Epithelial cells surrounding the dental papilla and differentiated into three layers: the inner enamel epithelium, consisting of ameloblasts which eventually form the enamel, and the enamel pulp and external enamel epithelium, both of which atrophy and disappear before and upon eruption of the tooth, respectively.
The elaboration of dental enamel by ameloblasts, beginning with its participation in the formation of the dentino-enamel junction to the production of the matrix for the enamel prisms and interprismatic substance. (Jablonski, Dictionary of Dentistry, 1992).
A hard thin translucent layer of calcified substance which envelops and protects the dentin of the crown of the tooth. It is the hardest substance in the body and is almost entirely composed of calcium salts. Under the microscope, it is composed of thin rods (enamel prisms) held together by cementing substance, and surrounded by an enamel sheath. (From Jablonski, Dictionary of Dentistry, 1992, p286)
Cylindrical epithelial cells in the innermost layer of the ENAMEL ORGAN. Their functions include contribution to the development of the dentinoenamel junction by the deposition of a layer of the matrix, thus producing the foundation for the prisms (the structural units of the DENTAL ENAMEL), and production of the matrix for the enamel prisms and interprismatic substance. (From Jablonski's Dictionary of Dentistry, 1992)
The proteins that are part of the dental enamel matrix.
Any of the eight frontal teeth (four maxillary and four mandibular) having a sharp incisal edge for cutting food and a single root, which occurs in man both as a deciduous and a permanent tooth. (Jablonski, Dictionary of Dentistry, 1992, p820)
A secreted matrix metalloproteinase that is the predominant proteolytic activity in the enamel matrix. The enzyme has a high specificity for dental enamel matrix protein AMELOGENIN.
The process of TOOTH formation. It is divided into several stages including: the dental lamina stage, the bud stage, the cap stage, and the bell stage. Odontogenesis includes the production of tooth enamel (AMELOGENESIS), dentin (DENTINOGENESIS), and dental cementum (CEMENTOGENESIS).
The collective tissues from which an entire tooth is formed, including the DENTAL SAC; ENAMEL ORGAN; and DENTAL PAPILLA. (From Jablonski, Dictionary of Dentistry, 1992)
A major dental enamel-forming protein found in mammals. In humans the protein is encoded by GENES found on both the X CHROMOSOME and the Y CHROMOSOME.
One of a set of bone-like structures in the mouth used for biting and chewing.
The most posterior teeth on either side of the jaw, totaling eight in the deciduous dentition (2 on each side, upper and lower), and usually 12 in the permanent dentition (three on each side, upper and lower). They are grinding teeth, having large crowns and broad chewing surfaces. (Jablonski, Dictionary of Dentistry, 1992, p821)
The process whereby calcium salts are deposited in the dental enamel. The process is normal in the development of bones and teeth. (Boucher's Clinical Dental Terminology, 4th ed, p43)
Mesodermal tissue enclosed in the invaginated portion of the epithelial enamel organ and giving rise to the dentin and pulp.
An acquired or hereditary condition due to deficiency in the formation of tooth enamel (AMELOGENESIS). It is usually characterized by defective, thin, or malformed DENTAL ENAMEL. Risk factors for enamel hypoplasia include gene mutations, nutritional deficiencies, diseases, and environmental factors.
The susceptibility of the DENTAL ENAMEL to dissolution.

The enamel organ is a structure found in the developing teeth of vertebrates. It is responsible for the formation of enamel, which is the hard, outermost layer of the tooth crown. The enamel organ is derived from the dental papilla and is composed of several layers: the outer enamel epithelium, the stellate reticulum, the stratum intermedium, and the inner enamel epithelium. These layers work together to produce the enamel matrix, which is then mineralized to form the hard tissue that covers the tooth's crown. The enamel organ disappears after the formation of enamel is complete, leaving only the hardened enamel layer behind.

Amelogenesis is the biological process of forming enamel, which is the hard and highly mineralized outer layer of teeth. Enamel is primarily made up of calcium and phosphate minerals and is the toughest substance in the human body. Amelogenesis involves the synthesis, secretion, and maturation of enamel proteins by specialized cells called ameloblasts.

The medical definition of 'Amelogenesis' refers to a genetic disorder that affects the development and formation of tooth enamel. This condition is also known as Amelogenesis Imperfecta (AI) and can result in teeth that are discolored, sensitive, and prone to decay. There are several types of Amelogenesis Imperfecta, each with its own set of symptoms and genetic causes.

In summary, 'Amelogenesis' is the biological process of enamel formation, while 'Amelogenesis Imperfecta' is a genetic disorder that affects this process, leading to abnormal tooth enamel development.

Dental enamel is the hard, white, outermost layer of a tooth. It is a highly mineralized and avascular tissue, meaning it contains no living cells or blood vessels. Enamel is primarily composed of calcium and phosphate minerals and serves as the protective covering for the crown of a tooth, which is the portion visible above the gum line.

Enamel is the hardest substance in the human body, and its primary function is to provide structural support and protection to the underlying dentin and pulp tissues of the tooth. It also plays a crucial role in chewing and biting by helping to distribute forces evenly across the tooth surface during these activities.

Despite its hardness, dental enamel can still be susceptible to damage from factors such as tooth decay, erosion, and abrasion. Once damaged or lost, enamel cannot regenerate or repair itself, making it essential to maintain good oral hygiene practices and seek regular dental checkups to prevent enamel damage and protect overall oral health.

Ameloblasts are the specialized epithelial cells that are responsible for the formation of enamel, which is the hard, outermost layer of a tooth. These cells are a part of the dental lamina and are present in the developing tooth's crown region. They align themselves along the surface of the developing tooth and secrete enamel proteins and minerals to form the enamel rods and interrod enamel. Once the enamel formation is complete, ameloblasts undergo programmed cell death, leaving behind the hard, mineralized enamel matrix. Any damage or abnormality in the functioning of ameloblasts can lead to developmental defects in the enamel, such as hypoplasia or hypocalcification, which may affect the tooth's structure and function.

Dental enamel is the hard, outermost layer of a tooth that protects the dentin and pulp inside. It is primarily made up of minerals, mainly hydroxyapatite, and contains very little organic material. However, during the formation of dental enamel, proteins are synthesized and secreted by ameloblast cells, which help in the development and mineralization of the enamel. These proteins play a crucial role in the proper formation and structure of the enamel.

Some of the main dental enamel proteins include:

1. Amelogenin: This is the most abundant protein found in developing enamel, accounting for about 90% of the organic matrix. Amelogenin helps regulate the growth and organization of hydroxyapatite crystals during mineralization. It also plays a role in determining the final hardness and structure of the enamel.

2. Enamelin: This protein is the second most abundant protein in developing enamel, accounting for about 5-10% of the organic matrix. Enamelin is involved in the elongation and thickening of hydroxyapatite crystals during mineralization. It also helps maintain the stability of the enamel structure.

3. Ameloblastin: This protein is produced by ameloblast cells and is essential for proper enamel formation. Ameloblastin plays a role in regulating crystal growth, promoting adhesion between crystals, and maintaining the structural integrity of the enamel.

4. Tuftelin: This protein is found in both dentin and enamel but is more abundant in enamel. Tuftelin is involved in the initiation of mineralization and helps regulate crystal growth during this process.

5. Dentin sialophosphoprotein (DSPP): Although primarily associated with dentin formation, DSPP is also found in developing enamel. It plays a role in regulating crystal growth and promoting adhesion between crystals during mineralization.

After the formation of dental enamel is complete, these proteins are largely degraded and removed, leaving behind the highly mineralized and hard tissue that characterizes mature enamel. However, traces of these proteins may still be present in the enamel and could potentially play a role in its structure and properties.

An incisor is a type of tooth that is primarily designed for biting off food pieces rather than chewing or grinding. They are typically chisel-shaped, flat, and have a sharp cutting edge. In humans, there are eight incisors - four on the upper jaw and four on the lower jaw, located at the front of the mouth. Other animals such as dogs, cats, and rodents also have incisors that they use for different purposes like tearing or gnawing.

Matrix metalloproteinase-20 (MMP-20) is a type of enzyme that belongs to the matrix metalloproteinase (MMP) family. MMPs are involved in the breakdown and remodeling of extracellular matrix components, such as collagen and elastin.

MMP-20, also known as Enamelysin, is primarily expressed in developing teeth and plays a crucial role in tooth development and mineralization. It is responsible for the degradation of enamel proteins during tooth formation, helping to shape and harden the enamel matrix. MMP-20 is secreted by ameloblasts, which are the cells that produce enamel.

Defects in MMP-20 have been associated with dental disorders such as Amelogenesis imperfecta, a group of genetic conditions characterized by abnormalities in tooth enamel formation and structure.

Odontogenesis is the process of tooth development that involves the formation and calcification of teeth. It is a complex process that requires the interaction of several types of cells, including epithelial cells, mesenchymal cells, and odontoblasts. The process begins during embryonic development with the formation of dental lamina, which gives rise to the tooth bud. As the tooth bud grows and differentiates, it forms the various structures of the tooth, including the enamel, dentin, cementum, and pulp. Odontogenesis is completed when the tooth erupts into the oral cavity. Abnormalities in odontogenesis can result in developmental dental anomalies such as tooth agenesis, microdontia, or odontomas.

A tooth germ is a small cluster of cells that eventually develop into a tooth. It contains the dental papilla, which will become the dentin and pulp of the tooth, and the dental follicle, which will form the periodontal ligament, cementum, and alveolar bone. The tooth germ starts as an epithelial thickening called the dental lamina, which then forms a bud, cap, and bell stage before calcification occurs and the tooth begins to erupt through the gums. It is during the bell stage that the enamel organ, which will form the enamel of the tooth, is formed.

Amelogenin is a protein that plays a crucial role in the formation and mineralization of enamel, which is the hard, calcified tissue that covers the outer surface of teeth. It is expressed during tooth development and is secreted by ameloblasts, the cells responsible for producing enamel.

Amelogenin makes up approximately 90% of the organic matrix of developing enamel and guides the growth and organization of hydroxyapatite crystals, which are the primary mineral component of enamel. The protein is subsequently degraded and removed as the enamel matures and becomes fully mineralized.

Mutations in the gene that encodes amelogenin (AMELX on the X chromosome) can lead to various inherited enamel defects, such as amelogenesis imperfecta, which is characterized by thin, soft, or poorly formed enamel. Additionally, because of its high expression in developing teeth and unique size and structure, amelogenin has been widely used as a marker in forensic dentistry for human identification and sex determination.

A tooth is a hard, calcified structure found in the jaws (upper and lower) of many vertebrates and used for biting and chewing food. In humans, a typical tooth has a crown, one or more roots, and three layers: the enamel (the outermost layer, hardest substance in the body), the dentin (the layer beneath the enamel), and the pulp (the innermost layer, containing nerves and blood vessels). Teeth are essential for proper nutrition, speech, and aesthetics. There are different types of teeth, including incisors, canines, premolars, and molars, each designed for specific functions in the mouth.

In the context of dentistry, a molar is a type of tooth found in the back of the mouth. They are larger and wider than other types of teeth, such as incisors or canines, and have a flat biting surface with multiple cusps. Molars are primarily used for grinding and chewing food into smaller pieces that are easier to swallow. Humans typically have twelve molars in total, including the four wisdom teeth.

In medical terminology outside of dentistry, "molar" can also refer to a unit of mass in the apothecaries' system of measurement, which is equivalent to 4.08 grams. However, this usage is less common and not related to dental or medical anatomy.

Tooth calcification, also known as dental calculus or tartar formation, refers to the hardening of plaque on the surface of teeth. This process occurs when minerals from saliva combine with bacterial deposits and dental plaque, resulting in a hard, calcified substance that adheres to the tooth surface. Calcification can occur both above and below the gum line, and if not removed through professional dental cleanings, it can lead to periodontal disease, tooth decay, and other oral health issues.

The dental papilla is a type of tissue found in the developing tooth within the jawbone. It is composed of cells that will eventually differentiate into odontoblasts, which are the cells responsible for producing dentin, one of the main hard tissues that make up the tooth. The dental papilla is located in the center of the tooth germ and is surrounded by the dental follicle, another type of tissue that helps to form the tooth. As the tooth develops, the dental papilla becomes smaller and eventually forms the pulp chamber, which contains the blood vessels, nerves, and connective tissue that support and nourish the tooth.

Dental enamel hypoplasia is a condition characterized by the deficiency or reduction in the thickness of the tooth's enamel surface. This results in the enamel being thin, weak, and prone to wear, fractures, and dental cavities. The appearance of teeth with enamel hypoplasia may be yellowish, brownish, or creamy white, and they can have pits, grooves, or bands of varying widths and shapes.

Enamel hypoplasia can occur due to various factors, including genetics, premature birth, low birth weight, malnutrition, infections during childhood (such as measles or chickenpox), trauma, exposure to environmental toxins, and certain medical conditions that affect enamel formation.

The condition is usually diagnosed through a dental examination, where the dentist can observe and assess the appearance and structure of the teeth. Treatment options depend on the severity of the hypoplasia and may include fluoride treatments, sealants, fillings, crowns, or extractions in severe cases. Preventive measures such as maintaining good oral hygiene, a balanced diet, and regular dental check-ups can help reduce the risk of developing enamel hypoplasia.

Dental enamel solubility refers to the degree to which the mineral crystals that make up dental enamel can be dissolved or eroded by acidic substances. Dental enamel is the hard, outermost layer of a tooth that helps protect it from damage. It is primarily made up of minerals, including hydroxyapatite, which can dissolve in an acidic environment.

When the pH in the mouth drops below 5.5, the oral environment becomes acidic and dental enamel begins to demineralize or lose its mineral content. This process is known as dental caries or tooth decay. Over time, if left untreated, dental caries can lead to cavities, tooth sensitivity, and even tooth loss.

Certain factors can increase the solubility of dental enamel, including a diet high in sugar and starch, poor oral hygiene, and the presence of certain bacteria in the mouth that produce acid as a byproduct of their metabolism. On the other hand, fluoride exposure can help to reduce dental enamel solubility by promoting remineralization and making the enamel more resistant to acid attack.

No FAQ available that match "stage enamel organ"

No images available that match "stage enamel organ"