Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells.
Progenitor cells from which all blood cells derive.
The transfer of STEM CELLS from one individual to another within the same species (TRANSPLANTATION, HOMOLOGOUS) or between species (XENOTRANSPLANTATION), or transfer within the same individual (TRANSPLANTATION, AUTOLOGOUS). The source and location of the stem cells determines their potency or pluripotency to differentiate into various cell types.
Cells derived from the BLASTOCYST INNER CELL MASS which forms before implantation in the uterine wall. They retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells.
Cells with high proliferative and self renewal capacities derived from adults.
Cells that can give rise to cells of the three different GERM LAYERS.
Transfer of HEMATOPOIETIC STEM CELLS from BONE MARROW or BLOOD between individuals within the same species (TRANSPLANTATION, HOMOLOGOUS) or transfer within the same individual (TRANSPLANTATION, AUTOLOGOUS). Hematopoietic stem cell transplantation has been used as an alternative to BONE MARROW TRANSPLANTATION in the treatment of a variety of neoplasms.
A particular zone of tissue composed of a specialized microenvironment where stem cells are retained in a undifferentiated, self-renewable state.
Self-renewing cells that generate the main phenotypes of the nervous system in both the embryo and adult. Neural stem cells are precursors to both NEURONS and NEUROGLIA.
Cells from adult organisms that have been reprogrammed into a pluripotential state similar to that of EMBRYONIC STEM CELLS.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
Specialized stem cells that are committed to give rise to cells that have a particular function; examples are MYOBLASTS; MYELOID PROGENITOR CELLS; and skin stem cells. (Stem Cells: A Primer [Internet]. Bethesda (MD): National Institutes of Health (US); 2000 May [cited 2002 Apr 5]. Available from: http://www.nih.gov/news/stemcell/primer.htm)
Transfer of MESENCHYMAL STEM CELLS between individuals within the same species (TRANSPLANTATION, HOMOLOGOUS) or transfer within the same individual (TRANSPLANTATION, AUTOLOGOUS).
A hematopoietic growth factor and the ligand of the cell surface c-kit protein (PROTO-ONCOGENE PROTEINS C-KIT). It is expressed during embryogenesis and is a growth factor for a number of cell types including the MAST CELLS and the MELANOCYTES in addition to the HEMATOPOIETIC STEM CELLS.
Bone-marrow-derived, non-hematopoietic cells that support HEMATOPOETIC STEM CELLS. They have also been isolated from other organs and tissues such as UMBILICAL CORD BLOOD, umbilical vein subendothelium, and WHARTON JELLY. These cells are considered to be a source of multipotent stem cells because they include subpopulations of mesenchymal stem cells.
The developmental history of specific differentiated cell types as traced back to the original STEM CELLS in the embryo.
Experimentation on STEM CELLS and on the use of stem cells.
Parts of plants that usually grow vertically upwards towards the light and support the leaves, buds, and reproductive structures. (From Concise Dictionary of Biology, 1990)
Cells derived from a FETUS that retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The release of stem cells from the bone marrow into the peripheral blood circulation for the purpose of leukapheresis, prior to stem cell transplantation. Hematopoietic growth factors or chemotherapeutic agents often are used to stimulate the mobilization.
Highly proliferative, self-renewing, and colony-forming stem cells which give rise to NEOPLASMS.
Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells.
The physiological renewal, repair, or replacement of tissue.
An octamer transcription factor that is expressed primarily in totipotent embryonic STEM CELLS and GERM CELLS and is down-regulated during CELL DIFFERENTIATION.
Methods for maintaining or growing CELLS in vitro.
A field of medicine concerned with developing and using strategies aimed at repair or replacement of damaged, diseased, or metabolically deficient organs, tissues, and cells via TISSUE ENGINEERING; CELL TRANSPLANTATION; and ARTIFICIAL ORGANS and BIOARTIFICIAL ORGANS and tissues.
Cell separation is the process of isolating and distinguishing specific cell types or individual cells from a heterogeneous mixture, often through the use of physical or biological techniques.
Transplantation of an individual's own tissue from one site to another site.
The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY).
Transplantation of stem cells collected from the peripheral blood. It is a less invasive alternative to direct marrow harvesting of hematopoietic stem cells. Enrichment of stem cells in peripheral blood can be achieved by inducing mobilization of stem cells from the BONE MARROW.
Single cells that have the potential to form an entire organism. They have the capacity to specialize into extraembryonic membranes and tissues, the embryo, and all postembryonic tissues and organs. (Stem Cells: A Primer [Internet]. Bethesda (MD): National Institutes of Health (US); 2000 May [cited 2002 Apr 5]. Available from: http://www.nih.gov/news/stemcell/primer.htm)
Glycoproteins found on immature hematopoietic cells and endothelial cells. They are the only molecules to date whose expression within the blood system is restricted to a small number of progenitor cells in the bone marrow.
Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals.
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS.
A subclass of SOX transcription factors that are expressed in neuronal tissue where they may play a role in the regulation of CELL DIFFERENTIATION. Members of this subclass are generally considered to be transcriptional activators.
Euploid male germ cells of an early stage of SPERMATOGENESIS, derived from prespermatogonia. With the onset of puberty, spermatogonia at the basement membrane of the seminiferous tubule proliferate by mitotic then meiotic divisions and give rise to the haploid SPERMATOCYTES.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
A cytologic technique for measuring the functional capacity of stem cells by assaying their activity.
Therapies that involve the TRANSPLANTATION of CELLS or TISSUES developed for the purpose of restoring the function of diseased or dysfunctional cells or tissues.
Mice homozygous for the mutant autosomal recessive gene "scid" which is located on the centromeric end of chromosome 16. These mice lack mature, functional lymphocytes and are thus highly susceptible to lethal opportunistic infections if not chronically treated with antibiotics. The lack of B- and T-cell immunity resembles severe combined immunodeficiency (SCID) syndrome in human infants. SCID mice are useful as animal models since they are receptive to implantation of a human immune system producing SCID-human (SCID-hu) hematochimeric mice.
Generating tissue in vitro for clinical applications, such as replacing wounded tissues or impaired organs. The use of TISSUE SCAFFOLDING enables the generation of complex multi-layered tissues and tissue structures.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
A protein-tyrosine kinase receptor that is specific for STEM CELL FACTOR. This interaction is crucial for the development of hematopoietic, gonadal, and pigment stem cells. Genetic mutations that disrupt the expression of PROTO-ONCOGENE PROTEINS C-KIT are associated with PIEBALDISM, while overexpression or constitutive activation of the c-kit protein-tyrosine kinase is associated with tumorigenesis.
Transplantation of STEM CELLS collected from the fetal blood remaining in the UMBILICAL CORD and the PLACENTA after delivery. Included are the HEMATOPOIETIC STEM CELLS.
A type VI intermediate filament protein expressed mostly in nerve cells where it is associated with the survival, renewal and mitogen-stimulated proliferation of neural progenitor cells.
Established cell cultures that have the potential to propagate indefinitely.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.
The reproductive cells in multicellular organisms at various stages during GAMETOGENESIS.
Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL).
A tube-like invagination of the EPIDERMIS from which the hair shaft develops and into which SEBACEOUS GLANDS open. The hair follicle is lined by a cellular inner and outer root sheath of epidermal origin and is invested with a fibrous sheath derived from the dermis. (Stedman, 26th ed) Follicles of very long hairs extend into the subcutaneous layer of tissue under the SKIN.
The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA.
Experimentation on, or using the organs or tissues from, a human or other mammalian conceptus during the prenatal stage of development that is characterized by rapid morphological changes and the differentiation of basic structures. In humans, this includes the period from the time of fertilization to the end of the eighth week after fertilization.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
A technique of culturing mixed cell types in vitro to allow their synergistic or antagonistic interactions, such as on CELL DIFFERENTIATION or APOPTOSIS. Coculture can be of different types of cells, tissues, or organs from normal or disease states.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
The transference of BONE MARROW from one human or animal to another for a variety of purposes including HEMATOPOIETIC STEM CELL TRANSPLANTATION or MESENCHYMAL STEM CELL TRANSPLANTATION.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
A reverse developmental process in which terminally differentiated cells with specialized functions revert back to a less differentiated stage within their own CELL LINEAGE.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
Blood of the fetus. Exchange of nutrients and waste between the fetal and maternal blood occurs via the PLACENTA. The cord blood is blood contained in the umbilical vessels (UMBILICAL CORD) at the time of delivery.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH.
Preparative treatment of transplant recipient with various conditioning regimens including radiation, immune sera, chemotherapy, and/or immunosuppressive agents, prior to transplantation. Transplantation conditioning is very common before bone marrow transplantation.
The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells.
A true neoplasm composed of a number of different types of tissue, none of which is native to the area in which it occurs. It is composed of tissues that are derived from three germinal layers, the endoderm, mesoderm, and ectoderm. They are classified histologically as mature (benign) or immature (malignant). (From DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1642)
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Spontaneous aggregations of human embryonic stem cells that occur in vitro after culturing in a medium that lacks LEUKEMIC INHIBITORY FACTOR. The embryoid bodies can further differentiate into cells that represent different lineages.
The process that reverts CELL NUCLEI of fully differentiated somatic cells to a pluripotent or totipotent state. This process can be achieved to a certain extent by NUCLEAR TRANSFER TECHNIQUES, such as fusing somatic cell nuclei with enucleated pluripotent embryonic stem cells or enucleated totipotent oocytes. GENE EXPRESSION PROFILING of the fused hybrid cells is used to determine the degree of reprogramming. Dramatic results of nuclear reprogramming include the generation of cloned mammals, such as Dolly the sheep in 1997.
Spherical, heterogeneous aggregates of proliferating, quiescent, and necrotic cells in culture that retain three-dimensional architecture and tissue-specific functions. The ability to form spheroids is a characteristic trait of CULTURED TUMOR CELLS derived from solid TUMORS. Cells from normal tissues can also form spheroids. They represent an in-vitro model for studies of the biology of both normal and malignant cells. (From Bjerkvig, Spheroid Culture in Cancer Research, 1992, p4)
Transference of cells within an individual, between individuals of the same species, or between individuals of different species.
Formation of NEURONS which involves the differentiation and division of STEM CELLS in which one or both of the daughter cells become neurons.
Elements of limited time intervals, contributing to particular results or situations.
The formation of cartilage. This process is directed by CHONDROCYTES which continually divide and lay down matrix during development. It is sometimes a precursor to OSTEOGENESIS.
A genus of the family RETROVIRIDAE consisting of non-oncogenic retroviruses that produce multi-organ diseases characterized by long incubation periods and persistent infection. Lentiviruses are unique in that they contain open reading frames (ORFs) between the pol and env genes and in the 3' env region. Five serogroups are recognized, reflecting the mammalian hosts with which they are associated. HIV-1 is the type species.
The clinical entity characterized by anorexia, diarrhea, loss of hair, leukopenia, thrombocytopenia, growth retardation, and eventual death brought about by the GRAFT VS HOST REACTION.
The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell.
A strain of non-obese diabetic mice developed in Japan that has been widely studied as a model for T-cell-dependent autoimmune insulin-dependent diabetes mellitus in which insulitis is a major histopathologic feature, and in which genetic susceptibility is strongly MHC-linked.
Non-invasive imaging of cells that have been labeled non-destructively, such as with nanoemulsions or reporter genes that can be detected by molecular imaging, to monitor their location, viability, cell lineage expansion, response to drugs, movement, or other behaviors in vivo.
A glycoprotein of MW 25 kDa containing internal disulfide bonds. It induces the survival, proliferation, and differentiation of neutrophilic granulocyte precursor cells and functionally activates mature blood neutrophils. Among the family of colony-stimulating factors, G-CSF is the most potent inducer of terminal differentiation to granulocytes and macrophages of leukemic myeloid cell lines.
A cell adhesion protein that was originally identified as a heat stable antigen in mice. It is involved in METASTASIS and is highly expressed in many NEOPLASMS.
Cell growth support structures composed of BIOCOMPATIBLE MATERIALS. They are specially designed solid support matrices for cell attachment in TISSUE ENGINEERING and GUIDED TISSUE REGENERATION uses.
A richly vascularized and innervated connective tissue of mesodermal origin, contained in the central cavity of a tooth and delimited by the dentin, and having formative, nutritive, sensory, and protective functions. (Jablonski, Dictionary of Dentistry, 1992)
Transplantation between animals of different species.
An annular transitional zone, approximately 1 mm wide, between the cornea and the bulbar conjunctiva and sclera. It is highly vascular and is involved in the metabolism of the cornea. It is ophthalmologically significant in that it appears on the outer surface of the eyeball as a slight furrow, marking the line between the clear cornea and the sclera. (Dictionary of Visual Science, 3d ed)
The malignant stem cells of TERATOCARCINOMAS, which resemble pluripotent stem cells of the BLASTOCYST INNER CELL MASS. The EC cells can be grown in vitro, and experimentally induced to differentiate. They are used as a model system for studying early embryonic cell differentiation.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
The number of CELLS of a specific kind, usually measured per unit volume or area of sample.
Cell-surface molecules that exhibit lineage-restricted patterns of expression during EMBRYONIC DEVELOPMENT. The antigens are useful markers in the identification of EMBRYONIC STEM CELLS.
The differentiation of pre-adipocytes into mature ADIPOCYTES.
Neoplasms located in the blood and blood-forming tissue (the bone marrow and lymphatic tissue). The commonest forms are the various types of LEUKEMIA, of LYMPHOMA, and of the progressive, life-threatening forms of the MYELODYSPLASTIC SYNDROMES.
The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host.
A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed)
An individual that contains cell populations derived from different zygotes.
A family of conserved cell surface receptors that contain EPIDERMAL GROWTH FACTOR repeats in their extracellular domain and ANKYRIN repeats in their cytoplasmic domains. The cytoplasmic domain of notch receptors is released upon ligand binding and translocates to the CELL NUCLEUS where it acts as transcription factor.
The quality of surface form or outline of CELLS.
The transfer of bacterial DNA by phages from an infected bacterium to another bacterium. This also refers to the transfer of genes into eukaryotic cells by viruses. This naturally occurring process is routinely employed as a GENE TRANSFER TECHNIQUE.
A genetic process by which the adult organism is realized via mechanisms that lead to the restriction in the possible fates of cells, eventually leading to their differentiated state. Mechanisms involved cause heritable changes to cells without changes to DNA sequence such as DNA METHYLATION; HISTONE modification; DNA REPLICATION TIMING; NUCLEOSOME positioning; and heterochromatization which result in selective gene expression or repression.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein.
Connective tissue cells of an organ found in the loose connective tissue. These are most often associated with the uterine mucosa and the ovary as well as the hematopoietic system and elsewhere.
Wnt proteins are a large family of secreted glycoproteins that play essential roles in EMBRYONIC AND FETAL DEVELOPMENT, and tissue maintenance. They bind to FRIZZLED RECEPTORS and act as PARACRINE PROTEIN FACTORS to initiate a variety of SIGNAL TRANSDUCTION PATHWAYS. The canonical Wnt signaling pathway stabilizes the transcriptional coactivator BETA CATENIN.
An organism that, as a result of transplantation of donor tissue or cells, consists of two or more cell lines descended from at least two zygotes. This state may result in the induction of donor-specific TRANSPLANTATION TOLERANCE.
Nonparasitic free-living flatworms of the class Turbellaria. The most common genera are Dugesia, formerly Planaria, which lives in water, and Bipalium, which lives on land. Geoplana occurs in South America and California.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
The decrease in the cell's ability to proliferate with the passing of time. Each cell is programmed for a certain number of cell divisions and at the end of that time proliferation halts. The cell enters a quiescent state after which it experiences CELL DEATH via the process of APOPTOSIS.
Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells.
Striated muscle cells found in the heart. They are derived from cardiac myoblasts (MYOBLASTS, CARDIAC).
The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.
These growth factors comprise a family of hematopoietic regulators with biological specificities defined by their ability to support proliferation and differentiation of blood cells of different lineages. ERYTHROPOIETIN and the COLONY-STIMULATING FACTORS belong to this family. Some of these factors have been studied and used in the treatment of chemotherapy-induced neutropenia, myelodysplastic syndromes, and bone marrow failure syndromes.
Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill.
'Nerve tissue proteins' are specialized proteins found within the nervous system's biological tissue, including neurofilaments, neuronal cytoskeletal proteins, and neural cell adhesion molecules, which facilitate structural support, intracellular communication, and synaptic connectivity essential for proper neurological function.
A cell line derived from cultured tumor cells.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
A naturally occurring phenomenon where terminally differentiated cells dedifferentiate to the point where they can switch CELL LINEAGES. The cells then differentiate into other cell types.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
Acidic sulfated integral membrane glycoproteins expressed in several alternatively spliced and variable glycosylated forms on a wide variety of cell types including mature T-cells, B-cells, medullary thymocytes, granulocytes, macrophages, erythrocytes, and fibroblasts. CD44 antigens are the principle cell surface receptors for hyaluronate and this interaction mediates binding of lymphocytes to high endothelial venules. (From Abbas et al., Cellular and Molecular Immunology, 2d ed, p156)
Local surroundings with which cells interact by processing various chemical and physical signals, and by contributing their own effects to this environment.
The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube.
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.
Elongated, spindle-shaped, quiescent myoblasts lying in close contact with adult skeletal muscle. They are thought to play a role in muscle repair and regeneration.
A complex signaling pathway whose name is derived from the DROSOPHILA Wg gene, which when mutated results in the wingless phenotype, and the vertebrate INT gene, which is located near integration sites of MOUSE MAMMARY TUMOR VIRUS. The signaling pathway is initiated by the binding of WNT PROTEINS to cells surface WNT RECEPTORS which interact with the AXIN SIGNALING COMPLEX and an array of second messengers that influence the actions of BETA CATENIN.
Process of classifying cells of the immune system based on structural and functional differences. The process is commonly used to analyze and sort T-lymphocytes into subsets based on CD antigens by the technique of flow cytometry.
Hybridization of a nucleic acid sample to a very large set of OLIGONUCLEOTIDE PROBES, which have been attached individually in columns and rows to a solid support, to determine a BASE SEQUENCE, or to detect variations in a gene sequence, GENE EXPRESSION, or for GENE MAPPING.
The flexible rope-like structure that connects a developing FETUS to the PLACENTA in mammals. The cord contains blood vessels which carry oxygen and nutrients from the mother to the fetus and waste products away from the fetus.
The three primary germinal layers (ECTODERM; ENDODERM; and MESODERM) developed during GASTRULATION that provide tissues and body plan of a mature organism. They derive from two early layers, hypoblast and epiblast.
An INTERLEUKIN-6 related cytokine that exhibits pleiotrophic effects on many physiological systems that involve cell proliferation, differentiation, and survival. Leukemia inhibitory factor binds to and acts through the lif receptor.
Irradiation of the whole body with ionizing or non-ionizing radiation. It is applicable to humans or animals but not to microorganisms.
Cells used in COCULTURE TECHNIQUES which support the growth of the other cells in the culture. Feeder cells provide auxillary substances including attachment substrates, nutrients, or other factors that are needed for growth in culture.
The inner of the three germ layers of an embryo.
Culture media containing biologically active components obtained from previously cultured cells or tissues that have released into the media substances affecting certain cell functions (e.g., growth, lysis).
Small double-stranded, non-protein coding RNAs, 21-25 nucleotides in length generated from single-stranded microRNA gene transcripts by the same RIBONUCLEASE III, Dicer, that produces small interfering RNAs (RNA, SMALL INTERFERING). They become part of the RNA-INDUCED SILENCING COMPLEX and repress the translation (TRANSLATION, GENETIC) of target RNA by binding to homologous 3'UTR region as an imperfect match. The small temporal RNAs (stRNAs), let-7 and lin-4, from C. elegans, are the first 2 miRNAs discovered, and are from a class of miRNAs involved in developmental timing.
A group of differentiation surface antigens, among the first to be discovered on thymocytes and T-lymphocytes. Originally identified in the mouse, they are also found in other species including humans, and are expressed on brain neurons and other cells.
A group of plant cells that are capable of dividing infinitely and whose main function is the production of new growth at the growing tip of a root or stem. (From Concise Dictionary of Biology, 1990)
The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
The preparation of leukocyte concentrates with the return of red cells and leukocyte-poor plasma to the donor.
The blood-making organs and tissues, principally the bone marrow and lymph nodes.
A multi-functional catenin that participates in CELL ADHESION and nuclear signaling. Beta catenin binds CADHERINS and helps link their cytoplasmic tails to the ACTIN in the CYTOSKELETON via ALPHA CATENIN. It also serves as a transcriptional co-activator and downstream component of WNT PROTEIN-mediated SIGNAL TRANSDUCTION PATHWAYS.
Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone.
A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors.
A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006)
A bone morphogenetic protein that is a potent inducer of bone formation. It also functions as a regulator of MESODERM formation during EMBRYONIC DEVELOPMENT.
Genes that are introduced into an organism using GENE TRANSFER TECHNIQUES.
Family of RNA viruses that infects birds and mammals and encodes the enzyme reverse transcriptase. The family contains seven genera: DELTARETROVIRUS; LENTIVIRUS; RETROVIRUSES TYPE B, MAMMALIAN; ALPHARETROVIRUS; GAMMARETROVIRUS; RETROVIRUSES TYPE D; and SPUMAVIRUS. A key feature of retrovirus biology is the synthesis of a DNA copy of the genome which is integrated into cellular DNA. After integration it is sometimes not expressed but maintained in a latent state (PROVIRUSES).
A family of DNA-binding transcription factors that contain a basic HELIX-LOOP-HELIX MOTIF.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
A cytologic technique for measuring the functional capacity of tumor stem cells by assaying their activity. It is used primarily for the in vitro testing of antineoplastic agents.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms.
CULTURE MEDIA free of serum proteins but including the minimal essential substances required for cell growth. This type of medium avoids the presence of extraneous substances that may affect cell proliferation or unwanted activation of cells.
Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation.
Methods used for detecting the amplified DNA products from the polymerase chain reaction as they accumulate instead of at the end of the reaction.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A family of zinc finger transcription factors that share homology with Kruppel protein, Drosophila. They contain a highly conserved seven amino acid spacer sequence in between their ZINC FINGER MOTIFS.
Individuals supplying living tissue, organs, cells, blood or blood components for transfer or transplantation to histocompatible recipients.
Cellular signaling in which a factor secreted by a cell affects other cells in the local environment. This term is often used to denote the action of INTERCELLULAR SIGNALING PEPTIDES AND PROTEINS on surrounding cells.
An alkylating agent having a selective immunosuppressive effect on BONE MARROW. It has been used in the palliative treatment of chronic myeloid leukemia (MYELOID LEUKEMIA, CHRONIC), but although symptomatic relief is provided, no permanent remission is brought about. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), busulfan is listed as a known carcinogen.
Techniques and strategies which include the use of coding sequences and other conventional or radical means to transform or modify cells for the purpose of treating or reversing disease conditions.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The integration of exogenous DNA into the genome of an organism at sites where its expression can be suitably controlled. This integration occurs as a result of homologous recombination.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
Bone-growth regulatory factors that are members of the transforming growth factor-beta superfamily of proteins. They are synthesized as large precursor molecules which are cleaved by proteolytic enzymes. The active form can consist of a dimer of two identical proteins or a heterodimer of two related bone morphogenetic proteins.
A CXC chemokine that is chemotactic for T-LYMPHOCYTES and MONOCYTES. It has specificity for CXCR4 RECEPTORS. Two isoforms of CXCL12 are produced by alternative mRNA splicing.
A malignancy of mature PLASMA CELLS engaging in monoclonal immunoglobulin production. It is characterized by hyperglobulinemia, excess Bence-Jones proteins (free monoclonal IMMUNOGLOBULIN LIGHT CHAINS) in the urine, skeletal destruction, bone pain, and fractures. Other features include ANEMIA; HYPERCALCEMIA; and RENAL INSUFFICIENCY.
An organism whose body contains cell populations of different genotypes as a result of the TRANSPLANTATION of donor cells after sufficient ionizing radiation to destroy the mature recipient's cells which would otherwise reject the donor cells.
Morphological and physiological development of EMBRYOS.
An integrin alpha subunit that primarily associates with INTEGRIN BETA1 or INTEGRIN BETA4 to form laminin-binding heterodimers. Integrin alpha6 has two alternatively spliced isoforms: integrin alpha6A and integrin alpha6B, which differ in their cytoplasmic domains and are regulated in a tissue-specific and developmental stage-specific manner.
Non-human animals, selected because of specific characteristics, for use in experimental research, teaching, or testing.
The treatment of a disease or condition by several different means simultaneously or sequentially. Chemoimmunotherapy, RADIOIMMUNOTHERAPY, chemoradiotherapy, cryochemotherapy, and SALVAGE THERAPY are seen most frequently, but their combinations with each other and surgery are also used.
Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white.
The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN.
Adherence of cells to surfaces or to other cells.
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.
Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses.
A group of lymphocyte surface antigens located on mouse LYMPHOCYTES. Specific Ly antigens are useful markers for distinguishing subpopulations of lymphocytes.
The cells found in the body fluid circulating throughout the CARDIOVASCULAR SYSTEM.
A type I keratin found in the basal layer of the adult epidermis and in other stratified epithelia.
Regulatory proteins and peptides that are signaling molecules involved in the process of PARACRINE COMMUNICATION. They are generally considered factors that are expressed by one cell and are responded to by receptors on another nearby cell. They are distinguished from HORMONES in that their actions are local rather than distal.
Restoration of integrity to traumatized tissue.
A multisubunit polycomb protein complex with affinity for CHROMATIN that contains methylated HISTONE H3. It contains an E3 ubiquitin ligase activity that is specific for HISTONE H2A and works in conjunction with POLYCOMB REPRESSIVE COMPLEX 2 to effect EPIGENETIC REPRESSION.
A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper.
The development of new BLOOD VESSELS during the restoration of BLOOD CIRCULATION during the healing process.
The artificial induction of GENE SILENCING by the use of RNA INTERFERENCE to reduce the expression of a specific gene. It includes the use of DOUBLE-STRANDED RNA, such as SMALL INTERFERING RNA and RNA containing HAIRPIN LOOP SEQUENCE, and ANTI-SENSE OLIGONUCLEOTIDES.
A trisaccharide antigen expressed on glycolipids and many cell-surface glycoproteins. In the blood the antigen is found on the surface of NEUTROPHILS; EOSINOPHILS; and MONOCYTES. In addition, CD15 antigen is a stage-specific embryonic antigen.
Clonal expansion of myeloid blasts in bone marrow, blood, and other tissue. Myeloid leukemias develop from changes in cells that normally produce NEUTROPHILS; BASOPHILS; EOSINOPHILS; and MONOCYTES.
Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP.
Clonal hematopoetic disorder caused by an acquired genetic defect in PLURIPOTENT STEM CELLS. It starts in MYELOID CELLS of the bone marrow, invades the blood and then other organs. The condition progresses from a stable, more indolent, chronic phase (LEUKEMIA, MYELOID, CHRONIC PHASE) lasting up to 7 years, to an advanced phase composed of an accelerated phase (LEUKEMIA, MYELOID, ACCELERATED PHASE) and BLAST CRISIS.

Inhibition of in vitro enteric neuronal development by endothelin-3: mediation by endothelin B receptors. (1/16085)

The terminal colon is aganglionic in mice lacking endothelin-3 or its receptor, endothelin B. To analyze the effects of endothelin-3/endothelin B on the differentiation of enteric neurons, E11-13 mouse gut was dissociated, and positive and negative immunoselection with antibodies to p75(NTR )were used to isolate neural crest- and non-crest-derived cells. mRNA encoding endothelin B was present in both the crest-and non-crest-derived cells, but that encoding preproendothelin-3 was detected only in the non-crest-derived population. The crest- and non-crest-derived cells were exposed in vitro to endothelin-3, IRL 1620 (an endothelin B agonist), and/or BQ 788 (an endothelin B antagonist). Neurons and glia developed only in cultures of crest-derived cells, and did so even when endothelin-3 was absent and BQ 788 was present. Endothelin-3 inhibited neuronal development, an effect that was mimicked by IRL 1620 and blocked by BQ 788. Endothelin-3 failed to stimulate the incorporation of [3H]thymidine or bromodeoxyuridine. Smooth muscle development in non-crest-derived cell cultures was promoted by endothelin-3 and inhibited by BQ 788. In contrast, transcription of laminin alpha1, a smooth muscle-derived promoter of neuronal development, was inhibited by endothelin-3, but promoted by BQ 788. Neurons did not develop in explants of the terminal bowel of E12 ls/ls (endothelin-3-deficient) mice, but could be induced to do so by endothelin-3 if a source of neural precursors was present. We suggest that endothelin-3/endothelin B normally prevents the premature differentiation of crest-derived precursors migrating to and within the fetal bowel, enabling the precursor population to persist long enough to finish colonizing the bowel.  (+info)

A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. (2/16085)

Morphogenesis depends on the precise control of basic cellular processes such as cell proliferation and differentiation. Wnt5a may regulate these processes since it is expressed in a gradient at the caudal end of the growing embryo during gastrulation, and later in the distal-most aspect of several structures that extend from the body. A loss-of-function mutation of Wnt5a leads to an inability to extend the A-P axis due to a progressive reduction in the size of caudal structures. In the limbs, truncation of the proximal skeleton and absence of distal digits correlates with reduced proliferation of putative progenitor cells within the progress zone. However, expression of progress zone markers, and several genes implicated in distal outgrowth and patterning including Distalless, Hoxd and Fgf family members was not altered. Taken together with the outgrowth defects observed in the developing face, ears and genitals, our data indicates that Wnt5a regulates a pathway common to many structures whose development requires extension from the primary body axis. The reduced number of proliferating cells in both the progress zone and the primitive streak mesoderm suggests that one function of Wnt5a is to regulate the proliferation of progenitor cells.  (+info)

Retinoids are produced by glia in the lateral ganglionic eminence and regulate striatal neuron differentiation. (3/16085)

In order to identify molecular mechanisms involved in striatal development, we employed a subtraction cloning strategy to enrich for genes expressed in the lateral versus the medial ganglionic eminence. Using this approach, the homeobox gene Meis2 was found highly expressed in the lateral ganglionic eminence and developing striatum. Since Meis2 has recently been shown to be upregulated by retinoic acid in P19 EC cells (Oulad-Abdelghani, M., Chazaud, C., Bouillet, P., Sapin, V., Chambon, P. and Dolle, P. (1997) Dev. Dyn. 210, 173-183), we examined a potential role for retinoids in striatal development. Our results demonstrate that the lateral ganglionic eminence, unlike its medial counterpart or the adjacent cerebral cortex, is a localized source of retinoids. Interestingly, glia (likely radial glia) in the lateral ganglionic eminence appear to be a major source of retinoids. Thus, as lateral ganglionic eminence cells migrate along radial glial fibers into the developing striatum, retinoids from these glial cells could exert an effect on striatal neuron differentiation. Indeed, the treatment of lateral ganglionic eminence cells with retinoic acid or agonists for the retinoic acid receptors or retinoid X receptors, specifically enhances their striatal neuron characteristics. These findings, therefore, strongly support the notion that local retinoid signalling within the lateral ganglionic eminence regulates striatal neuron differentiation.  (+info)

Deletion analysis of the Drosophila Inscuteable protein reveals domains for cortical localization and asymmetric localization. (4/16085)

The Drosophila Inscuteable protein acts as a key regulator of asymmetric cell division during the development of the nervous system [1] [2]. In neuroblasts, Inscuteable localizes into an apical cortical crescent during late interphase and most of mitosis. During mitosis, Inscuteable is required for the correct apical-basal orientation of the mitotic spindle and for the asymmetric segregation of the proteins Numb [3] [4] [5], Prospero [5] [6] [7] and Miranda [8] [9] into the basal daughter cell. When Inscuteable is ectopically expressed in epidermal cells, which normally orient their mitotic spindle parallel to the embryo surface, these cells reorient their mitotic spindle and divide perpendicularly to the surface [1]. Like the Inscuteable protein, the inscuteable RNA is asymmetrically localized [10]. We show here that inscuteable RNA localization is not required for Inscuteable protein localization. We found that a central 364 amino acid domain - the Inscuteable asymmetry domain - was necessary and sufficient for Inscuteable localization and function. Within this domain, a separate 100 amino acid region was required for asymmetric localization along the cortex, whereas a 158 amino acid region directed localization to the cell cortex. The same 158 amino acid fragment could localize asymmetrically when coexpressed with the full-length protein, however, and could bind to Inscuteable in vitro, suggesting that this domain may be involved in the self-association of Inscuteable in vivo.  (+info)

JunB is essential for mammalian placentation. (5/16085)

Lack of JunB, an immediate early gene product and member of the AP-1 transcription factor family causes embryonic lethality between E8.5 and E10.0. Although mutant embryos are severely retarded in growth and development, cellular proliferation is apparently not impaired. Retardation and embryonic death are caused by the inability of JunB-deficient embryos to establish proper vascular interactions with the maternal circulation due to multiple defects in extra-embryonic tissues. The onset of the phenotypic defects correlates well with high expression of junB in wild-type extra-embryonic tissues. In trophoblasts, the lack of JunB causes a deregulation of proliferin, matrix metalloproteinase-9 (MMP-9) and urokinase plasminogen activator (uPA) gene expression, resulting in a defective neovascularization of the decidua. As a result of downregulation of the VEGF-receptor 1 (flt-1), blood vessels in the yolk sac mesoderm appeared dilated. Mutant embryos which escape these initial defects finally die from a non-vascularized placental labyrinth. Injection of junB-/- embryonic stem (ES) cells into tetraploid wild-type blastocysts resulted in a partial rescue, in which the ES cell-derived fetuses were no longer growth retarded and displayed a normal placental labyrinth. Therefore, JunB appears to be involved in multiple signaling pathways regulating genes involved in the establishment of a proper feto-maternal circulatory system.  (+info)

Cloning of a novel gene specifically expressed in clonal mouse chondroprogenitor-like EC cells, ATDC5. (6/16085)

We cloned a full-length cDNA encoding a novel mouse protein, A-C2, by differential display method using mouse embryonic fibroblast C3H10T1/2 cells and mouse chondroprogenitor-like EC cells, ATDC5. The deduced amino acid sequence of A-C2 consisted of 106 amino acids with no significant homology to the sequences previously reported. Northern blot analysis showed two major bands of 2.1 and 1.8 kb sizes. Expression of A-C2 mRNA was exclusive to ATDC5 cells at their undifferentiated stage. None of ATDC5 cells at their differentiated stage and adult mice tissues examined expressed A-C2 gene.  (+info)

Reciprocal control of T helper cell and dendritic cell differentiation. (7/16085)

It is not known whether subsets of dendritic cells provide different cytokine microenvironments that determine the differentiation of either type-1 T helper (TH1) or TH2 cells. Human monocyte (pDC1)-derived dendritic cells (DC1) were found to induce TH1 differentiation, whereas dendritic cells (DC2) derived from CD4+CD3-CD11c- plasmacytoid cells (pDC2) induced TH2 differentiation by use of a mechanism unaffected by interleukin-4 (IL-4) or IL-12. The TH2 cytokine IL-4 enhanced DC1 maturation and killed pDC2, an effect potentiated by IL-10 but blocked by CD40 ligand and interferon-gamma. Thus, a negative feedback loop from the mature T helper cells may selectively inhibit prolonged TH1 or TH2 responses by regulating survival of the appropriate dendritic cell subset.  (+info)

Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. (8/16085)

Embryological data suggest that endothelial cells (ECs) direct the recruitment and differentiation of mural cell precursors. We have developed in vitro coculture systems to model some of these events and have shown that ECs direct the migration of undifferentiated mesenchymal cells (10T1/2 cells) and induce their differentiation toward a smooth muscle cell/pericyte lineage. The present study was undertaken to investigate cell proliferation in these cocultures. ECs and 10T1/2 cells were cocultured in an underagarose assay in the absence of contact. There was a 2-fold increase in bromodeoxyuridine labeling of 10T1/2 cells in response to ECs, which was completely inhibited by the inclusion of neutralizing antiserum against platelet-derived growth factor (PDGF)-B. Antisera against PDGF-A, basic fibroblast growth factor, or transforming growth factor (TGF)-beta had no effect on EC-stimulated 10T1/2 cell proliferation. EC proliferation was not influenced by coculture with 10T1/2 cells in the absence of contact. The cells were then cocultured so that contact was permitted. Double labeling and fluorescence-activated cell sorter analysis revealed that ECs and 10T1/2 cells were growth-inhibited by 43% and 47%, respectively. Conditioned media from contacting EC-10T1/2 cell cocultures inhibited the growth of both cell types by 61% and 48%, respectively. Although we have previously shown a role for TGF-beta in coculture-induced mural cell differentiation, growth inhibition resulting from contacting cocultures or conditioned media was not suppressed by the presence of neutralizing antiserum against TGF-beta. Furthermore, the decreased proliferation of 10T1/2 cells in the direct cocultures could not be attributed to downregulation of the PDGF-B in ECs or the PDGF receptor-beta in the 10T1/2 cells. Our data suggest that modulation of proliferation occurs during EC recruitment of mesenchymal cells and that heterotypic cell-cell contact and soluble factors play a role in growth control during vessel assembly.  (+info)

According to the National Institutes of Health (NIH), stem cells are "initial cells" or "precursor cells" that have the ability to differentiate into many different cell types in the body. They can also divide without limit to replenish other cells for as long as the person or animal is still alive.

There are two main types of stem cells: embryonic stem cells, which come from human embryos, and adult stem cells, which are found in various tissues throughout the body. Embryonic stem cells have the ability to differentiate into all cell types in the body, while adult stem cells have more limited differentiation potential.

Stem cells play an essential role in the development and repair of various tissues and organs in the body. They are currently being studied for their potential use in the treatment of a wide range of diseases and conditions, including cancer, diabetes, heart disease, and neurological disorders. However, more research is needed to fully understand the properties and capabilities of these cells before they can be used safely and effectively in clinical settings.

Hematopoietic stem cells (HSCs) are immature, self-renewing cells that give rise to all the mature blood and immune cells in the body. They are capable of both producing more hematopoietic stem cells (self-renewal) and differentiating into early progenitor cells that eventually develop into red blood cells, white blood cells, and platelets. HSCs are found in the bone marrow, umbilical cord blood, and peripheral blood. They have the ability to repair damaged tissues and offer significant therapeutic potential for treating various diseases, including hematological disorders, genetic diseases, and cancer.

Stem cell transplantation is a medical procedure where stem cells, which are immature and unspecialized cells with the ability to differentiate into various specialized cell types, are introduced into a patient. The main purpose of this procedure is to restore the function of damaged or destroyed tissues or organs, particularly in conditions that affect the blood and immune systems, such as leukemia, lymphoma, aplastic anemia, and inherited metabolic disorders.

There are two primary types of stem cell transplantation: autologous and allogeneic. In autologous transplantation, the patient's own stem cells are collected, stored, and then reinfused back into their body after high-dose chemotherapy or radiation therapy to destroy the diseased cells. In allogeneic transplantation, stem cells are obtained from a donor (related or unrelated) whose human leukocyte antigen (HLA) type closely matches that of the recipient.

The process involves several steps: first, the patient undergoes conditioning therapy to suppress their immune system and make space for the new stem cells. Then, the harvested stem cells are infused into the patient's bloodstream, where they migrate to the bone marrow and begin to differentiate and produce new blood cells. This procedure requires close monitoring and supportive care to manage potential complications such as infections, graft-versus-host disease, and organ damage.

Embryonic stem cells are a type of pluripotent stem cell that are derived from the inner cell mass of a blastocyst, which is a very early-stage embryo. These cells have the ability to differentiate into any cell type in the body, making them a promising area of research for regenerative medicine and the study of human development and disease. Embryonic stem cells are typically obtained from surplus embryos created during in vitro fertilization (IVF) procedures, with the consent of the donors. The use of embryonic stem cells is a controversial issue due to ethical concerns surrounding the destruction of human embryos.

Adult stem cells, also known as somatic stem cells, are undifferentiated cells found in specialized tissues or organs throughout the body of a developed organism. Unlike embryonic stem cells, which are derived from blastocysts and have the ability to differentiate into any cell type in the body (pluripotency), adult stem cells are typically more limited in their differentiation potential, meaning they can only give rise to specific types of cells within the tissue or organ where they reside.

Adult stem cells serve to maintain and repair tissues by replenishing dying or damaged cells. They can divide and self-renew over time, producing one daughter cell that remains a stem cell and another that differentiates into a mature, functional cell type. The most well-known adult stem cells are hematopoietic stem cells, which give rise to all types of blood cells, and mesenchymal stem cells, which can differentiate into various connective tissue cells such as bone, cartilage, fat, and muscle.

The potential therapeutic use of adult stem cells has been explored in various medical fields, including regenerative medicine and cancer therapy. However, their limited differentiation capacity and the challenges associated with isolating and expanding them in culture have hindered their widespread application. Recent advances in stem cell research, such as the development of techniques to reprogram adult cells into induced pluripotent stem cells (iPSCs), have opened new avenues for studying and harnessing the therapeutic potential of these cells.

Pluripotent stem cells are a type of undifferentiated stem cell that have the ability to differentiate into any cell type of the three germ layers (endoderm, mesoderm, and ectoderm) of a developing embryo. These cells can give rise to all the cell types that make up the human body, with the exception of those that form the extra-embryonic tissues such as the placenta.

Pluripotent stem cells are characterized by their ability to self-renew, which means they can divide and produce more pluripotent stem cells, and differentiate, which means they can give rise to specialized cell types with specific functions. Pluripotent stem cells can be derived from embryos at the blastocyst stage of development or generated in the lab through a process called induced pluripotency, where adult cells are reprogrammed to have the properties of embryonic stem cells.

Pluripotent stem cells hold great promise for regenerative medicine and tissue engineering because they can be used to generate large numbers of specific cell types that can potentially replace or repair damaged or diseased tissues in the body. However, their use is still a subject of ethical debate due to concerns about the source of embryonic stem cells and the potential risks associated with their use in clinical applications.

Hematopoietic Stem Cell Transplantation (HSCT) is a medical procedure where hematopoietic stem cells (immature cells that give rise to all blood cell types) are transplanted into a patient. This procedure is often used to treat various malignant and non-malignant disorders affecting the hematopoietic system, such as leukemias, lymphomas, multiple myeloma, aplastic anemia, inherited immune deficiency diseases, and certain genetic metabolic disorders.

The transplantation can be autologous (using the patient's own stem cells), allogeneic (using stem cells from a genetically matched donor, usually a sibling or unrelated volunteer), or syngeneic (using stem cells from an identical twin).

The process involves collecting hematopoietic stem cells, most commonly from the peripheral blood or bone marrow. The collected cells are then infused into the patient after the recipient's own hematopoietic system has been ablated (or destroyed) using high-dose chemotherapy and/or radiation therapy. This allows the donor's stem cells to engraft, reconstitute, and restore the patient's hematopoietic system.

HSCT is a complex and potentially risky procedure with various complications, including graft-versus-host disease, infections, and organ damage. However, it offers the potential for cure or long-term remission in many patients with otherwise fatal diseases.

A stem cell niche is a specific microenvironment in which stem cells reside, interact with surrounding cells and receive molecular signals that regulate their self-renewal, proliferation, differentiation, and survival. This specialized niche provides the necessary conditions for maintaining the undifferentiated state of stem cells and controlling their fate decisions. The components of a stem cell niche typically include various cell types (such as supporting cells, immune cells, and blood vessels), extracellular matrix proteins, signaling molecules, and physical factors like oxygen tension and mechanical stress. Together, these elements create a unique microenvironment that helps to preserve the functional integrity and potential of stem cells for tissue repair, regeneration, and homeostasis.

Neural stem cells (NSCs) are a type of undifferentiated cells found in the central nervous system, including the brain and spinal cord. They have the ability to self-renew and generate the main types of cells found in the nervous system, such as neurons, astrocytes, and oligodendrocytes. NSCs are capable of dividing symmetrically to increase their own population or asymmetrically to produce one stem cell and one differentiated cell. They play a crucial role in the development and maintenance of the nervous system, and have the potential to be used in regenerative medicine and therapies for neurological disorders and injuries.

Induced Pluripotent Stem Cells (iPSCs) are a type of pluripotent stem cells that are generated from somatic cells, such as skin or blood cells, through the introduction of specific genes encoding transcription factors. These reprogrammed cells exhibit similar characteristics to embryonic stem cells, including the ability to differentiate into any cell type of the three germ layers (endoderm, mesoderm, and ectoderm). The discovery and development of iPSCs have opened up new possibilities in regenerative medicine, drug testing and development, and disease modeling, while avoiding ethical concerns associated with embryonic stem cells.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

Multipotent stem cells are a type of stem cell that have the ability to differentiate into multiple cell types, but are more limited than pluripotent stem cells. These stem cells are found in various tissues and organs throughout the body, including bone marrow, adipose tissue, and dental pulp. They can give rise to a number of different cell types within their own germ layer (endoderm, mesoderm, or ectoderm), but cannot cross germ layer boundaries. For example, multipotent stem cells found in bone marrow can differentiate into various blood cells such as red and white blood cells, but they cannot differentiate into nerve cells or liver cells. These stem cells play important roles in tissue repair and regeneration, and have potential therapeutic applications in regenerative medicine.

Mesenchymal Stem Cell Transplantation (MSCT) is a medical procedure that involves the transplantation of mesenchymal stem cells (MSCs), which are multipotent stromal cells that can differentiate into a variety of cell types, including bone, cartilage, fat, and muscle. These cells can be obtained from various sources, such as bone marrow, adipose tissue, umbilical cord blood, or dental pulp.

In MSCT, MSCs are typically harvested from the patient themselves (autologous transplantation) or from a donor (allogeneic transplantation). The cells are then processed and expanded in a laboratory setting before being injected into the patient's body, usually through an intravenous infusion.

MSCT is being investigated as a potential treatment for a wide range of medical conditions, including degenerative diseases, autoimmune disorders, and tissue injuries. The rationale behind this approach is that MSCs have the ability to migrate to sites of injury or inflammation, where they can help to modulate the immune response, reduce inflammation, and promote tissue repair and regeneration.

However, it's important to note that while MSCT holds promise as a therapeutic option, more research is needed to establish its safety and efficacy for specific medical conditions.

Stem Cell Factor (SCF), also known as Kit Ligand or Steel Factor, is a growth factor that plays a crucial role in the regulation of hematopoiesis, which is the process of producing various blood cells. It is a glycoprotein that binds to the c-Kit receptor found on hematopoietic stem cells and progenitor cells, promoting their survival, proliferation, and differentiation into mature blood cells.

SCF is involved in the development and function of several types of blood cells, including red blood cells, white blood cells, and platelets. It also plays a role in the maintenance and self-renewal of hematopoietic stem cells, which are essential for the continuous production of new blood cells throughout an individual's lifetime.

In addition to its role in hematopoiesis, SCF has been implicated in various other biological processes, such as melanogenesis, gametogenesis, and tissue repair and regeneration. Dysregulation of SCF signaling has been associated with several diseases, including certain types of cancer, bone marrow failure disorders, and autoimmune diseases.

Mesenchymal Stromal Cells (MSCs) are a type of adult stem cells found in various tissues, including bone marrow, adipose tissue, and umbilical cord blood. They have the ability to differentiate into multiple cell types, such as osteoblasts, chondrocytes, and adipocytes, under specific conditions. MSCs also possess immunomodulatory properties, making them a promising tool in regenerative medicine and therapeutic strategies for various diseases, including autoimmune disorders and tissue injuries. It is important to note that the term "Mesenchymal Stem Cells" has been replaced by "Mesenchymal Stromal Cells" in the scientific community to better reflect their biological characteristics and potential functions.

'Cell lineage' is a term used in biology and medicine to describe the developmental history or relationship of a cell or group of cells to other cells, tracing back to the original progenitor or stem cell. It refers to the series of cell divisions and differentiation events that give rise to specific types of cells in an organism over time.

In simpler terms, cell lineage is like a family tree for cells, showing how they are related to each other through a chain of cell division and specialization events. This concept is important in understanding the development, growth, and maintenance of tissues and organs in living beings.

Stem cell research is a branch of medical science that focuses on the study and application of stem cells, which are undifferentiated or unspecialized cells with the ability to differentiate into various specialized cell types in the body. These cells have the potential to regenerate and repair damaged tissues and organs, making them a promising area of research for the development of new treatments for a wide range of diseases and conditions, including cancer, neurodegenerative disorders, diabetes, heart disease, and more.

Stem cell research involves several key areas, such as:

1. Isolation and culture: Scientists isolate stem cells from various sources, such as embryos, umbilical cord blood, or adult tissues, and grow them in a lab to study their properties and behaviors.
2. Differentiation: Researchers induce stem cells to differentiate into specific cell types, such as heart cells, brain cells, or pancreatic cells, by exposing them to various growth factors and other chemical signals.
3. Genetic modification: Scientists may modify the genes of stem cells to enhance their therapeutic potential or to study the effects of genetic mutations on cell behavior and development.
4. Transplantation: In some cases, researchers transplant stem cells into animal models or human patients to investigate their ability to repair damaged tissues and organs.
5. Ethical considerations: Stem cell research raises several ethical concerns related to the use of embryonic stem cells, which are derived from human embryos. These concerns have led to ongoing debates about the limits and regulations surrounding this area of research.

Overall, stem cell research holds great promise for the development of new medical treatments and therapies, but it also requires careful consideration of ethical issues and rigorous scientific investigation to ensure its safety and effectiveness.

A plant stem is not typically defined in a medical context, but rather in the field of botany. However, I can certainly provide a general biological definition for you.

In plants, stems are organs that serve primarily as support structures, holding leaves, flowers, and fruits aloft where they can receive sunlight and exchange gases. They also act as conduits, transporting water, nutrients, and sugars made during photosynthesis between the roots and shoots of a plant.

The stem is usually composed of three main tissue systems: dermal, vascular, and ground. The dermal tissue system forms the outermost layer(s) of the stem, providing protection and sometimes participating in gas exchange. The vascular tissue system contains the xylem (which transports water and nutrients upward) and phloem (which transports sugars and other organic compounds downward). The ground tissue system, located between the dermal and vascular tissues, is responsible for food storage and support.

While not a direct medical definition, understanding the structure and function of plant stems can be relevant in fields such as nutrition, agriculture, and environmental science, which have implications for human health.

Fetal stem cells are a type of stem cell that are derived from fetal tissue, which is tissue obtained from an elective abortion or a spontaneous miscarriage. These stem cells have the ability to differentiate into various cell types, including neurons, cardiac muscle cells, and hepatocytes (liver cells). Fetal stem cells are unique in that they have a greater capacity for self-renewal and can generate a larger number of differentiated cells compared to adult stem cells. They also have the potential to be less immunogenic than other types of stem cells, making them a promising candidate for cell-based therapies and regenerative medicine. However, the use of fetal stem cells is a subject of ethical debate due to their source.

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Hematopoietic Stem Cell Mobilization is the process of mobilizing hematopoietic stem cells (HSCs) from the bone marrow into the peripheral blood. HSCs are immature cells that have the ability to differentiate into all types of blood cells, including red and white blood cells and platelets.

Mobilization is often achieved through the use of medications such as granulocyte-colony stimulating factor (G-CSF) or plerixafor, which stimulate the release of HSCs from the bone marrow into the peripheral blood. This allows for the collection of HSCs from the peripheral blood through a procedure called apheresis.

Mobilized HSCs can be used in stem cell transplantation procedures to reconstitute a patient's hematopoietic system after high-dose chemotherapy or radiation therapy. It is an important process in the field of regenerative medicine and has been used to treat various diseases such as leukemia, lymphoma, and sickle cell disease.

Neoplastic stem cells, also known as cancer stem cells (CSCs), are a subpopulation of cells within a tumor that are capable of self-renewal and generating the heterogeneous lineages of cells that comprise the tumor. These cells are believed to be responsible for the initiation, maintenance, and progression of cancer, as well as its recurrence and resistance to therapy.

CSCs share some similarities with normal stem cells, such as their ability to divide asymmetrically and give rise to differentiated progeny. However, they also have distinct characteristics that distinguish them from their normal counterparts, including aberrant gene expression, altered signaling pathways, and increased resistance to apoptosis (programmed cell death).

The existence of CSCs has important implications for cancer diagnosis, treatment, and prevention. Targeting these cells specifically may be necessary to achieve durable remissions and prevent relapse, as they are thought to survive conventional therapies that target the bulk of the tumor. Further research is needed to better understand the biology of CSCs and develop effective strategies for their elimination.

Bone marrow cells are the types of cells found within the bone marrow, which is the spongy tissue inside certain bones in the body. The main function of bone marrow is to produce blood cells. There are two types of bone marrow: red and yellow. Red bone marrow is where most blood cell production takes place, while yellow bone marrow serves as a fat storage site.

The three main types of bone marrow cells are:

1. Hematopoietic stem cells (HSCs): These are immature cells that can differentiate into any type of blood cell, including red blood cells, white blood cells, and platelets. They have the ability to self-renew, meaning they can divide and create more hematopoietic stem cells.
2. Red blood cell progenitors: These are immature cells that will develop into mature red blood cells, also known as erythrocytes. Red blood cells carry oxygen from the lungs to the body's tissues and carbon dioxide back to the lungs.
3. Myeloid and lymphoid white blood cell progenitors: These are immature cells that will develop into various types of white blood cells, which play a crucial role in the body's immune system by fighting infections and diseases. Myeloid progenitors give rise to granulocytes (neutrophils, eosinophils, and basophils), monocytes, and megakaryocytes (which eventually become platelets). Lymphoid progenitors differentiate into B cells, T cells, and natural killer (NK) cells.

Bone marrow cells are essential for maintaining a healthy blood cell count and immune system function. Abnormalities in bone marrow cells can lead to various medical conditions, such as anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis, depending on the specific type of blood cell affected. Additionally, bone marrow cells are often used in transplantation procedures to treat patients with certain types of cancer, such as leukemia and lymphoma, or other hematologic disorders.

Regeneration in a medical context refers to the process of renewal, restoration, and growth that replaces damaged or missing cells, tissues, organs, or even whole limbs in some organisms. This complex biological process involves various cellular and molecular mechanisms, such as cell proliferation, differentiation, and migration, which work together to restore the structural and functional integrity of the affected area.

In human medicine, regeneration has attracted significant interest due to its potential therapeutic applications in treating various conditions, including degenerative diseases, trauma, and congenital disorders. Researchers are actively studying the underlying mechanisms of regeneration in various model organisms to develop novel strategies for promoting tissue repair and regeneration in humans.

Examples of regeneration in human medicine include liver regeneration after partial hepatectomy, where the remaining liver lobes can grow back to their original size within weeks, and skin wound healing, where keratinocytes migrate and proliferate to close the wound and restore the epidermal layer. However, the regenerative capacity of humans is limited compared to some other organisms, such as planarians and axolotls, which can regenerate entire body parts or even their central nervous system.

Octamer Transcription Factor-3 (OTF-3 or Oct3) is a specific protein that belongs to the class of POU domain transcription factors. These proteins play crucial roles in the regulation of gene expression during cell growth, development, and differentiation. The "POU" name refers to the presence of two conserved domains - a POU-specific domain and a POU homeodomain - that recognize and bind to specific DNA sequences called octamer motifs, which are involved in controlling the transcription of target genes.

Oct3, encoded by the Pou2f1 gene, is widely expressed in various tissues, including lymphoid cells, neurons, and embryonic stem cells. It has been shown to regulate the expression of several genes that are essential for cell survival, proliferation, and differentiation. Dysregulation of Oct3 has been implicated in several diseases, such as cancers and neurological disorders.

In summary, Octamer Transcription Factor-3 (Oct3) is a POU domain transcription factor that binds to octamer motifs in DNA and regulates the expression of target genes involved in cell growth, development, and differentiation.

Cell culture is a technique used in scientific research to grow and maintain cells from plants, animals, or humans in a controlled environment outside of their original organism. This environment typically consists of a sterile container called a cell culture flask or plate, and a nutrient-rich liquid medium that provides the necessary components for the cells' growth and survival, such as amino acids, vitamins, minerals, and hormones.

There are several different types of cell culture techniques used in research, including:

1. Adherent cell culture: In this technique, cells are grown on a flat surface, such as the bottom of a tissue culture dish or flask. The cells attach to the surface and spread out, forming a monolayer that can be observed and manipulated under a microscope.
2. Suspension cell culture: In suspension culture, cells are grown in liquid medium without any attachment to a solid surface. These cells remain suspended in the medium and can be agitated or mixed to ensure even distribution of nutrients.
3. Organoid culture: Organoids are three-dimensional structures that resemble miniature organs and are grown from stem cells or other progenitor cells. They can be used to study organ development, disease processes, and drug responses.
4. Co-culture: In co-culture, two or more different types of cells are grown together in the same culture dish or flask. This technique is used to study cell-cell interactions and communication.
5. Conditioned medium culture: In this technique, cells are grown in a medium that has been conditioned by previous cultures of other cells. The conditioned medium contains factors secreted by the previous cells that can influence the growth and behavior of the new cells.

Cell culture techniques are widely used in biomedical research to study cellular processes, develop drugs, test toxicity, and investigate disease mechanisms. However, it is important to note that cell cultures may not always accurately represent the behavior of cells in a living organism, and results from cell culture experiments should be validated using other methods.

Regenerative medicine is a branch of medicine that deals with the repair or replacement of damaged or diseased cells, tissues, and organs using various strategies, including the use of stem cells, tissue engineering, gene therapy, and biomaterials. The goal of regenerative medicine is to restore normal function and structure to tissues and organs, thereby improving the patient's quality of life and potentially curing diseases that were previously considered incurable.

Regenerative medicine has shown promise in a variety of clinical applications, such as the treatment of degenerative diseases like osteoarthritis, spinal cord injuries, heart disease, diabetes, and liver failure. It also holds great potential for use in regenerative therapies for wound healing, tissue reconstruction, and cosmetic surgery.

The field of regenerative medicine is rapidly evolving, with new discoveries and advances being made regularly. As our understanding of the underlying biological mechanisms that drive tissue repair and regeneration continues to grow, so too will the potential clinical applications of this exciting and promising field.

Cell separation is a process used to separate and isolate specific cell types from a heterogeneous mixture of cells. This can be accomplished through various physical or biological methods, depending on the characteristics of the cells of interest. Some common techniques for cell separation include:

1. Density gradient centrifugation: In this method, a sample containing a mixture of cells is layered onto a density gradient medium and then centrifuged. The cells are separated based on their size, density, and sedimentation rate, with denser cells settling closer to the bottom of the tube and less dense cells remaining near the top.

2. Magnetic-activated cell sorting (MACS): This technique uses magnetic beads coated with antibodies that bind to specific cell surface markers. The labeled cells are then passed through a column placed in a magnetic field, which retains the magnetically labeled cells while allowing unlabeled cells to flow through.

3. Fluorescence-activated cell sorting (FACS): In this method, cells are stained with fluorochrome-conjugated antibodies that recognize specific cell surface or intracellular markers. The stained cells are then passed through a laser beam, which excites the fluorophores and allows for the detection and sorting of individual cells based on their fluorescence profile.

4. Filtration: This simple method relies on the physical size differences between cells to separate them. Cells can be passed through filters with pore sizes that allow smaller cells to pass through while retaining larger cells.

5. Enzymatic digestion: In some cases, cells can be separated by enzymatically dissociating tissues into single-cell suspensions and then using various separation techniques to isolate specific cell types.

These methods are widely used in research and clinical settings for applications such as isolating immune cells, stem cells, or tumor cells from biological samples.

Autologous transplantation is a medical procedure where cells, tissues, or organs are removed from a person, stored and then returned back to the same individual at a later time. This is different from allogeneic transplantation where the tissue or organ is obtained from another donor. The term "autologous" is derived from the Greek words "auto" meaning self and "logos" meaning study.

In autologous transplantation, the patient's own cells or tissues are used to replace or repair damaged or diseased ones. This reduces the risk of rejection and eliminates the need for immunosuppressive drugs, which are required in allogeneic transplants to prevent the body from attacking the foreign tissue.

Examples of autologous transplantation include:

* Autologous bone marrow or stem cell transplantation, where stem cells are removed from the patient's blood or bone marrow, stored and then reinfused back into the same individual after high-dose chemotherapy or radiation therapy to treat cancer.
* Autologous skin grafting, where a piece of skin is taken from one part of the body and transplanted to another area on the same person.
* Autologous chondrocyte implantation, where cartilage cells are harvested from the patient's own knee, cultured in a laboratory and then implanted back into the knee to repair damaged cartilage.

Hematopoiesis is the process of forming and developing blood cells. It occurs in the bone marrow and includes the production of red blood cells (erythropoiesis), white blood cells (leukopoiesis), and platelets (thrombopoiesis). This process is regulated by various growth factors, hormones, and cytokines. Hematopoiesis begins early in fetal development and continues throughout a person's life. Disorders of hematopoiesis can result in conditions such as anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis.

Peripheral Blood Stem Cell Transplantation (PBSCT) is a medical procedure that involves the transplantation of stem cells, which are immature cells found in the bone marrow that can develop into different types of blood cells. In PBSCT, these stem cells are collected from the peripheral blood instead of directly from the bone marrow.

The process begins with mobilization, where a growth factor medication is given to the donor to stimulate the release of stem cells from the bone marrow into the peripheral blood. After several days, the donor's blood is then removed through a procedure called apheresis, where the stem cells are separated and collected while the remaining blood components are returned to the donor.

The collected stem cells are then infused into the recipient's bloodstream, where they migrate to the bone marrow and begin to repopulate, leading to the production of new blood cells. This procedure is often used as a treatment for various malignant and non-malignant disorders, such as leukemia, lymphoma, multiple myeloma, and aplastic anemia.

PBSCT offers several advantages over traditional bone marrow transplantation, including faster engraftment, lower risk of graft failure, and reduced procedure-related morbidity. However, it also has its own set of challenges, such as the potential for increased incidence of chronic graft-versus-host disease (GVHD) and the need for more stringent HLA matching between donor and recipient.

Totipotent stem cells are a type of stem cell that have the greatest developmental potential and can differentiate into any cell type in the body, including extra-embryonic tissues such as the placenta. These stem cells are derived from the fertilized egg (zygote) and are capable of forming a complete organism. As development progresses, totipotent stem cells become more restricted in their differentiation potential, giving rise to pluripotent stem cells, which can differentiate into any cell type in the body but not extra-embryonic tissues. Totipotent stem cells are rarely found in adults and are primarily studied in the context of embryonic development and regenerative medicine.

CD34 is a type of antigen that is found on the surface of certain cells in the human body. Specifically, CD34 antigens are present on hematopoietic stem cells, which are immature cells that can develop into different types of blood cells. These stem cells are found in the bone marrow and are responsible for producing red blood cells, white blood cells, and platelets.

CD34 antigens are a type of cell surface marker that is used in medical research and clinical settings to identify and isolate hematopoietic stem cells. They are also used in the development of stem cell therapies and transplantation procedures. CD34 antigens can be detected using various laboratory techniques, such as flow cytometry or immunohistochemistry.

It's important to note that while CD34 is a useful marker for identifying hematopoietic stem cells, it is not exclusive to these cells and can also be found on other cell types, such as endothelial cells that line blood vessels. Therefore, additional markers are often used in combination with CD34 to more specifically identify and isolate hematopoietic stem cells.

Homologous transplantation is a type of transplant surgery where organs or tissues are transferred between two genetically non-identical individuals of the same species. The term "homologous" refers to the similarity in structure and function of the donated organ or tissue to the recipient's own organ or tissue.

For example, a heart transplant from one human to another is an example of homologous transplantation because both organs are hearts and perform the same function. Similarly, a liver transplant, kidney transplant, lung transplant, and other types of organ transplants between individuals of the same species are also considered homologous transplantations.

Homologous transplantation is in contrast to heterologous or xenogeneic transplantation, where organs or tissues are transferred from one species to another, such as a pig heart transplanted into a human. Homologous transplantation is more commonly performed than heterologous transplantation due to the increased risk of rejection and other complications associated with xenogeneic transplants.

Flow cytometry is a medical and research technique used to measure physical and chemical characteristics of cells or particles, one cell at a time, as they flow in a fluid stream through a beam of light. The properties measured include:

* Cell size (light scatter)
* Cell internal complexity (granularity, also light scatter)
* Presence or absence of specific proteins or other molecules on the cell surface or inside the cell (using fluorescent antibodies or other fluorescent probes)

The technique is widely used in cell counting, cell sorting, protein engineering, biomarker discovery and monitoring disease progression, particularly in hematology, immunology, and cancer research.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

A mammalian embryo is the developing offspring of a mammal, from the time of implantation of the fertilized egg (blastocyst) in the uterus until the end of the eighth week of gestation. During this period, the embryo undergoes rapid cell division and organ differentiation to form a complex structure with all the major organs and systems in place. This stage is followed by fetal development, which continues until birth. The study of mammalian embryos is important for understanding human development, evolution, and reproductive biology.

SOXB1 transcription factors are a subgroup of the SOX (SRY-related HMG box) family of transcription factors, which are characterized by a conserved high mobility group (HMG) box DNA-binding domain. The SOXB1 subfamily includes SOX1, SOX2, and SOX3, which play crucial roles during embryonic development and in the maintenance of stem cells. They regulate gene expression by binding to specific DNA sequences and interacting with other transcription factors and cofactors. SOXB1 proteins have been implicated in various biological processes, such as neurogenesis, eye development, and sex determination. Dysregulation of SOXB1 transcription factors has been associated with several human diseases, including cancer.

Spermatogonia are a type of diploid germ cells found in the seminiferous tubules of the testis. They are the stem cells responsible for sperm production (spermatogenesis) in males. There are two types of spermatogonia: A-dark (Ad) and A-pale (Ap). The Ad spermatogonia function as reserve stem cells, while the Ap spermatogonia serve as the progenitor cells that divide to produce type B spermatogonia. Type B spermatogonia then differentiate into primary spermatocytes, which undergo meiosis to form haploid spermatozoa.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

A Colony-Forming Units (CFU) assay is a type of laboratory test used to measure the number of viable, or living, cells in a sample. It is commonly used to enumerate bacteria, yeast, and other microorganisms. The test involves placing a known volume of the sample onto a nutrient-agar plate, which provides a solid growth surface for the cells. The plate is then incubated under conditions that allow the cells to grow and form colonies. Each colony that forms on the plate represents a single viable cell from the original sample. By counting the number of colonies and multiplying by the known volume of the sample, the total number of viable cells in the sample can be calculated. This information is useful in a variety of applications, including monitoring microbial populations, assessing the effectiveness of disinfection procedures, and studying microbial growth and survival.

Cell-and tissue-based therapy is a type of medical treatment that involves the use of living cells or tissues to repair, replace, or regenerate damaged or diseased cells or tissues in the body. This can include the transplantation of stem cells, which are immature cells that have the ability to develop into different types of cells, as well as the use of fully differentiated cells or tissues that have specific functions in the body.

Cell-and tissue-based therapies may be used to treat a wide variety of medical conditions, including degenerative diseases, injuries, and congenital defects. Some examples of cell-and tissue-based therapies include:

* Bone marrow transplantation: This involves the transplantation of blood-forming stem cells from the bone marrow of a healthy donor to a patient in need of new blood cells due to disease or treatment with chemotherapy or radiation.
* Corneal transplantation: This involves the transplantation of healthy corneal tissue from a deceased donor to a patient with damaged or diseased corneas.
* Articular cartilage repair: This involves the use of cells or tissues to repair damaged articular cartilage, which is the smooth, white tissue that covers the ends of bones where they come together to form joints.

Cell-and tissue-based therapies are a rapidly evolving field of medicine, and researchers are continually exploring new ways to use these treatments to improve patient outcomes. However, it is important to note that cell-and tissue-based therapies also carry some risks, including the possibility of rejection or infection, and they should only be performed by qualified medical professionals in appropriate settings.

SCID mice is an acronym for Severe Combined Immunodeficiency mice. These are genetically modified mice that lack a functional immune system due to the mutation or knockout of several key genes required for immunity. This makes them ideal for studying the human immune system, infectious diseases, and cancer, as well as testing new therapies and treatments in a controlled environment without the risk of interference from the mouse's own immune system. SCID mice are often used in xenotransplantation studies, where human cells or tissues are transplanted into the mouse to study their behavior and interactions with the human immune system.

Tissue engineering is a branch of biomedical engineering that combines the principles of engineering, materials science, and biological sciences to develop functional substitutes for damaged or diseased tissues and organs. It involves the creation of living, three-dimensional structures that can restore, maintain, or improve tissue function. This is typically accomplished through the use of cells, scaffolds (biodegradable matrices), and biologically active molecules. The goal of tissue engineering is to develop biological substitutes that can ultimately restore normal function and structure in damaged tissues or organs.

Developmental gene expression regulation refers to the processes that control the activation or repression of specific genes during embryonic and fetal development. These regulatory mechanisms ensure that genes are expressed at the right time, in the right cells, and at appropriate levels to guide proper growth, differentiation, and morphogenesis of an organism.

Developmental gene expression regulation is a complex and dynamic process involving various molecular players, such as transcription factors, chromatin modifiers, non-coding RNAs, and signaling molecules. These regulators can interact with cis-regulatory elements, like enhancers and promoters, to fine-tune the spatiotemporal patterns of gene expression during development.

Dysregulation of developmental gene expression can lead to various congenital disorders and developmental abnormalities. Therefore, understanding the principles and mechanisms governing developmental gene expression regulation is crucial for uncovering the etiology of developmental diseases and devising potential therapeutic strategies.

Proto-oncogene proteins c-kit, also known as CD117 or stem cell factor receptor, are transmembrane receptor tyrosine kinases that play crucial roles in various biological processes, including cell survival, proliferation, differentiation, and migration. They are encoded by the c-KIT gene located on human chromosome 4q12.

These proteins consist of an extracellular ligand-binding domain, a transmembrane domain, and an intracellular tyrosine kinase domain. The binding of their ligand, stem cell factor (SCF), leads to receptor dimerization, autophosphorylation, and activation of several downstream signaling pathways such as PI3K/AKT, MAPK/ERK, and JAK/STAT.

Abnormal activation or mutation of c-kit proto-oncogene proteins has been implicated in the development and progression of various malignancies, including gastrointestinal stromal tumors (GISTs), acute myeloid leukemia (AML), mast cell diseases, and melanoma. Targeted therapies against c-kit, such as imatinib mesylate (Gleevec), have shown promising results in the treatment of these malignancies.

Cord blood stem cell transplantation is a medical procedure that involves the infusion of stem cells derived from the umbilical cord blood into a patient. These stem cells, specifically hematopoietic stem cells, have the ability to differentiate into various types of blood cells, including red and white blood cells and platelets.

Cord blood stem cell transplantation is often used as a treatment for patients with various malignant and non-malignant disorders, such as leukemia, lymphoma, sickle cell disease, and metabolic disorders. The procedure involves collecting cord blood from the umbilical cord and placenta after the birth of a baby, processing and testing it for compatibility with the recipient's immune system, and then infusing it into the patient through a vein in a process similar to a blood transfusion.

The advantages of using cord blood stem cells include their availability, low risk of transmission of infectious diseases, and reduced risk of graft-versus-host disease compared to other sources of hematopoietic stem cells, such as bone marrow or peripheral blood. However, the number of stem cells in a cord blood unit is generally lower than that found in bone marrow or peripheral blood, which can limit its use in some patients, particularly adults.

Overall, cord blood stem cell transplantation is an important and promising area of regenerative medicine, offering hope for patients with a wide range of disorders.

Nestin is a type of class VI intermediate filament protein that is primarily expressed in various types of undifferentiated or progenitor cells in the nervous system, including neural stem cells and progenitor cells. It is often used as a marker for these cells due to its expression during stages of active cell division and migration. Nestin is also expressed in some other tissues undergoing regeneration or injury.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

Gene expression profiling is a laboratory technique used to measure the activity (expression) of thousands of genes at once. This technique allows researchers and clinicians to identify which genes are turned on or off in a particular cell, tissue, or organism under specific conditions, such as during health, disease, development, or in response to various treatments.

The process typically involves isolating RNA from the cells or tissues of interest, converting it into complementary DNA (cDNA), and then using microarray or high-throughput sequencing technologies to determine which genes are expressed and at what levels. The resulting data can be used to identify patterns of gene expression that are associated with specific biological states or processes, providing valuable insights into the underlying molecular mechanisms of diseases and potential targets for therapeutic intervention.

In recent years, gene expression profiling has become an essential tool in various fields, including cancer research, drug discovery, and personalized medicine, where it is used to identify biomarkers of disease, predict patient outcomes, and guide treatment decisions.

Germ cells are the reproductive cells, also known as sex cells, that combine to form offspring in sexual reproduction. In females, germ cells are called ova or egg cells, and in males, they are called spermatozoa or sperm cells. These cells are unique because they carry half the genetic material necessary for creating new life. They are produced through a process called meiosis, which reduces their chromosome number by half, ensuring that when two germ cells combine during fertilization, the normal diploid number of chromosomes is restored.

Homeodomain proteins are a group of transcription factors that play crucial roles in the development and differentiation of cells in animals and plants. They are characterized by the presence of a highly conserved DNA-binding domain called the homeodomain, which is typically about 60 amino acids long. The homeodomain consists of three helices, with the third helix responsible for recognizing and binding to specific DNA sequences.

Homeodomain proteins are involved in regulating gene expression during embryonic development, tissue maintenance, and organismal growth. They can act as activators or repressors of transcription, depending on the context and the presence of cofactors. Mutations in homeodomain proteins have been associated with various human diseases, including cancer, congenital abnormalities, and neurological disorders.

Some examples of homeodomain proteins include PAX6, which is essential for eye development, HOX genes, which are involved in body patterning, and NANOG, which plays a role in maintaining pluripotency in stem cells.

A hair follicle is a part of the human skin from which hair grows. It is a complex organ that consists of several layers, including an outer root sheath, inner root sheath, and matrix. The hair follicle is located in the dermis, the second layer of the skin, and is surrounded by sebaceous glands and erector pili muscles.

The hair growth cycle includes three phases: anagen (growth phase), catagen (transitional phase), and telogen (resting phase). During the anagen phase, cells in the matrix divide rapidly to produce new hair fibers that grow out of the follicle. The hair fiber is made up of a protein called keratin, which also makes up the outer layers of the skin and nails.

Hair follicles are important for various biological functions, including thermoregulation, sensory perception, and social communication. They also play a role in wound healing and can serve as a source of stem cells that can differentiate into other cell types.

The brainstem is the lower part of the brain that connects to the spinal cord. It consists of the midbrain, pons, and medulla oblongata. The brainstem controls many vital functions such as heart rate, breathing, and blood pressure. It also serves as a relay center for sensory and motor information between the cerebral cortex and the rest of the body. Additionally, several cranial nerves originate from the brainstem, including those that control eye movements, facial movements, and hearing.

Embryo research refers to the scientific study and experimentation that involves human embryos. This research is conducted in order to gain a better understanding of human development during the earliest stages of life, as well as to investigate potential treatments for various diseases and conditions.

Human embryos used in research are typically created through in vitro fertilization (IVF) procedures, in which sperm and eggs are combined in a laboratory dish to form an embryo. These embryos may be donated by individuals or couples who have undergone IVF treatments and have excess embryos that they do not plan to use for reproduction.

Embryo research can involve a variety of techniques, including stem cell research, genetic testing, and cloning. The goal of this research is to advance our knowledge of human development and disease, as well as to develop new treatments and therapies for a wide range of medical conditions. However, embryo research is a controversial topic, and there are ethical concerns surrounding the use of human embryos in scientific research.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Cell survival refers to the ability of a cell to continue living and functioning normally, despite being exposed to potentially harmful conditions or treatments. This can include exposure to toxins, radiation, chemotherapeutic drugs, or other stressors that can damage cells or interfere with their normal processes.

In scientific research, measures of cell survival are often used to evaluate the effectiveness of various therapies or treatments. For example, researchers may expose cells to a particular drug or treatment and then measure the percentage of cells that survive to assess its potential therapeutic value. Similarly, in toxicology studies, measures of cell survival can help to determine the safety of various chemicals or substances.

It's important to note that cell survival is not the same as cell proliferation, which refers to the ability of cells to divide and multiply. While some treatments may promote cell survival, they may also inhibit cell proliferation, making them useful for treating diseases such as cancer. Conversely, other treatments may be designed to specifically target and kill cancer cells, even if it means sacrificing some healthy cells in the process.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Coculture techniques refer to a type of experimental setup in which two or more different types of cells or organisms are grown and studied together in a shared culture medium. This method allows researchers to examine the interactions between different cell types or species under controlled conditions, and to study how these interactions may influence various biological processes such as growth, gene expression, metabolism, and signal transduction.

Coculture techniques can be used to investigate a wide range of biological phenomena, including the effects of host-microbe interactions on human health and disease, the impact of different cell types on tissue development and homeostasis, and the role of microbial communities in shaping ecosystems. These techniques can also be used to test the efficacy and safety of new drugs or therapies by examining their effects on cells grown in coculture with other relevant cell types.

There are several different ways to establish cocultures, depending on the specific research question and experimental goals. Some common methods include:

1. Mixed cultures: In this approach, two or more cell types are simply mixed together in a culture dish or flask and allowed to grow and interact freely.
2. Cell-layer cultures: Here, one cell type is grown on a porous membrane or other support structure, while the second cell type is grown on top of it, forming a layered coculture.
3. Conditioned media cultures: In this case, one cell type is grown to confluence and its culture medium is collected and then used to grow a second cell type. This allows the second cell type to be exposed to any factors secreted by the first cell type into the medium.
4. Microfluidic cocultures: These involve growing cells in microfabricated channels or chambers, which allow for precise control over the spatial arrangement and flow of nutrients, waste products, and signaling molecules between different cell types.

Overall, coculture techniques provide a powerful tool for studying complex biological systems and gaining insights into the mechanisms that underlie various physiological and pathological processes.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

Bone marrow transplantation (BMT) is a medical procedure in which damaged or destroyed bone marrow is replaced with healthy bone marrow from a donor. Bone marrow is the spongy tissue inside bones that produces blood cells. The main types of BMT are autologous, allogeneic, and umbilical cord blood transplantation.

In autologous BMT, the patient's own bone marrow is used for the transplant. This type of BMT is often used in patients with lymphoma or multiple myeloma who have undergone high-dose chemotherapy or radiation therapy to destroy their cancerous bone marrow.

In allogeneic BMT, bone marrow from a genetically matched donor is used for the transplant. This type of BMT is often used in patients with leukemia, lymphoma, or other blood disorders who have failed other treatments.

Umbilical cord blood transplantation involves using stem cells from umbilical cord blood as a source of healthy bone marrow. This type of BMT is often used in children and adults who do not have a matched donor for allogeneic BMT.

The process of BMT typically involves several steps, including harvesting the bone marrow or stem cells from the donor, conditioning the patient's body to receive the new bone marrow or stem cells, transplanting the new bone marrow or stem cells into the patient's body, and monitoring the patient for signs of engraftment and complications.

BMT is a complex and potentially risky procedure that requires careful planning, preparation, and follow-up care. However, it can be a life-saving treatment for many patients with blood disorders or cancer.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Cell division is the process by which a single eukaryotic cell (a cell with a true nucleus) divides into two identical daughter cells. This complex process involves several stages, including replication of DNA, separation of chromosomes, and division of the cytoplasm. There are two main types of cell division: mitosis and meiosis.

Mitosis is the type of cell division that results in two genetically identical daughter cells. It is a fundamental process for growth, development, and tissue repair in multicellular organisms. The stages of mitosis include prophase, prometaphase, metaphase, anaphase, and telophase, followed by cytokinesis, which divides the cytoplasm.

Meiosis, on the other hand, is a type of cell division that occurs in the gonads (ovaries and testes) during the production of gametes (sex cells). Meiosis results in four genetically unique daughter cells, each with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction and genetic diversity. The stages of meiosis include meiosis I and meiosis II, which are further divided into prophase, prometaphase, metaphase, anaphase, and telophase.

In summary, cell division is the process by which a single cell divides into two daughter cells, either through mitosis or meiosis. This process is critical for growth, development, tissue repair, and sexual reproduction in multicellular organisms.

Cell dedifferentiation is a process by which a mature, specialized cell reverts back to an earlier stage in its developmental lineage, regaining the ability to divide and differentiate into various cell types. This phenomenon is typically observed in cells that have been damaged or injured, as well as during embryonic development and certain disease states like cancer. In the context of tissue repair and regeneration, dedifferentiation allows for the generation of new cells with the potential to replace lost or damaged tissues. However, uncontrolled dedifferentiation can also contribute to tumor formation and progression.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Fetal blood refers to the blood circulating in a fetus during pregnancy. It is essential for the growth and development of the fetus, as it carries oxygen and nutrients from the placenta to the developing tissues and organs. Fetal blood also removes waste products, such as carbon dioxide, from the fetal tissues and transports them to the placenta for elimination.

Fetal blood has several unique characteristics that distinguish it from adult blood. For example, fetal hemoglobin (HbF) is the primary type of hemoglobin found in fetal blood, whereas adults primarily have adult hemoglobin (HbA). Fetal hemoglobin has a higher affinity for oxygen than adult hemoglobin, which allows it to more efficiently extract oxygen from the maternal blood in the placenta.

Additionally, fetal blood contains a higher proportion of reticulocytes (immature red blood cells) and nucleated red blood cells compared to adult blood. These differences reflect the high turnover rate of red blood cells in the developing fetus and the need for rapid growth and development.

Examination of fetal blood can provide important information about the health and well-being of the fetus during pregnancy. For example, fetal blood sampling (also known as cordocentesis or percutaneous umbilical blood sampling) can be used to diagnose genetic disorders, infections, and other conditions that may affect fetal development. However, this procedure carries risks, including preterm labor, infection, and fetal loss, and is typically only performed when there is a significant risk of fetal compromise or when other diagnostic tests have been inconclusive.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

Green Fluorescent Protein (GFP) is not a medical term per se, but a scientific term used in the field of molecular biology. GFP is a protein that exhibits bright green fluorescence when exposed to light, particularly blue or ultraviolet light. It was originally discovered in the jellyfish Aequorea victoria.

In medical and biological research, scientists often use recombinant DNA technology to introduce the gene for GFP into other organisms, including bacteria, plants, and animals, including humans. This allows them to track the expression and localization of specific genes or proteins of interest in living cells, tissues, or even whole organisms.

The ability to visualize specific cellular structures or processes in real-time has proven invaluable for a wide range of research areas, from studying the development and function of organs and organ systems to understanding the mechanisms of diseases and the effects of therapeutic interventions.

Transplantation conditioning, also known as preparative regimen or immunoablative therapy, refers to the use of various treatments prior to transplantation of cells, tissues or organs. The main goal of transplantation conditioning is to suppress the recipient's immune system, allowing for successful engraftment and minimizing the risk of rejection of the donor tissue.

There are two primary types of transplantation conditioning: myeloablative and non-myeloablative.

1. Myeloablative conditioning is a more intensive regimen that involves the use of high-dose chemotherapy, radiation therapy or both. This approach eliminates not only immune cells but also stem cells in the bone marrow, requiring the recipient to receive a hematopoietic cell transplant (HCT) from the donor to reconstitute their blood and immune system.
2. Non-myeloablative conditioning is a less intensive regimen that primarily targets immune cells while sparing the stem cells in the bone marrow. This approach allows for mixed chimerism, where both recipient and donor immune cells coexist, reducing the risk of severe complications associated with myeloablative conditioning.

The choice between these two types of transplantation conditioning depends on various factors, including the type of transplant, patient's age, overall health, and comorbidities. Both approaches carry risks and benefits, and the decision should be made carefully by a multidisciplinary team of healthcare professionals in consultation with the patient.

Bone marrow is the spongy tissue found inside certain bones in the body, such as the hips, thighs, and vertebrae. It is responsible for producing blood-forming cells, including red blood cells, white blood cells, and platelets. There are two types of bone marrow: red marrow, which is involved in blood cell production, and yellow marrow, which contains fatty tissue.

Red bone marrow contains hematopoietic stem cells, which can differentiate into various types of blood cells. These stem cells continuously divide and mature to produce new blood cells that are released into the circulation. Red blood cells carry oxygen throughout the body, white blood cells help fight infections, and platelets play a crucial role in blood clotting.

Bone marrow also serves as a site for immune cell development and maturation. It contains various types of immune cells, such as lymphocytes, macrophages, and dendritic cells, which help protect the body against infections and diseases.

Abnormalities in bone marrow function can lead to several medical conditions, including anemia, leukopenia, thrombocytopenia, and various types of cancer, such as leukemia and multiple myeloma. Bone marrow aspiration and biopsy are common diagnostic procedures used to evaluate bone marrow health and function.

A teratoma is a type of germ cell tumor, which is a broad category of tumors that originate from the reproductive cells. A teratoma contains developed tissues from all three embryonic germ layers: ectoderm, mesoderm, and endoderm. This means that a teratoma can contain various types of tissue such as hair, teeth, bone, and even more complex organs like eyes, thyroid, or neural tissue.

Teratomas are usually benign (non-cancerous), but they can sometimes be malignant (cancerous) and can spread to other parts of the body. They can occur anywhere in the body, but they're most commonly found in the ovaries and testicles. When found in these areas, they are typically removed surgically.

Teratomas can also occur in other locations such as the sacrum, coccyx (tailbone), mediastinum (the area between the lungs), and pineal gland (a small gland in the brain). These types of teratomas can be more complex to treat due to their location and potential to cause damage to nearby structures.

CD (cluster of differentiation) antigens are cell-surface proteins that are expressed on leukocytes (white blood cells) and can be used to identify and distinguish different subsets of these cells. They are important markers in the field of immunology and hematology, and are commonly used to diagnose and monitor various diseases, including cancer, autoimmune disorders, and infectious diseases.

CD antigens are designated by numbers, such as CD4, CD8, CD19, etc., which refer to specific proteins found on the surface of different types of leukocytes. For example, CD4 is a protein found on the surface of helper T cells, while CD8 is found on cytotoxic T cells.

CD antigens can be used as targets for immunotherapy, such as monoclonal antibody therapy, in which antibodies are designed to bind to specific CD antigens and trigger an immune response against cancer cells or infected cells. They can also be used as markers to monitor the effectiveness of treatments and to detect minimal residual disease (MRD) after treatment.

It's important to note that not all CD antigens are exclusive to leukocytes, some can be found on other cell types as well, and their expression can vary depending on the activation state or differentiation stage of the cells.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Embryoid bodies are aggregates of pluripotent stem cells, such as embryonic stem cells or induced pluripotent stem cells, that have been cultured in suspension and allowed to differentiate spontaneously into three-dimensional structures. These structures resemble early embryonic development and can contain cells from all three germ layers: ectoderm, mesoderm, and endoderm. Embryoid bodies are often used as a tool in stem cell research to study the processes of differentiation and organogenesis.

Nuclear reprogramming is a process by which the epigenetic information and gene expression profile of a differentiated cell are altered to resemble those of a pluripotent stem cell. This is typically achieved through the introduction of specific transcription factors, such as Oct4, Sox2, Klf4, and c-Myc (often referred to as the Yamanaka factors), into the differentiated cell's nucleus. These factors work together to reprogram the cell's gene expression profile, leading to the activation of genes that are typically silent in differentiated cells and the repression of genes that are active in differentiated cells.

The result is a cell with many of the characteristics of a pluripotent stem cell, including the ability to differentiate into any cell type found in the body. This process has significant implications for regenerative medicine, as it offers the potential to generate patient-specific stem cells that can be used for tissue repair and replacement. However, nuclear reprogramming is still an inefficient and poorly understood process, and further research is needed to fully realize its potential.

'Cellular spheroids' refer to three-dimensional (3D) aggregates of cells that come together to form spherical structures. These spheroids can be formed by various cell types, including cancer cells, stem cells, and primary cells, and they are often used as models to study cell-cell interactions, cell signaling, drug development, and tumor biology in a more physiologically relevant context compared to traditional two-dimensional (2D) cell cultures.

Cellular spheroids can form spontaneously under certain conditions or be induced through various methods such as hanging drop, spinner flask, or microfluidic devices. The formation of spheroids allows cells to interact with each other and the extracellular matrix in a more natural way, leading to the creation of complex structures that mimic the organization and behavior of tissues in vivo.

Studying cellular spheroids has several advantages over traditional 2D cultures, including better preservation of cell-cell interactions, improved modeling of drug penetration and resistance, and enhanced ability to recapitulate the complexity of tumor microenvironments. As a result, cellular spheroids have become an important tool in various areas of biomedical research, including cancer biology, tissue engineering, and regenerative medicine.

Cell transplantation is the process of transferring living cells from one part of the body to another or from one individual to another. In medicine, cell transplantation is often used as a treatment for various diseases and conditions, including neurodegenerative disorders, diabetes, and certain types of cancer. The goal of cell transplantation is to replace damaged or dysfunctional cells with healthy ones, thereby restoring normal function to the affected area.

In the context of medical research, cell transplantation may involve the use of stem cells, which are immature cells that have the ability to develop into many different types of specialized cells. Stem cell transplantation has shown promise in the treatment of a variety of conditions, including spinal cord injuries, stroke, and heart disease.

It is important to note that cell transplantation carries certain risks, such as immune rejection and infection. As such, it is typically reserved for cases where other treatments have failed or are unlikely to be effective.

Neurogenesis is the process by which new neurons (nerve cells) are generated in the brain. It occurs throughout life in certain areas of the brain, such as the hippocampus and subventricular zone, although the rate of neurogenesis decreases with age. Neurogenesis involves the proliferation, differentiation, and integration of new neurons into existing neural circuits. This process plays a crucial role in learning, memory, and recovery from brain injury or disease.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Chondrogenesis is the process of cartilage formation during embryonic development and in the healing of certain types of injuries. It involves the differentiation of mesenchymal stem cells into chondrocytes, which are the specialized cells that produce and maintain the extracellular matrix of cartilage.

During chondrogenesis, the mesenchymal stem cells condense and form a template for the future cartilaginous tissue. These cells then differentiate into chondrocytes, which begin to produce and deposit collagen type II, proteoglycans, and other extracellular matrix components that give cartilage its unique biochemical and mechanical properties.

Chondrogenesis is a critical process for the development of various structures in the body, including the skeletal system, where it plays a role in the formation of articular cartilage, growth plates, and other types of cartilage. Understanding the molecular mechanisms that regulate chondrogenesis is important for developing therapies to treat cartilage injuries and degenerative diseases such as osteoarthritis.

A lentivirus is a type of slow-acting retrovirus that can cause chronic diseases and cancers. The term "lentivirus" comes from the Latin word "lentus," which means slow. Lentiviruses are characterized by their ability to establish a persistent infection, during which they continuously produce new viral particles.

Lentiviruses have a complex genome that includes several accessory genes, in addition to the typical gag, pol, and env genes found in all retroviruses. These accessory genes play important roles in regulating the virus's replication cycle and evading the host's immune response.

One of the most well-known lentiviruses is the human immunodeficiency virus (HIV), which causes AIDS. Other examples include the feline immunodeficiency virus (FIV) and the simian immunodeficiency virus (SIV). Lentiviruses have also been used as vectors for gene therapy, as they can efficiently introduce new genes into both dividing and non-dividing cells.

Graft-versus-host disease (GVHD) is a condition that can occur after an allogeneic hematopoietic stem cell transplantation (HSCT), where the donated immune cells (graft) recognize the recipient's tissues (host) as foreign and attack them. This results in inflammation and damage to various organs, particularly the skin, gastrointestinal tract, and liver.

Acute GVHD typically occurs within 100 days of transplantation and is characterized by symptoms such as rash, diarrhea, and liver dysfunction. Chronic GVHD, on the other hand, can occur after 100 days or even years post-transplant and may present with a wider range of symptoms, including dry eyes and mouth, skin changes, lung involvement, and issues with mobility and flexibility in joints.

GVHD is a significant complication following allogeneic HSCT and can have a substantial impact on the patient's quality of life and overall prognosis. Preventative measures, such as immunosuppressive therapy, are often taken to reduce the risk of GVHD, but its management remains a challenge in transplant medicine.

Cell movement, also known as cell motility, refers to the ability of cells to move independently and change their location within tissue or inside the body. This process is essential for various biological functions, including embryonic development, wound healing, immune responses, and cancer metastasis.

There are several types of cell movement, including:

1. **Crawling or mesenchymal migration:** Cells move by extending and retracting protrusions called pseudopodia or filopodia, which contain actin filaments. This type of movement is common in fibroblasts, immune cells, and cancer cells during tissue invasion and metastasis.
2. **Amoeboid migration:** Cells move by changing their shape and squeezing through tight spaces without forming protrusions. This type of movement is often observed in white blood cells (leukocytes) as they migrate through the body to fight infections.
3. **Pseudopodial extension:** Cells extend pseudopodia, which are temporary cytoplasmic projections containing actin filaments. These protrusions help the cell explore its environment and move forward.
4. **Bacterial flagellar motion:** Bacteria use a whip-like structure called a flagellum to propel themselves through their environment. The rotation of the flagellum is driven by a molecular motor in the bacterial cell membrane.
5. **Ciliary and ependymal movement:** Ciliated cells, such as those lining the respiratory tract and fallopian tubes, have hair-like structures called cilia that beat in coordinated waves to move fluids or mucus across the cell surface.

Cell movement is regulated by a complex interplay of signaling pathways, cytoskeletal rearrangements, and adhesion molecules, which enable cells to respond to environmental cues and navigate through tissues.

Inbred NOD (Nonobese Diabetic) mice are a strain of laboratory mice that are genetically predisposed to develop autoimmune diabetes. This strain was originally developed in Japan and has been widely used as an animal model for studying type 1 diabetes and its complications.

NOD mice typically develop diabetes spontaneously at around 12-14 weeks of age, although the onset and severity of the disease can vary between individual mice. The disease is caused by a breakdown in immune tolerance, leading to an autoimmune attack on the insulin-producing beta cells of the pancreas.

Inbred NOD mice are highly valuable for research purposes because they exhibit many of the same genetic and immunological features as human patients with type 1 diabetes. By studying these mice, researchers can gain insights into the underlying mechanisms of the disease and develop new treatments and therapies.

Cell tracking is a technique used in medical research and clinical applications to monitor the movement, behavior, and fate of cells over time. This process typically involves labeling cells with a marker such as a dye, fluorescent protein, or magnetic nanoparticle, which allows researchers to observe and analyze the cells using various imaging techniques.

The labeled cells can be tracked individually or in groups, enabling the study of cell-cell interactions, migration patterns, proliferation rates, and other biological processes. Cell tracking has numerous applications in fields such as regenerative medicine, cancer research, developmental biology, and drug discovery.

There are different methods for cell tracking, including:

1. Intravital microscopy: This technique involves surgically implanting a microscope into a living organism to directly observe cells in their native environment over time.
2. Two-photon microscopy: Using laser pulses to excite fluorescent markers, this method allows for deep tissue imaging with minimal photodamage.
3. Magnetic resonance imaging (MRI): By labeling cells with magnetic nanoparticles, researchers can use MRI to non-invasively track cell movement and distribution within an organism.
4. Positron emission tomography (PET) and computed tomography (CT) scans: Radioactive tracers can be used to label cells for tracking via PET or CT imaging techniques.
5. Image analysis software: Specialized software can be used to analyze images captured through various imaging techniques, enabling researchers to track cell movement and behavior over time.

Overall, cell tracking is an essential tool in medical research, providing valuable insights into the dynamics of cellular processes and contributing to advancements in diagnostic and therapeutic strategies.

Granulocyte Colony-Stimulating Factor (G-CSF) is a type of growth factor that specifically stimulates the production and survival of granulocytes, a type of white blood cell crucial for fighting off infections. G-CSF works by promoting the proliferation and differentiation of hematopoietic stem cells into mature granulocytes, primarily neutrophils, in the bone marrow.

Recombinant forms of G-CSF are used clinically as a medication to boost white blood cell production in patients undergoing chemotherapy or radiation therapy for cancer, those with congenital neutropenia, and those who have had a bone marrow transplant. By increasing the number of circulating neutrophils, G-CSF helps reduce the risk of severe infections during periods of intense immune suppression.

Examples of recombinant G-CSF medications include filgrastim (Neupogen), pegfilgrastim (Neulasta), and lipegfilgrastim (Lonquex).

CD24 is a cell surface glycoprotein that serves as a marker for B cells at various stages of development and differentiation. It is also expressed on the surface of certain other cell types, including neutrophils and some cancer cells. Antigens are substances that can stimulate an immune response and are recognized as foreign by the body's immune system. CD24 is not typically referred to as an antigen itself, but it can be used as a target for immunotherapy in certain types of cancer. In this context, monoclonal antibodies or other immune-based therapies may be developed to specifically recognize and bind to CD24 on the surface of cancer cells, with the goal of triggering an immune response against the cancer cells.

Tissue scaffolds, also known as bioactive scaffolds or synthetic extracellular matrices, refer to three-dimensional structures that serve as templates for the growth and organization of cells in tissue engineering and regenerative medicine. These scaffolds are designed to mimic the natural extracellular matrix (ECM) found in biological tissues, providing a supportive environment for cell attachment, proliferation, differentiation, and migration.

Tissue scaffolds can be made from various materials, including naturally derived biopolymers (e.g., collagen, alginate, chitosan, hyaluronic acid), synthetic polymers (e.g., polycaprolactone, polylactic acid, poly(lactic-co-glycolic acid)), or a combination of both. The choice of material depends on the specific application and desired properties, such as biocompatibility, biodegradability, mechanical strength, and porosity.

The primary functions of tissue scaffolds include:

1. Cell attachment: Providing surfaces for cells to adhere, spread, and form stable focal adhesions.
2. Mechanical support: Offering a structural framework that maintains the desired shape and mechanical properties of the engineered tissue.
3. Nutrient diffusion: Ensuring adequate transport of nutrients, oxygen, and waste products throughout the scaffold to support cell survival and function.
4. Guided tissue growth: Directing the organization and differentiation of cells through spatial cues and biochemical signals.
5. Biodegradation: Gradually degrading at a rate that matches tissue regeneration, allowing for the replacement of the scaffold with native ECM produced by the cells.

Tissue scaffolds have been used in various applications, such as wound healing, bone and cartilage repair, cardiovascular tissue engineering, and neural tissue regeneration. The design and fabrication of tissue scaffolds are critical aspects of tissue engineering, aiming to create functional substitutes for damaged or diseased tissues and organs.

Dental pulp is the soft tissue located in the center of a tooth, surrounded by the dentin. It contains nerves, blood vessels, and connective tissue, and plays a vital role in the development and health of the tooth. The dental pulp helps to form dentin during tooth development and continues to provide nourishment to the tooth throughout its life. It also serves as a sensory organ, allowing the tooth to detect hot and cold temperatures and transmit pain signals to the brain. Injury or infection of the dental pulp can lead to serious dental problems, such as tooth decay or abscesses, and may require root canal treatment to remove the damaged tissue and save the tooth.

Heterologous transplantation is a type of transplantation where an organ or tissue is transferred from one species to another. This is in contrast to allogeneic transplantation, where the donor and recipient are of the same species, or autologous transplantation, where the donor and recipient are the same individual.

In heterologous transplantation, the immune systems of the donor and recipient are significantly different, which can lead to a strong immune response against the transplanted organ or tissue. This is known as a graft-versus-host disease (GVHD), where the immune cells in the transplanted tissue attack the recipient's body.

Heterologous transplantation is not commonly performed in clinical medicine due to the high risk of rejection and GVHD. However, it may be used in research settings to study the biology of transplantation and to develop new therapies for transplant rejection.

The limbus cornea, also known as the corneoscleral junction, is the border between the transparent cornea and the opaque sclera in the eye. It's a circular, narrow region that contains cells called limbal stem cells, which are essential for maintaining the health and clarity of the cornea. These stem cells continuously regenerate and differentiate into corneal epithelial cells, replacing the outermost layer of the cornea. Any damage or disorder in this area can lead to vision impairment or loss.

Embryonal carcinoma stem cells (ECSCs) are a type of cancer stem cell found in embryonal carcinomas, which are a rare form of germ cell tumor that primarily affect the testicles and ovaries. These stem cells are characterized by their ability to differentiate into various cell types, similar to embryonic stem cells. They are believed to play a key role in the development and progression of embryonal carcinomas, as they can self-renew and generate the heterogeneous population of cancer cells that make up the tumor.

Embryonal carcinoma stem cells have been studied extensively as a model system for understanding the biology of cancer stem cells and developing new therapies for germ cell tumors. They are known to express specific markers, such as Oct-4, Nanog, and Sox2, which are also expressed in embryonic stem cells and are involved in maintaining their pluripotency.

It is important to note that while embryonal carcinoma stem cells share some similarities with embryonic stem cells, they are distinct from them and have undergone malignant transformation, making them a target for cancer therapy.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

"Cell count" is a medical term that refers to the process of determining the number of cells present in a given volume or sample of fluid or tissue. This can be done through various laboratory methods, such as counting individual cells under a microscope using a specialized grid called a hemocytometer, or using automated cell counters that use light scattering and electrical impedance techniques to count and classify different types of cells.

Cell counts are used in a variety of medical contexts, including hematology (the study of blood and blood-forming tissues), microbiology (the study of microscopic organisms), and pathology (the study of diseases and their causes). For example, a complete blood count (CBC) is a routine laboratory test that includes a white blood cell (WBC) count, red blood cell (RBC) count, hemoglobin level, hematocrit value, and platelet count. Abnormal cell counts can indicate the presence of various medical conditions, such as infections, anemia, or leukemia.

Stage-Specific Embryonic Antigens (SSEAs) are a type of antigens that are found on the surface of early embryonic cells during specific stages of development. These antigens were first discovered in mouse embryos and are expressed in a stage-specific manner, meaning they appear and disappear at specific times during embryonic development.

SSEAs are classified into different types based on their carbohydrate structures, including SSEA-1, SSEA-3, SSEA-4, and SSEA-5. These antigens have been found to be important markers for identifying the stage of embryonic development and have been used in research to study early embryonic development, stem cell biology, and cancer.

In particular, SSEAs have been identified as markers for pluripotent stem cells, which are cells that have the ability to differentiate into any type of cell in the body. These antigens are often used to isolate and characterize pluripotent stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs).

It's worth noting that SSEAs have also been found to be expressed in some types of cancer cells, suggesting a potential role in tumor growth and progression. However, more research is needed to fully understand the function and significance of these antigens in both embryonic development and cancer.

Adipogenesis is the process by which precursor cells differentiate into mature adipocytes, or fat cells. This complex biological process involves a series of molecular and cellular events that are regulated by various genetic and epigenetic factors.

During adipogenesis, preadipocytes undergo a series of changes that include cell cycle arrest, morphological alterations, and the expression of specific genes that are involved in lipid metabolism and insulin sensitivity. These changes ultimately result in the formation of mature adipocytes that are capable of storing energy in the form of lipids.

Abnormalities in adipogenesis have been linked to various health conditions, including obesity, type 2 diabetes, and metabolic syndrome. Understanding the molecular mechanisms that regulate adipogenesis is an active area of research, as it may lead to the development of new therapies for these and other related diseases.

Hematologic neoplasms, also known as hematological malignancies, are a group of diseases characterized by the uncontrolled growth and accumulation of abnormal blood cells or bone marrow cells. These disorders can originate from the myeloid or lymphoid cell lines, which give rise to various types of blood cells, including red blood cells, white blood cells, and platelets.

Hematologic neoplasms can be broadly classified into three categories:

1. Leukemias: These are cancers that primarily affect the bone marrow and blood-forming tissues. They result in an overproduction of abnormal white blood cells, which interfere with the normal functioning of the blood and immune system. There are several types of leukemia, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML).
2. Lymphomas: These are cancers that develop from the lymphatic system, which is a part of the immune system responsible for fighting infections. Lymphomas can affect lymph nodes, spleen, bone marrow, and other organs. The two main types of lymphoma are Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL).
3. Myelomas: These are cancers that arise from the plasma cells, a type of white blood cell responsible for producing antibodies. Multiple myeloma is the most common type of myeloma, characterized by an excessive proliferation of malignant plasma cells in the bone marrow, leading to the production of abnormal amounts of monoclonal immunoglobulins (M proteins) and bone destruction.

Hematologic neoplasms can have various symptoms, such as fatigue, weakness, frequent infections, easy bruising or bleeding, weight loss, swollen lymph nodes, and bone pain. The diagnosis typically involves a combination of medical history, physical examination, laboratory tests, imaging studies, and sometimes bone marrow biopsy. Treatment options depend on the type and stage of the disease and may include chemotherapy, radiation therapy, targeted therapy, immunotherapy, stem cell transplantation, or a combination of these approaches.

Graft survival, in medical terms, refers to the success of a transplanted tissue or organ in continuing to function and integrate with the recipient's body over time. It is the opposite of graft rejection, which occurs when the recipient's immune system recognizes the transplanted tissue as foreign and attacks it, leading to its failure.

Graft survival depends on various factors, including the compatibility between the donor and recipient, the type and location of the graft, the use of immunosuppressive drugs to prevent rejection, and the overall health of the recipient. A successful graft survival implies that the transplanted tissue or organ has been accepted by the recipient's body and is functioning properly, providing the necessary physiological support for the recipient's survival and improved quality of life.

A clone is a group of cells that are genetically identical to each other because they are derived from a common ancestor cell through processes such as mitosis or asexual reproduction. Therefore, the term "clone cells" refers to a population of cells that are genetic copies of a single parent cell.

In the context of laboratory research, cells can be cloned by isolating a single cell and allowing it to divide in culture, creating a population of genetically identical cells. This is useful for studying the behavior and characteristics of individual cell types, as well as for generating large quantities of cells for use in experiments.

It's important to note that while clone cells are genetically identical, they may still exhibit differences in their phenotype (physical traits) due to epigenetic factors or environmental influences.

A chimera, in the context of medicine and biology, is a single organism that is composed of cells with different genetics. This can occur naturally in some situations, such as when fraternal twins do not fully separate in utero and end up sharing some organs or tissues. The term "chimera" can also refer to an organism that contains cells from two different species, which can happen in certain types of genetic research or medical treatments. For example, a patient's cells might be genetically modified in a lab and then introduced into their body to treat a disease; if some of these modified cells mix with the patient's original cells, the result could be a chimera.

It's worth noting that the term "chimera" comes from Greek mythology, where it referred to a fire-breathing monster that was part lion, part goat, and part snake. In modern scientific usage, the term has a specific technical meaning related to genetics and organisms, but it may still evoke images of fantastical creatures for some people.

Notch receptors are a type of transmembrane receptor proteins that play crucial roles in cell-cell communication and regulation of various biological processes, including cell fate determination, differentiation, proliferation, and apoptosis. These receptors are highly conserved across species and are essential for normal development and tissue homeostasis.

The Notch signaling pathway is initiated when the extracellular domain of a Notch receptor on one cell interacts with its ligand (such as Delta or Jagged) on an adjacent cell. This interaction triggers a series of proteolytic cleavage events that release the intracellular domain of the Notch receptor, which then translocates to the nucleus and regulates gene expression by interacting with transcription factors like CSL (CBF1/RBP-Jκ/Su(H)/Lag-1).

There are four known Notch receptors in humans (Notch1-4) that share a similar structure, consisting of an extracellular domain containing multiple epidermal growth factor (EGF)-like repeats, a transmembrane domain, and an intracellular domain. Mutations or dysregulation of the Notch signaling pathway have been implicated in various human diseases, including cancer, cardiovascular disorders, and developmental abnormalities.

Cell shape refers to the physical form or configuration of a cell, which is determined by the cytoskeleton (the internal framework of the cell) and the extracellular matrix (the external environment surrounding the cell). The shape of a cell can vary widely depending on its type and function. For example, some cells are spherical, such as red blood cells, while others are elongated or irregularly shaped. Changes in cell shape can be indicative of various physiological or pathological processes, including development, differentiation, migration, and disease.

Genetic transduction is a process in molecular biology that describes the transfer of genetic material from one bacterium to another by a viral vector called a bacteriophage (or phage). In this process, the phage infects one bacterium and incorporates a portion of the bacterial DNA into its own genetic material. When the phage then infects a second bacterium, it can transfer the incorporated bacterial DNA to the new host. This can result in the horizontal gene transfer (HGT) of traits such as antibiotic resistance or virulence factors between bacteria.

There are two main types of transduction: generalized and specialized. In generalized transduction, any portion of the bacterial genome can be packaged into the phage particle, leading to a random assortment of genetic material being transferred. In specialized transduction, only specific genes near the site where the phage integrates into the bacterial chromosome are consistently transferred.

It's important to note that genetic transduction is not to be confused with transformation or conjugation, which are other mechanisms of HGT in bacteria.

Epigenetics is the study of heritable changes in gene function that occur without a change in the underlying DNA sequence. These changes can be caused by various mechanisms such as DNA methylation, histone modification, and non-coding RNA molecules. Epigenetic changes can be influenced by various factors including age, environment, lifestyle, and disease state.

Genetic epigenesis specifically refers to the study of how genetic factors influence these epigenetic modifications. Genetic variations between individuals can lead to differences in epigenetic patterns, which in turn can contribute to phenotypic variation and susceptibility to diseases. For example, certain genetic variants may predispose an individual to develop cancer, and environmental factors such as smoking or exposure to chemicals can interact with these genetic variants to trigger epigenetic changes that promote tumor growth.

Overall, the field of genetic epigenesis aims to understand how genetic and environmental factors interact to regulate gene expression and contribute to disease susceptibility.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

A genetic vector is a vehicle, often a plasmid or a virus, that is used to introduce foreign DNA into a host cell as part of genetic engineering or gene therapy techniques. The vector contains the desired gene or genes, along with regulatory elements such as promoters and enhancers, which are needed for the expression of the gene in the target cells.

The choice of vector depends on several factors, including the size of the DNA to be inserted, the type of cell to be targeted, and the efficiency of uptake and expression required. Commonly used vectors include plasmids, adenoviruses, retroviruses, and lentiviruses.

Plasmids are small circular DNA molecules that can replicate independently in bacteria. They are often used as cloning vectors to amplify and manipulate DNA fragments. Adenoviruses are double-stranded DNA viruses that infect a wide range of host cells, including human cells. They are commonly used as gene therapy vectors because they can efficiently transfer genes into both dividing and non-dividing cells.

Retroviruses and lentiviruses are RNA viruses that integrate their genetic material into the host cell's genome. This allows for stable expression of the transgene over time. Lentiviruses, a subclass of retroviruses, have the advantage of being able to infect non-dividing cells, making them useful for gene therapy applications in post-mitotic tissues such as neurons and muscle cells.

Overall, genetic vectors play a crucial role in modern molecular biology and medicine, enabling researchers to study gene function, develop new therapies, and modify organisms for various purposes.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Intermediate filament proteins (IFPs) are a type of cytoskeletal protein that form the intermediate filaments (IFs), which are one of the three major components of the cytoskeleton in eukaryotic cells, along with microtubules and microfilaments. These proteins have a unique structure, characterized by an alpha-helical rod domain flanked by non-helical head and tail domains.

Intermediate filament proteins are classified into six major types based on their amino acid sequence: Type I (acidic) and Type II (basic) keratins, Type III (desmin, vimentin, glial fibrillary acidic protein, and peripherin), Type IV (neurofilaments), Type V (lamins), and Type VI (nestin). Each type of IFP has a distinct pattern of expression in different tissues and cell types.

Intermediate filament proteins play important roles in maintaining the structural integrity and mechanical strength of cells, providing resilience to mechanical stress, and regulating various cellular processes such as cell division, migration, and signal transduction. Mutations in IFP genes have been associated with several human diseases, including cancer, neurodegenerative disorders, and genetic skin fragility disorders.

Stromal cells, also known as stromal/stroma cells, are a type of cell found in various tissues and organs throughout the body. They are often referred to as the "connective tissue" or "supporting framework" of an organ because they play a crucial role in maintaining the structure and function of the tissue. Stromal cells include fibroblasts, adipocytes (fat cells), and various types of progenitor/stem cells. They produce and maintain the extracellular matrix, which is the non-cellular component of tissues that provides structural support and biochemical cues for other cells. Stromal cells also interact with immune cells and participate in the regulation of the immune response. In some contexts, "stromal cells" can also refer to cells found in the microenvironment of tumors, which can influence cancer growth and progression.

Wnt proteins are a family of secreted signaling molecules that play crucial roles in the regulation of fundamental biological processes, including cell proliferation, differentiation, migration, and survival. They were first discovered in 1982 through genetic studies in Drosophila melanogaster (fruit flies) and have since been found to be highly conserved across various species, from invertebrates to humans.

Wnt proteins exert their effects by binding to specific receptors on the target cell surface, leading to the activation of several intracellular signaling pathways:

1. Canonical Wnt/β-catenin pathway: In the absence of Wnt ligands, β-catenin is continuously degraded by a destruction complex consisting of Axin, APC (Adenomatous polyposis coli), and GSK3β (Glycogen synthase kinase 3 beta). When Wnt proteins bind to their receptors Frizzled and LRP5/6, the formation of a "signalosome" complex leads to the inhibition of the destruction complex, allowing β-catenin to accumulate in the cytoplasm and translocate into the nucleus. Here, it interacts with TCF/LEF (T-cell factor/lymphoid enhancer-binding factor) transcription factors to regulate the expression of target genes involved in cell proliferation, differentiation, and survival.
2. Non-canonical Wnt pathways: These include the Wnt/Ca^2+^ pathway and the planar cell polarity (PCP) pathway. In the Wnt/Ca^2+^ pathway, Wnt ligands bind to Frizzled receptors and activate heterotrimeric G proteins, leading to an increase in intracellular Ca^2+^ levels and activation of downstream targets such as protein kinase C (PKC) and calcium/calmodulin-dependent protein kinase II (CAMKII). These signaling events ultimately regulate cell movement, adhesion, and gene expression. In the PCP pathway, Wnt ligands bind to Frizzled receptors and coreceptor complexes containing Ror2 or Ryk, leading to activation of small GTPases such as RhoA and Rac1, which control cytoskeletal organization and cell polarity.

Dysregulation of Wnt signaling has been implicated in various human diseases, including cancer, developmental disorders, and degenerative conditions. In cancer, aberrant activation of the canonical Wnt/β-catenin pathway contributes to tumor initiation, progression, and metastasis by promoting cell proliferation, survival, and epithelial-mesenchymal transition (EMT). Inhibitors targeting different components of the Wnt signaling pathway are currently being developed as potential therapeutic strategies for cancer treatment.

A transplantation chimera is a rare medical condition that occurs after an organ or tissue transplant, where the recipient's body accepts and integrates the donor's cells or tissues to such an extent that the two sets of DNA coexist and function together. This phenomenon can lead to the presence of two different genetic profiles in one individual.

In some cases, this may result in the development of donor-derived cells or organs within the recipient's body, which can express the donor's unique genetic traits. Transplantation chimerism is more commonly observed in bone marrow transplants, where the donor's immune cells can repopulate and establish themselves within the recipient's bone marrow and bloodstream.

It is important to note that while transplantation chimerism can be beneficial for the success of the transplant, it may also pose some risks, such as an increased likelihood of developing graft-versus-host disease (GVHD), where the donor's immune cells attack the recipient's tissues.

Planarians are not a medical term, but rather a type of flatworms that belong to the phylum Platyhelminthes. They are known for their ability to regenerate and reproduce asexually. Planarians are often studied in the fields of biology and regenerative medicine due to their unique capacity to regrow lost body parts. However, some planarian species can also be parasitic and infect humans, causing diseases such as intestinal schistosomiasis or cercarial dermatitis. Therefore, while planarians themselves are not a medical term, they have relevance to certain medical fields.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Cellular aging, also known as cellular senescence, is a natural process that occurs as cells divide and grow older. Over time, cells accumulate damage to their DNA, proteins, and lipids due to various factors such as genetic mutations, oxidative stress, and epigenetic changes. This damage can impair the cell's ability to function properly and can lead to changes associated with aging, such as decreased tissue repair and regeneration, increased inflammation, and increased risk of age-related diseases.

Cellular aging is characterized by several features, including:

1. Shortened telomeres: Telomeres are the protective caps on the ends of chromosomes that shorten each time a cell divides. When telomeres become too short, the cell can no longer divide and becomes senescent or dies.
2. Epigenetic changes: Epigenetic modifications refer to chemical changes to DNA and histone proteins that affect gene expression without changing the underlying genetic code. As cells age, they accumulate epigenetic changes that can alter gene expression and contribute to cellular aging.
3. Oxidative stress: Reactive oxygen species (ROS) are byproducts of cellular metabolism that can damage DNA, proteins, and lipids. Accumulated ROS over time can lead to oxidative stress, which is associated with cellular aging.
4. Inflammation: Senescent cells produce pro-inflammatory cytokines, chemokines, and matrix metalloproteinases that contribute to a low-grade inflammation known as inflammaging. This chronic inflammation can lead to tissue damage and increase the risk of age-related diseases.
5. Genomic instability: DNA damage accumulates with age, leading to genomic instability and an increased risk of mutations and cancer.

Understanding cellular aging is crucial for developing interventions that can delay or prevent age-related diseases and improve healthy lifespan.

Epithelial cells are types of cells that cover the outer surfaces of the body, line the inner surfaces of organs and glands, and form the lining of blood vessels and body cavities. They provide a protective barrier against the external environment, regulate the movement of materials between the internal and external environments, and are involved in the sense of touch, temperature, and pain. Epithelial cells can be squamous (flat and thin), cuboidal (square-shaped and of equal height), or columnar (tall and narrow) in shape and are classified based on their location and function.

Cardiac myocytes are the muscle cells that make up the heart muscle, also known as the myocardium. These specialized cells are responsible for contracting and relaxing in a coordinated manner to pump blood throughout the body. They differ from skeletal muscle cells in several ways, including their ability to generate their own electrical impulses, which allows the heart to function as an independent rhythmical pump. Cardiac myocytes contain sarcomeres, the contractile units of the muscle, and are connected to each other by intercalated discs that help coordinate contraction and ensure the synchronous beating of the heart.

The cell cycle is a series of events that take place in a cell leading to its division and duplication. It consists of four main phases: G1 phase, S phase, G2 phase, and M phase.

During the G1 phase, the cell grows in size and synthesizes mRNA and proteins in preparation for DNA replication. In the S phase, the cell's DNA is copied, resulting in two complete sets of chromosomes. During the G2 phase, the cell continues to grow and produces more proteins and organelles necessary for cell division.

The M phase is the final stage of the cell cycle and consists of mitosis (nuclear division) and cytokinesis (cytoplasmic division). Mitosis results in two genetically identical daughter nuclei, while cytokinesis divides the cytoplasm and creates two separate daughter cells.

The cell cycle is regulated by various checkpoints that ensure the proper completion of each phase before progressing to the next. These checkpoints help prevent errors in DNA replication and division, which can lead to mutations and cancer.

Hematopoietic cell growth factors are a group of glycoproteins that stimulate the proliferation, differentiation, and survival of hematopoietic cells, which are the precursor cells that give rise to all blood cells. These growth factors include colony-stimulating factors (CSFs) such as granulocyte-colony stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and macrophage colony-stimulating factor (M-CSF), as well as erythropoietin (EPO) and thrombopoietin (TPO).

G-CSF primarily stimulates the production of neutrophils, a type of white blood cell that plays a crucial role in the immune response to bacterial infections. GM-CSF stimulates the production of both granulocytes and monocytes/macrophages, while M-CSF specifically stimulates the production of monocytes/macrophages. EPO stimulates the production of red blood cells, while TPO stimulates the production of platelets.

Hematopoietic cell growth factors are used clinically to treat a variety of conditions associated with impaired hematopoiesis, such as chemotherapy-induced neutropenia, aplastic anemia, and congenital disorders of hematopoiesis. They can also be used to mobilize hematopoietic stem cells from the bone marrow into the peripheral blood for collection and transplantation.

Neoplastic cell transformation is a process in which a normal cell undergoes genetic alterations that cause it to become cancerous or malignant. This process involves changes in the cell's DNA that result in uncontrolled cell growth and division, loss of contact inhibition, and the ability to invade surrounding tissues and metastasize (spread) to other parts of the body.

Neoplastic transformation can occur as a result of various factors, including genetic mutations, exposure to carcinogens, viral infections, chronic inflammation, and aging. These changes can lead to the activation of oncogenes or the inactivation of tumor suppressor genes, which regulate cell growth and division.

The transformation of normal cells into cancerous cells is a complex and multi-step process that involves multiple genetic and epigenetic alterations. It is characterized by several hallmarks, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabling replicative immortality, induction of angiogenesis, activation of invasion and metastasis, reprogramming of energy metabolism, and evading immune destruction.

Neoplastic cell transformation is a fundamental concept in cancer biology and is critical for understanding the molecular mechanisms underlying cancer development and progression. It also has important implications for cancer diagnosis, prognosis, and treatment, as identifying the specific genetic alterations that underlie neoplastic transformation can help guide targeted therapies and personalized medicine approaches.

Nerve tissue proteins are specialized proteins found in the nervous system that provide structural and functional support to nerve cells, also known as neurons. These proteins include:

1. Neurofilaments: These are type IV intermediate filaments that provide structural support to neurons and help maintain their shape and size. They are composed of three subunits - NFL (light), NFM (medium), and NFH (heavy).

2. Neuronal Cytoskeletal Proteins: These include tubulins, actins, and spectrins that provide structural support to the neuronal cytoskeleton and help maintain its integrity.

3. Neurotransmitter Receptors: These are specialized proteins located on the postsynaptic membrane of neurons that bind neurotransmitters released by presynaptic neurons, triggering a response in the target cell.

4. Ion Channels: These are transmembrane proteins that regulate the flow of ions across the neuronal membrane and play a crucial role in generating and transmitting electrical signals in neurons.

5. Signaling Proteins: These include enzymes, receptors, and adaptor proteins that mediate intracellular signaling pathways involved in neuronal development, differentiation, survival, and death.

6. Adhesion Proteins: These are cell surface proteins that mediate cell-cell and cell-matrix interactions, playing a crucial role in the formation and maintenance of neural circuits.

7. Extracellular Matrix Proteins: These include proteoglycans, laminins, and collagens that provide structural support to nerve tissue and regulate neuronal migration, differentiation, and survival.

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

Apoptosis is a programmed and controlled cell death process that occurs in multicellular organisms. It is a natural process that helps maintain tissue homeostasis by eliminating damaged, infected, or unwanted cells. During apoptosis, the cell undergoes a series of morphological changes, including cell shrinkage, chromatin condensation, and fragmentation into membrane-bound vesicles called apoptotic bodies. These bodies are then recognized and engulfed by neighboring cells or phagocytic cells, preventing an inflammatory response. Apoptosis is regulated by a complex network of intracellular signaling pathways that involve proteins such as caspases, Bcl-2 family members, and inhibitors of apoptosis (IAPs).

Cell transdifferentiation is a process in which one type of differentiated cell transforms into another type of differentiated cell, without going through the stage of pluripotent stem cells. This process involves a series of genetic and epigenetic changes that result in the activation of new genetic programs and repression of old ones, leading to the acquisition of a new cell identity.

Transdifferentiation is a rare event in nature, but it has been induced in the laboratory through various methods such as gene transfer, chemical treatment, or nuclear transplantation. This process has potential applications in regenerative medicine, tissue engineering, and disease modeling. However, it also raises ethical concerns related to the generation of chimeric organisms and the possibility of uncontrolled cell growth.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

CD44 is a type of protein found on the surface of some cells in the human body. It is a cell adhesion molecule and is involved in various biological processes such as cell-cell interaction, lymphocyte activation, and migration of cells. CD44 also acts as a receptor for hyaluronic acid, a component of the extracellular matrix.

As an antigen, CD44 can be recognized by certain immune cells, including T cells and B cells, and can play a role in the immune response. There are several isoforms of CD44 that exist due to alternative splicing of its mRNA, leading to differences in its structure and function.

CD44 has been studied in the context of cancer, where it can contribute to tumor growth, progression, and metastasis. In some cases, high levels of CD44 have been associated with poor prognosis in certain types of cancer. However, CD44 also has potential roles in tumor suppression and immune surveillance, making its overall role in cancer complex and context-dependent.

The cellular microenvironment refers to the sum of all physical and biochemical factors in the immediate vicinity of a cell that influence its behavior and function. This includes elements such as:

1. Extracellular matrix (ECM): The non-cellular component that provides structural support, anchorage, and biochemical cues to cells through various molecules like collagens, fibronectin, and laminins.
2. Soluble factors: These include growth factors, hormones, cytokines, and chemokines that bind to cell surface receptors and modulate cellular responses.
3. Neighboring cells: The types and states of nearby cells can significantly impact a cell's behavior through direct contact, paracrine signaling, or competition for resources.
4. Physical conditions: Variables such as temperature, pH, oxygen tension, and mechanical stresses (e.g., stiffness, strain) also contribute to the cellular microenvironment.
5. Biochemical gradients: Concentration gradients of molecules within the ECM or surrounding fluid can guide cell migration, differentiation, and other responses.

Collectively, these factors interact to create a complex and dynamic milieu that regulates various aspects of cellular physiology, including proliferation, differentiation, survival, and motility. Understanding the cellular microenvironment is crucial for developing effective therapies and tissue engineering strategies in regenerative medicine and cancer treatment.

In medical and embryological terms, the mesoderm is one of the three primary germ layers in the very early stages of embryonic development. It forms between the ectoderm and endoderm during gastrulation, and it gives rise to a wide variety of cell types, tissues, and organs in the developing embryo.

The mesoderm contributes to the formation of structures such as:

1. The connective tissues (including tendons, ligaments, and most of the bones)
2. Muscular system (skeletal, smooth, and cardiac muscles)
3. Circulatory system (heart, blood vessels, and blood cells)
4. Excretory system (kidneys and associated structures)
5. Reproductive system (gonads, including ovaries and testes)
6. Dermis of the skin
7. Parts of the eye and inner ear
8. Several organs in the urogenital system

Dysfunctions or abnormalities in mesoderm development can lead to various congenital disorders and birth defects, highlighting its importance during embryogenesis.

Fibroblasts are specialized cells that play a critical role in the body's immune response and wound healing process. They are responsible for producing and maintaining the extracellular matrix (ECM), which is the non-cellular component present within all tissues and organs, providing structural support and biochemical signals for surrounding cells.

Fibroblasts produce various ECM proteins such as collagens, elastin, fibronectin, and laminins, forming a complex network of fibers that give tissues their strength and flexibility. They also help in the regulation of tissue homeostasis by controlling the turnover of ECM components through the process of remodeling.

In response to injury or infection, fibroblasts become activated and start to proliferate rapidly, migrating towards the site of damage. Here, they participate in the inflammatory response, releasing cytokines and chemokines that attract immune cells to the area. Additionally, they deposit new ECM components to help repair the damaged tissue and restore its functionality.

Dysregulation of fibroblast activity has been implicated in several pathological conditions, including fibrosis (excessive scarring), cancer (where they can contribute to tumor growth and progression), and autoimmune diseases (such as rheumatoid arthritis).

Satellite cells in skeletal muscle are undifferentiated stem cells that are crucial for postnatal growth, maintenance, and repair of skeletal muscle. They are located between the basal lamina and plasma membrane of myofibers. In response to muscle damage or injury, satellite cells become activated, proliferate, differentiate into myoblasts, fuse with existing muscle fibers, and contribute to muscle regeneration. Satellite cells also play a role in maintaining muscle homeostasis by fusing with mature muscle fibers to replace damaged proteins and organelles. They are essential for the adaptation of skeletal muscle to various stimuli such as exercise or mechanical load.

The Wnt signaling pathway is a complex cell communication system that plays a critical role in embryonic development, tissue regeneration, and cancer. It is named after the Wingless (Wg) gene in Drosophila melanogaster and the Int-1 gene in mice, both of which were found to be involved in this pathway.

In essence, the Wnt signaling pathway involves the binding of Wnt proteins to Frizzled receptors on the cell surface, leading to the activation of intracellular signaling cascades. There are three main branches of the Wnt signaling pathway: the canonical (or Wnt/β-catenin) pathway, the noncanonical planar cell polarity (PCP) pathway, and the noncanonical Wnt/calcium pathway.

The canonical Wnt/β-catenin pathway is the most well-studied branch. In the absence of Wnt signaling, cytoplasmic β-catenin is constantly phosphorylated by a destruction complex consisting of Axin, APC, GSK3β, and CK1, leading to its ubiquitination and degradation in the proteasome. When Wnt ligands bind to Frizzled receptors and their coreceptor LRP5/6, Dishevelled is recruited and inhibits the destruction complex, allowing β-catenin to accumulate in the cytoplasm and translocate into the nucleus. In the nucleus, β-catenin interacts with TCF/LEF transcription factors to regulate the expression of target genes involved in cell proliferation, differentiation, and survival.

Dysregulation of the Wnt signaling pathway has been implicated in various human diseases, including cancer, developmental disorders, and degenerative conditions. For example, mutations in components of the canonical Wnt/β-catenin pathway can lead to the accumulation of β-catenin and subsequent activation of oncogenic target genes, contributing to tumorigenesis in various types of cancer.

Immunophenotyping is a medical laboratory technique used to identify and classify cells, usually in the context of hematologic (blood) disorders and malignancies (cancers), based on their surface or intracellular expression of various proteins and antigens. This technique utilizes specific antibodies tagged with fluorochromes, which bind to the target antigens on the cell surface or within the cells. The labeled cells are then analyzed using flow cytometry, allowing for the detection and quantification of multiple antigenic markers simultaneously.

Immunophenotyping helps in understanding the distribution of different cell types, their subsets, and activation status, which can be crucial in diagnosing various hematological disorders, immunodeficiencies, and distinguishing between different types of leukemias, lymphomas, and other malignancies. Additionally, it can also be used to monitor the progression of diseases, evaluate the effectiveness of treatments, and detect minimal residual disease (MRD) during follow-up care.

Oligonucleotide Array Sequence Analysis is a type of microarray analysis that allows for the simultaneous measurement of the expression levels of thousands of genes in a single sample. In this technique, oligonucleotides (short DNA sequences) are attached to a solid support, such as a glass slide, in a specific pattern. These oligonucleotides are designed to be complementary to specific target mRNA sequences from the sample being analyzed.

During the analysis, labeled RNA or cDNA from the sample is hybridized to the oligonucleotide array. The level of hybridization is then measured and used to determine the relative abundance of each target sequence in the sample. This information can be used to identify differences in gene expression between samples, which can help researchers understand the underlying biological processes involved in various diseases or developmental stages.

It's important to note that this technique requires specialized equipment and bioinformatics tools for data analysis, as well as careful experimental design and validation to ensure accurate and reproducible results.

The umbilical cord is a flexible, tube-like structure that connects the developing fetus to the placenta in the uterus during pregnancy. It arises from the abdomen of the fetus and transports essential nutrients, oxygen, and blood from the mother's circulation to the growing baby. Additionally, it carries waste products, such as carbon dioxide, from the fetus back to the placenta for elimination. The umbilical cord is primarily composed of two arteries (the umbilical arteries) and one vein (the umbilical vein), surrounded by a protective gelatinous substance called Wharton's jelly, and enclosed within a fibrous outer covering known as the umbilical cord coating. Following birth, the umbilical cord is clamped and cut, leaving behind the stump that eventually dries up and falls off, resulting in the baby's belly button.

Germ layers refer to the primary layers of cells that form during embryonic development and give rise to the various tissues and organs in the body. In humans, there are three germ layers: the ectoderm, mesoderm, and endoderm. Each germ layer differentiates into distinct cell types and structures during the process of gastrulation. The ectoderm gives rise to the nervous system, sensory organs, and skin; the mesoderm forms muscles, bones, blood vessels, and the circulatory system; and the endoderm develops into the respiratory and digestive systems, including the lungs, liver, and pancreas.

Leukemia Inhibitory Factor (LIF) is a protein with pleiotropic functions, acting as a cytokine that plays a crucial role in various biological processes. Its name originates from its initial discovery as a factor that inhibits the proliferation of certain leukemic cells. However, LIF has been found to have a much broader range of activities beyond just inhibiting leukemia cells.

LIF is a member of the interleukin-6 (IL-6) family of cytokines and binds to a heterodimeric receptor complex consisting of the LIF receptor (LIFR) and glycoprotein 130 (gp130). The activation of this receptor complex triggers several downstream signaling pathways, including the Janus kinase (JAK)-signal transducer and activator of transcription (STAT), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K) pathways.

Some of the key functions of LIF include:

1. Embryonic development: During embryogenesis, LIF is essential for maintaining the pluripotency of embryonic stem cells and promoting their self-renewal in the early stages of development. It also plays a role in implantation and trophoblast differentiation during pregnancy.
2. Hematopoiesis: In the hematopoietic system, LIF supports the survival and proliferation of hematopoietic stem cells (HSCs) and regulates their differentiation into various blood cell lineages.
3. Neuroprotection and neurogenesis: LIF has been shown to have neuroprotective effects in various models of neuronal injury and disease, including spinal cord injury, stroke, and Alzheimer's disease. It also promotes the survival and differentiation of neural progenitor cells, contributing to adult neurogenesis.
4. Inflammation: LIF is involved in regulating immune responses and inflammation by modulating the activation and function of various immune cells, such as T cells, B cells, macrophages, and dendritic cells.
5. Pain regulation: LIF has been implicated in pain processing and modulation, with studies suggesting that it may contribute to both acute and chronic pain conditions.
6. Cancer: LIF has complex roles in cancer biology, acting as a tumor suppressor in some contexts while promoting tumor growth and progression in others. It can regulate various aspects of cancer cell behavior, including proliferation, survival, migration, and invasion.

In summary, LIF is a pleiotropic cytokine with diverse functions in various biological processes, including embryonic development, hematopoiesis, neuroprotection, inflammation, pain regulation, and cancer. Its multifaceted roles highlight the importance of understanding its precise mechanisms of action in different contexts to harness its therapeutic potential for various diseases.

Whole-Body Irradiation (WBI) is a medical procedure that involves the exposure of the entire body to a controlled dose of ionizing radiation, typically used in the context of radiation therapy for cancer treatment. The purpose of WBI is to destroy cancer cells or suppress the immune system prior to a bone marrow transplant. It can be delivered using various sources of radiation, such as X-rays, gamma rays, or electrons, and is carefully planned and monitored to minimize harm to healthy tissues while maximizing the therapeutic effect on cancer cells. Potential side effects include nausea, vomiting, fatigue, and an increased risk of infection due to decreased white blood cell counts.

Feeder cells are typically used in cell culture to support the growth and survival of other cells, often called "dependent" or "target" cells. These feeder cells are usually mitotically inactivated, so they do not proliferate themselves but provide a supportive microenvironment for the dependent cells through the secretion of various growth factors, cytokines, and extracellular matrix proteins.

A common application of feeder cells is to support the growth and maintenance of stem cells or primary cell cultures, which can have specific nutrient and growth factor requirements that are difficult to meet with traditional culture methods. Feeder cells may also be used in the production of certain therapeutic products, such as viral vectors for gene therapy, where they provide a substrate for efficient virus replication.

Some common types of feeder cells include fibroblasts (such as mouse embryonic fibroblasts or human foreskin fibroblasts), which are often used to culture stem cells and primary cells; and 3T3-J2 cells, a specific line of mouse embryonic fibroblasts that have been widely used in the culture of hematopoietic stem cells.

It's important to note that the use of feeder cells can introduce potential risks, such as contamination with adventitious agents or unwanted cell types, which must be carefully managed and controlled during cell culture procedures.

Endoderm is the innermost of the three primary germ layers in a developing embryo, along with the ectoderm and mesoderm. The endoderm gives rise to several internal tissues and organs, most notably those found in the digestive system and respiratory system. Specifically, it forms the lining of the gut tube, which eventually becomes the epithelial lining of the gastrointestinal tract, liver, pancreas, lungs, and other associated structures.

During embryonic development, the endoderm arises from the inner cell mass of the blastocyst, following a series of cell divisions and migrations that help to establish the basic body plan of the organism. As the embryo grows and develops, the endoderm continues to differentiate into more specialized tissues and structures, playing a critical role in the formation of many essential bodily functions.

Conditioned culture media refers to a type of growth medium that has been previously used to culture and maintain the cells of an organism. The conditioned media contains factors secreted by those cells, such as hormones, nutrients, and signaling molecules, which can affect the behavior and growth of other cells that are introduced into the media later on.

When the conditioned media is used for culturing a new set of cells, it can provide a more physiologically relevant environment than traditional culture media, as it contains factors that are specific to the original cell type. This can be particularly useful in studies that aim to understand cell-cell interactions and communication, or to mimic the natural microenvironment of cells in the body.

It's important to note that conditioned media should be handled carefully and used promptly after preparation, as the factors it contains can degrade over time and affect the quality of the results.

MicroRNAs (miRNAs) are a class of small non-coding RNAs, typically consisting of around 20-24 nucleotides, that play crucial roles in post-transcriptional regulation of gene expression. They primarily bind to the 3' untranslated region (3' UTR) of target messenger RNAs (mRNAs), leading to mRNA degradation or translational repression. MicroRNAs are involved in various biological processes, including development, differentiation, proliferation, and apoptosis, and have been implicated in numerous diseases, such as cancers and neurological disorders. They can be found in various organisms, from plants to animals, and are often conserved across species. MicroRNAs are usually transcribed from DNA sequences located in introns or exons of protein-coding genes or in intergenic regions. After transcription, they undergo a series of processing steps, including cleavage by ribonucleases Drosha and Dicer, to generate mature miRNA molecules capable of binding to their target mRNAs.

Thy-1, also known as Thy-1 antigen or CD90, is a glycosylphosphatidylinositol (GPI)-anchored protein found on the surface of various cells in the body. It was first discovered as a cell surface antigen on thymocytes, hence the name Thy-1.

Thy-1 is a member of the immunoglobulin superfamily and is widely expressed in different tissues, including the brain, where it is found on the surface of neurons and glial cells. In the immune system, Thy-1 is expressed on the surface of T lymphocytes, natural killer (NK) cells, and some subsets of dendritic cells.

The function of Thy-1 is not fully understood, but it has been implicated in various biological processes, including cell adhesion, signal transduction, and regulation of immune responses. Thy-1 has also been shown to play a role in the development and maintenance of the nervous system, as well as in the pathogenesis of certain neurological disorders.

As an antigen, Thy-1 can be recognized by specific antibodies, which can be used in various research and clinical applications, such as immunohistochemistry, flow cytometry, and cell sorting.

A meristem, in the context of plant biology, refers to a type of tissue found in plants that is responsible for their growth. These tissues are composed of cells that have the ability to divide and differentiate into various specialized cell types. Meristems are typically located at the tips of roots and shoots (apical meristems), as well as within the vascular bundles (cambial meristems) and in the cork layers (phellogen meristems). They contribute to the increase in length and girth of plant organs, allowing plants to grow throughout their life.

The testis, also known as the testicle, is a male reproductive organ that is part of the endocrine system. It is located in the scrotum, outside of the abdominal cavity. The main function of the testis is to produce sperm and testosterone, the primary male sex hormone.

The testis is composed of many tiny tubules called seminiferous tubules, where sperm are produced. These tubules are surrounded by a network of blood vessels, nerves, and supportive tissues. The sperm then travel through a series of ducts to the epididymis, where they mature and become capable of fertilization.

Testosterone is produced in the Leydig cells, which are located in the interstitial tissue between the seminiferous tubules. Testosterone plays a crucial role in the development and maintenance of male secondary sexual characteristics, such as facial hair, deep voice, and muscle mass. It also supports sperm production and sexual function.

Abnormalities in testicular function can lead to infertility, hormonal imbalances, and other health problems. Regular self-examinations and medical check-ups are recommended for early detection and treatment of any potential issues.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

The epidermis is the outermost layer of the skin, composed mainly of stratified squamous epithelium. It forms a protective barrier that prevents water loss and inhibits the entry of microorganisms. The epidermis contains no blood vessels, and its cells are nourished by diffusion from the underlying dermis. The bottom-most layer of the epidermis, called the stratum basale, is responsible for generating new skin cells that eventually move up to replace dead cells on the surface. This process of cell turnover takes about 28 days in adults.

The most superficial part of the epidermis consists of dead cells called squames, which are constantly shed and replaced. The exact rate at which this happens varies depending on location; for example, it's faster on the palms and soles than elsewhere. Melanocytes, the pigment-producing cells, are also located in the epidermis, specifically within the stratum basale layer.

In summary, the epidermis is a vital part of our integumentary system, providing not only physical protection but also playing a crucial role in immunity and sensory perception through touch receptors called Pacinian corpuscles.

Leukapheresis is a medical procedure that involves the separation and removal of white blood cells (leukocytes) from the blood. It is performed using a specialized machine called an apheresis instrument, which removes the desired component (in this case, leukocytes) and returns the remaining components (red blood cells, platelets, and plasma) back to the donor or patient. This procedure is often used in the treatment of certain blood disorders, such as leukemia and lymphoma, where high white blood cell counts can cause complications. It may also be used to collect stem cells for transplantation purposes. Leukapheresis is generally a safe procedure with minimal side effects, although it may cause temporary discomfort or bruising at the site of needle insertion.

The hematopoietic system is the group of tissues and organs in the body that are responsible for the production and maturation of blood cells. These include:

1. Bone marrow: The spongy tissue inside some bones, like the hips and thighs, where most blood cells are produced.
2. Spleen: An organ located in the upper left part of the abdomen that filters the blood, stores red and white blood cells, and removes waste products.
3. Liver: A large organ in the upper right part of the abdomen that filters blood, detoxifies harmful substances, produces bile to aid in digestion, and stores some nutrients like glucose and iron.
4. Lymph nodes: Small glands found throughout the body, especially in the neck, armpits, and groin, that filter lymph fluid and help fight infection.
5. Thymus: A small organ located in the chest, between the lungs, that helps develop T-cells, a type of white blood cell that fights infection.

The hematopoietic system produces three main types of cells:

1. Red blood cells (erythrocytes): Carry oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs.
2. White blood cells (leukocytes): Help fight infection and are part of the body's immune system.
3. Platelets (thrombocytes): Small cell fragments that help form blood clots to stop bleeding.

Disorders of the hematopoietic system can lead to conditions such as anemia, leukemia, and lymphoma.

Beta-catenin is a protein that plays a crucial role in gene transcription and cell-cell adhesion. It is a key component of the Wnt signaling pathway, which regulates various processes such as cell proliferation, differentiation, and migration during embryonic development and tissue homeostasis in adults.

In the absence of Wnt signals, beta-catenin forms a complex with other proteins, including adenomatous polyposis coli (APC) and axin, which targets it for degradation by the proteasome. When Wnt ligands bind to their receptors, this complex is disrupted, allowing beta-catenin to accumulate in the cytoplasm and translocate to the nucleus. In the nucleus, beta-catenin interacts with T cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription factors to activate the transcription of target genes involved in cell fate determination, survival, and proliferation.

Mutations in the genes encoding components of the Wnt signaling pathway, including beta-catenin, have been implicated in various human diseases, such as cancer, developmental disorders, and degenerative conditions.

Osteoblasts are specialized bone-forming cells that are derived from mesenchymal stem cells. They play a crucial role in the process of bone formation and remodeling. Osteoblasts synthesize, secrete, and mineralize the organic matrix of bones, which is mainly composed of type I collagen.

These cells have receptors for various hormones and growth factors that regulate their activity, such as parathyroid hormone, vitamin D, and transforming growth factor-beta. When osteoblasts are not actively producing bone matrix, they can become trapped within the matrix they produce, where they differentiate into osteocytes, which are mature bone cells that play a role in maintaining bone structure and responding to mechanical stress.

Abnormalities in osteoblast function can lead to various bone diseases, such as osteoporosis, osteogenesis imperfecta, and Paget's disease of bone.

Bromodeoxyuridine (BrdU) is a synthetic thymidine analog that can be incorporated into DNA during cell replication. It is often used in research and medical settings as a marker for cell proliferation or as a tool to investigate DNA synthesis and repair. When cells are labeled with BrdU and then examined using immunofluorescence or other detection techniques, the presence of BrdU can indicate which cells have recently divided or are actively synthesizing DNA.

In medical contexts, BrdU has been used in cancer research to study tumor growth and response to treatment. It has also been explored as a potential therapeutic agent for certain conditions, such as neurodegenerative diseases, where promoting cell proliferation and replacement of damaged cells may be beneficial. However, its use as a therapeutic agent is still experimental and requires further investigation.

Leukemia is a type of cancer that originates from the bone marrow - the soft, inner part of certain bones where new blood cells are made. It is characterized by an abnormal production of white blood cells, known as leukocytes or blasts. These abnormal cells accumulate in the bone marrow and interfere with the production of normal blood cells, leading to a decrease in red blood cells (anemia), platelets (thrombocytopenia), and healthy white blood cells (leukopenia).

There are several types of leukemia, classified based on the specific type of white blood cell affected and the speed at which the disease progresses:

1. Acute Leukemias - These types of leukemia progress rapidly, with symptoms developing over a few weeks or months. They involve the rapid growth and accumulation of immature, nonfunctional white blood cells (blasts) in the bone marrow and peripheral blood. The two main categories are:
- Acute Lymphoblastic Leukemia (ALL) - Originates from lymphoid progenitor cells, primarily affecting children but can also occur in adults.
- Acute Myeloid Leukemia (AML) - Develops from myeloid progenitor cells and is more common in older adults.

2. Chronic Leukemias - These types of leukemia progress slowly, with symptoms developing over a period of months to years. They involve the production of relatively mature, but still abnormal, white blood cells that can accumulate in large numbers in the bone marrow and peripheral blood. The two main categories are:
- Chronic Lymphocytic Leukemia (CLL) - Affects B-lymphocytes and is more common in older adults.
- Chronic Myeloid Leukemia (CML) - Originates from myeloid progenitor cells, characterized by the presence of a specific genetic abnormality called the Philadelphia chromosome. It can occur at any age but is more common in middle-aged and older adults.

Treatment options for leukemia depend on the type, stage, and individual patient factors. Treatments may include chemotherapy, targeted therapy, immunotherapy, stem cell transplantation, or a combination of these approaches.

Bone Morphogenetic Protein 4 (BMP-4) is a growth factor that belongs to the transforming growth factor-beta (TGF-β) superfamily. It plays crucial roles in various biological processes, including embryonic development, cell growth, and differentiation. In the skeletal system, BMP-4 stimulates the formation of bone and cartilage by inducing the differentiation of mesenchymal stem cells into chondrocytes and osteoblasts. It also regulates the maintenance and repair of bones throughout life. An imbalance in BMP-4 signaling has been associated with several skeletal disorders, such as heterotopic ossification and osteoarthritis.

A transgene is a segment of DNA that has been artificially transferred from one organism to another, typically between different species, to introduce a new trait or characteristic. The term "transgene" specifically refers to the genetic material that has been transferred and has become integrated into the host organism's genome. This technology is often used in genetic engineering and biomedical research, including the development of genetically modified organisms (GMOs) for agricultural purposes or the creation of animal models for studying human diseases.

Transgenes can be created using various techniques, such as molecular cloning, where a desired gene is isolated, manipulated, and then inserted into a vector (a small DNA molecule, such as a plasmid) that can efficiently enter the host organism's cells. Once inside the cell, the transgene can integrate into the host genome, allowing for the expression of the new trait in the resulting transgenic organism.

It is important to note that while transgenes can provide valuable insights and benefits in research and agriculture, their use and release into the environment are subjects of ongoing debate due to concerns about potential ecological impacts and human health risks.

Retroviridae is a family of viruses that includes human immunodeficiency virus (HIV) and other viruses that primarily use RNA as their genetic material. The name "retrovirus" comes from the fact that these viruses reverse transcribe their RNA genome into DNA, which then becomes integrated into the host cell's genome. This is a unique characteristic of retroviruses, as most other viruses use DNA as their genetic material.

Retroviruses can cause a variety of diseases in animals and humans, including cancer, neurological disorders, and immunodeficiency syndromes like AIDS. They have a lipid membrane envelope that contains glycoprotein spikes, which allow them to attach to and enter host cells. Once inside the host cell, the viral RNA is reverse transcribed into DNA by the enzyme reverse transcriptase, which is then integrated into the host genome by the enzyme integrase.

Retroviruses can remain dormant in the host genome for extended periods of time, and may be reactivated under certain conditions to produce new viral particles. This ability to integrate into the host genome has also made retroviruses useful tools in molecular biology, where they are used as vectors for gene therapy and other genetic manipulations.

Basic Helix-Loop-Helix (bHLH) transcription factors are a type of proteins that regulate gene expression through binding to specific DNA sequences. They play crucial roles in various biological processes, including cell growth, differentiation, and apoptosis. The bHLH domain is composed of two amphipathic α-helices separated by a loop region. This structure allows the formation of homodimers or heterodimers, which then bind to the E-box DNA motif (5'-CANNTG-3') to regulate transcription.

The bHLH family can be further divided into several subfamilies based on their sequence similarities and functional characteristics. Some members of this family are involved in the development and function of the nervous system, while others play critical roles in the development of muscle and bone. Dysregulation of bHLH transcription factors has been implicated in various human diseases, including cancer and neurodevelopmental disorders.

DNA-binding proteins are a type of protein that have the ability to bind to DNA (deoxyribonucleic acid), the genetic material of organisms. These proteins play crucial roles in various biological processes, such as regulation of gene expression, DNA replication, repair and recombination.

The binding of DNA-binding proteins to specific DNA sequences is mediated by non-covalent interactions, including electrostatic, hydrogen bonding, and van der Waals forces. The specificity of binding is determined by the recognition of particular nucleotide sequences or structural features of the DNA molecule.

DNA-binding proteins can be classified into several categories based on their structure and function, such as transcription factors, histones, and restriction enzymes. Transcription factors are a major class of DNA-binding proteins that regulate gene expression by binding to specific DNA sequences in the promoter region of genes and recruiting other proteins to modulate transcription. Histones are DNA-binding proteins that package DNA into nucleosomes, the basic unit of chromatin structure. Restriction enzymes are DNA-binding proteins that recognize and cleave specific DNA sequences, and are widely used in molecular biology research and biotechnology applications.

A Tumor Stem Cell Assay is not a widely accepted or standardized medical definition. However, in the context of cancer research, a tumor stem cell assay generally refers to an experimental procedure used to identify and isolate cancer stem cells (also known as tumor-initiating cells) from a tumor sample.

Cancer stem cells are a subpopulation of cells within a tumor that are believed to be responsible for driving tumor growth, metastasis, and resistance to therapy. They have the ability to self-renew and differentiate into various cell types within the tumor, making them a promising target for cancer therapies.

A tumor stem cell assay typically involves isolating cells from a tumor sample and subjecting them to various tests to identify those with stem cell-like properties. These tests may include assessing their ability to form tumors in animal models or their expression of specific surface markers associated with cancer stem cells. The goal of the assay is to provide researchers with a better understanding of the biology of cancer stem cells and to develop new therapies that target them specifically.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Neoplasms are abnormal growths of cells or tissues in the body that serve no physiological function. They can be benign (non-cancerous) or malignant (cancerous). Benign neoplasms are typically slow growing and do not spread to other parts of the body, while malignant neoplasms are aggressive, invasive, and can metastasize to distant sites.

Neoplasms occur when there is a dysregulation in the normal process of cell division and differentiation, leading to uncontrolled growth and accumulation of cells. This can result from genetic mutations or other factors such as viral infections, environmental exposures, or hormonal imbalances.

Neoplasms can develop in any organ or tissue of the body and can cause various symptoms depending on their size, location, and type. Treatment options for neoplasms include surgery, radiation therapy, chemotherapy, immunotherapy, and targeted therapy, among others.

"Serum-free culture media" refers to a type of nutrient medium used in cell culture and tissue engineering that does not contain fetal bovine serum (FBS) or other animal serums. Instead, it is supplemented with defined, chemically-defined components such as hormones, growth factors, vitamins, and amino acids.

The use of serum-free media offers several advantages over traditional media formulations that contain serum. For example, it reduces the risk of contamination with adventitious agents, such as viruses and prions, that may be present in animal serums. Additionally, it allows for greater control over the culture environment, as the concentration and composition of individual components can be carefully regulated. This is particularly important in applications where precise control over cell behavior is required, such as in the production of therapeutic proteins or in stem cell research.

However, serum-free media may not be suitable for all cell types, as some cells require the complex mixture of growth factors and other components found in animal serums to survive and proliferate. Therefore, it is important to carefully evaluate the needs of each specific cell type when selecting a culture medium.

Antigens are substances (usually proteins) on the surface of cells, viruses, fungi, or bacteria that can be recognized by the immune system and provoke an immune response. In the context of differentiation, antigens refer to specific markers that identify the developmental stage or lineage of a cell.

Differentiation antigens are proteins or carbohydrates expressed on the surface of cells during various stages of differentiation, which can be used to distinguish between cells at different maturation stages or of different cell types. These antigens play an essential role in the immune system's ability to recognize and respond to abnormal or infected cells while sparing healthy cells.

Examples of differentiation antigens include:

1. CD (cluster of differentiation) molecules: A group of membrane proteins used to identify and define various cell types, such as T cells, B cells, natural killer cells, monocytes, and granulocytes.
2. Lineage-specific antigens: Antigens that are specific to certain cell lineages, such as CD3 for T cells or CD19 for B cells.
3. Maturation markers: Antigens that indicate the maturation stage of a cell, like CD34 and CD38 on hematopoietic stem cells.

Understanding differentiation antigens is crucial in immunology, cancer research, transplantation medicine, and vaccine development.

Real-Time Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences in real-time. It is a sensitive and specific method that allows for the quantification of target nucleic acids, such as DNA or RNA, through the use of fluorescent reporter molecules.

The RT-PCR process involves several steps: first, the template DNA is denatured to separate the double-stranded DNA into single strands. Then, primers (short sequences of DNA) specific to the target sequence are added and allowed to anneal to the template DNA. Next, a heat-stable enzyme called Taq polymerase adds nucleotides to the annealed primers, extending them along the template DNA until a new double-stranded DNA molecule is formed.

During each amplification cycle, fluorescent reporter molecules are added that bind specifically to the newly synthesized DNA. As more and more copies of the target sequence are generated, the amount of fluorescence increases in proportion to the number of copies present. This allows for real-time monitoring of the PCR reaction and quantification of the target nucleic acid.

RT-PCR is commonly used in medical diagnostics, research, and forensics to detect and quantify specific DNA or RNA sequences. It has been widely used in the diagnosis of infectious diseases, genetic disorders, and cancer, as well as in the identification of microbial pathogens and the detection of gene expression.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Kruppel-like transcription factors (KLFs) are a family of transcription factors that are characterized by their highly conserved DNA-binding domain, known as the Kruppel-like zinc finger domain. This domain consists of approximately 30 amino acids and is responsible for binding to specific DNA sequences, thereby regulating gene expression.

KLFs play important roles in various biological processes, including cell proliferation, differentiation, apoptosis, and inflammation. They are involved in the development and function of many tissues and organs, such as the hematopoietic system, cardiovascular system, nervous system, and gastrointestinal tract.

There are 17 known members of the KLF family in humans, each with distinct functions and expression patterns. Some KLFs act as transcriptional activators, while others function as repressors. Dysregulation of KLFs has been implicated in various diseases, including cancer, cardiovascular disease, and diabetes.

Overall, Kruppel-like transcription factors are crucial regulators of gene expression that play important roles in normal development and physiology, as well as in the pathogenesis of various diseases.

A tissue donor is an individual who has agreed to allow organs and tissues to be removed from their body after death for the purpose of transplantation to restore the health or save the life of another person. The tissues that can be donated include corneas, heart valves, skin, bone, tendons, ligaments, veins, and cartilage. These tissues can enhance the quality of life for many recipients and are often used in reconstructive surgeries. It is important to note that tissue donation does not interfere with an open casket funeral or other cultural or religious practices related to death and grieving.

Paracrine communication is a form of cell-to-cell communication in which a cell releases a signaling molecule, known as a paracrine factor, that acts on nearby cells within the local microenvironment. This type of communication allows for the coordination and regulation of various cellular processes, including growth, differentiation, and survival.

Paracrine factors can be released from a cell through various mechanisms, such as exocytosis or diffusion through the extracellular matrix. Once released, these factors bind to specific receptors on the surface of nearby cells, triggering intracellular signaling pathways that lead to changes in gene expression and cell behavior.

Paracrine communication is an important mechanism for maintaining tissue homeostasis and coordinating responses to injury or disease. For example, during wound healing, paracrine signals released by immune cells can recruit other cells to the site of injury and stimulate their proliferation and differentiation to promote tissue repair.

It's worth noting that paracrine communication should be distinguished from autocrine signaling, where a cell releases a signaling molecule that binds back to its own receptors, and endocrine signaling, where a hormone is released into the bloodstream and travels to distant target cells.

Busulfan is a chemotherapy medication used to treat various types of cancer, including chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML). It is an alkylating agent that works by damaging the DNA of cancer cells, which prevents them from dividing and growing.

The medical definition of Busulfan is:

A white crystalline powder used in chemotherapy to treat various types of cancer. Busulfan works by alkylating and cross-linking DNA, which inhibits DNA replication and transcription, leading to cell cycle arrest and apoptosis (programmed cell death) in rapidly dividing cells, including cancer cells. It is administered orally or intravenously and is often used in combination with other chemotherapy agents. Common side effects include nausea, vomiting, diarrhea, and bone marrow suppression, which can lead to anemia, neutropenia, thrombocytopenia, and increased susceptibility to infection. Long-term use of busulfan has been associated with pulmonary fibrosis, infertility, and an increased risk of secondary malignancies.

Genetic therapy, also known as gene therapy, is a medical intervention that involves the use of genetic material, such as DNA or RNA, to treat or prevent diseases. It works by introducing functional genes into cells to replace missing or faulty ones caused by genetic disorders or mutations. The introduced gene is incorporated into the recipient's genome, allowing for the production of a therapeutic protein that can help manage the disease symptoms or even cure the condition.

There are several approaches to genetic therapy, including:

1. Replacing a faulty gene with a healthy one
2. Inactivating or "silencing" a dysfunctional gene causing a disease
3. Introducing a new gene into the body to help fight off a disease, such as cancer

Genetic therapy holds great promise for treating various genetic disorders, including cystic fibrosis, muscular dystrophy, hemophilia, and certain types of cancer. However, it is still an evolving field with many challenges, such as efficient gene delivery, potential immune responses, and ensuring the safety and long-term effectiveness of the therapy.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Gene targeting is a research technique in molecular biology used to precisely modify specific genes within the genome of an organism. This technique allows scientists to study gene function by creating targeted genetic changes, such as insertions, deletions, or mutations, in a specific gene of interest. The process typically involves the use of engineered nucleases, such as CRISPR-Cas9 or TALENs, to introduce double-stranded breaks at desired locations within the genome. These breaks are then repaired by the cell's own DNA repair machinery, often leading to the incorporation of designed changes in the targeted gene. Gene targeting is a powerful tool for understanding gene function and has wide-ranging applications in basic research, agriculture, and therapeutic development.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Bone Morphogenetic Proteins (BMPs) are a group of growth factors that play crucial roles in the development, growth, and repair of bones and other tissues. They belong to the Transforming Growth Factor-β (TGF-β) superfamily and were first discovered when researchers found that certain proteins extracted from demineralized bone matrix had the ability to induce new bone formation.

BMPs stimulate the differentiation of mesenchymal stem cells into osteoblasts, which are the cells responsible for bone formation. They also promote the recruitment and proliferation of these cells, enhancing the overall process of bone regeneration. In addition to their role in bone biology, BMPs have been implicated in various other biological processes, including embryonic development, wound healing, and the regulation of fat metabolism.

There are several types of BMPs (BMP-2, BMP-4, BMP-7, etc.) that exhibit distinct functions and expression patterns. Due to their ability to stimulate bone formation, recombinant human BMPs have been used in clinical applications, such as spinal fusion surgery and non-healing fracture treatment. However, the use of BMPs in medicine has been associated with certain risks and complications, including uncontrolled bone growth, inflammation, and cancer development, which necessitates further research to optimize their therapeutic potential.

Chemokine (C-X-C motif) ligand 12 (CXCL12), also known as stromal cell-derived factor 1 (SDF-1), is a small signaling protein belonging to the chemokine family. Chemokines are a group of cytokines, or signaling molecules, that play important roles in immune responses and inflammation by recruiting and activating various immune cells.

CXCL12 is produced by several types of cells, including stromal cells, endothelial cells, and certain immune cells. It exerts its effects by binding to a specific receptor called C-X-C chemokine receptor type 4 (CXCR4), which is found on the surface of various cell types, including immune cells, stem cells, and some cancer cells.

The CXCL12-CXCR4 axis plays crucial roles in various physiological processes, such as embryonic development, tissue homeostasis, hematopoiesis (the formation of blood cells), and neurogenesis (the formation of neurons). Additionally, this signaling pathway has been implicated in several pathological conditions, including cancer metastasis, inflammatory diseases, and HIV infection.

In summary, Chemokine CXCL12 is a small signaling protein that binds to the CXCR4 receptor and plays essential roles in various physiological processes and pathological conditions.

Multiple myeloma is a type of cancer that forms in a type of white blood cell called a plasma cell. Plasma cells help your body fight infection by producing antibodies. In multiple myeloma, cancerous plasma cells accumulate in the bone marrow and crowd out healthy blood cells. Rather than producing useful antibodies, the cancer cells produce abnormal proteins that can cause complications such as kidney damage, bone pain and fractures.

Multiple myeloma is a type of cancer called a plasma cell neoplasm. Plasma cell neoplasms are diseases in which there is an overproduction of a single clone of plasma cells. In multiple myeloma, this results in the crowding out of normal plasma cells, red and white blood cells and platelets, leading to many of the complications associated with the disease.

The abnormal proteins produced by the cancer cells can also cause damage to organs and tissues in the body. These abnormal proteins can be detected in the blood or urine and are often used to monitor the progression of multiple myeloma.

Multiple myeloma is a relatively uncommon cancer, but it is the second most common blood cancer after non-Hodgkin lymphoma. It typically occurs in people over the age of 65, and men are more likely to develop multiple myeloma than women. While there is no cure for multiple myeloma, treatments such as chemotherapy, radiation therapy, and stem cell transplantation can help manage the disease and its symptoms, and improve quality of life.

A radiation chimera is not a widely used or recognized medical term. However, in the field of genetics and radiation biology, a "chimera" refers to an individual that contains cells with different genetic backgrounds. A radiation chimera, therefore, could refer to an organism that has become a chimera as a result of exposure to radiation, which can cause mutations and changes in the genetic makeup of cells.

Ionizing radiation, such as that used in cancer treatments or nuclear accidents, can cause DNA damage and mutations in cells. If an organism is exposed to radiation and some of its cells undergo mutations while others do not, this could result in a chimera with genetically distinct populations of cells.

However, it's important to note that the term "radiation chimera" is not commonly used in medical literature or clinical settings. If you encounter this term in a different context, I would recommend seeking clarification from the source to ensure a proper understanding.

Embryonic development is the series of growth and developmental stages that occur during the formation and early growth of the embryo. In humans, this stage begins at fertilization (when the sperm and egg cell combine) and continues until the end of the 8th week of pregnancy. During this time, the fertilized egg (now called a zygote) divides and forms a blastocyst, which then implants into the uterus. The cells in the blastocyst begin to differentiate and form the three germ layers: the ectoderm, mesoderm, and endoderm. These germ layers will eventually give rise to all of the different tissues and organs in the body.

Embryonic development is a complex and highly regulated process that involves the coordinated interaction of genetic and environmental factors. It is characterized by rapid cell division, migration, and differentiation, as well as programmed cell death (apoptosis) and tissue remodeling. Abnormalities in embryonic development can lead to birth defects or other developmental disorders.

It's important to note that the term "embryo" is used to describe the developing organism from fertilization until the end of the 8th week of pregnancy in humans, after which it is called a fetus.

Integrin α6 (also known as CD49f) is a type of integrin, which is a heterodimeric transmembrane receptor that mediates cell-cell and cell-extracellular matrix (ECM) interactions. Integrins play crucial roles in various biological processes such as cell adhesion, migration, proliferation, differentiation, and survival.

Integrin α6 is a 130 kDa glycoprotein that pairs with integrin β1, β4 or β5 to form three distinct heterodimeric complexes: α6β1, α6β4, and α6β5. Among these, the α6β4 integrin is the most extensively studied. It specifically binds to laminins in the basement membrane and plays essential roles in maintaining epithelial tissue architecture and function.

The α6β4 integrin has a unique structure with an extended cytoplasmic domain of β4 that can interact with intracellular signaling molecules, cytoskeletal proteins, and other adhesion receptors. This interaction allows the formation of stable adhesion complexes called hemidesmosomes, which anchor epithelial cells to the basement membrane and provide mechanical stability to tissues.

Mutations in integrin α6 or its partners can lead to various human diseases, including epidermolysis bullosa, a group of inherited skin disorders characterized by fragile skin and mucous membranes that blister and tear easily.

An animal model in medicine refers to the use of non-human animals in experiments to understand, predict, and test responses and effects of various biological and chemical interactions that may also occur in humans. These models are used when studying complex systems or processes that cannot be easily replicated or studied in human subjects, such as genetic manipulation or exposure to harmful substances. The choice of animal model depends on the specific research question being asked and the similarities between the animal's and human's biological and physiological responses. Examples of commonly used animal models include mice, rats, rabbits, guinea pigs, and non-human primates.

Combined modality therapy (CMT) is a medical treatment approach that utilizes more than one method or type of therapy simultaneously or in close succession, with the goal of enhancing the overall effectiveness of the treatment. In the context of cancer care, CMT often refers to the combination of two or more primary treatment modalities, such as surgery, radiation therapy, and systemic therapies (chemotherapy, immunotherapy, targeted therapy, etc.).

The rationale behind using combined modality therapy is that each treatment method can target cancer cells in different ways, potentially increasing the likelihood of eliminating all cancer cells and reducing the risk of recurrence. The specific combination and sequence of treatments will depend on various factors, including the type and stage of cancer, patient's overall health, and individual preferences.

For example, a common CMT approach for locally advanced rectal cancer may involve preoperative (neoadjuvant) chemoradiation therapy, followed by surgery to remove the tumor, and then postoperative (adjuvant) chemotherapy. This combined approach allows for the reduction of the tumor size before surgery, increases the likelihood of complete tumor removal, and targets any remaining microscopic cancer cells with systemic chemotherapy.

It is essential to consult with a multidisciplinary team of healthcare professionals to determine the most appropriate CMT plan for each individual patient, considering both the potential benefits and risks associated with each treatment method.

Adipose tissue, also known as fatty tissue, is a type of connective tissue that is composed mainly of adipocytes (fat cells). It is found throughout the body, but is particularly abundant in the abdominal cavity, beneath the skin, and around organs such as the heart and kidneys.

Adipose tissue serves several important functions in the body. One of its primary roles is to store energy in the form of fat, which can be mobilized and used as an energy source during periods of fasting or exercise. Adipose tissue also provides insulation and cushioning for the body, and produces hormones that help regulate metabolism, appetite, and reproductive function.

There are two main types of adipose tissue: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is the more common form and is responsible for storing energy as fat. BAT, on the other hand, contains a higher number of mitochondria and is involved in heat production and energy expenditure.

Excessive accumulation of adipose tissue can lead to obesity, which is associated with an increased risk of various health problems such as diabetes, heart disease, and certain types of cancer.

A fetus is the developing offspring in a mammal, from the end of the embryonic period (approximately 8 weeks after fertilization in humans) until birth. In humans, the fetal stage of development starts from the eleventh week of pregnancy and continues until childbirth, which is termed as full-term pregnancy at around 37 to 40 weeks of gestation. During this time, the organ systems become fully developed and the body grows in size. The fetus is surrounded by the amniotic fluid within the amniotic sac and is connected to the placenta via the umbilical cord, through which it receives nutrients and oxygen from the mother. Regular prenatal care is essential during this period to monitor the growth and development of the fetus and ensure a healthy pregnancy and delivery.

Cell adhesion refers to the binding of cells to extracellular matrices or to other cells, a process that is fundamental to the development, function, and maintenance of multicellular organisms. Cell adhesion is mediated by various cell surface receptors, such as integrins, cadherins, and immunoglobulin-like cell adhesion molecules (Ig-CAMs), which interact with specific ligands in the extracellular environment. These interactions lead to the formation of specialized junctions, such as tight junctions, adherens junctions, and desmosomes, that help to maintain tissue architecture and regulate various cellular processes, including proliferation, differentiation, migration, and survival. Disruptions in cell adhesion can contribute to a variety of diseases, including cancer, inflammation, and degenerative disorders.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

RNA interference (RNAi) is a biological process in which RNA molecules inhibit the expression of specific genes. This process is mediated by small RNA molecules, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), that bind to complementary sequences on messenger RNA (mRNA) molecules, leading to their degradation or translation inhibition.

RNAi plays a crucial role in regulating gene expression and defending against foreign genetic elements, such as viruses and transposons. It has also emerged as an important tool for studying gene function and developing therapeutic strategies for various diseases, including cancer and viral infections.

"Nude mice" is a term used in the field of laboratory research to describe a strain of mice that have been genetically engineered to lack a functional immune system. Specifically, nude mice lack a thymus gland and have a mutation in the FOXN1 gene, which results in a failure to develop a mature T-cell population. This means that they are unable to mount an effective immune response against foreign substances or organisms.

The name "nude" refers to the fact that these mice also have a lack of functional hair follicles, resulting in a hairless or partially hairless phenotype. This feature is actually a secondary consequence of the same genetic mutation that causes their immune deficiency.

Nude mice are commonly used in research because their weakened immune system makes them an ideal host for transplanted tumors, tissues, and cells from other species, including humans. This allows researchers to study the behavior of these foreign substances in a living organism without the complication of an immune response. However, it's important to note that because nude mice lack a functional immune system, they must be kept in sterile conditions and are more susceptible to infection than normal mice.

I'm assuming you are asking for information about "Ly" antigens in the context of human immune system and immunology.

Ly (Lymphocyte) antigens are a group of cell surface markers found on human leukocytes, including T cells, NK cells, and some B cells. These antigens were originally identified through serological analysis and were historically used to distinguish different subsets of lymphocytes based on their surface phenotype.

The "Ly" nomenclature has been largely replaced by the CD (Cluster of Differentiation) system, which is a more standardized and internationally recognized classification system for cell surface markers. However, some Ly antigens are still commonly referred to by their historical names, such as:

* Ly-1 or CD5: A marker found on mature T cells, including both CD4+ and CD8+ subsets.
* Ly-2 or CD8: A marker found on cytotoxic T cells, which are a subset of CD8+ T cells that can directly kill infected or damaged cells.
* Ly-3 or CD56: A marker found on natural killer (NK) cells, which are a type of immune cell that can recognize and destroy virus-infected or cancerous cells without the need for prior activation.

It's worth noting that while these antigens were originally identified through serological analysis, they are now more commonly detected using flow cytometry, which allows for the simultaneous measurement of multiple surface markers on individual cells. This has greatly expanded our ability to identify and characterize different subsets of immune cells and has led to a better understanding of their roles in health and disease.

Blood cells are the formed elements in the blood, including red blood cells (erythrocytes), white blood cells (leukocytes), and platelets (thrombocytes). These cells are produced in the bone marrow and play crucial roles in the body's functions. Red blood cells are responsible for carrying oxygen to tissues and carbon dioxide away from them, while white blood cells are part of the immune system and help defend against infection and disease. Platelets are cell fragments that are essential for normal blood clotting.

Keratin-15 is a type I keratin protein that is expressed in the basal cells of stratified epithelia, including the hair follicle and the epidermis. It plays a role in maintaining the integrity and stability of these tissues, particularly during periods of stress or injury. Keratin-15 has also been identified as a marker for stem cells in the hair follicle bulge region, which is responsible for hair regeneration. In addition, keratin-15 expression has been linked to various skin disorders, such as psoriasis and certain types of cancer, including squamous cell carcinoma.

Intercellular signaling peptides and proteins are molecules that mediate communication and interaction between different cells in living organisms. They play crucial roles in various biological processes, including cell growth, differentiation, migration, and apoptosis (programmed cell death). These signals can be released into the extracellular space, where they bind to specific receptors on the target cell's surface, triggering intracellular signaling cascades that ultimately lead to a response.

Peptides are short chains of amino acids, while proteins are larger molecules made up of one or more polypeptide chains. Both can function as intercellular signaling molecules by acting as ligands for cell surface receptors or by being cleaved from larger precursor proteins and released into the extracellular space. Examples of intercellular signaling peptides and proteins include growth factors, cytokines, chemokines, hormones, neurotransmitters, and their respective receptors.

These molecules contribute to maintaining homeostasis within an organism by coordinating cellular activities across tissues and organs. Dysregulation of intercellular signaling pathways has been implicated in various diseases, such as cancer, autoimmune disorders, and neurodegenerative conditions. Therefore, understanding the mechanisms underlying intercellular signaling is essential for developing targeted therapies to treat these disorders.

Wound healing is a complex and dynamic process that occurs after tissue injury, aiming to restore the integrity and functionality of the damaged tissue. It involves a series of overlapping phases: hemostasis, inflammation, proliferation, and remodeling.

1. Hemostasis: This initial phase begins immediately after injury and involves the activation of the coagulation cascade to form a clot, which stabilizes the wound and prevents excessive blood loss.
2. Inflammation: Activated inflammatory cells, such as neutrophils and monocytes/macrophages, infiltrate the wound site to eliminate pathogens, remove debris, and release growth factors that promote healing. This phase typically lasts for 2-5 days post-injury.
3. Proliferation: In this phase, various cell types, including fibroblasts, endothelial cells, and keratinocytes, proliferate and migrate to the wound site to synthesize extracellular matrix (ECM) components, form new blood vessels (angiogenesis), and re-epithelialize the wounded area. This phase can last up to several weeks depending on the size and severity of the wound.
4. Remodeling: The final phase of wound healing involves the maturation and realignment of collagen fibers, leading to the restoration of tensile strength in the healed tissue. This process can continue for months to years after injury, although the tissue may never fully regain its original structure and function.

It is important to note that wound healing can be compromised by several factors, including age, nutrition, comorbidities (e.g., diabetes, vascular disease), and infection, which can result in delayed healing or non-healing chronic wounds.

Polycomb Repressive Complex 1 (PRC1) is a protein complex that plays a crucial role in the epigenetic regulation of gene expression, primarily through the process of histone modification. It is associated with the maintenance of gene repression during development and differentiation. PRC1 facilitates the monoubiquitination of histone H2A at lysine 119 (H2AK119ub1), leading to chromatin compaction and transcriptional silencing. This complex is composed of several core subunits, including BMI1, RING1A/B, and one of the six PCGF proteins, which define different PRC1 variants. Dysregulation of PRC1 has been implicated in various human diseases, such as cancers and developmental disorders.

A blastocyst is a stage in the early development of a fertilized egg, or embryo, in mammals. It occurs about 5-6 days after fertilization and consists of an outer layer of cells called trophoblasts, which will eventually form the placenta, and an inner cell mass, which will give rise to the fetus. The blastocyst is characterized by a fluid-filled cavity called the blastocoel. This stage is critical for the implantation of the embryo into the uterine lining.

Physiologic neovascularization is the natural and controlled formation of new blood vessels in the body, which occurs as a part of normal growth and development, as well as in response to tissue repair and wound healing. This process involves the activation of endothelial cells, which line the interior surface of blood vessels, and their migration, proliferation, and tube formation to create new capillaries. Physiologic neovascularization is tightly regulated by a balance of pro-angiogenic and anti-angiogenic factors, ensuring that it occurs only when and where it is needed. It plays crucial roles in various physiological processes, such as embryonic development, tissue regeneration, and wound healing.

Gene knockdown techniques are methods used to reduce the expression or function of specific genes in order to study their role in biological processes. These techniques typically involve the use of small RNA molecules, such as siRNAs (small interfering RNAs) or shRNAs (short hairpin RNAs), which bind to and promote the degradation of complementary mRNA transcripts. This results in a decrease in the production of the protein encoded by the targeted gene.

Gene knockdown techniques are often used as an alternative to traditional gene knockout methods, which involve completely removing or disrupting the function of a gene. Knockdown techniques allow for more subtle and reversible manipulation of gene expression, making them useful for studying genes that are essential for cell survival or have redundant functions.

These techniques are widely used in molecular biology research to investigate gene function, genetic interactions, and disease mechanisms. However, it is important to note that gene knockdown can have off-target effects and may not completely eliminate the expression of the targeted gene, so results should be interpreted with caution.

CD15 is a type of antigen that is found on the surface of certain types of white blood cells called neutrophils and monocytes. It is also expressed on some types of cancer cells, including myeloid leukemia cells and some lymphomas. CD15 antigens are part of a group of molecules known as carbohydrate antigens because they contain sugar-like substances called carbohydrates.

CD15 antigens play a role in the immune system's response to infection and disease. They can be recognized by certain types of immune cells, such as natural killer (NK) cells and cytotoxic T cells, which can then target and destroy cells that express CD15 antigens. In cancer, the presence of CD15 antigens on the surface of cancer cells can make them more visible to the immune system, potentially triggering an immune response against the cancer.

CD15 antigens are also used as a marker in laboratory tests to help identify and classify different types of white blood cells and cancer cells. For example, CD15 staining is often used in the diagnosis of acute myeloid leukemia (AML) to distinguish it from other types of leukemia.

Acute myeloid leukemia (AML) is a type of cancer that originates in the bone marrow, the soft inner part of certain bones where new blood cells are made. In AML, the immature cells, called blasts, in the bone marrow fail to mature into normal blood cells. Instead, these blasts accumulate and interfere with the production of normal blood cells, leading to a shortage of red blood cells (anemia), platelets (thrombocytopenia), and normal white blood cells (leukopenia).

AML is called "acute" because it can progress quickly and become severe within days or weeks without treatment. It is a type of myeloid leukemia, which means that it affects the myeloid cells in the bone marrow. Myeloid cells are a type of white blood cell that includes monocytes and granulocytes, which help fight infection and defend the body against foreign invaders.

In AML, the blasts can build up in the bone marrow and spread to other parts of the body, including the blood, lymph nodes, liver, spleen, and brain. This can cause a variety of symptoms, such as fatigue, fever, frequent infections, easy bruising or bleeding, and weight loss.

AML is typically treated with a combination of chemotherapy, radiation therapy, and/or stem cell transplantation. The specific treatment plan will depend on several factors, including the patient's age, overall health, and the type and stage of the leukemia.

Cell communication, also known as cell signaling, is the process by which cells exchange and transmit signals between each other and their environment. This complex system allows cells to coordinate their functions and maintain tissue homeostasis. Cell communication can occur through various mechanisms including:

1. Autocrine signaling: When a cell releases a signal that binds to receptors on the same cell, leading to changes in its behavior or function.
2. Paracrine signaling: When a cell releases a signal that binds to receptors on nearby cells, influencing their behavior or function.
3. Endocrine signaling: When a cell releases a hormone into the bloodstream, which then travels to distant target cells and binds to specific receptors, triggering a response.
4. Synaptic signaling: In neurons, communication occurs through the release of neurotransmitters that cross the synapse and bind to receptors on the postsynaptic cell, transmitting electrical or chemical signals.
5. Contact-dependent signaling: When cells physically interact with each other, allowing for the direct exchange of signals and information.

Cell communication is essential for various physiological processes such as growth, development, differentiation, metabolism, immune response, and tissue repair. Dysregulation in cell communication can contribute to diseases, including cancer, diabetes, and neurological disorders.

Chronic myelogenous leukemia (CML), BCR-ABL positive is a specific subtype of leukemia that originates in the bone marrow and involves the excessive production of mature granulocytes, a type of white blood cell. It is characterized by the presence of the Philadelphia chromosome, which is formed by a genetic translocation between chromosomes 9 and 22, resulting in the formation of the BCR-ABL fusion gene. This gene encodes for an abnormal protein with increased tyrosine kinase activity, leading to uncontrolled cell growth and division. The presence of this genetic abnormality is used to confirm the diagnosis and guide treatment decisions.

Karyotyping is a medical laboratory test used to study the chromosomes in a cell. It involves obtaining a sample of cells from a patient, usually from blood or bone marrow, and then staining the chromosomes so they can be easily seen under a microscope. The chromosomes are then arranged in pairs based on their size, shape, and other features to create a karyotype. This visual representation allows for the identification and analysis of any chromosomal abnormalities, such as extra or missing chromosomes, or structural changes like translocations or inversions. These abnormalities can provide important information about genetic disorders, diseases, and developmental problems.

Repressor proteins are a type of regulatory protein in molecular biology that suppress the transcription of specific genes into messenger RNA (mRNA) by binding to DNA. They function as part of gene regulation processes, often working in conjunction with an operator region and a promoter region within the DNA molecule. Repressor proteins can be activated or deactivated by various signals, allowing for precise control over gene expression in response to changing cellular conditions.

There are two main types of repressor proteins:

1. DNA-binding repressors: These directly bind to specific DNA sequences (operator regions) near the target gene and prevent RNA polymerase from transcribing the gene into mRNA.
2. Allosteric repressors: These bind to effector molecules, which then cause a conformational change in the repressor protein, enabling it to bind to DNA and inhibit transcription.

Repressor proteins play crucial roles in various biological processes, such as development, metabolism, and stress response, by controlling gene expression patterns in cells.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Chimerism is a medical term that refers to the presence of genetically distinct cell populations within an individual. This phenomenon can occur naturally or as a result of a medical procedure such as a stem cell transplant. In natural chimerism, an individual may have cells with different genetic compositions due to events that occurred during embryonic development, such as the fusion of two fertilized eggs (also known as "twinning") or the exchange of cells between twins in utero.

In the context of a stem cell transplant, chimerism can occur when a donor's stem cells engraft and begin to produce new blood cells in the recipient's body. This can result in the presence of both the recipient's own cells and the donor's cells in the recipient's body. The degree of chimerism can vary, with some individuals showing complete chimerism (where all blood cells are derived from the donor) or mixed chimerism (where both the recipient's and donor's cells coexist).

Monitoring chimerism levels is important in stem cell transplantation to assess the success of the procedure and to detect any potential signs of graft rejection or relapse of the original disease.

Alkaline phosphatase (ALP) is an enzyme found in various body tissues, including the liver, bile ducts, digestive system, bones, and kidneys. It plays a role in breaking down proteins and minerals, such as phosphate, in the body.

The medical definition of alkaline phosphatase refers to its function as a hydrolase enzyme that removes phosphate groups from molecules at an alkaline pH level. In clinical settings, ALP is often measured through blood tests as a biomarker for various health conditions.

Elevated levels of ALP in the blood may indicate liver or bone diseases, such as hepatitis, cirrhosis, bone fractures, or cancer. Therefore, physicians may order an alkaline phosphatase test to help diagnose and monitor these conditions. However, it is essential to interpret ALP results in conjunction with other diagnostic tests and clinical findings for accurate diagnosis and treatment.

Biocompatible materials are non-toxic and non-reacting substances that can be used in medical devices, tissue engineering, and drug delivery systems without causing harm or adverse reactions to living tissues or organs. These materials are designed to mimic the properties of natural tissues and are able to integrate with biological systems without being rejected by the body's immune system.

Biocompatible materials can be made from a variety of substances, including metals, ceramics, polymers, and composites. The specific properties of these materials, such as their mechanical strength, flexibility, and biodegradability, are carefully selected to meet the requirements of their intended medical application.

Examples of biocompatible materials include titanium used in dental implants and joint replacements, polyethylene used in artificial hips, and hydrogels used in contact lenses and drug delivery systems. The use of biocompatible materials has revolutionized modern medicine by enabling the development of advanced medical technologies that can improve patient outcomes and quality of life.

Aldehyde dehydrogenase (ALDH) is a class of enzymes that play a crucial role in the metabolism of alcohol and other aldehydes in the body. These enzymes catalyze the oxidation of aldehydes to carboxylic acids, using nicotinamide adenine dinucleotide (NAD+) as a cofactor.

There are several isoforms of ALDH found in different tissues throughout the body, with varying substrate specificities and kinetic properties. The most well-known function of ALDH is its role in alcohol metabolism, where it converts the toxic aldehyde intermediate acetaldehyde to acetate, which can then be further metabolized or excreted.

Deficiencies in ALDH activity have been linked to a number of clinical conditions, including alcohol flush reaction, alcohol-induced liver disease, and certain types of cancer. Additionally, increased ALDH activity has been associated with chemotherapy resistance in some cancer cells.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Melphalan is an antineoplastic agent, specifically an alkylating agent. It is used in the treatment of multiple myeloma and other types of cancer. The medical definition of Melphalan is:

A nitrogen mustard derivative that is used as an alkylating agent in the treatment of cancer, particularly multiple myeloma and ovarian cancer. Melphalan works by forming covalent bonds with DNA, resulting in cross-linking of the double helix and inhibition of DNA replication and transcription. This ultimately leads to cell cycle arrest and apoptosis (programmed cell death) in rapidly dividing cells, such as cancer cells.

Melphalan is administered orally or intravenously, and its use is often accompanied by other anticancer therapies, such as radiation therapy or chemotherapy. Common side effects of Melphalan include nausea, vomiting, diarrhea, and bone marrow suppression, which can lead to anemia, neutropenia, and thrombocytopenia. Other potential side effects include hair loss, mucositis, and secondary malignancies.

It is important to note that Melphalan should be used under the close supervision of a healthcare professional, as it can cause serious adverse reactions if not administered correctly.

The corneal epithelium is the outermost layer of the cornea, which is the clear, dome-shaped surface at the front of the eye. It is a stratified squamous epithelium, consisting of several layers of flat, scale-like cells that are tightly packed together. The corneal epithelium serves as a barrier to protect the eye from microorganisms, dust, and other foreign particles. It also provides a smooth surface for the refraction of light, contributes to the maintenance of corneal transparency, and plays a role in the eye's sensitivity to touch and pain. The corneal epithelium is constantly being renewed through the process of cell division and shedding, with new cells produced by stem cells located at the limbus, the border between the cornea and the conjunctiva.

The lateral ventricles are a pair of fluid-filled cavities located within the brain. They are part of the ventricular system, which is a series of interconnected spaces filled with cerebrospinal fluid (CSF). The lateral ventricles are situated in the left and right hemispheres of the brain and are among the largest of the ventricles.

Each lateral ventricle has a complex structure and can be divided into several parts:

1. Anterior horn: This is the front part of the lateral ventricle, located in the frontal lobe of the brain.
2. Body: The central part of the lateral ventricle, which is continuous with the anterior horn and posterior horn.
3. Posterior horn: The back part of the lateral ventricle, located in the occipital lobe of the brain.
4. Temporal horn: An extension that projects into the temporal lobe of the brain.

The lateral ventricles are lined with ependymal cells, which produce cerebrospinal fluid. CSF circulates through the ventricular system, providing buoyancy and protection to the brain, and is eventually absorbed into the bloodstream. Abnormalities in the size or shape of the lateral ventricles can be associated with various neurological conditions, such as hydrocephalus, brain tumors, or neurodegenerative diseases.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

DNA methylation is a process by which methyl groups (-CH3) are added to the cytosine ring of DNA molecules, often at the 5' position of cytospine phosphate-deoxyguanosine (CpG) dinucleotides. This modification is catalyzed by DNA methyltransferase enzymes and results in the formation of 5-methylcytosine.

DNA methylation plays a crucial role in the regulation of gene expression, genomic imprinting, X chromosome inactivation, and suppression of transposable elements. Abnormal DNA methylation patterns have been associated with various diseases, including cancer, where tumor suppressor genes are often silenced by promoter methylation.

In summary, DNA methylation is a fundamental epigenetic modification that influences gene expression and genome stability, and its dysregulation has important implications for human health and disease.

A "Blood Cell Count" is a medical laboratory test that measures the number of red blood cells (RBCs), white blood cells (WBCs), and platelets in a sample of blood. This test is often used as a part of a routine check-up or to help diagnose various medical conditions, such as anemia, infection, inflammation, and many others.

The RBC count measures the number of oxygen-carrying cells in the blood, while the WBC count measures the number of immune cells that help fight infections. The platelet count measures the number of cells involved in clotting. Abnormal results in any of these counts may indicate an underlying medical condition and further testing may be required for diagnosis and treatment.

Gene transfer techniques, also known as gene therapy, refer to medical procedures where genetic material is introduced into an individual's cells or tissues to treat or prevent diseases. This can be achieved through various methods:

1. **Viral Vectors**: The most common method uses modified viruses, such as adenoviruses, retroviruses, or lentiviruses, to carry the therapeutic gene into the target cells. The virus infects the cell and inserts the new gene into the cell's DNA.

2. **Non-Viral Vectors**: These include methods like electroporation (using electric fields to create pores in the cell membrane), gene guns (shooting gold particles coated with DNA into cells), or liposomes (tiny fatty bubbles that can enclose DNA).

3. **Direct Injection**: In some cases, the therapeutic gene can be directly injected into a specific tissue or organ.

The goal of gene transfer techniques is to supplement or replace a faulty gene with a healthy one, thereby correcting the genetic disorder. However, these techniques are still largely experimental and have their own set of challenges, including potential immune responses, issues with accurate targeting, and risks of mutations or cancer development.

C-X-C chemokine receptor type 4 (CXCR4) is a type of protein found on the surface of some cells, including white blood cells, and is a type of G protein-coupled receptor (GPCR). CXCR4 binds specifically to the chemokine ligand CXCL12 (also known as stromal cell-derived factor 1, or SDF-1), which plays a crucial role in the trafficking and homing of immune cells, particularly hematopoietic stem cells and lymphocytes. The binding of CXCL12 to CXCR4 triggers various intracellular signaling pathways that regulate cell migration, proliferation, survival, and differentiation.

In addition to its role in the immune system, CXCR4 has been implicated in several physiological and pathological processes, such as embryonic development, neurogenesis, angiogenesis, cancer metastasis, and HIV infection. In cancer, the overexpression of CXCR4 or increased levels of its ligand CXCL12 have been associated with poor prognosis, tumor growth, and metastasis in various types of malignancies, including breast, lung, prostate, colon, and ovarian cancers. In HIV infection, the CXCR4 coreceptor, together with CD4, facilitates viral entry into host cells, particularly during the later stages of the disease when the virus shifts its preference from CCR5 to CXCR4 as a coreceptor.

In summary, CXCR4 is a cell-surface receptor that binds specifically to the chemokine ligand CXCL12 and plays essential roles in immune cell trafficking, hematopoiesis, cancer metastasis, and HIV infection.

Promoter regions in genetics refer to specific DNA sequences located near the transcription start site of a gene. They serve as binding sites for RNA polymerase and various transcription factors that regulate the initiation of gene transcription. These regulatory elements help control the rate of transcription and, therefore, the level of gene expression. Promoter regions can be composed of different types of sequences, such as the TATA box and CAAT box, and their organization and composition can vary between different genes and species.

Nuclear proteins are a category of proteins that are primarily found in the nucleus of a eukaryotic cell. They play crucial roles in various nuclear functions, such as DNA replication, transcription, repair, and RNA processing. This group includes structural proteins like lamins, which form the nuclear lamina, and regulatory proteins, such as histones and transcription factors, that are involved in gene expression. Nuclear localization signals (NLS) often help target these proteins to the nucleus by interacting with importin proteins during active transport across the nuclear membrane.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

A "reporter gene" is a type of gene that is linked to a gene of interest in order to make the expression or activity of that gene detectable. The reporter gene encodes for a protein that can be easily measured and serves as an indicator of the presence and activity of the gene of interest. Commonly used reporter genes include those that encode for fluorescent proteins, enzymes that catalyze colorimetric reactions, or proteins that bind to specific molecules.

In the context of genetics and genomics research, a reporter gene is often used in studies involving gene expression, regulation, and function. By introducing the reporter gene into an organism or cell, researchers can monitor the activity of the gene of interest in real-time or after various experimental treatments. The information obtained from these studies can help elucidate the role of specific genes in biological processes and diseases, providing valuable insights for basic research and therapeutic development.

Retinal dehydrogenase, also known as Aldehyde Dehydrogenase 2 (ALDH2), is an enzyme involved in the metabolism of alcohol and other aldehydes in the body. In the eye, retinal dehydrogenase plays a specific role in the conversion of retinaldehyde to retinoic acid, which is an important molecule for the maintenance and regulation of the visual cycle and overall eye health.

Retinoic acid is involved in various physiological processes such as cell differentiation, growth, and survival, and has been shown to have a protective effect against oxidative stress in the retina. Therefore, retinal dehydrogenase deficiency or dysfunction may lead to impaired visual function and increased susceptibility to eye diseases such as age-related macular degeneration and diabetic retinopathy.

'Drosophila proteins' refer to the proteins that are expressed in the fruit fly, Drosophila melanogaster. This organism is a widely used model system in genetics, developmental biology, and molecular biology research. The study of Drosophila proteins has contributed significantly to our understanding of various biological processes, including gene regulation, cell signaling, development, and aging.

Some examples of well-studied Drosophila proteins include:

1. HSP70 (Heat Shock Protein 70): A chaperone protein involved in protein folding and protection from stress conditions.
2. TUBULIN: A structural protein that forms microtubules, important for cell division and intracellular transport.
3. ACTIN: A cytoskeletal protein involved in muscle contraction, cell motility, and maintenance of cell shape.
4. BETA-GALACTOSIDASE (LACZ): A reporter protein often used to monitor gene expression patterns in transgenic flies.
5. ENDOGLIN: A protein involved in the development of blood vessels during embryogenesis.
6. P53: A tumor suppressor protein that plays a crucial role in preventing cancer by regulating cell growth and division.
7. JUN-KINASE (JNK): A signaling protein involved in stress response, apoptosis, and developmental processes.
8. DECAPENTAPLEGIC (DPP): A member of the TGF-β (Transforming Growth Factor Beta) superfamily, playing essential roles in embryonic development and tissue homeostasis.

These proteins are often studied using various techniques such as biochemistry, genetics, molecular biology, and structural biology to understand their functions, interactions, and regulation within the cell.

Bone regeneration is the biological process of new bone formation that occurs after an injury or removal of a portion of bone. This complex process involves several stages, including inflammation, migration and proliferation of cells, matrix deposition, and mineralization, leading to the restoration of the bone's structure and function.

The main cells involved in bone regeneration are osteoblasts, which produce new bone matrix, and osteoclasts, which resorb damaged or old bone tissue. The process is tightly regulated by various growth factors, hormones, and signaling molecules that promote the recruitment, differentiation, and activity of these cells.

Bone regeneration can occur naturally in response to injury or surgical intervention, such as fracture repair or dental implant placement. However, in some cases, bone regeneration may be impaired due to factors such as age, disease, or trauma, leading to delayed healing or non-union of the bone. In these situations, various strategies and techniques, including the use of bone grafts, scaffolds, and growth factors, can be employed to enhance and support the bone regeneration process.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Adipocytes are specialized cells that comprise adipose tissue, also known as fat tissue. They are responsible for storing energy in the form of lipids, particularly triglycerides, and releasing energy when needed through a process called lipolysis. There are two main types of adipocytes: white adipocytes and brown adipocytes. White adipocytes primarily store energy, while brown adipocytes dissipate energy as heat through the action of uncoupling protein 1 (UCP1).

In addition to their role in energy metabolism, adipocytes also secrete various hormones and signaling molecules that contribute to whole-body homeostasis. These include leptin, adiponectin, resistin, and inflammatory cytokines. Dysregulation of adipocyte function has been implicated in the development of obesity, insulin resistance, type 2 diabetes, and cardiovascular disease.

Inbred strains of mice are defined as lines of mice that have been brother-sister mated for at least 20 consecutive generations. This results in a high degree of homozygosity, where the mice of an inbred strain are genetically identical to one another, with the exception of spontaneous mutations.

Inbred strains of mice are widely used in biomedical research due to their genetic uniformity and stability, which makes them useful for studying the genetic basis of various traits, diseases, and biological processes. They also provide a consistent and reproducible experimental system, as compared to outbred or genetically heterogeneous populations.

Some commonly used inbred strains of mice include C57BL/6J, BALB/cByJ, DBA/2J, and 129SvEv. Each strain has its own unique genetic background and phenotypic characteristics, which can influence the results of experiments. Therefore, it is important to choose the appropriate inbred strain for a given research question.

Fibroblast Growth Factor 2 (FGF-2), also known as basic fibroblast growth factor, is a protein involved in various biological processes such as cell growth, proliferation, and differentiation. It plays a crucial role in wound healing, embryonic development, and angiogenesis (the formation of new blood vessels). FGF-2 is produced and secreted by various cells, including fibroblasts, and exerts its effects by binding to specific receptors on the cell surface, leading to activation of intracellular signaling pathways. It has been implicated in several diseases, including cancer, where it can contribute to tumor growth and progression.

Cyclophosphamide is an alkylating agent, which is a type of chemotherapy medication. It works by interfering with the DNA of cancer cells, preventing them from dividing and growing. This helps to stop the spread of cancer in the body. Cyclophosphamide is used to treat various types of cancer, including lymphoma, leukemia, multiple myeloma, and breast cancer. It can be given orally as a tablet or intravenously as an injection.

Cyclophosphamide can also have immunosuppressive effects, which means it can suppress the activity of the immune system. This makes it useful in treating certain autoimmune diseases, such as rheumatoid arthritis and lupus. However, this immunosuppression can also increase the risk of infections and other side effects.

Like all chemotherapy medications, cyclophosphamide can cause a range of side effects, including nausea, vomiting, hair loss, fatigue, and increased susceptibility to infections. It is important for patients receiving cyclophosphamide to be closely monitored by their healthcare team to manage these side effects and ensure the medication is working effectively.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Neuroglia, also known as glial cells or simply glia, are non-neuronal cells that provide support and protection for neurons in the nervous system. They maintain homeostasis, form myelin sheaths around nerve fibers, and provide structural support. They also play a role in the immune response of the central nervous system. Some types of neuroglia include astrocytes, oligodendrocytes, microglia, and ependymal cells.

Notch 1 is a type of receptor that belongs to the family of single-transmembrane receptors known as Notch receptors. It is a heterodimeric transmembrane protein composed of an extracellular domain and an intracellular domain, which play crucial roles in cell fate determination, proliferation, differentiation, and apoptosis during embryonic development and adult tissue homeostasis.

The Notch 1 receptor is activated through a conserved mechanism of ligand-receptor interaction, where the extracellular domain of the receptor interacts with the membrane-bound ligands Jagged 1 or 2 and Delta-like 1, 3, or 4 expressed on adjacent cells. This interaction triggers a series of proteolytic cleavages that release the intracellular domain of Notch 1 (NICD) from the membrane. NICD then translocates to the nucleus and interacts with the DNA-binding protein CSL (CBF1/RBPJκ in mammals) and coactivators Mastermind-like proteins to regulate the expression of target genes, including members of the HES and HEY families.

Mutations in NOTCH1 have been associated with various human diseases, such as T-cell acute lymphoblastic leukemia (T-ALL), a type of cancer that affects the immune system's T cells, and vascular diseases, including arterial calcification, atherosclerosis, and aneurysms.

Bone Morphogenetic Protein 2 (BMP-2) is a growth factor that belongs to the transforming growth factor-beta (TGF-β) superfamily. It plays a crucial role in bone and cartilage formation, as well as in the regulation of wound healing and embryonic development. BMP-2 stimulates the differentiation of mesenchymal stem cells into osteoblasts, which are cells responsible for bone formation.

BMP-2 has been approved by the US Food and Drug Administration (FDA) as a medical device to promote bone growth in certain spinal fusion surgeries and in the treatment of open fractures that have not healed properly. It is usually administered in the form of a collagen sponge soaked with recombinant human BMP-2 protein, which is a laboratory-produced version of the natural protein.

While BMP-2 has shown promising results in some clinical applications, its use is not without risks and controversies. Some studies have reported adverse effects such as inflammation, ectopic bone formation, and increased rates of cancer, which have raised concerns about its safety and efficacy. Therefore, it is essential to weigh the benefits and risks of BMP-2 therapy on a case-by-case basis and under the guidance of a qualified healthcare professional.

A "mutant strain of mice" in a medical context refers to genetically engineered mice that have specific genetic mutations introduced into their DNA. These mutations can be designed to mimic certain human diseases or conditions, allowing researchers to study the underlying biological mechanisms and test potential therapies in a controlled laboratory setting.

Mutant strains of mice are created through various techniques, including embryonic stem cell manipulation, gene editing technologies such as CRISPR-Cas9, and radiation-induced mutagenesis. These methods allow scientists to introduce specific genetic changes into the mouse genome, resulting in mice that exhibit altered physiological or behavioral traits.

These strains of mice are widely used in biomedical research because their short lifespan, small size, and high reproductive rate make them an ideal model organism for studying human diseases. Additionally, the mouse genome has been well-characterized, and many genetic tools and resources are available to researchers working with these animals.

Examples of mutant strains of mice include those that carry mutations in genes associated with cancer, neurodegenerative disorders, metabolic diseases, and immunological conditions. These mice provide valuable insights into the pathophysiology of human diseases and help advance our understanding of potential therapeutic interventions.

CD38 is a type of antigen that is found on the surface of many different types of cells in the human body, including immune cells such as T-cells and B-cells. Antigens are substances (usually proteins) on the surface of cells that can be recognized by the immune system, triggering an immune response.

CD38 plays a role in several different cellular processes, including the regulation of calcium levels within cells, the production of energy in the form of ATP, and the modulation of immune responses. It is also involved in the activation and proliferation of T-cells and B-cells, which are critical components of the adaptive immune system.

CD38 can be targeted by certain types of immunotherapy, such as monoclonal antibodies, to help stimulate an immune response against cancer cells that express this antigen on their surface.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

The ependyma is a type of epithelial tissue that lines the ventricular system of the brain and the central canal of the spinal cord. These cells are specialized glial cells that help to form the blood-brain barrier, regulate the cerebrospinal fluid (CSF) composition, and provide support and protection for the nervous tissue.

Ependymal cells have a cuboidal or columnar shape and possess numerous cilia on their apical surface, which helps to circulate CSF within the ventricles. They also have tight junctions that help to form the blood-brain barrier and prevent the passage of harmful substances from the blood into the CSF.

In addition to their role in maintaining the integrity of the CNS, ependymal cells can also differentiate into other types of cells, such as neurons and glial cells, under certain conditions. This property has made them a topic of interest in regenerative medicine and the study of neurodevelopmental disorders.

Brain neoplasms, also known as brain tumors, are abnormal growths of cells within the brain. These growths can be benign (non-cancerous) or malignant (cancerous). Benign brain tumors typically grow slowly and do not spread to other parts of the body. However, they can still cause serious problems if they press on sensitive areas of the brain. Malignant brain tumors, on the other hand, are cancerous and can grow quickly, invading surrounding brain tissue and spreading to other parts of the brain or spinal cord.

Brain neoplasms can arise from various types of cells within the brain, including glial cells (which provide support and insulation for nerve cells), neurons (nerve cells that transmit signals in the brain), and meninges (the membranes that cover the brain and spinal cord). They can also result from the spread of cancer cells from other parts of the body, known as metastatic brain tumors.

Symptoms of brain neoplasms may vary depending on their size, location, and growth rate. Common symptoms include headaches, seizures, weakness or paralysis in the limbs, difficulty with balance and coordination, changes in speech or vision, confusion, memory loss, and changes in behavior or personality.

Treatment for brain neoplasms depends on several factors, including the type, size, location, and grade of the tumor, as well as the patient's age and overall health. Treatment options may include surgery, radiation therapy, chemotherapy, targeted therapy, or a combination of these approaches. Regular follow-up care is essential to monitor for recurrence and manage any long-term effects of treatment.

Endothelial cells are the type of cells that line the inner surface of blood vessels, lymphatic vessels, and heart chambers. They play a crucial role in maintaining vascular homeostasis by controlling vasomotor tone, coagulation, platelet activation, and inflammation. Endothelial cells also regulate the transport of molecules between the blood and surrounding tissues, and contribute to the maintenance of the structural integrity of the vasculature. They are flat, elongated cells with a unique morphology that allows them to form a continuous, nonthrombogenic lining inside the vessels. Endothelial cells can be isolated from various tissues and cultured in vitro for research purposes.

Hedgehog proteins are a group of signaling molecules that play crucial roles in the development and regulation of various biological processes in animals. They are named after the hedgehog mutant fruit flies, which have spiky bristles due to defects in this pathway. These proteins are involved in cell growth, differentiation, and tissue regeneration. They exert their effects by binding to specific receptors on the surface of target cells, leading to a cascade of intracellular signaling events that ultimately influence gene expression and cell behavior.

There are three main types of Hedgehog proteins in mammals: Sonic hedgehog (Shh), Indian hedgehog (Ihh), and Desert hedgehog (Dhh). These protecules undergo post-translational modifications, including cleavage and lipid modification, which are essential for their activity. Dysregulation of Hedgehog signaling has been implicated in various diseases, including cancer, developmental abnormalities, and degenerative disorders.

Fluorescence microscopy is a type of microscopy that uses fluorescent dyes or proteins to highlight and visualize specific components within a sample. In this technique, the sample is illuminated with high-energy light, typically ultraviolet (UV) or blue light, which excites the fluorescent molecules causing them to emit lower-energy, longer-wavelength light, usually visible light in the form of various colors. This emitted light is then collected by the microscope and detected to produce an image.

Fluorescence microscopy has several advantages over traditional brightfield microscopy, including the ability to visualize specific structures or molecules within a complex sample, increased sensitivity, and the potential for quantitative analysis. It is widely used in various fields of biology and medicine, such as cell biology, neuroscience, and pathology, to study the structure, function, and interactions of cells and proteins.

There are several types of fluorescence microscopy techniques, including widefield fluorescence microscopy, confocal microscopy, two-photon microscopy, and total internal reflection fluorescence (TIRF) microscopy, each with its own strengths and limitations. These techniques can provide valuable insights into the behavior of cells and proteins in health and disease.

'Rats, Nude' is not a standard medical term or condition. The term 'nude' in the context of laboratory animals like rats usually refers to a strain of rats that are hairless due to a genetic mutation. This can make them useful for studies involving skin disorders, wound healing, and other conditions where fur might interfere with observations or procedures. However, 'Rats, Nude' is not a recognized or established term in medical literature or taxonomy.

Small interfering RNA (siRNA) is a type of short, double-stranded RNA molecule that plays a role in the RNA interference (RNAi) pathway. The RNAi pathway is a natural cellular process that regulates gene expression by targeting and destroying specific messenger RNA (mRNA) molecules, thereby preventing the translation of those mRNAs into proteins.

SiRNAs are typically 20-25 base pairs in length and are generated from longer double-stranded RNA precursors called hairpin RNAs or dsRNAs by an enzyme called Dicer. Once generated, siRNAs associate with a protein complex called the RNA-induced silencing complex (RISC), which uses one strand of the siRNA (the guide strand) to recognize and bind to complementary sequences in the target mRNA. The RISC then cleaves the target mRNA, leading to its degradation and the inhibition of protein synthesis.

SiRNAs have emerged as a powerful tool for studying gene function and have shown promise as therapeutic agents for a variety of diseases, including viral infections, cancer, and genetic disorders. However, their use as therapeutics is still in the early stages of development, and there are challenges associated with delivering siRNAs to specific cells and tissues in the body.

Histocompatibility testing, also known as tissue typing, is a medical procedure that determines the compatibility of tissues between two individuals, usually a potential donor and a recipient for organ or bone marrow transplantation. The test identifies specific antigens, called human leukocyte antigens (HLAs), found on the surface of most cells in the body. These antigens help the immune system distinguish between "self" and "non-self" cells.

The goal of histocompatibility testing is to find a donor whose HLA markers closely match those of the recipient, reducing the risk of rejection of the transplanted organ or tissue. The test involves taking blood samples from both the donor and the recipient and analyzing them for the presence of specific HLA antigens using various laboratory techniques such as molecular typing or serological testing.

A high degree of histocompatibility between the donor and recipient is crucial to ensure the success of the transplantation procedure, minimize complications, and improve long-term outcomes.

Antineoplastic agents are a class of drugs used to treat malignant neoplasms or cancer. These agents work by inhibiting the growth and proliferation of cancer cells, either by killing them or preventing their division and replication. Antineoplastic agents can be classified based on their mechanism of action, such as alkylating agents, antimetabolites, topoisomerase inhibitors, mitotic inhibitors, and targeted therapy agents.

Alkylating agents work by adding alkyl groups to DNA, which can cause cross-linking of DNA strands and ultimately lead to cell death. Antimetabolites interfere with the metabolic processes necessary for DNA synthesis and replication, while topoisomerase inhibitors prevent the relaxation of supercoiled DNA during replication. Mitotic inhibitors disrupt the normal functioning of the mitotic spindle, which is essential for cell division. Targeted therapy agents are designed to target specific molecular abnormalities in cancer cells, such as mutated oncogenes or dysregulated signaling pathways.

It's important to note that antineoplastic agents can also affect normal cells and tissues, leading to various side effects such as nausea, vomiting, hair loss, and myelosuppression (suppression of bone marrow function). Therefore, the use of these drugs requires careful monitoring and management of their potential adverse effects.

Mesonephros is defined as the intermediate part of the embryonic excretory system in higher vertebrates, which develops into the permanent kidney in some lower vertebrates. In humans, it represents the transitory kidney that functions during early fetal life and gives rise to the male reproductive structures (i.e., epididymis, vas deferens, and efferent ductules) after its excretory function is taken over by the metanephros or permanent kidney. The mesonephros consists of a number of tubules called mesonephric tubules, which open into the mesonephric (Wolffian) duct, and a network of blood vessels known as the mesonephric capillaries or glomeruli.

Tretinoin is a form of vitamin A that is used in the treatment of acne vulgaris, fine wrinkles, and dark spots caused by aging or sun damage. It works by increasing the turnover of skin cells, helping to unclog pores and promote the growth of new skin cells. Tretinoin is available as a cream, gel, or liquid, and is usually applied to the affected area once a day in the evening. Common side effects include redness, dryness, and peeling of the skin. It is important to avoid sunlight and use sunscreen while using tretinoin, as it can make the skin more sensitive to the sun.

Glioblastoma, also known as Glioblastoma multiforme (GBM), is a highly aggressive and malignant type of brain tumor that arises from the glial cells in the brain. These tumors are characterized by their rapid growth, invasion into surrounding brain tissue, and resistance to treatment.

Glioblastomas are composed of various cell types, including astrocytes and other glial cells, which make them highly heterogeneous and difficult to treat. They typically have a poor prognosis, with a median survival rate of 14-15 months from the time of diagnosis, even with aggressive treatment.

Symptoms of glioblastoma can vary depending on the location and size of the tumor but may include headaches, seizures, nausea, vomiting, memory loss, difficulty speaking or understanding speech, changes in personality or behavior, and weakness or paralysis on one side of the body.

Standard treatment for glioblastoma typically involves surgical resection of the tumor, followed by radiation therapy and chemotherapy with temozolomide. However, despite these treatments, glioblastomas often recur, leading to a poor overall prognosis.

CD45 is a protein that is found on the surface of many types of white blood cells, including T-cells, B-cells, and natural killer (NK) cells. It is also known as leukocyte common antigen because it is present on almost all leukocytes. CD45 is a tyrosine phosphatase that plays a role in regulating the activity of various proteins involved in cell signaling pathways.

As an antigen, CD45 is used as a marker to identify and distinguish different types of white blood cells. It has several isoforms that are generated by alternative splicing of its mRNA, resulting in different molecular weights. The size of the CD45 isoform can be used to distinguish between different subsets of T-cells and B-cells.

CD45 is an important molecule in the immune system, and abnormalities in its expression or function have been implicated in various diseases, including autoimmune disorders and cancer.

Interleukin-3 (IL-3) is a type of cytokine, which is a small signaling protein that modulates the immune response, cell growth, and differentiation. IL-3 is primarily produced by activated T cells and mast cells. It plays an essential role in the survival, proliferation, and differentiation of hematopoietic stem cells, which give rise to all blood cell types. Specifically, IL-3 supports the development of myeloid lineage cells, including basophils, eosinophils, mast cells, megakaryocytes, and erythroid progenitors.

IL-3 binds to its receptor, the interleukin-3 receptor (IL-3R), which consists of two subunits: CD123 (the alpha chain) and CD131 (the beta chain). The binding of IL-3 to its receptor triggers a signaling cascade within the cell that ultimately leads to changes in gene expression, promoting cell growth and differentiation. Dysregulation of IL-3 production or signaling has been implicated in several hematological disorders, such as leukemia and myelodysplastic syndromes.

Up-regulation is a term used in molecular biology and medicine to describe an increase in the expression or activity of a gene, protein, or receptor in response to a stimulus. This can occur through various mechanisms such as increased transcription, translation, or reduced degradation of the molecule. Up-regulation can have important functional consequences, for example, enhancing the sensitivity or response of a cell to a hormone, neurotransmitter, or drug. It is a normal physiological process that can also be induced by disease or pharmacological interventions.

Homeostasis is a fundamental concept in the field of medicine and physiology, referring to the body's ability to maintain a stable internal environment, despite changes in external conditions. It is the process by which biological systems regulate their internal environment to remain in a state of dynamic equilibrium. This is achieved through various feedback mechanisms that involve sensors, control centers, and effectors, working together to detect, interpret, and respond to disturbances in the system.

For example, the body maintains homeostasis through mechanisms such as temperature regulation (through sweating or shivering), fluid balance (through kidney function and thirst), and blood glucose levels (through insulin and glucagon secretion). When homeostasis is disrupted, it can lead to disease or dysfunction in the body.

In summary, homeostasis is the maintenance of a stable internal environment within biological systems, through various regulatory mechanisms that respond to changes in external conditions.

Guided Tissue Regeneration (GTR) is a surgical procedure used in periodontics and implant dentistry that aims to regenerate lost periodontal tissues, such as the alveolar bone, cementum, and periodontal ligament, which have been destroyed due to periodontal disease or trauma. The goal of GTR is to restore the architectural and functional relationship between the teeth and their supporting structures.

The procedure involves placing a barrier membrane between the tooth root and the surrounding soft tissues, creating a protected space that allows the periodontal tissues to regenerate. The membrane acts as a physical barrier, preventing the rapid growth of epithelial cells and fibroblasts from the soft tissue into the defect area, while allowing the slower-growing cells derived from the periodontal ligament and bone to repopulate the space.

There are two main types of membranes used in GTR: resorbable and non-resorbable. Resorbable membranes are made of materials that degrade over time, eliminating the need for a second surgical procedure to remove them. Non-resorbable membranes, on the other hand, must be removed after a period of healing.

GTR has been shown to be effective in treating intrabony defects, furcation involvements, and ridge augmentations, among other applications. However, the success of GTR depends on various factors, including the patient's overall health, the size and location of the defect, and the surgeon's skill and experience.

I'm sorry for any confusion, but "Myeloablative Agonists" is not a recognized medical term. Myeloablation is a medical process that involves destroying or damaging the bone marrow, often as part of a preparatory regimen before a stem cell transplant. Agonists are substances that bind to receptors and activate them, causing a response in the body. However, combining these two terms doesn't form a recognized medical concept. If you have any questions about myeloablation or agonists individually, I'd be happy to help clarify those concepts!

Thrombopoietin (TPO) is a glycoprotein hormone that plays a crucial role in the regulation of platelet production, also known as thrombopoiesis. It is primarily produced by the liver and to some extent by megakaryocytes, which are the cells responsible for producing platelets.

TPO binds to its receptor, c-Mpl, on the surface of megakaryocytes and their precursor cells, stimulating their proliferation, differentiation, and maturation into platelets. By regulating the number of platelets in circulation, TPO helps maintain hemostasis, the process that prevents excessive bleeding after injury.

In addition to its role in thrombopoiesis, TPO has been shown to have potential effects on other cell types, including hematopoietic stem cells and certain immune cells. However, its primary function remains the regulation of platelet production.

Extramedullary hematopoiesis (EMH) is defined as the production of blood cells outside of the bone marrow in adults. In normal physiological conditions, hematopoiesis occurs within the bone marrow cavities of flat bones such as the pelvis, ribs, skull, and vertebrae. However, certain disease states or conditions can cause EMH to occur in various organs such as the liver, spleen, lymph nodes, and peripheral blood.

EMH can be seen in several pathological conditions, including hematologic disorders such as myeloproliferative neoplasms (e.g., polycythemia vera, essential thrombocytopenia), myelodysplastic syndromes, and leukemias. It can also occur in response to bone marrow failure or infiltration by malignant cells, as well as in some non-hematologic disorders such as fibrocystic disease of the breast and congenital hemolytic anemias.

EMH may lead to organ enlargement, dysfunction, and clinical symptoms depending on the site and extent of involvement. Treatment of EMH is generally directed at managing the underlying condition causing it.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Culture media is a substance that is used to support the growth of microorganisms or cells in an artificial environment, such as a petri dish or test tube. It typically contains nutrients and other factors that are necessary for the growth and survival of the organisms being cultured. There are many different types of culture media, each with its own specific formulation and intended use. Some common examples include blood agar, which is used to culture bacteria; Sabouraud dextrose agar, which is used to culture fungi; and Eagle's minimum essential medium, which is used to culture animal cells.

'Staining and labeling' are techniques commonly used in pathology, histology, cytology, and molecular biology to highlight or identify specific components or structures within tissues, cells, or molecules. These methods enable researchers and medical professionals to visualize and analyze the distribution, localization, and interaction of biological entities, contributing to a better understanding of diseases, cellular processes, and potential therapeutic targets.

Medical definitions for 'staining' and 'labeling' are as follows:

1. Staining: A process that involves applying dyes or stains to tissues, cells, or molecules to enhance their contrast and reveal specific structures or components. Stains can be categorized into basic stains (which highlight acidic structures) and acidic stains (which highlight basic structures). Common staining techniques include Hematoxylin and Eosin (H&E), which differentiates cell nuclei from the surrounding cytoplasm and extracellular matrix; special stains, such as PAS (Periodic Acid-Schiff) for carbohydrates or Masson's trichrome for collagen fibers; and immunostains, which use antibodies to target specific proteins.
2. Labeling: A process that involves attaching a detectable marker or tag to a molecule of interest, allowing its identification, quantification, or tracking within a biological system. Labels can be direct, where the marker is directly conjugated to the targeting molecule, or indirect, where an intermediate linker molecule is used to attach the label to the target. Common labeling techniques include fluorescent labels (such as FITC, TRITC, or Alexa Fluor), enzymatic labels (such as horseradish peroxidase or alkaline phosphatase), and radioactive labels (such as ³²P or ¹⁴C). Labeling is often used in conjunction with staining techniques to enhance the specificity and sensitivity of detection.

Together, staining and labeling provide valuable tools for medical research, diagnostics, and therapeutic development, offering insights into cellular and molecular processes that underlie health and disease.

Epithelial-mesenchymal transition (EMT) is a biological process that involves the transformation of epithelial cells into mesenchymal cells. This process is characterized by distinct changes in cell shape, behavior, and molecular markers.

Epithelial cells are typically tightly packed together and have a polarized structure with distinct apical and basal surfaces. In contrast, mesenchymal cells are elongated, spindle-shaped cells that can migrate and invade surrounding tissues.

During EMT, epithelial cells lose their polarity and cell-to-cell adhesion molecules, such as E-cadherin, and acquire mesenchymal markers, such as vimentin and N-cadherin. This transition enables the cells to become more motile and invasive, which is critical for embryonic development, wound healing, and cancer metastasis.

EMT is a complex process that involves various signaling pathways, including TGF-β, Wnt, Notch, and Hedgehog, among others. Dysregulation of EMT has been implicated in several diseases, particularly cancer, where it contributes to tumor progression, metastasis, and drug resistance.

Polycomb-group proteins (PcG proteins) are a set of conserved epigenetic regulators that play crucial roles in the development and maintenance of multicellular organisms. They were initially identified in Drosophila melanogaster as factors required for maintaining the repressed state of homeotic genes, which are important for proper body segment identity and pattern formation.

PcG proteins function as part of large multi-protein complexes, called Polycomb Repressive Complexes (PRCs), that can be divided into two main types: PRC1 and PRC2. These complexes mediate the trimethylation of histone H3 lysine 27 (H3K27me3), a chromatin modification associated with transcriptionally repressed genes.

PRC2, which contains the core proteins EZH1 or EZH2, SUZ12, and EED, is responsible for depositing H3K27me3 marks. PRC1, on the other hand, recognizes and binds to these H3K27me3 marks through its chromodomain-containing subunit CBX. PRC1 then ubiquitinates histone H2A at lysine 119 (H2AK119ub), further reinforcing the repressed state of target genes.

PcG proteins are essential for normal development, as they help maintain cell fate decisions and prevent the inappropriate expression of genes that could lead to tumorigenesis or other developmental abnormalities. Dysregulation of PcG protein function has been implicated in various human cancers, making them attractive targets for therapeutic intervention.

Down-regulation is a process that occurs in response to various stimuli, where the number or sensitivity of cell surface receptors or the expression of specific genes is decreased. This process helps maintain homeostasis within cells and tissues by reducing the ability of cells to respond to certain signals or molecules.

In the context of cell surface receptors, down-regulation can occur through several mechanisms:

1. Receptor internalization: After binding to their ligands, receptors can be internalized into the cell through endocytosis. Once inside the cell, these receptors may be degraded or recycled back to the cell surface in smaller numbers.
2. Reduced receptor synthesis: Down-regulation can also occur at the transcriptional level, where the expression of genes encoding for specific receptors is decreased, leading to fewer receptors being produced.
3. Receptor desensitization: Prolonged exposure to a ligand can lead to a decrease in receptor sensitivity or affinity, making it more difficult for the cell to respond to the signal.

In the context of gene expression, down-regulation refers to the decreased transcription and/or stability of specific mRNAs, leading to reduced protein levels. This process can be induced by various factors, including microRNA (miRNA)-mediated regulation, histone modification, or DNA methylation.

Down-regulation is an essential mechanism in many physiological processes and can also contribute to the development of several diseases, such as cancer and neurodegenerative disorders.

Histocompatibility is the compatibility between tissues or organs from different individuals in terms of their histological (tissue) structure and antigenic properties. The term is most often used in the context of transplantation, where it refers to the degree of match between the human leukocyte antigens (HLAs) and other proteins on the surface of donor and recipient cells.

A high level of histocompatibility reduces the risk of rejection of a transplanted organ or tissue by the recipient's immune system, as their immune cells are less likely to recognize the donated tissue as foreign and mount an attack against it. Conversely, a low level of histocompatibility increases the likelihood of rejection, as the recipient's immune system recognizes the donated tissue as foreign and attacks it.

Histocompatibility testing is therefore an essential part of organ and tissue transplantation, as it helps to identify the best possible match between donor and recipient and reduces the risk of rejection.

Proto-oncogene proteins are normal cellular proteins that play crucial roles in various cellular processes, such as signal transduction, cell cycle regulation, and apoptosis (programmed cell death). They are involved in the regulation of cell growth, differentiation, and survival under physiological conditions.

When proto-oncogene proteins undergo mutations or aberrations in their expression levels, they can transform into oncogenic forms, leading to uncontrolled cell growth and division. These altered proteins are then referred to as oncogene products or oncoproteins. Oncogenic mutations can occur due to various factors, including genetic predisposition, environmental exposures, and aging.

Examples of proto-oncogene proteins include:

1. Ras proteins: Involved in signal transduction pathways that regulate cell growth and differentiation. Activating mutations in Ras genes are found in various human cancers.
2. Myc proteins: Regulate gene expression related to cell cycle progression, apoptosis, and metabolism. Overexpression of Myc proteins is associated with several types of cancer.
3. EGFR (Epidermal Growth Factor Receptor): A transmembrane receptor tyrosine kinase that regulates cell proliferation, survival, and differentiation. Mutations or overexpression of EGFR are linked to various malignancies, such as lung cancer and glioblastoma.
4. Src family kinases: Intracellular tyrosine kinases that regulate signal transduction pathways involved in cell proliferation, survival, and migration. Dysregulation of Src family kinases is implicated in several types of cancer.
5. Abl kinases: Cytoplasmic tyrosine kinases that regulate various cellular processes, including cell growth, differentiation, and stress responses. Aberrant activation of Abl kinases, as seen in chronic myelogenous leukemia (CML), leads to uncontrolled cell proliferation.

Understanding the roles of proto-oncogene proteins and their dysregulation in cancer development is essential for developing targeted cancer therapies that aim to inhibit or modulate these aberrant signaling pathways.

Organ specificity, in the context of immunology and toxicology, refers to the phenomenon where a substance (such as a drug or toxin) or an immune response primarily affects certain organs or tissues in the body. This can occur due to various reasons such as:

1. The presence of specific targets (like antigens in the case of an immune response or receptors in the case of drugs) that are more abundant in these organs.
2. The unique properties of certain cells or tissues that make them more susceptible to damage.
3. The way a substance is metabolized or cleared from the body, which can concentrate it in specific organs.

For example, in autoimmune diseases, organ specificity describes immune responses that are directed against antigens found only in certain organs, such as the thyroid gland in Hashimoto's disease. Similarly, some toxins or drugs may have a particular affinity for liver cells, leading to liver damage or specific drug interactions.

Granulocytes are a type of white blood cell that plays a crucial role in the body's immune system. They are called granulocytes because they contain small granules in their cytoplasm, which are filled with various enzymes and proteins that help them fight off infections and destroy foreign substances.

There are three types of granulocytes: neutrophils, eosinophils, and basophils. Neutrophils are the most abundant type and are primarily responsible for fighting bacterial infections. Eosinophils play a role in defending against parasitic infections and regulating immune responses. Basophils are involved in inflammatory reactions and allergic responses.

Granulocytes are produced in the bone marrow and released into the bloodstream, where they circulate and patrol for any signs of infection or foreign substances. When they encounter a threat, they quickly move to the site of infection or injury and release their granules to destroy the invading organisms or substances.

Abnormal levels of granulocytes in the blood can indicate an underlying medical condition, such as an infection, inflammation, or a bone marrow disorder.

Keratinocytes are the predominant type of cells found in the epidermis, which is the outermost layer of the skin. These cells are responsible for producing keratin, a tough protein that provides structural support and protection to the skin. Keratinocytes undergo constant turnover, with new cells produced in the basal layer of the epidermis and older cells moving upward and eventually becoming flattened and filled with keratin as they reach the surface of the skin, where they are then shed. They also play a role in the immune response and can release cytokines and other signaling molecules to help protect the body from infection and injury.

Recurrence, in a medical context, refers to the return of symptoms or signs of a disease after a period of improvement or remission. It indicates that the condition has not been fully eradicated and may require further treatment. Recurrence is often used to describe situations where a disease such as cancer comes back after initial treatment, but it can also apply to other medical conditions. The likelihood of recurrence varies depending on the type of disease and individual patient factors.

The extracellular matrix (ECM) is a complex network of biomolecules that provides structural and biochemical support to cells in tissues and organs. It is composed of various proteins, glycoproteins, and polysaccharides, such as collagens, elastin, fibronectin, laminin, and proteoglycans. The ECM plays crucial roles in maintaining tissue architecture, regulating cell behavior, and facilitating communication between cells. It provides a scaffold for cell attachment, migration, and differentiation, and helps to maintain the structural integrity of tissues by resisting mechanical stresses. Additionally, the ECM contains various growth factors, cytokines, and chemokines that can influence cellular processes such as proliferation, survival, and differentiation. Overall, the extracellular matrix is essential for the normal functioning of tissues and organs, and its dysregulation can contribute to various pathological conditions, including fibrosis, cancer, and degenerative diseases.

Amniotic fluid is a clear, slightly yellowish liquid that surrounds and protects the developing baby in the uterus. It is enclosed within the amniotic sac, which is a thin-walled sac that forms around the embryo during early pregnancy. The fluid is composed of fetal urine, lung secretions, and fluids that cross over from the mother's bloodstream through the placenta.

Amniotic fluid plays several important roles in pregnancy:

1. It provides a shock-absorbing cushion for the developing baby, protecting it from injury caused by movement or external forces.
2. It helps to maintain a constant temperature around the fetus, keeping it warm and comfortable.
3. It allows the developing baby to move freely within the uterus, promoting normal growth and development of the muscles and bones.
4. It provides a source of nutrients and hydration for the fetus, helping to support its growth and development.
5. It helps to prevent infection by providing a barrier between the fetus and the outside world.

Throughout pregnancy, the volume of amniotic fluid increases as the fetus grows. The amount of fluid typically peaks around 34-36 weeks of gestation, after which it begins to gradually decrease. Abnormalities in the volume of amniotic fluid can indicate problems with the developing baby or the pregnancy itself, and may require medical intervention.

The amnion is the innermost fetal membrane in mammals, forming a sac that contains and protects the developing embryo and later the fetus within the uterus. It is one of the extraembryonic membranes that are derived from the outer cell mass of the blastocyst during early embryonic development. The amnion is filled with fluid (amniotic fluid) that allows for the freedom of movement and protection of the developing fetus.

The primary function of the amnion is to provide a protective environment for the growing fetus, allowing for expansion and preventing physical damage from outside forces. Additionally, the amniotic fluid serves as a medium for the exchange of waste products and nutrients between the fetal membranes and the placenta. The amnion also contributes to the formation of the umbilical cord and plays a role in the initiation of labor during childbirth.

T-lymphocytes, also known as T-cells, are a type of white blood cell that plays a key role in the adaptive immune system's response to infection. They are produced in the bone marrow and mature in the thymus gland. There are several different types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs).

CD4+ helper T-cells assist in activating other immune cells, such as B-lymphocytes and macrophages. They also produce cytokines, which are signaling molecules that help coordinate the immune response. CD8+ cytotoxic T-cells directly kill infected cells by releasing toxic substances. Regulatory T-cells help maintain immune tolerance and prevent autoimmune diseases by suppressing the activity of other immune cells.

T-lymphocytes are important in the immune response to viral infections, cancer, and other diseases. Dysfunction or depletion of T-cells can lead to immunodeficiency and increased susceptibility to infections. On the other hand, an overactive T-cell response can contribute to autoimmune diseases and chronic inflammation.

Luminescent proteins are a type of protein that emit light through a chemical reaction, rather than by absorbing and re-emitting light like fluorescent proteins. This process is called bioluminescence. The light emitted by luminescent proteins is often used in scientific research as a way to visualize and track biological processes within cells and organisms.

One of the most well-known luminescent proteins is Green Fluorescent Protein (GFP), which was originally isolated from jellyfish. However, GFP is actually a fluorescent protein, not a luminescent one. A true example of a luminescent protein is the enzyme luciferase, which is found in fireflies and other bioluminescent organisms. When luciferase reacts with its substrate, luciferin, it produces light through a process called oxidation.

Luminescent proteins have many applications in research, including as reporters for gene expression, as markers for protein-protein interactions, and as tools for studying the dynamics of cellular processes. They are also used in medical imaging and diagnostics, as well as in the development of new therapies.

Cell engineering is a branch of biotechnology that involves the manipulation and modification of cells to achieve desired functions or characteristics. This can be accomplished through various techniques, including genetic engineering, gene editing, cell culturing, and tissue engineering. The goal of cell engineering may be to develop new therapies for diseases, create cells or tissues that can replace damaged ones in the body, or to better understand how cells function.

In genetic engineering, genes are introduced into cells using vectors such as plasmids or viruses. These genes can encode for specific proteins or enzymes that can help the cell perform a particular function, such as producing a therapeutic protein or breaking down a toxic substance. Gene editing techniques, such as CRISPR-Cas9, allow for precise editing of an organism's genome, enabling the correction of genetic mutations or the introduction of new traits.

Cell culturing involves growing cells in controlled conditions outside of the body, allowing researchers to study their behavior and properties. Tissue engineering combines cell engineering with materials science to create functional tissues or organs that can be used for transplantation or other medical applications.

Overall, cell engineering has the potential to revolutionize medicine by enabling the development of personalized therapies, regenerative medicine, and new treatments for a wide range of diseases and conditions.

Hematologic diseases, also known as hematological disorders, refer to a group of conditions that affect the production, function, or destruction of blood cells or blood-related components, such as plasma. These diseases can affect erythrocytes (red blood cells), leukocytes (white blood cells), and platelets (thrombocytes), as well as clotting factors and hemoglobin.

Hematologic diseases can be broadly categorized into three main types:

1. Anemia: A condition characterized by a decrease in the total red blood cell count, hemoglobin, or hematocrit, leading to insufficient oxygen transport to tissues and organs. Examples include iron deficiency anemia, sickle cell anemia, and aplastic anemia.
2. Leukemia and other disorders of white blood cells: These conditions involve the abnormal production or function of leukocytes, which can lead to impaired immunity and increased susceptibility to infections. Examples include leukemias (acute lymphoblastic leukemia, chronic myeloid leukemia), lymphomas, and myelodysplastic syndromes.
3. Platelet and clotting disorders: These diseases affect the production or function of platelets and clotting factors, leading to abnormal bleeding or clotting tendencies. Examples include hemophilia, von Willebrand disease, thrombocytopenia, and disseminated intravascular coagulation (DIC).

Hematologic diseases can have various causes, including genetic defects, infections, autoimmune processes, environmental factors, or malignancies. Proper diagnosis and management of these conditions often require the expertise of hematologists, who specialize in diagnosing and treating disorders related to blood and its components.

Telomerase is an enzyme that adds repetitive DNA sequences (telomeres) to the ends of chromosomes, which are lost during each cell division due to the incomplete replication of the ends of linear chromosomes. Telomerase is not actively present in most somatic cells, but it is highly expressed in germ cells and stem cells, allowing them to divide indefinitely. However, in many types of cancer cells, telomerase is abnormally activated, which leads to the maintenance or lengthening of telomeres, contributing to their unlimited replicative potential and tumorigenesis.

Immunomagnetic separation (IMS) is a medical diagnostic technique that combines the specificity of antibodies with the magnetic properties of nanoparticles to isolate and concentrate target cells or molecules from a sample. This method is widely used in research and clinical laboratories for the detection and analysis of various biological components, including bacteria, viruses, parasites, and tumor cells.

The process involves the use of magnetic beads coated with specific antibodies that bind to the target cells or molecules. Once bound, an external magnetic field is applied to separate the labeled cells or molecules from the unbound components in the sample. The isolated targets can then be washed, concentrated, and further analyzed using various methods such as polymerase chain reaction (PCR), flow cytometry, or microscopy.

IMS offers several advantages over traditional separation techniques, including high specificity, gentle handling of cells, minimal sample manipulation, and the ability to process large volumes of samples. These features make IMS a valuable tool in various fields, such as immunology, microbiology, hematology, oncology, and molecular biology.

Myeloid progenitor cells are a type of precursor cells that originate from hematopoietic stem cells (HSCs) in the bone marrow. These cells have the ability to differentiate into various types of blood cells, including red blood cells, platelets, and different kinds of white blood cells, specifically granulocytes (neutrophils, eosinophils, and basophils), monocytes, and megakaryocytes. Myeloid progenitor cells are crucial for the maintenance of normal hematopoiesis and immune function. Abnormalities in myeloid progenitor cell differentiation or function can lead to various hematological disorders such as leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms.

Antineoplastic combined chemotherapy protocols refer to a treatment plan for cancer that involves the use of more than one antineoplastic (chemotherapy) drug given in a specific sequence and schedule. The combination of drugs is used because they may work better together to destroy cancer cells compared to using a single agent alone. This approach can also help to reduce the likelihood of cancer cells becoming resistant to the treatment.

The choice of drugs, dose, duration, and frequency are determined by various factors such as the type and stage of cancer, patient's overall health, and potential side effects. Combination chemotherapy protocols can be used in various settings, including as a primary treatment, adjuvant therapy (given after surgery or radiation to kill any remaining cancer cells), neoadjuvant therapy (given before surgery or radiation to shrink the tumor), or palliative care (to alleviate symptoms and prolong survival).

It is important to note that while combined chemotherapy protocols can be effective in treating certain types of cancer, they can also cause significant side effects, including nausea, vomiting, hair loss, fatigue, and an increased risk of infection. Therefore, patients undergoing such treatment should be closely monitored and managed by a healthcare team experienced in administering chemotherapy.

Confocal microscopy is a powerful imaging technique used in medical and biological research to obtain high-resolution, contrast-rich images of thick samples. This super-resolution technology provides detailed visualization of cellular structures and processes at various depths within a specimen.

In confocal microscopy, a laser beam focused through a pinhole illuminates a small spot within the sample. The emitted fluorescence or reflected light from this spot is then collected by a detector, passing through a second pinhole that ensures only light from the focal plane reaches the detector. This process eliminates out-of-focus light, resulting in sharp images with improved contrast compared to conventional widefield microscopy.

By scanning the laser beam across the sample in a raster pattern and collecting fluorescence at each point, confocal microscopy generates optical sections of the specimen. These sections can be combined to create three-dimensional reconstructions, allowing researchers to study cellular architecture and interactions within complex tissues.

Confocal microscopy has numerous applications in medical research, including studying protein localization, tracking intracellular dynamics, analyzing cell morphology, and investigating disease mechanisms at the cellular level. Additionally, it is widely used in clinical settings for diagnostic purposes, such as analyzing skin lesions or detecting pathogens in patient samples.

Cytokines are a broad and diverse category of small signaling proteins that are secreted by various cells, including immune cells, in response to different stimuli. They play crucial roles in regulating the immune response, inflammation, hematopoiesis, and cellular communication.

Cytokines mediate their effects by binding to specific receptors on the surface of target cells, which triggers intracellular signaling pathways that ultimately result in changes in gene expression, cell behavior, and function. Some key functions of cytokines include:

1. Regulating the activation, differentiation, and proliferation of immune cells such as T cells, B cells, natural killer (NK) cells, and macrophages.
2. Coordinating the inflammatory response by recruiting immune cells to sites of infection or tissue damage and modulating their effector functions.
3. Regulating hematopoiesis, the process of blood cell formation in the bone marrow, by controlling the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells.
4. Modulating the development and function of the nervous system, including neuroinflammation, neuroprotection, and neuroregeneration.

Cytokines can be classified into several categories based on their structure, function, or cellular origin. Some common types of cytokines include interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, colony-stimulating factors (CSFs), and transforming growth factors (TGFs). Dysregulation of cytokine production and signaling has been implicated in various pathological conditions, such as autoimmune diseases, chronic inflammation, cancer, and neurodegenerative disorders.

Neuroepithelial cells are stem cells that line the developing central nervous system (CNS) in embryos. These cells have the ability to differentiate into various cell types, including neurons and glial cells, which make up the brain and spinal cord. Neuroepithelial cells form a pseudostratified epithelium, meaning that the nuclei of the cells are at varying heights within the cell layer, giving it a striped appearance. These cells play a crucial role in the development and growth of the CNS.

In medical terms, the skin is the largest organ of the human body. It consists of two main layers: the epidermis (outer layer) and dermis (inner layer), as well as accessory structures like hair follicles, sweat glands, and oil glands. The skin plays a crucial role in protecting us from external factors such as bacteria, viruses, and environmental hazards, while also regulating body temperature and enabling the sense of touch.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

Immunomodulation is the process of modifying or regulating the immune system's response. It can involve either stimulating or suppressing various components of the immune system, such as white blood cells, antibodies, or cytokines. This can be achieved through various means, including medications (such as immunosuppressive drugs used in organ transplantation), vaccines, and other therapies.

The goal of immunomodulation is to restore balance to an overactive or underactive immune system, depending on the specific medical condition being treated. It can help to prevent or treat diseases that result from abnormal immune responses, such as autoimmune disorders, allergies, and infections.

Remission induction is a treatment approach in medicine, particularly in the field of oncology and hematology. It refers to the initial phase of therapy aimed at reducing or eliminating the signs and symptoms of active disease, such as cancer or autoimmune disorders. The primary goal of remission induction is to achieve a complete response (disappearance of all detectable signs of the disease) or a partial response (a decrease in the measurable extent of the disease). This phase of treatment is often intensive and may involve the use of multiple drugs or therapies, including chemotherapy, immunotherapy, or targeted therapy. After remission induction, patients may receive additional treatments to maintain the remission and prevent relapse, known as consolidation or maintenance therapy.

Blood component removal, also known as blood component therapy or apheresis, is a medical procedure that involves separating and removing specific components of the blood, such as red blood cells, white blood cells, platelets, or plasma, while returning the remaining components back to the donor or patient. This process can be used for therapeutic purposes, such as in the treatment of certain diseases and conditions, or for donation, such as in the collection of blood products for transfusion. The specific method and equipment used to perform blood component removal may vary depending on the intended application and the particular component being removed.

Aging is a complex, progressive and inevitable process of bodily changes over time, characterized by the accumulation of cellular damage and degenerative changes that eventually lead to increased vulnerability to disease and death. It involves various biological, genetic, environmental, and lifestyle factors that contribute to the decline in physical and mental functions. The medical field studies aging through the discipline of gerontology, which aims to understand the underlying mechanisms of aging and develop interventions to promote healthy aging and extend the human healthspan.

In situ hybridization (ISH) is a molecular biology technique used to detect and localize specific nucleic acid sequences, such as DNA or RNA, within cells or tissues. This technique involves the use of a labeled probe that is complementary to the target nucleic acid sequence. The probe can be labeled with various types of markers, including radioisotopes, fluorescent dyes, or enzymes.

During the ISH procedure, the labeled probe is hybridized to the target nucleic acid sequence in situ, meaning that the hybridization occurs within the intact cells or tissues. After washing away unbound probe, the location of the labeled probe can be visualized using various methods depending on the type of label used.

In situ hybridization has a wide range of applications in both research and diagnostic settings, including the detection of gene expression patterns, identification of viral infections, and diagnosis of genetic disorders.

Histones are highly alkaline proteins found in the chromatin of eukaryotic cells. They are rich in basic amino acid residues, such as arginine and lysine, which give them their positive charge. Histones play a crucial role in packaging DNA into a more compact structure within the nucleus by forming a complex with it called a nucleosome. Each nucleosome contains about 146 base pairs of DNA wrapped around an octamer of eight histone proteins (two each of H2A, H2B, H3, and H4). The N-terminal tails of these histones are subject to various post-translational modifications, such as methylation, acetylation, and phosphorylation, which can influence chromatin structure and gene expression. Histone variants also exist, which can contribute to the regulation of specific genes and other nuclear processes.

Activins are a type of protein that belongs to the transforming growth factor-beta (TGF-β) superfamily. They are produced and released by various cells in the body, including those in the ovaries, testes, pituitary gland, and other tissues. Activins play important roles in regulating several biological processes, such as cell growth, differentiation, and apoptosis (programmed cell death).

Activins bind to specific receptors on the surface of cells, leading to the activation of intracellular signaling pathways that control gene expression. They are particularly well-known for their role in reproductive biology, where they help regulate follicle stimulation and hormone production in the ovaries and testes. Activins also have been implicated in various disease processes, including cancer, fibrosis, and inflammation.

There are three main isoforms of activin in humans: activin A, activin B, and inhibin A. While activins and inhibins share similar structures and functions, they have opposite effects on the activity of the pituitary gland. Activins stimulate the production of follicle-stimulating hormone (FSH), while inhibins suppress it. This delicate balance between activins and inhibins helps regulate reproductive function and other physiological processes in the body.

Janus kinases (JAKs) are a family of intracellular non-receptor tyrosine kinases that play a crucial role in the signaling of cytokines and growth factors. They are named after the Roman god Janus, who is depicted with two faces, because JAKs have two similar domains, which contain catalytic activity.

JAKs mediate signal transduction by phosphorylating and activating signal transducers and activators of transcription (STAT) proteins, leading to the regulation of gene expression. Dysregulation of JAK-STAT signaling has been implicated in various diseases, including cancer, autoimmune disorders, and inflammatory conditions.

There are four members of the JAK family: JAK1, JAK2, JAK3, and TYK2 (tyrosine kinase 2). Each JAK isoform has a distinct pattern of expression and functions in specific cell types and signaling pathways. For example, JAK3 is primarily expressed in hematopoietic cells and plays a critical role in immune function, while JAK2 is widely expressed and involved in the signaling of various cytokines and growth factors.

Inhibition of JAKs has emerged as a promising therapeutic strategy for several diseases. Several JAK inhibitors have been approved by the FDA for the treatment of rheumatoid arthritis, psoriatic arthritis, and myelofibrosis, among other conditions.

Proto-oncogene proteins, such as c-Myc, are crucial regulators of normal cell growth, differentiation, and apoptosis (programmed cell death). When proto-oncogenes undergo mutations or alterations in their regulation, they can become overactive or overexpressed, leading to the formation of oncogenes. Oncogenic forms of c-Myc contribute to uncontrolled cell growth and division, which can ultimately result in cancer development.

The c-Myc protein is a transcription factor that binds to specific DNA sequences, influencing the expression of target genes involved in various cellular processes, such as:

1. Cell cycle progression: c-Myc promotes the expression of genes required for the G1 to S phase transition, driving cells into the DNA synthesis and division phase.
2. Metabolism: c-Myc regulates genes associated with glucose metabolism, glycolysis, and mitochondrial function, enhancing energy production in rapidly dividing cells.
3. Apoptosis: c-Myc can either promote or inhibit apoptosis, depending on the cellular context and the presence of other regulatory factors.
4. Differentiation: c-Myc generally inhibits differentiation by repressing genes that are necessary for specialized cell functions.
5. Angiogenesis: c-Myc can induce the expression of pro-angiogenic factors, promoting the formation of new blood vessels to support tumor growth.

Dysregulation of c-Myc is frequently observed in various types of cancer, making it an important therapeutic target for cancer treatment.

Cloning of an organism is the process of creating a genetically identical copy of an entire living organism, including all of its DNA. This is achieved through a variety of laboratory techniques that can vary depending on the type of organism being cloned. In the case of animals, one common method is called somatic cell nuclear transfer (SCNT).

In SCNT, the nucleus of a donor animal's cell (which contains its DNA) is removed and transferred into an egg cell that has had its own nucleus removed. The egg cell is then stimulated to divide and grow, resulting in an embryo that is genetically identical to the donor animal. This embryo can be implanted into a surrogate mother, where it will continue to develop until birth.

Cloning of organisms has raised ethical concerns and debates, particularly in the case of animals, due to questions about the welfare of cloned animals and the potential implications for human cloning. However, cloning is also seen as having potential benefits, such as the ability to produce genetically identical animals for research or agricultural purposes.

It's important to note that while cloning can create genetically identical organisms, it does not necessarily mean that they will be identical in every way, as environmental factors and random genetic mutations can still result in differences between clones.

Neoplastic gene expression regulation refers to the processes that control the production of proteins and other molecules from genes in neoplastic cells, or cells that are part of a tumor or cancer. In a normal cell, gene expression is tightly regulated to ensure that the right genes are turned on or off at the right time. However, in cancer cells, this regulation can be disrupted, leading to the overexpression or underexpression of certain genes.

Neoplastic gene expression regulation can be affected by a variety of factors, including genetic mutations, epigenetic changes, and signals from the tumor microenvironment. These changes can lead to the activation of oncogenes (genes that promote cancer growth and development) or the inactivation of tumor suppressor genes (genes that prevent cancer).

Understanding neoplastic gene expression regulation is important for developing new therapies for cancer, as targeting specific genes or pathways involved in this process can help to inhibit cancer growth and progression.

"Newborn animals" refers to the very young offspring of animals that have recently been born. In medical terminology, newborns are often referred to as "neonates," and they are classified as such from birth until about 28 days of age. During this time period, newborn animals are particularly vulnerable and require close monitoring and care to ensure their survival and healthy development.

The specific needs of newborn animals can vary widely depending on the species, but generally, they require warmth, nutrition, hydration, and protection from harm. In many cases, newborns are unable to regulate their own body temperature or feed themselves, so they rely heavily on their mothers for care and support.

In medical settings, newborn animals may be examined and treated by veterinarians to ensure that they are healthy and receiving the care they need. This can include providing medical interventions such as feeding tubes, antibiotics, or other treatments as needed to address any health issues that arise. Overall, the care and support of newborn animals is an important aspect of animal medicine and conservation efforts.

Trans-activators are proteins that increase the transcriptional activity of a gene or a set of genes. They do this by binding to specific DNA sequences and interacting with the transcription machinery, thereby enhancing the recruitment and assembly of the complexes needed for transcription. In some cases, trans-activators can also modulate the chromatin structure to make the template more accessible to the transcription machinery.

In the context of HIV (Human Immunodeficiency Virus) infection, the term "trans-activator" is often used specifically to refer to the Tat protein. The Tat protein is a viral regulatory protein that plays a critical role in the replication of HIV by activating the transcription of the viral genome. It does this by binding to a specific RNA structure called the Trans-Activation Response Element (TAR) located at the 5' end of all nascent HIV transcripts, and recruiting cellular cofactors that enhance the processivity and efficiency of RNA polymerase II, leading to increased viral gene expression.

A neoplasm is a tumor or growth that is formed by an abnormal and excessive proliferation of cells, which can be benign or malignant. Neoplasm proteins are therefore any proteins that are expressed or produced in these neoplastic cells. These proteins can play various roles in the development, progression, and maintenance of neoplasms.

Some neoplasm proteins may contribute to the uncontrolled cell growth and division seen in cancer, such as oncogenic proteins that promote cell cycle progression or inhibit apoptosis (programmed cell death). Others may help the neoplastic cells evade the immune system, allowing them to proliferate undetected. Still others may be involved in angiogenesis, the formation of new blood vessels that supply the tumor with nutrients and oxygen.

Neoplasm proteins can also serve as biomarkers for cancer diagnosis, prognosis, or treatment response. For example, the presence or level of certain neoplasm proteins in biological samples such as blood or tissue may indicate the presence of a specific type of cancer, help predict the likelihood of cancer recurrence, or suggest whether a particular therapy will be effective.

Overall, understanding the roles and behaviors of neoplasm proteins can provide valuable insights into the biology of cancer and inform the development of new diagnostic and therapeutic strategies.

Nanofibers are defined in the medical field as fibrous structures with extremely small diameters, typically measuring between 100 nanometers to 1 micrometer. They can be made from various materials such as polymers, ceramics, or composites and have a high surface area-to-volume ratio, which makes them useful in a variety of biomedical applications. These include tissue engineering, drug delivery, wound healing, and filtration. Nanofibers can be produced using different techniques such as electrospinning, self-assembly, and phase separation.

Hepatocytes are the predominant type of cells in the liver, accounting for about 80% of its cytoplasmic mass. They play a key role in protein synthesis, protein storage, transformation of carbohydrates, synthesis of cholesterol, bile salts and phospholipids, detoxification, modification, and excretion of exogenous and endogenous substances, initiation of formation and secretion of bile, and enzyme production. Hepatocytes are essential for the maintenance of homeostasis in the body.

Hydrogels are defined in the medical and biomedical fields as cross-linked, hydrophilic polymer networks that have the ability to swell and retain a significant amount of water or biological fluids while maintaining their structure. They can be synthesized from natural, synthetic, or hybrid polymers.

Hydrogels are known for their biocompatibility, high water content, and soft consistency, which resemble natural tissues, making them suitable for various medical applications such as contact lenses, drug delivery systems, tissue engineering, wound dressing, and biosensors. The physical and chemical properties of hydrogels can be tailored to specific uses by adjusting the polymer composition, cross-linking density, and network structure.

Muscle development, also known as muscle hypertrophy, refers to the increase in size and mass of the muscles through a process called myofiber growth. This is primarily achieved through resistance or strength training exercises that cause micro-tears in the muscle fibers, leading to an inflammatory response and the release of hormones that promote muscle growth. As the muscles repair themselves, they become larger and stronger than before. Proper nutrition, including adequate protein intake, and rest are also essential components of muscle development.

It is important to note that while muscle development can lead to an increase in strength and muscular endurance, it does not necessarily result in improved athletic performance or overall fitness. A well-rounded exercise program that includes cardiovascular activity, flexibility training, and resistance exercises is recommended for optimal health and fitness outcomes.

Tumor markers are substances that can be found in the body and their presence can indicate the presence of certain types of cancer or other conditions. Biological tumor markers refer to those substances that are produced by cancer cells or by other cells in response to cancer or certain benign (non-cancerous) conditions. These markers can be found in various bodily fluids such as blood, urine, or tissue samples.

Examples of biological tumor markers include:

1. Proteins: Some tumor markers are proteins that are produced by cancer cells or by other cells in response to the presence of cancer. For example, prostate-specific antigen (PSA) is a protein produced by normal prostate cells and in higher amounts by prostate cancer cells.
2. Genetic material: Tumor markers can also include genetic material such as DNA, RNA, or microRNA that are shed by cancer cells into bodily fluids. For example, circulating tumor DNA (ctDNA) is genetic material from cancer cells that can be found in the bloodstream.
3. Metabolites: Tumor markers can also include metabolic products produced by cancer cells or by other cells in response to cancer. For example, lactate dehydrogenase (LDH) is an enzyme that is released into the bloodstream when cancer cells break down glucose for energy.

It's important to note that tumor markers are not specific to cancer and can be elevated in non-cancerous conditions as well. Therefore, they should not be used alone to diagnose cancer but rather as a tool in conjunction with other diagnostic tests and clinical evaluations.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

"Drosophila" is a genus of small flies, also known as fruit flies. The most common species used in scientific research is "Drosophila melanogaster," which has been a valuable model organism for many areas of biological and medical research, including genetics, developmental biology, neurobiology, and aging.

The use of Drosophila as a model organism has led to numerous important discoveries in genetics and molecular biology, such as the identification of genes that are associated with human diseases like cancer, Parkinson's disease, and obesity. The short reproductive cycle, large number of offspring, and ease of genetic manipulation make Drosophila a powerful tool for studying complex biological processes.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Transforming Growth Factor-beta (TGF-β) is a type of cytokine, which is a cell signaling protein involved in the regulation of various cellular processes, including cell growth, differentiation, and apoptosis (programmed cell death). TGF-β plays a critical role in embryonic development, tissue homeostasis, and wound healing. It also has been implicated in several pathological conditions such as fibrosis, cancer, and autoimmune diseases.

TGF-β exists in multiple isoforms (TGF-β1, TGF-β2, and TGF-β3) that are produced by many different cell types, including immune cells, epithelial cells, and fibroblasts. The protein is synthesized as a precursor molecule, which is cleaved to release the active TGF-β peptide. Once activated, TGF-β binds to its receptors on the cell surface, leading to the activation of intracellular signaling pathways that regulate gene expression and cell behavior.

In summary, Transforming Growth Factor-beta (TGF-β) is a multifunctional cytokine involved in various cellular processes, including cell growth, differentiation, apoptosis, embryonic development, tissue homeostasis, and wound healing. It has been implicated in several pathological conditions such as fibrosis, cancer, and autoimmune diseases.

Chondrocytes are the specialized cells that produce and maintain the extracellular matrix of cartilage tissue. They are responsible for synthesizing and secreting the collagen fibers, proteoglycans, and other components that give cartilage its unique properties, such as elasticity, resiliency, and resistance to compression. Chondrocytes are located within lacunae, or small cavities, in the cartilage matrix, and they receive nutrients and oxygen through diffusion from the surrounding tissue fluid. They are capable of adapting to changes in mechanical stress by modulating the production and organization of the extracellular matrix, which allows cartilage to withstand various loads and maintain its structural integrity. Chondrocytes play a crucial role in the development, maintenance, and repair of cartilaginous tissues throughout the body, including articular cartilage, costal cartilage, and growth plate cartilage.

Side Population (SP) cells are a subset of cells within a heterogeneous cell population that have been identified through their ability to exclude certain dyes, such as Hoechst 33342 or Rhodamine 123. These dyes are commonly used in flow cytometry experiments to identify cells with unique properties.

When SP cells are stained with these dyes and analyzed using flow cytometry, they appear as a distinct population of cells that are separate from the majority of cells in the sample. This is because they have the ability to actively efflux the dye out of the cell through the action of specific transporters, such as the ATP-binding cassette (ABC) transporters.

In the context of stem cell biology, SP cells are often enriched in stem or progenitor cells, and have been identified in a variety of tissues, including the bone marrow, brain, and skin. They have been shown to possess enhanced self-renewal capacity and differentiation potential compared to non-SP cells, making them a promising target for regenerative medicine and cancer research.

However, it's important to note that not all SP cells are necessarily stem or progenitor cells, and further characterization is often required to confirm their identity and functional properties.

Wnt3A is a type of Wnt protein, which is a secreted signaling molecule that plays crucial roles in the regulation of cell-to-cell communication during embryonic development and tissue homeostasis in adults. Specifically, Wnt3A is a member of the Wnt family that binds to Frizzled receptors and activates the canonical Wnt/β-catenin signaling pathway.

In this pathway, Wnt3A binding to its receptor leads to the inhibition of the β-catenin destruction complex, resulting in the stabilization and accumulation of β-catenin in the cytoplasm. β-catenin then translocates to the nucleus, where it interacts with TCF/LEF transcription factors to regulate the expression of target genes involved in cell proliferation, differentiation, and survival.

Wnt3A has been extensively studied in various biological contexts, including developmental biology, cancer research, and stem cell biology. In particular, Wnt3A has been shown to play important roles in the regulation of embryonic axis formation, neural crest development, and adult tissue regeneration. Dysregulation of Wnt/β-catenin signaling, including aberrant activation by Wnt3A, has been implicated in various human diseases, such as cancer, degenerative disorders, and fibrotic diseases.

Bioengineering, also known as biological engineering, is defined as the application of principles and methods from engineering to study, modify, and control biological systems, often with the goal of creating new technologies or improving existing ones. This field combines knowledge and expertise from various disciplines, including biology, chemistry, physics, mathematics, and computer science, to solve complex problems related to health, medicine, agriculture, and the environment.

Bioengineers may work on a wide range of projects, such as developing new medical devices or therapies, designing synthetic biological systems for industrial applications, creating biosensors for environmental monitoring, or engineering tissues and organs for transplantation. They use a variety of tools and techniques, including genetic engineering, biomaterials, computational modeling, and nanotechnology, to design and build novel biological systems that can perform specific functions or solve practical problems.

Bioengineering has the potential to transform many areas of science and technology, with significant implications for human health, sustainability, and innovation. As such, it is an exciting and rapidly growing field that offers many opportunities for interdisciplinary collaboration and discovery.

I could not find a medical definition for "Research Embryo Creation" as such, but I can provide some context. In the field of reproductive medicine and stem cell research, the creation of embryos specifically for research purposes is a controversial topic. These research embryos are typically created using in vitro fertilization (IVF) techniques, where eggs are fertilized with sperm in a laboratory dish. The resulting embryos may then be used for various research endeavors, such as studying early human development, investigating genetic disorders, or developing new treatments for infertility and diseases. It's important to note that the creation and use of research embryos are subject to ethical guidelines and legal regulations, which vary by country and jurisdiction.

High Mobility Group Box (HMGB) proteins are a family of nuclear proteins that are highly conserved and expressed in eukaryotic cells. They play a crucial role in the regulation of gene expression, DNA repair, and maintenance of nucleosome structure. HMGB proteins contain two positively charged DNA-binding domains (HMG boxes) and a negatively charged acidic tail. These proteins can bind to DNA in a variety of ways, bending it and altering its structure, which in turn affects the binding of other proteins and the transcriptional activity of genes. HMGB proteins can also be released from cells under conditions of stress or injury, where they act as damage-associated molecular patterns (DAMPs) and contribute to the inflammatory response.

Asymmetric cell division is a type of cell division in which the two daughter cells that result from the division are not identical to each other. This occurs when the mother cell that is dividing is not equally divided, and as a result, one of the resulting daughter cells inherits more or different cytoplasmic components than the other.

In asymmetric cell division, the cellular machinery responsible for determining which proteins and organelles are distributed to each daughter cell plays an important role in ensuring that each cell acquires the necessary components to carry out its specific functions. This process is critical during development, as it helps generate cells with different fates and specialized functions.

In summary, asymmetric cell division is a type of cell division where the two resulting daughter cells are not identical due to unequal distribution of cytoplasmic components, which can lead to differences in their function and behavior.

The yolk sac is a structure that forms in the early stages of an embryo's development. It is a extra-embryonic membrane, which means it exists outside of the developing embryo, and it plays a critical role in providing nutrients to the growing embryo during the initial stages of development.

In more detail, the yolk sac is responsible for producing blood cells, contributing to the formation of the early circulatory system, and storing nutrients that are absorbed from the yolk material inside the egg or uterus. The yolk sac also has a role in the development of the gut and the immune system.

As the embryo grows and the placenta develops, the yolk sac's function becomes less critical, and it eventually degenerates. However, remnants of the yolk sac can sometimes persist and may be found in the developing fetus or newborn baby. In some cases, abnormalities in the development or regression of the yolk sac can lead to developmental problems or congenital disorders.

Cryopreservation is a medical procedure that involves the preservation of cells, tissues, or organs by cooling them to very low temperatures, typically below -150°C. This is usually achieved using liquid nitrogen. The low temperature slows down or stops biological activity, including chemical reactions and cellular metabolism, which helps to prevent damage and decay.

The cells, tissues, or organs that are being cryopreserved must be treated with a cryoprotectant solution before cooling to prevent the formation of ice crystals, which can cause significant damage. Once cooled, the samples are stored in specialized containers or tanks until they are needed for use.

Cryopreservation is commonly used in assisted reproductive technologies, such as the preservation of sperm, eggs, and embryos for fertility treatments. It is also used in research, including the storage of cell lines and stem cells, and in clinical settings, such as the preservation of skin grafts and corneas for transplantation.

Osteocytes are the most abundant cell type in mature bone tissue. They are star-shaped cells that are located inside the mineralized matrix of bones, with their processes extending into small spaces called lacunae and canaliculi. Osteocytes are derived from osteoblasts, which are bone-forming cells that become trapped within the matrix they produce.

Osteocytes play a crucial role in maintaining bone homeostasis by regulating bone remodeling, sensing mechanical stress, and modulating mineralization. They communicate with each other and with osteoblasts and osteoclasts (bone-resorbing cells) through a network of interconnected processes and via the release of signaling molecules. Osteocytes can also respond to changes in their environment, such as hormonal signals or mechanical loading, by altering their gene expression and releasing factors that regulate bone metabolism.

Dysfunction of osteocytes has been implicated in various bone diseases, including osteoporosis, osteogenesis imperfecta, and Paget's disease of bone.

Erythropoiesis is the process of forming and developing red blood cells (erythrocytes) in the body. It occurs in the bone marrow and is regulated by the hormone erythropoietin (EPO), which is produced by the kidneys. Erythropoiesis involves the differentiation and maturation of immature red blood cell precursors called erythroblasts into mature red blood cells, which are responsible for carrying oxygen to the body's tissues. Disorders that affect erythropoiesis can lead to anemia or other blood-related conditions.

Melanocytes are specialized cells that produce, store, and transport melanin, the pigment responsible for coloring of the skin, hair, and eyes. They are located in the bottom layer of the epidermis (the outermost layer of the skin) and can also be found in the inner ear and the eye's retina. Melanocytes contain organelles called melanosomes, which produce and store melanin.

Melanin comes in two types: eumelanin (black or brown) and pheomelanin (red or yellow). The amount and type of melanin produced by melanocytes determine the color of a person's skin, hair, and eyes. Exposure to UV radiation from sunlight increases melanin production as a protective response, leading to skin tanning.

Melanocyte dysfunction or abnormalities can lead to various medical conditions, such as albinism (lack of melanin production), melasma (excessive pigmentation), and melanoma (cancerous growth of melanocytes).

Genetically modified animals (GMAs) are those whose genetic makeup has been altered using biotechnological techniques. This is typically done by introducing one or more genes from another species into the animal's genome, resulting in a new trait or characteristic that does not naturally occur in that species. The introduced gene is often referred to as a transgene.

The process of creating GMAs involves several steps:

1. Isolation: The desired gene is isolated from the DNA of another organism.
2. Transfer: The isolated gene is transferred into the target animal's cells, usually using a vector such as a virus or bacterium.
3. Integration: The transgene integrates into the animal's chromosome, becoming a permanent part of its genetic makeup.
4. Selection: The modified cells are allowed to multiply, and those that contain the transgene are selected for further growth and development.
5. Breeding: The genetically modified individuals are bred to produce offspring that carry the desired trait.

GMAs have various applications in research, agriculture, and medicine. In research, they can serve as models for studying human diseases or testing new therapies. In agriculture, GMAs can be developed to exhibit enhanced growth rates, improved disease resistance, or increased nutritional value. In medicine, GMAs may be used to produce pharmaceuticals or other therapeutic agents within their bodies.

Examples of genetically modified animals include mice with added genes for specific proteins that make them useful models for studying human diseases, goats that produce a human protein in their milk to treat hemophilia, and pigs with enhanced resistance to certain viruses that could potentially be used as organ donors for humans.

It is important to note that the use of genetically modified animals raises ethical concerns related to animal welfare, environmental impact, and potential risks to human health. These issues must be carefully considered and addressed when developing and implementing GMA technologies.

Myelodysplastic syndromes (MDS) are a group of diverse bone marrow disorders characterized by dysplasia (abnormal development or maturation) of one or more types of blood cells or by ineffective hematopoiesis, resulting in cytopenias (lower than normal levels of one or more types of blood cells). MDS can be classified into various subtypes based on the number and type of cytopenias, the degree of dysplasia, the presence of ring sideroblasts, and cytogenetic abnormalities.

The condition primarily affects older adults, with a median age at diagnosis of around 70 years. MDS can evolve into acute myeloid leukemia (AML) in approximately 30-40% of cases. The pathophysiology of MDS involves genetic mutations and chromosomal abnormalities that lead to impaired differentiation and increased apoptosis of hematopoietic stem and progenitor cells, ultimately resulting in cytopenias and an increased risk of developing AML.

The diagnosis of MDS typically requires a bone marrow aspiration and biopsy, along with cytogenetic and molecular analyses to identify specific genetic mutations and chromosomal abnormalities. Treatment options for MDS depend on the subtype, severity of cytopenias, and individual patient factors. These may include supportive care measures, such as transfusions and growth factor therapy, or more aggressive treatments, such as chemotherapy and stem cell transplantation.

A hydrogel is a biomaterial that is composed of a three-dimensional network of crosslinked polymers, which are able to absorb and retain a significant amount of water or biological fluids while maintaining their structure. Hydrogels are similar to natural tissues in their water content, making them suitable for various medical applications such as contact lenses, wound dressings, drug delivery systems, tissue engineering, and regenerative medicine.

Hydrogels can be synthesized from a variety of materials, including synthetic polymers like polyethylene glycol (PEG) or natural polymers like collagen, hyaluronic acid, or chitosan. The properties of hydrogels, such as their mechanical strength, degradation rate, and biocompatibility, can be tailored to specific applications by adjusting the type and degree of crosslinking, the molecular weight of the polymers, and the addition of functional groups or drugs.

Hydrogels have shown great potential in medical research and clinical practice due to their ability to mimic the natural environment of cells and tissues, provide sustained drug release, and promote tissue regeneration.

Astrocytes are a type of star-shaped glial cell found in the central nervous system (CNS), including the brain and spinal cord. They play crucial roles in supporting and maintaining the health and function of neurons, which are the primary cells responsible for transmitting information in the CNS.

Some of the essential functions of astrocytes include:

1. Supporting neuronal structure and function: Astrocytes provide structural support to neurons by ensheathing them and maintaining the integrity of the blood-brain barrier, which helps regulate the entry and exit of substances into the CNS.
2. Regulating neurotransmitter levels: Astrocytes help control the levels of neurotransmitters in the synaptic cleft (the space between two neurons) by taking up excess neurotransmitters and breaking them down, thus preventing excessive or prolonged activation of neuronal receptors.
3. Providing nutrients to neurons: Astrocytes help supply energy metabolites, such as lactate, to neurons, which are essential for their survival and function.
4. Modulating synaptic activity: Through the release of various signaling molecules, astrocytes can modulate synaptic strength and plasticity, contributing to learning and memory processes.
5. Participating in immune responses: Astrocytes can respond to CNS injuries or infections by releasing pro-inflammatory cytokines and chemokines, which help recruit immune cells to the site of injury or infection.
6. Promoting neuronal survival and repair: In response to injury or disease, astrocytes can become reactive and undergo morphological changes that aid in forming a glial scar, which helps contain damage and promote tissue repair. Additionally, they release growth factors and other molecules that support the survival and regeneration of injured neurons.

Dysfunction or damage to astrocytes has been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS).

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

The intestines, also known as the bowel, are a part of the digestive system that extends from the stomach to the anus. They are responsible for the further breakdown and absorption of nutrients from food, as well as the elimination of waste products. The intestines can be divided into two main sections: the small intestine and the large intestine.

The small intestine is a long, coiled tube that measures about 20 feet in length and is lined with tiny finger-like projections called villi, which increase its surface area and enhance nutrient absorption. The small intestine is where most of the digestion and absorption of nutrients takes place.

The large intestine, also known as the colon, is a wider tube that measures about 5 feet in length and is responsible for absorbing water and electrolytes from digested food, forming stool, and eliminating waste products from the body. The large intestine includes several regions, including the cecum, colon, rectum, and anus.

Together, the intestines play a critical role in maintaining overall health and well-being by ensuring that the body receives the nutrients it needs to function properly.

The neural crest is a transient, multipotent embryonic cell population that originates from the ectoderm (outermost layer) of the developing neural tube (precursor to the central nervous system). These cells undergo an epithelial-to-mesenchymal transition and migrate throughout the embryo, giving rise to a diverse array of cell types and structures.

Neural crest cells differentiate into various tissues, including:

1. Peripheral nervous system (PNS) components: sensory neurons, sympathetic and parasympathetic ganglia, and glial cells (e.g., Schwann cells).
2. Facial bones and cartilage, as well as connective tissue of the skull.
3. Melanocytes, which are pigment-producing cells in the skin.
4. Smooth muscle cells in major blood vessels, heart, gastrointestinal tract, and other organs.
5. Secretory cells in endocrine glands (e.g., chromaffin cells of the adrenal medulla).
6. Parts of the eye, such as the cornea and iris stroma.
7. Dental tissues, including dentin, cementum, and dental pulp.

Due to their wide-ranging contributions to various tissues and organs, neural crest cells play a crucial role in embryonic development and organogenesis. Abnormalities in neural crest cell migration or differentiation can lead to several congenital disorders, such as neurocristopathies.

Genetic engineering, also known as genetic modification, is a scientific process where the DNA or genetic material of an organism is manipulated to bring about a change in its characteristics. This is typically done by inserting specific genes into the organism's genome using various molecular biology techniques. These new genes may come from the same species (cisgenesis) or a different species (transgenesis). The goal is to produce a desired trait, such as resistance to pests, improved nutritional content, or increased productivity. It's widely used in research, medicine, and agriculture. However, it's important to note that the use of genetically engineered organisms can raise ethical, environmental, and health concerns.

ADP-ribosyl cyclase is an enzyme that catalyzes the conversion of nicotinamide adenine dinucleotide (NAD+) to cyclic ADP-ribose (cADPR). This enzyme plays a role in intracellular signaling, particularly in calcium mobilization in various cell types including immune cells and neurons. The regulation of this enzyme has been implicated in several physiological processes as well as in the pathophysiology of some diseases such as cancer and neurodegenerative disorders.

Megakaryocytes are large, specialized bone marrow cells that are responsible for the production and release of platelets (also known as thrombocytes) into the bloodstream. Platelets play an essential role in blood clotting and hemostasis, helping to prevent excessive bleeding during injuries or trauma.

Megakaryocytes have a unique structure with multilobed nuclei and abundant cytoplasm rich in organelles called alpha-granules and dense granules, which store various proteins, growth factors, and enzymes necessary for platelet function. As megakaryocytes mature, they extend long cytoplasmic processes called proplatelets into the bone marrow sinuses, where these extensions fragment into individual platelets that are released into circulation.

Abnormalities in megakaryocyte number, size, or function can lead to various hematological disorders, such as thrombocytopenia (low platelet count), thrombocytosis (high platelet count), and certain types of leukemia.

The myocardium is the middle layer of the heart wall, composed of specialized cardiac muscle cells that are responsible for pumping blood throughout the body. It forms the thickest part of the heart wall and is divided into two sections: the left ventricle, which pumps oxygenated blood to the rest of the body, and the right ventricle, which pumps deoxygenated blood to the lungs.

The myocardium contains several types of cells, including cardiac muscle fibers, connective tissue, nerves, and blood vessels. The muscle fibers are arranged in a highly organized pattern that allows them to contract in a coordinated manner, generating the force necessary to pump blood through the heart and circulatory system.

Damage to the myocardium can occur due to various factors such as ischemia (reduced blood flow), infection, inflammation, or genetic disorders. This damage can lead to several cardiac conditions, including heart failure, arrhythmias, and cardiomyopathy.

The spleen is an organ in the upper left side of the abdomen, next to the stomach and behind the ribs. It plays multiple supporting roles in the body:

1. It fights infection by acting as a filter for the blood. Old red blood cells are recycled in the spleen, and platelets and white blood cells are stored there.
2. The spleen also helps to control the amount of blood in the body by removing excess red blood cells and storing platelets.
3. It has an important role in immune function, producing antibodies and removing microorganisms and damaged red blood cells from the bloodstream.

The spleen can be removed without causing any significant problems, as other organs take over its functions. This is known as a splenectomy and may be necessary if the spleen is damaged or diseased.

Gene silencing is a process by which the expression of a gene is blocked or inhibited, preventing the production of its corresponding protein. This can occur naturally through various mechanisms such as RNA interference (RNAi), where small RNAs bind to and degrade specific mRNAs, or DNA methylation, where methyl groups are added to the DNA molecule, preventing transcription. Gene silencing can also be induced artificially using techniques such as RNAi-based therapies, antisense oligonucleotides, or CRISPR-Cas9 systems, which allow for targeted suppression of gene expression in research and therapeutic applications.

Drug resistance in neoplasms (also known as cancer drug resistance) refers to the ability of cancer cells to withstand the effects of chemotherapeutic agents or medications designed to kill or inhibit the growth of cancer cells. This can occur due to various mechanisms, including changes in the cancer cell's genetic makeup, alterations in drug targets, increased activity of drug efflux pumps, and activation of survival pathways.

Drug resistance can be intrinsic (present at the beginning of treatment) or acquired (developed during the course of treatment). It is a significant challenge in cancer therapy as it often leads to reduced treatment effectiveness, disease progression, and poor patient outcomes. Strategies to overcome drug resistance include the use of combination therapies, development of new drugs that target different mechanisms, and personalized medicine approaches that consider individual patient and tumor characteristics.

"STAT" stands for Signal Transducers and Activators of Transcription. STAT transcription factors are a family of proteins that play a crucial role in the signal transduction of various cytokines and growth factors in cells. They are activated by receptor-associated tyrosine kinases, which phosphorylate and activate STATs, leading to their dimerization and translocation into the nucleus. Once in the nucleus, these dimers bind to specific DNA sequences and regulate the transcription of target genes, thereby mediating various cellular responses such as proliferation, differentiation, and apoptosis. "STAT Transcription Factors" refer to the activated form of STAT proteins that function as transcription factors in the nucleus.

Cell hypoxia, also known as cellular hypoxia or tissue hypoxia, refers to a condition in which the cells or tissues in the body do not receive an adequate supply of oxygen. Oxygen is essential for the production of energy in the form of ATP (adenosine triphosphate) through a process called oxidative phosphorylation. When the cells are deprived of oxygen, they switch to anaerobic metabolism, which produces lactic acid as a byproduct and can lead to acidosis.

Cell hypoxia can result from various conditions, including:

1. Low oxygen levels in the blood (hypoxemia) due to lung diseases such as chronic obstructive pulmonary disease (COPD), pneumonia, or high altitude.
2. Reduced blood flow to tissues due to cardiovascular diseases such as heart failure, peripheral artery disease, or shock.
3. Anemia, which reduces the oxygen-carrying capacity of the blood.
4. Carbon monoxide poisoning, which binds to hemoglobin and prevents it from carrying oxygen.
5. Inadequate ventilation due to trauma, drug overdose, or other causes that can lead to respiratory failure.

Cell hypoxia can cause cell damage, tissue injury, and organ dysfunction, leading to various clinical manifestations depending on the severity and duration of hypoxia. Treatment aims to correct the underlying cause and improve oxygen delivery to the tissues.

PAX7 is a transcription factor that belongs to the PAX (paired box) family of proteins, which are characterized by the presence of a paired domain that binds to DNA. Specifically, PAX7 contains two DNA-binding domains: a paired domain and a homeodomain.

PAX7 is primarily expressed in satellite cells, which are muscle stem cells responsible for postnatal muscle growth, maintenance, and regeneration. PAX7 plays a critical role in the self-renewal and survival of satellite cells, and its expression is required for their activation and differentiation into mature muscle fibers.

As a transcription factor, PAX7 binds to specific DNA sequences in the regulatory regions of target genes and regulates their expression. This regulation can either activate or repress gene transcription, depending on the context and other factors that interact with PAX7.

PAX7 has been implicated in various muscle-related diseases, including muscular dystrophies and muscle wasting disorders. Its expression is often downregulated in these conditions, leading to a decrease in satellite cell function and muscle regeneration capacity. Therefore, understanding the role of PAX7 in muscle biology and disease has important implications for developing new therapies for muscle-related diseases.

Disease-free survival (DFS) is a term used in medical research and clinical practice, particularly in the field of oncology. It refers to the length of time after primary treatment for a cancer during which no evidence of the disease can be found. This means that the patient shows no signs or symptoms of the cancer, and any imaging studies or other tests do not reveal any tumors or other indications of the disease.

DFS is often used as an important endpoint in clinical trials to evaluate the effectiveness of different treatments for cancer. By measuring the length of time until the cancer recurs or a new cancer develops, researchers can get a better sense of how well a particular treatment is working and whether it is improving patient outcomes.

It's important to note that DFS is not the same as overall survival (OS), which refers to the length of time from primary treatment until death from any cause. While DFS can provide valuable information about the effectiveness of cancer treatments, it does not necessarily reflect the impact of those treatments on patients' overall survival.

Magnetite nanoparticles are defined as extremely small particles, usually with a diameter less than 100 nanometers, of the mineral magnetite (Fe3O4). These particles have unique magnetic properties and can be manipulated using magnetic fields. They have been studied for various biomedical applications such as drug delivery, magnetic resonance imaging (MRI) contrast agents, hyperthermia treatment for cancer, and tissue engineering due to their ability to generate heat when exposed to alternating magnetic fields. However, the potential toxicity of magnetite nanoparticles is a concern that needs further investigation before widespread clinical use.

Microarray analysis is a laboratory technique used to measure the expression levels of large numbers of genes (or other types of DNA sequences) simultaneously. This technology allows researchers to monitor the expression of thousands of genes in a single experiment, providing valuable information about which genes are turned on or off in response to various stimuli or diseases.

In microarray analysis, samples of RNA from cells or tissues are labeled with fluorescent dyes and then hybridized to a solid surface (such as a glass slide) onto which thousands of known DNA sequences have been spotted in an organized array. The intensity of the fluorescence at each spot on the array is proportional to the amount of RNA that has bound to it, indicating the level of expression of the corresponding gene.

Microarray analysis can be used for a variety of applications, including identifying genes that are differentially expressed between healthy and diseased tissues, studying genetic variations in populations, and monitoring gene expression changes over time or in response to environmental factors. However, it is important to note that microarray data must be analyzed carefully using appropriate statistical methods to ensure the accuracy and reliability of the results.

"Recovery of function" is a term used in medical rehabilitation to describe the process in which an individual regains the ability to perform activities or tasks that were previously difficult or impossible due to injury, illness, or disability. This can involve both physical and cognitive functions. The goal of recovery of function is to help the person return to their prior level of independence and participation in daily activities, work, and social roles as much as possible.

Recovery of function may be achieved through various interventions such as physical therapy, occupational therapy, speech-language therapy, and other rehabilitation strategies. The specific approach used will depend on the individual's needs and the nature of their impairment. Recovery of function can occur spontaneously as the body heals, or it may require targeted interventions to help facilitate the process.

It is important to note that recovery of function does not always mean a full return to pre-injury or pre-illness levels of ability. Instead, it often refers to the person's ability to adapt and compensate for any remaining impairments, allowing them to achieve their maximum level of functional independence and quality of life.

Fetal tissue transplantation is a medical procedure that involves the surgical implantation of tissue from developing fetuses into patients for therapeutic purposes. The tissue used in these procedures typically comes from elective abortions, and can include tissues such as neural cells, liver cells, pancreatic islets, and heart valves.

The rationale behind fetal tissue transplantation is that the developing fetus has a high capacity for cell growth and regeneration, making its tissues an attractive source of cells for transplantation. Additionally, because fetal tissue is often less mature than adult tissue, it may be less likely to trigger an immune response in the recipient, reducing the risk of rejection.

Fetal tissue transplantation has been explored as a potential treatment for a variety of conditions, including Parkinson's disease, diabetes, and heart disease. However, the use of fetal tissue in medical research and therapy remains controversial due to ethical concerns surrounding the sourcing of the tissue.

Benzamides are a class of organic compounds that consist of a benzene ring (a aromatic hydrocarbon) attached to an amide functional group. The amide group can be bound to various substituents, leading to a variety of benzamide derivatives with different biological activities.

In a medical context, some benzamides have been developed as drugs for the treatment of various conditions. For example, danzol (a benzamide derivative) is used as a hormonal therapy for endometriosis and breast cancer. Additionally, other benzamides such as sulpiride and amisulpride are used as antipsychotic medications for the treatment of schizophrenia and related disorders.

It's important to note that while some benzamides have therapeutic uses, others may be toxic or have adverse effects, so they should only be used under the supervision of a medical professional.

Isogeneic transplantation is a type of transplant where the donor and recipient are genetically identical, meaning they are identical twins or have the same genetic makeup. In this case, the immune system recognizes the transplanted organ or tissue as its own and does not mount an immune response to reject it. This reduces the need for immunosuppressive drugs, which are typically required in other types of transplantation to prevent rejection.

In medical terms, isogeneic transplantation is defined as the transfer of genetic identical tissues or organs between genetically identical individuals, resulting in minimal risk of rejection and no need for immunosuppressive therapy.

Medical survival rate is a statistical measure used to determine the percentage of patients who are still alive for a specific period of time after their diagnosis or treatment for a certain condition or disease. It is often expressed as a five-year survival rate, which refers to the proportion of people who are alive five years after their diagnosis. Survival rates can be affected by many factors, including the stage of the disease at diagnosis, the patient's age and overall health, the effectiveness of treatment, and other health conditions that the patient may have. It is important to note that survival rates are statistical estimates and do not necessarily predict an individual patient's prognosis.

Erythroid precursor cells, also known as erythroblasts or normoblasts, are early stage cells in the process of producing mature red blood cells (erythrocytes) in the bone marrow. These cells are derived from hematopoietic stem cells and undergo a series of maturation stages, including proerythroblast, basophilic erythroblast, polychromatophilic erythroblast, and orthochromatic erythroblast, before becoming reticulocytes and then mature red blood cells. During this maturation process, the cells lose their nuclei and become enucleated, taking on the biconcave shape and flexible membrane that allows them to move through small blood vessels and deliver oxygen to tissues throughout the body.

Tissue culture techniques refer to the methods used to maintain and grow cells, tissues or organs from multicellular organisms in an artificial environment outside of the living body, called an in vitro culture. These techniques are widely used in various fields such as biology, medicine, and agriculture for research, diagnostics, and therapeutic purposes.

The basic components of tissue culture include a sterile growth medium that contains nutrients, growth factors, and other essential components to support the growth of cells or tissues. The growth medium is often supplemented with antibiotics to prevent contamination by microorganisms. The cells or tissues are cultured in specialized containers called culture vessels, which can be plates, flasks, or dishes, depending on the type and scale of the culture.

There are several types of tissue culture techniques, including:

1. Monolayer Culture: In this technique, cells are grown as a single layer on a flat surface, allowing for easy observation and manipulation of individual cells.
2. Organoid Culture: This method involves growing three-dimensional structures that resemble the organization and function of an organ in vivo.
3. Co-culture: In co-culture, two or more cell types are grown together to study their interactions and communication.
4. Explant Culture: In this technique, small pieces of tissue are cultured to maintain the original structure and organization of the cells within the tissue.
5. Primary Culture: This refers to the initial culture of cells directly isolated from a living organism. These cells can be further subcultured to generate immortalized cell lines.

Tissue culture techniques have numerous applications, such as studying cell behavior, drug development and testing, gene therapy, tissue engineering, and regenerative medicine.

Teratocarcinoma is a rare type of cancer that contains both malignant germ cells (cells that give rise to sperm or eggs) and various types of benign, or noncancerous, tissue such as muscle, bone, and nerve tissue. It most commonly occurs in the ovaries or testicles but can also develop in other areas of the body, such as the mediastinum (the area between the lungs), retroperitoneum (the area behind the abdominal lining), and pineal gland (a small endocrine gland in the brain).

Teratocarcinomas are aggressive tumors that can spread quickly to other parts of the body if not treated promptly. They typically affect young adults, with a median age at diagnosis of around 20 years old. Treatment usually involves surgical removal of the tumor, followed by chemotherapy and/or radiation therapy to kill any remaining cancer cells.

It's important to note that Teratocarcinoma is different from Teratoma which is a type of germ cell tumor that can contain various types of tissue but it does not have malignant component.

The "Graft versus Leukemia (GvL) Effect" is a term used in the field of hematopoietic stem cell transplantation to describe a desirable outcome where the donor's immune cells (graft) recognize and attack the recipient's leukemia cells (host). This effect occurs when the donor's T-lymphocytes, natural killer cells, and other immune cells become activated against the recipient's malignant cells.

The GvL effect is often observed in patients who have undergone allogeneic hematopoietic stem cell transplantation (allo-HSCT), where the donor and recipient are not genetically identical. The genetic disparity between the donor and recipient creates an environment that allows for the recognition of host leukemia cells as foreign, triggering an immune response against them.

While the GvL effect can be beneficial in eliminating residual leukemia cells, it can also lead to complications such as graft-versus-host disease (GvHD), where the donor's immune cells attack the recipient's healthy tissues. Balancing the GvL effect and minimizing GvHD remains a significant challenge in allo-HSCT.

The transcriptome refers to the complete set of RNA molecules, including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and other non-coding RNAs, that are present in a cell or a population of cells at a given point in time. It reflects the genetic activity and provides information about which genes are being actively transcribed and to what extent. The transcriptome can vary under different conditions, such as during development, in response to environmental stimuli, or in various diseases, making it an important area of study in molecular biology and personalized medicine.

Corneal diseases are a group of disorders that affect the cornea, which is the clear, dome-shaped surface at the front of the eye. The cornea plays an important role in focusing vision, and any damage or disease can cause significant visual impairment or loss. Some common types of corneal diseases include:

1. Keratoconus: A progressive disorder in which the cornea thins and bulges outward into a cone shape, causing distorted vision.
2. Fuchs' dystrophy: A genetic disorder that affects the inner layer of the cornea called the endothelium, leading to swelling, cloudiness, and decreased vision.
3. Dry eye syndrome: A condition in which the eyes do not produce enough tears or the tears evaporate too quickly, causing discomfort, redness, and blurred vision.
4. Corneal ulcers: Open sores on the cornea that can be caused by infection, trauma, or other factors.
5. Herpes simplex keratitis: A viral infection of the cornea that can cause recurrent episodes of inflammation, scarring, and vision loss.
6. Corneal dystrophies: Inherited disorders that affect the structure and clarity of the cornea, leading to visual impairment or blindness.
7. Bullous keratopathy: A condition in which the endothelium fails to pump fluid out of the cornea, causing it to swell and form blisters.
8. Corneal trauma: Injury to the cornea caused by foreign objects, chemicals, or other factors that can lead to scarring, infection, and vision loss.

Treatment for corneal diseases varies depending on the specific condition and severity of the disease. Options may include eyedrops, medications, laser surgery, corneal transplantation, or other treatments.

A glioma is a type of tumor that originates from the glial cells in the brain. Glial cells are non-neuronal cells that provide support and protection for nerve cells (neurons) within the central nervous system, including providing nutrients, maintaining homeostasis, and insulating neurons.

Gliomas can be classified into several types based on the specific type of glial cell from which they originate. The most common types include:

1. Astrocytoma: Arises from astrocytes, a type of star-shaped glial cells that provide structural support to neurons.
2. Oligodendroglioma: Develops from oligodendrocytes, which produce the myelin sheath that insulates nerve fibers.
3. Ependymoma: Originate from ependymal cells, which line the ventricles (fluid-filled spaces) in the brain and spinal cord.
4. Glioblastoma multiforme (GBM): A highly aggressive and malignant type of astrocytoma that tends to spread quickly within the brain.

Gliomas can be further classified based on their grade, which indicates how aggressive and fast-growing they are. Lower-grade gliomas tend to grow more slowly and may be less aggressive, while higher-grade gliomas are more likely to be aggressive and rapidly growing.

Symptoms of gliomas depend on the location and size of the tumor but can include headaches, seizures, cognitive changes, and neurological deficits such as weakness or paralysis in certain parts of the body. Treatment options for gliomas may include surgery, radiation therapy, chemotherapy, or a combination of these approaches.

Survival analysis is a branch of statistics that deals with the analysis of time to event data. It is used to estimate the time it takes for a certain event of interest to occur, such as death, disease recurrence, or treatment failure. The event of interest is called the "failure" event, and survival analysis estimates the probability of not experiencing the failure event until a certain point in time, also known as the "survival" probability.

Survival analysis can provide important information about the effectiveness of treatments, the prognosis of patients, and the identification of risk factors associated with the event of interest. It can handle censored data, which is common in medical research where some participants may drop out or be lost to follow-up before the event of interest occurs.

Survival analysis typically involves estimating the survival function, which describes the probability of surviving beyond a certain time point, as well as hazard functions, which describe the instantaneous rate of failure at a given time point. Other important concepts in survival analysis include median survival times, restricted mean survival times, and various statistical tests to compare survival curves between groups.

Breast neoplasms refer to abnormal growths in the breast tissue that can be benign or malignant. Benign breast neoplasms are non-cancerous tumors or growths, while malignant breast neoplasms are cancerous tumors that can invade surrounding tissues and spread to other parts of the body.

Breast neoplasms can arise from different types of cells in the breast, including milk ducts, milk sacs (lobules), or connective tissue. The most common type of breast cancer is ductal carcinoma, which starts in the milk ducts and can spread to other parts of the breast and nearby structures.

Breast neoplasms are usually detected through screening methods such as mammography, ultrasound, or MRI, or through self-examination or clinical examination. Treatment options for breast neoplasms depend on several factors, including the type and stage of the tumor, the patient's age and overall health, and personal preferences. Treatment may include surgery, radiation therapy, chemotherapy, hormone therapy, or targeted therapy.

Trophoblasts are specialized cells that make up the outer layer of a blastocyst, which is a hollow ball of cells that forms in the earliest stages of embryonic development. In humans, this process occurs about 5-6 days after fertilization. The blastocyst consists of an inner cell mass (which will eventually become the embryo) and an outer layer of trophoblasts.

Trophoblasts play a crucial role in implantation, which is the process by which the blastocyst attaches to and invades the lining of the uterus. Once implanted, the trophoblasts differentiate into two main layers: the cytotrophoblasts (which are closer to the inner cell mass) and the syncytiotrophoblasts (which form a multinucleated layer that is in direct contact with the maternal tissues).

The cytotrophoblasts proliferate and fuse to form the syncytiotrophoblasts, which have several important functions. They secrete enzymes that help to degrade and remodel the extracellular matrix of the uterine lining, allowing the blastocyst to implant more deeply. They also form a barrier between the maternal and fetal tissues, helping to protect the developing embryo from the mother's immune system.

Additionally, trophoblasts are responsible for the formation of the placenta, which provides nutrients and oxygen to the developing fetus and removes waste products. The syncytiotrophoblasts in particular play a key role in this process by secreting hormones such as human chorionic gonadotropin (hCG), which helps to maintain pregnancy, and by forming blood vessels that allow for the exchange of nutrients and waste between the mother and fetus.

Abnormalities in trophoblast development or function can lead to a variety of pregnancy-related complications, including preeclampsia, intrauterine growth restriction, and gestational trophoblastic diseases such as hydatidiform moles and choriocarcinomas.

Mammary glands in humans are specialized exocrine glands that develop as modified sweat glands. They are primarily responsible for producing milk to feed infants after childbirth. In females, the mammary glands are located in the breast tissue on the chest region and are composed of lobules, ducts, and supportive tissues. During pregnancy, hormonal changes stimulate the growth and development of these glands, preparing them for milk production and lactation after the baby is born.

SOXF transcription factors are a subgroup of the SOX (SRY-related HMG box) family of proteins, which are involved in various developmental processes. The SOXF group includes SOX7, SOX17, and SOX18, all of which contain a conserved high mobility group (HMG) box DNA-binding domain. These transcription factors play crucial roles in the development of several organ systems, including the cardiovascular system, nervous system, and urogenital system. They are involved in cell fate determination, differentiation, and morphogenesis during embryonic development and have also been implicated in various disease processes, such as cancer.

Organogenesis is the process of formation and development of organs during embryonic growth. It involves the complex interactions of cells, tissues, and signaling molecules that lead to the creation of specialized structures in the body. This process begins in the early stages of embryonic development, around week 4-8, and continues until birth. During organogenesis, the three primary germ layers (ectoderm, mesoderm, and endoderm) differentiate into various cell types and organize themselves into specific structures that will eventually form the functional organs of the body. Abnormalities in organogenesis can result in congenital disorders or birth defects.

Aplastic anemia is a medical condition characterized by pancytopenia (a decrease in all three types of blood cells: red blood cells, white blood cells, and platelets) due to the failure of bone marrow to produce new cells. It is called "aplastic" because the bone marrow becomes hypocellular or "aplastic," meaning it contains few or no blood-forming stem cells.

The condition can be acquired or inherited, with acquired aplastic anemia being more common. Acquired aplastic anemia can result from exposure to toxic chemicals, radiation, drugs, viral infections, or autoimmune disorders. Inherited forms of the disease include Fanconi anemia and dyskeratosis congenita.

Symptoms of aplastic anemia may include fatigue, weakness, shortness of breath, pale skin, easy bruising or bleeding, frequent infections, and fever. Treatment options for aplastic anemia depend on the severity of the condition and its underlying cause. They may include blood transfusions, immunosuppressive therapy, and stem cell transplantation.

'Drosophila melanogaster' is the scientific name for a species of fruit fly that is commonly used as a model organism in various fields of biological research, including genetics, developmental biology, and evolutionary biology. Its small size, short generation time, large number of offspring, and ease of cultivation make it an ideal subject for laboratory studies. The fruit fly's genome has been fully sequenced, and many of its genes have counterparts in the human genome, which facilitates the understanding of genetic mechanisms and their role in human health and disease.

Here is a brief medical definition:

Drosophila melanogaster (droh-suh-fih-luh meh-lon-guh-ster): A species of fruit fly used extensively as a model organism in genetic, developmental, and evolutionary research. Its genome has been sequenced, revealing many genes with human counterparts, making it valuable for understanding genetic mechanisms and their role in human health and disease.

Lymphopoiesis is the process of formation and development of lymphocytes, which are a type of white blood cell that plays a crucial role in the immune system. Lymphocytes include B cells, T cells, and natural killer (NK) cells, which are responsible for defending the body against infectious diseases and cancer.

Lymphopoiesis occurs in the bone marrow and lymphoid organs such as the spleen, lymph nodes, and tonsils. In the bone marrow, hematopoietic stem cells differentiate into common lymphoid progenitors (CLPs), which then give rise to B cells, T cells, and NK cells through a series of intermediate stages.

B cells mature in the bone marrow, while T cells mature in the thymus gland. Once matured, these lymphocytes migrate to the peripheral lymphoid organs where they can encounter foreign antigens and mount an immune response. The process of lymphopoiesis is tightly regulated by various growth factors, cytokines, and transcription factors that control the differentiation, proliferation, and survival of lymphocytes.

Myoblasts are immature cells that later develop into muscle cells (also known as myocytes). Cardiac myoblasts, therefore, are the immature cells that will specialize and develop into cardiac muscle cells. These cells play a crucial role in the growth, repair, and regeneration of heart muscles. In adults, however, the ability of these cells to regenerate damaged heart muscle tissue is limited. Recent research has focused on the potential use of cardiac myoblasts in cell-based therapies for various heart conditions, such as heart failure and myocardial infarction (heart attack).

Neoplasm transplantation is not a recognized or established medical procedure in the field of oncology. The term "neoplasm" refers to an abnormal growth of cells, which can be benign or malignant (cancerous). "Transplantation" typically refers to the surgical transfer of living cells, tissues, or organs from one part of the body to another or between individuals.

The concept of neoplasm transplantation may imply the transfer of cancerous cells or tissues from a donor to a recipient, which is not a standard practice due to ethical considerations and the potential harm it could cause to the recipient. In some rare instances, researchers might use laboratory animals to study the transmission and growth of human cancer cells, but this is done for scientific research purposes only and under strict regulatory guidelines.

In summary, there is no medical definition for 'Neoplasm Transplantation' as it does not represent a standard or ethical medical practice.

Surface antigens are molecules found on the surface of cells that can be recognized by the immune system as being foreign or different from the host's own cells. Antigens are typically proteins or polysaccharides that are capable of stimulating an immune response, leading to the production of antibodies and activation of immune cells such as T-cells.

Surface antigens are important in the context of infectious diseases because they allow the immune system to identify and target infected cells for destruction. For example, viruses and bacteria often display surface antigens that are distinct from those found on host cells, allowing the immune system to recognize and attack them. In some cases, these surface antigens can also be used as targets for vaccines or other immunotherapies.

In addition to their role in infectious diseases, surface antigens are also important in the context of cancer. Tumor cells often display abnormal surface antigens that differ from those found on normal cells, allowing the immune system to potentially recognize and attack them. However, tumors can also develop mechanisms to evade the immune system, making it difficult to mount an effective response.

Overall, understanding the properties and behavior of surface antigens is crucial for developing effective immunotherapies and vaccines against infectious diseases and cancer.

Seminiferous tubules are the long, convoluted tubes within the testicles that are responsible for producing sperm in males. They are lined with specialized epithelial cells called Sertoli cells, which provide structural support and nourishment to developing sperm cells. The seminiferous tubules also contain germ cells, which divide and differentiate into spermatozoa (sperm) through the process of spermatogenesis.

The seminiferous tubules are surrounded by a thin layer of smooth muscle called the tunica albuginea, which helps to maintain the structure and integrity of the testicle. The tubules are connected to the rete testis, a network of channels that transport sperm to the epididymis for further maturation and storage before ejaculation.

Damage or dysfunction of the seminiferous tubules can lead to male infertility, as well as other reproductive health issues.

SOX9 (SRY-related HMG-box gene 9) is a transcription factor that belongs to the SOX family of proteins, which are characterized by a high mobility group (HMG) box DNA-binding domain. SOX9 plays crucial roles in various developmental processes, including sex determination, chondrogenesis, and neurogenesis.

As a transcription factor, SOX9 binds to specific DNA sequences in the promoter or enhancer regions of its target genes and regulates their expression. In the context of sex determination, SOX9 is essential for the development of Sertoli cells in the male gonad, which are responsible for supporting sperm production. SOX9 also plays a role in maintaining the undifferentiated state of stem cells and promoting cell differentiation in various tissues.

Mutations in the SOX9 gene have been associated with several human genetic disorders, including campomelic dysplasia, a severe skeletal disorder characterized by bowed legs, and sex reversal in individuals with XY chromosomes.

Rejuvenation, in the context of medicine and aesthetics, refers to the process or procedures aimed at restoring a youthful appearance or vitality. This can be achieved through various treatments such as hormone replacement therapy, cosmetic surgery, skin treatments, and lifestyle changes. However, it is important to note that while these procedures can help improve one's appearance or vitality, they do not halt the aging process entirely.

An ovary is a part of the female reproductive system in which ova or eggs are produced through the process of oogenesis. They are a pair of solid, almond-shaped structures located one on each side of the uterus within the pelvic cavity. Each ovary measures about 3 to 5 centimeters in length and weighs around 14 grams.

The ovaries have two main functions: endocrine (hormonal) function and reproductive function. They produce and release eggs (ovulation) responsible for potential fertilization and development of an embryo/fetus during pregnancy. Additionally, they are essential in the production of female sex hormones, primarily estrogen and progesterone, which regulate menstrual cycles, sexual development, and reproduction.

During each menstrual cycle, a mature egg is released from one of the ovaries into the fallopian tube, where it may be fertilized by sperm. If not fertilized, the egg, along with the uterine lining, will be shed, leading to menstruation.

I'm sorry for any confusion, but "Hydra" is not a term commonly used in medical definitions. Hydra is a genus of small, simple aquatic animals, belonging to the class Hydrozoa in the phylum Cnidaria. They are named after the multi-headed creature from Greek mythology due to their ability to regenerate lost body parts.

If you're looking for a medical term related to hydra, one possibility could be "Hydralazine," which is a medication used to treat high blood pressure. It works by relaxing the muscle in the walls of blood vessels, causing them to widen and the blood to flow more easily.

I hope this information is helpful! If you have any other questions or need clarification on a different topic, please let me know.

Heterocyclic compounds are organic compounds that contain at least one atom within the ring structure, other than carbon, such as nitrogen, oxygen, sulfur or phosphorus. These compounds make up a large class of naturally occurring and synthetic materials, including many drugs, pigments, vitamins, and antibiotics. The presence of the heteroatom in the ring can have significant effects on the physical and chemical properties of the compound, such as its reactivity, stability, and bonding characteristics. Examples of heterocyclic compounds include pyridine, pyrimidine, and furan.

Fibroblast Growth Factor 4 (FGF4) is a growth factor that belongs to the fibroblast growth factor family. It plays a crucial role in various biological processes, including embryonic development, cell survival, proliferation, and differentiation. Specifically, FGF4 has been implicated in the development of the musculoskeletal system, where it helps regulate the growth and patterning of limbs and bones.

FGF4 exerts its effects by binding to specific receptors on the surface of target cells, known as fibroblast growth factor receptors (FGFRs). This interaction triggers a cascade of intracellular signaling events that ultimately lead to changes in gene expression and cell behavior.

In addition to its role in development, FGF4 has also been implicated in various pathological processes, including cancer. For example, elevated levels of FGF4 have been observed in certain types of tumors, where it may contribute to tumor growth and progression by promoting the survival and proliferation of cancer cells.

A primary cell culture is the very first cell culture generation that is established by directly isolating cells from an original tissue or organ source. These cells are removed from the body and then cultured in controlled conditions in a laboratory setting, allowing them to grow and multiply. Primary cell cultures maintain many of the characteristics of the cells in their original tissue environment, making them valuable for research purposes. However, they can only be passaged (subcultured) a limited number of times before they undergo senescence or change into a different type of cell.

Immunosuppressive agents are medications that decrease the activity of the immune system. They are often used to prevent the rejection of transplanted organs and to treat autoimmune diseases, where the immune system mistakenly attacks the body's own tissues. These drugs work by interfering with the immune system's normal responses, which helps to reduce inflammation and damage to tissues. However, because they suppress the immune system, people who take immunosuppressive agents are at increased risk for infections and other complications. Examples of immunosuppressive agents include corticosteroids, azathioprine, cyclophosphamide, mycophenolate mofetil, tacrolimus, and sirolimus.

Pyrimidines are heterocyclic aromatic organic compounds similar to benzene and pyridine, containing two nitrogen atoms at positions 1 and 3 of the six-member ring. They are one of the two types of nucleobases found in nucleic acids, the other being purines. The pyrimidine bases include cytosine (C) and thymine (T) in DNA, and uracil (U) in RNA, which pair with guanine (G) and adenine (A), respectively, through hydrogen bonding to form the double helix structure of nucleic acids. Pyrimidines are also found in many other biomolecules and have various roles in cellular metabolism and genetic regulation.

Leukemia, myeloid is a type of cancer that originates in the bone marrow, where blood cells are produced. Myeloid leukemia affects the myeloid cells, which include red blood cells, platelets, and most types of white blood cells. In this condition, the bone marrow produces abnormal myeloid cells that do not mature properly and accumulate in the bone marrow and blood. These abnormal cells hinder the production of normal blood cells, leading to various symptoms such as anemia, fatigue, increased risk of infections, and easy bruising or bleeding.

There are several types of myeloid leukemias, including acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). AML progresses rapidly and requires immediate treatment, while CML tends to progress more slowly. The exact causes of myeloid leukemia are not fully understood, but risk factors include exposure to radiation or certain chemicals, smoking, genetic disorders, and a history of chemotherapy or other cancer treatments.

Cell aggregation is the process by which individual cells come together and adhere to each other to form a group or cluster. This phenomenon can occur naturally during embryonic development, tissue repair, and wound healing, as well as in the formation of multicellular organisms such as slime molds. In some cases, cell aggregation may also be induced in the laboratory setting through the use of various techniques, including the use of cell culture surfaces that promote cell-to-cell adhesion or the addition of factors that stimulate the expression of adhesion molecules on the cell surface.

Cell aggregation can be influenced by a variety of factors, including the type and properties of the cells involved, as well as environmental conditions such as pH, temperature, and nutrient availability. The ability of cells to aggregate is often mediated by the presence of adhesion molecules on the cell surface, such as cadherins, integrins, and immunoglobulin-like cell adhesion molecules (Ig-CAMs). These molecules interact with each other and with extracellular matrix components to promote cell-to-cell adhesion and maintain the stability of the aggregate.

In some contexts, abnormal or excessive cell aggregation can contribute to the development of diseases such as cancer, fibrosis, and inflammatory disorders. For example, the aggregation of cancer cells can facilitate their invasion and metastasis, while the accumulation of fibrotic cells in tissues can lead to organ dysfunction and failure. Understanding the mechanisms that regulate cell aggregation is therefore an important area of research with potential implications for the development of new therapies and treatments for a variety of diseases.

The periodontal ligament, also known as the "PDL," is the soft tissue that connects the tooth root to the alveolar bone within the dental alveolus (socket). It consists of collagen fibers organized into groups called principal fibers and accessory fibers. These fibers are embedded into both the cementum of the tooth root and the alveolar bone, providing shock absorption during biting and chewing forces, allowing for slight tooth movement, and maintaining the tooth in its position within the socket.

The periodontal ligament plays a crucial role in the health and maintenance of the periodontium, which includes the gingiva (gums), cementum, alveolar bone, and the periodontal ligament itself. Inflammation or infection of the periodontal ligament can lead to periodontal disease, potentially causing tooth loss if not treated promptly and appropriately.

Myocardial infarction (MI), also known as a heart attack, is a medical condition characterized by the death of a segment of heart muscle (myocardium) due to the interruption of its blood supply. This interruption is most commonly caused by the blockage of a coronary artery by a blood clot formed on the top of an atherosclerotic plaque, which is a buildup of cholesterol and other substances in the inner lining of the artery.

The lack of oxygen and nutrients supply to the heart muscle tissue results in damage or death of the cardiac cells, causing the affected area to become necrotic. The extent and severity of the MI depend on the size of the affected area, the duration of the occlusion, and the presence of collateral circulation.

Symptoms of a myocardial infarction may include chest pain or discomfort, shortness of breath, nausea, lightheadedness, and sweating. Immediate medical attention is necessary to restore blood flow to the affected area and prevent further damage to the heart muscle. Treatment options for MI include medications, such as thrombolytics, antiplatelet agents, and pain relievers, as well as procedures such as percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG).

Hemangioblasts are stem cells that are believed to give rise to the endothelial cells that line blood vessels and the blood cells themselves. They are found in the embryonic yolk sac and fetal liver, and they express both endothelial and hematopoietic markers. In adults, hemangioblasts are thought to be involved in the process of vasculogenesis, or the formation of new blood vessels from pre-existing ones.

It's important to note that the existence of true hemangioblasts in adult organisms is still a topic of ongoing research and debate. Some studies suggest that cells with hemangioblastic potential may exist in certain adult tissues, but more research is needed to confirm this and to fully understand their role in vasculogenesis and other processes.

Severe Combined Immunodeficiency (SCID) is a group of rare genetic disorders characterized by deficient or absent immune responses. It results from mutations in different genes involved in the development and function of T lymphocytes, B lymphocytes, or both, leading to a severe impairment in cell-mediated and humoral immunity.

Infants with SCID are extremely vulnerable to infections, which can be life-threatening. Common symptoms include chronic diarrhea, failure to thrive, recurrent pneumonia, and persistent candidiasis (thrush). If left untreated, it can lead to severe disability or death within the first two years of life. Treatment typically involves bone marrow transplantation or gene therapy to restore immune function.

Ferrosoferric oxide is commonly known as magnetite, which is a mineral form of iron(III) oxide (Fe2O3) and iron(II) oxide (FeO). Its chemical formula is often written as Fe3O4. It is a black colored, magnetic compound that occurs naturally in many environments, including rocks and soil. Magnetite has been used for various purposes throughout history, such as in the creation of early forms of magnetic storage media and as a pigment in paints. In the medical field, magnetite nanoparticles have been studied for potential use in targeted drug delivery systems and diagnostic imaging techniques.

Salvage therapy, in the context of medical oncology, refers to the use of treatments that are typically considered less desirable or more aggressive, often due to greater side effects or lower efficacy, when standard treatment options have failed. These therapies are used to attempt to salvage a response or delay disease progression in patients with refractory or relapsed cancers.

In other words, salvage therapy is a last-resort treatment approach for patients who have not responded to first-line or subsequent lines of therapy. It may involve the use of different drug combinations, higher doses of chemotherapy, immunotherapy, targeted therapy, or radiation therapy. The goal of salvage therapy is to extend survival, improve quality of life, or achieve disease stabilization in patients with limited treatment options.

Cadherins are a type of cell adhesion molecule that play a crucial role in the development and maintenance of intercellular junctions. They are transmembrane proteins that mediate calcium-dependent homophilic binding between adjacent cells, meaning that they bind to identical cadherin molecules on neighboring cells.

There are several types of cadherins, including classical cadherins, desmosomal cadherins, and protocadherins, each with distinct functions and localization in tissues. Classical cadherins, also known as type I cadherins, are the most well-studied and are essential for the formation of adherens junctions, which help to maintain cell-to-cell contact and tissue architecture.

Desmosomal cadherins, on the other hand, are critical for the formation and maintenance of desmosomes, which are specialized intercellular junctions that provide mechanical strength and stability to tissues. Protocadherins are a diverse family of cadherin-related proteins that have been implicated in various developmental processes, including neuronal connectivity and tissue patterning.

Mutations in cadherin genes have been associated with several human diseases, including cancer, neurological disorders, and heart defects. Therefore, understanding the structure, function, and regulation of cadherins is essential for elucidating their roles in health and disease.

Chromatin Immunoprecipitation (ChIP) is a molecular biology technique used to analyze the interaction between proteins and DNA in the cell. It is a powerful tool for studying protein-DNA binding, such as transcription factor binding to specific DNA sequences, histone modification, and chromatin structure.

In ChIP assays, cells are first crosslinked with formaldehyde to preserve protein-DNA interactions. The chromatin is then fragmented into small pieces using sonication or other methods. Specific antibodies against the protein of interest are added to precipitate the protein-DNA complexes. After reversing the crosslinking, the DNA associated with the protein is purified and analyzed using PCR, sequencing, or microarray technologies.

ChIP assays can provide valuable information about the regulation of gene expression, epigenetic modifications, and chromatin structure in various biological processes and diseases, including cancer, development, and differentiation.

Gonads are the reproductive organs that produce gametes (sex cells) and sex hormones. In males, the gonads are the testes, which produce sperm and testosterone. In females, the gonads are the ovaries, which produce eggs and estrogen and progesterone. The development, function, and regulation of the gonads are crucial for reproductive health and fertility.

Oligodendroglia are a type of neuroglial cell found in the central nervous system (CNS) of vertebrates, including humans. These cells play a crucial role in providing support and insulation to nerve fibers (axons) in the CNS, which includes the brain and spinal cord.

More specifically, oligodendroglia produce a fatty substance called myelin that wraps around axons, forming myelin sheaths. This myelination process helps to increase the speed of electrical impulse transmission (nerve impulses) along the axons, allowing for efficient communication between different neurons.

In addition to their role in myelination, oligodendroglia also contribute to the overall health and maintenance of the CNS by providing essential nutrients and supporting factors to neurons. Dysfunction or damage to oligodendroglia has been implicated in various neurological disorders, such as multiple sclerosis (MS), where demyelination of axons leads to impaired nerve function and neurodegeneration.

Polycomb Repressive Complex 2 (PRC2) is a multi-protein complex that plays a crucial role in the epigenetic regulation of gene expression, primarily through the modification of histone proteins. It is named after the Polycomb group genes that were initially identified in Drosophila melanogaster (fruit flies) due to their involvement in maintaining the repressed state of homeotic genes during development.

The core components of PRC2 include:

1. Enhancer of Zeste Homolog 2 (EZH2) or its paralog EZH1: These are histone methyltransferases that catalyze the addition of methyl groups to lysine 27 on histone H3 (H3K27). The trimethylation of this residue (H3K27me3) is a hallmark of PRC2-mediated repression.
2. Suppressor of Zeste 12 (SUZ12): This protein is essential for the stability and methyltransferase activity of the complex.
3. Embryonic Ectoderm Development (EED): This protein recognizes and binds to the H3K27me3 mark, enhancing the methyltransferase activity of EZH2/EZH1 and promoting the spreading of the repressive mark along chromatin.
4. Retinoblastoma-associated Protein 46/48 (RbAP46/48): These are histone binding proteins that facilitate the interaction between PRC2 and nucleosomes, thereby contributing to the specificity of its targeting.

PRC2 is involved in various cellular processes, such as differentiation, proliferation, and development, by modulating the expression of genes critical for these functions. Dysregulation of PRC2 has been implicated in several human diseases, including cancers, where it often exhibits aberrant activity or mislocalization, leading to altered gene expression profiles.

Etoposide is a chemotherapy medication used to treat various types of cancer, including lung cancer, testicular cancer, and certain types of leukemia. It works by inhibiting the activity of an enzyme called topoisomerase II, which is involved in DNA replication and transcription. By doing so, etoposide can interfere with the growth and multiplication of cancer cells.

Etoposide is often administered intravenously in a hospital or clinic setting, although it may also be given orally in some cases. The medication can cause a range of side effects, including nausea, vomiting, hair loss, and an increased risk of infection. It can also have more serious side effects, such as bone marrow suppression, which can lead to anemia, bleeding, and a weakened immune system.

Like all chemotherapy drugs, etoposide is not without risks and should only be used under the close supervision of a qualified healthcare provider. It is important for patients to discuss the potential benefits and risks of this medication with their doctor before starting treatment.

Nerve regeneration is the process of regrowth and restoration of functional nerve connections following damage or injury to the nervous system. This complex process involves various cellular and molecular events, such as the activation of support cells called glia, the sprouting of surviving nerve fibers (axons), and the reformation of neural circuits. The goal of nerve regeneration is to enable the restoration of normal sensory, motor, and autonomic functions impaired due to nerve damage or injury.

Cytarabine is a chemotherapeutic agent used in the treatment of various types of cancer, including leukemias and lymphomas. Its chemical name is cytosine arabinoside, and it works by interfering with the DNA synthesis of cancer cells, which ultimately leads to their death.

Cytarabine is often used in combination with other chemotherapy drugs and may be administered through various routes, such as intravenous (IV) or subcutaneous injection, or orally. The specific dosage and duration of treatment will depend on the type and stage of cancer being treated, as well as the patient's overall health status.

Like all chemotherapy drugs, cytarabine can cause a range of side effects, including nausea, vomiting, diarrhea, hair loss, and an increased risk of infection. It may also cause more serious side effects, such as damage to the liver, kidneys, or nervous system, and it is important for patients to be closely monitored during treatment to minimize these risks.

It's important to note that medical treatments should only be administered under the supervision of a qualified healthcare professional, and this information should not be used as a substitute for medical advice.

Gene Regulatory Networks (GRNs) are complex systems of molecular interactions that regulate the expression of genes within an organism. These networks consist of various types of regulatory elements, including transcription factors, enhancers, promoters, and silencers, which work together to control when, where, and to what extent a gene is expressed.

In GRNs, transcription factors bind to specific DNA sequences in the regulatory regions of target genes, either activating or repressing their transcription into messenger RNA (mRNA). This process is influenced by various intracellular and extracellular signals that modulate the activity of transcription factors, allowing for precise regulation of gene expression in response to changing environmental conditions.

The structure and behavior of GRNs can be represented as a network of nodes (genes) and edges (regulatory interactions), with the strength and directionality of these interactions determined by the specific molecular mechanisms involved. Understanding the organization and dynamics of GRNs is crucial for elucidating the underlying causes of various biological processes, including development, differentiation, homeostasis, and disease.

The thymus gland is an essential organ of the immune system, located in the upper chest, behind the sternum and surrounding the heart. It's primarily active until puberty and begins to shrink in size and activity thereafter. The main function of the thymus gland is the production and maturation of T-lymphocytes (T-cells), which are crucial for cell-mediated immunity, helping to protect the body from infection and cancer.

The thymus gland provides a protected environment where immune cells called pre-T cells develop into mature T cells. During this process, they learn to recognize and respond appropriately to foreign substances while remaining tolerant to self-tissues, which is crucial for preventing autoimmune diseases.

Additionally, the thymus gland produces hormones like thymosin that regulate immune cell activities and contribute to the overall immune response.

Vascular Endothelial Growth Factor A (VEGFA) is a specific isoform of the vascular endothelial growth factor (VEGF) family. It is a well-characterized signaling protein that plays a crucial role in angiogenesis, the process of new blood vessel formation from pre-existing vessels. VEGFA stimulates the proliferation and migration of endothelial cells, which line the interior surface of blood vessels, thereby contributing to the growth and development of new vasculature. This protein is essential for physiological processes such as embryonic development and wound healing, but it has also been implicated in various pathological conditions, including cancer, age-related macular degeneration, and diabetic retinopathy. The regulation of VEGFA expression and activity is critical to maintaining proper vascular function and homeostasis.

'Tumor cells, cultured' refers to the process of removing cancerous cells from a tumor and growing them in controlled laboratory conditions. This is typically done by isolating the tumor cells from a patient's tissue sample, then placing them in a nutrient-rich environment that promotes their growth and multiplication.

The resulting cultured tumor cells can be used for various research purposes, including the study of cancer biology, drug development, and toxicity testing. They provide a valuable tool for researchers to better understand the behavior and characteristics of cancer cells outside of the human body, which can lead to the development of more effective cancer treatments.

It is important to note that cultured tumor cells may not always behave exactly the same way as they do in the human body, so findings from cell culture studies must be validated through further research, such as animal models or clinical trials.

Laminin is a family of proteins that are an essential component of the basement membrane, which is a specialized type of extracellular matrix. Laminins are large trimeric molecules composed of three different chains: α, β, and γ. There are five different α chains, three different β chains, and three different γ chains that can combine to form at least 15 different laminin isoforms.

Laminins play a crucial role in maintaining the structure and integrity of basement membranes by interacting with other components of the extracellular matrix, such as collagen IV, and cell surface receptors, such as integrins. They are involved in various biological processes, including cell adhesion, differentiation, migration, and survival.

Laminin dysfunction has been implicated in several human diseases, including cancer, diabetic nephropathy, and muscular dystrophy.

Cell growth processes refer to the series of events that occur within a cell leading to an increase in its size, mass, and number of organelles. These processes are essential for the development, maintenance, and reproduction of all living organisms. The main cell growth processes include:

1. Cell Cycle: It is the sequence of events that a eukaryotic cell goes through from one cell division (mitosis) to the next. The cell cycle consists of four distinct phases: G1 phase (growth and preparation for DNA replication), S phase (DNA synthesis), G2 phase (preparation for mitosis), and M phase (mitosis or meiosis).

2. DNA Replication: It is the process by which a cell makes an identical copy of its DNA molecule before cell division. This ensures that each daughter cell receives an exact replica of the parent cell's genetic material.

3. Protein Synthesis: Cells grow by increasing their protein content, which is achieved through the process of protein synthesis. This involves transcribing DNA into mRNA (transcription) and then translating that mRNA into a specific protein sequence (translation).

4. Cellular Metabolism: It refers to the sum total of all chemical reactions that occur within a cell to maintain life. These reactions include catabolic processes, which break down nutrients to release energy, and anabolic processes, which use energy to build complex molecules like proteins, lipids, and carbohydrates.

5. Cell Signaling: Cells communicate with each other through intricate signaling pathways that help coordinate growth, differentiation, and survival. These signals can come from within the cell (intracellular) or from outside the cell (extracellular).

6. Cell Division: Also known as mitosis, it is the process by which a single cell divides into two identical daughter cells. This ensures that each new cell contains an exact copy of the parent cell's genetic material and allows for growth and repair of tissues.

7. Apoptosis: It is a programmed cell death process that helps maintain tissue homeostasis by eliminating damaged or unnecessary cells. Dysregulation of apoptosis can lead to diseases such as cancer and autoimmune disorders.

RNA-binding proteins (RBPs) are a class of proteins that selectively interact with RNA molecules to form ribonucleoprotein complexes. These proteins play crucial roles in the post-transcriptional regulation of gene expression, including pre-mRNA processing, mRNA stability, transport, localization, and translation. RBPs recognize specific RNA sequences or structures through their modular RNA-binding domains, which can be highly degenerate and allow for the recognition of a wide range of RNA targets. The interaction between RBPs and RNA is often dynamic and can be regulated by various post-translational modifications of the proteins or by environmental stimuli, allowing for fine-tuning of gene expression in response to changing cellular needs. Dysregulation of RBP function has been implicated in various human diseases, including neurological disorders and cancer.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

The dermis is the layer of skin located beneath the epidermis, which is the outermost layer of the skin. It is composed of connective tissue and provides structure and support to the skin. The dermis contains blood vessels, nerves, hair follicles, sweat glands, and oil glands. It is also responsible for the production of collagen and elastin, which give the skin its strength and flexibility. The dermis can be further divided into two layers: the papillary dermis, which is the upper layer and contains finger-like projections called papillae that extend upwards into the epidermis, and the reticular dermis, which is the lower layer and contains thicker collagen bundles. Together, the epidermis and dermis make up the true skin.

Collagen is the most abundant protein in the human body, and it is a major component of connective tissues such as tendons, ligaments, skin, and bones. Collagen provides structure and strength to these tissues and helps them to withstand stretching and tension. It is made up of long chains of amino acids, primarily glycine, proline, and hydroxyproline, which are arranged in a triple helix structure. There are at least 16 different types of collagen found in the body, each with slightly different structures and functions. Collagen is important for maintaining the integrity and health of tissues throughout the body, and it has been studied for its potential therapeutic uses in various medical conditions.

Ectoderm is the outermost of the three primary germ layers in a developing embryo, along with the endoderm and mesoderm. The ectoderm gives rise to the outer covering of the body, including the skin, hair, nails, glands, and the nervous system, which includes the brain, spinal cord, and peripheral nerves. It also forms the lining of the mouth, anus, nose, and ears. Essentially, the ectoderm is responsible for producing all the epidermal structures and the neural crest cells that contribute to various derivatives such as melanocytes, adrenal medulla, smooth muscle, and peripheral nervous system components.

A Blastocyst Inner Cell Mass (ICM) is a group of cells within a blastocyst, which is an early-stage preimplantation embryo that develops in mammals. The blastocyst consists of two main components: the trophectoderm, which forms the outer layer and eventually gives rise to the placenta, and the inner cell mass (ICM), which is a cluster of cells located inside the blastocyst.

The ICM is composed of pluripotent cells that have the ability to differentiate into any of the three primary germ layers: ectoderm, mesoderm, or endoderm. These cells will eventually give rise to the fetus and some extraembryonic structures such as the yolk sac and allantois.

The ICM is an essential part of the blastocyst, and its development and quality are critical factors in the success of assisted reproductive technologies (ART) like in vitro fertilization (IVF). The assessment of the ICM's morphology and cell count can help embryologists evaluate the potential of an embryo to develop into a viable pregnancy.

Vidarabine is an antiviral medication used to treat herpes simplex infections, particularly severe cases such as herpes encephalitis (inflammation of the brain caused by the herpes simplex virus). It works by interfering with the DNA replication of the virus.

In medical terms, vidarabine is a nucleoside analogue that is phosphorylated intracellularly to the active form, vidarabine triphosphate. This compound inhibits viral DNA polymerase and incorporates into viral DNA, causing termination of viral DNA synthesis.

Vidarabine was previously used as an injectable medication but has largely been replaced by more modern antiviral drugs such as acyclovir due to its greater efficacy and lower toxicity.

Bone marrow purging is a procedure that involves the removal of cancerous or damaged cells from bone marrow before it is transplanted into a patient. This process is often used in the treatment of blood cancers such as leukemia and lymphoma, as well as other diseases that affect the bone marrow.

The purging process typically involves collecting bone marrow from the patient or a donor, then treating it with chemicals or medications to eliminate any cancerous or damaged cells. The purged bone marrow is then transplanted back into the patient's body, where it can help to produce healthy new blood cells.

There are several methods that can be used for bone marrow purging, including physical separation techniques, chemical treatments, and immunological approaches using antibodies or other immune system components. The choice of method depends on several factors, including the type and stage of the disease being treated, as well as the patient's individual medical history and condition.

It is important to note that bone marrow purging is a complex procedure that carries some risks and potential complications, such as damage to healthy cells, delayed recovery, and increased risk of infection. As with any medical treatment, it should be carefully evaluated and discussed with a healthcare provider to determine whether it is appropriate for a given patient's situation.

Parthenogenesis is a form of asexual reproduction in which offspring develop from unfertilized eggs or ovums. It occurs naturally in some plant and insect species, as well as a few vertebrates such as reptiles and fish. Parthenogenesis does not involve the fusion of sperm and egg cells; instead, the development of offspring is initiated by some other trigger, such as a chemical or physical stimulus. This type of reproduction results in offspring that are genetically identical to the parent organism. In humans and other mammals, parthenogenesis is not a natural occurrence and would require scientific intervention to induce.

Osteogenesis is the process of bone formation or development. It involves the differentiation and maturation of osteoblasts, which are bone-forming cells that synthesize and deposit the organic matrix of bone tissue, composed mainly of type I collagen. This organic matrix later mineralizes to form the inorganic crystalline component of bone, primarily hydroxyapatite.

There are two primary types of osteogenesis: intramembranous and endochondral. Intramembranous osteogenesis occurs directly within connective tissue, where mesenchymal stem cells differentiate into osteoblasts and form bone tissue without an intervening cartilage template. This process is responsible for the formation of flat bones like the skull and clavicles.

Endochondral osteogenesis, on the other hand, involves the initial development of a cartilaginous model or template, which is later replaced by bone tissue. This process forms long bones, such as those in the limbs, and occurs through several stages involving chondrocyte proliferation, hypertrophy, and calcification, followed by invasion of blood vessels and osteoblasts to replace the cartilage with bone tissue.

Abnormalities in osteogenesis can lead to various skeletal disorders and diseases, such as osteogenesis imperfecta (brittle bone disease), achondroplasia (a form of dwarfism), and cleidocranial dysplasia (a disorder affecting skull and collarbone development).

Thiotepa is an antineoplastic (cancer-fighting) drug. It belongs to a class of medications called alkylating agents, which work by interfering with the DNA of cancer cells, preventing them from dividing and growing. Thiotepa is used in the treatment of various types of cancers, including breast, ovarian, and bladder cancer.

It may be administered intravenously (into a vein), intravesically (into the bladder), or intrathecally (into the spinal cord). The specific dosage and duration of treatment will depend on the type and stage of cancer being treated, as well as the patient's overall health status.

Like all chemotherapy drugs, thiotepa can have significant side effects, including nausea, vomiting, hair loss, and a weakened immune system. It is important for patients to discuss these potential risks with their healthcare provider before starting treatment.

Wnt3 protein is a member of the Wnt family of signaling proteins, which are secreted signaling molecules that play crucial roles in embryonic development and tissue homeostasis in adults. Specifically, Wnt3 is involved in the regulation of cell fate decisions, proliferation, and differentiation during embryogenesis. It binds to receptors on the target cells and activates a signaling pathway known as the canonical Wnt pathway, leading to the stabilization and nuclear accumulation of β-catenin, which then interacts with transcription factors to regulate gene expression. Defects in Wnt3 have been implicated in various developmental disorders, including some forms of congenital scoliosis and spina bifida.

Nuclear transfer techniques are scientific procedures that involve the transfer of the nucleus of a cell, containing its genetic material, from one cell to another. The most well-known type of nuclear transfer is somatic cell nuclear transfer (SCNT), which is used in therapeutic cloning and reproductive cloning.

In SCNT, the nucleus of a somatic cell (a body cell, not an egg or sperm cell) is transferred into an enucleated egg cell (an egg cell from which the nucleus has been removed). The egg cell with the new nucleus is then stimulated to divide and grow, creating an embryo that is genetically identical to the donor of the somatic cell.

Nuclear transfer techniques have various potential applications in medicine, including the creation of patient-specific stem cells for use in regenerative medicine, drug development and testing, and the study of genetic diseases. However, these procedures are also associated with ethical concerns, particularly in relation to reproductive cloning and the creation of human embryos for research purposes.

Liver regeneration is the ability of the liver to restore its original mass and function after injury or surgical resection. This complex process involves the proliferation and differentiation of mature hepatocytes, as well as the activation and transdifferentiation of various types of stem and progenitor cells located in the liver. The mechanisms that regulate liver regeneration include a variety of growth factors, hormones, and cytokines, which act in a coordinated manner to ensure the restoration of normal liver architecture and function. Liver regeneration is essential for the survival of individuals who have undergone partial hepatectomy or who have suffered liver damage due to various causes, such as viral hepatitis, alcohol abuse, or drug-induced liver injury.

"Bone" is the hard, dense connective tissue that makes up the skeleton of vertebrate animals. It provides support and protection for the body's internal organs, and serves as a attachment site for muscles, tendons, and ligaments. Bone is composed of cells called osteoblasts and osteoclasts, which are responsible for bone formation and resorption, respectively, and an extracellular matrix made up of collagen fibers and mineral crystals.

Bones can be classified into two main types: compact bone and spongy bone. Compact bone is dense and hard, and makes up the outer layer of all bones and the shafts of long bones. Spongy bone is less dense and contains large spaces, and makes up the ends of long bones and the interior of flat and irregular bones.

The human body has 206 bones in total. They can be further classified into five categories based on their shape: long bones, short bones, flat bones, irregular bones, and sesamoid bones.

Gene deletion is a type of mutation where a segment of DNA, containing one or more genes, is permanently lost or removed from a chromosome. This can occur due to various genetic mechanisms such as homologous recombination, non-homologous end joining, or other types of genomic rearrangements.

The deletion of a gene can have varying effects on the organism, depending on the function of the deleted gene and its importance for normal physiological processes. If the deleted gene is essential for survival, the deletion may result in embryonic lethality or developmental abnormalities. However, if the gene is non-essential or has redundant functions, the deletion may not have any noticeable effects on the organism's phenotype.

Gene deletions can also be used as a tool in genetic research to study the function of specific genes and their role in various biological processes. For example, researchers may use gene deletion techniques to create genetically modified animal models to investigate the impact of gene deletion on disease progression or development.

HEK293 cells, also known as human embryonic kidney 293 cells, are a line of cells used in scientific research. They were originally derived from human embryonic kidney cells and have been adapted to grow in a lab setting. HEK293 cells are widely used in molecular biology and biochemistry because they can be easily transfected (a process by which DNA is introduced into cells) and highly express foreign genes. As a result, they are often used to produce proteins for structural and functional studies. It's important to note that while HEK293 cells are derived from human tissue, they have been grown in the lab for many generations and do not retain the characteristics of the original embryonic kidney cells.

The dental papilla is a type of tissue found in the developing tooth within the jawbone. It is composed of cells that will eventually differentiate into odontoblasts, which are the cells responsible for producing dentin, one of the main hard tissues that make up the tooth. The dental papilla is located in the center of the tooth germ and is surrounded by the dental follicle, another type of tissue that helps to form the tooth. As the tooth develops, the dental papilla becomes smaller and eventually forms the pulp chamber, which contains the blood vessels, nerves, and connective tissue that support and nourish the tooth.

Skeletal myoblasts are the precursor cells responsible for the formation and repair of skeletal muscle fibers. They are also known as satellite cells, located in a quiescent state between the basal lamina and sarcolemma of mature muscle fibers. Upon muscle injury or damage, these cells become activated, proliferate, differentiate into myocytes, align with existing muscle fibers, and fuse to form new muscle fibers or repair damaged ones. This process is crucial for postnatal growth, maintenance, and regeneration of skeletal muscles.

The cerebral ventricles are a system of interconnected fluid-filled cavities within the brain. They are located in the center of the brain and are filled with cerebrospinal fluid (CSF), which provides protection to the brain by cushioning it from impacts and helping to maintain its stability within the skull.

There are four ventricles in total: two lateral ventricles, one third ventricle, and one fourth ventricle. The lateral ventricles are located in each cerebral hemisphere, while the third ventricle is located between the thalami of the two hemispheres. The fourth ventricle is located at the base of the brain, above the spinal cord.

CSF flows from the lateral ventricles into the third ventricle through narrow passageways called the interventricular foramen. From there, it flows into the fourth ventricle through another narrow passageway called the cerebral aqueduct. CSF then leaves the fourth ventricle and enters the subarachnoid space surrounding the brain and spinal cord, where it can be absorbed into the bloodstream.

Abnormalities in the size or shape of the cerebral ventricles can indicate underlying neurological conditions, such as hydrocephalus (excessive accumulation of CSF) or atrophy (shrinkage) of brain tissue. Imaging techniques, such as computed tomography (CT) or magnetic resonance imaging (MRI), are often used to assess the size and shape of the cerebral ventricles in clinical settings.

In situ hybridization, fluorescence (FISH) is a type of molecular cytogenetic technique used to detect and localize the presence or absence of specific DNA sequences on chromosomes through the use of fluorescent probes. This technique allows for the direct visualization of genetic material at a cellular level, making it possible to identify chromosomal abnormalities such as deletions, duplications, translocations, and other rearrangements.

The process involves denaturing the DNA in the sample to separate the double-stranded molecules into single strands, then adding fluorescently labeled probes that are complementary to the target DNA sequence. The probe hybridizes to the complementary sequence in the sample, and the location of the probe is detected by fluorescence microscopy.

FISH has a wide range of applications in both clinical and research settings, including prenatal diagnosis, cancer diagnosis and monitoring, and the study of gene expression and regulation. It is a powerful tool for identifying genetic abnormalities and understanding their role in human disease.

Non-Hodgkin lymphoma (NHL) is a type of cancer that originates in the lymphatic system, which is part of the immune system. It involves the abnormal growth and proliferation of malignant lymphocytes (a type of white blood cell), leading to the formation of tumors in lymph nodes, spleen, bone marrow, or other organs. NHL can be further classified into various subtypes based on the specific type of lymphocyte involved and its characteristics.

The symptoms of Non-Hodgkin lymphoma may include:

* Painless swelling of lymph nodes in the neck, armpits, or groin
* Persistent fatigue
* Unexplained weight loss
* Fever
* Night sweats
* Itchy skin

The exact cause of Non-Hodgkin lymphoma is not well understood, but it has been associated with certain risk factors such as age (most common in people over 60), exposure to certain chemicals, immune system deficiencies, and infection with viruses like Epstein-Barr virus or HIV.

Treatment for Non-Hodgkin lymphoma depends on the stage and subtype of the disease, as well as the patient's overall health. Treatment options may include chemotherapy, radiation therapy, immunotherapy, targeted therapy, stem cell transplantation, or a combination of these approaches. Regular follow-up care is essential to monitor the progression of the disease and manage any potential long-term side effects of treatment.

A bioreactor is a device or system that supports and controls the conditions necessary for biological organisms, cells, or tissues to grow and perform their specific functions. It provides a controlled environment with appropriate temperature, pH, nutrients, and other factors required for the desired biological process to occur. Bioreactors are widely used in various fields such as biotechnology, pharmaceuticals, agriculture, and environmental science for applications like production of therapeutic proteins, vaccines, biofuels, enzymes, and wastewater treatment.

Integrases are enzymes that are responsible for the integration of genetic material into a host's DNA. In particular, integrases play a crucial role in the life cycle of retroviruses, such as HIV (Human Immunodeficiency Virus). These viruses have an RNA genome, which must be reverse-transcribed into DNA before it can be integrated into the host's chromosomal DNA.

The integrase enzyme, encoded by the virus's pol gene, is responsible for this critical step in the retroviral replication cycle. It mediates the cutting and pasting of the viral cDNA into a specific site within the host cell's genome, leading to the formation of a provirus. This provirus can then be transcribed and translated by the host cell's machinery, resulting in the production of new virus particles.

Integrase inhibitors are an important class of antiretroviral drugs used in the treatment of HIV infection. They work by blocking the activity of the integrase enzyme, thereby preventing the integration of viral DNA into the host genome and halting the replication of the virus.

The neural plate is a structure formed during the embryonic development of vertebrates. It is a thickened plate of ectodermal cells located on the dorsal surface of the developing embryo. The neural plate gives rise to the central nervous system, including the brain and spinal cord.

The process of neural plate formation begins with the specification of ectodermal cells into neural fated cells, a process that is regulated by various signaling molecules. Once specified, these cells undergo morphological changes, resulting in the thickening of the ectoderm to form the neural plate.

The neural plate then undergoes a series of folding movements, leading to the formation of the neural tube, which eventually develops into the brain and spinal cord. The edges of the neural plate, known as the neural folds, come together and fuse, forming a closed tube. Failure of the neural folds to fuse properly can result in neural tube defects, such as spina bifida.

Overall, the neural plate is a critical structure in the development of the nervous system in vertebrates, and its formation and subsequent development are tightly regulated by various genetic and environmental factors.

Glial Fibrillary Acidic Protein (GFAP) is a type of intermediate filament protein that is primarily found in astrocytes, which are a type of star-shaped glial cells in the central nervous system (CNS). These proteins play an essential role in maintaining the structural integrity and stability of astrocytes. They also participate in various cellular processes such as responding to injury, providing support to neurons, and regulating the extracellular environment.

GFAP is often used as a marker for astrocytic activation or reactivity, which can occur in response to CNS injuries, neuroinflammation, or neurodegenerative diseases. Elevated GFAP levels in cerebrospinal fluid (CSF) or blood can indicate astrocyte damage or dysfunction and are associated with several neurological conditions, including traumatic brain injury, stroke, multiple sclerosis, Alzheimer's disease, and Alexander's disease.

Chromatin is the complex of DNA, RNA, and proteins that make up the chromosomes in the nucleus of a cell. It is responsible for packaging the long DNA molecules into a more compact form that fits within the nucleus. Chromatin is made up of repeating units called nucleosomes, which consist of a histone protein octamer wrapped tightly by DNA. The structure of chromatin can be altered through chemical modifications to the histone proteins and DNA, which can influence gene expression and other cellular processes.

Interleukin-6 (IL-6) is a cytokine, a type of protein that plays a crucial role in communication between cells, especially in the immune system. It is produced by various cells including T-cells, B-cells, fibroblasts, and endothelial cells in response to infection, injury, or inflammation.

IL-6 has diverse effects on different cell types. In the immune system, it stimulates the growth and differentiation of B-cells into plasma cells that produce antibodies. It also promotes the activation and survival of T-cells. Moreover, IL-6 plays a role in fever induction by acting on the hypothalamus to raise body temperature during an immune response.

In addition to its functions in the immune system, IL-6 has been implicated in various physiological processes such as hematopoiesis (the formation of blood cells), bone metabolism, and neural development. However, abnormal levels of IL-6 have also been associated with several diseases, including autoimmune disorders, chronic inflammation, and cancer.

The dental sac, also known as the dental follicle, is a soft tissue structure that surrounds the developing tooth crown during odontogenesis, which is the process of tooth development. It is derived from the ectoderm and mesenchyme of the embryonic oral cavity. The dental sac gives rise to several important structures associated with the tooth, including the periodontal ligament, cementum, and the alveolar bone that surrounds and supports the tooth in the jaw.

The dental sac plays a critical role in tooth development by regulating the mineralization of the tooth crown and providing a protective environment for the developing tooth. It also contains cells called odontoblasts, which are responsible for producing dentin, one of the hard tissues that make up the tooth. Abnormalities in the development or growth of the dental sac can lead to various dental anomalies, such as impacted teeth, dilacerated roots, and other developmental disorders.

Embryonal carcinoma is a rare and aggressive type of cancer that arises from primitive germ cells. It typically occurs in the gonads (ovaries or testicles), but can also occur in other areas of the body such as the mediastinum, retroperitoneum, or sacrococcygeal region.

Embryonal carcinoma is called "embryonal" because the cancerous cells resemble those found in an embryo during early stages of development. These cells are capable of differentiating into various cell types, which can lead to a mix of cell types within the tumor.

Embryonal carcinoma is a highly malignant tumor that tends to grow and spread quickly. It can metastasize to other parts of the body, including the lungs, liver, brain, and bones. Treatment typically involves surgical removal of the tumor, followed by chemotherapy and/or radiation therapy to kill any remaining cancer cells.

Prognosis for embryonal carcinoma depends on several factors, including the stage of the disease at diagnosis, the location of the tumor, and the patient's overall health. In general, this type of cancer has a poor prognosis, with a high risk of recurrence even after treatment.

Proteoglycans are complex, highly negatively charged macromolecules that are composed of a core protein covalently linked to one or more glycosaminoglycan (GAG) chains. They are a major component of the extracellular matrix (ECM) and play crucial roles in various biological processes, including cell signaling, regulation of growth factor activity, and maintenance of tissue structure and function.

The GAG chains, which can vary in length and composition, are long, unbranched polysaccharides that are composed of repeating disaccharide units containing a hexuronic acid (either glucuronic or iduronic acid) and a hexosamine (either N-acetylglucosamine or N-acetylgalactosamine). These GAG chains can be sulfated to varying degrees, which contributes to the negative charge of proteoglycans.

Proteoglycans are classified into four major groups based on their core protein structure and GAG composition: heparan sulfate/heparin proteoglycans, chondroitin/dermatan sulfate proteoglycans, keratan sulfate proteoglycans, and hyaluronan-binding proteoglycans. Each group has distinct functions and is found in specific tissues and cell types.

In summary, proteoglycans are complex macromolecules composed of a core protein and one or more GAG chains that play important roles in the ECM and various biological processes, including cell signaling, growth factor regulation, and tissue structure maintenance.

GATA2 transcription factor is a protein that plays a crucial role in the development and function of blood cells. It belongs to the family of GATA transcription factors, which are characterized by their ability to bind to specific DNA sequences called GATA motifs, through a zinc finger domain. The GATA2 transcription factor, in particular, is essential for the development of hematopoietic stem and progenitor cells (HSPCs), which give rise to all blood cell types.

GATA2 binds to the regulatory regions of genes involved in hematopoiesis and modulates their transcription, thereby controlling the differentiation, proliferation, and survival of HSPCs. Mutations in the GATA2 gene have been associated with various hematological disorders, such as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and severe congenital neutropenia. These genetic alterations can lead to impaired hematopoiesis, dysfunctional immune cells, and an increased risk of developing blood cancers.

In summary, GATA2 transcription factor is a protein that regulates the development and function of blood cells by controlling the expression of genes involved in hematopoiesis. Genetic defects in this transcription factor can result in various hematological disorders and predispose individuals to blood cancers.

Keratins are a type of fibrous structural proteins that constitute the main component of the integumentary system, which includes the hair, nails, and skin of vertebrates. They are also found in other tissues such as horns, hooves, feathers, and reptilian scales. Keratins are insoluble proteins that provide strength, rigidity, and protection to these structures.

Keratins are classified into two types: soft keratins (Type I) and hard keratins (Type II). Soft keratins are found in the skin and simple epithelial tissues, while hard keratins are present in structures like hair, nails, horns, and hooves.

Keratin proteins have a complex structure consisting of several domains, including an alpha-helical domain, beta-pleated sheet domain, and a non-repetitive domain. These domains provide keratin with its unique properties, such as resistance to heat, chemicals, and mechanical stress.

In summary, keratins are fibrous structural proteins that play a crucial role in providing strength, rigidity, and protection to various tissues in the body.

Myeloid cells are a type of immune cell that originate from the bone marrow. They develop from hematopoietic stem cells, which can differentiate into various types of blood cells. Myeloid cells include monocytes, macrophages, granulocytes (such as neutrophils, eosinophils, and basophils), dendritic cells, and mast cells. These cells play important roles in the immune system, such as defending against pathogens, modulating inflammation, and participating in tissue repair and remodeling.

Myeloid cell development is a tightly regulated process that involves several stages of differentiation, including the commitment to the myeloid lineage, proliferation, and maturation into specific subtypes. Dysregulation of myeloid cell development or function can contribute to various diseases, such as infections, cancer, and autoimmune disorders.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Embryo culture techniques refer to the methods and procedures used to maintain and support the growth and development of an embryo outside of the womb, typically in a laboratory setting. These techniques are often used in the context of assisted reproductive technologies (ART), such as in vitro fertilization (IVF).

The process typically involves fertilizing an egg with sperm in a laboratory dish and then carefully monitoring and maintaining the resulting embryo in a specialized culture medium that provides the necessary nutrients, hormones, and other factors to support its development. The culture medium is usually contained within an incubator that maintains optimal temperature, humidity, and gas concentrations to mimic the environment inside the body.

Embryologists may use various embryo culture techniques depending on the stage of development and the specific needs of the embryo. For example, some techniques involve culturing the embryo in a single layer, while others may use a technique called "co-culture" that involves growing the embryo on a layer of cells to provide additional support and nutrients.

The goal of embryo culture techniques is to promote the healthy growth and development of the embryo, increasing the chances of a successful pregnancy and live birth. However, it's important to note that these techniques are not without risk, and there are potential ethical considerations surrounding the use of ART and embryo culture.

The Central Nervous System (CNS) is the part of the nervous system that consists of the brain and spinal cord. It is called the "central" system because it receives information from, and sends information to, the rest of the body through peripheral nerves, which make up the Peripheral Nervous System (PNS).

The CNS is responsible for processing sensory information, controlling motor functions, and regulating various autonomic processes like heart rate, respiration, and digestion. The brain, as the command center of the CNS, interprets sensory stimuli, formulates thoughts, and initiates actions. The spinal cord serves as a conduit for nerve impulses traveling to and from the brain and the rest of the body.

The CNS is protected by several structures, including the skull (which houses the brain) and the vertebral column (which surrounds and protects the spinal cord). Despite these protective measures, the CNS remains vulnerable to injury and disease, which can have severe consequences due to its crucial role in controlling essential bodily functions.

Fibroblast Growth Factors (FGFs) are a family of growth factors that play crucial roles in various biological processes, including cell survival, proliferation, migration, and differentiation. They bind to specific tyrosine kinase receptors (FGFRs) on the cell surface, leading to intracellular signaling cascades that regulate gene expression and downstream cellular responses. FGFs are involved in embryonic development, tissue repair, and angiogenesis (the formation of new blood vessels). There are at least 22 distinct FGFs identified in humans, each with unique functions and patterns of expression. Some FGFs, like FGF1 and FGF2, have mitogenic effects on fibroblasts and other cell types, while others, such as FGF7 and FGF10, are essential for epithelial-mesenchymal interactions during organ development. Dysregulation of FGF signaling has been implicated in various pathological conditions, including cancer, fibrosis, and developmental disorders.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Membrane glycoproteins are proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. They are integral components of biological membranes, spanning the lipid bilayer and playing crucial roles in various cellular processes.

The glycosylation of these proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus during protein folding and trafficking. The attached glycans can vary in structure, length, and composition, which contributes to the diversity of membrane glycoproteins.

Membrane glycoproteins can be classified into two main types based on their orientation within the lipid bilayer:

1. Type I (N-linked): These glycoproteins have a single transmembrane domain and an extracellular N-terminus, where the oligosaccharides are predominantly attached via asparagine residues (Asn-X-Ser/Thr sequon).
2. Type II (C-linked): These glycoproteins possess two transmembrane domains and an intracellular C-terminus, with the oligosaccharides linked to tryptophan residues via a mannose moiety.

Membrane glycoproteins are involved in various cellular functions, such as:

* Cell adhesion and recognition
* Receptor-mediated signal transduction
* Enzymatic catalysis
* Transport of molecules across membranes
* Cell-cell communication
* Immunological responses

Some examples of membrane glycoproteins include cell surface receptors (e.g., growth factor receptors, cytokine receptors), adhesion molecules (e.g., integrins, cadherins), and transporters (e.g., ion channels, ABC transporters).

"Gene knock-in techniques" refer to a group of genetic engineering methods used in molecular biology to precisely insert or "knock-in" a specific gene or DNA sequence into a specific location within the genome of an organism. This is typically done using recombinant DNA technology and embryonic stem (ES) cells, although other techniques such as CRISPR-Cas9 can also be used.

The goal of gene knock-in techniques is to create a stable and heritable genetic modification in which the introduced gene is expressed at a normal level and in the correct spatial and temporal pattern. This allows researchers to study the function of individual genes, investigate gene regulation, model human diseases, and develop potential therapies for genetic disorders.

In general, gene knock-in techniques involve several steps: first, a targeting vector is constructed that contains the desired DNA sequence flanked by homologous regions that match the genomic locus where the insertion will occur. This vector is then introduced into ES cells, which are cultured and allowed to undergo homologous recombination with the endogenous genome. The resulting modified ES cells are selected for and characterized to confirm the correct integration of the DNA sequence. Finally, the modified ES cells are used to generate chimeric animals, which are then bred to produce offspring that carry the genetic modification in their germline.

Overall, gene knock-in techniques provide a powerful tool for studying gene function and developing new therapies for genetic diseases.

Cytological techniques refer to the methods and procedures used to study individual cells, known as cytopathology. These techniques are used in the diagnosis and screening of various medical conditions, including cancer. The most common cytological technique is the Pap test, which involves collecting cells from the cervix and examining them for abnormalities. Other cytological techniques include fine-needle aspiration (FNA), which involves using a thin needle to withdraw cells from a tumor or lump, and body fluids analysis, which involves examining cells present in various bodily fluids such as urine, sputum, and pleural effusions. These techniques allow for the examination of cellular structure, morphology, and other characteristics to help diagnose and monitor diseases.

Core Binding Factor Alpha 2 Subunit, also known as CBF-A2 or CEBP-α, is a protein that forms a complex with other proteins to act as a transcription factor. Transcription factors are proteins that help regulate the expression of genes by binding to specific DNA sequences and controlling the rate of transcription of genetic information from DNA to RNA.

CBF-A2 is a member of the CCAAT/enhancer-binding protein (C/EBP) family of transcription factors, which are important in regulating various biological processes such as cell growth, development, and inflammation. CBF-A2 forms a heterodimer with Core Binding Factor Beta (CBF-β) to form the active transcription factor complex known as the core binding factor (CBF).

The CBF complex binds to the CCAAT box, a specific DNA sequence found in the promoter regions of many genes. By binding to this sequence, the CBF complex can either activate or repress the transcription of target genes, depending on the context and the presence of other regulatory factors.

Mutations in the gene encoding CBF-A2 have been associated with several human diseases, including acute myeloid leukemia (AML) and multiple myeloma. In AML, mutations in the CBF-A2 gene can lead to the formation of abnormal CBF complexes that disrupt normal gene expression patterns and contribute to the development of leukemia.

Connective tissue cells are a type of cell that are responsible for the production and maintenance of the extracellular matrix (ECM), which provides structural support and separates different tissues in the body. There are several types of connective tissue cells, including:

1. Fibroblasts: These are the most common type of connective tissue cell. They produce and maintain the ECM by synthesizing and secreting collagen, elastin, and other proteins that give the matrix its strength and elasticity.
2. Chondrocytes: These cells are found in cartilage and are responsible for producing and maintaining the cartilaginous matrix, which is composed of collagen and proteoglycans.
3. Osteoblasts: These cells are responsible for the formation and mineralization of bone tissue. They produce and secrete type I collagen and other proteins that form the organic matrix of bone, and they also regulate the deposition of calcium salts that mineralize the matrix.
4. Adipocytes: These are fat cells that store energy in the form of lipids. They are found in adipose tissue, which is a type of connective tissue that provides insulation and cushioning to the body.
5. Macrophages: These are large, mobile phagocytic cells that play an important role in the immune system. They are derived from monocytes and are found in many types of connective tissue, where they help to remove foreign particles, debris, and microorganisms.
6. Mast cells: These are connective tissue cells that contain granules filled with histamine, heparin, and other substances that are involved in inflammation and allergic reactions. They play a role in the immune response by releasing these granules when activated by antigens or other stimuli.

Connective tissue cells are essential for maintaining the structure and function of the body's tissues and organs, and they play an important role in wound healing, tissue repair, and the immune response.

Transmission electron microscopy (TEM) is a type of microscopy in which an electron beam is transmitted through a ultra-thin specimen, interacting with it as it passes through. An image is formed from the interaction of the electrons with the specimen; the image is then magnified and visualized on a fluorescent screen or recorded on an electronic detector (or photographic film in older models).

TEM can provide high-resolution, high-magnification images that can reveal the internal structure of specimens including cells, viruses, and even molecules. It is widely used in biological and materials science research to investigate the ultrastructure of cells, tissues and materials. In medicine, TEM is used for diagnostic purposes in fields such as virology and bacteriology.

It's important to note that preparing a sample for TEM is a complex process, requiring specialized techniques to create thin (50-100 nm) specimens. These include cutting ultrathin sections of embedded samples using an ultramicrotome, staining with heavy metal salts, and positive staining or negative staining methods.

Transforming Growth Factor-beta 3 (TGF-β3) is a type of cytokine, specifically a growth factor that belongs to the TGF-β family. It plays crucial roles in regulating various cellular processes such as proliferation, differentiation, apoptosis, and extracellular matrix production.

TGF-β3 has been identified to have significant functions during embryonic development and tissue repair. In particular, it is known to be involved in the regulation of wound healing and scar formation. TGF-β3 can influence the behavior of various cell types, including fibroblasts, epithelial cells, and immune cells.

In some cases, TGF-β3 has been investigated for its potential therapeutic use in reducing fibrosis and promoting tissue regeneration. However, more research is needed to fully understand its mechanisms and potential clinical applications.

I apologize for any confusion, but "Turbellaria" is not a medical term. It is a taxonomic category in biology, specifically a class within the phylum Platyhelminthes (flatworms). Turbellarians are free-living, flatworms that are typically characterized by their unsegmented body and the presence of cilia for locomotion. They include freshwater, marine, and terrestrial species. If you have a medical term or concept in mind, I would be happy to help define it for you.

A telomere is a region of repetitive DNA sequences found at the end of chromosomes, which protects the genetic data from damage and degradation during cell division. Telomeres naturally shorten as cells divide, and when they become too short, the cell can no longer divide and becomes senescent or dies. This natural process is associated with aging and various age-related diseases. The length of telomeres can also be influenced by various genetic and environmental factors, including stress, diet, and lifestyle.

STAT3 (Signal Transducer and Activator of Transcription 3) is a transcription factor protein that plays a crucial role in signal transduction and gene regulation. It is activated through phosphorylation by various cytokines and growth factors, which leads to its dimerization, nuclear translocation, and binding to specific DNA sequences. Once bound to the DNA, STAT3 regulates the expression of target genes involved in various cellular processes such as proliferation, differentiation, survival, and angiogenesis. Dysregulation of STAT3 has been implicated in several diseases, including cancer, autoimmune disorders, and inflammatory conditions.

Growth substances, in the context of medical terminology, typically refer to natural hormones or chemically synthesized agents that play crucial roles in controlling and regulating cell growth, differentiation, and division. They are also known as "growth factors" or "mitogens." These substances include:

1. Proteins: Examples include insulin-like growth factors (IGFs), transforming growth factor-beta (TGF-β), platelet-derived growth factor (PDGF), and fibroblast growth factors (FGFs). They bind to specific receptors on the cell surface, activating intracellular signaling pathways that promote cell proliferation, differentiation, and survival.

2. Steroids: Certain steroid hormones, such as androgens and estrogens, can also act as growth substances by binding to nuclear receptors and influencing gene expression related to cell growth and division.

3. Cytokines: Some cytokines, like interleukins (ILs) and hematopoietic growth factors (HGFs), contribute to the regulation of hematopoiesis, immune responses, and inflammation, thus indirectly affecting cell growth and differentiation.

These growth substances have essential roles in various physiological processes, such as embryonic development, tissue repair, and wound healing. However, abnormal or excessive production or response to these growth substances can lead to pathological conditions, including cancer, benign tumors, and other proliferative disorders.

CD29, also known as integrin β1, is a type of cell surface protein called an integrin that forms heterodimers with various α subunits to form different integrin receptors. These integrin receptors play important roles in various biological processes such as cell adhesion, migration, and signaling.

CD29/integrin β1 is widely expressed on many types of cells including leukocytes, endothelial cells, epithelial cells, and fibroblasts. It can bind to several extracellular matrix proteins such as collagen, laminin, and fibronectin, and mediate cell-matrix interactions. CD29/integrin β1 also participates in intracellular signaling pathways that regulate cell survival, proliferation, differentiation, and migration.

CD29/integrin β1 can function as an antigen, which is a molecule capable of inducing an immune response. Antibodies against CD29/integrin β1 have been found in some autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus (SLE). These antibodies can contribute to the pathogenesis of these diseases by activating complement, inducing inflammation, and damaging tissues.

Therefore, CD29/integrin β1 is an important molecule in both physiological and pathological processes, and its functions as an antigen have been implicated in some autoimmune disorders.

B-lymphocytes, also known as B-cells, are a type of white blood cell that plays a key role in the immune system's response to infection. They are responsible for producing antibodies, which are proteins that help to neutralize or destroy pathogens such as bacteria and viruses.

When a B-lymphocyte encounters a pathogen, it becomes activated and begins to divide and differentiate into plasma cells, which produce and secrete large amounts of antibodies specific to the antigens on the surface of the pathogen. These antibodies bind to the pathogen, marking it for destruction by other immune cells such as neutrophils and macrophages.

B-lymphocytes also have a role in presenting antigens to T-lymphocytes, another type of white blood cell involved in the immune response. This helps to stimulate the activation and proliferation of T-lymphocytes, which can then go on to destroy infected cells or help to coordinate the overall immune response.

Overall, B-lymphocytes are an essential part of the adaptive immune system, providing long-lasting immunity to previously encountered pathogens and helping to protect against future infections.

The prosencephalon is a term used in the field of neuroembryology, which refers to the developmental stage of the forebrain in the embryonic nervous system. It is one of the three primary vesicles that form during the initial stages of neurulation, along with the mesencephalon (midbrain) and rhombencephalon (hindbrain).

The prosencephalon further differentiates into two secondary vesicles: the telencephalon and diencephalon. The telencephalon gives rise to structures such as the cerebral cortex, basal ganglia, and olfactory bulbs, while the diencephalon develops into structures like the thalamus, hypothalamus, and epithalamus.

It is important to note that 'prosencephalon' itself is not used as a medical term in adult neuroanatomy, but it is crucial for understanding the development of the human brain during embryogenesis.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

An acute disease is a medical condition that has a rapid onset, develops quickly, and tends to be short in duration. Acute diseases can range from minor illnesses such as a common cold or flu, to more severe conditions such as pneumonia, meningitis, or a heart attack. These types of diseases often have clear symptoms that are easy to identify, and they may require immediate medical attention or treatment.

Acute diseases are typically caused by an external agent or factor, such as a bacterial or viral infection, a toxin, or an injury. They can also be the result of a sudden worsening of an existing chronic condition. In general, acute diseases are distinct from chronic diseases, which are long-term medical conditions that develop slowly over time and may require ongoing management and treatment.

Examples of acute diseases include:

* Acute bronchitis: a sudden inflammation of the airways in the lungs, often caused by a viral infection.
* Appendicitis: an inflammation of the appendix that can cause severe pain and requires surgical removal.
* Gastroenteritis: an inflammation of the stomach and intestines, often caused by a viral or bacterial infection.
* Migraine headaches: intense headaches that can last for hours or days, and are often accompanied by nausea, vomiting, and sensitivity to light and sound.
* Myocardial infarction (heart attack): a sudden blockage of blood flow to the heart muscle, often caused by a buildup of plaque in the coronary arteries.
* Pneumonia: an infection of the lungs that can cause coughing, chest pain, and difficulty breathing.
* Sinusitis: an inflammation of the sinuses, often caused by a viral or bacterial infection.

It's important to note that while some acute diseases may resolve on their own with rest and supportive care, others may require medical intervention or treatment to prevent complications and promote recovery. If you are experiencing symptoms of an acute disease, it is always best to seek medical attention to ensure proper diagnosis and treatment.

Skeletal muscle, also known as striated or voluntary muscle, is a type of muscle that is attached to bones by tendons or aponeuroses and functions to produce movements and support the posture of the body. It is composed of long, multinucleated fibers that are arranged in parallel bundles and are characterized by alternating light and dark bands, giving them a striped appearance under a microscope. Skeletal muscle is under voluntary control, meaning that it is consciously activated through signals from the nervous system. It is responsible for activities such as walking, running, jumping, and lifting objects.

Developmental biology is a branch of biological research that studies the processes by which organisms grow and develop from fertilized eggs (zygotes) to adults. This field of study encompasses understanding the genetic, epigenetic, environmental, and molecular mechanisms that guide the developmental trajectory of an organism, including cellular differentiation, pattern formation, morphogenesis, and growth control.

Developmental biology has important implications for understanding congenital disorders, regenerative medicine, and evolutionary biology. Researchers in this field use a variety of model organisms, such as fruit flies (Drosophila melanogaster), zebrafish (Danio rerio), mice (Mus musculus), and nematodes (Caenorhabditis elegans), to investigate the fundamental principles that govern developmental processes. These insights can then be applied to understanding human development and disease.

Translational medical research, also known as "translational research," refers to the process of turning basic scientific discoveries into clinical interventions that improve human health and well-being. This type of research aims to "translate" findings from laboratory, animal, or cellular studies into practical applications for the prevention, diagnosis, and treatment of human diseases.

Translational medical research typically involves a multidisciplinary approach, bringing together researchers from various fields such as biology, chemistry, engineering, genetics, and medicine to work collaboratively on solving complex health problems. The process often includes several stages, including:

1. Identifying basic scientific discoveries that have the potential to be translated into clinical applications.
2. Developing and optimizing new diagnostic tools, drugs, or therapies based on these discoveries.
3. Conducting preclinical studies in the laboratory or with animal models to evaluate the safety and efficacy of these interventions.
4. Designing and implementing clinical trials to test the effectiveness and safety of the new interventions in human patients.
5. Disseminating research findings to the scientific community, healthcare providers, and the public to facilitate the adoption of new practices or treatments.

Translational medical research is essential for bridging the gap between basic scientific discoveries and clinical applications, ultimately improving patient care and outcomes.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

HLA (Human Leukocyte Antigen) antigens are a group of proteins found on the surface of cells in our body. They play a crucial role in the immune system's ability to differentiate between "self" and "non-self." HLA antigens are encoded by a group of genes located on chromosome 6, known as the major histocompatibility complex (MHC).

There are three types of HLA antigens: HLA class I, HLA class II, and HLA class III. HLA class I antigens are found on the surface of almost all cells in the body and help the immune system recognize and destroy virus-infected or cancerous cells. They consist of three components: HLA-A, HLA-B, and HLA-C.

HLA class II antigens are primarily found on the surface of immune cells, such as macrophages, B cells, and dendritic cells. They assist in the presentation of foreign particles (like bacteria and viruses) to CD4+ T cells, which then activate other parts of the immune system. HLA class II antigens include HLA-DP, HLA-DQ, and HLA-DR.

HLA class III antigens consist of various molecules involved in immune responses, such as cytokines and complement components. They are not directly related to antigen presentation.

The genetic diversity of HLA antigens is extensive, with thousands of variations or alleles. This diversity allows for a better ability to recognize and respond to a wide range of pathogens. However, this variation can also lead to compatibility issues in organ transplantation, as the recipient's immune system may recognize the donor's HLA antigens as foreign and attack the transplanted organ.

ICR (Institute of Cancer Research) is a strain of albino Swiss mice that are widely used in scientific research. They are an outbred strain, which means that they have been bred to maintain maximum genetic heterogeneity. However, it is also possible to find inbred strains of ICR mice, which are genetically identical individuals produced by many generations of brother-sister mating.

Inbred ICR mice are a specific type of ICR mouse that has been inbred for at least 20 generations. This means that they have a high degree of genetic uniformity and are essentially genetically identical to one another. Inbred strains of mice are often used in research because their genetic consistency makes them more reliable models for studying biological phenomena and testing new therapies or treatments.

It is important to note that while inbred ICR mice may be useful for certain types of research, they do not necessarily represent the genetic diversity found in human populations. Therefore, it is important to consider the limitations of using any animal model when interpreting research findings and applying them to human health.

G-protein-coupled receptors (GPCRs) are a family of membrane receptors that play an essential role in cellular signaling and communication. These receptors possess seven transmembrane domains, forming a structure that spans the lipid bilayer of the cell membrane. They are called "G-protein-coupled" because they interact with heterotrimeric G proteins upon activation, which in turn modulate various downstream signaling pathways.

When an extracellular ligand binds to a GPCR, it causes a conformational change in the receptor's structure, leading to the exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP) on the associated G protein's α subunit. This exchange triggers the dissociation of the G protein into its α and βγ subunits, which then interact with various effector proteins to elicit cellular responses.

There are four main families of GPCRs, classified based on their sequence similarities and downstream signaling pathways:

1. Gq-coupled receptors: These receptors activate phospholipase C (PLC), which leads to the production of inositol trisphosphate (IP3) and diacylglycerol (DAG). IP3 induces calcium release from intracellular stores, while DAG activates protein kinase C (PKC).
2. Gs-coupled receptors: These receptors activate adenylyl cyclase, which increases the production of cyclic adenosine monophosphate (cAMP) and subsequently activates protein kinase A (PKA).
3. Gi/o-coupled receptors: These receptors inhibit adenylyl cyclase, reducing cAMP levels and modulating PKA activity. Additionally, they can activate ion channels or regulate other signaling pathways through the βγ subunits.
4. G12/13-coupled receptors: These receptors primarily activate RhoGEFs, which in turn activate RhoA and modulate cytoskeletal organization and cellular motility.

GPCRs are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and sensory perception. Dysregulation of GPCR function has been implicated in numerous diseases, making them attractive targets for drug development.

Core Binding Factor Alpha 1 Subunit, also known as CBF-A1 or RUNX1, is a protein that plays a crucial role in hematopoiesis, which is the process of blood cell development. It is a member of the core binding factor (CBF) complex, which regulates gene transcription and is essential for the differentiation and maturation of hematopoietic stem cells into mature blood cells.

The CBF complex consists of three subunits: CBF-A, CBF-B, and a histone deacetylase (HDAC). The CBF-A subunit can have several isoforms, including CBF-A1, which is encoded by the RUNX1 gene. Mutations in the RUNX1 gene have been associated with various hematological disorders, such as acute myeloid leukemia (AML), familial platelet disorder with propensity to develop AML, and thrombocytopenia with absent radii syndrome.

CBF-A1/RUNX1 functions as a transcription factor that binds to DNA at specific sequences called core binding factors, thereby regulating the expression of target genes involved in hematopoiesis. Proper regulation of these genes is essential for normal blood cell development and homeostasis.

Prognosis is a medical term that refers to the prediction of the likely outcome or course of a disease, including the chances of recovery or recurrence, based on the patient's symptoms, medical history, physical examination, and diagnostic tests. It is an important aspect of clinical decision-making and patient communication, as it helps doctors and patients make informed decisions about treatment options, set realistic expectations, and plan for future care.

Prognosis can be expressed in various ways, such as percentages, categories (e.g., good, fair, poor), or survival rates, depending on the nature of the disease and the available evidence. However, it is important to note that prognosis is not an exact science and may vary depending on individual factors, such as age, overall health status, and response to treatment. Therefore, it should be used as a guide rather than a definitive forecast.

Clinical trials are research studies that involve human participants and are designed to evaluate the safety and efficacy of new medical treatments, drugs, devices, or behavioral interventions. The purpose of clinical trials is to determine whether a new intervention is safe, effective, and beneficial for patients, as well as to compare it with currently available treatments. Clinical trials follow a series of phases, each with specific goals and criteria, before a new intervention can be approved by regulatory authorities for widespread use.

Clinical trials are conducted according to a protocol, which is a detailed plan that outlines the study's objectives, design, methodology, statistical analysis, and ethical considerations. The protocol is developed and reviewed by a team of medical experts, statisticians, and ethicists, and it must be approved by an institutional review board (IRB) before the trial can begin.

Participation in clinical trials is voluntary, and participants must provide informed consent before enrolling in the study. Informed consent involves providing potential participants with detailed information about the study's purpose, procedures, risks, benefits, and alternatives, as well as their rights as research subjects. Participants can withdraw from the study at any time without penalty or loss of benefits to which they are entitled.

Clinical trials are essential for advancing medical knowledge and improving patient care. They help researchers identify new treatments, diagnostic tools, and prevention strategies that can benefit patients and improve public health. However, clinical trials also pose potential risks to participants, including adverse effects from experimental interventions, time commitment, and inconvenience. Therefore, it is important for researchers to carefully design and conduct clinical trials to minimize risks and ensure that the benefits outweigh the risks.

A zebrafish is a freshwater fish species belonging to the family Cyprinidae and the genus Danio. Its name is derived from its distinctive striped pattern that resembles a zebra's. Zebrafish are often used as model organisms in scientific research, particularly in developmental biology, genetics, and toxicology studies. They have a high fecundity rate, transparent embryos, and a rapid development process, making them an ideal choice for researchers. However, it is important to note that providing a medical definition for zebrafish may not be entirely accurate or relevant since they are primarily used in biological research rather than clinical medicine.

Paired box (PAX) transcription factors are a group of proteins that regulate gene expression during embryonic development and in some adult tissues. They are characterized by the presence of a paired box domain, a conserved DNA-binding motif that recognizes specific DNA sequences. PAX proteins play crucial roles in various developmental processes, such as the formation of the nervous system, eyes, and pancreas. Dysregulation of PAX genes has been implicated in several human diseases, including cancer.

Myelopoiesis is the process of formation and development of myeloid cells (a type of blood cell) within the bone marrow. This includes the production of red blood cells (erythropoiesis), platelets (thrombopoiesis), and white blood cells such as granulocytes (neutrophils, eosinophils, basophils), monocytes, and mast cells. Myelopoiesis is a continuous process that is regulated by various growth factors and hormones to maintain the normal levels of these cells in the body. Abnormalities in myelopoiesis can lead to several hematological disorders like anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis.

Myeloproliferative disorders (MPDs) are a group of rare, chronic blood cancers that originate from the abnormal proliferation or growth of one or more types of blood-forming cells in the bone marrow. These disorders result in an overproduction of mature but dysfunctional blood cells, which can lead to serious complications such as blood clots, bleeding, and organ damage.

There are several subtypes of MPDs, including:

1. Chronic Myeloid Leukemia (CML): A disorder characterized by the overproduction of mature granulocytes (a type of white blood cell) in the bone marrow, leading to an increased number of these cells in the blood. CML is caused by a genetic mutation that results in the formation of the BCR-ABL fusion protein, which drives uncontrolled cell growth and division.
2. Polycythemia Vera (PV): A disorder characterized by the overproduction of all three types of blood cells - red blood cells, white blood cells, and platelets - in the bone marrow. This can lead to an increased risk of blood clots, bleeding, and enlargement of the spleen.
3. Essential Thrombocythemia (ET): A disorder characterized by the overproduction of platelets in the bone marrow, leading to an increased risk of blood clots and bleeding.
4. Primary Myelofibrosis (PMF): A disorder characterized by the replacement of normal bone marrow tissue with scar tissue, leading to impaired blood cell production and anemia, enlargement of the spleen, and increased risk of infections and bleeding.
5. Chronic Neutrophilic Leukemia (CNL): A rare disorder characterized by the overproduction of neutrophils (a type of white blood cell) in the bone marrow, leading to an increased number of these cells in the blood. CNL can lead to an increased risk of infections and organ damage.

MPDs are typically treated with a combination of therapies, including chemotherapy, targeted therapy, immunotherapy, and stem cell transplantation. The choice of treatment depends on several factors, including the subtype of MPD, the patient's age and overall health, and the presence of any comorbidities.

Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) is a type of cytokine, which is a small signaling protein involved in immune response and hematopoiesis (the formation of blood cells). GM-CSF's specific role is to stimulate the production, proliferation, and activation of granulocytes (a type of white blood cell that fights against infection) and macrophages (large white blood cells that eat foreign substances, bacteria, and dead or dying cells).

In medical terms, GM-CSF is often used in therapeutic settings to boost the production of white blood cells in patients undergoing chemotherapy or radiation treatment for cancer. This can help to reduce the risk of infection during these treatments. It can also be used to promote the growth and differentiation of stem cells in bone marrow transplant procedures.

Granulocyte-macrophage progenitor cells (GMPs) are a type of hematopoietic progenitor cell that is capable of giving rise to two major types of white blood cells: granulocytes and macrophages. These cells play crucial roles in the immune system, with granulocytes being primarily involved in the defense against bacterial and fungal infections, while macrophages are responsible for phagocytosing (ingesting) and destroying foreign particles, microorganisms, and cancer cells.

GMPs are found in the bone marrow and are produced from more immature hematopoietic stem cells through a process called differentiation. GMPs can further differentiate into more mature progenitor cells, such as granulocyte progenitors and macrophage-dendritic cell progenitors, which then give rise to the final differentiated cells of the granulocyte and macrophage lineages.

Abnormalities in GMPs can lead to various hematological disorders, including leukemias and myelodysplastic syndromes. Therefore, understanding the biology and regulation of GMPs is important for developing new therapies for these diseases.

Myoblasts are types of cells that are responsible for the development and growth of muscle tissue in the body. They are undifferentiated cells, meaning they have not yet developed into their final form or function. Myoblasts fuse together to form myotubes, which then develop into muscle fibers, also known as myofibers. This process is called myogenesis and it plays a crucial role in the growth, repair, and maintenance of skeletal muscle tissue throughout an individual's life.

Myoblasts can be derived from various sources, including embryonic stem cells, induced pluripotent stem cells, or satellite cells, which are adult stem cells found within mature muscle tissue. Satellite cells are typically quiescent but can be activated in response to muscle damage or injury, proliferate and differentiate into myoblasts, and fuse together to repair and replace damaged muscle fibers.

Dysregulation of myogenesis and impaired myoblast function have been implicated in various muscle-related disorders, including muscular dystrophies, sarcopenia, and cachexia. Therefore, understanding the biology of myoblasts and their role in muscle development and regeneration is an important area of research with potential therapeutic implications for muscle-related diseases.

Genomic instability is a term used in genetics and molecular biology to describe a state of increased susceptibility to genetic changes or mutations in the genome. It can be defined as a condition where the integrity and stability of the genome are compromised, leading to an increased rate of DNA alterations such as point mutations, insertions, deletions, and chromosomal rearrangements.

Genomic instability is a hallmark of cancer cells and can also be observed in various other diseases, including genetic disorders and aging. It can arise due to defects in the DNA repair mechanisms, telomere maintenance, epigenetic regulation, or chromosome segregation during cell division. These defects can result from inherited genetic mutations, acquired somatic mutations, exposure to environmental mutagens, or age-related degenerative changes.

Genomic instability is a significant factor in the development and progression of cancer as it promotes the accumulation of oncogenic mutations that contribute to tumor initiation, growth, and metastasis. Therefore, understanding the mechanisms underlying genomic instability is crucial for developing effective strategies for cancer prevention, diagnosis, and treatment.

Congenic mice are strains that have been developed through a specific breeding process to be genetically identical, except for a small region of interest (ROI) that has been introgressed from a donor strain. This is achieved by repeatedly backcrossing the donor ROI onto the genetic background of a recipient strain for many generations, followed by intercrossing within the resulting congenic line to ensure homozygosity of the ROI.

The goal of creating congenic mice is to study the effects of a specific gene or genomic region while minimizing the influence of other genetic differences between strains. This allows researchers to investigate the relationship between genotype and phenotype more accurately, which can be particularly useful in biomedical research for understanding complex traits, diseases, and potential therapeutic targets.

Mammary glands are specialized exocrine glands found in mammals, including humans and other animals. These glands are responsible for producing milk, which is used to nurse offspring after birth. The mammary glands are located in the breast region of female mammals and are usually rudimentary or absent in males.

In animals, mammary glands can vary in number and location depending on the species. For example, humans and other primates have two mammary glands, one in each breast. Cows, goats, and sheep, on the other hand, have multiple pairs of mammary glands located in their lower abdominal region.

Mammary glands are made up of several structures, including lobules, ducts, and connective tissue. The lobules contain clusters of milk-secreting cells called alveoli, which produce and store milk. The ducts transport the milk from the lobules to the nipple, where it is released during lactation.

Mammary glands are an essential feature of mammals, as they provide a source of nutrition for newborn offspring. They also play a role in the development and maintenance of the mother-infant bond, as nursing provides opportunities for physical contact and bonding between the mother and her young.

Lymphoid progenitor cells are a type of hematopoietic (blood-forming) stem cells that give rise to lymphocytes, which are the white blood cells responsible for immune responses. These progenitor cells differentiate into precursors of B cells, T cells, and natural killer (NK) cells in the bone marrow and thymus. They have the ability to self-renew and generate multiple cell lineages, playing a crucial role in the development and maintenance of the immune system.

Cartilage is a type of connective tissue that is found throughout the body in various forms. It is made up of specialized cells called chondrocytes, which are embedded in a firm, flexible matrix composed of collagen fibers and proteoglycans. This unique structure gives cartilage its characteristic properties of being both strong and flexible.

There are three main types of cartilage in the human body: hyaline cartilage, elastic cartilage, and fibrocartilage.

1. Hyaline cartilage is the most common type and is found in areas such as the articular surfaces of bones (where they meet to form joints), the nose, trachea, and larynx. It has a smooth, glassy appearance and provides a smooth, lubricated surface for joint movement.
2. Elastic cartilage contains more elastin fibers than hyaline cartilage, which gives it greater flexibility and resilience. It is found in structures such as the external ear and parts of the larynx and epiglottis.
3. Fibrocartilage has a higher proportion of collagen fibers and fewer chondrocytes than hyaline or elastic cartilage. It is found in areas that require high tensile strength, such as the intervertebral discs, menisci (found in joints like the knee), and the pubic symphysis.

Cartilage plays a crucial role in supporting and protecting various structures within the body, allowing for smooth movement and providing a cushion between bones to absorb shock and prevent wear and tear. However, cartilage has limited capacity for self-repair and regeneration, making damage or degeneration of cartilage tissue a significant concern in conditions such as osteoarthritis.

Blood vessels are the part of the circulatory system that transport blood throughout the body. They form a network of tubes that carry blood to and from the heart, lungs, and other organs. The main types of blood vessels are arteries, veins, and capillaries. Arteries carry oxygenated blood away from the heart to the rest of the body, while veins return deoxygenated blood back to the heart. Capillaries connect arteries and veins and facilitate the exchange of oxygen, nutrients, and waste materials between the blood and the body's tissues.

Epigenomics is the study of the epigenome, which refers to all of the chemical modifications and protein interactions that occur on top of a person's genetic material (DNA). These modifications do not change the underlying DNA sequence but can affect gene expression, or how much a particular gene is turned on or off.

Examples of epigenetic modifications include DNA methylation, histone modification, and non-coding RNA molecules. These modifications can be influenced by various factors such as age, environment, lifestyle, and disease state. Epigenomic changes have been implicated in the development and progression of many diseases, including cancer, and are an active area of research in molecular biology and genomics.

Carcinogenesis is the process by which normal cells are transformed into cancer cells. It is a complex, multi-step process that involves various genetic and epigenetic alterations in the cell's DNA. These changes can be caused by exposure to carcinogens, such as chemicals, radiation, or viruses, and can lead to the uncontrolled growth and division of cells, resulting in the formation of a tumor.

The process of carcinogenesis typically involves several stages: initiation, promotion, and progression. Initiation is the initial damage to the cell's DNA, which can be caused by exposure to a carcinogen. Promotion is the clonal expansion of the initiated cells due to the stimulation of cell growth and division. Progression is the accumulation of additional genetic changes that lead to the development of invasive cancer.

It is important to note that not all exposures to carcinogens will result in cancer, as the process of carcinogenesis depends on a variety of factors, including the dose and duration of exposure, the individual's genetic susceptibility, and the presence of co-carcinogens or protective factors.

Scanning electron microscopy (SEM) is a type of electron microscopy that uses a focused beam of electrons to scan the surface of a sample and produce a high-resolution image. In SEM, a beam of electrons is scanned across the surface of a specimen, and secondary electrons are emitted from the sample due to interactions between the electrons and the atoms in the sample. These secondary electrons are then detected by a detector and used to create an image of the sample's surface topography. SEM can provide detailed images of the surface of a wide range of materials, including metals, polymers, ceramics, and biological samples. It is commonly used in materials science, biology, and electronics for the examination and analysis of surfaces at the micro- and nanoscale.

Precursor Cell Lymphoblastic Leukemia-Lymphoma (previously known as Precursor T-lymphoblastic Leukemia/Lymphoma) is a type of cancer that affects the early stages of T-cell development. It is a subtype of acute lymphoblastic leukemia (ALL), which is characterized by the overproduction of immature white blood cells called lymphoblasts in the bone marrow, blood, and other organs.

In Precursor Cell Lymphoblastic Leukemia-Lymphoma, these abnormal lymphoblasts accumulate primarily in the lymphoid tissues such as the thymus and lymph nodes, leading to the enlargement of these organs. This subtype is more aggressive than other forms of ALL and has a higher risk of spreading to the central nervous system (CNS).

The medical definition of Precursor Cell Lymphoblastic Leukemia-Lymphoma includes:

1. A malignant neoplasm of immature T-cell precursors, also known as lymphoblasts.
2. Characterized by the proliferation and accumulation of these abnormal cells in the bone marrow, blood, and lymphoid tissues such as the thymus and lymph nodes.
3. Often associated with chromosomal abnormalities, genetic mutations, or aberrant gene expression that contribute to its aggressive behavior and poor prognosis.
4. Typically presents with symptoms related to bone marrow failure (anemia, neutropenia, thrombocytopenia), lymphadenopathy (swollen lymph nodes), hepatosplenomegaly (enlarged liver and spleen), and potential CNS involvement.
5. Diagnosed through a combination of clinical evaluation, imaging studies, and laboratory tests, including bone marrow aspiration and biopsy, immunophenotyping, cytogenetic analysis, and molecular genetic testing.
6. Treated with intensive multi-agent chemotherapy regimens, often combined with radiation therapy and/or stem cell transplantation to achieve remission and improve survival outcomes.

Keratin-14 is a type of keratin protein that is specifically expressed in the suprabasal layers of stratified epithelia, including the epidermis. It is a component of the intermediate filament cytoskeleton and plays an important role in maintaining the structural integrity and stability of epithelial cells. Mutations in the gene encoding keratin-14 have been associated with several genetic skin disorders, such as epidermolysis bullosa simplex and white sponge nevus.

Cell fusion is the process by which two or more cells combine to form a single cell with a single nucleus, containing the genetic material from all of the original cells. This can occur naturally in certain biological processes, such as fertilization (when a sperm and egg cell fuse to form a zygote), muscle development (where multiple muscle precursor cells fuse together to create multinucleated muscle fibers), and during the formation of bone (where osteoclasts, the cells responsible for breaking down bone tissue, are multinucleated).

Cell fusion can also be induced artificially in laboratory settings through various methods, including chemical treatments, electrical stimulation, or viral vectors. Induced cell fusion is often used in research to create hybrid cells with unique properties, such as cybrid cells (cytoplasmic hybrids) and heterokaryons (nuclear hybrids). These hybrid cells can help scientists study various aspects of cell biology, genetics, and disease mechanisms.

In summary, cell fusion is the merging of two or more cells into one, resulting in a single cell with combined genetic material. This process occurs naturally during certain biological processes and can be induced artificially for research purposes.

I'm sorry for any confusion, but "siblings" is not a medical term. It is a term used in genealogy and sociology to refer to the brothers and sisters that someone has. Sibling relationships can have medical implications, such as when inherited genetic disorders are present in a family, but the term "siblings" itself does not have a specific medical definition.

In medical terms, the heart is a muscular organ located in the thoracic cavity that functions as a pump to circulate blood throughout the body. It's responsible for delivering oxygen and nutrients to the tissues and removing carbon dioxide and other wastes. The human heart is divided into four chambers: two atria on the top and two ventricles on the bottom. The right side of the heart receives deoxygenated blood from the body and pumps it to the lungs, while the left side receives oxygenated blood from the lungs and pumps it out to the rest of the body. The heart's rhythmic contractions and relaxations are regulated by a complex electrical conduction system.

Interleukin-11 (IL-11) is a type of cytokine, which is a small signaling protein involved in the immune response and hematopoiesis (the formation of blood cells). IL-11 is primarily produced by bone marrow stromal cells and is involved in regulating the production and function of platelets, which are cell fragments necessary for blood clotting.

IL-11 has a number of biological activities, including promoting the growth and differentiation of megakaryocytes (the precursor cells to platelets), stimulating the production of acute phase proteins during inflammation, and regulating the function of certain immune cells. In addition, IL-11 has been shown to have effects on other tissues, including promoting the growth and survival of some cancer cells.

Dysregulation of IL-11 signaling has been implicated in a number of diseases, including thrombocytopenia (low platelet count), certain types of anemia, and various cancers.

Antineoplastic agents, alkylating, are a class of chemotherapeutic drugs that work by alkylating (adding alkyl groups) to DNA, which can lead to the death or dysfunction of cancer cells. These agents can form cross-links between strands of DNA, preventing DNA replication and transcription, ultimately leading to cell cycle arrest and apoptosis (programmed cell death). Examples of alkylating agents include cyclophosphamide, melphalan, and cisplatin. While these drugs are designed to target rapidly dividing cancer cells, they can also affect normal cells that divide quickly, such as those in the bone marrow and digestive tract, leading to side effects like anemia, neutropenia, thrombocytopenia, and nausea/vomiting.

A nodal protein, in the context of molecular biology and genetics, refers to a protein that plays a role in signal transmission within a cell at a node or junction point of a signaling pathway. These proteins are often involved in regulatory processes, such as activating or inhibiting downstream effectors in response to specific signals received by the cell. Nodal proteins can be activated or deactivated through various mechanisms, including phosphorylation, ubiquitination, and interactions with other signaling molecules.

In a more specific context, nodal proteins are also known as nodal factors, which are members of the transforming growth factor-beta (TGF-β) superfamily of signaling molecules that play critical roles in embryonic development and tissue homeostasis. Nodal is a secreted protein that acts as a morphogen, inducing different cellular responses depending on its concentration gradient. It is involved in establishing left-right asymmetry during embryonic development and regulates various processes such as cell proliferation, differentiation, and apoptosis.

In summary, nodal proteins can refer to any protein that functions at a node or junction point of a signaling pathway, but they are also specifically known as nodal factors, which are TGF-β superfamily members involved in embryonic development and tissue homeostasis.

Hepatic Veno-Occlusive Disease (VOD), also known as Sinusoidal Obstruction Syndrome (SOS), is a medical condition characterized by the obstruction or blockage of the small veins (venules) in the liver. This results in the backup of blood in the liver, leading to swelling and damage to the liver cells.

The obstruction is usually caused by the injury and inflammation of the endothelial cells lining the venules, which can be triggered by various factors such as chemotherapy drugs, radiation therapy, bone marrow transplantation, or exposure to certain toxins. The damage to the liver can lead to symptoms such as fluid accumulation in the abdomen (ascites), enlarged liver, jaundice, and in severe cases, liver failure.

The diagnosis of VOD/SOS is typically made based on a combination of clinical signs, symptoms, and imaging studies, such as ultrasound or CT scan. In some cases, a liver biopsy may be necessary to confirm the diagnosis. Treatment for VOD/SOS is primarily supportive, with the goal of managing symptoms and preventing complications. This may include medications to reduce swelling, improve liver function, and prevent infection. In severe cases, liver transplantation may be considered as a last resort.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

Cell death is the process by which cells cease to function and eventually die. There are several ways that cells can die, but the two most well-known and well-studied forms of cell death are apoptosis and necrosis.

Apoptosis is a programmed form of cell death that occurs as a normal and necessary process in the development and maintenance of healthy tissues. During apoptosis, the cell's DNA is broken down into small fragments, the cell shrinks, and the membrane around the cell becomes fragmented, allowing the cell to be easily removed by phagocytic cells without causing an inflammatory response.

Necrosis, on the other hand, is a form of cell death that occurs as a result of acute tissue injury or overwhelming stress. During necrosis, the cell's membrane becomes damaged and the contents of the cell are released into the surrounding tissue, causing an inflammatory response.

There are also other forms of cell death, such as autophagy, which is a process by which cells break down their own organelles and proteins to recycle nutrients and maintain energy homeostasis, and pyroptosis, which is a form of programmed cell death that occurs in response to infection and involves the activation of inflammatory caspases.

Cell death is an important process in many physiological and pathological processes, including development, tissue homeostasis, and disease. Dysregulation of cell death can contribute to the development of various diseases, including cancer, neurodegenerative disorders, and autoimmune diseases.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Muscle cells, also known as muscle fibers, are specialized cells that have the ability to contract and generate force, allowing for movement of the body and various internal organ functions. There are three main types of muscle tissue: skeletal, cardiac, and smooth.

Skeletal muscle cells are voluntary striated muscles attached to bones, enabling body movements and posture. They are multinucleated, with numerous nuclei located at the periphery of the cell. These cells are often called muscle fibers and can be quite large, extending the entire length of the muscle.

Cardiac muscle cells form the contractile tissue of the heart. They are also striated but have a single nucleus per cell and are interconnected by specialized junctions called intercalated discs, which help coordinate contraction throughout the heart.

Smooth muscle cells are found in various internal organs such as the digestive, respiratory, and urinary tracts, blood vessels, and the reproductive system. They are involuntary, non-striated muscles that control the internal organ functions. Smooth muscle cells have a single nucleus per cell and can either be spindle-shaped or stellate (star-shaped).

In summary, muscle cells are specialized contractile cells responsible for movement and various internal organ functions in the human body. They can be categorized into three types: skeletal, cardiac, and smooth, based on their structure, location, and function.

Pericytes are specialized cells that surround the endothelial cells which line the blood capillaries. They play an important role in the regulation of capillary diameter, blood flow, and the formation of new blood vessels (angiogenesis). Pericytes also contribute to the maintenance of the blood-brain barrier, immune surveillance, and the clearance of waste products from the brain. They are often referred to as "mural cells" or "rouleaux cells" and can be found in various tissues throughout the body.

"CBA" is an abbreviation for a specific strain of inbred mice that were developed at the Cancer Research Institute in London. The "Inbred CBA" mice are genetically identical individuals within the same strain, due to many generations of brother-sister matings. This results in a homozygous population, making them valuable tools for research because they reduce variability and increase reproducibility in experimental outcomes.

The CBA strain is known for its susceptibility to certain diseases, such as autoimmune disorders and cancer, which makes it a popular choice for researchers studying those conditions. Additionally, the CBA strain has been widely used in studies related to transplantation immunology, infectious diseases, and genetic research.

It's important to note that while "Inbred CBA" mice are a well-established and useful tool in biomedical research, they represent only one of many inbred strains available for scientific investigation. Each strain has its own unique characteristics and advantages, depending on the specific research question being asked.

Lymphocyte depletion is a medical term that refers to the reduction in the number of lymphocytes (a type of white blood cell) in the body. Lymphocytes play a crucial role in the immune system, as they help to fight off infections and diseases.

Lymphocyte depletion can occur due to various reasons, including certain medical treatments such as chemotherapy or radiation therapy, immune disorders, viral infections, or bone marrow transplantation. This reduction in lymphocytes can make a person more susceptible to infections and diseases, as their immune system is weakened.

There are different types of lymphocytes, including T cells, B cells, and natural killer (NK) cells, and lymphocyte depletion can affect one or all of these types. In some cases, lymphocyte depletion may be temporary and resolve on its own or with treatment. However, in other cases, it may be more prolonged and require medical intervention to manage the associated risks and complications.

'C3H' is the name of an inbred strain of laboratory mice that was developed at the Jackson Laboratory in Bar Harbor, Maine. The mice are characterized by their uniform genetic background and have been widely used in biomedical research for many decades.

The C3H strain is particularly notable for its susceptibility to certain types of cancer, including mammary tumors and lymphomas. It also has a high incidence of age-related macular degeneration and other eye diseases. The strain is often used in studies of immunology, genetics, and carcinogenesis.

Like all inbred strains, the C3H mice are the result of many generations of brother-sister matings, which leads to a high degree of genetic uniformity within the strain. This makes them useful for studying the effects of specific genes or environmental factors on disease susceptibility and other traits. However, it also means that they may not always be representative of the genetic diversity found in outbred populations, including humans.

A heterograft, also known as xenograft, is a type of graft in which tissue or an organ is transplanted from one species to another. For example, a heart valve from a pig may be used as a heterograft in a human heart surgery. However, due to the significant differences between species, the recipient's immune system often recognizes the heterograft as foreign and mounts an immune response against it, leading to rejection of the graft. To prevent this, immunosuppressive drugs are usually administered to the recipient to suppress their immune system and reduce the risk of rejection. Despite these challenges, heterografts can be a valuable option in certain medical situations where a human donor organ or tissue is not available.

F344 is a strain code used to designate an outbred stock of rats that has been inbreeded for over 100 generations. The F344 rats, also known as Fischer 344 rats, were originally developed at the National Institutes of Health (NIH) and are now widely used in biomedical research due to their consistent and reliable genetic background.

Inbred strains, like the F344, are created by mating genetically identical individuals (siblings or parents and offspring) for many generations until a state of complete homozygosity is reached, meaning that all members of the strain have identical genomes. This genetic uniformity makes inbred strains ideal for use in studies where consistent and reproducible results are important.

F344 rats are known for their longevity, with a median lifespan of around 27-31 months, making them useful for aging research. They also have a relatively low incidence of spontaneous tumors compared to other rat strains. However, they may be more susceptible to certain types of cancer and other diseases due to their inbred status.

It's important to note that while F344 rats are often used as a standard laboratory rat strain, there can still be some genetic variation between individual animals within the same strain, particularly if they come from different suppliers or breeding colonies. Therefore, it's always important to consider the source and history of any animal model when designing experiments and interpreting results.

A fusion protein known as "BCR-ABL" is formed due to a genetic abnormality called the Philadelphia chromosome (derived from a reciprocal translocation between chromosomes 9 and 22). This results in the formation of the oncogenic BCR-ABL tyrosine kinase, which contributes to unregulated cell growth and division, leading to chronic myeloid leukemia (CML) and some types of acute lymphoblastic leukemia (ALL). The BCR-ABL fusion protein has constitutively active tyrosine kinase activity, which results in the activation of various signaling pathways promoting cell proliferation, survival, and inhibition of apoptosis. This genetic alteration is crucial in the development and progression of CML and some types of ALL, making BCR-ABL an important therapeutic target for these malignancies.

Untranslated regions (UTRs) of RNA are the non-coding sequences that are present in mRNA (messenger RNA) molecules, which are located at both the 5' end (5' UTR) and the 3' end (3' UTR) of the mRNA, outside of the coding sequence (CDS). These regions do not get translated into proteins. They contain regulatory elements that play a role in the regulation of gene expression by affecting the stability, localization, and translation efficiency of the mRNA molecule. The 5' UTR typically contains the Shine-Dalgarno sequence in prokaryotes or the Kozak consensus sequence in eukaryotes, which are important for the initiation of translation. The 3' UTR often contains regulatory elements such as AU-rich elements (AREs) and microRNA (miRNA) binding sites that can affect mRNA stability and translation.

Sebaceous glands are microscopic, exocrine glands that are found in the dermis of mammalian skin. They are attached to hair follicles and produce an oily substance called sebum, which is composed of triglycerides, wax esters, squalene, and metabolites of fat-producing cells (fatty acids, cholesterol). Sebum is released through a duct onto the surface of the skin, where it forms a protective barrier that helps to prevent water loss, keeps the skin and hair moisturized, and has antibacterial properties.

Sebaceous glands are distributed throughout the body, but they are most numerous on the face, scalp, and upper trunk. They can also be found in other areas of the body such as the eyelids (where they are known as meibomian glands), the external ear canal, and the genital area.

Abnormalities in sebaceous gland function can lead to various skin conditions, including acne, seborrheic dermatitis, and certain types of skin cancer.

Mesenchymal stem cell Ovarian stem cell Partial cloning Plant stem cell Stem cell controversy Stem cell marker Stem cell laws ... mesenchymal stem cell, adipose-derived stem cell, endothelial stem cell, dental pulp stem cell, etc.). Muse cells (multi- ... Adult stem cells, also called somatic (from Greek σωματικóς, "of the body") stem cells, are stem cells which maintain and ... Oligopotent stem cells can differentiate into only a few cell types, such as lymphoid or myeloid stem cells. Unipotent cells ...
A common example of a stem cell is the hematopoietic stem cell (HSC) which are multipotent stem cells that give rise to cells ... "Stem Cell Policy: World Stem Cell Map". www.mbbnet.umn.edu. Retrieved 2021-09-20. Mlsna, Lucas J. (2010). "Stem Cell Based ... "Stem Cell Research in Spain: If Only They Were Windmills …". Cell Stem Cell. 4 (6): 483-486. doi:10.1016/j.stem.2009.05.016. ... induced pluripotent stem cells are undifferentiated from somatic adult cells. Stem cells are cells found in most, if not all, ...
... is the postulated practice of enhancing athletic performance through various beneficial effects of stem cells ... Currently there are no documented cases of stem cell doping, but there are suspicions that the practice may already be emerging ... cell doping already a reality". Agence France-Presse. 2008. Archived from the original on 2007-12-28. Retrieved 2008-08-07. " ...
Lymphoid cells include T cells, B cells, natural killer cells, and innate lymphoid cells. The definition of hematopoietic stem ... Hematopoietic Stem Cell Dependence and Independence". Cell Stem Cell. 22 (5): 639-651. doi:10.1016/j.stem.2018.04.015. hdl: ... "Hematopoietic stem cell heterogeneity: subtypes, not unpredictable behavior". Cell Stem Cell. 6 (3): 203-7. doi:10.1016/j.stem. ... Hematopoietic stem cells (HSCs) are the stem cells that give rise to other blood cells. This process is called haematopoiesis. ...
Stem Cell therapies, here referred to as therapies employing non-hematopoietic, mesenchymal stem cells, have a wide range of ... The most commonly used type of stem cells for therapeutic use are human (autologous) Mesenchymal Stem Cells, hMSCs. hMSCs' ... the stem cell secretome, has been found to be the predominant mechanism by which stem cell-based therapies mediate their ... efforts have been made to synthesize specific stem cell secretomes efficiently, in vitro. In general, stem cells become ...
... s are genes and their protein products used by scientists to isolate and identify stem cells. Stem cells can ... 2005). "Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors". Stem Cells. 23 (6 ... "Integrins are markers of human neural stem cells". Stem Cells. 24 (9): 2078-84. doi:10.1634/stemcells.2005-0595. PMID 16690778 ... "Isolation of human embryonal carcinoma stem cells by immunomagnetic sorting". Stem Cells. 19 (6): 500-4. doi:10.1634/stemcells. ...
Renal stem cells are self-renewing, multipotent stem cells which are able to give rise to all the cell types of the kidney. It ... "Intrinsic Epithelial Cells Repair the Kidney after Injury". Cell Stem Cell. 2 (3): 284-91. doi:10.1016/j.stem.2008.01.014. PMID ... Thus, Lgr5+ cells can potentially be a marker for renal stem and/or progenitor cells. There is much debate regarding the cells ... List of human cell types derived from the germ layers Brodie, J. C.; Humes, HD (2005). "Stem Cell Approaches for the Treatment ...
Plant stem cells are innately undifferentiated cells located in the meristems of plants. Plant stem cells serve as the origin ... dedifferentiated cells were generally regarded as stem cells of plant: "…we propose to extend the concept of stem cells to ... cell biology) Stem cell Weigel D, Jürgens G (February 2002). "Stem cells that make stems". Nature. 415 (6873): 751-4. Bibcode: ... dedifferentiated cells) as an alternative to plant stem cells. Callus, or dedifferentiated cells, are somatic cells that ...
Stem cell Embryonic stem cell Induced pluripotent stem cell Induced stem cells Adult stem cell Cell culture Immortalised cell ... Types of adult stem cells include hematopoietic stem cells and mesenchymal stem cells. Hematopoietic stem cells are found in ... A stem cell line is a group of stem cells that is cultured in vitro and can be propagated indefinitely. Stem cell lines are ... Due to the self-renewal capacity of stem cells, a stem cell line can be cultured in vitro indefinitely. A stem-cell line is ...
Single cell analysis of induced pluripotent stem cells (iPSCs), or stem cells able to differentiate into many different cell ... Stem cell genomics analyzes the genomes of stem cells. Currently, this field is rapidly expanding due to the dramatic decrease ... The study of stem cell genomics has wide reaching implications in the study of stem cell biology and possible therapeutic ... Stem cell proteomics DeWitt, N. D., Yaffe, M. P., & Trounson, A. (2012). Building stem-cell genomics in California and beyond. ...
... is an omics that analyzes the proteomes of stem cells. Comparing different stem cell proteomes can reveal ... proteins that are important for stem cell differentiation. Stem cell genomics v t e (Articles with short description, Short ... Stem cells, Proteomics, All stub articles, Cell biology stubs). ...
"Critical appraisal of the side population assay in stem cell and cancer stem cell research". Cell Stem Cell. 8 (2): 136-47. doi ... They examined cancer stem cell plasticity in which cancer stem cells can transition between non-cancer stem cells (Non-CSC) and ... a critical review of sphere-formation as an assay for stem cells". Cell Stem Cell. 8 (5): 486-98. doi:10.1016/j.stem.2011.04. ... "Evolution of the cancer stem cell model", Cell Stem Cell, 14 (3): 275-91, doi:10.1016/j.stem.2014.02.006, PMID 24607403 Barabé ...
"Cell Stem Cell". Intute. Retrieved 19 June 2010. 2009 Journal Citation Reports Science Edition. Official website Stem Cell ... Cell Stem Cell is a peer-reviewed scientific journal published by Cell Press, an imprint of Elsevier. The journal was ... Stem cell research, Developmental biology journals, English-language journals, Delayed open access journals, Cell Press ... Therapy Stem Cell Treatment (Articles with short description, Short description is different from Wikidata, Monthly journals ( ...
Scientists develop 'game changing' stem cell repair system. Stem Cells Portal Could this new stem cell become the game changer ... June 2014). "Human somatic cell nuclear transfer using adult cells". Cell Stem Cell. 14 (6): 777-80. doi:10.1016/j.stem.2014.03 ... July 2010). "Reprogramming of human peripheral blood cells to induced pluripotent stem cells". Cell Stem Cell. 7 (1): 20-4. doi ... May 2014). "Human finger-prick induced pluripotent stem cells facilitate the development of stem cell banking". Stem Cells ...
Limbal stem cells, also known as corneal epithelial stem cells, are unipotent stem cells located in the basal epithelial layer ... This is the first time that a stem cell therapy (other than the use of umbilical cord stem cells) has been approved by any ... Limbal epithelial stem cells of the cornea Clinical trial number NCT02592330 for "Limbal Stem Cell Deficiency (LSCD) Treatment ... Although amniotic membrane does not have stem cells of its own, it supports regeneration of limbal stem cells. However, further ...
... - SCN". Retrieved 2021-02-09. Draper, Jon; Murray, Cate (2020-07-02). "Stem Cell Network". Stem Cell Research ... The Stem Cell Network (SCN) is a Canadian non-profit that supports stem cell and regenerative medicine research, teaches the ... "Members and Partners". Stem Cell Network. Archived from the original on 2022-09-08. Retrieved 2022-09-09. (Articles with a ... The establishment of the Meetings ensured that the country's stem cell and regenerative medicine research community would ...
May 2012). "Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis". Cell Stem Cell ... "Mesenchymal stem cells: revisiting history, concepts, and assays". Cell Stem Cell. 2 (4): 313-319. doi:10.1016/j.stem.2008.03. ... "Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide". Cell Stem Cell. 2 ... These bone marrow stem cells do not contribute to the formation of blood cells, and so do not express the hematopoietic stem ...
... was one of the first med tech startup to come out of the StartX incubator program. The company uses ... Stem Cell Theranostics is a privately held biotech company based out of Redwood City, California that provides drug companies ... "Researchers use stem cells to pinpoint cause of common type of sudden cardiac death". News Center. Retrieved 11 November 2014 ... "Stem Cell Theranostics' clinical trial in a dish". Silicon Valley Business Journal. 29 March 2013. Retrieved 11 November 2014 ...
These parent stem cells, ESCs, give rise to progenitor cells, which are intermediate stem cells that lose potency. Progenitor ... Endothelial stem cells (ESCs) are one of three types of stem cells found in bone marrow. They are multipotent, which describes ... For stem cells, this usually occurs through several stages, when a cell proliferates giving rise to daughter cells that are ... 6 April 2009). "Stem Cell Basics". In Stem Cell Information. National Institutes of Health, U.S. Department of Health and Human ...
... such as mesenchymal stem cell, adipose-derived stem cell, endothelial stem cell, etc.). A great deal of adult stem cell ... Stem cells can replicate several times and can result in the formation of two stem cells, one stem cell more differentiated ... Intestinal stem cells reside near the base of the stem cell niche, called the crypts of Lieberkuhn. Intestinal stem cells are ... The extracted stem cells are known as human adult germline stem cells (GSCs) Multipotent stem cells have also been derived from ...
... cell-cell interactions between stem cells, as well as interactions between stem cells and neighbouring differentiated cells, ... The CSC niche is very similar to normal stem cells niche (embryonic stem cell (ESC), Adult Stem Cell ASC) in function ( ... The GSC niche consists of necessary somatic cells-terminal filament cells, cap cells, escort cells, and other stem cells which ... somatic cyst stem cells/cyst stem cells). Each GSC is enclosed by a pair of SSCs, though each stem cell type is still in ...
Fetal tissue implant Induced pluripotent stem cell Induced stem cells Stem cell chip Stem cell therapy for macular degeneration ... "Selling Stem Cells in the USA: Assessing the Direct-to-Consumer Industry". Cell Stem Cell. 19 (2): 154-157. doi:10.1016/j.stem. ... and such research involves adult stem cells, amniotic stem cells, and induced pluripotent stem cells. On 23 January 2009, the ... In addition to the functions of the cells themselves, paracrine soluble factors produced by stem cells, known as the stem cell ...
... bone marrow-mesenchymal stem cells and adipose-derived stem cells. Muse cells are able to generate cells representative of all ... "Human Somatic Cell Nuclear Transfer Using Adult Cells". Cell Stem Cell. 14 (6): 777-780. doi:10.1016/j.stem.2014.03.015. ISSN ... are equivalent to embryonic stem cells, leading these cells to be known as induced pluripotent stem cells (iPS cells). This ... Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre- ...
However, scientists that do believe ovarian stem cells exist have described the stem cells as having the ability to finish ... The publication of a study in 2004 proposing germ cell renewal in adult mice sparked a debate on the possibility of stem cells ... Markers for ovarian stem cells are also a source of contention. Markers previously used are: DDX4 STRA-8 SCP-3 SPO 11 Dmc 1 ... Ovarian stem cells are oocytes formed in ovarian follicle before birth in female mammals. They do not form post-natally, and ...
... (OSCs), also known as egg precursor cells or female germline cells, are diploid germline cells with stem ... have found no supporting evidence for oogonial stem cells. "stem cell - definition of stem cell in English , Oxford ... Dunlop, Cheryl E.; Telfer, Evelyn E.; Anderson, Richard A. (2014-01-01). "Ovarian germline stem cells". Stem Cell Research & ... "female germline stem cells" to "OSCs". New research indicates that oogonial stem cells do not exist in mice and there is no ...
Stem Cells is a peer-review scientific journal of cell biology. It was established as The International Journal of Cell Cloning ... "About: Abstracting and Indexing Information". Stem Cells. Retrieved 16 October 2018. "Stem Cells (journal)". MIAR: Information ... The journal is published by AlphaMed Press, and is currently edited by Jan Nolta (University of California). Stem Cells ... "Stem Cells". 2020 Journal Citation Reports. Web of Science (Science ed.). Thomson Reuters. 2021. " ...
SCF may serve as guidance cues that direct hematopoietic stem cells (HSCs) to their stem cell niche (the microenvironment in ... Rönnstrand L (October 2004). "Signal transduction via the stem cell factor receptor/c-Kit". Cell. Mol. Life Sci. 61 (19-20): ... Rönnstrand L (2004). "Signal transduction via the stem cell factor receptor/c-Kit". Cell. Mol. Life Sci. 61 (19-20): 2535-48. ... Nervi B, Link DC, DiPersio JF (October 2006). "Cytokines and hematopoietic stem cell mobilization". J. Cell. Biochem. 99 (3): ...
Not all stem cell research involves human embryos. For example, adult stem cells, amniotic stem cells, and induced pluripotent ... "Best Hope Lies in Private Stem-Cell Funding". Retrieved 2008-01-31. "California's Stem Cell Agency". California's Stem Cell ... embryonic stem cells are likely to be easier to isolate and grow ex vivo than adult stem cells. Embryonic stem cells divide ... Stem cell laws Dickey-Wicker Amendment Medical ethics Stem Cell Research Enhancement Act Stem cell research policy Fetal Dickey ...
The stem cells are capable of dividing into more SSCs which is vital for maintaining the stem cell pool. Alternatively, they go ... Various other somatic cells in the interstitial tissue support Sertoli cells such as Leydig cells and peritubular myoid cells ... Cell Stem Cell. 11 (5): 715-726. doi:10.1016/j.stem.2012.07.017. ISSN 1934-5909. PMC 3580057. PMID 23122294. Roe, Mandi; ... is another molecule crucial for the regulation of stem cell renewal and is expressed in Sertoli cells, Leydig cells, and germ ...
... is a monthly peer-reviewed open access journal covering research into stem cells. It was established in 2013 ... Stem cell research, Cell Press academic journals, Academic journals associated with international learned and professional ... "Stem Cell Reports". 2018 Journal Citation Reports. Web of Science (Science ed.). Clarivate Analytics. 2019. Official website v ... It is the official journal of the International Society for Stem Cell Research. The editor-in-chief is Martin Pera (Jackson ...
Stem Cell Transplant Patients can get fungal diseases like Aspergillosis ... Stem cells from your own body (also called an autologous transplant).. *Stem cells from a donor (also called an allogeneic ... A transplant using stem cells from a donor increases your risk for fungal infection more than a transplant that uses stem cells ... As a stem cell transplant patient, you have new opportunities for a healthy and full life. Stem cell transplants have many ...
A common example of a stem cell is the hematopoietic stem cell (HSC) which are multipotent stem cells that give rise to cells ... "Stem Cell Policy: World Stem Cell Map". www.mbbnet.umn.edu. Retrieved 2021-09-20. Mlsna, Lucas J. (2010). "Stem Cell Based ... "Stem Cell Research in Spain: If Only They Were Windmills …". Cell Stem Cell. 4 (6): 483-486. doi:10.1016/j.stem.2009.05.016. ... induced pluripotent stem cells are undifferentiated from somatic adult cells. Stem cells are cells found in most, if not all, ...
... the pioneer in stem cell-based technologies, is proud to announce the launch of a... ... PRNewswire/ -- Global Institute of Stem Cell Therapy and Research (GIOSTAR), ... 14, 2020 /PRNewswire/ -- Global Institute of Stem Cell Therapy and Research (GIOSTAR), the pioneer in stem cell-based ... Stem cells are unspecialized unique body cells that may help patients better manage symptoms of multiple sclerosis, arthritis, ...
In a surprising new finding, scientists have shown that mouse stem cells treated with the drug reverted to an embryonic state ... in the form of a drug that can erase the tiny labels that tell cells where to start reading their DNA. ... If you want to harness the full power of stem cells, all you might need is an eraser -- ... MLL1 Inhibition Reprograms Epiblast Stem Cells to Naive Pluripotency. Cell Stem Cell, 2016; DOI: 10.1016/j.stem.2016.02.004 ...
But new studies now show that the dream of successfully treating infertility with stem cells will probably not be realized. ... but there are researchers who claim that stem cell research could lead to the creation of new eggs. If so, this would mean that ... Researchers are questioning the notion that infertility can be treated with stem cells. The classical theory is based on the ... May 25, 2023 The many types of cells in the human body are produced through the process of differentiation, in which stem cells ...
Stem Cells in Translational Cancer Research - A Special Issue published by Hindawi ... Understanding how cancer stem cells affect tumor heterogeneity, the contribution of resident stem and progenitor cells to the ... A Double-Switch Cell Fusion-Inducible Transgene Expression System for Neural Stem Cell-Based Antiglioma Gene Therapy. Yumei Luo ... The interplay between stem cell and tumor biology offers an exceptional opportunity to advance our knowledge about cancer, one ...
Professor Dominkos research focuses on stem cell biology, nuclear reprogramming and gene expression, epigenetics, regenerative ...
... cloning and embryonic stem cells research has intensified the battle for ascendancy between adult and embryonic stem cells. In ... two rapid online publications are presented as if they were evidence against the existence of adult stem cells ... The cells could be made to differentiate into bone forming cells, cartilage forming cells, fat cells, skeletal muscle cells and ... This latest anti-publicity on adult stem cells comes on the heels of a paper announcing success in embryonic stem (ES) cell ...
Bone marrow contains stem cells, which are immature cells that become blood cells. ... which are immature cells that become blood cells. ... Peripheral blood stem cell collection. Most donor stem cells ... Blood-forming stem cell transplants. www.cancer.gov/about-cancer/treatment/types/stem-cell-transplant/stem-cell-fact-sheet. ... Stem cell transplant for cancer. www.cancer.org/treatment/treatments-and-side-effects/treatment-types/stem-cell-transplant.html ...
... a finding that may lead to stem cell therapies. ... brain linings of human corpses and turned them into stem cells ... Scientists have harvested cells from the scalp and ... Human Cadaver Brains May Provide New Stem Cells. News By ... Mature cells can be made or induced to become immature cells, known as pluripotent stem cells, which have the ability to become ... Researchers produced pluripotent stem cells from the fibroblast cells in the brain lining of human corpses. Here, the stem ...
Scientists reported more progress Thursday with a method of creating stem cells without using embryos ... Embryonic stem cells, which have the ability to morph into any type of cell, continue to be controversial. Last month, a U.S. ... In 2007, when scientists first reported they had reprogrammed skin cells into stem cells, it was hailed as an alternative to ... "The transformation of adult stem cells into more embryonic-like cells is quite important," he said. "It will allow scientists ...
The stromal cell system has been proposed to consist of marrow mesenchymal stem cells that are capable of self-renewal and ... There has been an increasing interest in recent years in the stromal cell system functioning in the support of hematopoiesis. ... Maintenance of the hematopoietic stem cell population has been used to increase the efficiency of hematopoietic stem cell gene ... The stromal cell system has been proposed to consist of marrow mesenchymal stem cells that are capable of self-renewal and ...
Mesenchymal stem cells secrete growth factors that suppress causes of diabetic retinopathy and macular degeneration ... AnatomyCancersCellsMedicineMedicine, Diagnosis, and TherapeuticsOphthalmic diseasesStem cellSystemic conditionsTranslational ... Home Topics Cancer Transplanted Amniotic Stem Cells Offer Hope for Retinal Diseases ... The benefit of using MSCs in stem cell therapy is their ability to self-renew and differentiate into a variety of specialized ...
Science in School is a free online magazine that provides inspiring teaching materials covering all STEM subjects, including ... Supporting STEM teachers in inspiring their students and fostering positive attitudes towards the science that shapes our lives ...
Compared with ocrelizumab, patients who received stem cell transplants had a 60% lower risk of relapse but the same risk of MS ... Cite this: Stem Cell Transplants for Early MS: Who Benefits Most? - Medscape - Oct 25, 2023. ... MILAN - Studies are exploring hematopoietic stem cell transplantation (HSCT) as a rescue therapy in early-stage multiple ... The researchers tracked 103 patients after stem cell transplants (median, 45 months), 204 patients on alemtuzumab (median, 45 ...
These Fgfr3-creER-marked endosteal stromal cells contribute to a stem cell fraction in young stages, which is later replaced by ... This study identified a new class of skeletal stem cells in the endosteal space of bone marrow, which are abundant in young ... It is well-described that leptin receptor (LepR)+ perivascular stromal cells provide a major source of bone-forming osteoblasts ... Further, Fgfr3+ endosteal stromal cells give rise to aggressive osteosarcoma-like lesions upon loss of p53 tumor suppressor ...
Buy boscia Plant Stem Cell Moisturizer at Macys today. FREE Shipping and Free Returns available, or buy online and pick-up in ... The stem cell is fluffy pink and light. It lasts, and the oil cleanser is awesome too. Ive recently purchased the cactus ... Defend and hydrate with a cutting edge, plant-stem cell powered moisturizer made to restore and help reduce the look of fine ... Fruit and plant stem cells come together for a unique and airy texture. ...
We found that MSC-Exo greatly reduced the intensity of ongoing EAU as their parent cells by reducing the infiltration of T cell ... The in vitro effects of MSC-Exo on immune cell migration and responder T cell proliferation were examined by chemotactic assays ... However, no inhibitory effect of MSC-Exo on IRBP-specific T cell proliferation was observed. These results suggest that MSC-Exo ... Furthermore, the chemoattractive effects of CCL2 and CCL21 on inflammatory cells were inhibited by MSC-Exo. ...
Stem cells are specialized cells that continually generate progeny cells for organ formation and maintenance. Stem cells can be ... Human Cord Blood Stem Cell Differentiates into Lung Cell. 29 Dec, 2006 03:23 pm Human umbilical cord blood (UCB) stem cell ... Researchers have reprogrammed skin cells into embryonic stem cells. This new technique could be used to develop stem cell lines ... Adult Stem Cells: The New Plastic Surgery?. 27 Jun, 2008 05:23 pm A new article in Live Science predicts that adult stem cells ...
Safety and Feasibility of Cultivated Autologous Limbal Stem Cells for Limbal Stem Cell Deficiency ... to confirm the diagnosis and stage limbal stem cell deficiency characterized by the loss or disfunction of the limbal stem cell ... Regeneration of Functional Human Corneal Epithelial Progenitor Cells. *Regeneration of a Normal Corneal Surface by Limbal Stem ... The function of limbal stem/progenitor cells (LSCs) is critical to maintain corneal epithelial homeostasis. Many external ...
Now research from Rockefeller University shows that having too many stem cells, or stem ... ... Stem cells, the prodigious precursors of all the tissues in our body, can make almost anything, given the right circumstances. ... the idea that the stem cell is the seed of the tumor and that the transition from a normal stem cell to a cancer stem cell ... stem cells are able to make it so if your are parizlyed in your spin then if you had a sciencist to give you a stem cell and ...
... actually expanding the small population of cancer stem cells ... Some Cancer Cells Mimic Stem Cells to Evade Chemotherapy,. . ... The cancer stem cell markers include Nanog and BMI1, both of which contribute to stem cells defining ability to renew ... Preferred Term is Hematopoietic stem cell transplantation. In this stem cell from bone marrow are injected ... ... "dying cells could secrete a lot of factors that induce expression of stem cell markers in other cancer cells. I think they are ...
Video Topic: Stem Cell Basics. Paul Knoepfler Talks About the Tendency of Embryonic Stem Cells to Form Tumors. Jack Hubbard One ... Concerns About Stem Cell Tourism. Organizations outside the United States have begun advertising stem cell-based cures for ... The idea is that researchers could grow those stem cells into mature cell types such as heart, liver, or brains cells, expose ... Alan Lewis Talks About Getting an Embryonic Stem Cell-Based Therapy to Patients. Embryonic stem cells have the potential to ...
Insulin-producing beta cells from the pancreas can return to more primitive developmental state called stem-like cells. ... Beta Cells in Pancreas may Regenerate Stem-like Cells: Study Personalised Printable Document (PDF). Please complete this form ... Insulin-producing beta cells from the pancreas can return to more primitive developmental state called stem-like cells, ... "At this stage, we cant confirm whether the cells ability to turn into stem-like cells occur naturally in a healthy pancreas ...
Allogeneic stem cell transplantation uses donor stem cells to treat and sometimes cure certain blood disorders and blood ... These new stem cells produce healthy new blood cells. Many people who need stem cell transplantation use stem cells donated by ... Allogeneic stem cell transplantation uses donated stem cells. These stem cells may come from a family member, from someone you ... Allogeneic Stem Cell Transplantation. Allogeneic stem cell transplantation uses donor stem cells to treat and sometimes cure ...
... and community-based endocrinologists and transplant surgeons acknowledged that a recent study supports the use of stem cells as ... Tags: Aging, B Cell, Blood, Bone, Bone Marrow, Cell, Chronic, Dementia, Diabetes, Embryonic Stem Cell, Embryonic Stem Cells, ... for stem cell research]. "Recent research on adult stem cells has found adult stem cells in many more tissues than once thought ... Adult blood forming stem cells from bone marrow have been used in transplants for 30 years. Certain kinds of adult stem cells ...
Embryonic Stem Cell Controversy, 25 Years Later. Those of us who lived through the great embryonic stem cell controversy are ... Doctors infused stem cells derived from umbilical cords into the patients. Not the umbilical blood, but from the cord itself. ... Click here for information on Stem Cell research. Click here for full article. Latest News ... Every patient under 85 years of age infused with stem cells survived COVID and had a faster recovery. Eighty-one percent of all ...
Germline Transmission of a Novel Rat Embryonic Stem Cell Line Derived from Transgenic Rats. Stem Cells and Development 2012; 21 ... Contribution of Mouse Embryonic Stem Cells and Induced Pluripotent Stem Cells to Chimeras through Injection and Coculture of ... Generation of induced pluripotent stem cells from virus-free in vivo reprogramming of BALB/c mouse liver cells. Biomaterials ... Derivation of a Germline Competent Transgenic Fischer 344 Embryonic Stem Cell Line. PLoS ONE 2013; 8(2): e56518 doi: 10.1371/ ...
3. Centre for the Study of Stem Cells (CECS), Institute for Stem Cell Therapy and Exploration of Monogenic Diseases (I Stem), ... In the future, keratinocytes produced from pluripotent stem cells could be an alternative to adult stem cells in certain ... Institute for Stem Cell Therapy and Exploration of Monogenic Diseases (I-Stem), 91100 Corbeil Essonne, France. ... You are here : Home , News , Skin graft: a new molecular target for activating stem cells ...
  • The information presented here covers the legal implications of embryonic stem cells (ES), rather than induced pluripotent stem cells (iPSCs). (wikipedia.org)
  • While embryonic stem cells are taken from embryoblasts, induced pluripotent stem cells are undifferentiated from somatic adult cells. (wikipedia.org)
  • In contrast to multipotent stem cells, embryonic stem cells are pluripotent and are thought to be able to give rise to all cells of the body. (wikipedia.org)
  • In addition to generating pluripotent stem cells, the team showed that mice bred using the cells grew up healthy. (sciencedaily.com)
  • We've demonstrated that we don't have to manipulate the pluripotent genes to get to the ground state, but rather that we can block all other options of where the cell 'wants' to go. (sciencedaily.com)
  • But they could still function as healthy pluripotent stem cells. (sciencedaily.com)
  • Researchers produced pluripotent stem cells from the fibroblast cells in the brain lining of human corpses. (livescience.com)
  • Mature cells can be made or induced to become immature cells, known as pluripotent stem cells , which have the ability to become any tissue in the body and potentially can replace cells destroyed by disease or injury. (livescience.com)
  • Cadaver-collected fibroblasts can be reprogrammed into induced pluripotent stem cells using chemicals known as growth factors that are linked with stem cell activity. (livescience.com)
  • Now scientists have taken fibroblasts from the scalps and the brain linings of 146 human brain donors and grown induced pluripotent stem cells from them as well. (livescience.com)
  • Successfully reprogramming induced pluripotent stem cells so they behave like the cells they are meant to replace means that samples of the mimicked cells must be present for comparison. (livescience.com)
  • Studying how induced pluripotent stem cells develop into various tissues could also shed light on disorders that are due to malfunctions in development. (livescience.com)
  • Jack Hubbard One possible use for pluripotent stem cells is to screen drugs for toxic side effects. (ca.gov)
  • In the future, keratinocytes produced from pluripotent stem cells could be an alternative to adult stem cells in certain reconstructed tissue bio-engineering applications. (cea.fr)
  • The findings, reported yesterday in Nature, suggest a process that doesn't require the reprogrammed adult somatic cells called induced pluripotent stem (iPS) cells. (stanforddaily.com)
  • Promotes differentiation of nociceptors from human pluripotent stem cells, in combination with several other small molecules (Chambers et al. (stemcell.com)
  • Promotes differentiation of pancreatic cells from human pluripotent stem cells (D'Amour et al. (stemcell.com)
  • Most of the human induced pluripotent stem cells stored at major cell line repositories and used in research harbor thousands of DNA errors, a study finds, highlighting the need for improved quality control measures. (the-scientist.com)
  • S tem cell research that uses pluripotent stem cells derived from human skin or blood cells has led to numerous discoveries, aided drug development , and proven useful in gene therapies. (the-scientist.com)
  • However, many of these human induced pluripotent stem cell (hiPSC) lines banked in repositories or developed in labs likely harbor thousands of undetected mutations, casting doubt on how generalizable the findings made with them can be, according to research published yesterday (August 11) in Nature Genetics . (the-scientist.com)
  • Oct-4 (POU5F1) is a transcription factor that is critically involved in the self-renewal of pluripotent stem cells, and its expression is commonly used as a marker for pluripotency. (stemcell.com)
  • A research team from the Salk Institute and Kyoto University have published findings utilizing cerebral organoids derived from induced pluripotent stem cells (iPSCs) to monitor nerve cell activity. (rndsystems.com)
  • Basically, we came to this conclusion by harvesting the cells from amniotic fluid making sure they were a true stem cell population and going through the reverse studies that need to be done to show that the cells truly are pluripotent. (scitizen.com)
  • He and his fellow researchers then used the snow leopard cells to create induced pluripotent stem (iPS) cells, also known as embryonic stem-like cells. (scientificamerican.com)
  • The discovery in 2006 that human and mouse fibroblasts could be reprogrammed to generate induced pluripotent stem cells (iPSCs) with qualities remarkably similar to embryonic stem cells has created a valuable new source of pluripotent cells for drug discovery, cell therapy, and basic research. (thermofisher.com)
  • Our products have been an integral part of induced pluripotent stem cell research from the initial discovery of iPSCs to current breakthroughs. (thermofisher.com)
  • Gibco media, supplements, substrates, growth factors and cytokines provide you with an easy-to-use, flexible set of tools for targeted differentiation of induced pluripotent stem cells. (thermofisher.com)
  • The research team first sought to improve previously established methods for reprogramming of adult cells into so-called induced pluripotent stem (iPS) cells, which look and behave similarly to embryonic stem cells and can differentiate into many different cell types. (hopkinsmedicine.org)
  • Not only did T speed up reprogramming, we also found that it increases the total number of reprogrammed cells, which is great because often in reprogramming, not all cells go all the way," says Cheng, who explains that rigorous follow-up tests are required to determine if the reprogrammed cells really behave like pluripotent embryonic stem cells. (hopkinsmedicine.org)
  • Here are their technical properties: AECs have multipotent differentiation potential and expression of pluripotent stem cell specific transcription factors including Oct4 and Nanog. (parentsguidecordblood.org)
  • Some in vivo transplantation studies have reported robust (35-50%) levels of transdifferentiation, which makes it unlikely that the results are due to cell fusion events. (i-sis.org.uk)
  • Data from preclinical transplantation studies suggested that stromal cell infusions not only prevent the occurrence of graft failure, but they have an immunomodulatory effect. (nih.gov)
  • Preclinical and early clinical safety studies are paving the way for further applications of mesenchymal stem cells in the field of transplantation with respect to hematopoietic support, immunoregulation, and graft facilitation. (nih.gov)
  • Their study ("Retinal angiogenesis effects of TGF-ß1, and paracrine factors secreted from human placental stem cells in response to a pathological environment") is freely available on-line as an unedited early e-pub of Cell Transplantation. (genengnews.com)
  • MILAN - Studies are exploring hematopoietic stem cell transplantation (HSCT) as a rescue therapy in early-stage multiple sclerosis (MS), researchers told colleagues at the 9th Joint ECTRIMS-ACTRIMS meeting. (medscape.com)
  • The researchers noted that the patients who underwent stem cell transplantation had numerous adverse effects. (medscape.com)
  • Stem cell researchers must learn how to prevent these tumors before any transplantation-based therapy can be successful. (ca.gov)
  • Allogeneic stem cell transplantation uses donor stem cells to treat and sometimes cure certain blood disorders and blood cancers. (clevelandclinic.org)
  • Healthcare providers typically recommend stem cell transplantation if initial treatments don't work or if conditions have come back. (clevelandclinic.org)
  • About 50% of people who need stem cell transplantation use stem cells donated by someone who's not a family member. (clevelandclinic.org)
  • Providers may recommend allogeneic stem cell transplantation if initial treatments didn't work or treatments worked but the condition has come back. (clevelandclinic.org)
  • In allogeneic stem cell transplantation, healthcare providers replace unhealthy stem cells with donated healthy stem cells. (clevelandclinic.org)
  • Allogeneic stem cell transplantation uses donated stem cells. (clevelandclinic.org)
  • An autologous stem cell transplantation uses your own blood stem cells. (clevelandclinic.org)
  • What cancers are treated with allogeneic stem cell transplantation? (clevelandclinic.org)
  • People in remission from AML may be candidates for allogeneic stem cell transplantation. (clevelandclinic.org)
  • Healthcare providers may recommend allogeneic stem cell transplantation for severe forms of aplastic anemia. (clevelandclinic.org)
  • Providers may use allogeneic stem cell transplantation to treat severe forms of thalassemia. (clevelandclinic.org)
  • Providers may use allogeneic stem cell transplantation if other treatments aren't successful. (clevelandclinic.org)
  • Allogeneic stem cell transplantation may cure some blood disorders FA causes. (clevelandclinic.org)
  • Allogeneic stem cell transplantation replaces damaged white blood cells. (clevelandclinic.org)
  • Allogeneic stem cell transplantation treats the recurring and life-threatening infections this condition causes. (clevelandclinic.org)
  • Who is a candidate for allogeneic stem cell transplantation? (clevelandclinic.org)
  • Healthcare providers consider several factors before recommending allogeneic stem cell transplantation to treat blood disorders or cancer. (clevelandclinic.org)
  • For example, people who have stem cell transplantation go through intensive chemotherapy before treatment. (clevelandclinic.org)
  • Not all cancers or blood diseases respond to stem cell transplantation, including allogeneic stem cell transplantation. (clevelandclinic.org)
  • What makes a good match for an allogeneic stem cell transplantation? (clevelandclinic.org)
  • By August, its directors filed for insolvency stating, "German advisory authority has denied further authorization for stem cell transplantation. (skeptoid.com)
  • In the treatment of the seventeen conditions for which the clinic advertised therapies, the type of stem cell transplantation offered has no biological plausibility of working. (skeptoid.com)
  • The fatality followed the serious injury of a ten-year-old child, in the preceding May, while undergoing the same therapy ' stem cell transplantation into the brain stem ' that resulted in him being more severely disabled than he had been before treatment was begun. (skeptoid.com)
  • Hematopoietic stem cell transplantation (HSCT) involves the intravenous infusion of hematopoietic stem cells in order to reestablish blood cell production in patients whose bone marrow or immune system is damaged or defective. (medscape.com)
  • Stem cell transplantation may be an option in cases of severe recalcitrant ALPS. (medscape.com)
  • May 25, 2023 The many types of cells in the human body are produced through the process of differentiation, in which stem cells are converted to more specialized types. (sciencedaily.com)
  • The stromal cell system has been proposed to consist of marrow mesenchymal stem cells that are capable of self-renewal and differentiation into various connective tissue lineages. (nih.gov)
  • Recent data from in vitro models demonstrating the essential role of stromal support in hematopoiesis shaped the view that cell-cell interactions in the marrow microenvironment are critical for normal hematopoietic function and differentiation. (nih.gov)
  • If this differentiation of adult stem cells can be controlled in the laboratory, these cells may become the basis of therapies for many serious common diseases. (news-medical.net)
  • Promotes differentiation of neurons from human and mouse embryonic stem (ES) cells (Crawford and Roelink, Elkabetz et al. (stemcell.com)
  • Promotes differentiation of retinal pigment epithelium from mouse ES cells (Osakada et al. (stemcell.com)
  • Our complete portfolio of stem cell research products and services provides optimized tools for each step of the stem cell workflow: from reprogramming somatic cells to iPSC expansion, validation, and differentiation. (thermofisher.com)
  • Our differentiation portfolio allows optimal growth, expansion and storage of differentiated cells-enabling faster, more efficient systems. (thermofisher.com)
  • The metaphor of a potential epigenetic differentiation landscape broadly suggests that during differentiation a stem cell approaches a stable equili- brium state from a higher free energy towards a stable equilibrium state which represents the final cell type. (lu.se)
  • In order to assess these predictions, we compute the Shannon entropy for time- resolved single-cell gene expression data in two different experimental set-ups of haematopoietic differentiation. (lu.se)
  • Single cells in these populations exhibit different com- binations of regulator activity that suggest the presence of multiple configurations of a potential differentiation network as a result of multiple entry points into the committed state. (lu.se)
  • At the heart of this trade-off is stem cell capacity - while stem cell maintenance is crucial for longevity (e.g., for tissue regeneration to repair damage), stem cell differentiation is required for fertility (i.e., to produce gametes). (lu.se)
  • As such, this work could help lead to novel stem cell therapies and shed light on a variety of mental disorders, such as schizophrenia , autism and bipolar disorder, which may stem from problems with development, researchers say. (livescience.com)
  • Cells from corpses might play a key role in developing future stem cell therapies . (livescience.com)
  • The scientists believe that their technique may advance stem cell therapy toward clinical practice and offer novel therapies for eye diseases in people. (genengnews.com)
  • Researchers have recently debated the notion that some therapies are not capable of eradicating cancer because they do not target the cancer stem cells responsible for tumor development. (medindia.net)
  • Some novel therapies are already being tested against cancer stem cells, he added. (medindia.net)
  • Embryonic stem cells have the potential to help treat 70 or more diseases, but developing those new therapies will take time. (ca.gov)
  • At this stage, we can''t confirm whether the cells'' ability to turn into stem-like cells occur naturally in a healthy pancreas, but the results are very encouraging for the development of regenerative therapies to fight diabetes," he added. (medindia.net)
  • While most panelists felt that clinical use of pancreatic stem cells as a cure for diabetes was 15-20 years away, they also believed that application of stem cell therapies would likely include spinal cord injuries, Parkinson's disease and dementia. (news-medical.net)
  • He expressed hope that one day the cells could be used for human therapies. (stanforddaily.com)
  • I had intended to write about the changes to regulation of stem cell therapies being debated in Italy but Orac beat me to the punch and I am not going to attempt to out Orac Orac. (skeptoid.com)
  • The X-Cell centre in Düsseldorf offered patients from all over Europe highly experimental stem cell therapies for a wide range of conditions from Parkinson's disease to diabetes. (skeptoid.com)
  • This scientific advance, reported in the July 2 issue of Nature , could potentially lead to therapies for patients with blood disorders from their own cells. (businesswire.com)
  • Because these cells secrete and display factors essential for stem cell growth and proliferation, they can be used to support cell-based therapies, stem cell transplant, and regenerative medicine applications. (businesswire.com)
  • Recently, a growing number of studies are focusing on mesenchymal stem cell-based therapies for neurodegenerative disorders. (hindawi.com)
  • A discovery of how stem cells are protected from viruses could inform the development of therapies for use in medicine, research suggests. (ed.ac.uk)
  • Unveiling how this crucial antiviral mechanism is switched off, and methods to switch this back on in a controlled manner, could make stem cell therapies much more efficient. (ed.ac.uk)
  • Publishing online in Stem Cells on May 29, the team describes a faster and more efficient method of reprogramming cells that might speed the development of stem cell therapies. (hopkinsmedicine.org)
  • The course covers complications from dysfunctional stem cells in connection with stem cell therapies and tissue engineering, and highlights the legal and ethical issues surrounding stem cell research. (lu.se)
  • Understanding how cancer stem cells affect tumor heterogeneity, the contribution of resident stem and progenitor cells to the tumor niche, and the search for true cancer stem cell markers are other examples of scientific challenges in this fast-growing research area. (hindawi.com)
  • The function of limbal stem/progenitor cells (LSCs) is critical to maintain corneal epithelial homeostasis. (ca.gov)
  • Mediates ex vivo expansion of cord blood CD34+ hematopoietic stem and progenitor cells (Huang et al. (stemcell.com)
  • Activation of OCT4 enhances ex vivo expansion of human cord blood hematopoietic stem and progenitor cells by regulating HOXB4 expression. (stemcell.com)
  • Within the MAD for Cancer Program we aim to clarify the link between kidney cancer and the kidney progenitor cells, and to develop novel biomarkers for kidney cancer based on our understanding of adult kidney progenitor cells. (lu.se)
  • Stem cell treatments are a type of cell therapy that introduce new cells into adult bodies for possible treatment of cancer, somatic cell nuclear transfer, diabetes, and other medical conditions. (wikipedia.org)
  • In the current issue of the same journal [6], researchers compared the frequency and type of mutation induced in embryonic stem cells and embryonic somatic cells. (i-sis.org.uk)
  • They found that the spontaneous mutation frequency in ES cells is 100-fold lower than that in mouse embryonic fibroblasts (a somatic cell line), which is similar to adult cells in vivo . (i-sis.org.uk)
  • Researchers make hiPSCs by harvesting somatic cells-often from skin-from a person and then reprogramming them to enter an embryonic-like state. (the-scientist.com)
  • Stem cells derived from adult somatic cells "will carry the mutational history of their past, as well as of any new mutations that occur when you are reprogramming them or growing them in culture," Nik-Zainal says. (the-scientist.com)
  • Reprogramming of somatic cells for iPSC generation can be accomplished with a number of technologies. (thermofisher.com)
  • Researchers at Johns Hopkins have established a human cell-based system for studying sickle cell anemia by reprogramming somatic cells to an embryonic stem cell like state. (hopkinsmedicine.org)
  • In January 2007, researchers at Wake Forest University reported that "stem cells drawn from amniotic fluid donated by pregnant women hold much of the same promise as embryonic stem cells. (wikipedia.org)
  • According to modern stem cell researchers, Spain is one of the leaders in stem cell research and currently has one of the most progressive legislations worldwide with respect to human embryonic stem cell (hESC) research. (wikipedia.org)
  • MLL1 plays a key role in the uncontrolled explosion of white blood cells that's the hallmark of leukemia, which is why U-M researchers originally developed MM-401 to interfere with it. (sciencedaily.com)
  • Researchers are questioning the notion that infertility can be treated with stem cells. (sciencedaily.com)
  • The classical theory is based on the idea that the eggs a woman has are the ones she has had from birth, but there are researchers who claim that stem cell research could lead to the creation of new eggs. (sciencedaily.com)
  • New studies done by researchers at the University of Gothenburg and Karolinska Institute now show that the dream of successfully treating infertility with stem cells will probably not be realized. (sciencedaily.com)
  • In the first report [2], researchers from Edinburgh and Oxford took cells from the mouse brain marked with transgene 1, and cultured them together with ES cells marked with a second transgene, 2. (i-sis.org.uk)
  • These researchers pointed out that the spontaneous fusion rate (without interleukin-3) was extremely low, between 2-11 per million bone marrow cells, and is unlikely to account for all the findings with adult stem cells. (i-sis.org.uk)
  • The researchers reported that the AMSCs successfully migrated to the retinas of the test animals and, because of the growth factors secreted by the cells, were able to suppress retinal neovascularization. (genengnews.com)
  • The researchers concluded that although further studies are needed to confirm the effect of AMSCs on neovascular diseases, the data collected in their study provided insights into the mechanisms by which these cells exert their therapeutic effects. (genengnews.com)
  • The researchers tracked 103 patients after stem cell transplants (median, 45 months), 204 patients on alemtuzumab (median, 45 months), and 314 patients on ocrelizumab (median, 35 months). (medscape.com)
  • 18 Sep, 2007 12:13 pm Rice University researchers have engineered musculoskeletal cartilages with human embryonic stem cells, with the hope of eventually using the neotissue. (scitizen.com)
  • 6 Jun, 2007 07:00 pm Researchers have reprogrammed skin cells into embryonic stem cells. (scitizen.com)
  • The researchers first determined that Nanog and BMI1 stem cell markers were more highly expressed in metastatic tumors compared to primary tumors. (medindia.net)
  • The idea is that researchers could grow those stem cells into mature cell types such as heart, liver, or brains cells, expose them to new drugs or potential environmental hazards, then look for toxic side effects. (ca.gov)
  • Blue H2O Productions In recent years researchers have found cancer stem cells at the heart of blood cancers as well as some cancers of the brain, breast, colon, head and neck, and others. (ca.gov)
  • Describing the process as "dedifferentiation", the researchers say that it highlights the plasticity of this cell type. (medindia.net)
  • The researchers say that clinical trials with INGAP have shown that it is possible to regrow new functional insulin-producing cells in diabetic patients. (medindia.net)
  • The researchers showed they could convert human embryonic stem cells to neurons by infecting them with a virus that expressed the same proteins used in the study. (stanforddaily.com)
  • The researchers found that BAM treatment to skin cells from fetuses and newborns didn't have the same effect as it did on the stem cells. (stanforddaily.com)
  • In order to deposit a cell line someplace like HipSci, researchers only have to demonstrate that the stem cells don't have any missing or duplicated chromosomes or other largescale genetic errors-analyses that would miss the myriad single-nucleotide mutations identified in the new paper. (the-scientist.com)
  • NEW YORK--( BUSINESS WIRE )--Angiocrine Bioscience, Inc. announced today that it has licensed the rights to a new technology developed by a team of researchers at the Ansary Stem Cell Institute at Weill Cornell Medical College. (businesswire.com)
  • Utilizing a well-known mouse mesenchymal stem cell (MSC) model of fat browning, researchers from the Nottingham School of Medicine suggest that caffeine could help in the battle to lose weight and prevent type 2 diabetes . (rndsystems.com)
  • Researchers from the University of Edinburgh studied stem cells from mouse embryos to understand how stem cells can develop resistance to viruses, before they become specialised cells. (ed.ac.uk)
  • Researchers hope that their findings will make the use of stem cells more efficient, to one day be given to patients to replace cells lost or damaged by degenerative diseases such as Parkinson's or diabetes. (ed.ac.uk)
  • And the researchers have already accomplished the first step, creating embryonic stem-like cells from the tissue of an endangered adult snow leopard ( Panthera uncia ). (scientificamerican.com)
  • Using both fetal and adult human skin cells, the researchers introduced the four genes previously reported sufficient for cell reprogramming and compared the efficiency of reprogramming in the presence or absence of large T antigen. (hopkinsmedicine.org)
  • Embryonic stem cell-like clusters were visible 14 days after they initiated reprogramming and from these clusters the researchers established three different cell lines that both look and behave like human embryonic stem cells. (hopkinsmedicine.org)
  • One challenge to studying blood diseases like sickle cell anemia is that blood stem cells can't be kept alive for very long in the lab, so researchers need to keep returning to patients for more cells to study," says Cheng. (hopkinsmedicine.org)
  • Each module contains lectures by experienced stem cell researchers, followed by preparation, analysis and discussion of material in compulsory practical exercises, and concludes with an assessed assignment. (lu.se)
  • A team of researchers led by Dr. Cristian Bellodi recently discovered a hardwired genetic control mechanism modulating individual spliceosomal components, known as splicing factors, in cells harboring oncogenic lesions common in human cancers. (lu.se)
  • This creates uncertainty about whether it is at all possible to create new eggs with the help of stem cells," says Kui Liu, a researcher at the Department of Chemistry and Molecular Biology at the University of Gothenburg. (sciencedaily.com)
  • The interplay between stem cell and tumor biology offers an exceptional opportunity to advance our knowledge about cancer, one of the leading causes of death worldwide, with potential impacts in cancer diagnosis and therapy. (hindawi.com)
  • Professor Dominko's research focuses on stem cell biology, nuclear reprogramming and gene expression, epigenetics, regenerative biology and stem cell niche. (wpi.edu)
  • Research associate Maria Garcia-Fernandez, Hermann Steller, head of the Strang Laboratory of Apoptosis and Cancer Biology, and their colleagues explored the activity of a gene called Sept4, which encodes a protein, ARTS, that increases programmed cell death, or apoptosis, by antagonizing other proteins that prevent cell death. (scienceblog.com)
  • Goldstein presented an overview of the basic principles and concepts of stem cell biology and stem cell clinical trial development. (ca.gov)
  • An insight into the biology of ischemic stroke indicates that a stream of molecular events initiates instantly after the onset of ischemic stroke, such as oxidative stress, increased level of intracellular calcium, excitotoxicity, and inflammation which results in apoptotic or necrotic neuronal cell death [ 12 - 14 ]. (hindawi.com)
  • The course covers stem cell biology and regenerative medicine with a focus on the stem cell research areas that are particularly strong at Lund University. (lu.se)
  • You will learn about life-history evolution and molecular cell biology. (lu.se)
  • Strong interests in life-history evolution and molecular cell biology. (lu.se)
  • State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. (bvsalud.org)
  • As a stem cell transplant patient, you have new opportunities for a healthy and full life. (cdc.gov)
  • Stem cells from your own body (also called an autologous transplant). (cdc.gov)
  • Stem cells from a donor (also called an allogeneic transplant). (cdc.gov)
  • A transplant using stem cells from a donor increases your risk for fungal infection more than a transplant that uses stem cells from your own body. (cdc.gov)
  • As you recover from your transplant, your white blood cell count can become very low, also known as neutropenia pdf icon [PDF - 4 pages] . (cdc.gov)
  • Fungal infections can happen days, weeks, or months after the stem cell transplant. (cdc.gov)
  • Some types of fungal infections are more common than others in stem cell transplant patients. (cdc.gov)
  • Aspergillosis is the most common type of fungal infection in stem cell transplant patients, followed by Candida infection and mucormycosis, but other types of fungal infections are also possible. (cdc.gov)
  • This latest anti-publicity on adult stem cells comes on the heels of a paper announcing success in embryonic stem (ES) cell transplant in a Parkinson rat model published in the house journal of the United States National Academy of Sciences [5]. (i-sis.org.uk)
  • Neither the title of the paper, nor the abstract mentioned that in the experiment, five out of 25 rats receiving the transplant died with "teratoma-like tumors" in their brains, a well-known hazard of ES cells. (i-sis.org.uk)
  • People with life-threatening cancers, such as leukemia , lymphoma , and myeloma can be treated with a bone marrow transplant or, sometimes, a stem cell transplant. (medlineplus.gov)
  • A report from a medical panel of academic and community-based endocrinologists and transplant surgeons acknowledged that a recent study supports the use of stem cells as a future cure for type I diabetes. (news-medical.net)
  • This technology nicely complements our efforts in applying our VeraVec TM platform to the expansion of umbilical cord blood stem cells, another approach toward making stem cell transplant safer and more broadly available to patients in need, " added Geoff Davis, Angiocrine's CEO. (businesswire.com)
  • Cells for HSCT may be obtained from the patient himself or herself (autologous transplant) or from another person, such as a sibling or unrelated donor (allogeneic transplant) or an identical twin (syngeneic transplant). (medscape.com)
  • On 13th of February, 2023, a transplant of stem cell-derived nerve cells was administered to a person with Parkinson's at Skåne University Hospital, Sweden. (lu.se)
  • Those of us who lived through the great embryonic stem cell controversy are enjoying the sweet aroma of vindication. (lifeissues.org)
  • Obviously, it's a different cell type: it is neither a embryonic stem cell nor an adult stem cell. (scitizen.com)
  • Without large T, cells form embryonic stem cell-like clusters in three to four weeks. (hopkinsmedicine.org)
  • Recent efforts demonstrated that the multiple mesenchymal lineages can be clonally derived from a single mesenchymal stem cell, supporting the proposed paradigm. (nih.gov)
  • Mesenchymal stem cell (MSC)-based therapy for the treatment of autoimmune diseases has demonstrated a particular promise after its successful applications in both animal models and patients. (nature.com)
  • The objective of this study was to provide a generalized critique for the role of mesenchymal stem cell therapy in ischemic stroke injury, its underlying mechanisms, and constraints on its preclinical and clinical applications. (hindawi.com)
  • The recent decade has seen encouraging outcomes of mesenchymal stem cell therapy that holds promise to alleviate the burden of neurological disorders Moreover, initial study data of preclinical trials have also indicated the effectiveness, tolerance, and safety of MSC-based therapy [ 10 ]. (hindawi.com)
  • Scientists in South Korea transplanted mesenchymal stromal cells (MSCs) derived from human amniotic membranes of the placenta (AMSCs) into laboratory mice modeled with oxygen-induced retinopathy. (genengnews.com)
  • It is well-described that leptin receptor (LepR) + perivascular stromal cells provide a major source of bone-forming osteoblasts in adult and aged bone marrow. (nature.com)
  • These Fgfr3-creER -marked endosteal stromal cells contribute to a stem cell fraction in young stages, which is later replaced by Lepr-cre -marked stromal cells in adult stages. (nature.com)
  • Further, Fgfr3 + endosteal stromal cells give rise to aggressive osteosarcoma-like lesions upon loss of p53 tumor suppressor through unregulated self-renewal and aberrant osteogenic fates. (nature.com)
  • These Fgfr3 + stem/stromal cells with OCT identities are abundant in the young bone marrow and depleted in the old bone marrow, denoting their transitional nature. (nature.com)
  • Overall, our findings indicate that Fgfr3 + endosteal stem/stromal cells with OCT identities dictate active and aggressive osteogenesis, identifying these cells as an important regulator of long-term bone homeostasis. (nature.com)
  • Jack Hubbard Any cells derived from embryonic stem cells that are transplanted as a therapy will likely be rejected by the immune system much like a transplanted heart or liver. (ca.gov)
  • The study has shown that manipulation of KLF4 expression is also suitable for these cells, as reducing its expression in keratinocytes derived from embryonic stem cells (ESC) improves their proliferation capacity and their ability to reconstruct skin. (cea.fr)
  • A common example of a stem cell is the hematopoietic stem cell (HSC) which are multipotent stem cells that give rise to cells of the blood lineage. (wikipedia.org)
  • These multipotent bone marrow-derived stem cells could only ever differentiate to become one of a number of blood cell types, making their injection into nervous tissue not only pointless but totally without rationale. (skeptoid.com)
  • The endothelial cells are acquired from a biopsied piece of skin and are then "educated" on a bed of VeraVec TM cells (proprietary to Angiocrine Bioscience) to form multipotent blood cells that are capable of producing red cells that carry oxygen, white cells that provide immunity, and platelets to prevent bleeding. (businesswire.com)
  • Mariano García Arranz has the following conflict of interest: MGA is inventor on 2 patents entitled "Identification and isolation of multipotent cells from non-osteochondral mesenchymal tissue" (10157355957US) and "Use of adipose tissue-derived stromal stem cells in treating fistula" (US11/167061). (wjgnet.com)
  • Normal multipotent tissue stem cells (SCs) are the driving force behind tissue turnover and repair. (medscape.com)
  • Normal proliferative tissues contain multipotent stem cells (SCs) that drive tissue turnover. (medscape.com)
  • Neither report cited a paper published last year in the journal Blood [4], where a group from the Stem Cell Institute, Department of Medicine, and Cancer Center, University of Minnesota Medical School, Minneapolis, reported the most comprehensive experiments proving that a single adult stem cell can differentiate into all cell types in culture. (i-sis.org.uk)
  • The cells could be made to differentiate into bone forming cells, cartilage forming cells, fat cells, skeletal muscle cells and endothelial cells. (i-sis.org.uk)
  • The benefit of using MSCs in stem cell therapy is their ability to self-renew and differentiate into a variety of specialized cell types, such as osteoblasts, chondrocytes, adipocytes, myocardiocytes, and neuron-like cells. (genengnews.com)
  • The cancer stem cell markers include Nanog and BMI1, both of which contribute to stem cells' defining ability to renew themselves and differentiate into different cell types, Dr. Vasko said. (medindia.net)
  • Certain kinds of adult stem cells seem to have the ability to differentiate into a number of different cell types, given the right conditions. (news-medical.net)
  • You and your colleagues found amniotic fluid-derived (AFS) stem cells to have the potential to differentiate into muscle, bone, fat, blood vessel, nerve and liver cells. (scitizen.com)
  • The power of stem cells is that they can differentiate into all the cell types in the body," Verma said in a prepared release . (scientificamerican.com)
  • Stem cells have been used to repair tissue damaged by disease. (wikipedia.org)
  • Two reports appeared as advance online publications in the top British journal Nature , accompanied by a news report that begins, "The hyped ability of adult stem cells to sprout replacement tissue types is being called into question. (i-sis.org.uk)
  • In other words, dead people can yield living cells that can be converted into any cell or tissue in the body. (livescience.com)
  • Fibroblasts are the most common cells of connective tissue in animals, and they synthesize the extracellular matrix, the complex scaffolding between cells. (livescience.com)
  • Detection of the transplanted cells in the retina illustrated their ability to migrate from the site of injection to the injured tissue. (genengnews.com)
  • 8 Jun, 2007 04:13 pm Stem cells provide the starting material for the development and repair of every organ and tissue in the body and they are present in all stages of life. (scitizen.com)
  • A CEA-Jacob team has just published a paper in which it demonstrates the central role of the transcription factor KLF4 in regulating the proliferation of epidermal stem cells and their ability to regenerate this tissue. (cea.fr)
  • Human skin completely renews itself every month thanks to the presence of stem cells in the deepest layer, which generate all the upper layers of this tissue. (cea.fr)
  • The discoveries of a French research team from the CEA, INSERM and the University of Paris, produced in collaboration with I-Stem, the AFM-Téléthon laboratory, and the University of Évry, opens perspectives for regenerative cutaneous medicine, in particular for the bio-engineering of skin grafts for tissue reconstruction. (cea.fr)
  • Typically, rapidly proliferating tumor cells have glycolytic rates up to 200 times higher than those of their normal tissue of origin, even in the presence of oxygen [ 3 ]. (hindawi.com)
  • Scientists have created a way to isolate neural stem cells - cells that give rise to all the cell types of the brain - from human brain tissue with unprecedented precision, an important step toward developing new treatments for conditions of the nervous system, like Parkinson's and Huntington's diseases and spinal cord injury. (medicaldaily.com)
  • A more realistic service is offered by a few cord blood banks that preserve the stem cells from placental blood and placental tissue. (parentsguidecordblood.org)
  • The MSCs represent less than 1% of the cells present in the placenta, while the average yield of MSCs from chorions and amnions is between 1 to 10 million per gram of tissue. (parentsguidecordblood.org)
  • By contrast, transit amplifying cells and differentiated cells are incapable of self-renewal and tissue regeneration. (medscape.com)
  • The uses of stem cells in bioengineering have been much investigated and it is showing a promising research line also in tissue engineering, although there are some controversies and discussions. (bvsalud.org)
  • In this project, we will manipulate stem cell capacity in Drosophila melanogaster flies by controlling their oxygen-sensing conditions (e.g., by keeping them under different oxygen concentrations or by using transgenic flies), and we will investigate whether and how fertility, longevity, and (potentially) tissue repair differ between flies with high or low stem cell capacity . (lu.se)
  • This shows not only that the use of stem cell research in the clinical treatment of childlessness is unrealistic but also that clinics should focus on using the eggs that women have had since birth in treating infertility," says Professor Kui Liu. (sciencedaily.com)
  • As it stands now, scientists using these hiPSCs for research or clinical applications only need to screen and characterize their cell lines, whether they're developed in-house or taken from a repository, to whatever extent is required by a journal or the reviewers assessing their work. (the-scientist.com)
  • Each of those cell sources has specific advantages and disadvantages, and each has found particular clinical applications. (medscape.com)
  • However, despite having the promising outcome of preclinical studies, the clinical application of stem cell therapy remained elusive due to little or no progress in clinical trials. (hindawi.com)
  • Thus, we attempted to present an overview of previously published reports to evaluate the progress and provide molecular basis of mesenchymal stem cells (MSCs) therapy and its application in preclinical and clinical settings, which could aid in designing an effective regenerative therapeutic strategy in the future. (hindawi.com)
  • However, effective dose and appropriate time of MSCs delivery are the main challenges in the clinical translation of stem cell therapy. (hindawi.com)
  • We aim to provide the basis for establishing a future study to promote the clinical translation of stem cell therapy in ischemic brain diseases. (hindawi.com)
  • We fund adult stem cell research and clinical trials in four focus areas - neurodegenerative disease, autoimmune disease, regenerative repair and rare childhood disease - and cover deductibles and co-pays for children of limited means participating in clinical trials for rare diseases. (greaterlouisville.com)
  • We offer choices in integration-free reprogramming technologies and services that fit your research and translational needs including our Cell Therapy Systems (CTS) Products, which are designed for clinical and translational research applications. (thermofisher.com)
  • The fetal membranes - amnion and chorion - also contain stem cells and stem cell-like cells that can be isolated and banked for clinical use. (parentsguidecordblood.org)
  • 6) Do you know any clinical application perspective of stem cells related to dentistry? (bvsalud.org)
  • Investigators at the Department of Clinical Genetics have a strong track record in identifying novel cell surface markers on leukemia stem cells and were the first to demonstrate the potential therapeutic use of recombinant antibodies directed against the marker IL1RAP (interleukin-1 receptor accessory protein) on cancer stem cells in chronic myeloid leukemia (CML) and acute myeloid leukemia (AML). (lu.se)
  • The Cancun Riviera facility reflects Dr. Srivastava's belief that stem cell therapy patients will maximize their success rate when they're in a relaxed state of mind. (prnewswire.com)
  • These results suggest that MSC-Exo effectively ameliorate EAU by inhibiting the migration of inflammatory cells, indicating a potential novel therapy of MSC-Exo for uveitis. (nature.com)
  • Our experiments suggest that some treatments could be producing more cancer stem cells that then are capable of metastasizing, because these cells are trying to find a way to survive the therapy," said one of the study's investigators, Vasyl Vasko, M.D. Ph.D., a pathologist at the Uniformed Services University of the Health Sciences in Bethesda, Md. (medindia.net)
  • This work has been extended to other types of cells of interest for cutaneous cell therapy. (cea.fr)
  • 2. University of Évry, University of Paris-Saclay, INSERM U861, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases (I-Stem), 91100 Corbeil Essonne, France. (cea.fr)
  • 3. Centre for the Study of Stem Cells (CECS), Institute for Stem Cell Therapy and Exploration of Monogenic Diseases (I Stem), 91100 Corbeil Essonne, France. (cea.fr)
  • Italy's health minister, Renato Balduzzi, has been impressed by the blandishments and claims regarding adult stem cell therapy and on March 21 decreed that that a controversial (actually, let's be honest, a quack) stem cell therapy can continue in 32 terminally ill patients, mostly children, even though the stem cells were not isolated according to Italy's safety standards. (skeptoid.com)
  • A successful therapy must therefore eliminate these cells known to be highly resistant to apoptosis. (hindawi.com)
  • Herein, we presented an overview of a previously published work regarding the role of stem cell therapy in ischemic stroke and its underlying molecular mechanisms. (hindawi.com)
  • How far away do you think we are from possibly using AFS stem cells for regenerative therapy? (scitizen.com)
  • Multiple Sclerosis patient, Sam Harrell has no more use for his walker after stem cell therapy! (cellmedicine.com)
  • From feeder-based and feeder-free media to optimized passaging reagents and substrates to media for stem cell therapy research, Gibco products enable you to culture with confidence. (thermofisher.com)
  • Mora MV, Ibán MAR, Heredia JD, Laakso RB, Cuéllar R, Arranz MG. Stem cell therapy in the management of shoulder rotator cuff disorders. (wjgnet.com)
  • High doses of chemotherapy drugs or radiation therapy can kill cancer cells but often also kills the person's stem cells, which prevents the bone marrow from producing normal blood cells. (msdmanuals.com)
  • These cells are not killed by conventional cancer therapy and thus it is critical to identify those cancer stem cells to be able to improved diagnostics and treatment of cancer. (lu.se)
  • Stem cell transplants have many benefits, but they also have risks. (cdc.gov)
  • Because stem cell transplants destroy and rebuild your immune system, they increase your risk for fungal infections. (cdc.gov)
  • Stem Cell Transplants for Early MS: Who Benefits Most? (medscape.com)
  • Compared with ocrelizumab, patients who received stem cell transplants had a 60% lower risk of relapse but the same risk of MS activity detected via MRI. (medscape.com)
  • These findings have led scientists to ask whether adult stem cells could be used for transplants. (news-medical.net)
  • Adult blood forming stem cells from bone marrow have been used in transplants for 30 years. (news-medical.net)
  • This approach could potentially provide an abundant and safe source of new blood stem cells capable of treating a variety of diseases without the risk of graft versus host disease, a serious, life-threatening complication often associated with stem cell transplants derived from a donor. (businesswire.com)
  • Stem cell transplants allow doctors to give high doses of chemotherapy to treat leukemias and some lymphomas. (msdmanuals.com)
  • The in vitro effects of MSC-Exo on immune cell migration and responder T cell proliferation were examined by chemotactic assays and lymphocyte proliferation assays, respectively. (nature.com)
  • However, no inhibitory effect of MSC-Exo on IRBP-specific T cell proliferation was observed. (nature.com)
  • This work not only defines the role of the ARTS gene in the underlying mechanism of mammalian tumor cell resistance to programmed cell death, but also links this gene to another hallmark of cancer, stem and progenitor cell proliferation," said Marion Zatz, who oversees cell death grants, including Steller's, at the NIH's National Institute of General Medical Sciences. (scienceblog.com)
  • Cell proliferation involves the replication of all cellular contents with the required energy for this to happen. (hindawi.com)
  • To prevent aberrant cell proliferation, these pathways are tightly regulated. (hindawi.com)
  • This activation is necessary for both cell proliferation as well as glucose uptake and use. (hindawi.com)
  • They are responsible for triggering cellular events such as activating the maternal regulatory T cells that maintain tolerance and promoting their proliferation, while concurrently inducing the death of activated T cells that could compromise the pregnancy. (parentsguidecordblood.org)
  • Chorionic and amniotic MSCs suppress T cell proliferation to the same extent as bone marrow derived MSCs. (parentsguidecordblood.org)
  • The HLA-G molecule plays a major role in immune tolerance during pregnancy, particularly at the maternal-fetal interface, where HLA-G inhibits the migration and proliferation of maternal immune cells. (parentsguidecordblood.org)
  • Sweden forbids reproductive cloning, but allows therapeutic cloning and authorized a stem cell bank. (wikipedia.org)
  • Britain s House of Lords final approval of therapeutic human cloning and embryonic stem cells research has intensified the battle for ascendancy between adult and embryonic stem cells. (i-sis.org.uk)
  • The identification of the ARTS gene and its role in cancer cell death provides a potential target for new therapeutic approaches. (scienceblog.com)
  • The research paper presented by the American Association for Cancer Research's second International Conference on Molecular Diagnostics in Cancer Therapeutic Development say that anti-cancer treatments might have an opposite effect, actually expanding the small population of cancer stem cells believed to drive the disease though quite often they effectively shrink the size of tumors. (medindia.net)
  • If scientists understood the pathways cancer stem cells use to survive treatment or increase their ranks, then therapeutic targets could be developed, Dr. Vasko said. (medindia.net)
  • In a recent study from the non-profit, Breast Cancer Now, a new potential therapeutic targeting cancer stem cells (CSCs) may have been uncovered. (rndsystems.com)
  • The strategy used to identify new therapeutic markers on leukemia stem cells will also be explored in other tumor types studied within the MAD for Cancer Program. (lu.se)
  • Because ES cells are cultured from the embryoblast 4-5 days after fertilization, harvesting them is most often done from donated embryos from in vitro fertilization (IVF) clinics. (wikipedia.org)
  • France prohibits reproductive cloning and embryo creation for research purposes, but enacted laws (with a sunset provision expiring in 2009) to allow scientists to conduct stem cell research on imported a large amount of embryos from in vitro fertilization treatments. (wikipedia.org)
  • Italy has a 2004 law that forbids all sperm or egg donations and the freezing of embryos, but allows, in effect, using existing stem cell lines that have been imported. (wikipedia.org)
  • In 2003, Spain's laws state that embryos left over from IVF and donated by the couple that created them can be used in research, including ES cell research, if they have been frozen for more than five years. (wikipedia.org)
  • Currently, embryos left over from infertility treatments are the only source of human embryonic stem cells. (sciencedaily.com)
  • But it also plays a much more mundane role in regular cell development, and the formation of blood cells and the cells that form the spinal cord in later-stage embryos. (sciencedaily.com)
  • The hybrid cells carrying four sets of chromosomes (instead of the usual two) behaved as stem cells when injected into mouse embryos. (i-sis.org.uk)
  • Since that time, these cells have given us a wealth of information of how mammalian embryos, including human babies, develop in the womb and how development continues following birth. (scitizen.com)
  • In a surprising new finding, scientists have shown that mouse stem cells treated with the drug reverted to an 'embryonic' state. (sciencedaily.com)
  • It's the first time that scientists have shown they can get stem cells to revert to their original state by erasing specific labels called epigenetic markers. (sciencedaily.com)
  • Now scientists have harvested such cells from the scalps and brain linings of human corpses and reprogrammed them into stem cells. (livescience.com)
  • Scientists have found a way to possibly avoid using embryonic stem. (scitizen.com)
  • To test this hypothesis, Dr. Vasko, along with scientists from the CRTRC Institute for Drug Development in San Antonio and from the Johns Hopkins University, set out to measure both stem cells markers and tumor volume before and after treatment in a mouse model. (medindia.net)
  • Insulin-producing beta cells from the pancreas can return to more primitive developmental state called stem-like cells, scientists from the McGill University Health Centre (MUHC) and the Centre hospitalier de l'Universite de Montreal (CHUM) have proved. (medindia.net)
  • One panelist even added, "If the political hurdle would be removed, I believe there is a lot of pent-up momentum from both scientists and drug companies [for stem cell research]. (news-medical.net)
  • Since adult stem cells avoid the ethical debate surrounding embryonic stem cells , most scientists on the panel feel more comfortable pursuing this line of research. (news-medical.net)
  • Stem cell laws are the law rules, and policy governance concerning the sources, research, and uses in treatment of stem cells in humans. (wikipedia.org)
  • The European Union has yet to issue consistent regulations with respect to stem cell research in member states. (wikipedia.org)
  • Whereas Germany, Austria, Italy, Finland, Portugal and the Netherlands prohibit or severely restrict the use of embryonic stem cells, Greece, Sweden, Spain and the United Kingdom have created the legal basis to support this research. (wikipedia.org)
  • Germany has restrictive policies for stem cell research, but a 2008 law authorizes "the use of imported stem cell lines produced before May 1, 2007. (wikipedia.org)
  • The United Kingdom is one of the leaders in stem cell research, in the opinion of Lord Sainsbury, Science and Innovation Minister for the UK. (wikipedia.org)
  • A new £10 million stem cell research centre has been announced at the University of Cambridge. (wikipedia.org)
  • Under Dr. Anand Srivastava's leadership, the San Diego -based Institute has a tradition of groundbreaking research in the field of stem cell science spanning more than two decades. (prnewswire.com)
  • Ever since 2004, the studies on stem cell research and infertility have been surrounded by hype. (sciencedaily.com)
  • Over the past decade, the identification of stem-like cells as drivers of tumor initiation, recurrence, and metastasis spread in a variety of human cancers had a tremendous impact in basic and translational cancer research. (hindawi.com)
  • We invite investigators to submit original research as well as review articles addressing recent advancements in our understanding of stem cells in cancer. (hindawi.com)
  • 8 Feb, 2008 06:09 pm Six years ago, biomedical engineer Michael King was exploring the strange rolling motion of white blood cells when his research took a radical turn. (scitizen.com)
  • 27 Nov, 2007 10:41 am Tony Maciulis talks with Dr. Jon LaPook about a breakthrough in stem cell research. (scitizen.com)
  • 21 Nov, 2007 10:54 am A huge advancement in stem cell research--and a stake in the heart of human cloning--was announced yesterday. (scitizen.com)
  • 6 Sep, 2007 12:57 pm British authorities decided yesterday to permit research that uses animal eggs to create human stem cells because of the limited supply of human eggs. (scitizen.com)
  • 25 Jun, 2007 04:43 pm On June 7, the House of Representatives voted 247-176 to pass a bill (S 5) that would allow federal funding for research using stem cells derived from. (scitizen.com)
  • Now research from Rockefeller University shows that having too many stem cells, or stem cells that live for too long, can increase the odds of developing cancer. (scienceblog.com)
  • Stem cell research, like any biomedical research, poses social and ethical concerns that CIRM, and the broader research community, takes very seriously. (ca.gov)
  • The potential for dedifferentiation of all the different cells that make up the islets of Langerhans is a totally new finding," said lead researcher Dr. Lawrence Rosenberg, Chief of the Division of Surgical Research at McGill''s Faculty of Medicine. (medindia.net)
  • The panel was responding to recently published research where pancreatic insulin-producing islet cells were discovered in mice. (news-medical.net)
  • The panelists were unanimous in their enthusiasm that this research, conducted jointly at the Universities of Alberta and Toronto, adds more hope to the goal of getting human stem cells to produce insulin, and thus finding a cure for diabetes. (news-medical.net)
  • In addition to the current federally imposed restrictions on stem cell research, they also saw cost as a major inhibiting factor, including sterilization, preservation of cells, consistency of product and delivery of cells. (news-medical.net)
  • The panelists acknowledged the current ethical concerns surrounding stem cell research, but most felt that the impediments to research put in place by the current administration were unfortunate, and that science preceded ethics on most issues. (news-medical.net)
  • Recent research on adult stem cells has found adult stem cells in many more tissues than once thought possible. (news-medical.net)
  • In 2010, the same research group showed that a similar method worked on mouse skin cells, although it works much less efficiently with human cells. (stanforddaily.com)
  • According to study coauthor and Cambridge Biomedical Research Campus medical geneticist Serena Nik-Zainal , the study reveals that the level of quality control involved in such stem cell research may not be up to snuff. (the-scientist.com)
  • It's a problem, but it's solvable," says Jeanne Loring , a stem cell researcher at the Scripps Research Institute who didn't work on the study. (the-scientist.com)
  • A cell line can harbor thousands of mutations and still be usable for research as long as those mutations are concentrated in irrelevant noncoding areas or don't hit important genes, Nik-Zainal says. (the-scientist.com)
  • Just as importantly, research on these cells has been providing us with what happens when foetal development goes wrong, either because of a genetic defect or one that is imposed, for example, by a chemical or drug. (scitizen.com)
  • The real value of over two decades of ES-cell research currently lies with these advances but there has been relatively little external acclaim or general interest. (scitizen.com)
  • These debates will, and must, rage on but it interesting that two things in particular seem to be lost to most debates on the issue: (i) the value of research to this point in time, and (ii) the likelihood that the use of stem cells of any type to treat most if not all these diseases remains, for a variety of reasons, a distant possibility. (scitizen.com)
  • The finding could help research aimed at boosting the immune response of stem cells - early stage cells with the potential to become specialised tissues - for use in treating disease or damaged tissues. (ed.ac.uk)
  • The research identified ways to switch on a key part of the immune system that protects against viruses in stem cells, known as the interferon response. (ed.ac.uk)
  • Analyze stem cells and their derivatives using a wide range of cellular and molecular characterization methods, as validation is critical in iPSC research. (thermofisher.com)
  • The research was funded by the National Institutes of Health and the Johns Hopkins Institute for Cell Engineering. (hopkinsmedicine.org)
  • reflect on current scientific challenges within stem cell research and how this research influences society in general · reflect on ethical issues relating to sustainable stem cell research and regenerative medicine. (lu.se)
  • The purpose of the course is to prepare students for work in a field that includes stem cells and regenerative medicine by introducing ongoing research in the area. (lu.se)
  • In work performed by Division of Translational Cancer Research it is shows that the hypoxic state pushes neuroblastoma and breast cancer towards an immature, stem cell-like phenotype. (lu.se)
  • Advances in this field point to a more complex model of tumor development than previously envisioned, in which the stem-like phenotype may be dynamically acquired by cancer cells. (hindawi.com)
  • We make a connection between apoptosis, stem cells and cancer that has not been made in this way before: this pathway is critically important in stem cell death and in reducing tumor risk," Steller says. (scienceblog.com)
  • The work supports the idea that the stem cell is the seed of the tumor and that the transition from a normal stem cell to a cancer stem cell involves increased resistance to apoptosis. (scienceblog.com)
  • It also suggests that the premature silencing of the Sept4/ARTS pathway at the stem cell level may herald cancer to come. (scienceblog.com)
  • But analysis of stem cell expression before and after treatment revealed that even as some anti-cancer treatments shrank tumors, they increased expression of Nanog and BMI1. (medindia.net)
  • These treatments were not enough to completely inhibit tumor growth, and the cancer stem cell markers were still present," Dr. Vasko said. (medindia.net)
  • Use of the agents Velcade and Docetaxel led to the most significant increase in stem cell markers within the treated tumor, while ifosfamide and Avastin inhibited expression of the markers in this cancer subtype. (medindia.net)
  • Dr. Vasko doesn't know how this happens, but theorizes that "dying cells could secrete a lot of factors that induce expression of stem cell markers in other cancer cells. (medindia.net)
  • Reduces mammosphere-forming efficiency of breast cancer cell lines and ductal carcinoma in situ cells (Farnie et al. (stemcell.com)
  • Accumulating evidence shows that cancer stem cells are key drivers of tumor formation, progression, and recurrence. (hindawi.com)
  • In this paper, we describe the metabolic changes as well as the mechanisms of resistance to apoptosis occurring in cancer cells and cancer stem cells, underlying the connection between these two processes. (hindawi.com)
  • However, cancer cells overcome these controls, in particular by acquiring genetic mutations leading to the activation of oncogenes (pten, myc) or loss of tumor suppressors (p53) [ 1 ]. (hindawi.com)
  • In contrast to normal cells, most cancer cells predominantly produce energy by a high rate of glycolysis followed by lactate fermentation, even in the presence of oxygen, a less efficient metabolism compared to a low rate of glycolysis followed by mitochondrial oxidation of pyruvate [ 2 ]. (hindawi.com)
  • In contrast, cancer cells shift their metabolism toward lactate production even in the presence of oxygen [ 4 ], partly through genetic modifications that stabilize the transcription factor Hypoxia Inducible Factor (HIF) involved in the adaptation of the cells to hypoxia, under nonhypoxic conditions as well as generating an adaptive response to the hypoxic microenvironment (Figure 1 ). (hindawi.com)
  • Metabolic adaptations of cancer cells. (hindawi.com)
  • Glucose and glutamine are the 2 major substrates used by cancer cells. (hindawi.com)
  • In an interesting study from the University of Michigan, the team in the Kleer Lab have observed cancer stem cells (CSCs) engulfing other cell types to take on characteristics that would be beneficial to the metastases. (rndsystems.com)
  • The cancer stem cell theory holds that tumors also contain stem-like cells that drive tumor growth and metastasis formation. (medscape.com)
  • According to the cancer stem cell (CSC) concept, the cellular hierarchy in normal tissues is preserved in a number of hematological and solid malignancies. (medscape.com)
  • The CSC is defined as a cancer cell with self-renewing capacity that can regenerate the original tumor in all its differentiated heterogeneity. (medscape.com)
  • Cancer stem cell-associated proteins revealed by proteomics. (medscape.com)
  • Accumulating data suggests that many human tumors are organized in cellular hierarchies initiated and maintained by a small population of self-renewing so called cancer stem cells. (lu.se)
  • This was first demonstrated in acute myeloid leukemia (AML) but during recent years, cancer stem cells have also been demonstrated in other cancer types. (lu.se)
  • Within the MAD for Cancer Program, a previously unexplored combination of strategies will be used to identify new cell surface markers on AML stem cells. (lu.se)
  • In a study published in the Molecular Cell journal, they explain what makes hematopoietic stem cells acquire malignant traits in cancer. (lu.se)
  • Reduces colony-forming efficiency of mouse neural stem cells (Androutsellis-Theotokis et al. (stemcell.com)
  • A promising new study for the future of neural stem cell (NSCs) from the University of Plymouth sheds light on how NSCs are activated to regenerate neurons and glial cells when damage or deterioration occurs. (rndsystems.com)
  • By identifying a mechanism that regulates programmed cell death in precursor cells for blood, or hematopoietic stem cells, the work is the first to connect the death of such cells to a later susceptibility to tumors in mice. (scienceblog.com)
  • Cells with high expression of HIF-2 α have properties rendering the tumors aggressive behavior potentially being the neuroblastoma tumor stem cells. (lu.se)
  • He and his colleagues have identified a new stem cell found in amniotic fluid and placentas, named "AFS" cells. (scitizen.com)
  • We want as many people as possible to be able to use this website, and this page describes how Lund Stem Cell Center complies with the accessibility regulations, any known accessibility issues, and how you can report problems so that we can fix them. (lu.se)
  • How accessible is Lund Stem Cell Center? (lu.se)
  • Welcome to stemcellcenter.lu.se, which is managed by the Lund Stem Cell Center at Lund University. (lu.se)
  • If you need information from Lund Stem Cell Center in any other format, such as available PDF, large text, Easy to read, audio recording or Braille, then notify us. (lu.se)
  • They may instead be fusing with existing cells, creating genetically mixed-up tissues with unknown health effects" [1]. (i-sis.org.uk)
  • 27 Jun, 2007 06:08 pm Stem cells have the potential to become all the cells and tissues in the human body. (scitizen.com)
  • Stem cells, the prodigious precursors of all the tissues in our body, can make almost anything, given the right circumstances. (scienceblog.com)
  • In summary, the placenta and other perinatal tissues are a rich source of stem cells and stem-like cells, which can potentially be banked in a similar manner to cord blood. (parentsguidecordblood.org)
  • Adult stem cells (ASCs) are present in organs and tissues, where it remains in a not proliferative state 12 . (bvsalud.org)
  • 3) From which tissues stem cells are possibly obtained? (bvsalud.org)
  • 5) Is it possible to obtain stem cells from dental tissues? (bvsalud.org)
  • Bone marrow donation can be done either by collecting a donor's bone marrow surgically, or by removing stem cells from a donor's blood. (medlineplus.gov)
  • The stem cells may be taken from a donor's bone marrow, but it is easier and almost as effective to get the stem cells from the donor's blood. (msdmanuals.com)
  • SCs are defined as undifferentiated cells with great capacity of self-renewal and production of at least a highly specialized cell type 11 . (bvsalud.org)
  • SCs are not only capable of maintaining themselves (self-renewal) but also give rise to a proliferative 'transit amplifying' compartment and ultimately to postmitotic differentiated cells with specialized functions. (medscape.com)
  • Donor stem cells can be collected in two ways. (medlineplus.gov)
  • Most donor stem cells are collected through a process called leukapheresis. (medlineplus.gov)
  • His group specialises in the study of the genetic and epigenetic regulation of female germ cell development. (sciencedaily.com)
  • Of note, we define OCT identities as a state with some characteristics of both osteoblasts and chondrocytes, instead of cell-type plasticity between osteoblasts and chondrocytes. (nature.com)
  • The course begins with perspectives on cell plasticity and re-programming, and how regeneration functions. (lu.se)
  • Stem cells are unspecialized unique body cells that may help patients better manage symptoms of multiple sclerosis, arthritis, and other degenerative diseases. (prnewswire.com)
  • Their stem cells are more likely to help patients than stem cells from older people. (medlineplus.gov)
  • This may help explain why the expression of stem cell markers has been associated with resistance to chemotherapy and radiation treatments and poor outcome for patients with cancers including prostate, breast and lung cancers," Dr. Vasko said. (medindia.net)
  • Doctors infused stem cells derived from umbilical cords into the patients. (lifeissues.org)
  • Part one of this short series looked at unregulated stem cell clinics fleecing patients of their savings and robbing them of their health and even their lives. (skeptoid.com)
  • For a short time, I corresponded with a former member of staff from the centre whom I shall call T*. I asked T if the patients (s)he had contact with were aware of just how experimental the procedures on offer at the X-Cell Centre were. (skeptoid.com)
  • The National Marrow Donor Program (NMDP), founded in 1986, and the World Marrow Donor Association (WMDA), founded in 1988, were established to (1) locate and secure appropriate unrelated-donor HSCT sources for patients by promoting volunteer donation of bone marrow and peripheral blood stem cells in the community and (2) promote ethical practices of sharing stem cell sources by need, rather than by geographic location of the donor. (medscape.com)
  • The study carries cells from patients with Parkinson's disease and progressive MS to space for observations not possible on Earth. (greaterlouisville.com)
  • Likewise, in asplenic ALPS patients with, stress the infection risks, including the pneumococcal sepsis associated with asplenia (which may be compounded by lack of memory B cells and autoimmune neutropenia). (medscape.com)
  • Because of deficient memory B-cell function, these patients are often unable to produce or maintain protective antibodies against polysaccharide antigens after vaccination. (medscape.com)
  • What's the difference between allogeneic and autologous stem cell transplantations? (clevelandclinic.org)
  • However, the role of stem cell capacity in life-history trade-off has not been investigated. (lu.se)
  • Dexter demonstrated in 1982 that an adherent stromal-like culture was able to support maintenance of hematopoietic stem as well as early B lymphopoeisis. (nih.gov)
  • Maintenance of the hematopoietic stem cell population has been used to increase the efficiency of hematopoietic stem cell gene transfer. (nih.gov)
  • Newborn ARTS-deprived mice had about twice as many hematopoietic stem cells as their normal, ARTS-endowed peers, and those stem cells were extraordinary in their ability to survive experimentally induced mutations. (scienceblog.com)
  • Although hematopoietic stem cells (HSC) are the best characterized and the most clinically used adult stem cells, efforts are still needed to understand how to best ex vivo expand these cells. (stemcell.com)
  • As described in the first part of this series , there are different types of stem cells. (skeptoid.com)
  • 2) What are the types of stem cells? (bvsalud.org)
  • That tells us that understanding how to target these markers and these cells could prove useful in treating these cancers. (medindia.net)
  • Those 'normal' cell lines have as many mutations as [some] cancers," Nik-Zainal tells The Scientist . (the-scientist.com)
  • The bone marrow contains various populations of skeletal stem cells (SSCs) in the stromal compartment, which are important regulators of bone formation. (nature.com)
  • A vertebral skeletal stem cell lineage driving metastasis. (bvsalud.org)
  • Here we identify a vertebral skeletal stem cell (vSSC) that co-expresses ZIC1 and PAX1 together with additional cell surface markers. (bvsalud.org)
  • Together, our results indicate that vSSCs are distinct from other skeletal stem cells and mediate the unique physiology and pathology of vertebrae , including contributing to the high rate of vertebral metastasis . (bvsalud.org)
  • Limbal stem cell diseases. (ca.gov)
  • Will embryonic stem cells ever be used to treat human diseases? (scitizen.com)
  • Instead, as we know, interest and debate has centred largely on the ethics and morals of using human ES cells to treat, potentially, a range of human diseases, many of which are virtually intractable with respect to a cure. (scitizen.com)
  • In addition, validation of preliminary findings of solute carrier molecules (usually used for drug-delivery) selectively expressed in tumor cells with the aim to develop imaging-led theranostic approaches of personalized treatment will be performed. (lu.se)
  • Here, the stem cells are shown expressing various markers and differentiating into neurons. (livescience.com)
  • The discovery of this new class of SSCs is based on the conjunction of evidence from unbiased single-cell molecular profiling and functional dissection of the BMSC lineage hierarchy using in vivo cell lineage analysis. (nature.com)
  • Massive ex vivo expansion of epidermal cells (called keratinocytes) is needed for the production of grafts. (cea.fr)
  • Reprogrammed cells could then develop into a multitude of cell types, including the neurons found in the brain and spinal cord. (livescience.com)
  • With the addition of four proteins, adult human skin cells can be transformed into neurons over a month-long period. (stanforddaily.com)
  • This treatment, nicknamed "BAM" after an acronym of the three proteins, converted the embryonic stem cells into functional neurons within six days. (stanforddaily.com)
  • it triggered the skin cells' transformation into functional neurons within about four to five weeks. (stanforddaily.com)
  • The cells expressed electrical activity characteristic of neurons and even integrated and interacted with mouse neurons on a laboratory dish. (stanforddaily.com)
  • While they found that approximately 20 percent of mouse skin cells transform directly into functional neurons, under current culture conditions only about two to four percent of human skin cells do the same. (stanforddaily.com)
  • Now, they're working to see if the MM-401 eraser technique works with human stem cells that bear some resemblance to mouse epiblast stem cells. (sciencedaily.com)
  • Other techniques can reprogram "adult" cells in the human body taken from skin, for example -- but the cells still carry baggage from their previous state. (sciencedaily.com)
  • The cells or blood is then tested for special proteins, called human leukocytes antigens (HLAs). (medlineplus.gov)
  • Stem cells have an enormous amount of potential to increase the health, and overall living standards of the human species in general. (scienceblog.com)
  • Adult human stem cells should have less controversy compared to embryonic human stem cells in terms of ethical issues. (news-medical.net)
  • Further analysis revealed that mutations, especially the BCOR mutations in the blood-derived lines, can occur after reprogramming, meaning they didn't originate from the human donors but rather arose as the cells replicated in the lab, likely through selective pressures the cells experience while growing and dividing in a dish. (the-scientist.com)
  • Several controversies surround the use of human embryonic stem cells: Is it ethical to use them? (scitizen.com)
  • During the mid- to late-nineties, this possibility was realised, with the isolation of ES cells from various species including rabbit, pig, cow, and primates (monkey and marmoset), culminating with the publication in 1998 of two articles on the isolation of human ES cells 2 . (scitizen.com)
  • Having established a faster, more efficient method, the team then reprogrammed human cells that contain the mutation associated with sickle cell anemia. (hopkinsmedicine.org)
  • Ethical Stem Cell Breakthrough! (scitizen.com)
  • Will AFS cells solve the ethical debate about how stem cells are acquired? (scitizen.com)
  • We hypothesize that the tumor escapes from chemotherapy by induction of stem cell marker expression," he said. (medindia.net)
  • The purpose is to deliver chemotherapy, immunotherapy, and/or radiation to eliminate malignancy, prevent rejection of new stem cells, and create space for the new cells. (medscape.com)
  • The results of the paper published in Nature Biomedical Engineering show that reducing the expression of the KLF4 gene during graft preparation promotes rapid expansion of functional stem cells1, without damaging their genomic stability. (cea.fr)
  • Choose from Invitrogen gene editing and transfection technologies to build cell models that can better answer biological questions. (thermofisher.com)
  • In this context, in the undifferentiated state, the entropy would be large since fewer constraints exist on the gene expression programmes of the cell. (lu.se)
  • KLF4 is therefore a new molecular target for preserving the functionality of stem cells and making progress in the bio-engineering of skin grafts. (cea.fr)
  • More recently, I have moved from the fields of protein structure and medicinal chemistry to the cell and molecular. (scitizen.com)
  • In the end, that leads to more cells accumulating mutations that cannot be eliminated. (scienceblog.com)
  • Jack Hubbard One hallmark of embryonic stem cells is that they cause a particular type of tumor called a teratoma. (ca.gov)
  • Bone marrow contains stem cells, which are immature cells that become blood cells. (medlineplus.gov)
  • Peripheral blood stem cell collection. (medlineplus.gov)
  • First, the donor is given 5 days of shots to help stem cells move from the bone marrow into the blood. (medlineplus.gov)
  • The part of white blood cells that contains stem cells is then separated in a machine and removed to be later given to the recipient. (medlineplus.gov)
  • The red blood cells are returned to the donor through an IV in the other arm. (medlineplus.gov)
  • The blood brain barrier restricts the permeation of molecules and cells through the circulatory system into the central nervous system. (genengnews.com)
  • These new stem cells produce healthy new blood cells. (clevelandclinic.org)
  • These stem cells may come from a family member, from someone you don't know or from umbilical cord blood. (clevelandclinic.org)
  • While both treatments help your bone marrow to develop new blood cells, studies show allogeneic stem cell transplantations work by causing the donor cells to attack unhealthy cells. (clevelandclinic.org)
  • This blood disorder affects your body's ability to produce red blood cells. (clevelandclinic.org)
  • This disorder affects white blood cells. (clevelandclinic.org)
  • This technology provides a means of converting a patient's own vascular cells, known as endothelial cells, directly into blood stem cells. (businesswire.com)
  • The VeraVec TM cells form a nurturing niche for the survival and growth of the reprogrammed blood cells, similar to what happens developmentally during blood production. (businesswire.com)
  • A particularly important aspect of this study was that the reprogrammed cells engrafted in the bone marrow when implanted into rodents and morphed into the various types of blood cells," said Dr. Rafii. (businesswire.com)
  • Stem cells in the bone marrow are the source of all the different normal blood cells. (msdmanuals.com)
  • What makes blood stem cells transform? (lu.se)
  • Splicing factor mutations are particularly prevalent in MDS, a group of heterogeneous hematological disorders characterized by defective blood stem cells and a high risk of leukemia development. (lu.se)
  • We previously demonstrated that mesenchymal stem cells (MSCs) ameliorated experimental autoimmune uveoretinitis (EAU) in rats. (nature.com)
  • Our group recently reported that CD73 on the cell membrane also contributes to the immunomodulatory capacity of MSCs 3 , suggesting that MSCs exert their immunomodulatory properties in a multifactorial manner. (nature.com)
  • Mesenchymal Stem Cells (MSCs) have been successfully isolated from first-, second-, and third-trimester placental compartments, including the amnion, chorion, decidua parietalis and decidua basalis. (parentsguidecordblood.org)
  • Unlike MSCs, which are all plastic adherent, primary AECs have three subpopulations of cells that are adherent, loosely adherent, and free-floating. (parentsguidecordblood.org)