A covalently linked dimeric nonessential amino acid formed by the oxidation of CYSTEINE. Two molecules of cysteine are joined together by a disulfide bridge to form cystine.
A metabolic disease characterized by the defective transport of CYSTINE across the lysosomal membrane due to mutation of a membrane protein cystinosin. This results in cystine accumulation and crystallization in the cells causing widespread tissue damage. In the KIDNEY, nephropathic cystinosis is a common cause of RENAL FANCONI SYNDROME.
Stones in the KIDNEY, usually formed in the urine-collecting area of the kidney (KIDNEY PELVIS). Their sizes vary and most contains CALCIUM OXALATE.
Amino acid sequence in which two disulfide bonds (DISULFIDES) and their connecting backbone form a ring that is penetrated by a third disulfide bond. Members include CYCLOTIDES and agouti-related protein.
Low-density crystals or stones in any part of the URINARY TRACT. Their chemical compositions often include CALCIUM OXALATE, magnesium ammonium phosphate (struvite), CYSTINE, or URIC ACID.
The destruction of a calculus of the kidney, ureter, bladder, or gallbladder by physical forces, including crushing with a lithotriptor through a catheter. Focused percutaneous ultrasound and focused hydraulic shock waves may be used without surgery. Lithotripsy does not include the dissolving of stones by acids or litholysis. Lithotripsy by laser is LITHOTRIPSY, LASER.
'Amino Acid Transport System y+', also known as System Y+, is a sodium-independent cationic amino acid transporter that mediates the uptake of primarily basic amino acids, such as arginine and lysine, into cells through a facilitated diffusion process.
Solid crystalline precipitates in the BILIARY TRACT, usually formed in the GALLBLADDER, resulting in the condition of CHOLELITHIASIS. Gallstones, derived from the BILE, consist mainly of calcium, cholesterol, or bilirubin.
An inherited disorder due to defective reabsorption of CYSTINE and other BASIC AMINO ACIDS by the PROXIMAL RENAL TUBULES. This form of aminoaciduria is characterized by the abnormally high urinary levels of cystine; LYSINE; ARGININE; and ORNITHINE. Mutations involve the amino acid transport protein gene SLC3A1.
Presence or formation of GALLSTONES in the BILIARY TRACT, usually in the gallbladder (CHOLECYSTOLITHIASIS) or the common bile duct (CHOLEDOCHOLITHIASIS).
Stones in the URETER that are formed in the KIDNEY. They are rarely more than 5 mm in diameter for larger renal stones cannot enter ureters. They are often lodged at the ureteral narrowing and can cause excruciating renal colic.
The calcium salt of oxalic acid, occurring in the urine as crystals and in certain calculi.
A mercaptoethylamine compound that is endogenously derived from the COENZYME A degradative pathway. The fact that cysteamine is readily transported into LYSOSOMES where it reacts with CYSTINE to form cysteine-cysteamine disulfide and CYSTEINE has led to its use in CYSTINE DEPLETING AGENTS for the treatment of CYSTINOSIS.
An abnormal concretion occurring mostly in the urinary and biliary tracts, usually composed of mineral salts. Also called stones.
Formation of stones in any part of the URINARY TRACT, usually in the KIDNEY; URINARY BLADDER; or the URETER.
Stones in the URINARY BLADDER; also known as vesical calculi, bladder stones, or cystoliths.
Endoscopic examination, therapy or surgery of the ureter.
A thiol-containing non-essential amino acid that is oxidized to form CYSTINE.
Formation of stones in the KIDNEY.
Inorganic compounds that contain magnesium as an integral part of the molecule.
'Sulfur-containing amino acids' are a category of amino acids, the building blocks of proteins, that include methionine and cysteine, which contain sulfur atoms as part of their side chains, playing crucial roles in protein structure, enzyme function, and antioxidant defense.
A hereditary or acquired form of generalized dysfunction of the PROXIMAL KIDNEY TUBULE without primary involvement of the KIDNEY GLOMERULUS. It is usually characterized by the tubular wasting of nutrients and salts (GLUCOSE; AMINO ACIDS; PHOSPHATES; and BICARBONATES) resulting in HYPOKALEMIA; ACIDOSIS; HYPERCALCIURIA; and PROTEINURIA.
A continuous circle of peptide bonds, typically of 2-3 dozen AMINO ACIDS, so there is no free N- or C-terminus. They are further characterized by six conserved CYSTEINE residues that form CYSTINE KNOT MOTIFS.
The insertion of a catheter through the skin and body wall into the kidney pelvis, mainly to provide urine drainage where the ureter is not functional. It is used also to remove or dissolve renal calculi and to diagnose ureteral obstruction.
Fiberoptic endoscopy designed for duodenal observation and cannulation of VATER'S AMPULLA, in order to visualize the pancreatic and biliary duct system by retrograde injection of contrast media. Endoscopic (Vater) papillotomy (SPHINCTEROTOMY, ENDOSCOPIC) may be performed during this procedure.
Incision of Oddi's sphincter or Vater's ampulla performed by inserting a sphincterotome through an endoscope (DUODENOSCOPE) often following retrograde cholangiography (CHOLANGIOPANCREATOGRAPHY, ENDOSCOPIC RETROGRADE). Endoscopic treatment by sphincterotomy is the preferred method of treatment for patients with retained or recurrent bile duct stones post-cholecystectomy, and for poor-surgical-risk patients that have the gallbladder still present.
A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides.
Surgical removal of the GALLBLADDER.
Presence or formation of GALLSTONES in the COMMON BILE DUCT.
Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties.
A radiation-protective agent that interferes with sulfhydryl enzymes. It may also protect against carbon tetrachloride liver damage.
Amino acid transporter systems capable of transporting neutral amino acids (AMINO ACIDS, NEUTRAL).
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
A sulfur-containing essential L-amino acid that is important in many body functions.
Amino acid transporter systems capable of transporting basic amino acids (AMINO ACIDS, BASIC).
An imaging test of the BILIARY TRACT in which a contrast dye (RADIOPAQUE MEDIA) is injected into the BILE DUCT and x-ray pictures are taken.
Radiography of the gallbladder after ingestion of a contrast medium.
Diseases in any part of the ductal system of the BILIARY TRACT from the smallest BILE CANALICULI to the largest COMMON BILE DUCT.
A plant genus of the family RUBIACEAE. Some species are used as an ingredient in Chinese and African traditional medicines. Members contain kalata B1, a macrocyclic peptide.
The largest bile duct. It is formed by the junction of the CYSTIC DUCT and the COMMON HEPATIC DUCT.
A storage reservoir for BILE secretion. Gallbladder allows the delivery of bile acids at a high concentration and in a controlled manner, via the CYSTIC DUCT to the DUODENUM, for degradation of dietary lipid.
A structurally-related family of small proteins that form a stable tertiary fold pattern which is supported by a series of disulfide bonds. The arrangement of disulfide bonds between the CYSTEINE moieties results in a knotted structure which is unique to this family of proteins.
Calcium salts of phosphoric acid. These compounds are frequently used as calcium supplements.
Derivatives of OXALIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are derived from the ethanedioic acid structure.
Eating of excrement by animal species.
Compounds containing the -SH radical.
Excretion of abnormally high level of CALCIUM in the URINE, greater than 4 mg/kg/day.
The scientific study of past societies through artifacts, fossils, etc.
**Maleates** are organic compounds that contain a carboxylic acid group and a hydroxyl group attached to adjacent carbon atoms, often used as intermediates in the synthesis of pharmaceuticals and other chemicals, or as drugs themselves, such as maleic acid or its salts.
Excision of the gallbladder through an abdominal incision using a laparoscope.
Surgery of the smooth muscle sphincter of the hepatopancreatic ampulla to relieve blocked biliary or pancreatic ducts.
Excretion of an excessive amount of OXALATES in the urine.
A powder that dissolves in water, which is administered orally, and is used as a diuretic, expectorant, systemic alkalizer, and electrolyte replenisher.

Cystine is a naturally occurring amino acid in the body, which is formed from the oxidation of two cysteine molecules. It is a non-essential amino acid, meaning that it can be produced by the body and does not need to be obtained through diet. Cystine plays important roles in various biological processes, including protein structure and antioxidant defense. However, when cystine accumulates in large amounts, it can form crystals or stones, leading to conditions such as cystinuria, a genetic disorder characterized by the formation of cystine kidney stones.

Cystinosis is a rare, inherited metabolic disorder that affects primarily the eyes, kidneys, and liver. It is characterized by an abnormal accumulation of the amino acid cystine within lysosomes (cellular organelles responsible for breaking down and recycling waste products) due to a defect in the gene CTNS that encodes for a protein called cystinosin. This leads to the formation of crystals, which can cause cell damage and multi-organ dysfunction.

There are three main types of cystinosis:

1. Nephropathic or infantile cystinosis: This is the most severe form, with symptoms appearing within the first year of life. It primarily affects the kidneys, leading to Fanconi syndrome (a condition characterized by excessive loss of nutrients in urine), growth failure, and kidney dysfunction. If left untreated, it can progress to end-stage renal disease (ESRD) around the age of 10.
2. Intermediate cystinosis: This form presents during childhood with milder kidney involvement but can still lead to ESRD in adolescence or early adulthood. Eye and central nervous system abnormalities may also be present.
3. Non-nephropathic or ocular cystinosis: This is the mildest form, primarily affecting the eyes. Symptoms include photophobia (sensitivity to light), corneal opacities, and decreased vision. Kidney function remains normal in this type.

Treatment for cystinosis typically involves a combination of medications to manage symptoms and slow disease progression. Cysteamine therapy, which helps remove excess cystine from cells, is the primary treatment for all types of cystinosis. Regular monitoring and management of complications are essential to maintain quality of life and prolong survival.

Kidney calculi, also known as kidney stones, are hard deposits made of minerals and salts that form inside your kidneys. They can range in size from a grain of sand to a golf ball. When they're small enough, they can be passed through your urine without causing too much discomfort. However, larger stones may block the flow of urine, causing severe pain and potentially leading to serious complications such as urinary tract infections or kidney damage if left untreated.

The formation of kidney calculi is often associated with factors like dehydration, high levels of certain minerals in your urine, family history, obesity, and certain medical conditions such as gout or inflammatory bowel disease. Symptoms of kidney stones typically include severe pain in the back, side, lower abdomen, or groin; nausea and vomiting; fever and chills if an infection is present; and blood in the urine. Treatment options depend on the size and location of the stone but may include medications to help pass the stone, shock wave lithotripsy to break up the stone, or surgical removal of the stone in severe cases.

Cystine knot motifs are a type of protein structure characterized by the formation of a unique knotted pattern through the linking of three conserved cysteine residues. In this structure, two of the cysteines form a disulfide bond, while the third crosses under and forms an additional disulfide bond with one of the first pair, creating a knot-like shape. This motif is found in a variety of proteins, including some that are involved in important biological processes such as cell signaling, wound healing, and tumor suppression. The cystine knot motif confers stability to these proteins and helps them maintain their function even under harsh conditions.

Urinary calculi, also known as kidney stones or nephrolithiasis, are hard deposits made of minerals and salts that form inside the urinary system. These calculi can develop in any part of the urinary system, which includes the kidneys, ureters, bladder, and urethra.

The formation of urinary calculi typically occurs when there is a concentration of certain substances, such as calcium, oxalate, uric acid, or struvite, in the urine. When these substances become highly concentrated, they can crystallize and form small seeds that gradually grow into larger stones over time.

The size of urinary calculi can vary from tiny, sand-like particles to large stones that can fill the entire renal pelvis. The symptoms associated with urinary calculi depend on the stone's size, location, and whether it is causing a blockage in the urinary tract. Common symptoms include severe pain in the flank, lower abdomen, or groin; nausea and vomiting; blood in the urine (hematuria); fever and chills; and frequent urge to urinate or painful urination.

Treatment for urinary calculi depends on the size and location of the stone, as well as the severity of symptoms. Small stones may pass spontaneously with increased fluid intake and pain management. Larger stones may require medical intervention, such as extracorporeal shock wave lithotripsy (ESWL), ureteroscopy, or percutaneous nephrolithotomy (PCNL) to break up or remove the stone. Preventive measures include maintaining adequate hydration, modifying dietary habits, and taking medications to reduce the risk of stone formation.

Lithotripsy is a medical procedure that uses shock waves or other high-energy sound waves to break down and remove calculi (stones) in the body, particularly in the kidneys, ureters, or gallbladder. The procedure is typically performed on an outpatient basis and does not require any incisions.

During lithotripsy, the patient lies on a cushioned table while a lithotripter, a device that generates shock waves, is positioned around the area of the stone. As the shock waves pass through the body, they break the stone into tiny fragments that can then be easily passed out of the body in urine.

Lithotripsy is generally a safe and effective procedure, but it may not be suitable for everyone. Patients with certain medical conditions, such as bleeding disorders or pregnancy, may not be able to undergo lithotripsy. Additionally, some stones may be too large or too dense to be effectively treated with lithotripsy. In these cases, other treatment options, such as surgery, may be necessary.

The amino acid transport system y+ is a type of sodium-independent cationic amino acid transporter that is responsible for the uptake of positively charged amino acids, such as arginine and lysine, into cells. It is a part of a larger family of amino acid transporters that are involved in the transport of various types of amino acids across cell membranes.

The y+ system is composed of several different transporter proteins, including rBAT/4F2hc heteromeric amino acid transporter (Cat1), and light chains such as y+LAT1, y+LAT2, and y+LAT3. These transporters are widely expressed in various tissues, including the small intestine, kidney, liver, and brain.

The y+ system plays important roles in various physiological processes, including protein synthesis, immune function, and neurotransmitter metabolism. Dysregulation of this transport system has been implicated in several diseases, such as cancer, neurological disorders, and kidney disease.

Gallstones are small, hard deposits that form in the gallbladder, a small organ located under the liver. They can range in size from as small as a grain of sand to as large as a golf ball. Gallstones can be made of cholesterol, bile pigments, or calcium salts, or a combination of these substances.

There are two main types of gallstones: cholesterol stones and pigment stones. Cholesterol stones are the most common type and are usually yellow-green in color. They form when there is too much cholesterol in the bile, which causes it to become saturated and form crystals that eventually grow into stones. Pigment stones are smaller and darker in color, ranging from brown to black. They form when there is an excess of bilirubin, a waste product produced by the breakdown of red blood cells, in the bile.

Gallstones can cause symptoms such as abdominal pain, nausea, vomiting, and bloating, especially after eating fatty foods. In some cases, gallstones can lead to serious complications, such as inflammation of the gallbladder (cholecystitis), infection, or blockage of the bile ducts, which can cause jaundice, a yellowing of the skin and eyes.

The exact cause of gallstones is not fully understood, but risk factors include being female, older age, obesity, a family history of gallstones, rapid weight loss, diabetes, and certain medical conditions such as cirrhosis or sickle cell anemia. Treatment for gallstones may involve medication to dissolve the stones, shock wave therapy to break them up, or surgery to remove the gallbladder.

Cystinuria is a genetic disorder that affects the way the body handles certain amino acids, specifically cystine, arginine, lysine, and ornithine. These amino acids are normally reabsorbed in the kidneys and released into the bloodstream. However, people with cystinuria have a defect in the transport mechanism that causes large amounts of cystine to be excreted in the urine, where it can form stones in the urinary tract. These stones can cause pain, blockages, and infection. Cystinuria is inherited in an autosomal recessive manner, meaning that an individual must inherit two copies of the defective gene, one from each parent, to have the condition.

Cholelithiasis is a medical term that refers to the presence of gallstones in the gallbladder. The gallbladder is a small pear-shaped organ located beneath the liver that stores bile, a digestive fluid produced by the liver. Gallstones are hardened deposits that can form in the gallbladder when substances in the bile, such as cholesterol or bilirubin, crystallize.

Gallstones can vary in size and may be as small as a grain of sand or as large as a golf ball. Some people with gallstones may not experience any symptoms, while others may have severe abdominal pain, nausea, vomiting, fever, and jaundice (yellowing of the skin and eyes) if the gallstones block the bile ducts.

Cholelithiasis is a common condition that affects millions of people worldwide, particularly women over the age of 40 and those with certain medical conditions such as obesity, diabetes, and rapid weight loss. If left untreated, gallstones can lead to serious complications such as inflammation of the gallbladder (cholecystitis), infection, or pancreatitis (inflammation of the pancreas). Treatment options for cholelithiasis include medication, shock wave lithotripsy (breaking up the gallstones with sound waves), and surgery to remove the gallbladder (cholecystectomy).

Ureteral calculi, also known as ureteric stones or ureteral stones, refer to the presence of solid mineral deposits (calculi) within the ureters, the tubes that transport urine from the kidneys to the bladder. These calculi can vary in size and composition, and their formation is often associated with conditions such as dehydration, urinary tract infections, or metabolic disorders. Ureteral calculi may cause symptoms like severe pain, hematuria (blood in the urine), and obstruction of urine flow, potentially leading to serious complications if left untreated.

Calcium oxalate is a chemical compound with the formula CaC2O4. It is the most common type of stone found in kidneys, also known as kidney stones. Calcium oxalate forms when there is too much calcium or oxalate in the urine. This can occur due to various reasons such as dietary habits, dehydration, medical conditions like hyperparathyroidism, or genetic factors.

Calcium oxalate stones are hard and crystalline and can cause severe pain during urination or while passing through the urinary tract. They may also lead to other symptoms like blood in the urine, nausea, vomiting, or fever. Prevention strategies for calcium oxalate stones include staying hydrated, following a balanced diet, and taking prescribed medications to control the levels of calcium and oxalate in the body.

Cysteamine is a medication and a naturally occurring aminothiol compound, which is composed of the amino acid cysteine and a sulfhydryl group. It has various uses in medicine, including as a treatment for cystinosis, a rare genetic disorder that causes an accumulation of cystine crystals in various organs and tissues. Cysteamine works by reacting with cystine to form a compound that can be more easily eliminated from the body. It is available in oral and topical forms and may also be used for other indications, such as treating lung diseases and radiation-induced damage.

"Calculi" is a medical term that refers to abnormal concretions or hard masses formed within the body, usually in hollow organs or cavities. These masses are typically composed of minerals such as calcium oxalate, calcium phosphate, or magnesium ammonium phosphate, and can vary in size from tiny granules to large stones. The plural form of the Latin word "calculus" (meaning "pebble"), calculi are commonly known as "stones." They can occur in various locations within the body, including the kidneys, gallbladder, urinary bladder, and prostate gland. The presence of calculi can cause a range of symptoms, such as pain, obstruction, infection, or inflammation, depending on their size, location, and composition.

Urolithiasis is the formation of stones (calculi) in the urinary system, which includes the kidneys, ureters, bladder, and urethra. These stones can be composed of various substances such as calcium oxalate, calcium phosphate, uric acid, or struvite. The presence of urolithiasis can cause symptoms like severe pain in the back or side, nausea, vomiting, fever, and blood in the urine. The condition can be managed with medications, increased fluid intake, and in some cases, surgical intervention may be required to remove the stones.

Urinary bladder calculi, also known as bladder stones, refer to the formation of solid mineral deposits within the urinary bladder. These calculi develop when urine becomes concentrated, allowing minerals to crystallize and stick together, forming a stone. Bladder stones can vary in size, ranging from tiny sand-like particles to larger ones that can occupy a significant portion of the bladder's volume.

Bladder stones typically form as a result of underlying urinary tract issues, such as bladder infection, enlarged prostate, nerve damage, or urinary retention. Symptoms may include lower abdominal pain, difficulty urinating, frequent urination, blood in the urine, and sudden, strong urges to urinate. If left untreated, bladder stones can lead to complications like urinary tract infections and kidney damage. Treatment usually involves surgical removal of the stones or using other minimally invasive procedures to break them up and remove the fragments.

Ureteroscopy is a medical procedure that involves the use of a ureteroscope, which is a thin, flexible or rigid fiber-optic tube with a light and camera at the end, to visualize the inside of the ureters and kidneys. The ureteroscope is inserted through the urethra and bladder, and then up into the ureter to examine it for any abnormalities such as stones, tumors, or structural issues.

During the procedure, the doctor can also remove any small stones or take a biopsy of any suspicious tissue. Ureteroscopy is typically performed under general or regional anesthesia and may require hospitalization depending on the complexity of the procedure. It is a minimally invasive alternative to traditional open surgery for diagnosing and treating ureteral and kidney conditions.

Cysteine is a semi-essential amino acid, which means that it can be produced by the human body under normal circumstances, but may need to be obtained from external sources in certain conditions such as illness or stress. Its chemical formula is HO2CCH(NH2)CH2SH, and it contains a sulfhydryl group (-SH), which allows it to act as a powerful antioxidant and participate in various cellular processes.

Cysteine plays important roles in protein structure and function, detoxification, and the synthesis of other molecules such as glutathione, taurine, and coenzyme A. It is also involved in wound healing, immune response, and the maintenance of healthy skin, hair, and nails.

Cysteine can be found in a variety of foods, including meat, poultry, fish, dairy products, eggs, legumes, nuts, seeds, and some grains. It is also available as a dietary supplement and can be used in the treatment of various medical conditions such as liver disease, bronchitis, and heavy metal toxicity. However, excessive intake of cysteine may have adverse effects on health, including gastrointestinal disturbances, nausea, vomiting, and headaches.

Nephrolithiasis is a medical term that refers to the presence of stones or calculi in the kidney. These stones can form anywhere in the urinary tract, including the kidneys, ureters, bladder, and urethra. Nephrolithiasis is also commonly known as kidney stones.

Kidney stones are hard deposits made up of minerals and salts that crystallize in the urine. They can vary in size from tiny sand-like particles to larger pebble or even golf ball-sized masses. Kidney stones can cause pain, bleeding, and infection if they block the flow of urine through the urinary tract.

The formation of kidney stones is often associated with a variety of factors such as dehydration, high levels of calcium, oxalate, or uric acid in the urine, family history, obesity, and certain medical conditions like gout or inflammatory bowel disease. Treatment for nephrolithiasis depends on the size and location of the stone, as well as the severity of symptoms. Small stones may pass spontaneously with increased fluid intake, while larger stones may require medication, shock wave lithotripsy, or surgical removal.

Magnesium compounds refer to substances that contain magnesium (an essential mineral) combined with other elements. These compounds are formed when magnesium atoms chemically bond with atoms of other elements. Magnesium is an alkaline earth metal and it readily forms stable compounds with various elements due to its electron configuration.

Examples of magnesium compounds include:

1. Magnesium oxide (MgO): Also known as magnesia, it is formed by combining magnesium with oxygen. It has a high melting point and is used in various applications such as refractory materials, chemical production, and agricultural purposes.
2. Magnesium hydroxide (Mg(OH)2): Often called milk of magnesia, it is a common antacid and laxative. It is formed by combining magnesium with hydroxide ions.
3. Magnesium chloride (MgCl2): This compound is formed when magnesium reacts with chlorine gas. It has various uses, including as a de-icing agent, a component in fertilizers, and a mineral supplement.
4. Magnesium sulfate (MgSO4): Also known as Epsom salts, it is formed by combining magnesium with sulfur and oxygen. It is used as a bath salt, a laxative, and a fertilizer.
5. Magnesium carbonate (MgCO3): This compound is formed when magnesium reacts with carbon dioxide. It has various uses, including as a fire retardant, a food additive, and a dietary supplement.

These are just a few examples of the many different magnesium compounds that exist. Each compound has its unique properties and applications based on the elements it is combined with.

Sulfur-containing amino acids are a type of amino acid that contain sulfur atoms in their side chains. There are three sulfur-containing amino acids that are considered essential for human health: methionine, cysteine, and homocysteine.

Methionine is an essential amino acid, which means that it cannot be synthesized by the human body and must be obtained through the diet. It contains a sulfur atom in its side chain and plays important roles in various biological processes, including methylation reactions, protein synthesis, and detoxification.

Cysteine is a semi-essential amino acid, which means that it can be synthesized by the human body under normal conditions but may become essential during periods of growth or illness. It contains a sulfhydryl group (-SH) in its side chain, which allows it to form disulfide bonds with other cysteine residues and contribute to the stability and structure of proteins.

Homocysteine is a non-proteinogenic amino acid that is derived from methionine metabolism. It contains a sulfur atom in its side chain and has been linked to various health problems, including cardiovascular disease, when present at elevated levels in the blood.

Other sulfur-containing amino acids include taurine, which is not incorporated into proteins but plays important roles in bile acid conjugation, antioxidant defense, and neuromodulation, and cystathionine, which is an intermediate in methionine metabolism.

Fanconi syndrome is a medical condition that affects the proximal tubules of the kidneys. These tubules are responsible for reabsorbing various substances, such as glucose, amino acids, and electrolytes, back into the bloodstream after they have been filtered through the kidneys.

In Fanconi syndrome, there is a defect in the reabsorption process, causing these substances to be lost in the urine instead. This can lead to a variety of symptoms, including:

* Polyuria (excessive urination)
* Polydipsia (excessive thirst)
* Dehydration
* Metabolic acidosis (an imbalance of acid and base in the body)
* Hypokalemia (low potassium levels)
* Hypophosphatemia (low phosphate levels)
* Vitamin D deficiency
* Rickets (softening and weakening of bones in children) or osteomalacia (softening of bones in adults)

Fanconi syndrome can be caused by a variety of underlying conditions, including genetic disorders, kidney diseases, drug toxicity, and heavy metal poisoning. Treatment typically involves addressing the underlying cause, as well as managing symptoms such as electrolyte imbalances and acid-base disturbances.

Cyclotides are a group of naturally occurring cyclic peptides that contain a head-to-tail cyclized structure and a conserved cystine knot motif. They are produced by plants, particularly those in the Rubiaceae family, as a defense mechanism against herbivores and pathogens.

Cyclotides have unique structural features, including a circular arrangement of amino acids and a knotted pattern of disulfide bonds, which contribute to their stability and resistance to degradation. These properties make them attractive candidates for drug development and therapeutic applications.

In addition to their potential use as drugs, cyclotides have also been studied for their potential as insecticides, antimicrobial agents, and anti-cancer therapies. They have been shown to have potent activity against a variety of targets, including cancer cells, bacteria, fungi, and viruses.

Overall, the unique structural and functional properties of cyclotides make them an exciting area of research in the fields of medicinal chemistry, pharmacology, and drug discovery.

A percutaneous nephrostomy is a medical procedure in which a tube (catheter) is inserted through the skin into the kidney to drain urine. "Percutaneous" means that the procedure is performed through the skin. The term "nephrostomy" refers specifically to the creation of an opening into the kidney.

This procedure is typically performed under local anesthesia and imaging guidance, such as ultrasound or fluoroscopy, to ensure accurate placement of the catheter. It may be used in cases where there is a blockage in the urinary tract that prevents the normal flow of urine, such as a kidney stone or tumor. By creating a nephrostomy, urine can be drained from the kidney, helping to alleviate pressure and prevent further complications.

Percutaneous nephrostomy is generally a safe procedure, but like any medical intervention, it carries some risks. These may include bleeding, infection, injury to surrounding organs, or failure to properly place the catheter. Patients who undergo this procedure will typically require follow-up care to manage the catheter and monitor their kidney function.

Endoscopic retrograde cholangiopancreatography (ERCP) is a medical procedure that combines upper gastrointestinal (GI) endoscopy and fluoroscopy to diagnose and treat certain problems of the bile ducts and pancreas.

During ERCP, a flexible endoscope (a long, thin, lighted tube with a camera on the end) is passed through the patient's mouth and throat, then through the stomach and into the first part of the small intestine (duodenum). A narrow plastic tube (catheter) is then inserted through the endoscope and into the bile ducts and/or pancreatic duct. Contrast dye is injected through the catheter, and X-rays are taken to visualize the ducts.

ERCP can be used to diagnose a variety of conditions affecting the bile ducts and pancreas, including gallstones, tumors, strictures (narrowing of the ducts), and chronic pancreatitis. It can also be used to treat certain conditions, such as removing gallstones from the bile duct or placing stents to keep the ducts open in cases of stricture.

ERCP is an invasive procedure that carries a risk of complications, including pancreatitis, infection, bleeding, and perforation (a tear in the lining of the GI tract). It should only be performed by experienced medical professionals in a hospital setting.

Endoscopic sphincterotomy is a medical procedure that involves the use of an endoscope (a flexible tube with a light and camera) to cut the papilla of Vater, which contains the sphincter of Oddi muscle. This procedure is typically performed to treat gallstones or to manage other conditions related to the bile ducts or pancreatic ducts.

The sphincterotomy helps to widen the opening of the papilla, allowing stones or other obstructions to pass through more easily. It may also be used to relieve pressure and pain caused by spasms of the sphincter of Oddi muscle. The procedure is usually done under sedation or anesthesia and carries a risk of complications such as bleeding, infection, perforation, and pancreatitis.

Glutathione is a tripeptide composed of three amino acids: cysteine, glutamic acid, and glycine. It is a vital antioxidant that plays an essential role in maintaining cellular health and function. Glutathione helps protect cells from oxidative stress by neutralizing free radicals, which are unstable molecules that can damage cells and contribute to aging and diseases such as cancer, heart disease, and dementia. It also supports the immune system, detoxifies harmful substances, and regulates various cellular processes, including DNA synthesis and repair.

Glutathione is found in every cell of the body, with particularly high concentrations in the liver, lungs, and eyes. The body can produce its own glutathione, but levels may decline with age, illness, or exposure to toxins. As such, maintaining optimal glutathione levels through diet, supplementation, or other means is essential for overall health and well-being.

Cholecystectomy is a medical procedure to remove the gallbladder, a small pear-shaped organ located on the right side of the abdomen, just beneath the liver. The primary function of the gallbladder is to store and concentrate bile, a digestive fluid produced by the liver. During a cholecystectomy, the surgeon removes the gallbladder, usually due to the presence of gallstones or inflammation that can cause pain, infection, or other complications.

There are two primary methods for performing a cholecystectomy:

1. Open Cholecystectomy: In this traditional surgical approach, the surgeon makes an incision in the abdomen to access and remove the gallbladder. This method is typically used when there are complications or unique circumstances that make laparoscopic surgery difficult or risky.
2. Laparoscopic Cholecystectomy: This is a minimally invasive surgical procedure where the surgeon makes several small incisions in the abdomen, through which a thin tube with a camera (laparoscope) and specialized surgical instruments are inserted. The surgeon then guides these tools to remove the gallbladder while viewing the internal structures on a video monitor.

After the gallbladder is removed, bile flows directly from the liver into the small intestine through the common bile duct, and the body continues to function normally without any significant issues.

Choledocholithiasis is a medical condition characterized by the presence of one or more gallstones in the common bile duct, which is the tube that carries bile from the liver and gallbladder to the small intestine. Bile is a digestive fluid produced by the liver that helps break down fats in the small intestine. Gallstones are hardened deposits of digestive fluids that can form in the gallbladder or, less commonly, in the bile ducts.

Choledocholithiasis can cause a variety of symptoms, including abdominal pain, jaundice (yellowing of the skin and eyes), nausea, vomiting, and fever. If left untreated, it can lead to serious complications such as infection or inflammation of the bile ducts or pancreas, which can be life-threatening.

The condition is typically diagnosed through imaging tests such as ultrasound, CT scan, or MRI, and may require endoscopic or surgical intervention to remove the gallstones from the common bile duct.

Disulfides are a type of organic compound that contains a sulfur-sulfur bond. In the context of biochemistry and medicine, disulfide bonds are often found in proteins, where they play a crucial role in maintaining their three-dimensional structure and function. These bonds form when two sulfhydryl groups (-SH) on cysteine residues within a protein molecule react with each other, releasing a molecule of water and creating a disulfide bond (-S-S-) between the two cysteines. Disulfide bonds can be reduced back to sulfhydryl groups by various reducing agents, which is an important process in many biological reactions. The formation and reduction of disulfide bonds are critical for the proper folding, stability, and activity of many proteins, including those involved in various physiological processes and diseases.

Cystamine is a chemical compound that is formed in the body from the breakdown of cysteine, an amino acid. It exists as a disulfide bond-containing molecule, which can be reduced to form two molecules of cysteamine. Cystamine has been studied for its potential therapeutic effects in various medical conditions, including neurodegenerative disorders and cancer.

In the body, cystamine functions as an antioxidant and helps to regulate cellular processes such as apoptosis (programmed cell death) and autophagy (a process by which cells break down and recycle their own components). It has been shown to have neuroprotective effects in animal models of neurodegenerative diseases, such as Huntington's disease and Parkinson's disease.

Cystamine has also been investigated for its potential anticancer effects. It has been shown to induce apoptosis in various cancer cell lines, including leukemia, lung cancer, and colon cancer cells. Additionally, cystamine has been found to enhance the effectiveness of chemotherapy drugs in some studies.

Cystamine is available as a dietary supplement and is sometimes used as a treatment for cystinosis, a rare genetic disorder that causes an accumulation of cystine crystals in various organs of the body. However, more research is needed to fully understand the potential therapeutic uses and safety profile of cystamine.

Neutral amino acid transport systems refer to a group of membrane transporters that facilitate the movement of neutral amino acids across cell membranes. Neutral amino acids are those that have a neutral charge at physiological pH and include amino acids such as alanine, serine, threonine, valine, leucine, isoleucine, methionine, cysteine, tyrosine, phenylalanine, and tryptophan.

There are several different transport systems that have been identified for neutral amino acids, each with its own specificity and affinity for different amino acids. Some of the major neutral amino acid transport systems include:

1. System A: This transporter preferentially transports small, neutral amino acids such as alanine, serine, and threonine. It is found in many tissues, including the intestines, kidneys, and brain.
2. System B0+: This transporter preferentially transports large, neutral amino acids such as leucine, isoleucine, valine, methionine, and phenylalanine. It is found in many tissues, including the intestines, kidneys, and brain.
3. System L: This transporter preferentially transports large, neutral amino acids such as leucine, isoleucine, valine, methionine, and phenylalanine. It is found in many tissues, including the intestines, kidneys, and brain.
4. System y+: This transporter preferentially transports cationic amino acids such as lysine and arginine, but it can also transport some neutral amino acids. It is found in many tissues, including the intestines, kidneys, and brain.
5. System b0,+: This transporter preferentially transports cationic amino acids such as lysine and arginine, but it can also transport some neutral amino acids. It is found in many tissues, including the intestines, kidneys, and brain.

These transport systems play important roles in maintaining amino acid homeostasis in the body, as well as in various physiological processes such as protein synthesis, neurotransmitter synthesis, and cell signaling. Dysregulation of these transport systems has been implicated in several diseases, including cancer, neurological disorders, and metabolic disorders.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

Methionine is an essential amino acid, which means that it cannot be synthesized by the human body and must be obtained through the diet. It plays a crucial role in various biological processes, including:

1. Protein synthesis: Methionine is one of the building blocks of proteins, helping to create new proteins and maintain the structure and function of cells.
2. Methylation: Methionine serves as a methyl group donor in various biochemical reactions, which are essential for DNA synthesis, gene regulation, and neurotransmitter production.
3. Antioxidant defense: Methionine can be converted to cysteine, which is involved in the formation of glutathione, a potent antioxidant that helps protect cells from oxidative damage.
4. Homocysteine metabolism: Methionine is involved in the conversion of homocysteine back to methionine through a process called remethylation, which is essential for maintaining normal homocysteine levels and preventing cardiovascular disease.
5. Fat metabolism: Methionine helps facilitate the breakdown and metabolism of fats in the body.

Foods rich in methionine include meat, fish, dairy products, eggs, and some nuts and seeds.

Amino acid transport systems are specialized cellular mechanisms responsible for the active transport of amino acids across cell membranes. These systems are essential for maintaining proper amino acid homeostasis within cells and organisms. They consist of several types of transporters that can be categorized based on their energy source, electrochemical gradient, substrate specificity, and functional characteristics.

The term 'basic' in this context typically refers to the fundamental understanding of these transport systems, including their structure, function, regulation, and physiological roles. Amino acid transport systems play a crucial role in various biological processes, such as protein synthesis, neurotransmission, cell signaling, and energy metabolism.

There are two primary types of amino acid transport systems:

1. **Na+-dependent transporters:** These transporters utilize the sodium gradient across the cell membrane to drive the uptake of amino acids. They can be further divided into subtypes based on their substrate specificity and functional properties, such as system A, system ASC, system B0, system B, system L, and system y+.
2. **Na+-independent transporters:** These transporters do not rely on the sodium gradient for amino acid transport. Instead, they use other energy sources like proton gradients or direct coupling to membrane potential. Examples of Na+-independent transporters include system L, system y+, and system x-AG.

Understanding the basic aspects of amino acid transport systems is essential for elucidating their roles in health and disease. Dysregulation of these systems has been implicated in various pathological conditions, such as neurological disorders, cancer, and metabolic diseases.

Cholangiography is a medical procedure that involves taking X-ray images of the bile ducts (the tubes that carry bile from the liver to the small intestine). This is typically done by injecting a contrast dye into the bile ducts through an endoscope or a catheter that has been inserted into the body.

There are several types of cholangiography, including:

* Endoscopic retrograde cholangiopancreatography (ERCP): This procedure involves inserting an endoscope through the mouth and down the throat into the small intestine. A dye is then injected into the bile ducts through a small tube that is passed through the endoscope.
* Percutaneous transhepatic cholangiography (PTC): This procedure involves inserting a needle through the skin and into the liver to inject the contrast dye directly into the bile ducts.
* Operative cholangiography: This procedure is performed during surgery to examine the bile ducts for any abnormalities or blockages.

Cholangiography can help diagnose a variety of conditions that affect the bile ducts, such as gallstones, tumors, or inflammation. It can also be used to guide treatment decisions, such as whether surgery is necessary to remove a blockage.

Cholecystography is a medical procedure that involves the use of X-rays to examine the gallbladder and bile ducts. It is also known as an oral cholecystogram (OCG).

The procedure involves administering a contrast agent, typically a iodine-based dye, which is absorbed by the liver and excreted into the bile ducts and gallbladder. The dye makes the bile ducts and gallbladder visible on X-ray images, allowing doctors to diagnose conditions such as gallstones, tumors, or inflammation of the gallbladder.

Cholecystography is not commonly used today due to the development of more advanced imaging techniques, such as ultrasound and computed tomography (CT) scans, which are non-invasive and do not require the use of contrast agents. However, it may still be used in certain cases where other imaging tests are inconclusive or unavailable.

Bile duct diseases refer to a group of medical conditions that affect the bile ducts, which are tiny tubes that carry bile from the liver to the gallbladder and small intestine. Bile is a digestive juice produced by the liver that helps break down fats in food.

There are several types of bile duct diseases, including:

1. Choledocholithiasis: This occurs when stones form in the common bile duct, causing blockage and leading to symptoms such as abdominal pain, jaundice, and fever.
2. Cholangitis: This is an infection of the bile ducts that can cause inflammation, pain, and fever. It can occur due to obstruction of the bile ducts or as a complication of other medical procedures.
3. Primary Biliary Cirrhosis (PBC): This is a chronic autoimmune disease that affects the bile ducts in the liver, causing inflammation and scarring that can lead to cirrhosis and liver failure.
4. Primary Sclerosing Cholangitis (PSC): This is another autoimmune disease that causes inflammation and scarring of the bile ducts, leading to liver damage and potential liver failure.
5. Bile Duct Cancer: Also known as cholangiocarcinoma, this is a rare form of cancer that affects the bile ducts and can cause jaundice, abdominal pain, and weight loss.
6. Benign Strictures: These are narrowing of the bile ducts that can occur due to injury, inflammation, or surgery, leading to blockage and potential infection.

Symptoms of bile duct diseases may include jaundice, abdominal pain, fever, itching, dark urine, and light-colored stools. Treatment depends on the specific condition and may involve medication, surgery, or other medical interventions.

"Oldenlandia" is not a term that has a specific medical definition. It is a genus of flowering plants in the coffee family, Rubiaceae, and it includes over 200 species that are found primarily in tropical and subtropical regions around the world. Some species of Oldenlandia have been used in traditional medicine in various cultures, but there is limited scientific evidence to support their effectiveness or safety.

In modern medical contexts, if "Oldenlandia" is mentioned, it may refer to a specific plant species that has been studied for its potential medicinal properties. For example, Oldenlandia diffusa (also known as Hedyotis diffusa) has been investigated for its anti-inflammatory, antioxidant, and anticancer effects. However, it is important to note that the use of any plant or herbal remedy should be discussed with a qualified healthcare provider, as they can interact with other medications and have potential side effects.

The common bile duct is a duct that results from the union of the cystic duct (which drains bile from the gallbladder) and the common hepatic duct (which drains bile from the liver). The common bile duct transports bile, a digestive enzyme, from the liver and gallbladder to the duodenum, which is the first part of the small intestine.

The common bile duct runs through the head of the pancreas before emptying into the second part of the duodenum, either alone or in conjunction with the pancreatic duct, via a small opening called the ampulla of Vater. The common bile duct plays a crucial role in the digestion of fats by helping to break them down into smaller molecules that can be absorbed by the body.

The gallbladder is a small, pear-shaped organ located just under the liver in the right upper quadrant of the abdomen. Its primary function is to store and concentrate bile, a digestive enzyme produced by the liver, which helps in the breakdown of fats during the digestion process. When food, particularly fatty foods, enter the stomach and small intestine, the gallbladder contracts and releases bile through the common bile duct into the duodenum, the first part of the small intestine, to aid in fat digestion.

The gallbladder is made up of three main parts: the fundus, body, and neck. It has a muscular wall that allows it to contract and release bile. Gallstones, an inflammation of the gallbladder (cholecystitis), or other gallbladder diseases can cause pain, discomfort, and potentially serious health complications if left untreated.

Cystine-knot miniproteins, also known as "cyclic peptides" or "constrained peptides," are a class of small protein molecules that contain a unique structural motif called a cystine knot. This motif is formed by the presence of three intramolecular disulfide bonds that create a knotted structure, which confers stability and resistance to proteolytic degradation on these miniproteins.

Cystine-knot miniproteins are found in various organisms, including plants, animals, and microorganisms, and have diverse biological functions. Some cystine-knot miniproteins act as toxins or hormones, while others have been shown to have therapeutic potential as drugs or drug delivery agents.

Due to their small size, stability, and specificity, cystine-knot miniproteins are attractive candidates for the development of new drugs and diagnostic tools. They can be engineered to bind to specific targets with high affinity and selectivity, making them useful for a variety of applications in medicine and biotechnology.

Calcium phosphates are a group of minerals that are important components of bones and teeth. They are also found in some foods and are used in dietary supplements and medical applications. Chemically, calcium phosphates are salts of calcium and phosphoric acid, and they exist in various forms, including hydroxyapatite, which is the primary mineral component of bone tissue. Other forms of calcium phosphates include monocalcium phosphate, dicalcium phosphate, and tricalcium phosphate, which are used as food additives and dietary supplements. Calcium phosphates are important for maintaining strong bones and teeth, and they also play a role in various physiological processes, such as nerve impulse transmission and muscle contraction.

Oxalates, also known as oxalic acid or oxalate salts, are organic compounds that contain the functional group called oxalate. Oxalates are naturally occurring substances found in various foods such as spinach, rhubarb, nuts, and seeds. They can also be produced by the body as a result of metabolism.

In the body, oxalates can bind with calcium and other minerals to form crystals, which can accumulate in various tissues and organs, including the kidneys. This can lead to the formation of kidney stones, which are a common health problem associated with high oxalate intake or increased oxalate production in the body.

It is important for individuals with a history of kidney stones or other kidney problems to monitor their oxalate intake and limit consumption of high-oxalate foods. Additionally, certain medical conditions such as hyperoxaluria, a rare genetic disorder that causes increased oxalate production in the body, may require medical treatment to reduce oxalate levels and prevent complications.

Coprophagia is a medical term that refers to the consumption or eating of feces. This behavior is generally considered abnormal in humans and most other animals, but it is a natural part of the life cycle for some species such as certain insects and rodents. In animals, coprophagia can sometimes be a sign of an underlying medical condition, nutritional deficiency, or behavioral issue. In humans, coprophagia is often associated with mental health disorders such as pica or obsessive-compulsive disorder (OCD). It's important to note that coprophagia can pose serious health risks, including the transmission of diseases and parasites, so it should be addressed with a healthcare professional if it occurs.

Sulfhydryl compounds, also known as thiol compounds, are organic compounds that contain a functional group consisting of a sulfur atom bonded to a hydrogen atom (-SH). This functional group is also called a sulfhydryl group. Sulfhydryl compounds can be found in various biological systems and play important roles in maintaining the structure and function of proteins, enzymes, and other biomolecules. They can also act as antioxidants and help protect cells from damage caused by reactive oxygen species. Examples of sulfhydryl compounds include cysteine, glutathione, and coenzyme A.

Hypercalciuria is a medical condition characterized by an excessive amount of calcium in the urine. It can occur when the body absorbs too much calcium from food, or when the bones release more calcium than usual. In some cases, it may be caused by certain medications, kidney disorders, or genetic factors.

Hypercalciuria can increase the risk of developing kidney stones and other kidney problems. It is often diagnosed through a 24-hour urine collection test that measures the amount of calcium in the urine. Treatment may include changes in diet, increased fluid intake, and medications to help reduce the amount of calcium in the urine.

I believe you may have made a typo in your question. "Archaeology" is the scientific study of past human cultures and societies through the recovery, examination, and analysis of material remains such as artifacts, buildings, biofacts (e.g., bones, shells), and cultural landscapes. It is not typically associated with medical definitions. If you intended to ask for a different term related to medicine or healthcare, please let me know so I can provide the correct information.

For more information about archaeology, you may be interested in visiting the World Archaeological Congress () or the Society for American Archaeology () websites to learn more about this fascinating field of study.

"Maleate" is not a medical term in and of itself, but it is a chemical compound that can be found in some medications. Maleic acid or its salts (maleates) are used as a keratolytic agent in topical medications, which means they help to break down and remove dead skin cells. They can also be used as a preservative or a buffering agent in various pharmaceutical preparations.

Maleic acid is a type of organic compound known as a dicarboxylic acid, which contains two carboxyl groups. In the case of maleic acid, these carboxyl groups are located on a single carbon atom, which makes it a cis-conjugated diacid. This structural feature gives maleic acid unique chemical properties that can be useful in various pharmaceutical and industrial applications.

It's worth noting that maleic acid and its salts should not be confused with "maleate" as a gender-specific term, which refers to something related to or characteristic of males.

Laparoscopic cholecystectomy is a surgical procedure to remove the gallbladder using a laparoscope, a thin tube with a camera, which allows the surgeon to view the internal structures on a video monitor. The surgery is performed through several small incisions in the abdomen, rather than a single large incision used in open cholecystectomy. This approach results in less postoperative pain, fewer complications, and shorter recovery time compared to open cholecystectomy.

The procedure is typically indicated for symptomatic gallstones or chronic inflammation of the gallbladder (cholecystitis), which can cause severe abdominal pain, nausea, vomiting, and fever. Laparoscopic cholecystectomy has become the standard of care for gallbladder removal due to its minimally invasive nature and excellent outcomes.

Transhepatic sphincterotomy is a medical procedure that involves the incision or cutting of the papilla of Vater, which is a small muscular structure located at the junction of the common bile duct and the main pancreatic duct, with the ampulla of Vater, within the second part of the duodenum. This procedure is performed using a special type of endoscope that is passed through the liver (transhepatically) to access the bile ducts.

The goal of transhepatic sphincterotomy is to relieve obstructions or blockages in the bile ducts, such as gallstones or tumors, that cannot be removed using other endoscopic techniques. This procedure is typically performed by an interventional radiologist or a gastroenterologist with specialized training in endoscopic retrograde cholangiopancreatography (ERCP).

Transhepatic sphincterotomy is considered a higher-risk procedure than traditional ERCP sphincterotomy due to the need for liver puncture and the potential complications associated with this approach, including bleeding, infection, and injury to surrounding organs. However, it may be necessary in certain situations where traditional ERCP is not feasible or has failed.

Hyperoxaluria is a medical condition characterized by an excessive excretion of oxalate in the urine. Oxalate is a naturally occurring substance found in some foods and can also be produced by the body. When oxalate combines with calcium in the urine, it can form kidney stones or calcium oxalate deposits in the kidneys and other tissues, leading to kidney damage or systemic oxalosis. There are three types of hyperoxaluria: primary, secondary, and enteric. Primary hyperoxaluria is caused by genetic defects that affect the body's ability to regulate oxalate production, while secondary hyperoxaluria results from increased dietary intake or absorption of oxalate, or from other medical conditions. Enteric hyperoxaluria occurs in individuals with malabsorption syndromes, such as inflammatory bowel disease or after gastric bypass surgery, where excessive amounts of oxalate are absorbed from the gut into the bloodstream and excreted in the urine.

Potassium citrate is a medication and dietary supplement that contains potassium and citrate. Medically, it is used to treat and prevent kidney stones, as well as to manage metabolic acidosis in people with chronic kidney disease. Potassium citrate works by increasing the pH of urine, making it less acidic, which can help to dissolve certain types of kidney stones and prevent new ones from forming. It is also used as an alkalizing agent in the treatment of various conditions that cause acidosis.

In addition to its medical uses, potassium citrate is also found naturally in some fruits and vegetables, such as oranges, grapefruits, lemons, limes, and spinach. It is often used as a food additive and preservative, and can be found in a variety of processed foods and beverages.

It's important to note that taking too much potassium citrate can lead to high levels of potassium in the blood, which can be dangerous. Therefore, it is important to follow the dosage instructions carefully and talk to your doctor before taking this medication if you have any medical conditions or are taking any other medications.

No FAQ available that match "stones cystine"

No images available that match "stones cystine"