Method of treating pain associated with the sphenopalatine ganglion located in the PTERYGOPALATINE FOSSA, posterior to the middle nasal turbinate. The transnasal approach involves application of suitable local anesthetic to the mucous membrane overlying the ganglion.
A small space in the skull between the MAXILLA and the SPHENOID BONE, medial to the pterygomaxillary fissure, and connecting to the NASAL CAVITY via the sphenopalatine foramen.
Ganglia of the parasympathetic nervous system, including the ciliary, pterygopalatine, submandibular, and otic ganglia in the cranial region and intrinsic (terminal) ganglia associated with target organs in the thorax and abdomen.
Interruption of sympathetic pathways, by local injection of an anesthetic agent, at any of four levels: peripheral nerve block, sympathetic ganglion block, extradural block, and subarachnoid block.
A paravertebral sympathetic ganglion formed by the fusion of the inferior cervical and first thoracic ganglia.
A primary headache disorder that is characterized by severe, strictly unilateral PAIN which is orbital, supraorbital, temporal or in any combination of these sites, lasting 15-180 min. occurring 1 to 8 times a day. The attacks are associated with one or more of the following, all of which are ipsilateral: conjunctival injection, lacrimation, nasal congestion, rhinorrhea, facial SWEATING, eyelid EDEMA, and miosis. (International Classification of Headache Disorders, 2nd ed. Cephalalgia 2004: suppl 1)
The anteriorly located rigid section of the PALATE.
An irregular unpaired bone situated at the SKULL BASE and wedged between the frontal, temporal, and occipital bones (FRONTAL BONE; TEMPORAL BONE; OCCIPITAL BONE). Sphenoid bone consists of a median body and three pairs of processes resembling a bat with spread wings. The body is hollowed out in its inferior to form two large cavities (SPHENOID SINUS).
A local anesthetic that is chemically related to BUPIVACAINE but pharmacologically related to LIDOCAINE. It is indicated for infiltration, nerve block, and epidural anesthesia. Mepivacaine is effective topically only in large doses and therefore should not be used by this route. (From AMA Drug Evaluations, 1994, p168)
A highly basic, 28 amino acid neuropeptide released from intestinal mucosa. It has a wide range of biological actions affecting the cardiovascular, gastrointestinal, and respiratory systems and is neuroprotective. It binds special receptors (RECEPTORS, VASOACTIVE INTESTINAL PEPTIDE).
Bleeding from the nose.
A syndrome characterized by severe burning pain in an extremity accompanied by sudomotor, vasomotor, and trophic changes in bone without an associated specific nerve injury. This condition is most often precipitated by trauma to soft tissue or nerve complexes. The skin over the affected region is usually erythematous and demonstrates hypersensitivity to tactile stimuli and erythema. (Adams et al., Principles of Neurology, 6th ed, p1360; Pain 1995 Oct;63(1):127-33)
A syndrome associated with defective sympathetic innervation to one side of the face, including the eye. Clinical features include MIOSIS; mild BLEPHAROPTOSIS; and hemifacial ANHIDROSIS (decreased sweating)(see HYPOHIDROSIS). Lesions of the BRAIN STEM; cervical SPINAL CORD; first thoracic nerve root; apex of the LUNG; CAROTID ARTERY; CAVERNOUS SINUS; and apex of the ORBIT may cause this condition. (From Miller et al., Clinical Neuro-Ophthalmology, 4th ed, pp500-11)
One of the paired air spaces located in the body of the SPHENOID BONE behind the ETHMOID BONE in the middle of the skull. Sphenoid sinus communicates with the posterosuperior part of NASAL CAVITY on the same side.
Interruption of NEURAL CONDUCTION in peripheral nerves or nerve trunks by the injection of a local anesthetic agent (e.g., LIDOCAINE; PHENOL; BOTULINUM TOXINS) to manage or treat pain.
The proximal portion of the respiratory passages on either side of the NASAL SEPTUM. Nasal cavities, extending from the nares to the NASOPHARYNX, are lined with ciliated NASAL MUCOSA.
Drugs that block nerve conduction when applied locally to nerve tissue in appropriate concentrations. They act on any part of the nervous system and on every type of nerve fiber. In contact with a nerve trunk, these anesthetics can cause both sensory and motor paralysis in the innervated area. Their action is completely reversible. (From Gilman AG, et. al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed) Nearly all local anesthetics act by reducing the tendency of voltage-dependent sodium channels to activate.

A novel revision to the classical transnasal topical sphenopalatine ganglion block for the treatment of headache and facial pain. (1/1)

BACKGROUND: The sphenopalatine ganglion (SPG) is located with some degree of variability near the tail or posterior aspect of the middle nasal turbinate. The SPG has been implicated as a strategic target in the treatment of various headache and facial pain conditions, some of which are featured in this manuscript. Interventions for blocking the SPG range from minimally to highly invasive procedures often associated with great cost and unfavorable risk profiles. OBJECTIVE: The purpose of this pilot study was to present a novel, FDA-cleared medication delivery device, the Tx360(R) nasal applicator, incorporating a transnasal needleless topical approach for SPG blocks. This study features the technical aspects of this new device and presents some limited clinical experience observed in a small series of head and face pain cases. STUDY DESIGN: Case series. SETTINGS: Pain management center, part of teaching-community hospital, major metropolitan city, United States. METHODS: After Institutional Review Board (IRB) approval, the technical aspects of this technique were examined on 3 patients presenting with various head and face pain conditions including trigeminal neuralgia (TN), chronic migraine headache (CM), and post-herpetic neuralgia (PHN). The subsequent response to treatment and quality of life was quantified using the following tools: the 11-point Numeric Rating Scale (NRS), Modified Brief Pain Inventory - short form (MBPI-sf), Patient Global Impression of Change (PGIC), and patient satisfaction surveys. The Tx360(R) nasal applicator was used to deliver 0.5 mL of ropivacaine 0.5% and 2 mg of dexamethasone for SPG block. Post-procedural assessments were repeated at 15 and 30 minutes, and on days one, 7, 14, and 21 with a final assessment at 28 days post-treatment. All patients were followed for one year. Individual patients received up to 10 SPG blocks, as clinically indicated, after the initial 28 days. RESULTS: Three women, ages 43, 18, and 15, presented with a variety of headache and face pain disorders including TN, CM, and PHN. All patients reported significant pain relief within the first 15 minutes post-treatment. A high degree of pain relief was sustained throughout the 28 day follow-up period for 2 of the 3 study participants. All 3 patients reported a high degree of satisfaction with this procedure. One patient developed minimal bleeding from the nose immediately post-treatment which resolved spontaneously in less than 5 minutes. Longer term follow-up (up to one year) demonstrated that additional SPG blocks over time provided a higher degree and longer lasting pain relief. LIMITATIONS: Controlled double blind studies with a higher number of patients are needed to prove efficacy of this minimally invasive technique for SPG block. CONCLUSION: SPG block with the Tx360(R) is a rapid, safe, easy, and reliable technique to accurately deliver topical transnasal analgesics to the area of mucosa associated with the SPG. This intervention can be delivered in as little as 10 seconds with the novice provider developing proficiency very quickly. Further investigation is certainly warranted related to technique efficacy, especially studies comparing efficacy of Tx360 and standard cotton swab techniques.  (+info)

A Sphenopalatine Ganglion Block (SPG Block) is a medical procedure that involves the injection of a local anesthetic agent near the sphenopalatine ganglion, a collection of nerve cells located in the upper part of the nasopharynx, near the sphenoid bone. This procedure is typically used to diagnose or treat various types of headaches and facial pain, including cluster headaches, migraines, and trigeminal neuralgia.

The injection is usually administered through the nose using a long, thin needle, although it can also be performed via the roof of the mouth (greater palatine foramen) or the side of the face (via the infraorbital foramen). Once the needle is in position, the anesthetic agent is injected, which numbs the sphenopalatine ganglion and interrupts the transmission of pain signals to the brain.

The effects of the SPG Block can be immediate and may last for several hours or days, depending on the individual and the type of anesthetic used. Some people may require repeated blocks over time to achieve lasting relief from their symptoms. Potential risks and complications associated with this procedure are generally low but may include bleeding, infection, or trauma to surrounding tissues.

The pterygopalatine fossa is a small, irregularly shaped space located in the skull, lateral to the nasal cavity and inferior to the orbit. It serves as a critical communications center for several important nerves, arteries, and veins that provide sensory innervation, vasomotor control, and blood supply to various structures in the head and neck region.

The following are some key components of the pterygopalatine fossa:

1. Nerves: The pterygopalatine ganglion is a major component of this fossa, which contains postganglionic parasympathetic fibers, sympathetic fibers, and sensory fibers from various nerves, including the maxillary nerve (V2), greater petrosal nerve, deep petrosal nerve, and nerve of the pterygoid canal.

2. Arteries: The maxillary artery, a branch of the external carotid artery, enters the fossa through the foramen rotundum and divides into several branches that supply various structures in the head and neck region, such as the sphenopalatine artery, posterior superior alveolar artery, infraorbital artery, and greater palatine artery.

3. Veins: The pterygoid venous plexus is a complex network of veins located in and around the fossa that communicates with various venous systems, including the facial vein, cavernous sinus, and inferior ophthalmic vein.

The pterygopalatine fossa plays an essential role in several physiological functions, such as lacrimation, salivation, and vasodilation of blood vessels in the nasal cavity and paranasal sinuses. Additionally, it is a potential site for the spread of infection or neoplasm from the oral cavity, nasal cavity, or paranasal sinuses to other regions of the head and neck.

Parasympathetic ganglia are collections of neurons located outside the central nervous system (CNS) that serve as relay stations for parasympathetic nerve impulses. The parasympathetic nervous system is one of the two subdivisions of the autonomic nervous system, which controls involuntary physiological responses.

The parasympathetic ganglia receive preganglionic fibers from the brainstem and sacral regions of the spinal cord. After synapsing in these ganglia, postganglionic fibers innervate target organs such as the heart, glands, and smooth muscles. The primary function of the parasympathetic nervous system is to promote rest, digestion, and energy conservation.

Parasympathetic ganglia are typically located close to or within the target organs they innervate. Examples include:

1. Ciliary ganglion: Innervates the ciliary muscle and iris sphincter in the eye, controlling accommodation and pupil constriction.
2. Pterygopalatine (sphenopalatine) ganglion: Supplies the lacrimal gland, mucous membranes of the nasal cavity, and palate, regulating tear production and nasal secretions.
3. Otic ganglion: Innervates the parotid gland, controlling salivary secretion.
4. Submandibular ganglion: Supplies the submandibular and sublingual salivary glands, regulating salivation.
5. Sacral parasympathetic ganglia: Located in the sacrum, they innervate the distal colon, rectum, and genitourinary organs, controlling defecation, urination, and sexual arousal.

These parasympathetic ganglia play crucial roles in maintaining homeostasis by regulating various bodily functions during rest and relaxation.

An autonomic nerve block is a medical procedure that involves injecting a local anesthetic or other medication into or near the nerves that make up the autonomic nervous system. This type of nerve block is used to diagnose and treat certain medical conditions that affect the autonomic nervous system, such as neuropathy or complex regional pain syndrome (CRPS).

The autonomic nervous system is responsible for controlling many involuntary bodily functions, such as heart rate, blood pressure, digestion, and body temperature. It is made up of two parts: the sympathetic nervous system and the parasympathetic nervous system. The sympathetic nervous system is responsible for preparing the body for "fight or flight" responses, while the parasympathetic nervous system helps the body relax and rest.

An autonomic nerve block can be used to diagnose a problem with the autonomic nervous system by temporarily blocking the nerves' signals and observing how this affects the body's functions. It can also be used to treat pain or other symptoms caused by damage to the autonomic nerves. The injection is usually given in the area near the spine, and the specific location will depend on the nerves being targeted.

It is important to note that an autonomic nerve block is a medical procedure that should only be performed by a qualified healthcare professional. As with any medical procedure, there are risks and benefits associated with an autonomic nerve block, and it is important for patients to discuss these with their doctor before deciding whether this treatment is right for them.

The Stellate Ganglion is a part of the sympathetic nervous system. It's a collection of nerve cells (a ganglion) located in the neck, more specifically at the level of the sixth and seventh cervical vertebrae. The stellate ganglion is formed by the fusion of the inferior cervical ganglion and the first thoracic ganglion.

This ganglion plays a crucial role in the body's "fight or flight" response, providing sympathetic innervation to the head, neck, upper extremities, and heart. It's responsible for various functions including regulation of blood flow, sweat gland activity, and contributing to the sensory innervation of the head and neck.

Stellate ganglion block is a medical procedure used to diagnose or treat certain conditions like pain disorders, by injecting local anesthetic near the stellate ganglion to numb the area and interrupt nerve signals.

A cluster headache is a type of primary headache disorder characterized by severe, one-sided headaches that occur in clusters, meaning they happen several times a day for several weeks or months and then go into remission for a period of time. The pain of a cluster headache is typically intense and often described as a sharp, stabbing, or burning sensation around the eye or temple on one side of the head.

Cluster headaches are relatively rare, affecting fewer than 1 in 1000 people. They tend to affect men more often than women and usually start between the ages of 20 and 50. The exact cause of cluster headaches is not fully understood, but they are thought to be related to abnormalities in the hypothalamus, a part of the brain that regulates various bodily functions, including hormone production and sleep-wake cycles.

Cluster headache attacks can last from 15 minutes to several hours and may be accompanied by other symptoms such as redness or tearing of the eye, runny nose, sweating, or swelling on the affected side of the face. During a cluster period, headaches typically occur at the same time each day, often at night or in the early morning.

Cluster headaches can be treated with various medications, including triptans, oxygen therapy, and local anesthetics. Preventive treatments such as verapamil, lithium, or corticosteroids may also be used to reduce the frequency and severity of cluster headache attacks during a cluster period.

The hard palate is the anterior, bony part of the roof of the mouth, forming a vertical partition between the oral and nasal cavities. It is composed of the maxilla and palatine bones, and provides attachment for the muscles of the soft palate, which functions in swallowing, speaking, and breathing. The hard palate also contains taste buds that contribute to our ability to taste food.

The sphenoid bone is a complex, irregularly shaped bone located in the middle cranial fossa and forms part of the base of the skull. It articulates with several other bones, including the frontal, parietal, temporal, ethmoid, palatine, and zygomatic bones. The sphenoid bone has two main parts: the body and the wings.

The body of the sphenoid bone is roughly cuboid in shape and contains several important structures, such as the sella turcica, which houses the pituitary gland, and the sphenoid sinuses, which are air-filled cavities within the bone. The greater wings of the sphenoid bone extend laterally from the body and form part of the skull's lateral walls. They contain the superior orbital fissure, through which important nerves and blood vessels pass between the cranial cavity and the orbit of the eye.

The lesser wings of the sphenoid bone are thin, blade-like structures that extend anteriorly from the body and form part of the floor of the anterior cranial fossa. They contain the optic canal, which transmits the optic nerve and ophthalmic artery between the brain and the orbit of the eye.

Overall, the sphenoid bone plays a crucial role in protecting several important structures within the skull, including the pituitary gland, optic nerves, and ophthalmic arteries.

Mepivacaine is a local anesthetic drug, which is used to cause numbness or loss of feeling before and during surgical procedures. It works by blocking the nerve signals in your body. Mepivacaine has a faster onset of action compared to bupivacaine but has a shorter duration of action. It can be used for infiltration, peripheral nerve block, and epidural anesthesia.

The medical definition of Mepivacaine is:

A amide-type local anesthetic with fast onset and moderate duration of action. Its molar potency is similar to that of procaine, but its duration of action is approximately 50% longer. It has been used for infiltration anesthesia, peripheral nerve block, and epidural anesthesia. Mepivacaine is metabolized in the liver by hydrolysis.

It's important to note that mepivacaine, like any other medication, can have side effects and should be used under the supervision of a healthcare professional.

Vasoactive Intestinal Peptide (VIP) is a 28-amino acid polypeptide hormone that has potent vasodilatory, secretory, and neurotransmitter effects. It is widely distributed throughout the body, including in the gastrointestinal tract, where it is synthesized and released by nerve cells (neurons) in the intestinal mucosa. VIP plays a crucial role in regulating various physiological functions such as intestinal secretion, motility, and blood flow. It also has immunomodulatory effects and may play a role in neuroprotection. High levels of VIP are found in the brain, where it acts as a neurotransmitter or neuromodulator and is involved in various cognitive functions such as learning, memory, and social behavior.

Epistaxis is the medical term for nosebleed. It refers to the bleeding from the nostrils or nasal cavity, which can be caused by various factors such as dryness, trauma, inflammation, high blood pressure, or use of blood-thinning medications. Nosebleeds can range from minor nuisances to potentially life-threatening emergencies, depending on the severity and underlying cause. If you are experiencing a nosebleed that does not stop after 20 minutes of applying direct pressure, or if you are coughing up or vomiting blood, seek medical attention immediately.

Reflex Sympathetic Dystrophy (RSD), also known as Complex Regional Pain Syndrome (CRPS), is a chronic pain condition that most often affects a limb after an injury or trauma. It is characterized by prolonged or excessive pain and sensitivity, along with changes in skin color, temperature, and swelling.

The symptoms of RSD/CRPS are thought to be caused by an overactive sympathetic nervous system, which controls involuntary bodily functions such as heart rate, blood pressure, and sweating. In RSD/CRPS, the sympathetic nerves are believed to send incorrect signals to the brain, causing it to perceive intense pain even in the absence of any actual tissue damage.

RSD/CRPS can be classified into two types: Type 1, which occurs after an injury or trauma that did not directly damage the nerves, and Type 2, which occurs after a distinct nerve injury. The symptoms of both types are similar, but Type 2 is typically more severe and may involve more widespread nerve damage.

Treatment for RSD/CRPS usually involves a combination of medications, physical therapy, and other therapies such as spinal cord stimulation or sympathetic nerve blocks. Early diagnosis and treatment can help improve outcomes and reduce the risk of long-term complications.

Horner syndrome, also known as Horner's syndrome or oculosympathetic palsy, is a neurological disorder characterized by the interruption of sympathetic nerve pathways that innervate the head and neck, leading to a constellation of signs affecting the eye and face on one side of the body.

The classic triad of symptoms includes:

1. Ptosis (drooping) of the upper eyelid: This is due to the weakness or paralysis of the levator palpebrae superioris muscle, which is responsible for elevating the eyelid.
2. Miosis (pupillary constriction): The affected pupil becomes smaller in size compared to the other side, and it may not react as robustly to light.
3. Anhydrosis (decreased sweating): There is reduced or absent sweating on the ipsilateral (same side) of the face, particularly around the forehead and upper eyelid.

Horner syndrome can be caused by various underlying conditions, such as brainstem stroke, tumors, trauma, or certain medical disorders affecting the sympathetic nervous system. The diagnosis typically involves a thorough clinical examination, pharmacological testing, and sometimes imaging studies to identify the underlying cause. Treatment is directed towards managing the underlying condition responsible for Horner syndrome.

The sphenoid sinuses are air-filled spaces located within the sphenoid bone, which is one of the bones that make up the skull base. These sinuses are located deep inside the skull, behind the eyes and nasal cavity. They are paired and separated by a thin bony septum, and each one opens into the corresponding nasal cavity through a small opening called the sphenoethmoidal recess. The sphenoid sinuses vary greatly in size and shape between individuals. They develop during childhood and continue to grow until early adulthood. The function of the sphenoid sinuses, like other paranasal sinuses, is not entirely clear, but they may contribute to reducing the weight of the skull, resonating voice during speech, and insulating the brain from trauma.

A nerve block is a medical procedure in which an anesthetic or neurolytic agent is injected near a specific nerve or bundle of nerves to block the transmission of pain signals from that area to the brain. This technique can be used for both diagnostic and therapeutic purposes, such as identifying the source of pain, providing temporary or prolonged relief, or facilitating surgical procedures in the affected region.

The injection typically contains a local anesthetic like lidocaine or bupivacaine, which numbs the nerve, preventing it from transmitting pain signals. In some cases, steroids may also be added to reduce inflammation and provide longer-lasting relief. Depending on the type of nerve block and its intended use, the injection might be administered close to the spine (neuraxial blocks), at peripheral nerves (peripheral nerve blocks), or around the sympathetic nervous system (sympathetic nerve blocks).

While nerve blocks are generally safe, they can have side effects such as infection, bleeding, nerve damage, or in rare cases, systemic toxicity from the anesthetic agent. It is essential to consult with a qualified medical professional before undergoing this procedure to ensure proper evaluation, technique, and post-procedure care.

The nasal cavity is the air-filled space located behind the nose, which is divided into two halves by the nasal septum. It is lined with mucous membrane and is responsible for several functions including respiration, filtration, humidification, and olfaction (smell). The nasal cavity serves as an important part of the upper respiratory tract, extending from the nares (nostrils) to the choanae (posterior openings of the nasal cavity that lead into the pharynx). It contains specialized structures such as turbinate bones, which help to warm, humidify and filter incoming air.

Local anesthetics are a type of medication that is used to block the sensation of pain in a specific area of the body. They work by temporarily numbing the nerves in that area, preventing them from transmitting pain signals to the brain. Local anesthetics can be administered through various routes, including topical application (such as creams or gels), injection (such as into the skin or tissues), or regional nerve blocks (such as epidural or spinal anesthesia).

Some common examples of local anesthetics include lidocaine, prilocaine, bupivacaine, and ropivacaine. These medications can be used for a variety of medical procedures, ranging from minor surgeries (such as dental work or skin biopsies) to more major surgeries (such as joint replacements or hernia repairs).

Local anesthetics are generally considered safe when used appropriately, but they can have side effects and potential complications. These may include allergic reactions, toxicity (if too much is administered), and nerve damage (if the medication is injected into a nerve). It's important to follow your healthcare provider's instructions carefully when using local anesthetics, and to report any unusual symptoms or side effects promptly.

No FAQ available that match "sphenopalatine ganglion block"

No images available that match "sphenopalatine ganglion block"