal conjugate vaccine (PCV): This vaccine protects against Streptococcus pneumoniae, a type of bacteria that can cause pneumonia, meningitis, and other serious infections. PCV is recommended for all children under 2 years old, as well as older children and adults with certain medical conditions.
2. Pneumococcal polysaccharide vaccine (PPSV): This vaccine also protects against Streptococcus pneumoniae, but it is recommended for adults 65 and older, as well as younger people with certain medical conditions.
3. Streptococcus pyogenes vaccine: This vaccine is being developed to protect against Group A Streptococcus (GAS), which can cause a variety of infections, including strep throat, skin infections, and serious diseases like rheumatic fever and toxic shock syndrome. There are several different GAS vaccine candidates in various stages of development.
4. Streptococcus agalactiae vaccine: This vaccine is being developed to protect against Group B Streptococcus (GBS), which can cause serious infections in newborns, pregnant women, and older adults with certain medical conditions. There are several different GBS vaccine candidates in various stages of development.

Overall, streptococcal vaccines play an important role in preventing bacterial infections and reducing the burden of disease caused by Streptococcus bacteria.

Chlorhexidine is an antimicrobial agent used for its broad-spectrum germicidal properties. It is effective against bacteria, viruses, and fungi. It is commonly used as a surgical scrub, hand sanitizer, and healthcare disinfectant. Chlorhexidine is available in various forms, including solutions, gels, and sprays. It works by disrupting the microbial cell membrane, leading to the death of the organism. It is also used in mouthwashes and skin cleansers for its antimicrobial effects.

Enterococcus faecalis is a species of gram-positive, facultatively anaerobic bacteria that are part of the normal gut microbiota in humans and animals. It is a type of enterococci that can cause a variety of infections, including urinary tract infections, bacteremia, endocarditis, and meningitis, particularly in hospitalized patients or those with compromised immune systems.

E. faecalis is known for its ability to survive in a wide range of environments and resist various antibiotics, making it difficult to treat infections caused by this organism. It can also form biofilms, which further increase its resistance to antimicrobial agents and host immune responses. Accurate identification and appropriate treatment of E. faecalis infections are essential to prevent complications and ensure positive patient outcomes.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Microbial sensitivity tests, also known as antibiotic susceptibility tests (ASTs) or bacterial susceptibility tests, are laboratory procedures used to determine the effectiveness of various antimicrobial agents against specific microorganisms isolated from a patient's infection. These tests help healthcare providers identify which antibiotics will be most effective in treating an infection and which ones should be avoided due to resistance. The results of these tests can guide appropriate antibiotic therapy, minimize the potential for antibiotic resistance, improve clinical outcomes, and reduce unnecessary side effects or toxicity from ineffective antimicrobials.

There are several methods for performing microbial sensitivity tests, including:

1. Disk diffusion method (Kirby-Bauer test): A standardized paper disk containing a predetermined amount of an antibiotic is placed on an agar plate that has been inoculated with the isolated microorganism. After incubation, the zone of inhibition around the disk is measured to determine the susceptibility or resistance of the organism to that particular antibiotic.
2. Broth dilution method: A series of tubes or wells containing decreasing concentrations of an antimicrobial agent are inoculated with a standardized microbial suspension. After incubation, the minimum inhibitory concentration (MIC) is determined by observing the lowest concentration of the antibiotic that prevents visible growth of the organism.
3. Automated systems: These use sophisticated technology to perform both disk diffusion and broth dilution methods automatically, providing rapid and accurate results for a wide range of microorganisms and antimicrobial agents.

The interpretation of microbial sensitivity test results should be done cautiously, considering factors such as the site of infection, pharmacokinetics and pharmacodynamics of the antibiotic, potential toxicity, and local resistance patterns. Regular monitoring of susceptibility patterns and ongoing antimicrobial stewardship programs are essential to ensure optimal use of these tests and to minimize the development of antibiotic resistance.

A "colony count" is a method used to estimate the number of viable microorganisms, such as bacteria or fungi, in a sample. In this technique, a known volume of the sample is spread onto the surface of a solid nutrient medium in a petri dish and then incubated under conditions that allow the microorganisms to grow and form visible colonies. Each colony that grows on the plate represents an individual cell (or small cluster of cells) from the original sample that was able to divide and grow under the given conditions. By counting the number of colonies that form, researchers can make a rough estimate of the concentration of microorganisms in the original sample.

The term "microbial" simply refers to microscopic organisms, such as bacteria, fungi, or viruses. Therefore, a "colony count, microbial" is a general term that encompasses the use of colony counting techniques to estimate the number of any type of microorganism in a sample.

Colony counts are used in various fields, including medical research, food safety testing, and environmental monitoring, to assess the levels of contamination or the effectiveness of disinfection procedures. However, it is important to note that colony counts may not always provide an accurate measure of the total number of microorganisms present in a sample, as some cells may be injured or unable to grow under the conditions used for counting. Additionally, some microorganisms may form clusters or chains that can appear as single colonies, leading to an overestimation of the true cell count.

A tooth is a hard, calcified structure found in the jaws (upper and lower) of many vertebrates and used for biting and chewing food. In humans, a typical tooth has a crown, one or more roots, and three layers: the enamel (the outermost layer, hardest substance in the body), the dentin (the layer beneath the enamel), and the pulp (the innermost layer, containing nerves and blood vessels). Teeth are essential for proper nutrition, speech, and aesthetics. There are different types of teeth, including incisors, canines, premolars, and molars, each designed for specific functions in the mouth.

Bacterial transformation is a natural process by which exogenous DNA is taken up and incorporated into the genome of a bacterial cell. This process was first discovered in 1928 by Frederick Griffith, who observed that dead virulent bacteria could transfer genetic material to live avirulent bacteria, thereby conferring new properties such as virulence to the recipient cells.

The uptake of DNA by bacterial cells typically occurs through a process called "competence," which can be either naturally induced under certain environmental conditions or artificially induced in the laboratory using various methods. Once inside the cell, the exogenous DNA may undergo recombination with the host genome, resulting in the acquisition of new genes or the alteration of existing ones.

Bacterial transformation has important implications for both basic research and biotechnology. It is a powerful tool for studying gene function and for engineering bacteria with novel properties, such as the ability to produce valuable proteins or degrade environmental pollutants. However, it also poses potential risks in the context of genetic engineering and biocontainment, as transformed bacteria may be able to transfer their newly acquired genes to other organisms in the environment.

A cell wall is a rigid layer found surrounding the plasma membrane of plant cells, fungi, and many types of bacteria. It provides structural support and protection to the cell, maintains cell shape, and acts as a barrier against external factors such as chemicals and mechanical stress. The composition of the cell wall varies among different species; for example, in plants, it is primarily made up of cellulose, hemicellulose, and pectin, while in bacteria, it is composed of peptidoglycan.

'Adhesiveness' is a term used in medicine and biology to describe the ability of two surfaces to stick or adhere to each other. In medical terms, it often refers to the property of tissues or cells to adhere to one another, as in the case of scar tissue formation where healing tissue adheres to adjacent structures.

In the context of microbiology, adhesiveness can refer to the ability of bacteria or other microorganisms to attach themselves to surfaces, such as medical devices or human tissues, which can lead to infection and other health problems. Adhesives used in medical devices, such as bandages or wound dressings, also have adhesiveness properties that allow them to stick to the skin or other surfaces.

Overall, adhesiveness is an important property in many areas of medicine and biology, with implications for wound healing, infection control, and the design and function of medical devices.

In medical terms, acids refer to a class of chemicals that have a pH less than 7 and can donate protons (hydrogen ions) in chemical reactions. In the context of human health, acids are an important part of various bodily functions, such as digestion. However, an imbalance in acid levels can lead to medical conditions. For example, an excess of hydrochloric acid in the stomach can cause gastritis or peptic ulcers, while an accumulation of lactic acid due to strenuous exercise or decreased blood flow can lead to muscle fatigue and pain.

Additionally, in clinical laboratory tests, certain substances may be tested for their "acidity" or "alkalinity," which is measured using a pH scale. This information can help diagnose various medical conditions, such as kidney disease or diabetes.

A germ-free life refers to an existence in which an individual is not exposed to or colonized by any harmful microorganisms, such as bacteria, viruses, fungi, or parasites. This condition is also known as "sterile" or "aseptic." In a medical context, achieving a germ-free state is often the goal in certain controlled environments, such as operating rooms, laboratories, and intensive care units, where the risk of infection must be minimized. However, it is not possible to maintain a completely germ-free life outside of these settings, as microorganisms are ubiquitous in the environment and are an essential part of the human microbiome. Instead, maintaining good hygiene practices and a healthy immune system is crucial for preventing illness and promoting overall health.

Bacterial adhesins are proteins or structures on the surface of bacterial cells that allow them to attach to other cells or surfaces. This ability to adhere to host tissues is an important first step in the process of bacterial infection and colonization. Adhesins can recognize and bind to specific receptors on host cells, such as proteins or sugars, enabling the bacteria to establish a close relationship with the host and evade immune responses.

There are several types of bacterial adhesins, including fimbriae, pili, and non-fimbrial adhesins. Fimbriae and pili are thin, hair-like structures that extend from the bacterial surface and can bind to a variety of host cell receptors. Non-fimbrial adhesins are proteins that are directly embedded in the bacterial cell wall and can also mediate attachment to host cells.

Bacterial adhesins play a crucial role in the pathogenesis of many bacterial infections, including urinary tract infections, respiratory tract infections, and gastrointestinal infections. Understanding the mechanisms of bacterial adhesion is important for developing new strategies to prevent and treat bacterial infections.

Virulence, in the context of medicine and microbiology, refers to the degree or severity of damage or harm that a pathogen (like a bacterium, virus, fungus, or parasite) can cause to its host. It is often associated with the ability of the pathogen to invade and damage host tissues, evade or suppress the host's immune response, replicate within the host, and spread between hosts.

Virulence factors are the specific components or mechanisms that contribute to a pathogen's virulence, such as toxins, enzymes, adhesins, and capsules. These factors enable the pathogen to establish an infection, cause tissue damage, and facilitate its transmission between hosts. The overall virulence of a pathogen can be influenced by various factors, including host susceptibility, environmental conditions, and the specific strain or species of the pathogen.

Veillonella is a genus of Gram-negative, anaerobic, non-spore-forming, coccoid or rod-shaped bacteria. These bacteria are commonly found as normal flora in the human mouth, intestines, and female genital tract. They are known to be obligate parasites, meaning they rely on other organisms for nutrients and energy. Veillonella species are often associated with dental caries and have been implicated in various infections such as bacteremia, endocarditis, pneumonia, and wound infections, particularly in immunocompromised individuals or those with underlying medical conditions. Proper identification of Veillonella species is important for the diagnosis and treatment of these infections.

Anti-infective agents, local, are medications that are applied directly to a specific area of the body to prevent or treat infections caused by bacteria, fungi, viruses, or parasites. These agents include topical antibiotics, antifungals, antivirals, and anti-parasitic drugs. They work by killing or inhibiting the growth of the infectious organisms, thereby preventing their spread and reducing the risk of infection. Local anti-infective agents are often used to treat skin infections, eye infections, and other localized infections, and can be administered as creams, ointments, gels, solutions, or drops.

Fructose is a simple monosaccharide, also known as "fruit sugar." It is a naturally occurring carbohydrate that is found in fruits, vegetables, and honey. Fructose has the chemical formula C6H12O6 and is a hexose, or six-carbon sugar.

Fructose is absorbed directly into the bloodstream during digestion and is metabolized primarily in the liver. It is sweeter than other sugars such as glucose and sucrose (table sugar), which makes it a popular sweetener in many processed foods and beverages. However, consuming large amounts of fructose can have negative health effects, including increasing the risk of obesity, diabetes, and heart disease.

Sucrase is a digestive enzyme that is produced by the cells lining the small intestine. Its primary function is to break down sucrose, also known as table sugar or cane sugar, into its component monosaccharides: glucose and fructose. This process allows for the absorption of these simple sugars into the bloodstream, where they can be used as energy sources by the body's cells.

Sucrase is often deficient in people with certain genetic disorders, such as congenital sucrase-isomaltase deficiency (CSID), which leads to an impaired ability to digest sucrose and results in gastrointestinal symptoms like bloating, diarrhea, and abdominal pain after consuming sugary foods or beverages. In these cases, a sucralose-based diet may be recommended to alleviate the symptoms.

Dura Mater: The tough, outer membrane that covers the brain and spinal cord.

Hydroxyapatite: A naturally occurring mineral form of calcium apatite, also known as dahllite, with the formula Ca5(PO4)3(OH), is the primary mineral component of biological apatites found in bones and teeth.

Therefore, "Durapatite" isn't a recognized medical term, but it seems like it might be a combination of "dura mater" and "hydroxyapatite." If you meant to ask about a material used in medical or dental applications that combines properties of both dura mater and hydroxyapatite, please provide more context.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Hexosyltransferases are a group of enzymes that catalyze the transfer of a hexose (a type of sugar molecule made up of six carbon atoms) from a donor molecule to an acceptor molecule. This transfer results in the formation of a glycosidic bond between the two molecules.

Hexosyltransferases are involved in various biological processes, including the biosynthesis of complex carbohydrates, such as glycoproteins and glycolipids, which play important roles in cell recognition, signaling, and communication. These enzymes can transfer a variety of hexose sugars, including glucose, galactose, mannose, fucose, and N-acetylglucosamine, to different acceptor molecules, such as proteins, lipids, or other carbohydrates.

Hexosyltransferases are classified based on the type of donor molecule they use, the type of sugar they transfer, and the type of glycosidic bond they form. Some examples of hexosyltransferases include:

* Glycosyltransferases (GTs): These enzymes transfer a sugar from an activated donor molecule, such as a nucleotide sugar, to an acceptor molecule. GTs are involved in the biosynthesis of various glycoconjugates, including proteoglycans, glycoproteins, and glycolipids.
* Fucosyltransferases (FUTs): These enzymes transfer fucose, a type of hexose sugar, to an acceptor molecule. FUTs are involved in the biosynthesis of various glycoconjugates, including blood group antigens and Lewis antigens.
* Galactosyltransferases (GALTs): These enzymes transfer galactose, another type of hexose sugar, to an acceptor molecule. GALTs are involved in the biosynthesis of various glycoconjugates, including lactose in milk and gangliosides in the brain.
* Mannosyltransferases (MTs): These enzymes transfer mannose, a type of hexose sugar, to an acceptor molecule. MTs are involved in the biosynthesis of various glycoconjugates, including N-linked glycoproteins and yeast cell walls.

Hexosyltransferases play important roles in many biological processes, including cell recognition, signaling, and adhesion. Dysregulation of these enzymes has been implicated in various diseases, such as cancer, inflammation, and neurodegenerative disorders. Therefore, understanding the mechanisms of hexosyltransferases is crucial for developing new therapeutic strategies.

Teichoic acids are complex polymers of glycerol or ribitol linked by phosphate groups, found in the cell wall of gram-positive bacteria. They play a crucial role in the bacterial cell's defense against hostile environments and can also contribute to virulence by helping the bacteria evade the host's immune system. Teichoic acids can be either linked to peptidoglycan (wall teichoic acids) or to membrane lipids (lipoteichoic acids). They can vary in structure and composition among different bacterial species, which can have implications for the design of antibiotics and other therapeutics.

Glucose is a simple monosaccharide (or single sugar) that serves as the primary source of energy for living organisms. It's a fundamental molecule in biology, often referred to as "dextrose" or "grape sugar." Glucose has the molecular formula C6H12O6 and is vital to the functioning of cells, especially those in the brain and nervous system.

In the body, glucose is derived from the digestion of carbohydrates in food, and it's transported around the body via the bloodstream to cells where it can be used for energy. Cells convert glucose into a usable form through a process called cellular respiration, which involves a series of metabolic reactions that generate adenosine triphosphate (ATP)—the main currency of energy in cells.

Glucose is also stored in the liver and muscles as glycogen, a polysaccharide (multiple sugar) that can be broken down back into glucose when needed for energy between meals or during physical activity. Maintaining appropriate blood glucose levels is crucial for overall health, and imbalances can lead to conditions such as diabetes mellitus.

Bacterial load refers to the total number or concentration of bacteria present in a given sample, tissue, or body fluid. It is a measure used to quantify the amount of bacterial infection or colonization in a particular area. The bacterial load can be expressed as colony-forming units (CFU) per milliliter (ml), gram (g), or other units of measurement depending on the sample type. High bacterial loads are often associated with more severe infections and increased inflammation.

Bacteriological techniques refer to the various methods and procedures used in the laboratory for the cultivation, identification, and study of bacteria. These techniques are essential in fields such as medicine, biotechnology, and research. Here are some common bacteriological techniques:

1. **Sterilization**: This is a process that eliminates or kills all forms of life, including bacteria, viruses, fungi, and spores. Common sterilization methods include autoclaving (using steam under pressure), dry heat (in an oven), chemical sterilants, and radiation.

2. **Aseptic Technique**: This refers to practices used to prevent contamination of sterile materials or environments with microorganisms. It includes the use of sterile equipment, gloves, and lab coats, as well as techniques such as flaming, alcohol swabbing, and using aseptic transfer devices.

3. **Media Preparation**: This involves the preparation of nutrient-rich substances that support bacterial growth. There are various types of media, including solid (agar), liquid (broth), and semi-solid (e.g., stab agar). The choice of medium depends on the type of bacteria being cultured and the purpose of the investigation.

4. **Inoculation**: This is the process of introducing a bacterial culture into a medium. It can be done using a loop, swab, or needle. The inoculum should be taken from a pure culture to avoid contamination.

5. **Incubation**: After inoculation, the bacteria are allowed to grow under controlled conditions of temperature, humidity, and atmospheric composition. This process is called incubation.

6. **Staining and Microscopy**: Bacteria are too small to be seen with the naked eye. Therefore, they need to be stained and observed under a microscope. Gram staining is a common method used to differentiate between two major groups of bacteria based on their cell wall composition.

7. **Biochemical Tests**: These are tests used to identify specific bacterial species based on their biochemical characteristics, such as their ability to ferment certain sugars, produce particular enzymes, or resist certain antibiotics.

8. **Molecular Techniques**: Advanced techniques like PCR and DNA sequencing can provide more precise identification of bacteria. They can also be used for genetic analysis and epidemiological studies.

Remember, handling microorganisms requires careful attention to biosafety procedures to prevent accidental infection or environmental contamination.

Agglutination is a medical term that refers to the clumping together of particles, such as cells, bacteria, or precipitates, in a liquid medium. It most commonly occurs due to the presence of antibodies in the fluid that bind to specific antigens on the surface of the particles, causing them to adhere to one another and form visible clumps.

In clinical laboratory testing, agglutination is often used as a diagnostic tool to identify the presence of certain antibodies or antigens in a patient's sample. For example, a common application of agglutination is in blood typing, where the presence of specific antigens on the surface of red blood cells causes them to clump together when mixed with corresponding antibodies.

Agglutination can also occur in response to certain infectious agents, such as bacteria or viruses, that display antigens on their surface. In these cases, the agglutination reaction can help diagnose an infection and guide appropriate treatment.

Antibiosis is a type of interaction between different organisms in which one organism, known as the antibiotic producer, produces a chemical substance (known as an antibiotic) that inhibits or kills another organism, called the susceptible organism. This phenomenon was first discovered in bacteria and fungi, where certain species produce antibiotics to inhibit the growth of competing species in their environment.

The term "antibiosis" is derived from Greek words "anti" meaning against, and "biosis" meaning living together. It is a natural form of competition that helps maintain the balance of microbial communities in various environments, such as soil, water, and the human body.

In medical contexts, antibiosis refers to the use of antibiotics to treat or prevent bacterial infections in humans and animals. Antibiotics are chemical substances produced by microorganisms or synthesized artificially that can inhibit or kill other microorganisms. The discovery and development of antibiotics have revolutionized modern medicine, saving countless lives from bacterial infections that were once fatal.

However, the overuse and misuse of antibiotics have led to the emergence of antibiotic-resistant bacteria, which can no longer be killed or inhibited by conventional antibiotics. Antibiotic resistance is a significant global health concern that requires urgent attention and action from healthcare providers, policymakers, and the public.

Erythromycin is a type of antibiotic known as a macrolide, which is used to treat various types of bacterial infections. It works by inhibiting the bacteria's ability to produce proteins, which are necessary for the bacteria to survive and multiply. Erythromycin is often used to treat respiratory tract infections, skin infections, and sexually transmitted diseases. It may also be used to prevent endocarditis (inflammation of the lining of the heart) in people at risk of this condition.

Erythromycin is generally considered safe for most people, but it can cause side effects such as nausea, vomiting, and diarrhea. It may also interact with other medications, so it's important to tell your doctor about all the drugs you are taking before starting erythromycin.

Like all antibiotics, erythromycin should only be used to treat bacterial infections, as it is not effective against viral infections such as the common cold or flu. Overuse of antibiotics can lead to antibiotic resistance, which makes it harder to treat infections in the future.

Bacteriolysis is the breaking down or destruction of bacterial cells. This process can occur naturally or as a result of medical treatment, such as when antibiotics target and destroy bacteria by disrupting their cell walls. The term "bacteriolysis" specifically refers to the breakdown of the bacterial cell membrane, which can lead to the release of the contents of the bacterial cell and ultimately result in the death of the organism.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Microbial interactions refer to the various ways in which different microorganisms, such as bacteria, fungi, viruses, and parasites, influence each other's growth, survival, and behavior in a shared environment. These interactions can be categorized into several types:

1. Commensalism: One organism benefits from the interaction while the other is neither harmed nor benefited (e.g., certain gut bacteria that feed on host-derived nutrients without affecting the host's health).
2. Mutualism: Both organisms benefit from the interaction (e.g., the partnership between rhizobia bacteria and leguminous plants, where the bacteria fix nitrogen for the plant, and the plant provides carbohydrates for the bacteria).
3. Parasitism: One organism benefits at the expense of the other, causing harm or disease to the host (e.g., the malaria parasite infecting human red blood cells).
4. Competition: Both organisms struggle for limited resources, like nutrients or space, leading to a negative impact on one or both parties (e.g., different bacterial species competing for limited iron sources in the environment).
5. Amensalism: One organism is harmed or inhibited while the other remains unaffected (e.g., antibiotic-producing bacteria inhibiting the growth of nearby susceptible bacteria).
6. Synergism: Multiple organisms work together to produce a combined effect greater than the sum of their individual effects (e.g., certain bacterial and fungal communities in soil that enhance plant growth and nutrient uptake).
7. Antagonism: One organism inhibits or kills another through various mechanisms, such as the production of antibiotics or enzymes (e.g., some bacteria producing bacteriocins to inhibit the growth of closely related species).

Understanding microbial interactions is crucial for developing strategies in areas like infectious disease control, probiotic applications, and managing microbial communities in various ecosystems, including the human body.

A mouthwash is an antiseptic or therapeutic solution that is held in the mouth and then spit out, rather than swallowed. It is used to improve oral hygiene, to freshen breath, and to help prevent dental cavities, gingivitis, and other periodontal diseases.

Mouthwashes can contain a variety of ingredients, including water, alcohol, fluoride, chlorhexidine, essential oils, and other antimicrobial agents. Some mouthwashes are available over-the-counter, while others require a prescription. It is important to follow the instructions for use provided by the manufacturer or your dentist to ensure the safe and effective use of mouthwash.

Esculin is a glucoside derived from the bark of willow trees and other plants. It has been used in scientific research as a substrate to test the activity of certain types of bacteria, particularly those that have the ability to produce an enzyme called beta-glucosidase. When esculin comes into contact with this enzyme, it is broken down and forms a chemical compound called esculetin, which can be detected and measured. This reaction is often used as a way to identify and study bacteria that produce beta-glucosidase.

Esculin is not typically used in medical treatments or therapies, but it may have some potential uses in the development of new drugs or diagnostic tools. As with any chemical compound, esculin should be handled with care and used only under the guidance of a trained professional.

Lactobacillus is a genus of gram-positive, rod-shaped, facultatively anaerobic or microaerophilic, non-spore-forming bacteria. They are part of the normal flora found in the intestinal, urinary, and genital tracts of humans and other animals. Lactobacilli are also commonly found in some fermented foods, such as yogurt, sauerkraut, and sourdough bread.

Lactobacilli are known for their ability to produce lactic acid through the fermentation of sugars, which contributes to their role in maintaining a healthy microbiota and lowering the pH in various environments. Some species of Lactobacillus have been shown to provide health benefits, such as improving digestion, enhancing immune function, and preventing infections, particularly in the urogenital and intestinal tracts. They are often used as probiotics, either in food or supplement form, to promote a balanced microbiome and support overall health.

Microbial viability is the ability of a microorganism to grow, reproduce and maintain its essential life functions. It can be determined through various methods such as cell growth in culture media, staining techniques that detect metabolic activity, or direct observation of active movement. In contrast, non-viable microorganisms are those that have been killed or inactivated and cannot replicate or cause further harm. The measurement of microbial viability is important in various fields such as medicine, food safety, water quality, and environmental monitoring to assess the effectiveness of disinfection and sterilization procedures, and to determine the presence and concentration of harmful bacteria in different environments.

Fluorides are ionic compounds that contain the fluoride anion (F-). In the context of dental and public health, fluorides are commonly used in preventive measures to help reduce tooth decay. They can be found in various forms such as sodium fluoride, stannous fluoride, and calcium fluoride. When these compounds come into contact with saliva, they release fluoride ions that can be absorbed by tooth enamel. This process helps to strengthen the enamel and make it more resistant to acid attacks caused by bacteria in the mouth, which can lead to dental caries or cavities. Fluorides can be topically applied through products like toothpaste, mouth rinses, and fluoride varnishes, or systemically ingested through fluoridated water, salt, or supplements.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

I'm not aware of a medical definition for "DMF Index." The abbreviation "DMF" could potentially stand for many things, as it is used in various contexts across different fields. In the field of dentistry, DMF stands for Decayed, Missing, and Filled teeth/surfaces, which is a method for measuring dental caries or tooth decay. However, there is no standard medical definition for "DMF Index." If you could provide more context or specify the field of study or practice, I would be happy to help further!

Streptolysins are exotoxins produced by certain strains of Streptococcus bacteria, primarily Group A Streptococcus (GAS). These toxins are classified into two types: streptolysin O (SLO) and streptolysin S (SLS).

1. Streptolysin O (SLO): It is a protein exotoxin that exhibits oxygen-labile hemolytic activity, meaning it can lyse or destroy red blood cells in the presence of oxygen. SLO is capable of entering host cells and causing various cellular damages, including inhibition of phagocytosis, modulation of immune responses, and induction of apoptosis (programmed cell death).

2. Streptolysin S (SLS): It is a non-protein, oxygen-stable hemolysin that can also lyse red blood cells but does so independently of oxygen presence. SLS is more heat-resistant than SLO and has a stronger ability to penetrate host cell membranes.

Both streptolysins contribute to the virulence of Streptococcus pyogenes, which can cause various clinical infections such as pharyngitis (strep throat), impetigo, scarlet fever, and invasive diseases like necrotizing fasciitis and toxic shock syndrome.

The detection of streptolysin O antibodies (ASO titer) is often used as a diagnostic marker for past or recent GAS infections, particularly in cases of rheumatic fever, where elevated ASO titers indicate ongoing or previous streptococcal infection.

Cariostatic agents are substances or medications that are used to prevent or inhibit the development and progression of dental caries, also known as tooth decay or cavities. These agents work by reducing the ability of bacteria in the mouth to produce acid, which can erode the enamel and dentin of the teeth and lead to cavities.

There are several types of cariostatic agents that are commonly used in dental care, including:

1. Fluorides: These are the most widely used and well-studied cariostatic agents. They work by promoting the remineralization of tooth enamel and making it more resistant to acid attacks. Fluoride can be found in toothpaste, mouthwashes, gels, varnishes, and fluoridated water supplies.
2. Antimicrobial agents: These substances work by reducing the population of bacteria in the mouth that contribute to tooth decay. Examples include chlorhexidine, triclosan, and xylitol.
3. Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP): This is a complex protein that has been shown to help remineralize tooth enamel and reduce the risk of dental caries. It can be found in some toothpastes and mouthwashes.
4. Silver diamine fluoride: This is a topical fluoride compound that contains silver ions, which have antimicrobial properties. It has been shown to be effective in preventing and arresting dental caries, particularly in high-risk populations such as young children and older adults with dry mouth.

It's important to note that while cariostatic agents can help reduce the risk of tooth decay, they are not a substitute for good oral hygiene practices such as brushing twice a day, flossing daily, and visiting the dentist regularly.

Streptococcus intermedius is a type of Gram-positive coccus bacterium that is part of the Streptococcus anginosus group, also known as the Streptococcus milleri group. These bacteria are normal inhabitants of the mouth, upper respiratory tract, and gastrointestinal tract in humans. However, they can cause opportunistic infections in various parts of the body, such as the brain, lungs, liver, and heart valves, particularly in individuals with compromised immune systems.

S. intermedius infections can range from mild to severe and include abscesses, endocarditis, meningitis, and sepsis. Proper identification of this bacterium is essential for appropriate antibiotic therapy and management of associated infections.

Salivary proteins and peptides refer to the diverse group of molecules that are present in saliva, which is the clear, slightly alkaline fluid produced by the salivary glands in the mouth. These proteins and peptides play a crucial role in maintaining oral health and contributing to various physiological functions.

Some common types of salivary proteins and peptides include:

1. **Mucins**: These are large, heavily glycosylated proteins that give saliva its viscous quality. They help to lubricate the oral cavity, protect the mucosal surfaces, and aid in food bolus formation.
2. **Amylases**: These enzymes break down carbohydrates into simpler sugars, initiating the digestive process even before food reaches the stomach.
3. **Proline-rich proteins (PRPs)**: PRPs contribute to the buffering capacity of saliva and help protect against tooth erosion by forming a protective layer on tooth enamel.
4. **Histatins**: These are small cationic peptides with antimicrobial properties, playing a significant role in maintaining oral microbial homeostasis and preventing dental caries.
5. **Lactoferrin**: An iron-binding protein that exhibits antibacterial, antifungal, and anti-inflammatory activities, contributing to the overall oral health.
6. **Statherin and Cystatins**: These proteins regulate calcium phosphate precipitation, preventing dental calculus formation and maintaining tooth mineral homeostasis.

Salivary proteins and peptides have attracted significant interest in recent years due to their potential diagnostic and therapeutic applications. Alterations in the composition of these molecules can provide valuable insights into various oral and systemic diseases, making them promising biomarkers for disease detection and monitoring.

Pharyngitis is the medical term for inflammation of the pharynx, which is the back portion of the throat. This condition is often characterized by symptoms such as sore throat, difficulty swallowing, and scratchiness in the throat. Pharyngitis can be caused by a variety of factors, including viral infections (such as the common cold), bacterial infections (such as strep throat), and irritants (such as smoke or chemical fumes). Treatment for pharyngitis depends on the underlying cause of the condition, but may include medications to relieve symptoms or antibiotics to treat a bacterial infection.

Microbial drug resistance is a significant medical issue that refers to the ability of microorganisms (such as bacteria, viruses, fungi, or parasites) to withstand or survive exposure to drugs or medications designed to kill them or limit their growth. This phenomenon has become a major global health concern, particularly in the context of bacterial infections, where it is also known as antibiotic resistance.

Drug resistance arises due to genetic changes in microorganisms that enable them to modify or bypass the effects of antimicrobial agents. These genetic alterations can be caused by mutations or the acquisition of resistance genes through horizontal gene transfer. The resistant microbes then replicate and multiply, forming populations that are increasingly difficult to eradicate with conventional treatments.

The consequences of drug-resistant infections include increased morbidity, mortality, healthcare costs, and the potential for widespread outbreaks. Factors contributing to the emergence and spread of microbial drug resistance include the overuse or misuse of antimicrobials, poor infection control practices, and inadequate surveillance systems.

To address this challenge, it is crucial to promote prudent antibiotic use, strengthen infection prevention and control measures, develop new antimicrobial agents, and invest in research to better understand the mechanisms underlying drug resistance.

Immunodiffusion is a laboratory technique used in immunology to detect and measure the presence of specific antibodies or antigens in a sample. It is based on the principle of diffusion, where molecules move from an area of high concentration to an area of low concentration until they reach equilibrium. In this technique, a sample containing an unknown quantity of antigen or antibody is placed in a gel or agar medium that contains a known quantity of antibody or antigen, respectively.

The two substances then diffuse towards each other and form a visible precipitate at the point where they meet and reach equivalence, which indicates the presence and quantity of the specific antigen or antibody in the sample. There are several types of immunodiffusion techniques, including radial immunodiffusion (RID) and double immunodiffusion (Ouchterlony technique). These techniques are widely used in diagnostic laboratories to identify and measure various antigens and antibodies, such as those found in infectious diseases, autoimmune disorders, and allergic reactions.

Bacterial endocarditis is a medical condition characterized by the inflammation and infection of the inner layer of the heart, known as the endocardium. This infection typically occurs when bacteria enter the bloodstream and attach themselves to damaged or abnormal heart valves or other parts of the endocardium. The bacteria can then multiply and cause the formation of vegetations, which are clusters of infected tissue that can further damage the heart valves and lead to serious complications such as heart failure, stroke, or even death if left untreated.

Bacterial endocarditis is a relatively uncommon but potentially life-threatening condition that requires prompt medical attention. Risk factors for developing bacterial endocarditis include pre-existing heart conditions such as congenital heart defects, artificial heart valves, previous history of endocarditis, or other conditions that damage the heart valves. Intravenous drug use is also a significant risk factor for this condition.

Symptoms of bacterial endocarditis may include fever, chills, fatigue, muscle and joint pain, shortness of breath, chest pain, and a new or changing heart murmur. Diagnosis typically involves a combination of medical history, physical examination, blood cultures, and imaging tests such as echocardiography. Treatment usually involves several weeks of intravenous antibiotics to eradicate the infection, and in some cases, surgical intervention may be necessary to repair or replace damaged heart valves.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

I'm sorry for any confusion, but "Glass" is not a medical term. Glass is a non-crystalline amorphous solid that is often transparent and has various uses in everyday life, including medical devices and equipment. If you have any questions related to medical terminology or concepts, please provide them, and I'll be happy to help.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Gram-positive bacteria are a type of bacteria that stain dark purple or blue when subjected to the Gram staining method, which is a common technique used in microbiology to classify and identify different types of bacteria based on their structural differences. This staining method was developed by Hans Christian Gram in 1884.

The key characteristic that distinguishes Gram-positive bacteria from other types, such as Gram-negative bacteria, is the presence of a thick layer of peptidoglycan in their cell walls, which retains the crystal violet stain used in the Gram staining process. Additionally, Gram-positive bacteria lack an outer membrane found in Gram-negative bacteria.

Examples of Gram-positive bacteria include Staphylococcus aureus, Streptococcus pyogenes, and Bacillus subtilis. Some Gram-positive bacteria can cause various human diseases, while others are beneficial or harmless.

Cross reactions, in the context of medical diagnostics and immunology, refer to a situation where an antibody or a immune response directed against one antigen also reacts with a different antigen due to similarities in their molecular structure. This can occur in allergy testing, where a person who is allergic to a particular substance may have a positive test result for a different but related substance because of cross-reactivity between them. For example, some individuals who are allergic to birch pollen may also have symptoms when eating certain fruits, such as apples, due to cross-reactive proteins present in both.

Dental caries susceptibility refers to the likelihood or predisposition of an individual to develop dental caries, also known as tooth decay or cavities. It is influenced by various factors such as oral hygiene practices, dietary habits, saliva composition, and the presence of certain bacteria in the mouth, particularly mutans streptococci and lactobacilli.

People with a higher dental caries susceptibility may have thinner or softer enamel, reduced saliva flow, or a greater concentration of cavity-causing bacteria in their mouths. Regular dental check-ups and good oral hygiene practices, such as brushing twice a day, flossing daily, and using fluoride toothpaste, can help reduce the risk of developing dental caries. Additionally, a balanced diet that limits sugary and starchy foods and beverages can also help lower the likelihood of tooth decay.

Actinomyces viscosus is a gram-positive, anaerobic, rod-shaped bacterium that is commonly found in the oral cavity and upper respiratory tract of humans. It is a normal resident of the human microbiota but can cause infections in immunocompromised individuals or when it gains access to deeper tissues, such as the pulp of teeth or the soft tissues of the head and neck.

Actinomyces viscosus has been associated with dental caries, periodontal disease, and endodontic infections. It can also cause actinomycosis, a chronic suppurative and granulomatous infection that typically affects the cervicofacial region, thorax, or abdomen.

The name "viscosus" refers to the sticky, mucoid appearance of the bacterial colonies when grown in culture. Actinomyces viscosus is closely related to other species of Actinomyces, such as A. israelii and A. gerencseriae, which can also cause actinomycosis.

Anti-infective agents are a class of medications that are used to treat infections caused by various microorganisms such as bacteria, viruses, fungi, and parasites. These agents work by either killing the microorganism or inhibiting its growth, thereby helping to control the infection and alleviate symptoms.

There are several types of anti-infective agents, including:

1. Antibiotics: These are medications that are used to treat bacterial infections. They work by either killing bacteria (bactericidal) or inhibiting their growth (bacteriostatic).
2. Antivirals: These are medications that are used to treat viral infections. They work by interfering with the replication of the virus, preventing it from spreading and causing further damage.
3. Antifungals: These are medications that are used to treat fungal infections. They work by disrupting the cell membrane of the fungus, killing it or inhibiting its growth.
4. Antiparasitics: These are medications that are used to treat parasitic infections. They work by either killing the parasite or inhibiting its growth and reproduction.

It is important to note that anti-infective agents are not effective against all types of infections, and it is essential to use them appropriately to avoid the development of drug-resistant strains of microorganisms.

An operon is a genetic unit in prokaryotic organisms (like bacteria) consisting of a cluster of genes that are transcribed together as a single mRNA molecule, which then undergoes translation to produce multiple proteins. This genetic organization allows for the coordinated regulation of genes that are involved in the same metabolic pathway or functional process. The unit typically includes promoter and operator regions that control the transcription of the operon, as well as structural genes encoding the proteins. Operons were first discovered in bacteria, but similar genetic organizations have been found in some eukaryotic organisms, such as yeast.

Carbohydrate metabolism is the process by which the body breaks down carbohydrates into glucose, which is then used for energy or stored in the liver and muscles as glycogen. This process involves several enzymes and chemical reactions that convert carbohydrates from food into glucose, fructose, or galactose, which are then absorbed into the bloodstream and transported to cells throughout the body.

The hormones insulin and glucagon regulate carbohydrate metabolism by controlling the uptake and storage of glucose in cells. Insulin is released from the pancreas when blood sugar levels are high, such as after a meal, and promotes the uptake and storage of glucose in cells. Glucagon, on the other hand, is released when blood sugar levels are low and signals the liver to convert stored glycogen back into glucose and release it into the bloodstream.

Disorders of carbohydrate metabolism can result from genetic defects or acquired conditions that affect the enzymes or hormones involved in this process. Examples include diabetes, hypoglycemia, and galactosemia. Proper management of these disorders typically involves dietary modifications, medication, and regular monitoring of blood sugar levels.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Pneumonia, pneumococcal is a type of pneumonia caused by the bacterium Streptococcus pneumoniae (also known as pneumococcus). This bacteria can colonize the upper respiratory tract and occasionally invade the lower respiratory tract, causing infection.

Pneumococcal pneumonia can affect people of any age but is most common in young children, older adults, and those with weakened immune systems. The symptoms of pneumococcal pneumonia include fever, chills, cough, chest pain, shortness of breath, and rapid breathing. In severe cases, it can lead to complications such as bacteremia (bacterial infection in the blood), meningitis (inflammation of the membranes surrounding the brain and spinal cord), and respiratory failure.

Pneumococcal pneumonia can be prevented through vaccination with the pneumococcal conjugate vaccine (PCV) or the pneumococcal polysaccharide vaccine (PPSV). These vaccines protect against the most common strains of Streptococcus pneumoniae that cause invasive disease. It is also important to practice good hygiene, such as covering the mouth and nose when coughing or sneezing, and washing hands frequently, to prevent the spread of pneumococcal bacteria.

Lactose is a disaccharide, a type of sugar, that is naturally found in milk and dairy products. It is made up of two simple sugars, glucose and galactose, linked together. In order for the body to absorb and use lactose, it must be broken down into these simpler sugars by an enzyme called lactase, which is produced in the lining of the small intestine.

People who have a deficiency of lactase are unable to fully digest lactose, leading to symptoms such as bloating, diarrhea, and abdominal cramps, a condition known as lactose intolerance.

Bacterial drug resistance is a type of antimicrobial resistance that occurs when bacteria evolve the ability to survive and reproduce in the presence of drugs (such as antibiotics) that would normally kill them or inhibit their growth. This can happen due to various mechanisms, including genetic mutations or the acquisition of resistance genes from other bacteria.

As a result, bacterial infections may become more difficult to treat, requiring higher doses of medication, alternative drugs, or longer treatment courses. In some cases, drug-resistant infections can lead to serious health complications, increased healthcare costs, and higher mortality rates.

Examples of bacterial drug resistance include methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and multidrug-resistant tuberculosis (MDR-TB). Preventing the spread of bacterial drug resistance is crucial for maintaining effective treatments for infectious diseases.

Bacteria are single-celled microorganisms that are among the earliest known life forms on Earth. They are typically characterized as having a cell wall and no membrane-bound organelles. The majority of bacteria have a prokaryotic organization, meaning they lack a nucleus and other membrane-bound organelles.

Bacteria exist in diverse environments and can be found in every habitat on Earth, including soil, water, and the bodies of plants and animals. Some bacteria are beneficial to their hosts, while others can cause disease. Beneficial bacteria play important roles in processes such as digestion, nitrogen fixation, and biogeochemical cycling.

Bacteria reproduce asexually through binary fission or budding, and some species can also exchange genetic material through conjugation. They have a wide range of metabolic capabilities, with many using organic compounds as their source of energy, while others are capable of photosynthesis or chemosynthesis.

Bacteria are highly adaptable and can evolve rapidly in response to environmental changes. This has led to the development of antibiotic resistance in some species, which poses a significant public health challenge. Understanding the biology and behavior of bacteria is essential for developing strategies to prevent and treat bacterial infections and diseases.

Insertional mutagenesis is a process of introducing new genetic material into an organism's genome at a specific location, which can result in a change or disruption of the function of the gene at that site. This technique is often used in molecular biology research to study gene function and regulation. The introduction of the foreign DNA is typically accomplished through the use of mobile genetic elements, such as transposons or viruses, which are capable of inserting themselves into the genome.

The insertion of the new genetic material can lead to a loss or gain of function in the affected gene, resulting in a mutation. This type of mutagenesis is called "insertional" because the mutation is caused by the insertion of foreign DNA into the genome. The effects of insertional mutagenesis can range from subtle changes in gene expression to the complete inactivation of a gene.

This technique has been widely used in genetic research, including the study of developmental biology, cancer, and genetic diseases. It is also used in the development of genetically modified organisms (GMOs) for agricultural and industrial applications.

Glycoside hydrolases are a class of enzymes that catalyze the hydrolysis of glycosidic bonds found in various substrates such as polysaccharides, oligosaccharides, and glycoproteins. These enzymes break down complex carbohydrates into simpler sugars by cleaving the glycosidic linkages that connect monosaccharide units.

Glycoside hydrolases are classified based on their mechanism of action and the type of glycosidic bond they hydrolyze. The classification system is maintained by the International Union of Biochemistry and Molecular Biology (IUBMB). Each enzyme in this class is assigned a unique Enzyme Commission (EC) number, which reflects its specificity towards the substrate and the type of reaction it catalyzes.

These enzymes have various applications in different industries, including food processing, biofuel production, pulp and paper manufacturing, and biomedical research. In medicine, glycoside hydrolases are used to diagnose and monitor certain medical conditions, such as carbohydrate-deficient glycoprotein syndrome, a rare inherited disorder affecting the structure of glycoproteins.

N-Acetylmuramoyl-L-alanine Amidase (also known as NAM Amidase or MurNAc-LAA Amidase) is an enzyme that plays a crucial role in the bacterial cell wall metabolism. It is responsible for cleaving the amide bond between N-acetylmuramic acid (NAM) and L-alanine (L-Ala) in the peptidoglycan, which is a major component of the bacterial cell wall.

The enzyme's systematic name is N-acetylmuramoyl-L-alanine amidase, but it can also be referred to as:

* N-acetylmuramic acid lyase
* Peptidoglycan N-acetylmuramoylhydrolase
* N-acetylmuramoyl-L-alanine glycohydrolase
* N-acetylmuramoyl-L-alanine amidohydrolase

N-Acetylmuramoyl-L-alanine Amidase is an essential enzyme for bacterial cell division and morphogenesis, as it facilitates the separation of daughter cells by cleaving peptidoglycan crosslinks. This enzyme has been studied extensively due to its potential as a target for developing new antibiotics that can selectively inhibit bacterial cell wall biosynthesis without affecting human cells.

Fructans are a type of carbohydrate known as oligosaccharides, which are made up of chains of fructose molecules. They are found in various plants, including wheat, onions, garlic, and artichokes. Some people may have difficulty digesting fructans due to a lack of the enzyme needed to break them down, leading to symptoms such as bloating, diarrhea, and stomach pain. This condition is known as fructan intolerance or fructose malabsorption. Fructans are also considered a type of FODMAP (Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols), which are short-chain carbohydrates that can be poorly absorbed by the body and may cause digestive symptoms in some individuals.

'Immune sera' refers to the serum fraction of blood that contains antibodies produced in response to an antigenic stimulus, such as a vaccine or an infection. These antibodies are proteins known as immunoglobulins, which are secreted by B cells (a type of white blood cell) and can recognize and bind to specific antigens. Immune sera can be collected from an immunized individual and used as a source of passive immunity to protect against infection or disease. It is often used in research and diagnostic settings to identify or measure the presence of specific antigens or antibodies.

Catabolite repression is a process that regulates the metabolism of carbohydrates in bacteria. It is a mechanism by which bacteria prioritize the use of different sugars as a source of energy and carbon. When glucose or other easily metabolized sugars are available, bacteria will preferentially use them for energy production and will suppress the expression of genes involved in the metabolism of less-preferred sugars. This is achieved through the regulation of gene expression by catabolic repression proteins, such as cAMP receptor protein (CRP) and catabolite control protein A (CcpA). These proteins bind to specific DNA sequences called promoters and repress the transcription of genes involved in the metabolism of less-preferred sugars. This allows the bacteria to efficiently use their resources and adapt to changing environmental conditions.

Penicillin resistance is the ability of certain bacteria to withstand the antibacterial effects of penicillin, a type of antibiotic. This occurs when these bacteria have developed mechanisms that prevent penicillin from binding to and inhibiting the function of their cell wall biosynthesis proteins, particularly the enzyme transpeptidase.

One common mechanism of penicillin resistance is the production of beta-lactamases, enzymes that can hydrolyze and inactivate the beta-lactam ring structure present in penicillin and other related antibiotics. Another mechanism involves alterations in the bacterial cell wall that prevent penicillin from binding to its target proteins.

Penicillin resistance is a significant concern in clinical settings, as it can limit treatment options for bacterial infections and may necessitate the use of more potent or toxic antibiotics. It is important to note that misuse or overuse of antibiotics can contribute to the development and spread of antibiotic-resistant bacteria, including those resistant to penicillin.

Immunization is defined medically as the process where an individual is made immune or resistant to an infectious disease, typically through the administration of a vaccine. The vaccine stimulates the body's own immune system to recognize and fight off the specific disease-causing organism, thereby preventing or reducing the severity of future infections with that organism.

Immunization can be achieved actively, where the person is given a vaccine to trigger an immune response, or passively, where antibodies are transferred to the person through immunoglobulin therapy. Immunizations are an important part of preventive healthcare and have been successful in controlling and eliminating many infectious diseases worldwide.

Erythrosine is a type of food dye that is classified as a synthetic organic chemical compound. Its chemical formula is C~20~H~6~Br~4~O~5~. Erythrosine is a form of red food coloring that is commonly used in a variety of foods and beverages, such as candies, popsicles, and maraschino cherries. It is also used in some medications and cosmetics to provide a reddish or pinkish color.

Erythrosine belongs to a class of compounds called xanthenes, which are known for their ability to fluoresce when exposed to light. This property has led to the use of erythrosine as a marker in biological research and as a forensic tool for identifying fingerprints.

Like other food dyes, erythrosine is subject to regulation by government agencies such as the U.S. Food and Drug Administration (FDA) to ensure its safe use in food products. However, some studies have suggested that certain food dyes, including erythrosine, may be associated with adverse health effects such as hyperactivity in children. As a result, some organizations have called for further research on the safety of these substances and for greater restrictions on their use in food.

Bacterial RNA refers to the genetic material present in bacteria that is composed of ribonucleic acid (RNA). Unlike higher organisms, bacteria contain a single circular chromosome made up of DNA, along with smaller circular pieces of DNA called plasmids. These bacterial genetic materials contain the information necessary for the growth and reproduction of the organism.

Bacterial RNA can be divided into three main categories: messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA). mRNA carries genetic information copied from DNA, which is then translated into proteins by the rRNA and tRNA molecules. rRNA is a structural component of the ribosome, where protein synthesis occurs, while tRNA acts as an adapter that brings amino acids to the ribosome during protein synthesis.

Bacterial RNA plays a crucial role in various cellular processes, including gene expression, protein synthesis, and regulation of metabolic pathways. Understanding the structure and function of bacterial RNA is essential for developing new antibiotics and other therapeutic strategies to combat bacterial infections.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Propolis is a resinous substance that honeybees collect from tree buds, sap flows, or other botanical sources. They use it to seal gaps and holes in their hives as a protective barrier against external threats such as intruders (like other insects) and harsh weather conditions. Propolis has been found to have various chemical compositions depending on the plant sources, but it primarily consists of flavonoids, phenolic acids, and esters, which contribute to its biological activities. It has been used in traditional medicine for centuries due to its potential health benefits, including antimicrobial, anti-inflammatory, antioxidant, and wound-healing properties; however, more scientific research is needed to confirm these effects and establish safe and effective therapeutic dosages.

Phosphoenolpyruvate (PEP) is a key intermediate in the glycolysis pathway and other metabolic processes. It is a high-energy molecule that plays a crucial role in the transfer of energy during cellular respiration. Specifically, PEP is formed from the breakdown of fructose-1,6-bisphosphate and is then converted to pyruvate, releasing energy that is used to generate ATP, a major source of energy for cells.

Medically, abnormal levels of PEP may indicate issues with cellular metabolism or energy production, which can be associated with various medical conditions such as diabetes, mitochondrial disorders, and other metabolic diseases. However, direct measurement of PEP levels in clinical settings is not commonly performed due to technical challenges. Instead, clinicians typically assess overall metabolic function through a variety of other tests and measures.

Bacterial vaccines are types of vaccines that are created using bacteria or parts of bacteria as the immunogen, which is the substance that triggers an immune response in the body. The purpose of a bacterial vaccine is to stimulate the immune system to develop protection against specific bacterial infections.

There are several types of bacterial vaccines, including:

1. Inactivated or killed whole-cell vaccines: These vaccines contain entire bacteria that have been killed or inactivated through various methods, such as heat or chemicals. The bacteria can no longer cause disease, but they still retain the ability to stimulate an immune response.
2. Subunit, protein, or polysaccharide vaccines: These vaccines use specific components of the bacterium, such as proteins or polysaccharides, that are known to trigger an immune response. By using only these components, the vaccine can avoid using the entire bacterium, which may reduce the risk of adverse reactions.
3. Live attenuated vaccines: These vaccines contain live bacteria that have been weakened or attenuated so that they cannot cause disease but still retain the ability to stimulate an immune response. This type of vaccine can provide long-lasting immunity, but it may not be suitable for people with weakened immune systems.

Bacterial vaccines are essential tools in preventing and controlling bacterial infections, reducing the burden of diseases such as tuberculosis, pneumococcal disease, meningococcal disease, and Haemophilus influenzae type b (Hib) disease. They work by exposing the immune system to a harmless form of the bacteria or its components, which triggers the production of antibodies and memory cells that can recognize and fight off future infections with that same bacterium.

It's important to note that while vaccines are generally safe and effective, they may cause mild side effects such as pain, redness, or swelling at the injection site, fever, or fatigue. Serious side effects are rare but can occur, so it's essential to consult with a healthcare provider before receiving any vaccine.

Adsorption is a process in which atoms, ions, or molecules from a gas, liquid, or dissolved solid accumulate on the surface of a material. This occurs because the particles in the adsorbate (the substance being adsorbed) have forces that attract them to the surface of the adsorbent (the material that the adsorbate is adhering to).

In medical terms, adsorption can refer to the use of materials with adsorptive properties to remove harmful substances from the body. For example, activated charcoal is sometimes used in the treatment of poisoning because it can adsorb a variety of toxic substances and prevent them from being absorbed into the bloodstream.

It's important to note that adsorption is different from absorption, which refers to the process by which a substance is taken up and distributed throughout a material or tissue.

"Streptococcus mutans and the mutans streptococci. In: The Oral Environment, online tutorial". Archived from the original on ... Nicolas GG, Lavoie MC (January 2011). "[Streptococcus mutans and oral streptococci in dental plaque]". Canadian Journal of ... mutans and also found in the oral cavity, has been shown to cause Infective Endocarditis. Streptococcus mutans has been ... mutans.[citation needed] The addition of bioactive glass beads to dental composites reduces penetration of Streptococcus mutans ...
"Streptococcus mutans". Encyclopædia Britannica Online. Encyclopædia Britannica. 18 September 2008. Thomas JG, Nakaishi LA ( ... The very initial colonizers of teeth are considered to be Streptococcus, a genus of bacteria that are usually facultative ... O'Sullivan JM, Jenkinson HF, Cannon RD (January 2000). "Adhesion of Candida albicans to oral streptococci is promoted by ... Candida albicans is known to selectively participate in "dual-species" biofilms with certain species of Streptococcus bacteria ...
The most common bacteria associated with dental cavities are the mutans streptococci, most prominently Streptococcus mutans and ... Streptococcus mutans and Lactobacillus species among them. Streptococcus mutans are gram-positive bacteria which constitute ... Streptococcus mutans is the leading cause of tooth decay. Low concentration fluoride ions act as bacteriostatic therapeutic ... and Streptococcus mutans. Bacteria collect around the teeth and gums in a sticky, creamy-coloured mass called plaque, which ...
Streptococcus mutans - a major pathological bacterium - synthesises polysaccharides (glucans) from sucrose to adhere to tooth ... Assev, Synnöve; Rölla, Gunnar (15 August 2009). "Further Studies on the Growth Inhibition of Streptococcus Mutans OMZ 176 by ... Forssten, Sofia D.; Björklund, Marika; Ouwehand, Arthur C. (2 March 2010). "Streptococcus mutans, caries, and simulation models ... "Morphological changes in Streptococcus mutans after chewing gum containing xylitol for twelve months". Current Microbiology. 58 ...
Species include Leuconostoc mesenteroides and Streptococcus mutans. The structure of dextran produced depends not only on the ...
Buckley, Nicole Denyse (1993). Glucose transport by Streptococcus mutans (PDF) (Thesis). Archived (PDF) from the original on ...
"Effect of ultrasonic toothbrush on Streptococcus mutans". Japan J. Conserv. Dent. 42 (2): 410-417. US Patent number US5247716, ...
van der Ploeg, JR (2007). "Genome sequence of Streptococcus mutans bacteriophage M102". FEMS Microbiol Lett. 275 (1): 130-8. ...
In Streptococcus mutans and other streptococci, transformation is associated with high cell density and biofilm formation. In ... Aspiras MB, Ellen RP, Cvitkovitch DG (September 2004). "ComX activity of Streptococcus mutans growing in biofilms". FEMS ... Streptococcus pneumoniae, transformation is induced by the DNA damaging agent mitomycin C. These, and other, examples indicate ...
Nicolas, Guillaume G.; Lavoie, Marc C. (January 2011). "[Streptococcus mutans and oral streptococci in dental plaque]". ... Most bacteria cannot use sorbitol for energy, but it can be slowly fermented in the mouth by Streptococcus mutans, a bacterium ...
"Transport and metabolism of citrate by Streptococcus mutans". Journal of Bacteriology. 187 (13): 4451-4456. doi:10.1128/JB. ... A CitM homologue in S. mutans transports citrate conjugated to Fe2+ or Mn2+ but not Ca2+, Mg2+ or Ni2+. The transport reactions ...
Shimamura A, Tsumori H, Mukasa H (1982). "Purification and properties of Streptococcus mutans extracellular glucosyltransferase ... 3-alpha-D-glucan from Streptococcus mutans serotype a". J. Gen. Microbiol. 131 (12): 3347-53. doi:10.1099/00221287-131-12-3347 ... "Purification and characterization of basic glucosyltransferase from Streptococcus mutans serotype c". Biochim. Biophys. Acta. ...
Her postgraduate research was based on Streptococcus mutans. Verran works on the interactions of microorganisms with surfaces ... In vitro studies on the potentially cariogenic properties of certain carbohydrates when incubated with Streptococcus mutans ( ... Effect of two potential sucrose-substitutes upon adherence and sucrose metabolism of Streptoccus mutans (PhD thesis). ...
Transformation in Streptococcus mutans, as well as in many other streptococci, occurs at high cell density and is associated ... Streptococcus mutans, Staphylococcus aureus and Streptococcus sanguinis and in Gram-positive soil bacterium Bacillus subtilis. ... Aspiras MB, Ellen RP, Cvitkovitch DG (September 2004). "ComX activity of Streptococcus mutans growing in biofilms". FEMS ... However, he discovered that a non-virulent strain of Streptococcus pneumoniae could be made virulent after being exposed to ...
Merritt J, Qi F (April 2012). "The mutacins of Streptococcus mutans: regulation and ecology". Molecular Oral Microbiology. 27 ( ... Streptococcus pyogenes has evolved an interwoven complex of gene regulatory mechanisms in the SIP signaling pathway by ... Quorum sensing regulates a menagerie of aspects in Bacillota including the production of ropB-like proteins in Streptococcus ... Similarities in the pH sensitivity of the cell signaling mechanisms were found in pneumococci, S. mutans, and Staphylococcus ...
When the biofilm, containing S. mutans and related oral streptococci, is subjected to acid stress, the competence regulon is ... Biofilm grown S. mutans cells are genetically transformed at a rate 10- to 600-fold higher than S. mutans growing as free- ... Li YH, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG (February 2001). "Natural genetic transformation of Streptococcus mutans ... Senadheera D, Cvitkovitch DG (2008). "Quorum Sensing and Biofilm Formation by Streptococcus mutans". Bacterial Signal ...
... sonnei Staphylococcus aerogenes Staphylococcus aureus Streptococcus agalactiae Streptococcus faecalis Streptococcus mutans ... Thomas EL, Pera KA, Smith KW, Chwang AK (February 1983). "Inhibition of Streptococcus mutans by the lactoperoxidase ...
It is present in the Streptococcus mutans plasmid pUA140. The GEBRO motif instance is located in a region of the plasmid DNA in ... a cryptic plasmid from Streptococcus mutans". Plasmid. 46 (2): 77-85. doi:10.1006/plas.2001.1539. PMID 11591133. (Orphaned ... GEBRO motifs are found in some species of Streptococcus. The GEBRO motif is likely associated with plasmids. ...
Second, in Streptococcus mutans, there is a strong promoter immediately downstream of the transcription terminator that follows ... Cardineau GA, Curtiss R (March 1987). "Nucleotide sequence of the asd gene of Streptococcus mutans. Identification of the ... The asd motif was detected by bioinformatics and an individual asd RNA in Streptococcus pyogenes was detected by microarray and ... "A genome-wide analysis of small regulatory RNAs in the human pathogen group A Streptococcus". PLOS ONE. 4 (11): e7668. Bibcode: ...
Kubo I, Muroi H, Kubo A (December 1993). "Antibacterial activity of long-chain alcohols against Streptococcus mutans". Journal ...
Thomas EL, Pera KA, Smith KW, Chwang AK (February 1983). "Inhibition of Streptococcus mutans by the lactoperoxidase ... "Lysozyme and lactoperoxidase inhibit the adherence of Streptococcus mutans NCTC 10449 (serotype c) to saliva-treated ... The effect of the inhibitory system on susceptible and resistant strains of group N streptococci". The Biochemical Journal. 100 ... Oram JD, Reiter B (August 1966). "The inhibition of streptococci by lactoperoxidase, thiocyanate and hydrogen peroxide. The ...
... is a bacteriocin produced by Streptococcus mutans. It has activity against a broad spectrum of Gram-positive ...
for Strains Previously Described as Streptococcus mutans Serotype h". International Journal of Systematic Bacteriology. 38 (1 ... "Streptococcus downei" at the Encyclopedia of Life LPSN Type strain of Streptococcus downei at BacDive - the Bacterial Diversity ... Streptococcus downei is a Gram-positive bacterium, with type strain MFe28 (NCTC 11391T). It is thought to be cariogenic. Whiley ... 2005). "First isolation of Streptococcus downei from human dental plaques". FEMS Microbiol Lett. 249 (2): 323-6. doi:10.1016/j. ...
Ma, Y; Marquis, RE (November 1996). "Irreversible paraben inhibition of glycolysis by Streptococcus mutans GS-5". Letters in ...
"Antibacterial substances from Albizia myriophylla wood against cariogenic Streptococcus mutans". Archives of Pharmacal Research ...
Guo, Lihong (April 29, 2013). "Phenotypic characterization of the foldase homologue PrsA in Streptococcus mutans". Mol Oral ...
... allows the oral bacteria Streptococcus mutans to metabolize sucrose into lactic acid. This lactic acid lowers the ... Tsumori H, Minami T, Kuramitsu HK (June 1997). "Identification of essential amino acids in the Streptococcus mutans ... "Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans". Journal of Molecular Biology. 408 (2 ... If S. mutans can no longer break down sucrose and synthesize glucan, calcium phosphate is not degraded and bacteria cannot ...
Streptococcus mutans (S. mutans) has been identified as the major etiological agent of human dental caries. The development of ... Trials performed in rats showed an increase in antibody response along with a decrease in the amount of Streptococcus mutans ... Martin A. Taubman; Daniel J. Smith (June 1974). "Effects of Local Immunization with Streptococcus mutans on Induction of ... Hillman, Jeffrey D. (August 2002). "Genetically modified Streptococcus mutans for the prevention of dental caries". Antonie van ...
Streptococcus mutans is the most important bacteria in causing caries.Modern oral microbiota are significantly less diverse ... Sucrose is used by Streptococcus mutans bacteria to produce biofilm. The sucrose is split by glucansucrase, which allows the ... "Effect of sonic vibration of an ultrasonic toothbrush on the removal of Streptococcus mutans biofilm from enamel surface". ...
Liu XD, Duan J, Guo LH (August 2009). "Role of phosphoglucosamine mutase on virulence properties of Streptococcus mutans". Oral ... Buchanan JT, Stannard JA, Lauth X, Ostland VE, Powell HC, Westerman ME, Nizet V (October 2005). "Streptococcus iniae ... Hardy GG, Caimano MJ, Yother J (April 2000). "Capsule biosynthesis and basic metabolism in Streptococcus pneumoniae are linked ... "Identification of the Streptococcus gordonii glmM gene encoding phosphoglucosamine mutase and its role in bacterial cell ...
"Streptococcus mutans and the mutans streptococci. In: The Oral Environment, online tutorial". Archived from the original on ... Nicolas GG, Lavoie MC (January 2011). "[Streptococcus mutans and oral streptococci in dental plaque]". Canadian Journal of ... mutans and also found in the oral cavity, has been shown to cause Infective Endocarditis. Streptococcus mutans has been ... mutans.[citation needed] The addition of bioactive glass beads to dental composites reduces penetration of Streptococcus mutans ...
Characterization of the Trehalose Utilization Operon in Streptococcus mutans Reveals that the TreR Transcriptional Regulator Is ...
Streptococcus mutans is a Gram positive bacteria that plays an important role in the formation of cariogenic biofilm. Candida ... mutans ATCC 25175 and C. albicans ATCC 10231. Red betel leaf extract concentration 20?n inhibit dual-species biofilm S. mutans ... The inhibition test was begun by adding BHI-B, bacterial suspension of S.mutans, and fungal suspension of C. albicans on a 96- ... Interaksi S. mutans dan C. albicans menghasilkan suatu hubungan sinergis membentuk biofilm ganda. Daun sirih merah memiliki ...
VASCONCELOS, Laurylene César de S. et al. Streptococcus mutans in denture stomatitis patients under antifungal therapy. Rev. ... PURPOSE: To assess the number of Streptococcus mutans in saliva of patients with denture stomatitis before and after antifungal ... RESULTS: The most frequent lesions were type I (43.5%) and II (53.5%). The amount of S. mutans was six times higher in patients ... CONCLUSION: The data suggest that Streptococcus spp collaborates with Candida spp in the etiology and pathogenesis of denture ...
Russell RRB, Coleman D, Dougan G. Expression of a gene for glucan-binding protein from Streptococcus mutans in Escherichia coli ... Russell, R. R.B. ; Coleman, D ; Dougan, G. / Expression of a gene for glucan-binding protein from Streptococcus mutans in ... Expression of a gene for glucan-binding protein from Streptococcus mutans in Escherichia coli. / Russell, R. R.B.; Coleman, D ... Russell, R. R. B., Coleman, D., & Dougan, G. (1985). Expression of a gene for glucan-binding protein from Streptococcus mutans ...
Antibacterial and antifungal effectiveness of Virgin Coconut Oil (VCO) mousse against Streptococcus mutans and Candida albicans ... mousse against Streptococcus mutans and Candida albicans biofilms. Together they form a unique fingerprint. ...
nbsp; Abstract Background: Streptococcus mutans in the oral cavities sable to produce mutacin (bacteriocin-like substances) ... Methods : In this study, dental clinic samples were collocated; Streptococcus mutans was detected using biochemical tests and ... Abstract Background: Streptococcus mutans in the oral cavities sable to produce mutacin (bacteriocin-like substances) with ... Furthermore, the antimicrobial spectra of Streptococcus mutans isolates against other indicators, including Staphylococcus ...
Streptococcus mutans Is the Subject Area "Streptococcus mutans" applicable to this article? Yes. No. ...
Streptococcus Mutans. * Streptococcus Infections: Group A. * Streptococcus Infections: Group B. * Streptococcus pyrogenes ...
Streptococcus mutans and Candida albicans are well-known emerging pathogenic bacteria/fungi for dental caries. In this study, ... Effect of Probiotic Lactobacillus plantarum on Streptococcus mutans and Candida albicans Clinical Isolates from Children with ... Streptococcus mutans Cárie Dentária/prevenção & controle Suscetibilidade à Cárie Dentária Biofilmes Probióticos/farmacologia ... The ten pairs of clinical isolates of S. mutans and C. albicans were obtained from children with severe early childhood caries ...
1] "Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5." Yonezawa H.et.al. 15673730. ...
2), Streptococcus mutans (1), Corynebacterium sp. (2),Nocardioides sp. (1), Rhodococcus sp. (1) Veillonella sp. (2). In P. ...
Igarashi, T.; Asaga, E.; Goto, N. Roles of Streptococcus mutans dextranase anchored to the cell wall by sortase. Oral Microbiol ... Colby, S.M.; Whiting, G.C.; Tao, L.; Russell, R.R. Insertional inactivation of the Streptococcus mutans dexA (dextranase) gene ... Gibbons, R.J.; Fitzgeraldr, J. Dextran-induced agglutination of Streptococcus mutans, and its potential role in formation of ... Inhibition of water-insoluble glucan production and adherence to smooth surfaces by Streptococcus mutans. Infect. Immun. 1975, ...
Effectiveness of rinsing black tea compared to green tea in decreasing Streptococcus mutans. Open Access Maced J Med Sci. 2019; ... Effect of tea polyphenols on glucan synthesis by glucosyltransferase from Streptococcus mutans. Chem.Pharm Bull.(Tokyo) 1990;38 ...
Streptococcus sanguis, S. mitis group, and S. mutans), staphylococci, and enterococci. In patients with IE who are ,1 year of ... A total of 60 patients with IE caused by Kingella species, Streptococcus species, or S. aureus were included in this study. In ... The characteristics of KIE were compared with characteristics of Streptococcus species IE (StIE) and S. aureus IE (SaIE). The ... We compared the clinical features of pediatric KIE cases with those of Streptococcus species IE (StIE) and Staphylococcus ...
Categories: Streptococcus mutans Image Types: Photo, Illustrations, Video, Color, Black&White, PublicDomain, ...
The VicRK Two-Component System Regulates Streptococcus mutans Virulence. Curr Issues Mol Biol. 2019; 32:167-200. ... Identification of Group A Streptococcus Genes Directly Regulated by CsrRS and Novel Intermediate Regulators. mBio. 2021 08 31; ...
STREPTOCOCCUS MUTANS INORGANIC PYROPHOSPHATASE. 1k20. Inorganic Pyrophosphatase (family II) from Streptococcus gordonii at 1.5 ... Structure of Streptococcus gordonii inorganic pyrophosphatase. 2eb0. Crystal structure of Methanococcus jannaschii putative ... Structure of the family II inorganic pyrophosphatase from Streptococcus agalactiae at 2.8 resolution. ...
Some bacteria - such as Streptococcus mutans (pronounced strep-toe-cock-us mew-tans) - love to digest the sugary food you eat. ... People who lived a long time ago didnt know much about Streptococcus mutans and bacteria poo. They thought getting holes in ...
In reference to dental caries, the main acidogenic or acid-producing species of bacteria is Streptococcus mutans. Through the ... Some bacteria in dental plaque (S. mutans) are cariogenic. The mere presence of cariogenic sugars or cariogenic bacteria is not ...
Interactions between Oral Bacteria: Inhibition of Streptococcus mutans Bacteriocin Production by Streptococcus gordonii Applied ... Quorum Sensing Regulation of Competence and Bacteriocins in Streptococcus pneumoniae and mutans Genes, 8 ... Regulation of Bacteriocin Production in Streptococcus mutans by the Quorum-Sensing System Required for Development of Genetic ... Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus Nature Biotechnology, 22 ...
Mutans Streptococci. and LB were scattered on the agar dishes with a swab. The pulp capping materials under study were placed ... mutans streptococci. (MS) and lactobacilli. and compare the results with mineral trioxide aggregate (MTA) and calcium hydroxide ...
Streptococcus mutans (S. mutans) is a bacteria that must be kept at bay in the mouth. S. mutans has been linked to tooth decay ... Streptococcus salivarius: King of the Mouth. One of the most important immune-boosting mouth bacterium is Streptococcus ... Streptococcus salivarius has been shown to be an effective colonizing probiotic, which means that it adheres to the skin of the ... Streptococcus salivarius DSM-13084 has been shown to adhere to the cells of the oral cavity and populate there in significant ...
Biochemical characterization and antibiogram pattern of streptococcus mutans isolated from dental unit, Sick-Bay, Ahmadu Bello ...
We observed a strong biocidal effect against both Streptococcus mutans and Staphylococcus aureus biofilms in mouse models of ...
Salivary colonization with Streptococcus mutans was found in high rates in a study that included 106 Turkish patients with ... Indeed, the uncommon serotypes of Streptococcus sanguis found in Behçet disease cross-react with the 65-kd HSP, which also ... Mumcu G, Inanc N, Aydin SZ, Ergun T, Direskeneli H. Association of salivary S. mutans colonisation and mannose-binding lectin ... Studies have demonstrated higher colonization of Streptococcus species at ulcer sites than in healthy controls and in patients ...
  • This grouping of similar bacteria with similar tropism can also be seen in the viridans streptococci, another group of Streptococcus species. (wikipedia.org)
  • Oral streptococci comprise both harmless and harmful bacteria. (wikipedia.org)
  • S. mutans produces dextran via the enzyme dextransucrase (a hexosyltransferase) using sucrose as a substrate in the following reaction: n sucrose → (glucose)n + n fructose Sucrose is the only sugar that bacteria can use to form this sticky polysaccharide. (wikipedia.org)
  • Of the hundreds of different types of bacteria living in your mouth, only a handful are thought to cause gum disease, but only Strep Mutans is implicated as the main cause of dental decay. (dentist.net)
  • Antibacterial efficacy was tested by combining 1.4 ml of BHI-B media, 1.4 ml of various mouthwash solutions, and 215 ?l of S. mutans bacteria. (ugm.ac.id)
  • Bacteria coco Gram Positiva dispuesto en cadena, no móvil. (netlify.app)
  • Oct 19, 2014 · Streptococcus mutans is a Gram-positive bacteria, has a thick cell wall, and retains a gentian violet. (netlify.app)
  • Furthermore, the effects on the viability of various cariogenic bacteria (Streptococcus mutans, Streptococcus salivarius, Lactobacillus casei and Actinomyces viscosus) was also determined. (nih.gov)
  • We report that tryglysins specifically inhibit the growth of other streptococci, but not other Gram-positive bacteria such as or We predict that tryglysin is produced by in its oral niche, thus inhibiting the growth of competing species, including several medically relevant streptococci. (princeton.edu)
  • Streptococcus mutans and Candida albicans are well-known emerging pathogenic bacteria / fungi for dental caries . (bvsalud.org)
  • Some bacteria - such as Streptococcus mutans (pronounced strep-toe-cock-us mew-tans) - love to digest the sugary food you eat. (menafn.com)
  • People who lived a long time ago didn't know much about Streptococcus mutans and bacteria poo. (menafn.com)
  • For example, a diet rich in dietary carbohydrate such as refined sugar favors bacteria such as Streptococcus mutans , the organism that causes dental caries. (medscape.com)
  • The most common decay-causing bacteria are Streptococcus mutans . (msdmanuals.com)
  • A symbiotic relationship with S. mutans and Candida albicans leads to increased glucan production and increased biofilm formation. (wikipedia.org)
  • The data suggest that Streptococcus spp collaborates with Candida spp in the etiology and pathogenesis of denture stomatitis. (bvsalud.org)
  • Effect of Probiotic Lactobacillus plantarum on Streptococcus mutans and Candida albicans Clinical Isolates from Children with Early Childhood Caries. (bvsalud.org)
  • citation needed] It is believed that Streptococcus mutans acquired the gene that enables it to produce biofilms through horizontal gene transfer with other lactic acid bacterial species, such as Lactobacillus. (wikipedia.org)
  • for example, S mutans and Streptococcus sanguis typically adhere to hard surfaces, while Streptococcus salivarius is found primarily on the tongue. (medscape.com)
  • It may also invade and proliferate within heart and coronary artery endothelial cells, and, along with Streptococcus sanguis, it may also induce platelet aggregation associated with thrombus formation. (medscape.com)
  • Streptococcus mitis y Capnocytophaga spp Autores: Lidise Hernández Alonso Paulina Fernández Cortés. (netlify.app)
  • Its presence in the biofilm promotes higher levels of S. mutans when looking at early childhood caries. (wikipedia.org)
  • Surviving in the oral cavity, S. mutans is the primary causal agent and the pathogenic species responsible for dental caries (tooth decay or cavities) specifically in the initiation and development stages. (wikipedia.org)
  • The results indicated that all monoclonal antibodies are useful for identification of 8 serotypes of the mutans streptococci responsible for dental caries. (karger.com)
  • ScienceDirect Topics Streptococcus mutans and Streptococcus sobrinus are the most prevalent caries-associated microorganisms, 40 and Lactobacilli are a major contributor to caries progression. (netlify.app)
  • Control of growth Streptococcus mutans isolated from saliva and dental caries Gamal M. El-Sherbiny* Department of Botany and Microbiology, Faculty Science, Al-Azhar University, Madient Nasr, 11884 Cairo, Egypt *Corresponding author ABSTRACT Introduction Streptococcus mutans is a Gram-positive, non-motile, non-spore forming, catalase- Streptococcus - Estreptococos - Bactérias - InfoEscola *Streptococcus viridans: esta espécie normalmente é alfa-hemolítico, estão presente comumente no trato oro-faríngeo. (netlify.app)
  • Correlation of Streptococcus mutans (S. mutans) Level and Interleukin 8 (IL-8) Expressions of Salivary Neutrophils in Severe Early Childhood Caries. (netlify.app)
  • PDF) Streptococcus mutans and dental caries Streptococcus mutans is one of cariogenic microorganisms associated with tooth decay. (netlify.app)
  • The ten pairs of clinical isolates of S. mutans and C. albicans were obtained from children with severe early childhood caries. (bvsalud.org)
  • Background: Transmission of Streptococcus mutans from mother-to-child can lead to Early Childhood Caries. (cdc.gov)
  • en presencia de caries aledañas (42,9%), con valores p de 0,0045 para la superficie ocluso-distal y 0,0291 para la ocluso-mesial. (bvsalud.org)
  • Over 150 candidate predictors were considered, and 31 predictors remained in studies of final developmental models: caries experience, mutans streptococci in saliva, fluoride supplements, and visible dental plaque being the most common predictors. (lu.se)
  • Lactobacilli spp (15.29%) and Streptococcus mutans (12.94%) were the most predominant microorganisms observed in the oral cavity among children with dental caries. (bvsalud.org)
  • Bacterial-fungal co-coaggregation can help to increase the cariogenic potential of S. mutans. (wikipedia.org)
  • This therefore amplifies the cariogenic effect of S. mutans. (wikipedia.org)
  • Recently, proteins involved in the colonization of teeth by S. mutans have been shown to produce antibodies that inhibit the cariogenic process. (wikipedia.org)
  • In this study, three probiotic Lactobacilli strains ( Lactobacillus plantarum 8014, L. plantarum 14917, and Lactobacillus salivarius 11741) were tested on S. mutans and C. albicans clinical isolates using a multispecies biofilm model simulating clinical cariogenic conditions. (bvsalud.org)
  • Our study findings show a remarkable inhibitory effect of L. plantarum 14917 on S. mutans and C. albicans clinical isolates, resulting in significantly reduced growth of S. mutans and C. albicans, a compromised biofilm structure with a significantly smaller microbial and extracellular matrix and a less virulent microcolony structure. (bvsalud.org)
  • It is part of the "streptococci", an informal general name for all species in the genus Streptococcus. (wikipedia.org)
  • This bacterium, along with the closely related species Streptococcus sobrinus, can cohabit the mouth: Both contribute to oral disease, and the expense of differentiating them in laboratory testing is often not clinically necessary. (wikipedia.org)
  • S. mutans is naturally present in the human oral microbiota, along with at least 25 other species of oral streptococci. (wikipedia.org)
  • They also suggest the existence of more serological varieties among mutans species. (karger.com)
  • We compared the clinical features of pediatric KIE cases with those of Streptococcus species IE (StIE) and Staphylococcus aureus IE (SaIE). (cdc.gov)
  • Streptococcus viridans: esta espécie normalmente é alfa-hemolítico, estão presente comumente no trato oro-faríngeo. (netlify.app)
  • The most common IE pathogens in children are gram-positive cocci, especially the α-hemolytic viridans group streptococci (e.g. (cdc.gov)
  • 1 year of age, the viridans group streptococci are the most commonly isolated organisms. (cdc.gov)
  • Their specificities were examined against 35 reference strains of mutans streptococci, 34 reference strains of other oral streptococci and 8 reference strains of other microorganisms often inhabiting the oral cavity. (karger.com)
  • The most sensitive organisms were A. viscosus, followed by S. mutans, S. salivarius, with L. casei being the most resistant. (nih.gov)
  • Along with S. sobrinus, S. mutans plays a major role in tooth decay, metabolizing sucrose to lactic acid. (wikipedia.org)
  • The objective of this study is to examine the influence of lemongrass essential oil (Cymbopogon nardus L.) in mouthwash components on inhibitory effects against S. mutans. (ugm.ac.id)
  • The mechanistic assessment indicated that L. plantarum 14917 had a positive inhibitory impact on the expression of S. mutans and C. albicans virulence genes and virulent structure, such as C. albicans hypha formation. (bvsalud.org)
  • Out of 56 samples collected from patients referred to Milad Hospital dental clinic on October 2011 and three private dental clinics on November 2011, 24 strains of Streptococcus mutans produced mutacins. (ac.ir)
  • The VicRK Two-Component System Regulates Streptococcus mutans Virulence. (harvard.edu)
  • Streptococcus mutans in the oral cavities sable to produce mutacin (bacteriocin-like substances) with antibiotic properties. (ac.ir)
  • 1] "Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5. (tcdb.org)
  • To assess the number of Streptococcus mutans in saliva of patients with denture stomatitis before and after antifungal therapy. (bvsalud.org)
  • When farnesol is in high concentration, it inhibits the growth of both S. mutans and C. albicans. (wikipedia.org)
  • FurTre, plantaricin, an antimicrobial peptide produced by L. plantarum, inhibited the growth of S. mutans and C. albicans. (bvsalud.org)
  • Streptococcus mutans is a facultatively anaerobic, gram-positive coccus (round bacterium) commonly found in the human oral cavity and is a significant contributor to tooth decay. (wikipedia.org)
  • Strep Mutans a shortened term for Mutans Streptococci, is an acid-producing bacterium that attacks tooth enamel minerals which in turn causes tooth decay. (dentist.net)
  • Strep Mutans can be controlled by reducing the food products that the bacterium thrives on. (dentist.net)
  • S. mutans is most prevalent on the pits and fissures, constituting 39% of the total streptococci in the oral cavity. (wikipedia.org)
  • Identification of Group A Streptococcus Genes Directly Regulated by CsrRS and Novel Intermediate Regulators. (harvard.edu)
  • When theses products are eaten, strep mutans produce acid which harm the teeth, roots, and gums. (dentist.net)
  • S. mutans is one of a few specialized organisms equipped with receptors that improve adhesion to the surface of teeth. (wikipedia.org)
  • Background: Invasive infections with non-beta-haemolytic streptococci (NBHS) is quite common and presents the clinicians with difficulties regarding which patients are at risk for infective endocarditis (IE). (lu.se)
  • Due to the role S. mutans plays in tooth decay, many attempts have been made to create a vaccine for the organism. (wikipedia.org)
  • A set of monoclonal antibodies were prepared by the conventional cell fusion of myeloma cells (SP2/0-Ag14) with spleen cells from BALB/c mice immunised with whole cells of a strain of mutans streptococci. (karger.com)
  • The pairing of SHP/Rgg regulatory systems with RaS biosynthetic operons is conserved across streptococci, and a locus similar to that in is found in , an oral streptococcus isolated from wild rats. (princeton.edu)
  • S. mutans uses the enzyme glucansucrase to convert sucrose into a sticky, extracellular, dextran-based polysaccharide that allows them to cohere, forming plaque. (wikipedia.org)
  • Antibacterial mouthwash is used to control oral plaque initiated by S. mutans. (ugm.ac.id)
  • The structural gene for a glucan-binding protein (GBP) of Streptococcus mutans has been inserted into a bacteriophage λ vector and expressed in Escherichia coli K12. (monash.edu)
  • Lysates of E. coli infected with the recombinant phage contain an antigenic protein of the same size as S. mutans GBP. (monash.edu)
  • Using the Streptococcus mutans HdrRM LRS as a model, we demonstrate how the LRS membrane protein HdrM inhibits its cognate transcription regulator HdrR by tightly sequestering HdrR in a membrane-localized heteromeric HdrR/M complex. (elsevierpure.com)
  • However, other sugars-glucose, fructose, lactose-can also be digested by S. mutans, but they produce lactic acid as an end product. (wikipedia.org)
  • Then, from this sample, thirty patients were selected: 15 with positive and 15 with negative diagnosis for candidiasis that were evaluated for S. mutans counting, salivary flow and buffer capacity evaluation. (bvsalud.org)
  • The amount of S. mutans was six times higher in patients with candidiasis and it was associated with low salivary flow and poor oral hygiene. (bvsalud.org)
  • After therapy, a reduction of S. mutans was verified particularly in patients with normal salivary flow. (bvsalud.org)
  • The GBP synthesized in E. coli can be affinity-purified on immobilized glucan and antiserum raised against it has been shown to precipitate fructosyltransferase activity from S. mutans. (monash.edu)
  • Characterization of the Trehalose Utilization Operon in Streptococcus mutans Reveals that the TreR Transcriptional Regulator Is Involved in Stress Response Pathways and Toxin Production. (jcvi.org)
  • Quorum Sensing in Streptococcus mutans Regulates Production of Tryglysin, a Novel RaS-RiPP Antimicrobial Compound. (princeton.edu)
  • However, under special conditions commensal streptococci can become opportunistic pathogens, initiating disease and damaging the host. (wikipedia.org)