Sequential operating programs and data which instruct the functioning of a digital computer.
Specifications and instructions applied to the software.
The act of testing the software for compliance with a standard.
A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task.
The portion of an interactive computer program that issues messages to and receives commands from a user.
Specific languages used to prepare computer programs.
The process of pictorial communication, between human and computers, in which the computer input and output have the form of charts, drawings, or other appropriate pictorial representation.
A field of biology concerned with the development of techniques for the collection and manipulation of biological data, and the use of such data to make biological discoveries or predictions. This field encompasses all computational methods and theories for solving biological problems including manipulation of models and datasets.
A loose confederation of computer communication networks around the world. The networks that make up the Internet are connected through several backbone networks. The Internet grew out of the US Government ARPAnet project and was designed to facilitate information exchange.
Software designed to store, manipulate, manage, and control data for specific uses.
A technique of inputting two-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer.
The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results.
Organized activities related to the storage, location, search, and retrieval of information.
Computer-based representation of physical systems and phenomena such as chemical processes.
Small computers using LSI (large-scale integration) microprocessor chips as the CPU (central processing unit) and semiconductor memories for compact, inexpensive storage of program instructions and data. They are smaller and less expensive than minicomputers and are usually built into a dedicated system where they are optimized for a particular application. "Microprocessor" may refer to just the CPU or the entire microcomputer.
Extensive collections, reputedly complete, of facts and data garnered from material of a specialized subject area and made available for analysis and application. The collection can be automated by various contemporary methods for retrieval. The concept should be differentiated from DATABASES, BIBLIOGRAPHIC which is restricted to collections of bibliographic references.
The process of generating three-dimensional images by electronic, photographic, or other methods. For example, three-dimensional images can be generated by assembling multiple tomographic images with the aid of a computer, while photographic 3-D images (HOLOGRAPHY) can be made by exposing film to the interference pattern created when two laser light sources shine on an object.
Databases devoted to knowledge about specific genes and gene products.
The procedures involved in combining separately developed modules, components, or subsystems so that they work together as a complete system. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
Systems composed of a computer or computers, peripheral equipment, such as disks, printers, and terminals, and telecommunications capabilities.
The systematic study of the complete DNA sequences (GENOME) of organisms.
Data processing largely performed by automatic means.
Controlled operation of an apparatus, process, or system by mechanical or electronic devices that take the place of human organs of observation, effort, and decision. (From Webster's Collegiate Dictionary, 1993)
A computer in a medical context is an electronic device that processes, stores, and retrieves data, often used in medical settings for tasks such as maintaining patient records, managing diagnostic images, and supporting clinical decision-making through software applications and tools.
A system containing any combination of computers, computer terminals, printers, audio or visual display devices, or telephones interconnected by telecommunications equipment or cables: used to transmit or receive information. (Random House Unabridged Dictionary, 2d ed)
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc.
Information systems, usually computer-assisted, designed to store, manipulate, and retrieve information for planning, organizing, directing, and controlling administrative activities associated with the provision and utilization of radiology services and facilities.
Description of pattern of recurrent functions or procedures frequently found in organizational processes, such as notification, decision, and action.
Application of statistical procedures to analyze specific observed or assumed facts from a particular study.
The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.
The visual display of data in a man-machine system. An example is when data is called from the computer and transmitted to a CATHODE RAY TUBE DISPLAY or LIQUID CRYSTAL display.
A process that includes the determination of AMINO ACID SEQUENCE of a protein (or peptide, oligopeptide or peptide fragment) and the information analysis of the sequence.
Databases containing information about PROTEINS such as AMINO ACID SEQUENCE; PROTEIN CONFORMATION; and other properties.
Methods developed to aid in the interpretation of ultrasound, radiographic images, etc., for diagnosis of disease.
Hybridization of a nucleic acid sample to a very large set of OLIGONUCLEOTIDE PROBES, which have been attached individually in columns and rows to a solid support, to determine a BASE SEQUENCE, or to detect variations in a gene sequence, GENE EXPRESSION, or for GENE MAPPING.
The genetic complement of an organism, including all of its GENES, as represented in its DNA, or in some cases, its RNA.
In INFORMATION RETRIEVAL, machine-sensing or identification of visible patterns (shapes, forms, and configurations). (Harrod's Librarians' Glossary, 7th ed)
Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.
A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
The systematic study of the complete complement of proteins (PROTEOME) of organisms.
A self-learning technique, usually online, involving interaction of the student with programmed instructional materials.
Controlled operations of analytic or diagnostic processes, or systems by mechanical or electronic devices.
Computerized compilations of information units (text, sound, graphics, and/or video) interconnected by logical nonlinear linkages that enable users to follow optimal paths through the material and also the systems used to create and display this information. (From Thesaurus of ERIC Descriptors, 1994)
Computer systems or networks designed to provide radiographic interpretive information.
A multistage process that includes cloning, physical mapping, subcloning, sequencing, and information analysis of an RNA SEQUENCE.
Theory and development of COMPUTER SYSTEMS which perform tasks that normally require human intelligence. Such tasks may include speech recognition, LEARNING; VISUAL PERCEPTION; MATHEMATICAL COMPUTING; reasoning, PROBLEM SOLVING, DECISION-MAKING, and translation of language.
Computer-assisted analysis and processing of problems in a particular area.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
Any method used for determining the location of and relative distances between genes on a chromosome.
Application of computer programs designed to assist the physician in solving a diagnostic problem.
The failure by the observer to measure or identify a phenomenon accurately, which results in an error. Sources for this may be due to the observer's missing an abnormality, or to faulty technique resulting in incorrect test measurement, or to misinterpretation of the data. Two varieties are inter-observer variation (the amount observers vary from one another when reporting on the same material) and intra-observer variation (the amount one observer varies between observations when reporting more than once on the same material).
The use of computers for designing and/or manufacturing of anything, including drugs, surgical procedures, orthotics, and prosthetics.
Systematic organization, storage, retrieval, and dissemination of specialized information, especially of a scientific or technical nature (From ALA Glossary of Library and Information Science, 1983). It often involves authenticating or validating information.
Methods of creating machines and devices.
Software capable of recognizing dictation and transcribing the spoken words into written text.
Computer-based systems for input, storage, display, retrieval, and printing of information contained in a patient's medical record.
An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers.
Techniques of nucleotide sequence analysis that increase the range, complexity, sensitivity, and accuracy of results by greatly increasing the scale of operations and thus the number of nucleotides, and the number of copies of each nucleotide sequenced. The sequencing may be done by analysis of the synthesis or ligation products, hybridization to preexisting sequences, etc.
Systems where the input data enter the computer directly from the point of origin (usually a terminal or workstation) and/or in which output data are transmitted directly to that terminal point of origin. (Sippl, Computer Dictionary, 4th ed)
A theorem in probability theory named for Thomas Bayes (1702-1761). In epidemiology, it is used to obtain the probability of disease in a group of people with some characteristic on the basis of the overall rate of that disease and of the likelihood of that characteristic in healthy and diseased individuals. The most familiar application is in clinical decision analysis where it is used for estimating the probability of a particular diagnosis given the appearance of some symptoms or test result.
A single nucleotide variation in a genetic sequence that occurs at appreciable frequency in the population.
Integrated set of files, procedures, and equipment for the storage, manipulation, and retrieval of information.
Databases containing information about NUCLEIC ACIDS such as BASE SEQUENCE; SNPS; NUCLEIC ACID CONFORMATION; and other properties. Information about the DNA fragments kept in a GENE LIBRARY or GENOMIC LIBRARY is often maintained in DNA databases.
The protein complement of an organism coded for by its genome.
The relationships of groups of organisms as reflected by their genetic makeup.
A system for verifying and maintaining a desired level of quality in a product or process by careful planning, use of proper equipment, continued inspection, and corrective action as required. (Random House Unabridged Dictionary, 2d ed)
Comprehensive, methodical analysis of complex biological systems by monitoring responses to perturbations of biological processes. Large scale, computerized collection and analysis of the data are used to develop and test models of biological systems.
Use of sophisticated analysis tools to sort through, organize, examine, and combine large sets of information.
Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990)
Integrated, computer-assisted systems designed to store, manipulate, and retrieve information concerned with the administrative and clinical aspects of providing medical services within the hospital.
A type of MICROCOMPUTER, sometimes called a personal digital assistant, that is very small and portable and fitting in a hand. They are convenient to use in clinical and other field situations for quick data management. They usually require docking with MICROCOMPUTERS for updates.
Communications networks connecting various hardware devices together within or between buildings by means of a continuous cable or voice data telephone system.
Organized collections of computer records, standardized in format and content, that are stored in any of a variety of computer-readable modes. They are the basic sets of data from which computer-readable files are created. (from ALA Glossary of Library and Information Science, 1983)
A stochastic process such that the conditional probability distribution for a state at any future instant, given the present state, is unaffected by any additional knowledge of the past history of the system.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Any visual display of structural or functional patterns of organs or tissues for diagnostic evaluation. It includes measuring physiologic and metabolic responses to physical and chemical stimuli, as well as ultramicroscopy.
The complete genetic complement contained in the DNA of a set of CHROMOSOMES in a HUMAN. The length of the human genome is about 3 billion base pairs.
Computed tomography modalities which use a cone or pyramid-shaped beam of radiation.
Computer-assisted processing of electric, ultrasonic, or electronic signals to interpret function and activity.
Method of making images on a sensitized surface by exposure to light or other radiant energy.
Text editing and storage functions using computer software.
Protective measures against unauthorized access to or interference with computer operating systems, telecommunications, or data structures, especially the modification, deletion, destruction, or release of data in computers. It includes methods of forestalling interference by computer viruses or so-called computer hackers aiming to compromise stored data.
Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.
The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.
The field of information science concerned with the analysis and dissemination of medical data through the application of computers to various aspects of health care and medicine.
Surgical procedures conducted with the aid of computers. This is most frequently used in orthopedic and laparoscopic surgery for implant placement and instrument guidance. Image-guided surgery interactively combines prior CT scans or MRI images with real-time video.
Improvement of the quality of a picture by various techniques, including computer processing, digital filtering, echocardiographic techniques, light and ultrastructural MICROSCOPY, fluorescence spectrometry and microscopy, scintigraphy, and in vitro image processing at the molecular level.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Functions constructed from a statistical model and a set of observed data which give the probability of that data for various values of the unknown model parameters. Those parameter values that maximize the probability are the maximum likelihood estimates of the parameters.
Elements of limited time intervals, contributing to particular results or situations.
Information application based on a variety of coding methods to minimize the amount of data to be stored, retrieved, or transmitted. Data compression can be applied to various forms of data, such as images and signals. It is used to reduce costs and increase efficiency in the maintenance of large volumes of data.
Software used to locate data or information stored in machine-readable form locally or at a distance such as an INTERNET site.
Three-dimensional representation to show anatomic structures. Models may be used in place of intact animals or organisms for teaching, practice, and study.
A mass spectrometry technique using two (MS/MS) or more mass analyzers. With two in tandem, the precursor ions are mass-selected by a first mass analyzer, and focused into a collision region where they are then fragmented into product ions which are then characterized by a second mass analyzer. A variety of techniques are used to separate the compounds, ionize them, and introduce them to the first mass analyzer. For example, for in GC-MS/MS, GAS CHROMATOGRAPHY-MASS SPECTROMETRY is involved in separating relatively small compounds by GAS CHROMATOGRAPHY prior to injecting them into an ionization chamber for the mass selection.
Improvement in the quality of an x-ray image by use of an intensifying screen, tube, or filter and by optimum exposure techniques. Digital processing methods are often employed.
Any visible result of a procedure which is caused by the procedure itself and not by the entity being analyzed. Common examples include histological structures introduced by tissue processing, radiographic images of structures that are not naturally present in living tissue, and products of chemical reactions that occur during analysis.
The use of instrumentation and techniques for visualizing material and details that cannot be seen by the unaided eye. It is usually done by enlarging images, transmitted by light or electron beams, with optical or magnetic lenses that magnify the entire image field. With scanning microscopy, images are generated by collecting output from the specimen in a point-by-point fashion, on a magnified scale, as it is scanned by a narrow beam of light or electrons, a laser, a conductive probe, or a topographical probe.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
Devices capable of receiving data, retaining data for an indefinite or finite period of time, and supplying data upon demand.
Use of an interactive computer system designed to assist the physician or other health professional in choosing between certain relationships or variables for the purpose of making a diagnostic or therapeutic decision.
An optical disk storage system for computers on which data can be read or from which data can be retrieved but not entered or modified. A CD-ROM unit is almost identical to the compact disk playback device for home use.
The electronic transmission of radiological images from one location to another for the purposes of interpretation and/or consultation. Users in different locations may simultaneously view images with greater access to secondary consultations and improved continuing education. (From American College of Radiology, ACR Standard for Teleradiology, 1994, p3)
In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993)
A specialty concerned with the use of x-ray and other forms of radiant energy in the diagnosis and treatment of disease.
Chemical reactions or functions, enzymatic activities, and metabolic pathways of living things.
The addition of descriptive information about the function or structure of a molecular sequence to its MOLECULAR SEQUENCE DATA record.
Descriptive anatomy based on three-dimensional imaging (IMAGING, THREE-DIMENSIONAL) of the body, organs, and structures using a series of computer multiplane sections, displayed by transverse, coronal, and sagittal analyses. It is essential to accurate interpretation by the radiologist of such techniques as ultrasonic diagnosis, MAGNETIC RESONANCE IMAGING, and computed tomography (TOMOGRAPHY, X-RAY COMPUTED). (From Lane & Sharfaei, Modern Sectional Anatomy, 1992, Preface)
Management of the acquisition, organization, storage, retrieval, and dissemination of information. (From Thesaurus of ERIC Descriptors, 1994)
Computer-assisted interpretation and analysis of various mathematical functions related to a particular problem.
Chromatographic techniques in which the mobile phase is a liquid.
Studies to determine the advantages or disadvantages, practicability, or capability of accomplishing a projected plan, study, or project.
Computer systems capable of assembling, storing, manipulating, and displaying geographically referenced information, i.e. data identified according to their locations.

An effective approach for analyzing "prefinished" genomic sequence data. (1/21774)

Ongoing efforts to sequence the human genome are already generating large amounts of data, with substantial increases anticipated over the next few years. In most cases, a shotgun sequencing strategy is being used, which rapidly yields most of the primary sequence in incompletely assembled sequence contigs ("prefinished" sequence) and more slowly produces the final, completely assembled sequence ("finished" sequence). Thus, in general, prefinished sequence is produced in excess of finished sequence, and this trend is certain to continue and even accelerate over the next few years. Even at a prefinished stage, genomic sequence represents a rich source of important biological information that is of great interest to many investigators. However, analyzing such data is a challenging and daunting task, both because of its sheer volume and because it can change on a day-by-day basis. To facilitate the discovery and characterization of genes and other important elements within prefinished sequence, we have developed an analytical strategy and system that uses readily available software tools in new combinations. Implementation of this strategy for the analysis of prefinished sequence data from human chromosome 7 has demonstrated that this is a convenient, inexpensive, and extensible solution to the problem of analyzing the large amounts of preliminary data being produced by large-scale sequencing efforts. Our approach is accessible to any investigator who wishes to assimilate additional information about particular sequence data en route to developing richer annotations of a finished sequence.  (+info)

A computational screen for methylation guide snoRNAs in yeast. (2/21774)

Small nucleolar RNAs (snoRNAs) are required for ribose 2'-O-methylation of eukaryotic ribosomal RNA. Many of the genes for this snoRNA family have remained unidentified in Saccharomyces cerevisiae, despite the availability of a complete genome sequence. Probabilistic modeling methods akin to those used in speech recognition and computational linguistics were used to computationally screen the yeast genome and identify 22 methylation guide snoRNAs, snR50 to snR71. Gene disruptions and other experimental characterization confirmed their methylation guide function. In total, 51 of the 55 ribose methylated sites in yeast ribosomal RNA were assigned to 41 different guide snoRNAs.  (+info)

Randomly amplified polymorphic DNA analysis of clinical and environmental isolates of Vibrio vulnificus and other vibrio species. (3/21774)

Vibrio vulnificus is an estuarine bacterium that is capable of causing a rapidly fatal infection in humans. A randomly amplified polymorphic DNA (RAPD) PCR protocol was developed for use in detecting V. vulnificus, as well as other members of the genus Vibrio. The resulting RAPD profiles were analyzed by using RFLPScan software. This RAPD method clearly differentiated between members of the genus Vibrio and between isolates of V. vulnificus. Each V. vulnificus strain produced a unique band pattern, indicating that the members of this species are genetically quite heterogeneous. All of the vibrios were found to have amplification products whose sizes were within four common molecular weight ranges, while the V. vulnificus strains had an additional two molecular weight range bands in common. All of the V. vulnificus strains isolated from clinical specimens produced an additional band that was only occasionally found in environmental strains; this suggests that, as is the case with the Kanagawa hemolysin of Vibrio parahaemolyticus, the presence of this band may be correlated with the ability of a strain to produce an infection in humans. In addition, band pattern differences were observed between encapsulated and nonencapsulated isogenic morphotypes of the same strain of V. vulnificus.  (+info)

Melanoma cells present a MAGE-3 epitope to CD4(+) cytotoxic T cells in association with histocompatibility leukocyte antigen DR11. (4/21774)

In this study we used TEPITOPE, a new epitope prediction software, to identify sequence segments on the MAGE-3 protein with promiscuous binding to histocompatibility leukocyte antigen (HLA)-DR molecules. Synthetic peptides corresponding to the identified sequences were synthesized and used to propagate CD4(+) T cells from the blood of a healthy donor. CD4(+) T cells strongly recognized MAGE-3281-295 and, to a lesser extent, MAGE-3141-155 and MAGE-3146-160. Moreover, CD4(+) T cells proliferated in the presence of recombinant MAGE-3 after processing and presentation by autologous antigen presenting cells, demonstrating that the MAGE-3 epitopes recognized are naturally processed. CD4(+) T cells, mostly of the T helper 1 type, showed specific lytic activity against HLA-DR11/MAGE-3-positive melanoma cells. Cold target inhibition experiments demonstrated indeed that the CD4(+) T cells recognized MAGE-3281-295 in association with HLA-DR11 on melanoma cells. This is the first evidence that a tumor-specific shared antigen forms CD4(+) T cell epitopes. Furthermore, we validated the use of algorithms for the prediction of promiscuous CD4(+) T cell epitopes, thus opening the possibility of wide application to other tumor-associated antigens. These results have direct implications for cancer immunotherapy in the design of peptide-based vaccines with tumor-specific CD4(+) T cell epitopes.  (+info)

Imagene: an integrated computer environment for sequence annotation and analysis. (5/21774)

MOTIVATION: To be fully and efficiently exploited, data coming from sequencing projects together with specific sequence analysis tools need to be integrated within reliable data management systems. Systems designed to manage genome data and analysis tend to give a greater importance either to the data storage or to the methodological aspect, but lack a complete integration of both components. RESULTS: This paper presents a co-operative computer environment (called Imagenetrade mark) dedicated to genomic sequence analysis and annotation. Imagene has been developed by using an object-based model. Thanks to this representation, the user can directly manipulate familiar data objects through icons or lists. Imagene also incorporates a solving engine in order to manage analysis tasks. A global task is solved by successive divisions into smaller sub-tasks. During program execution, these sub-tasks are graphically displayed to the user and may be further re-started at any point after task completion. In this sense, Imagene is more transparent to the user than a traditional menu-driven package. Imagene also provides a user interface to display, on the same screen, the results produced by several tasks, together with the capability to annotate these results easily. In its current form, Imagene has been designed particularly for use in microbial sequencing projects. AVAILABILITY: Imagene best runs on SGI (Irix 6.3 or higher) workstations. It is distributed free of charge on a CD-ROM, but requires some Ilog licensed software to run. Some modules also require separate license agreements. Please contact the authors for specific academic conditions and other Unix platforms. CONTACT: imagene home page: http://wwwabi.snv.jussieu.fr/imagene  (+info)

Stem Trace: an interactive visual tool for comparative RNA structure analysis. (6/21774)

MOTIVATION: Stem Trace is one of the latest tools available in STRUCTURELAB, an RNA structure analysis computer workbench. The paradigm used in STRUCTURELAB views RNA structure determination as a problem of dealing with a database of a large number of computationally generated structures. Stem Trace provides the capability to analyze this data set in a novel, visually driven, interactive and exploratory way. In addition to providing graphs at a high level of ion, it is also connected with complementary visualization tools which provide orthogonal views of the same data, as well as drawing of structures represented by a stem trace. Thus, on top of being an analysis tool, Stem Trace is a graphical user interface to an RNA structural information database. RESULTS: We illustrate Stem Trace's capabilities with several examples of the analysis of RNA folding data performed on 24 strains of HIV-1, HIV-2 and SIV sequences around the HIV dimerization region. This dimer linkage site has been found to play a role in encapsidation, reverse transcription, recombination, and inhibition of translation. Our examples show how Stem Trace elucidates preservation of structures in this region across the various strains of HIV. AVAILABILITY: The program can be made available upon request. It runs on SUN, SGI and DEC (Compaq) Unix workstations.  (+info)

Bayesian inference on biopolymer models. (7/21774)

MOTIVATION: Most existing bioinformatics methods are limited to making point estimates of one variable, e.g. the optimal alignment, with fixed input values for all other variables, e.g. gap penalties and scoring matrices. While the requirement to specify parameters remains one of the more vexing issues in bioinformatics, it is a reflection of a larger issue: the need to broaden the view on statistical inference in bioinformatics. RESULTS: The assignment of probabilities for all possible values of all unknown variables in a problem in the form of a posterior distribution is the goal of Bayesian inference. Here we show how this goal can be achieved for most bioinformatics methods that use dynamic programming. Specifically, a tutorial style description of a Bayesian inference procedure for segmentation of a sequence based on the heterogeneity in its composition is given. In addition, full Bayesian inference algorithms for sequence alignment are described. AVAILABILITY: Software and a set of transparencies for a tutorial describing these ideas are available at http://www.wadsworth.org/res&res/bioinfo/  (+info)

E-CELL: software environment for whole-cell simulation. (8/21774)

MOTIVATION: Genome sequencing projects and further systematic functional analyses of complete gene sets are producing an unprecedented mass of molecular information for a wide range of model organisms. This provides us with a detailed account of the cell with which we may begin to build models for simulating intracellular molecular processes to predict the dynamic behavior of living cells. Previous work in biochemical and genetic simulation has isolated well-characterized pathways for detailed analysis, but methods for building integrative models of the cell that incorporate gene regulation, metabolism and signaling have not been established. We, therefore, were motivated to develop a software environment for building such integrative models based on gene sets, and running simulations to conduct experiments in silico. RESULTS: E-CELL, a modeling and simulation environment for biochemical and genetic processes, has been developed. The E-CELL system allows a user to define functions of proteins, protein-protein interactions, protein-DNA interactions, regulation of gene expression and other features of cellular metabolism, as a set of reaction rules. E-CELL simulates cell behavior by numerically integrating the differential equations described implicitly in these reaction rules. The user can observe, through a computer display, dynamic changes in concentrations of proteins, protein complexes and other chemical compounds in the cell. Using this software, we constructed a model of a hypothetical cell with only 127 genes sufficient for transcription, translation, energy production and phospholipid synthesis. Most of the genes are taken from Mycoplasma genitalium, the organism having the smallest known chromosome, whose complete 580 kb genome sequence was determined at TIGR in 1995. We discuss future applications of the E-CELL system with special respect to genome engineering. AVAILABILITY: The E-CELL software is available upon request. SUPPLEMENTARY INFORMATION: The complete list of rules of the developed cell model with kinetic parameters can be obtained via our web site at: http://e-cell.org/.  (+info)

I am not aware of a widely accepted medical definition for the term "software," as it is more commonly used in the context of computer science and technology. Software refers to programs, data, and instructions that are used by computers to perform various tasks. It does not have direct relevance to medical fields such as anatomy, physiology, or clinical practice. If you have any questions related to medicine or healthcare, I would be happy to try to help with those instead!

I must clarify that there is no specific medical definition for "Software Design." Software design is a term used in the field of software engineering and development, which includes the creation of detailed plans, schemas, and models that describe how a software system or application should be constructed and implemented. This process involves various activities such as defining the architecture, components, modules, interfaces, data structures, and algorithms required to build the software system.

However, in the context of medical software or healthcare applications, software design would still refer to the planning and structuring of the software system but with a focus on addressing specific needs and challenges within the medical domain. This might include considerations for data privacy and security, regulatory compliance (such as HIPAA or GDPR), integration with existing health IT systems, user experience (UX) design for healthcare professionals and patients, and evidence-based decision support features.

Software validation, in the context of medical devices and healthcare, is the process of evaluating software to ensure that it meets specified requirements for its intended use and that it performs as expected. This process is typically carried out through testing and other verification methods to ensure that the software functions correctly, safely, and reliably in a real-world environment. The goal of software validation is to provide evidence that the software is fit for its intended purpose and complies with relevant regulations and standards. It is an important part of the overall process of bringing a medical device or healthcare technology to market, as it helps to ensure patient safety and regulatory compliance.

An algorithm is not a medical term, but rather a concept from computer science and mathematics. In the context of medicine, algorithms are often used to describe step-by-step procedures for diagnosing or managing medical conditions. These procedures typically involve a series of rules or decision points that help healthcare professionals make informed decisions about patient care.

For example, an algorithm for diagnosing a particular type of heart disease might involve taking a patient's medical history, performing a physical exam, ordering certain diagnostic tests, and interpreting the results in a specific way. By following this algorithm, healthcare professionals can ensure that they are using a consistent and evidence-based approach to making a diagnosis.

Algorithms can also be used to guide treatment decisions. For instance, an algorithm for managing diabetes might involve setting target blood sugar levels, recommending certain medications or lifestyle changes based on the patient's individual needs, and monitoring the patient's response to treatment over time.

Overall, algorithms are valuable tools in medicine because they help standardize clinical decision-making and ensure that patients receive high-quality care based on the latest scientific evidence.

A User-Computer Interface (also known as Human-Computer Interaction) refers to the point at which a person (user) interacts with a computer system. This can include both hardware and software components, such as keyboards, mice, touchscreens, and graphical user interfaces (GUIs). The design of the user-computer interface is crucial in determining the usability and accessibility of a computer system for the user. A well-designed interface should be intuitive, efficient, and easy to use, minimizing the cognitive load on the user and allowing them to effectively accomplish their tasks.

I'm afraid there seems to be a misunderstanding. Programming languages are a field of study in computer science and are not related to medicine. They are used to create computer programs, through the composition of symbols and words. Some popular programming languages include Python, Java, C++, and JavaScript. If you have any questions about programming or computer science, I'd be happy to try and help answer them!

Computer graphics is the field of study and practice related to creating images and visual content using computer technology. It involves various techniques, algorithms, and tools for generating, manipulating, and rendering digital images and models. These can include 2D and 3D modeling, animation, rendering, visualization, and image processing. Computer graphics is used in a wide range of applications, including video games, movies, scientific simulations, medical imaging, architectural design, and data visualization.

Computational biology is a branch of biology that uses mathematical and computational methods to study biological data, models, and processes. It involves the development and application of algorithms, statistical models, and computational approaches to analyze and interpret large-scale molecular and phenotypic data from genomics, transcriptomics, proteomics, metabolomics, and other high-throughput technologies. The goal is to gain insights into biological systems and processes, develop predictive models, and inform experimental design and hypothesis testing in the life sciences. Computational biology encompasses a wide range of disciplines, including bioinformatics, systems biology, computational genomics, network biology, and mathematical modeling of biological systems.

I'm sorry for any confusion, but "Internet" is a term that pertains to the global network of interconnected computers and servers that enable the transmission and reception of data via the internet protocol (IP). It is not a medical term and does not have a specific medical definition. If you have any questions related to medicine or health, I'd be happy to try to help answer them for you!

A Database Management System (DBMS) is a software application that enables users to define, create, maintain, and manipulate databases. It provides a structured way to organize, store, retrieve, and manage data in a digital format. The DBMS serves as an interface between the database and the applications or users that access it, allowing for standardized interactions and data access methods. Common functions of a DBMS include data definition, data manipulation, data security, data recovery, and concurrent data access control. Examples of DBMS include MySQL, Oracle, Microsoft SQL Server, and MongoDB.

Computer-assisted image processing is a medical term that refers to the use of computer systems and specialized software to improve, analyze, and interpret medical images obtained through various imaging techniques such as X-ray, CT (computed tomography), MRI (magnetic resonance imaging), ultrasound, and others.

The process typically involves several steps, including image acquisition, enhancement, segmentation, restoration, and analysis. Image processing algorithms can be used to enhance the quality of medical images by adjusting contrast, brightness, and sharpness, as well as removing noise and artifacts that may interfere with accurate diagnosis. Segmentation techniques can be used to isolate specific regions or structures of interest within an image, allowing for more detailed analysis.

Computer-assisted image processing has numerous applications in medical imaging, including detection and characterization of lesions, tumors, and other abnormalities; assessment of organ function and morphology; and guidance of interventional procedures such as biopsies and surgeries. By automating and standardizing image analysis tasks, computer-assisted image processing can help to improve diagnostic accuracy, efficiency, and consistency, while reducing the potential for human error.

Reproducibility of results in a medical context refers to the ability to obtain consistent and comparable findings when a particular experiment or study is repeated, either by the same researcher or by different researchers, following the same experimental protocol. It is an essential principle in scientific research that helps to ensure the validity and reliability of research findings.

In medical research, reproducibility of results is crucial for establishing the effectiveness and safety of new treatments, interventions, or diagnostic tools. It involves conducting well-designed studies with adequate sample sizes, appropriate statistical analyses, and transparent reporting of methods and findings to allow other researchers to replicate the study and confirm or refute the results.

The lack of reproducibility in medical research has become a significant concern in recent years, as several high-profile studies have failed to produce consistent findings when replicated by other researchers. This has led to increased scrutiny of research practices and a call for greater transparency, rigor, and standardization in the conduct and reporting of medical research.

'Information Storage and Retrieval' in the context of medical informatics refers to the processes and systems used for the recording, storing, organizing, protecting, and retrieving electronic health information (e.g., patient records, clinical data, medical images) for various purposes such as diagnosis, treatment planning, research, and education. This may involve the use of electronic health record (EHR) systems, databases, data warehouses, and other digital technologies that enable healthcare providers to access and share accurate, up-to-date, and relevant information about a patient's health status, medical history, and care plan. The goal is to improve the quality, safety, efficiency, and coordination of healthcare delivery by providing timely and evidence-based information to support clinical decision-making and patient engagement.

A computer simulation is a process that involves creating a model of a real-world system or phenomenon on a computer and then using that model to run experiments and make predictions about how the system will behave under different conditions. In the medical field, computer simulations are used for a variety of purposes, including:

1. Training and education: Computer simulations can be used to create realistic virtual environments where medical students and professionals can practice their skills and learn new procedures without risk to actual patients. For example, surgeons may use simulation software to practice complex surgical techniques before performing them on real patients.
2. Research and development: Computer simulations can help medical researchers study the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone. By creating detailed models of cells, tissues, organs, or even entire organisms, researchers can use simulation software to explore how these systems function and how they respond to different stimuli.
3. Drug discovery and development: Computer simulations are an essential tool in modern drug discovery and development. By modeling the behavior of drugs at a molecular level, researchers can predict how they will interact with their targets in the body and identify potential side effects or toxicities. This information can help guide the design of new drugs and reduce the need for expensive and time-consuming clinical trials.
4. Personalized medicine: Computer simulations can be used to create personalized models of individual patients based on their unique genetic, physiological, and environmental characteristics. These models can then be used to predict how a patient will respond to different treatments and identify the most effective therapy for their specific condition.

Overall, computer simulations are a powerful tool in modern medicine, enabling researchers and clinicians to study complex systems and make predictions about how they will behave under a wide range of conditions. By providing insights into the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone, computer simulations are helping to advance our understanding of human health and disease.

I'm sorry for any confusion, but "Microcomputers" is not a term commonly used in medical definitions. Microcomputers are small computers with a microprocessor as the central processing unit. They are widely used in various settings, including healthcare, to perform tasks such as data management, analysis, and patient record keeping. However, the term itself does not have a specific medical connotation. If you have any questions related to technology use in healthcare, I'd be happy to try to help with those!

A factual database in the medical context is a collection of organized and structured data that contains verified and accurate information related to medicine, healthcare, or health sciences. These databases serve as reliable resources for various stakeholders, including healthcare professionals, researchers, students, and patients, to access evidence-based information for making informed decisions and enhancing knowledge.

Examples of factual medical databases include:

1. PubMed: A comprehensive database of biomedical literature maintained by the US National Library of Medicine (NLM). It contains citations and abstracts from life sciences journals, books, and conference proceedings.
2. MEDLINE: A subset of PubMed, MEDLINE focuses on high-quality, peer-reviewed articles related to biomedicine and health. It is the primary component of the NLM's database and serves as a critical resource for healthcare professionals and researchers worldwide.
3. Cochrane Library: A collection of systematic reviews and meta-analyses focused on evidence-based medicine. The library aims to provide unbiased, high-quality information to support clinical decision-making and improve patient outcomes.
4. OVID: A platform that offers access to various medical and healthcare databases, including MEDLINE, Embase, and PsycINFO. It facilitates the search and retrieval of relevant literature for researchers, clinicians, and students.
5. ClinicalTrials.gov: A registry and results database of publicly and privately supported clinical studies conducted around the world. The platform aims to increase transparency and accessibility of clinical trial data for healthcare professionals, researchers, and patients.
6. UpToDate: An evidence-based, physician-authored clinical decision support resource that provides information on diagnosis, treatment, and prevention of medical conditions. It serves as a point-of-care tool for healthcare professionals to make informed decisions and improve patient care.
7. TRIP Database: A search engine designed to facilitate evidence-based medicine by providing quick access to high-quality resources, including systematic reviews, clinical guidelines, and practice recommendations.
8. National Guideline Clearinghouse (NGC): A database of evidence-based clinical practice guidelines and related documents developed through a rigorous review process. The NGC aims to provide clinicians, healthcare providers, and policymakers with reliable guidance for patient care.
9. DrugBank: A comprehensive, freely accessible online database containing detailed information about drugs, their mechanisms, interactions, and targets. It serves as a valuable resource for researchers, healthcare professionals, and students in the field of pharmacology and drug discovery.
10. Genetic Testing Registry (GTR): A database that provides centralized information about genetic tests, test developers, laboratories offering tests, and clinical validity and utility of genetic tests. It serves as a resource for healthcare professionals, researchers, and patients to make informed decisions regarding genetic testing.

Three-dimensional (3D) imaging in medicine refers to the use of technologies and techniques that generate a 3D representation of internal body structures, organs, or tissues. This is achieved by acquiring and processing data from various imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, or confocal microscopy. The resulting 3D images offer a more detailed visualization of the anatomy and pathology compared to traditional 2D imaging techniques, allowing for improved diagnostic accuracy, surgical planning, and minimally invasive interventions.

In 3D imaging, specialized software is used to reconstruct the acquired data into a volumetric model, which can be manipulated and viewed from different angles and perspectives. This enables healthcare professionals to better understand complex anatomical relationships, detect abnormalities, assess disease progression, and monitor treatment response. Common applications of 3D imaging include neuroimaging, orthopedic surgery planning, cancer staging, dental and maxillofacial reconstruction, and interventional radiology procedures.

A genetic database is a type of biomedical or health informatics database that stores and organizes genetic data, such as DNA sequences, gene maps, genotypes, haplotypes, and phenotype information. These databases can be used for various purposes, including research, clinical diagnosis, and personalized medicine.

There are different types of genetic databases, including:

1. Genomic databases: These databases store whole genome sequences, gene expression data, and other genomic information. Examples include the National Center for Biotechnology Information's (NCBI) GenBank, the European Nucleotide Archive (ENA), and the DNA Data Bank of Japan (DDBJ).
2. Gene databases: These databases contain information about specific genes, including their location, function, regulation, and evolution. Examples include the Online Mendelian Inheritance in Man (OMIM) database, the Universal Protein Resource (UniProt), and the Gene Ontology (GO) database.
3. Variant databases: These databases store information about genetic variants, such as single nucleotide polymorphisms (SNPs), insertions/deletions (INDELs), and copy number variations (CNVs). Examples include the Database of Single Nucleotide Polymorphisms (dbSNP), the Catalogue of Somatic Mutations in Cancer (COSMIC), and the International HapMap Project.
4. Clinical databases: These databases contain genetic and clinical information about patients, such as their genotype, phenotype, family history, and response to treatments. Examples include the ClinVar database, the Pharmacogenomics Knowledgebase (PharmGKB), and the Genetic Testing Registry (GTR).
5. Population databases: These databases store genetic information about different populations, including their ancestry, demographics, and genetic diversity. Examples include the 1000 Genomes Project, the Human Genome Diversity Project (HGDP), and the Allele Frequency Net Database (AFND).

Genetic databases can be publicly accessible or restricted to authorized users, depending on their purpose and content. They play a crucial role in advancing our understanding of genetics and genomics, as well as improving healthcare and personalized medicine.

I'm sorry for any confusion, but "Systems Integration" is not a medical term per se. It is a term more commonly used in the fields of engineering, computer science, and information technology. However, I can provide you with a general definition:

Systems Integration refers to the process of combining different sub-systems or components into a single, cohesive system to allow seamless communication and data exchange between them. This integration aims to improve efficiency, performance, and overall functionality by unifying various standalone systems into an interconnected network that behaves as a unified whole.

In the context of healthcare, systems integration can be applied to merge different electronic health record (EHR) systems, medical devices, or other healthcare technologies to create a comprehensive, interoperable healthcare information system. This facilitates better care coordination, data sharing, and decision-making among healthcare providers, ultimately enhancing patient outcomes and satisfaction.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

A computer system is a collection of hardware and software components that work together to perform specific tasks. This includes the physical components such as the central processing unit (CPU), memory, storage devices, and input/output devices, as well as the operating system and application software that run on the hardware. Computer systems can range from small, embedded systems found in appliances and devices, to large, complex networks of interconnected computers used for enterprise-level operations.

In a medical context, computer systems are often used for tasks such as storing and retrieving electronic health records (EHRs), managing patient scheduling and billing, performing diagnostic imaging and analysis, and delivering telemedicine services. These systems must adhere to strict regulatory standards, such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States, to ensure the privacy and security of sensitive medical information.

Genomics is the scientific study of genes and their functions. It involves the sequencing and analysis of an organism's genome, which is its complete set of DNA, including all of its genes. Genomics also includes the study of how genes interact with each other and with the environment. This field of study can provide important insights into the genetic basis of diseases and can lead to the development of new diagnostic tools and treatments.

Automatic Data Processing (ADP) is not a medical term, but a general business term that refers to the use of computers and software to automate and streamline administrative tasks and processes. In a medical context, ADP may be used in healthcare settings to manage electronic health records (EHRs), billing and coding, insurance claims processing, and other data-intensive tasks.

The goal of using ADP in healthcare is to improve efficiency, accuracy, and timeliness of administrative processes, while reducing costs and errors associated with manual data entry and management. By automating these tasks, healthcare providers can focus more on patient care and less on paperwork, ultimately improving the quality of care delivered to patients.

Automation in the medical context refers to the use of technology and programming to allow machines or devices to operate with minimal human intervention. This can include various types of medical equipment, such as laboratory analyzers, imaging devices, and robotic surgical systems. Automation can help improve efficiency, accuracy, and safety in healthcare settings by reducing the potential for human error and allowing healthcare professionals to focus on higher-level tasks. It is important to note that while automation has many benefits, it is also essential to ensure that appropriate safeguards are in place to prevent accidents and maintain quality of care.

A computer is a programmable electronic device that can store, retrieve, and process data. It is composed of several components including:

1. Hardware: The physical components of a computer such as the central processing unit (CPU), memory (RAM), storage devices (hard drive or solid-state drive), and input/output devices (monitor, keyboard, and mouse).
2. Software: The programs and instructions that are used to perform specific tasks on a computer. This includes operating systems, applications, and utilities.
3. Input: Devices or methods used to enter data into a computer, such as a keyboard, mouse, scanner, or digital camera.
4. Processing: The function of the CPU in executing instructions and performing calculations on data.
5. Output: The results of processing, which can be displayed on a monitor, printed on paper, or saved to a storage device.

Computers come in various forms and sizes, including desktop computers, laptops, tablets, and smartphones. They are used in a wide range of applications, from personal use for communication, entertainment, and productivity, to professional use in fields such as medicine, engineering, finance, and education.

Computer communication networks (CCN) refer to the interconnected systems or groups of computers that are able to communicate and share resources and information with each other. These networks may be composed of multiple interconnected devices, including computers, servers, switches, routers, and other hardware components. The connections between these devices can be established through various types of media, such as wired Ethernet cables or wireless Wi-Fi signals.

CCNs enable the sharing of data, applications, and services among users and devices, and they are essential for supporting modern digital communication and collaboration. Some common examples of CCNs include local area networks (LANs), wide area networks (WANs), and the Internet. These networks can be designed and implemented in various topologies, such as star, ring, bus, mesh, and tree configurations, to meet the specific needs and requirements of different organizations and applications.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Statistical models are mathematical representations that describe the relationship between variables in a given dataset. They are used to analyze and interpret data in order to make predictions or test hypotheses about a population. In the context of medicine, statistical models can be used for various purposes such as:

1. Disease risk prediction: By analyzing demographic, clinical, and genetic data using statistical models, researchers can identify factors that contribute to an individual's risk of developing certain diseases. This information can then be used to develop personalized prevention strategies or early detection methods.

2. Clinical trial design and analysis: Statistical models are essential tools for designing and analyzing clinical trials. They help determine sample size, allocate participants to treatment groups, and assess the effectiveness and safety of interventions.

3. Epidemiological studies: Researchers use statistical models to investigate the distribution and determinants of health-related events in populations. This includes studying patterns of disease transmission, evaluating public health interventions, and estimating the burden of diseases.

4. Health services research: Statistical models are employed to analyze healthcare utilization, costs, and outcomes. This helps inform decisions about resource allocation, policy development, and quality improvement initiatives.

5. Biostatistics and bioinformatics: In these fields, statistical models are used to analyze large-scale molecular data (e.g., genomics, proteomics) to understand biological processes and identify potential therapeutic targets.

In summary, statistical models in medicine provide a framework for understanding complex relationships between variables and making informed decisions based on data-driven insights.

A Radiology Information System (RIS) is a type of healthcare software specifically designed to manage medical imaging data and related patient information. It serves as a centralized database and communication platform for radiology departments, allowing the integration, storage, retrieval, and sharing of patient records, orders, reports, images, and other relevant documents.

The primary functions of a RIS typically include:

1. Scheduling and tracking: Managing appointments, scheduling resources, and monitoring workflow within the radiology department.
2. Order management: Tracking and processing requests for imaging exams from referring physicians or other healthcare providers.
3. Image tracking: Monitoring the movement of images throughout the entire imaging process, from acquisition to reporting and storage.
4. Report generation: Assisting radiologists in creating structured, standardized reports based on the interpreted imaging studies.
5. Results communication: Sending finalized reports back to the referring physicians or other healthcare providers, often through integration with electronic health records (EHRs) or hospital information systems (HIS).
6. Data analytics: Providing tools for analyzing and reporting departmental performance metrics, such as turnaround times, equipment utilization, and patient satisfaction.
7. Compliance and security: Ensuring adherence to regulatory requirements related to data privacy, protection, and storage, while maintaining secure access controls for authorized users.

By streamlining these processes, a RIS helps improve efficiency, reduce errors, enhance communication, and support better patient care within radiology departments.

I'm happy to help, but I need to clarify that "workflow" is not a medical term per se. It is a term used in many fields, including healthcare, to describe a series of steps or tasks that are necessary to complete a process or task. In the context of healthcare, workflows often refer to the processes and procedures involved in delivering care to patients.

A medical definition of "workflow" might be:

The sequence of tasks or activities involved in providing clinical care to patients, including assessment, diagnosis, treatment planning, intervention, monitoring, and follow-up. Workflows may involve multiple healthcare providers, such as physicians, nurses, therapists, and other staff members, and may be supported by technology, such as electronic health records (EHRs) or other clinical information systems. Effective workflow design is critical to ensuring safe, timely, and efficient care delivery.

Statistical data interpretation involves analyzing and interpreting numerical data in order to identify trends, patterns, and relationships. This process often involves the use of statistical methods and tools to organize, summarize, and draw conclusions from the data. The goal is to extract meaningful insights that can inform decision-making, hypothesis testing, or further research.

In medical contexts, statistical data interpretation is used to analyze and make sense of large sets of clinical data, such as patient outcomes, treatment effectiveness, or disease prevalence. This information can help healthcare professionals and researchers better understand the relationships between various factors that impact health outcomes, develop more effective treatments, and identify areas for further study.

Some common statistical methods used in data interpretation include descriptive statistics (e.g., mean, median, mode), inferential statistics (e.g., hypothesis testing, confidence intervals), and regression analysis (e.g., linear, logistic). These methods can help medical professionals identify patterns and trends in the data, assess the significance of their findings, and make evidence-based recommendations for patient care or public health policy.

Gene expression profiling is a laboratory technique used to measure the activity (expression) of thousands of genes at once. This technique allows researchers and clinicians to identify which genes are turned on or off in a particular cell, tissue, or organism under specific conditions, such as during health, disease, development, or in response to various treatments.

The process typically involves isolating RNA from the cells or tissues of interest, converting it into complementary DNA (cDNA), and then using microarray or high-throughput sequencing technologies to determine which genes are expressed and at what levels. The resulting data can be used to identify patterns of gene expression that are associated with specific biological states or processes, providing valuable insights into the underlying molecular mechanisms of diseases and potential targets for therapeutic intervention.

In recent years, gene expression profiling has become an essential tool in various fields, including cancer research, drug discovery, and personalized medicine, where it is used to identify biomarkers of disease, predict patient outcomes, and guide treatment decisions.

I couldn't find a medical definition specific to "data display," but I can provide some information related to the visual representation of medical data.

In healthcare and research, data displays are graphical representations of data designed to facilitate understanding, communication, and interpretation of complex information. These visualizations can include various types of charts, graphs, tables, and infographics that present medical data in a more accessible and easily digestible format. Examples of data displays in a medical context may include:

1. Line graphs: Used to show trends over time, such as changes in a patient's vital signs or the progression of a disease.
2. Bar charts: Employed to compare categorical data, like the frequency of different symptoms across various patient groups.
3. Pie charts: Utilized to illustrate proportions or percentages of different categories within a whole, such as the distribution of causes of death in a population.
4. Scatter plots: Applied to display relationships between two continuous variables, like the correlation between age and blood pressure.
5. Heat maps: Used to represent density or intensity of data points across a two-dimensional space, often used for geographical data or large datasets with spatial components.
6. Forest plots: Commonly employed in systematic reviews and meta-analyses to display the effect sizes and confidence intervals of individual studies and overall estimates.
7. Flow diagrams: Used to illustrate diagnostic algorithms, treatment pathways, or patient flow through a healthcare system.
8. Icon arrays: Employed to represent risks or probabilities visually, often used in informed consent processes or shared decision-making tools.

These visual representations of medical data can aid in clinical decision-making, research, education, and communication between healthcare professionals, patients, and policymakers.

Protein sequence analysis is the systematic examination and interpretation of the amino acid sequence of a protein to understand its structure, function, evolutionary relationships, and other biological properties. It involves various computational methods and tools to analyze the primary structure of proteins, which is the linear arrangement of amino acids along the polypeptide chain.

Protein sequence analysis can provide insights into several aspects, such as:

1. Identification of functional domains, motifs, or sites within a protein that may be responsible for its specific biochemical activities.
2. Comparison of homologous sequences from different organisms to infer evolutionary relationships and determine the degree of similarity or divergence among them.
3. Prediction of secondary and tertiary structures based on patterns of amino acid composition, hydrophobicity, and charge distribution.
4. Detection of post-translational modifications that may influence protein function, localization, or stability.
5. Identification of protease cleavage sites, signal peptides, or other sequence features that play a role in protein processing and targeting.

Some common techniques used in protein sequence analysis include:

1. Multiple Sequence Alignment (MSA): A method to align multiple protein sequences to identify conserved regions, gaps, and variations.
2. BLAST (Basic Local Alignment Search Tool): A widely-used tool for comparing a query protein sequence against a database of known sequences to find similarities and infer function or evolutionary relationships.
3. Hidden Markov Models (HMMs): Statistical models used to describe the probability distribution of amino acid sequences in protein families, allowing for more sensitive detection of remote homologs.
4. Protein structure prediction: Methods that use various computational approaches to predict the three-dimensional structure of a protein based on its amino acid sequence.
5. Phylogenetic analysis: The construction and interpretation of evolutionary trees (phylogenies) based on aligned protein sequences, which can provide insights into the historical relationships among organisms or proteins.

A protein database is a type of biological database that contains information about proteins and their structures, functions, sequences, and interactions with other molecules. These databases can include experimentally determined data, such as protein sequences derived from DNA sequencing or mass spectrometry, as well as predicted data based on computational methods.

Some examples of protein databases include:

1. UniProtKB: a comprehensive protein database that provides information about protein sequences, functions, and structures, as well as literature references and links to other resources.
2. PDB (Protein Data Bank): a database of three-dimensional protein structures determined by experimental methods such as X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy.
3. BLAST (Basic Local Alignment Search Tool): a web-based tool that allows users to compare a query protein sequence against a protein database to identify similar sequences and potential functional relationships.
4. InterPro: a database of protein families, domains, and functional sites that provides information about protein function based on sequence analysis and other data.
5. STRING (Search Tool for the Retrieval of Interacting Genes/Proteins): a database of known and predicted protein-protein interactions, including physical and functional associations.

Protein databases are essential tools in proteomics research, enabling researchers to study protein function, evolution, and interaction networks on a large scale.

Computer-assisted image interpretation is the use of computer algorithms and software to assist healthcare professionals in analyzing and interpreting medical images. These systems use various techniques such as pattern recognition, machine learning, and artificial intelligence to help identify and highlight abnormalities or patterns within imaging data, such as X-rays, CT scans, MRI, and ultrasound images. The goal is to increase the accuracy, consistency, and efficiency of image interpretation, while also reducing the potential for human error. It's important to note that these systems are intended to assist healthcare professionals in their decision making process and not to replace them.

Oligonucleotide Array Sequence Analysis is a type of microarray analysis that allows for the simultaneous measurement of the expression levels of thousands of genes in a single sample. In this technique, oligonucleotides (short DNA sequences) are attached to a solid support, such as a glass slide, in a specific pattern. These oligonucleotides are designed to be complementary to specific target mRNA sequences from the sample being analyzed.

During the analysis, labeled RNA or cDNA from the sample is hybridized to the oligonucleotide array. The level of hybridization is then measured and used to determine the relative abundance of each target sequence in the sample. This information can be used to identify differences in gene expression between samples, which can help researchers understand the underlying biological processes involved in various diseases or developmental stages.

It's important to note that this technique requires specialized equipment and bioinformatics tools for data analysis, as well as careful experimental design and validation to ensure accurate and reproducible results.

A genome is the complete set of genetic material (DNA, or in some viruses, RNA) present in a single cell of an organism. It includes all of the genes, both coding and noncoding, as well as other regulatory elements that together determine the unique characteristics of that organism. The human genome, for example, contains approximately 3 billion base pairs and about 20,000-25,000 protein-coding genes.

The term "genome" was first coined by Hans Winkler in 1920, derived from the word "gene" and the suffix "-ome," which refers to a complete set of something. The study of genomes is known as genomics.

Understanding the genome can provide valuable insights into the genetic basis of diseases, evolution, and other biological processes. With advancements in sequencing technologies, it has become possible to determine the entire genomic sequence of many organisms, including humans, and use this information for various applications such as personalized medicine, gene therapy, and biotechnology.

Automated Pattern Recognition in a medical context refers to the use of computer algorithms and artificial intelligence techniques to identify, classify, and analyze specific patterns or trends in medical data. This can include recognizing visual patterns in medical images, such as X-rays or MRIs, or identifying patterns in large datasets of physiological measurements or electronic health records.

The goal of automated pattern recognition is to assist healthcare professionals in making more accurate diagnoses, monitoring disease progression, and developing personalized treatment plans. By automating the process of pattern recognition, it can help reduce human error, increase efficiency, and improve patient outcomes.

Examples of automated pattern recognition in medicine include using machine learning algorithms to identify early signs of diabetic retinopathy in eye scans or detecting abnormal heart rhythms in electrocardiograms (ECGs). These techniques can also be used to predict patient risk based on patterns in their medical history, such as identifying patients who are at high risk for readmission to the hospital.

Genetic models are theoretical frameworks used in genetics to describe and explain the inheritance patterns and genetic architecture of traits, diseases, or phenomena. These models are based on mathematical equations and statistical methods that incorporate information about gene frequencies, modes of inheritance, and the effects of environmental factors. They can be used to predict the probability of certain genetic outcomes, to understand the genetic basis of complex traits, and to inform medical management and treatment decisions.

There are several types of genetic models, including:

1. Mendelian models: These models describe the inheritance patterns of simple genetic traits that follow Mendel's laws of segregation and independent assortment. Examples include autosomal dominant, autosomal recessive, and X-linked inheritance.
2. Complex trait models: These models describe the inheritance patterns of complex traits that are influenced by multiple genes and environmental factors. Examples include heart disease, diabetes, and cancer.
3. Population genetics models: These models describe the distribution and frequency of genetic variants within populations over time. They can be used to study evolutionary processes, such as natural selection and genetic drift.
4. Quantitative genetics models: These models describe the relationship between genetic variation and phenotypic variation in continuous traits, such as height or IQ. They can be used to estimate heritability and to identify quantitative trait loci (QTLs) that contribute to trait variation.
5. Statistical genetics models: These models use statistical methods to analyze genetic data and infer the presence of genetic associations or linkage. They can be used to identify genetic risk factors for diseases or traits.

Overall, genetic models are essential tools in genetics research and medical genetics, as they allow researchers to make predictions about genetic outcomes, test hypotheses about the genetic basis of traits and diseases, and develop strategies for prevention, diagnosis, and treatment.

Cluster analysis is a statistical method used to group similar objects or data points together based on their characteristics or features. In medical and healthcare research, cluster analysis can be used to identify patterns or relationships within complex datasets, such as patient records or genetic information. This technique can help researchers to classify patients into distinct subgroups based on their symptoms, diagnoses, or other variables, which can inform more personalized treatment plans or public health interventions.

Cluster analysis involves several steps, including:

1. Data preparation: The researcher must first collect and clean the data, ensuring that it is complete and free from errors. This may involve removing outlier values or missing data points.
2. Distance measurement: Next, the researcher must determine how to measure the distance between each pair of data points. Common methods include Euclidean distance (the straight-line distance between two points) or Manhattan distance (the distance between two points along a grid).
3. Clustering algorithm: The researcher then applies a clustering algorithm, which groups similar data points together based on their distances from one another. Common algorithms include hierarchical clustering (which creates a tree-like structure of clusters) or k-means clustering (which assigns each data point to the nearest centroid).
4. Validation: Finally, the researcher must validate the results of the cluster analysis by evaluating the stability and robustness of the clusters. This may involve re-running the analysis with different distance measures or clustering algorithms, or comparing the results to external criteria.

Cluster analysis is a powerful tool for identifying patterns and relationships within complex datasets, but it requires careful consideration of the data preparation, distance measurement, and validation steps to ensure accurate and meaningful results.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Proteomics is the large-scale study and analysis of proteins, including their structures, functions, interactions, modifications, and abundance, in a given cell, tissue, or organism. It involves the identification and quantification of all expressed proteins in a biological sample, as well as the characterization of post-translational modifications, protein-protein interactions, and functional pathways. Proteomics can provide valuable insights into various biological processes, diseases, and drug responses, and has applications in basic research, biomedicine, and clinical diagnostics. The field combines various techniques from molecular biology, chemistry, physics, and bioinformatics to study proteins at a systems level.

Computer-Assisted Instruction (CAI) is a type of educational technology that involves the use of computers to deliver, support, and enhance learning experiences. In a medical context, CAI can be used to teach a variety of topics, including anatomy, physiology, pharmacology, and clinical skills.

CAI typically involves interactive multimedia presentations, simulations, quizzes, and other activities that engage learners and provide feedback on their performance. It may also include adaptive learning systems that adjust the content and pace of instruction based on the learner's abilities and progress.

CAI has been shown to be effective in improving knowledge retention, critical thinking skills, and learner satisfaction in medical education. It can be used as a standalone teaching method or in combination with traditional classroom instruction or clinical experiences.

Automation in a laboratory refers to the use of technology and machinery to automatically perform tasks that were previously done manually by lab technicians or scientists. This can include tasks such as mixing and dispensing liquids, tracking and monitoring experiments, and analyzing samples. Automation can help increase efficiency, reduce human error, and allow lab personnel to focus on more complex tasks.

There are various types of automation systems used in laboratory settings, including:

1. Liquid handling systems: These machines automatically dispense precise volumes of liquids into containers or well plates, reducing the potential for human error and increasing throughput.
2. Robotic systems: Robots can be programmed to perform a variety of tasks, such as pipetting, centrifugation, and incubation, freeing up lab personnel for other duties.
3. Tracking and monitoring systems: These systems automatically track and monitor experiments, allowing scientists to remotely monitor their progress and receive alerts when an experiment is complete or if there are any issues.
4. Analysis systems: Automated analysis systems can quickly and accurately analyze samples, such as by measuring the concentration of a particular molecule or identifying specific genetic sequences.

Overall, automation in the laboratory can help improve accuracy, increase efficiency, and reduce costs, making it an essential tool for many scientific research and diagnostic applications.

I'm sorry for any confusion, but "hypermedia" is not a term that has a specific medical definition. Hypermedia is a general term used in information technology and computing to describe a non-linear medium of information that includes graphics, audio, video, text, and hyperlinks. It allows users to navigate through the information in a flexible, non-sequential manner by clicking on hyperlinks that connect related pieces of information.

If you have any questions about medical terminology or concepts, I would be happy to help!

Computer-assisted radiographic image interpretation is the use of computer algorithms and software to assist and enhance the interpretation and analysis of medical images produced by radiography, such as X-rays, CT scans, and MRI scans. The computer-assisted system can help identify and highlight certain features or anomalies in the image, such as tumors, fractures, or other abnormalities, which may be difficult for the human eye to detect. This technology can improve the accuracy and speed of diagnosis, and may also reduce the risk of human error. It's important to note that the final interpretation and diagnosis is always made by a qualified healthcare professional, such as a radiologist, who takes into account the computer-assisted analysis in conjunction with their clinical expertise and knowledge.

RNA Sequence Analysis is a branch of bioinformatics that involves the determination and analysis of the nucleotide sequence of Ribonucleic Acid (RNA) molecules. This process includes identifying and characterizing the individual RNA molecules, determining their functions, and studying their evolutionary relationships.

RNA Sequence Analysis typically involves the use of high-throughput sequencing technologies to generate large datasets of RNA sequences, which are then analyzed using computational methods. The analysis may include comparing the sequences to reference databases to identify known RNA molecules or discovering new ones, identifying patterns and features in the sequences, such as motifs or domains, and predicting the secondary and tertiary structures of the RNA molecules.

RNA Sequence Analysis has many applications in basic research, including understanding gene regulation, identifying novel non-coding RNAs, and studying evolutionary relationships between organisms. It also has practical applications in clinical settings, such as diagnosing and monitoring diseases, developing new therapies, and personalized medicine.

Artificial Intelligence (AI) in the medical context refers to the simulation of human intelligence processes by machines, particularly computer systems. These processes include learning (the acquisition of information and rules for using the information), reasoning (using the rules to reach approximate or definite conclusions), and self-correction.

In healthcare, AI is increasingly being used to analyze large amounts of data, identify patterns, make decisions, and perform tasks that would normally require human intelligence. This can include tasks such as diagnosing diseases, recommending treatments, personalizing patient care, and improving clinical workflows.

Examples of AI in medicine include machine learning algorithms that analyze medical images to detect signs of disease, natural language processing tools that extract relevant information from electronic health records, and robot-assisted surgery systems that enable more precise and minimally invasive procedures.

I'm happy to help! However, I believe there might be a bit of confusion in your question. "Computing methodologies" is a broad term that refers to the various approaches, techniques, and tools used to develop and implement computer systems, software, and solutions. It encompasses many different fields, including algorithms, data structures, programming languages, human-computer interaction, artificial intelligence, and more.

There isn't a specific medical definition for "computing methodologies" as it is not a term that is typically used within the medical field. However, if you have any specific questions about how computing methodologies are applied in healthcare or biomedical research, I would be happy to help! Just let me know what you're interested in learning more about.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Chromosome mapping, also known as physical mapping, is the process of determining the location and order of specific genes or genetic markers on a chromosome. This is typically done by using various laboratory techniques to identify landmarks along the chromosome, such as restriction enzyme cutting sites or patterns of DNA sequence repeats. The resulting map provides important information about the organization and structure of the genome, and can be used for a variety of purposes, including identifying the location of genes associated with genetic diseases, studying evolutionary relationships between organisms, and developing genetic markers for use in breeding or forensic applications.

Computer-assisted diagnosis (CAD) is the use of computer systems to aid in the diagnostic process. It involves the use of advanced algorithms and data analysis techniques to analyze medical images, laboratory results, and other patient data to help healthcare professionals make more accurate and timely diagnoses. CAD systems can help identify patterns and anomalies that may be difficult for humans to detect, and they can provide second opinions and flag potential errors or uncertainties in the diagnostic process.

CAD systems are often used in conjunction with traditional diagnostic methods, such as physical examinations and patient interviews, to provide a more comprehensive assessment of a patient's health. They are commonly used in radiology, pathology, cardiology, and other medical specialties where imaging or laboratory tests play a key role in the diagnostic process.

While CAD systems can be very helpful in the diagnostic process, they are not infallible and should always be used as a tool to support, rather than replace, the expertise of trained healthcare professionals. It's important for medical professionals to use their clinical judgment and experience when interpreting CAD results and making final diagnoses.

Observer variation, also known as inter-observer variability or measurement agreement, refers to the difference in observations or measurements made by different observers or raters when evaluating the same subject or phenomenon. It is a common issue in various fields such as medicine, research, and quality control, where subjective assessments are involved.

In medical terms, observer variation can occur in various contexts, including:

1. Diagnostic tests: Different radiologists may interpret the same X-ray or MRI scan differently, leading to variations in diagnosis.
2. Clinical trials: Different researchers may have different interpretations of clinical outcomes or adverse events, affecting the consistency and reliability of trial results.
3. Medical records: Different healthcare providers may document medical histories, physical examinations, or treatment plans differently, leading to inconsistencies in patient care.
4. Pathology: Different pathologists may have varying interpretations of tissue samples or laboratory tests, affecting diagnostic accuracy.

Observer variation can be minimized through various methods, such as standardized assessment tools, training and calibration of observers, and statistical analysis of inter-rater reliability.

Computer-Aided Design (CAD) is the use of computer systems to aid in the creation, modification, analysis, or optimization of a design. CAD software is used to create and manage designs in a variety of fields, such as architecture, engineering, and manufacturing. It allows designers to visualize their ideas in 2D or 3D, simulate how the design will function, and make changes quickly and easily. This can help to improve the efficiency and accuracy of the design process, and can also facilitate collaboration and communication among team members.

In a medical context, documentation refers to the process of recording and maintaining written or electronic records of a patient's health status, medical history, treatment plans, medications, and other relevant information. The purpose of medical documentation is to provide clear and accurate communication among healthcare providers, to support clinical decision-making, to ensure continuity of care, to meet legal and regulatory requirements, and to facilitate research and quality improvement initiatives.

Medical documentation typically includes various types of records such as:

1. Patient's demographic information, including name, date of birth, gender, and contact details.
2. Medical history, including past illnesses, surgeries, allergies, and family medical history.
3. Physical examination findings, laboratory and diagnostic test results, and diagnoses.
4. Treatment plans, including medications, therapies, procedures, and follow-up care.
5. Progress notes, which document the patient's response to treatment and any changes in their condition over time.
6. Consultation notes, which record communication between healthcare providers regarding a patient's care.
7. Discharge summaries, which provide an overview of the patient's hospital stay, including diagnoses, treatments, and follow-up plans.

Medical documentation must be clear, concise, accurate, and timely, and it should adhere to legal and ethical standards. Healthcare providers are responsible for maintaining the confidentiality of patients' medical records and ensuring that they are accessible only to authorized personnel.

Equipment design, in the medical context, refers to the process of creating and developing medical equipment and devices, such as surgical instruments, diagnostic machines, or assistive technologies. This process involves several stages, including:

1. Identifying user needs and requirements
2. Concept development and brainstorming
3. Prototyping and testing
4. Design for manufacturing and assembly
5. Safety and regulatory compliance
6. Verification and validation
7. Training and support

The goal of equipment design is to create safe, effective, and efficient medical devices that meet the needs of healthcare providers and patients while complying with relevant regulations and standards. The design process typically involves a multidisciplinary team of engineers, clinicians, designers, and researchers who work together to develop innovative solutions that improve patient care and outcomes.

Speech recognition software, also known as voice recognition software, is a type of technology that converts spoken language into written text. It utilizes sophisticated algorithms and artificial intelligence to identify and transcribe spoken words, enabling users to interact with computers and digital devices using their voice rather than typing or touching the screen. This technology has various applications in healthcare, including medical transcription, patient communication, and hands-free documentation, which can help improve efficiency, accuracy, and accessibility for patients and healthcare professionals alike.

A Computerized Medical Record System (CMRS) is a digital version of a patient's paper chart. It contains all of the patient's medical history from multiple providers and can be shared securely between healthcare professionals. A CMRS includes a range of data such as demographics, progress notes, problems, medications, vital signs, past medical history, immunizations, laboratory data, and radiology reports. The system facilitates the storage, retrieval, and exchange of this information in an efficient manner, and can also provide decision support, alerts, reminders, and tools for performing data analysis and creating reports. It is designed to improve the quality, safety, and efficiency of healthcare delivery by providing accurate, up-to-date, and comprehensive information about patients at the point of care.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

High-throughput nucleotide sequencing, also known as next-generation sequencing (NGS), refers to a group of technologies that allow for the rapid and parallel determination of nucleotide sequences of DNA or RNA molecules. These techniques enable the sequencing of large numbers of DNA or RNA fragments simultaneously, resulting in the generation of vast amounts of sequence data in a single run.

High-throughput sequencing has revolutionized genomics research by allowing for the rapid and cost-effective sequencing of entire genomes, transcriptomes, and epigenomes. It has numerous applications in basic research, including genome assembly, gene expression analysis, variant detection, and methylation profiling, as well as in clinical settings, such as diagnosis of genetic diseases, identification of pathogens, and monitoring of cancer progression and treatment response.

Some common high-throughput sequencing platforms include Illumina (sequencing by synthesis), Ion Torrent (semiconductor sequencing), Pacific Biosciences (single molecule real-time sequencing), and Oxford Nanopore Technologies (nanopore sequencing). Each platform has its strengths and limitations, and the choice of technology depends on the specific research question and experimental design.

I'm sorry for any confusion, but "Online Systems" is not a medical term. It generally refers to computer systems or networks that are connected to the internet and can be accessed remotely. In a medical context, it could refer to various online tools and platforms used in healthcare, such as electronic health records, telemedicine systems, or medical research databases. However, without more specific context, it's difficult to provide an accurate medical definition.

Bayes' theorem, also known as Bayes' rule or Bayes' formula, is a fundamental principle in the field of statistics and probability theory. It describes how to update the probability of a hypothesis based on new evidence or data. The theorem is named after Reverend Thomas Bayes, who first formulated it in the 18th century.

In mathematical terms, Bayes' theorem states that the posterior probability of a hypothesis (H) given some observed evidence (E) is proportional to the product of the prior probability of the hypothesis (P(H)) and the likelihood of observing the evidence given the hypothesis (P(E|H)):

Posterior Probability = P(H|E) = [P(E|H) x P(H)] / P(E)

Where:

* P(H|E): The posterior probability of the hypothesis H after observing evidence E. This is the probability we want to calculate.
* P(E|H): The likelihood of observing evidence E given that the hypothesis H is true.
* P(H): The prior probability of the hypothesis H before observing any evidence.
* P(E): The marginal likelihood or probability of observing evidence E, regardless of whether the hypothesis H is true or not. This value can be calculated as the sum of the products of the likelihood and prior probability for all possible hypotheses: P(E) = Σ[P(E|Hi) x P(Hi)]

Bayes' theorem has many applications in various fields, including medicine, where it can be used to update the probability of a disease diagnosis based on test results or other clinical findings. It is also widely used in machine learning and artificial intelligence algorithms for probabilistic reasoning and decision making under uncertainty.

Single Nucleotide Polymorphism (SNP) is a type of genetic variation that occurs when a single nucleotide (A, T, C, or G) in the DNA sequence is altered. This alteration must occur in at least 1% of the population to be considered a SNP. These variations can help explain why some people are more susceptible to certain diseases than others and can also influence how an individual responds to certain medications. SNPs can serve as biological markers, helping scientists locate genes that are associated with disease. They can also provide information about an individual's ancestry and ethnic background.

In the context of healthcare, an Information System (IS) is a set of components that work together to collect, process, store, and distribute health information. This can include hardware, software, data, people, and procedures that are used to create, process, and communicate information.

Healthcare IS support various functions within a healthcare organization, such as:

1. Clinical information systems: These systems support clinical workflows and decision-making by providing access to patient records, order entry, results reporting, and medication administration records.
2. Financial information systems: These systems manage financial transactions, including billing, claims processing, and revenue cycle management.
3. Administrative information systems: These systems support administrative functions, such as scheduling appointments, managing patient registration, and tracking patient flow.
4. Public health information systems: These systems collect, analyze, and disseminate public health data to support disease surveillance, outbreak investigation, and population health management.

Healthcare IS must comply with various regulations, including the Health Insurance Portability and Accountability Act (HIPAA), which governs the privacy and security of protected health information (PHI). Effective implementation and use of healthcare IS can improve patient care, reduce errors, and increase efficiency within healthcare organizations.

A nucleic acid database is a type of biological database that contains sequence, structure, and functional information about nucleic acids, such as DNA and RNA. These databases are used in various fields of biology, including genomics, molecular biology, and bioinformatics, to store, search, and analyze nucleic acid data.

Some common types of nucleic acid databases include:

1. Nucleotide sequence databases: These databases contain the primary nucleotide sequences of DNA and RNA molecules from various organisms. Examples include GenBank, EMBL-Bank, and DDBJ.
2. Structure databases: These databases contain three-dimensional structures of nucleic acids determined by experimental methods such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Examples include the Protein Data Bank (PDB) and the Nucleic Acid Database (NDB).
3. Functional databases: These databases contain information about the functions of nucleic acids, such as their roles in gene regulation, transcription, and translation. Examples include the Gene Ontology (GO) database and the RegulonDB.
4. Genome databases: These databases contain genomic data for various organisms, including whole-genome sequences, gene annotations, and genetic variations. Examples include the Human Genome Database (HGD) and the Ensembl Genome Browser.
5. Comparative databases: These databases allow for the comparison of nucleic acid sequences or structures across different species or conditions. Examples include the Comparative RNA Web (CRW) Site and the Sequence Alignment and Modeling (SAM) system.

Nucleic acid databases are essential resources for researchers to study the structure, function, and evolution of nucleic acids, as well as to develop new tools and methods for analyzing and interpreting nucleic acid data.

The proteome is the entire set of proteins produced or present in an organism, system, organ, or cell at a certain time under specific conditions. It is a dynamic collection of protein species that changes over time, responding to various internal and external stimuli such as disease, stress, or environmental factors. The study of the proteome, known as proteomics, involves the identification and quantification of these protein components and their post-translational modifications, providing valuable insights into biological processes, functional pathways, and disease mechanisms.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

"Quality control" is a term that is used in many industries, including healthcare and medicine, to describe the systematic process of ensuring that products or services meet certain standards and regulations. In the context of healthcare, quality control often refers to the measures taken to ensure that the care provided to patients is safe, effective, and consistent. This can include processes such as:

1. Implementing standardized protocols and guidelines for care
2. Training and educating staff to follow these protocols
3. Regularly monitoring and evaluating the outcomes of care
4. Making improvements to processes and systems based on data and feedback
5. Ensuring that equipment and supplies are maintained and functioning properly
6. Implementing systems for reporting and addressing safety concerns or errors.

The goal of quality control in healthcare is to provide high-quality, patient-centered care that meets the needs and expectations of patients, while also protecting their safety and well-being.

Systems Biology is a multidisciplinary approach to studying biological systems that involves the integration of various scientific disciplines such as biology, mathematics, physics, computer science, and engineering. It aims to understand how biological components, including genes, proteins, metabolites, cells, and organs, interact with each other within the context of the whole system. This approach emphasizes the emergent properties of biological systems that cannot be explained by studying individual components alone. Systems biology often involves the use of computational models to simulate and predict the behavior of complex biological systems and to design experiments for testing hypotheses about their functioning. The ultimate goal of systems biology is to develop a more comprehensive understanding of how biological systems function, with applications in fields such as medicine, agriculture, and bioengineering.

Data mining, in the context of health informatics and medical research, refers to the process of discovering patterns, correlations, and insights within large sets of patient or clinical data. It involves the use of advanced analytical techniques such as machine learning algorithms, statistical models, and artificial intelligence to identify and extract useful information from complex datasets.

The goal of data mining in healthcare is to support evidence-based decision making, improve patient outcomes, and optimize resource utilization. Applications of data mining in healthcare include predicting disease outbreaks, identifying high-risk patients, personalizing treatment plans, improving clinical workflows, and detecting fraud and abuse in healthcare systems.

Data mining can be performed on various types of healthcare data, including electronic health records (EHRs), medical claims databases, genomic data, imaging data, and sensor data from wearable devices. However, it is important to ensure that data mining techniques are used ethically and responsibly, with appropriate safeguards in place to protect patient privacy and confidentiality.

In the field of medical imaging, "phantoms" refer to physical objects that are specially designed and used for calibration, quality control, and evaluation of imaging systems. These phantoms contain materials with known properties, such as attenuation coefficients or spatial resolution, which allow for standardized measurement and comparison of imaging parameters across different machines and settings.

Imaging phantoms can take various forms depending on the modality of imaging. For example, in computed tomography (CT), a common type of phantom is the "water-equivalent phantom," which contains materials with similar X-ray attenuation properties as water. This allows for consistent measurement of CT dose and image quality. In magnetic resonance imaging (MRI), phantoms may contain materials with specific relaxation times or magnetic susceptibilities, enabling assessment of signal-to-noise ratio, spatial resolution, and other imaging parameters.

By using these standardized objects, healthcare professionals can ensure the accuracy, consistency, and reliability of medical images, ultimately contributing to improved patient care and safety.

A Hospital Information System (HIS) is a comprehensive, integrated set of software solutions that support the management and operation of a hospital or healthcare facility. It typically includes various modules such as:

1. Electronic Health Record (EHR): A digital version of a patient's paper chart that contains all of their medical history from one or multiple providers.
2. Computerized Physician Order Entry (CPOE): A system that allows physicians to enter, modify, review, and communicate orders for tests, medications, and other treatments electronically.
3. Pharmacy Information System: A system that manages the medication use process, including ordering, dispensing, administering, and monitoring of medications.
4. Laboratory Information System (LIS): A system that automates and manages the laboratory testing process, from order entry to result reporting.
5. Radiology Information System (RIS): A system that manages medical imaging data, including scheduling, image acquisition, storage, and retrieval.
6. Picture Archiving and Communication System (PACS): A system that stores, distributes, and displays medical images from various modalities such as X-ray, CT, MRI, etc.
7. Admission, Discharge, and Transfer (ADT) system: A system that manages patient registration, scheduling, and tracking of their progress through the hospital.
8. Financial Management System: A system that handles billing, coding, and reimbursement processes.
9. Materials Management System: A system that tracks inventory, supply chain, and logistics operations within a healthcare facility.
10. Nursing Documentation System: A system that supports the documentation of nursing care, including assessments, interventions, and outcomes.

These systems are designed to improve the efficiency, quality, and safety of patient care by facilitating communication, coordination, and data sharing among healthcare providers and departments.

Handheld computers, also known as personal digital assistants (PDAs) or pocket PCs, are portable devices that are designed to provide computing and information management capabilities in a compact and mobile form factor. These devices typically feature a touchscreen interface, allowing users to interact with the device using their fingers or a stylus.

Handheld computers are capable of performing various functions such as managing calendars, contacts, and tasks; browsing the web; sending and receiving emails; and running productivity applications like word processors and spreadsheets. They may also include features such as GPS navigation, digital cameras, and music players.

One of the key advantages of handheld computers is their portability, which makes them ideal for use in a variety of settings, including at home, in the office, or on the go. However, they typically have smaller screens and keyboards than larger laptops or desktop computers, which can make them less suitable for certain tasks that require more extensive typing or data entry.

Handheld computers are commonly used by healthcare professionals to manage patient information, access electronic medical records, and communicate with other healthcare providers. They may also be used in a variety of other industries, such as logistics, transportation, and field service, where mobile workers need to access and manage information while on the move.

I'm sorry for any confusion, but "Local Area Networks" (LANs) are not a medical term. They are a common term in the field of computer networking. Here is a general definition:

A Local Area Network (LAN) is a network that connects computers and other devices in a relatively small area, typically a single building or a group of buildings. Most LANs are used to share resources such as printers, games or applications. A LAN is usually owned, created, managed and supported by a single organization, such as a school, hospital, or business.

If you have any questions related to medical terminology, I would be happy to help!

A database, in the context of medical informatics, is a structured set of data organized in a way that allows for efficient storage, retrieval, and analysis. Databases are used extensively in healthcare to store and manage various types of information, including patient records, clinical trials data, research findings, and genetic data.

As a topic, "Databases" in medicine can refer to the design, implementation, management, and use of these databases. It may also encompass issues related to data security, privacy, and interoperability between different healthcare systems and databases. Additionally, it can involve the development and application of database technologies for specific medical purposes, such as clinical decision support, outcomes research, and personalized medicine.

Overall, databases play a critical role in modern healthcare by enabling evidence-based practice, improving patient care, advancing medical research, and informing health policy decisions.

I'm sorry for any confusion, but "Markov Chains" is a term from the field of mathematics and probability theory, not medicine. Markov Chains are mathematical systems that undergo transitions from one state to another according to certain probabilistic rules. They are named after Russian mathematician Andrey Markov. These chains are used in various fields, including computer science, physics, economics, and engineering, but not commonly in medical definitions or contexts.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Diagnostic imaging is a medical specialty that uses various technologies to produce visual representations of the internal structures and functioning of the body. These images are used to diagnose injury, disease, or other abnormalities and to monitor the effectiveness of treatment. Common modalities of diagnostic imaging include:

1. Radiography (X-ray): Uses ionizing radiation to produce detailed images of bones, teeth, and some organs.
2. Computed Tomography (CT) Scan: Combines X-ray technology with computer processing to create cross-sectional images of the body.
3. Magnetic Resonance Imaging (MRI): Uses a strong magnetic field and radio waves to generate detailed images of soft tissues, organs, and bones.
4. Ultrasound: Employs high-frequency sound waves to produce real-time images of internal structures, often used for obstetrics and gynecology.
5. Nuclear Medicine: Involves the administration of radioactive tracers to assess organ function or detect abnormalities within the body.
6. Positron Emission Tomography (PET) Scan: Uses a small amount of radioactive material to produce detailed images of metabolic activity in the body, often used for cancer detection and monitoring treatment response.
7. Fluoroscopy: Utilizes continuous X-ray imaging to observe moving structures or processes within the body, such as swallowing studies or angiography.

Diagnostic imaging plays a crucial role in modern medicine, allowing healthcare providers to make informed decisions about patient care and treatment plans.

A human genome is the complete set of genetic information contained within the 23 pairs of chromosomes found in the nucleus of most human cells. It includes all of the genes, which are segments of DNA that contain the instructions for making proteins, as well as non-coding regions of DNA that regulate gene expression and provide structural support to the chromosomes.

The human genome contains approximately 3 billion base pairs of DNA and is estimated to contain around 20,000-25,000 protein-coding genes. The sequencing of the human genome was completed in 2003 as part of the Human Genome Project, which has had a profound impact on our understanding of human biology, disease, and evolution.

Cone-beam computed tomography (CBCT) is a medical imaging technique that uses a cone-shaped X-ray beam to create detailed, cross-sectional images of the body. In dental and maxillofacial radiology, CBCT is used to produce three-dimensional images of the teeth, jaws, and surrounding bones.

CBCT differs from traditional computed tomography (CT) in that it uses a cone-shaped X-ray beam instead of a fan-shaped beam, which allows for a faster scan time and lower radiation dose. The X-ray beam is rotated around the patient's head, capturing data from multiple angles, which is then reconstructed into a three-dimensional image using specialized software.

CBCT is commonly used in dental implant planning, orthodontic treatment planning, airway analysis, and the diagnosis and management of jaw pathologies such as tumors and fractures. It provides detailed information about the anatomy of the teeth, jaws, and surrounding structures, which can help clinicians make more informed decisions about patient care.

However, it is important to note that CBCT should only be used when necessary, as it still involves exposure to ionizing radiation. The benefits of using CBCT must be weighed against the potential risks associated with radiation exposure.

Computer-assisted signal processing is a medical term that refers to the use of computer algorithms and software to analyze, interpret, and extract meaningful information from biological signals. These signals can include physiological data such as electrocardiogram (ECG) waves, electromyography (EMG) signals, electroencephalography (EEG) readings, or medical images.

The goal of computer-assisted signal processing is to automate the analysis of these complex signals and extract relevant features that can be used for diagnostic, monitoring, or therapeutic purposes. This process typically involves several steps, including:

1. Signal acquisition: Collecting raw data from sensors or medical devices.
2. Preprocessing: Cleaning and filtering the data to remove noise and artifacts.
3. Feature extraction: Identifying and quantifying relevant features in the signal, such as peaks, troughs, or patterns.
4. Analysis: Applying statistical or machine learning algorithms to interpret the extracted features and make predictions about the underlying physiological state.
5. Visualization: Presenting the results in a clear and intuitive way for clinicians to review and use.

Computer-assisted signal processing has numerous applications in healthcare, including:

* Diagnosing and monitoring cardiac arrhythmias or other heart conditions using ECG signals.
* Assessing muscle activity and function using EMG signals.
* Monitoring brain activity and diagnosing neurological disorders using EEG readings.
* Analyzing medical images to detect abnormalities, such as tumors or fractures.

Overall, computer-assisted signal processing is a powerful tool for improving the accuracy and efficiency of medical diagnosis and monitoring, enabling clinicians to make more informed decisions about patient care.

I'm sorry for any confusion, but "photography" is not a term typically used in medical definitions. Photography refers to the art, application, or process of creating images by recording light or other electromagnetic radiation, either electronically by means of an image sensor, or chemically by means of a light-sensitive material such as photographic film.

If you're looking for a medical term related to imaging, there are several terms that might be relevant, such as:

1. Radiography: This is a technique using X-rays to visualize the internal structures of the body.
2. Ultrasonography: Also known as ultrasound, this is a diagnostic imaging technique using high-frequency sound waves to create images of the inside of the body.
3. Computed Tomography (CT): A type of imaging that uses X-rays to create detailed cross-sectional images of the body.
4. Magnetic Resonance Imaging (MRI): A type of imaging that uses magnetic fields and radio waves to create detailed images of the organs and tissues within the body.
5. Nuclear Medicine: This is a branch of medical imaging that uses small amounts of radioactive material to diagnose and treat diseases.

If you have any questions related to medical definitions or topics, feel free to ask!

"Word processing" is not a term that has a specific medical definition. It generally refers to the use of computer software to create, edit, format and save written text documents. Examples of word processing programs include Microsoft Word, Google Docs, and Apple Pages. While there may be medical transcriptionists who use word processing software as part of their job duties to transcribe medical records or reports, the term itself is not a medical definition.

Computer security, also known as cybersecurity, is the protection of computer systems and networks from theft, damage, or unauthorized access to their hardware, software, or electronic data. This can include a wide range of measures, such as:

* Using firewalls, intrusion detection systems, and other technical safeguards to prevent unauthorized access to a network
* Encrypting sensitive data to protect it from being intercepted or accessed by unauthorized parties
* Implementing strong password policies and using multi-factor authentication to verify the identity of users
* Regularly updating and patching software to fix known vulnerabilities
* Providing security awareness training to employees to help them understand the risks and best practices for protecting sensitive information
* Having a incident response plan in place to quickly and effectively respond to any potential security incidents.

The goal of computer security is to maintain the confidentiality, integrity, and availability of computer systems and data, in order to protect the privacy and safety of individuals and organizations.

The term "Theoretical Models" is used in various scientific fields, including medicine, to describe a representation of a complex system or phenomenon. It is a simplified framework that explains how different components of the system interact with each other and how they contribute to the overall behavior of the system. Theoretical models are often used in medical research to understand and predict the outcomes of diseases, treatments, or public health interventions.

A theoretical model can take many forms, such as mathematical equations, computer simulations, or conceptual diagrams. It is based on a set of assumptions and hypotheses about the underlying mechanisms that drive the system. By manipulating these variables and observing the effects on the model's output, researchers can test their assumptions and generate new insights into the system's behavior.

Theoretical models are useful for medical research because they allow scientists to explore complex systems in a controlled and systematic way. They can help identify key drivers of disease or treatment outcomes, inform the design of clinical trials, and guide the development of new interventions. However, it is important to recognize that theoretical models are simplifications of reality and may not capture all the nuances and complexities of real-world systems. Therefore, they should be used in conjunction with other forms of evidence, such as experimental data and observational studies, to inform medical decision-making.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

Medical Informatics, also known as Healthcare Informatics, is the scientific discipline that deals with the systematic processing and analysis of data, information, and knowledge in healthcare and biomedicine. It involves the development and application of theories, methods, and tools to create, acquire, store, retrieve, share, use, and reuse health-related data and knowledge for clinical, educational, research, and administrative purposes. Medical Informatics encompasses various areas such as bioinformatics, clinical informatics, consumer health informatics, public health informatics, and translational bioinformatics. It aims to improve healthcare delivery, patient outcomes, and biomedical research through the effective use of information technology and data management strategies.

Computer-assisted surgery (CAS) refers to the use of computer systems and technologies to assist and enhance surgical procedures. These systems can include a variety of tools such as imaging software, robotic systems, and navigation devices that help surgeons plan, guide, and perform surgeries with greater precision and accuracy.

In CAS, preoperative images such as CT scans or MRI images are used to create a three-dimensional model of the surgical site. This model can be used to plan the surgery, identify potential challenges, and determine the optimal approach. During the surgery, the surgeon can use the computer system to navigate and guide instruments with real-time feedback, allowing for more precise movements and reduced risk of complications.

Robotic systems can also be used in CAS to perform minimally invasive procedures with smaller incisions and faster recovery times. The surgeon controls the robotic arms from a console, allowing for greater range of motion and accuracy than traditional hand-held instruments.

Overall, computer-assisted surgery provides a number of benefits over traditional surgical techniques, including improved precision, reduced risk of complications, and faster recovery times for patients.

Image enhancement in the medical context refers to the process of improving the quality and clarity of medical images, such as X-rays, CT scans, MRI scans, or ultrasound images, to aid in the diagnosis and treatment of medical conditions. Image enhancement techniques may include adjusting contrast, brightness, or sharpness; removing noise or artifacts; or applying specialized algorithms to highlight specific features or structures within the image.

The goal of image enhancement is to provide clinicians with more accurate and detailed information about a patient's anatomy or physiology, which can help inform medical decision-making and improve patient outcomes.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

"Likelihood functions" is a statistical concept that is used in medical research and other fields to estimate the probability of obtaining a given set of data, given a set of assumptions or parameters. In other words, it is a function that describes how likely it is to observe a particular outcome or result, based on a set of model parameters.

More formally, if we have a statistical model that depends on a set of parameters θ, and we observe some data x, then the likelihood function is defined as:

L(θ | x) = P(x | θ)

This means that the likelihood function describes the probability of observing the data x, given a particular value of the parameter vector θ. By convention, the likelihood function is often expressed as a function of the parameters, rather than the data, so we might instead write:

L(θ) = P(x | θ)

The likelihood function can be used to estimate the values of the model parameters that are most consistent with the observed data. This is typically done by finding the value of θ that maximizes the likelihood function, which is known as the maximum likelihood estimator (MLE). The MLE has many desirable statistical properties, including consistency, efficiency, and asymptotic normality.

In medical research, likelihood functions are often used in the context of Bayesian analysis, where they are combined with prior distributions over the model parameters to obtain posterior distributions that reflect both the observed data and prior knowledge or assumptions about the parameter values. This approach is particularly useful when there is uncertainty or ambiguity about the true value of the parameters, as it allows researchers to incorporate this uncertainty into their analyses in a principled way.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Data compression, in the context of medical informatics, refers to the process of encoding data to reduce its size while maintaining its integrity and accuracy. This technique is commonly used in transmitting and storing large datasets, such as medical images or genetic sequences, where smaller file sizes can significantly improve efficiency and speed up processing times.

There are two main types of data compression: lossless and lossy. Lossless compression ensures that the original data can be reconstructed exactly from the compressed data, making it essential for applications where data accuracy is critical, such as medical imaging or electronic health records. On the other hand, lossy compression involves discarding some redundant or less important data to achieve higher compression rates, but at the cost of reduced data quality.

In summary, data compression in a medical context refers to the process of reducing the size of digital data while maintaining its accuracy and integrity, which can improve efficiency in data transmission and storage.

I'm sorry for any confusion, but "search engine" is not a medical term. It is a term used in the field of information technology and refers to a software system or application that searches for items in a database, on the World Wide Web, or within an intranet and returns relevant results based on specific keywords or phrases input by the user. Examples of popular search engines include Google, Bing, and Yahoo.

If you have any medical questions or concerns, I would be happy to try to help answer them for you.

Anatomic models are three-dimensional representations of body structures used for educational, training, or demonstration purposes. They can be made from various materials such as plastic, wax, or rubber and may depict the entire body or specific regions, organs, or systems. These models can be used to provide a visual aid for understanding anatomy, physiology, and pathology, and can be particularly useful in situations where actual human specimens are not available or practical to use. They may also be used for surgical planning and rehearsal, as well as in medical research and product development.

Tandem mass spectrometry (MS/MS) is a technique used to identify and quantify specific molecules, such as proteins or metabolites, within complex mixtures. This method uses two or more sequential mass analyzers to first separate ions based on their mass-to-charge ratio and then further fragment the selected ions into smaller pieces for additional analysis. The fragmentation patterns generated in MS/MS experiments can be used to determine the structure and identity of the original molecule, making it a powerful tool in various fields such as proteomics, metabolomics, and forensic science.

Radiographic image enhancement refers to the process of improving the quality and clarity of radiographic images, such as X-rays, CT scans, or MRI images, through various digital techniques. These techniques may include adjusting contrast, brightness, and sharpness, as well as removing noise and artifacts that can interfere with image interpretation.

The goal of radiographic image enhancement is to provide medical professionals with clearer and more detailed images, which can help in the diagnosis and treatment of medical conditions. This process may be performed using specialized software or hardware tools, and it requires a strong understanding of imaging techniques and the specific needs of medical professionals.

An artifact, in the context of medical terminology, refers to something that is created or introduced during a scientific procedure or examination that does not naturally occur in the patient or specimen being studied. Artifacts can take many forms and can be caused by various factors, including contamination, damage, degradation, or interference from equipment or external sources.

In medical imaging, for example, an artifact might appear as a distortion or anomaly on an X-ray, MRI, or CT scan that is not actually present in the patient's body. This can be caused by factors such as patient movement during the scan, metal implants or other foreign objects in the body, or issues with the imaging equipment itself.

Similarly, in laboratory testing, an artifact might refer to a substance or characteristic that is introduced into a sample during collection, storage, or analysis that can interfere with accurate results. This could include things like contamination from other samples, degradation of the sample over time, or interference from chemicals used in the testing process.

In general, artifacts are considered to be sources of error or uncertainty in medical research and diagnosis, and it is important to identify and account for them in order to ensure accurate and reliable results.

Microscopy is a technical field in medicine that involves the use of microscopes to observe structures and phenomena that are too small to be seen by the naked eye. It allows for the examination of samples such as tissues, cells, and microorganisms at high magnifications, enabling the detection and analysis of various medical conditions, including infections, diseases, and cellular abnormalities.

There are several types of microscopy used in medicine, including:

1. Light Microscopy: This is the most common type of microscopy, which uses visible light to illuminate and magnify samples. It can be used to examine a wide range of biological specimens, such as tissue sections, blood smears, and bacteria.
2. Electron Microscopy: This type of microscopy uses a beam of electrons instead of light to produce highly detailed images of samples. It is often used in research settings to study the ultrastructure of cells and tissues.
3. Fluorescence Microscopy: This technique involves labeling specific molecules within a sample with fluorescent dyes, allowing for their visualization under a microscope. It can be used to study protein interactions, gene expression, and cell signaling pathways.
4. Confocal Microscopy: This type of microscopy uses a laser beam to scan a sample point by point, producing high-resolution images with reduced background noise. It is often used in medical research to study the structure and function of cells and tissues.
5. Scanning Probe Microscopy: This technique involves scanning a sample with a physical probe, allowing for the measurement of topography, mechanical properties, and other characteristics at the nanoscale. It can be used in medical research to study the structure and function of individual molecules and cells.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

Computer storage devices are hardware components or digital media that store, retain, and retrieve digital data or information. These devices can be classified into two main categories: volatile and non-volatile. Volatile storage devices require power to maintain the stored information and lose the data once power is removed, while non-volatile storage devices can retain data even when not powered.

Some common examples of computer storage devices include:

1. Random Access Memory (RAM): A volatile memory type used as a temporary workspace for a computer to process data. It is faster than other storage devices but loses its content when the system power is turned off.
2. Read-Only Memory (ROM): A non-volatile memory type that stores firmware or low-level software, such as BIOS, which is not intended to be modified or written to by users.
3. Hard Disk Drive (HDD): A non-volatile storage device that uses magnetic recording to store and retrieve digital information on one or more rotating platters. HDDs are relatively inexpensive but have moving parts, making them less durable than solid-state drives.
4. Solid-State Drive (SSD): A non-volatile storage device that uses flash memory to store data electronically without any mechanical components. SSDs offer faster access times and higher reliability than HDDs but are more expensive per gigabyte of storage capacity.
5. Optical Disks: These include CDs, DVDs, and Blu-ray disks, which use laser technology to read or write data on a reflective surface. They have lower storage capacities compared to other modern storage devices but offer a cost-effective solution for long-term archival purposes.
6. External Storage Devices: These are portable or stationary storage solutions that can be connected to a computer via various interfaces, such as USB, FireWire, or Thunderbolt. Examples include external hard drives, solid-state drives, and flash drives.
7. Cloud Storage: A remote network of servers hosted by a third-party service provider that stores data online, allowing users to access their files from any device with an internet connection. This storage solution offers scalability, redundancy, and offsite backup capabilities.

Computer-assisted decision making in a medical context refers to the use of computer systems and software to support and enhance the clinical decision-making process. These systems can analyze patient data, such as medical history, laboratory results, and imaging studies, and provide healthcare providers with evidence-based recommendations for diagnosis and treatment.

Computer-assisted decision making tools may include:

1. Clinical Decision Support Systems (CDSS): CDSS are interactive software programs that analyze patient data and provide healthcare providers with real-time clinical guidance based on established best practices and guidelines.
2. Artificial Intelligence (AI) and Machine Learning (ML) algorithms: AI and ML can be used to analyze large datasets of medical information, identify patterns and trends, and make predictions about individual patients' health outcomes.
3. Telemedicine platforms: Telemedicine platforms enable remote consultations between healthcare providers and patients, allowing for real-time decision making based on shared data and clinical expertise.
4. Electronic Health Records (EHRs): EHRs provide a centralized repository of patient information that can be accessed and analyzed by healthcare providers to inform clinical decision making.

Overall, computer-assisted decision making has the potential to improve the quality and safety of medical care by providing healthcare providers with timely and accurate information to support their clinical judgments. However, it is important to note that these tools should always be used in conjunction with clinical expertise and human judgment, as they are not a substitute for the knowledge and experience of trained healthcare professionals.

A CD-ROM (Compact Disc Read-Only Memory) is not a medical term, but a technology term. It refers to a type of optical storage disc that contains digital information and can be read by a computer's CD-ROM drive. The data on a CD-ROM is permanent and cannot be modified or erased, unlike other types of writable discs such as CD-R or CD-RW.

CD-ROMs were commonly used in the past to distribute software, multimedia presentations, reference materials, and educational content. In medical field, CD-ROMs have been used to distribute large databases of medical information, such as clinical guidelines, drug references, and anatomical atlases. However, with the advent of internet and cloud storage technologies, the use of CD-ROMs has become less common in recent years.

Teleradiology is a subspecialty of radiology that involves the transmission of medical images from one location to another for the purpose of interpretation and diagnosis by a radiologist. This technology allows radiologists to review and report on imaging studies, such as X-rays, CT scans, and MRI scans, remotely using secure electronic communication systems.

Teleradiology has become increasingly important in modern healthcare, particularly in emergency situations where immediate interpretation of medical images is necessary. It also enables radiologists to provide specialized expertise for complex cases, regardless of their geographic location. The use of teleradiology must comply with all relevant regulations and laws regarding patient privacy and data security.

I'm sorry for any confusion, but the "Monte Carlo method" is actually a term from the field of mathematics and computer science, not medicine. It refers to a statistical technique that allows for the modeling of complex systems by running multiple simulations with random inputs. This method is widely used in various fields such as physics, engineering, and finance, but it is not a medical concept or term.

Radiology is a medical specialty that uses imaging technologies to diagnose and treat diseases. These imaging technologies include X-rays, computed tomography (CT) scans, magnetic resonance imaging (MRI) scans, positron emission tomography (PET) scans, ultrasound, and mammography. Radiologists are medical doctors who have completed specialized training in interpreting these images to diagnose medical conditions and guide treatment plans. They also perform image-guided procedures such as biopsies and tumor ablations. The goal of radiology is to provide accurate and timely information to help physicians make informed decisions about patient care.

Biochemical processes refer to the chemical reactions and transformations that occur within living organisms to maintain life. These processes are mediated by biological macromolecules such as enzymes, nucleic acids, and proteins, and are essential for various functions including metabolism, growth, reproduction, and response to environmental stimuli.

Examples of biochemical processes include:

1. Metabolic pathways: These are series of chemical reactions that convert nutrients into energy or building blocks for cellular components. Examples include glycolysis, citric acid cycle, and beta-oxidation.
2. Signal transduction: This is the process by which cells respond to external signals such as hormones and neurotransmitters. It involves a series of biochemical reactions that transmit the signal from the cell surface to the nucleus, leading to changes in gene expression.
3. Protein synthesis: This is the process by which genetic information encoded in DNA and RNA is translated into functional proteins. It involves several biochemical steps including transcription, translation, and post-translational modifications.
4. Cell division: This is the process by which cells replicate and divide to form new cells. It involves a series of biochemical reactions that regulate the cell cycle, DNA replication, and cytokinesis.
5. Apoptosis: This is the programmed cell death that occurs in multicellular organisms as a means of eliminating damaged or unnecessary cells. It involves a series of biochemical reactions that activate caspases, which are proteases that degrade cellular components.

Molecular sequence annotation is the process of identifying and describing the characteristics, functional elements, and relevant information of a DNA, RNA, or protein sequence at the molecular level. This process involves marking the location and function of various features such as genes, regulatory regions, coding and non-coding sequences, intron-exon boundaries, promoters, introns, untranslated regions (UTRs), binding sites for proteins or other molecules, and post-translational modifications in a given molecular sequence.

The annotation can be manual, where experts curate and analyze the data to predict features based on biological knowledge and experimental evidence. Alternatively, computational methods using various bioinformatics tools and algorithms can be employed for automated annotation. These tools often rely on comparative analysis, pattern recognition, and machine learning techniques to identify conserved sequence patterns, motifs, or domains that are associated with specific functions.

The annotated molecular sequences serve as valuable resources in genomic and proteomic studies, contributing to the understanding of gene function, evolutionary relationships, disease associations, and biotechnological applications.

Cross-sectional anatomy refers to the study and visualization of the internal structures of the body as if they were cut along a plane, creating a two-dimensional image. This method allows for a detailed examination of the relationships between various organs, tissues, and structures that may not be as easily appreciated through traditional observation or examination.

In cross-sectional anatomy, different imaging techniques such as computed tomography (CT) scans, magnetic resonance imaging (MRI), and ultrasound are used to create detailed images of the body's internal structures at various depths and planes. These images can help medical professionals diagnose conditions, plan treatments, and assess the effectiveness of interventions.

Cross-sectional anatomy is an important tool in modern medicine, as it provides a more comprehensive understanding of the human body than traditional gross anatomy alone. By allowing for a detailed examination of the internal structures of the body, cross-sectional anatomy can help medical professionals make more informed decisions about patient care.

I'm happy to help! However, it looks like you are asking for a medical definition of "Information Management." It is important to note that "Information Management" is not a medical term per se, but rather a general term used in many fields, including healthcare. Here's a possible definition of Information Management in the context of healthcare:

Information Management (in healthcare) refers to the systematic processes and practices used to collect, store, distribute, retrieve, and dispose of health information in an accurate, confidential, timely, and efficient manner. It involves the use of technology, policies, procedures, and personnel to ensure that health information is accessible, secure, and used appropriately for patient care, research, quality improvement, and other purposes. Effective Information Management is critical for ensuring high-quality healthcare, improving patient outcomes, and complying with legal and regulatory requirements related to privacy and security of health information.

I'm sorry for any confusion, but "Mathematical Computing" is not a recognized medical term. Mathematical computing is a branch of computer science that focuses on the development and analysis of algorithms and computational methods for solving mathematical problems. It involves the use of computers to perform mathematical calculations and simulations, and it includes various subfields such as numerical analysis, symbolic computation, and computational geometry. If you have any questions about a medical term or concept, I would be happy to help with that instead!

Liquid chromatography (LC) is a type of chromatography technique used to separate, identify, and quantify the components in a mixture. In this method, the sample mixture is dissolved in a liquid solvent (the mobile phase) and then passed through a stationary phase, which can be a solid or a liquid that is held in place by a solid support.

The components of the mixture interact differently with the stationary phase and the mobile phase, causing them to separate as they move through the system. The separated components are then detected and measured using various detection techniques, such as ultraviolet (UV) absorbance or mass spectrometry.

Liquid chromatography is widely used in many areas of science and medicine, including drug development, environmental analysis, food safety testing, and clinical diagnostics. It can be used to separate and analyze a wide range of compounds, from small molecules like drugs and metabolites to large biomolecules like proteins and nucleic acids.

A feasibility study is a preliminary investigation or analysis conducted to determine the viability of a proposed project, program, or product. In the medical field, feasibility studies are often conducted before implementing new treatments, procedures, equipment, or facilities. These studies help to assess the practicality and effectiveness of the proposed intervention, as well as its potential benefits and risks.

Feasibility studies in healthcare typically involve several steps:

1. Problem identification: Clearly define the problem that the proposed project, program, or product aims to address.
2. Objectives setting: Establish specific, measurable, achievable, relevant, and time-bound (SMART) objectives for the study.
3. Literature review: Conduct a thorough review of existing research and best practices related to the proposed intervention.
4. Methodology development: Design a methodology for data collection and analysis that will help answer the research questions and achieve the study's objectives.
5. Resource assessment: Evaluate the availability and adequacy of resources, including personnel, time, and finances, required to carry out the proposed intervention.
6. Risk assessment: Identify potential risks and challenges associated with the implementation of the proposed intervention and develop strategies to mitigate them.
7. Cost-benefit analysis: Estimate the costs and benefits of the proposed intervention, including direct and indirect costs, as well as short-term and long-term benefits.
8. Stakeholder engagement: Engage relevant stakeholders, such as patients, healthcare providers, administrators, and policymakers, to gather their input and support for the proposed intervention.
9. Decision-making: Based on the findings of the feasibility study, make an informed decision about whether or not to proceed with the proposed project, program, or product.

Feasibility studies are essential in healthcare as they help ensure that resources are allocated efficiently and effectively, and that interventions are evidence-based, safe, and beneficial for patients.

I'm sorry for any confusion, but "Geographic Information Systems" (GIS) is not a medical term. GIS is a system designed to capture, store, manipulate, analyze, manage, and present all types of geographical data. It can be used in various fields, including public health and epidemiology, to map and analyze the spread of diseases, identify environmental risk factors, plan health services delivery, and inform evidence-based decision making.

Computer program Independent software vendor Open-source software Outline of software Software asset management Software ... Software at Encyclopædia Britannica Software at Curlie Portal: Free and open-source software Software at Wikipedia's sister ... Application software: Application software is what most people think of when they think of software.[citation needed] Typical ... software or "freemium" software (in the past, the term shareware was often used for free trial/freemium software). As the name ...
3D graphics software, IRIX software, 1996 software, 3D animation software, 3D computer graphics software for Linux, Proprietary ... "Side Effects Software - 25 years on". fxguide. 27 February 2012. "3D Modeling Software in 2021". Retrieved 2022-05-19. "Disney ... SideFX Software, Makers of Houdini (Articles with short description, Short description is different from Wikidata, Wikipedia ... Houdini is a 3D animation software application developed by Toronto-based SideFX, who adapted it from the PRISMS suite of ...
Combustion was a support software tool for Flame and Inferno. Combustion was a superior software tool for vfx frame-to-frame ... v t e (Autodesk products, Compositing software, Autodesk discontinued products, All stub articles, Multimedia software stubs). ... painting, with some of the functionalities still not currently included in other compositing software in 2019. The last version ...
It is a software library that decodes the Vorbis audio format. It is free software released under the New BSD license. Tremor ... Almost all hardware devices[clarification needed] that can play Vorbis, and many software implementations on embedded devices ( ...
... software), 2011 software, Freeware, XMPP clients, VoIP software, IOS software, Social media, Windows Phone software, Meta ... Internet portal Messenger Kids Comparison of cross-platform instant messaging clients Comparison of VoIP software "Facebook ...
Free network-related software, 2013 software, Internet in China, Software using the Apache license, Free software programmed in ... The software received US$2.2 million (HK$17.1 million) in seed funding from the US State Department. Lantern is hosted on a ... Hola (VPN) - P2P VPN Psiphon Haystack (software) Outline VPN Tor (network) Lantern's open source repository has been archived. ... "China blocks censorship circumvention software Lantern after a surge of Chinese users". TECH IN ASIA. December 11, 2013. ...
The English Software Company, later shortened to English Software, was a Manchester, UK-based video game developer and ... By the end of 1983, English Software was the largest producer of Atari 8-bit software in the UK and Morris closed Gemini ... Nov/Dec 1983 English Software (8-bit) at Atari Mania English Software at Lemon64 Games by Publisher: E at Stairway to Hell ... at Atari Mania English Software at Hall of Light The English Software Company at Moby Games (Webarchive template wayback links ...
Linguistic research software, Free QDA software, Cross-platform free software, Science software for macOS, Science software for ... ELAN is computer software, a professional tool to manually and semi-automatically annotate and transcribe audio or video ... It is distributed as free and open source software under the GNU General Public License, version 3. ELAN is a well established ... Andersson, Richard; Sandgren, Olof (23 February 2016). "ELAN Analysis Companion (EAC): A Software Tool for Time-course Analysis ...
Zen, sold as Tencho no Igo (Japanese: 天頂の囲碁, literally Zenith Go) in Japan, is a closed source Go playing engine developed by Yoji Ojima (尾島陽児), a Japanese Go programmer. Zen won a gold medal in 14th Computer Olympiad in May 2009. It won the Computer Go UEC Cup in 2011, 2014, and 2016. In 2011, Zen19D reached 5 dan on the KGS Go Server, playing games of 15 seconds per move. The account which reached that rank uses a cluster version of Zen running on a 26-core machine. In 2012, Zen beat Takemiya Masaki 9p by 11 points (it received five handicap stones), followed by a 20-point win (receiving four handicap stones) in the 6th E&C Symposium in Japan. Zen defeated Kobayashi Koichi (Zen receiving three handicap stones) in the 4th Densei-sen on 23 March 2016. Zen's first commercial version was released in Japan on 18 September 2009. Zen 2 was released on 27 August 2010, Zen 3 on 30 September 2011, Zen 4 on 27 July 2012, and Zen 5 on 13 December 2013. After the AlphaGo AI defeated ...
Free software, Hypertext, Video game development software, Free game engines, Authoring systems, Adventure game engines, ... Portal: Free and open-source software (Articles with short description, Short description is different from Wikidata, Official ...
... was the first commercially successful[citation needed] microwave computer-aided design (CAD) company. The ... In 1983, another key Compact employee, William Childs, left and teamed up with Chuck Abronson to form a new software company, ... As Ansoft was missing circuit simulation, system simulation and filter synthesis, and Compact Software was missing a good EM ... After losing Compact Software's original leadership and facing competition from EEsof and H-P, COMSAT decided to exit the CAD ...
GRASP was a systems software package that provided spooling facilities for the IBM/370 running DOS/VS or DOS/VSE environment, ... Assisted by Peter Hargrave, Munro formed Software Design, Inc (known as SDI) and began selling first in Australia, then Britain ... SDI was one of the earliest and most aggressive software marketing companies.[citation needed] "A Better 'Grasp' on VS". ...
Propellerhead Software was founded in 1994 by Ernst Nathorst-Böös, Pelle Jubel and Marcus Zetterquist and launched with ReCycle ... Digital audio workstation - Computer system used for editing and creating music and audio List of music software February 2011 ... "Propellerhead Software Reason 5 review". MusicRadar. 25 August 2010. Retrieved 10 July 2023. "Propellerhead Reason 6". ... Reason is a digital audio workstation developed by the Swedish company Reason Studios (formerly known as Propellerhead Software ...
... software), .NET, .NET implementations, 2004 software, Cross-platform software, Novell software, Software using the MIT license) ... These are all free software and open-source licenses and hence Mono is free and open-source software. The license of the C# ... The program, Logos 5 Bible Study Software (OS X Version), was written for the MacOS. A number of video games, such as The Sims ... Mono can be run on many software systems. When Microsoft first announced their .NET Framework in June 2000 it was described as ...
... software, Software derived from or incorporating Wine, Unix emulation software, Wine (software)). ... Official website (Compatibility layers, Linux emulation software, MacOS emulation software, Python (programming language) ... "CodeWeavers software free for download for 24 hours on October 31, 2012". CodeWeavers blog. Retrieved 29 October 2012. ... In contrast the general CrossOver Office product focused more on stability and productivity software, and had a much slower ...
Free and open-source software portal Lout is a batch document formatter invented by Jeffrey H. Kingston. It reads a high-level ... Basser Lout is free software, distributed under the terms of the GNU General Public License. Lout copies some of its formatting ... Software: Practice and Experience. 23 (9): 1001-41. CiteSeerX 10.1.1.45.9433. doi:10.1002/spe.4380230906. S2CID 22952199. Kahl ...
"Software Heritage Archive". Retrieved 2 November 2020. "Software Heritage Persistent Identifiers". Software Heritage. Retrieved ... All the software developed in the process is released as free and open-source software. An ambassador program has been ... In 2016 Software Heritage received the best community project award at Paris Open Source Summit 2016. In 2019 Software Heritage ... Software Heritage provides a service for archiving and referencing historical and contemporary software - with a focus on human ...
Language software for Linux, Language software for macOS, Language software for Windows). ... Enchant is a free software project developed as part of the AbiWord word processor with the aim of unifying access to the ... Free and open-source software portal Project homepage PyEnchant - Python bindings for Enchant (Free spelling checking programs ... various existing spell-checker software. Enchant wraps a common set of functionality present in a variety of existing products/ ...
... is a former game development company, best known for creating the DOS game War Inc. in 1997. Index of DOS games ...
... is a privately held camera software and hardware design company that produces embedded solutions in the areas ... "About Rhonda Software Design House for Camera Products" (PDF). Rhonda Software. Retrieved August 1, 2022. "Computer Vision ... "Rhonda Software promotes new digital signage audience analysis tool". Digital AV Magazine. December 16, 2011. "Rhonda Software ... Since 2014, Rhonda Software is a camera design partner of Ambarella, Inc. The company demonstrated its H22 SoM with a camera ...
Official website (Official website different in Wikidata and Wikipedia, Software-localization tools, Collaborative software). ... Phrase (also known as Phrase Localization Suite) is a software as a service platform designed to automate and streamline ... former Phrase product is now known as Phrase Strings and forms the part of the Phrase Localization Suite focused on software ...
2008 software, Online-only retailers of video games, Software distribution platforms, Windows-only games, Windows games, ... The only other way to update a game was to install Impulse on another connected computer, get an updated copy of the software ... Impulse was able to create archives of purchased software to be stored on a backup medium, allowing users to revert to an older ... Stardock Knowledgebase, "Can I give my copy of software to my friend?" Archived 2008-05-11 at the Wayback Machine Joe Martin ( ...
Cross-platform software, Cryptographic software, Formerly proprietary software, Free and open-source Android software, Free ... Free VoIP software, Instant messaging clients, Internet privacy software, IOS software, Secure communication, Swiss brands). ... In July 2019, Wire won Capterra's Best Ease of Use award in the team communication software category for its B2B solution. ... "Wire Red - crisis communication software · Wire". wire.com. Dredge, Stuart (3 December 2014). "Skype co-founder backs Wire - to ...
Audio player software that uses Qt, Free audio software, Free media players, Free software programmed in C++, Linux media ... Free and open-source software portal List of free software for audio § Players "about.cpp file", Clementine, github.com, ... The software also has the functionality to display information such as lyrics and statistics regarding the song currently being ... players, MacOS media players, Software that uses GStreamer, Windows multimedia software). ...
ERP software companies, Software companies based in California, Companies based in Pleasanton, California, Software companies ... "nSite Software - Company Information on nSite Software". venturebeatprofiles.com. Archived from the original on 2009-11-20. " ... Nsite (a.k.a. nsite.com, Nsite Software) was a platform as a service company based in the Bay area, specializing in Sales Force ... established in 1998, Service-oriented (business computing), Defunct software companies of the United States). ...
Weather Underground / HeavyWeather Uploader, commonly WUHU, is a free software package for Microsoft Windows which allows users ... Science software stubs, Crowdsourcing, Meteorological data and networks). ...
MRI Software, and iKindi. Cougar Software was acquired by MRI Software on February 3, 2015 and is now referred to as MRI ... Software companies of Australia, Software companies established in 1992, Software companies disestablished in 2015, 2015 ... Cougar Software developed budgeting, planning and forecasting software for real estate investors in the commercial real estate ... Cougar Software Partners with iKindi (Press Release) Archived 2014-10-06 at the Wayback Machine MRI Software Acquires Cougar ...
It is implemented as extension to the popular software, Haploview, and is freely available under the MIT License. Snagger ... Snagger is a bioinformatics software program for selecting tag SNPs using pairwise r2 linkage disequilibrium. ... Software using the MIT license, Bioinformatics software). ...
Software companies based in Utah, Statistical survey software, Software companies of the United States, Decision-making ... is a computer software company based in Provo, Utah, United States. The company provides survey software tools, and specializes ... In 1982 Johnson left the John Morton Company and founded Sawtooth Software to pursue creating generalized software for use in ... According to the American Marketing Association, Sawtooth Software was ranked fourth in 2005 among software used in market ...
Audio software that uses GTK, GNOME Applications, Free software programmed in C, Free software programmed in C Sharp, All stub ...
Download free Adobe Acrobat Reader software for your Windows, Mac OS and Android devices to view, print, and comment on PDF ...
Software for the Public Good¶. ASFs open source software is used ubiquitously around the world with more than 8,400 committers ... Apache Software Foundation Releases Annual Report for 2023 Fiscal Year. Continue Reading → Foundation Blog The State of ... The Apache Incubator is the primary entry path into The Apache Software Foundation for projects and their communities wishing ... Apache Software Foundation Announces Keynote Speakers for Community Over Code North America. ...
Software for the Public Good¶. ASFs open source software is used ubiquitously around the world with more than 8,400 committers ... The Apache Software Foundation Announces Gradle as a Platinum Targeted Sponsor Continue Reading → Foundation Blog Apache ... The Apache Incubator is the primary entry path into The Apache Software Foundation for projects and their communities wishing ... Copyright © 2023 The Apache Software Foundation, Licensed under the Apache License, Version 2.0. ...
GibHub notes that flaws can include backdoors, which are software vulnerabilities that are intentionally planted in software ... The security alerts service scans software dependencies (software libraries) used in open-source projects and automatically ... Proprietary software makers over the years have been regularly criticized for security through obscurity or not making source ... GitHub reported that almost a fifth of all software bugs were intentionally placed in code by malicious actors in its 2020 ...
Intels products and software are intended only to be used in applications that do not cause or contribute to a violation of an ... Intel technologies may require enabled hardware, software or service activation. // No product or component can be absolutely ...
A software release train is a form of software release schedule in which a number of distinct series of versioned software ... Software examples[edit]. Python[edit]. The Python Software Foundation has published PEP 440 - Version Identification and ... In most proprietary software, the first released version of a software product has version 1.[citation needed] ... The free-software and open source communities tend to release software early and often. Initial versions are numbers less than ...
In computer programming, a software framework is an abstraction in which software, providing generic functionality, can be ... The designers of software frameworks aim to facilitate software developments by allowing designers and programmers to devote ... When developing a concrete software system with a software framework, developers utilize the hot spots according to the ... reusable software environment that provides particular functionality as part of a larger software platform to facilitate the ...
Intels products and software are intended only to be used in applications that do not cause or contribute to a violation of an ... It is designed to be highly customizable and scalable, enabling organizations to tailor the software to meet their specific ... Intel Data Center Manager (Intel® DCM) is a powerful software solution designed to help organizations manage their data centers ... Intel technologies may require enabled hardware, software or service activation. // No product or component can be absolutely ...
About OIICS Software Standalone OIICS Software Application The NIOSH Division of Safety Research developed a standalone OIICS ... The software may be freely copied. Disclaimer NIOSH makes no warranties or representations regarding the softwares accuracy or ... There are neither warranties expressed or implied with this software tool. The coding structure and software are subject to ... Software Versions OIICS v2.01: The OIICS Coding Resource is available as an executable Microsoft Windows® application ( ...
CRN is the trusted technology news source for IT channel partners, solution providers, and value-added resellers (VARs). Get breaking news, IT vendor and product reviews, channel partner resources and more.
Software tools to support the standardized coding of industry and occupation text found on employment, vital statistics, cancer ... Mining Safety & Health Research Software. A list of the latest software available from the NIOSH Mining Program. Includes a ... Spirometry Longitudinal Data Analysis (SPIROLA) Software. SPIROLA software is an easy-to-use visual and quantitative tool ... Industry and Occupation Automated Coding Software. Software tools to support the standardized coding of industry and occupation ...
Create beautiful web pages with Adobes web design software and tools. Make customised pages for desktop, tablets and phones. ... Make better websites and apps using powerful HTML and code-free web design software.. ... Powerful and intuitive web design software and app-making tools will get you from concept to launch faster. Top-notch ... Build amazing websites using web design software for Windows, macOS, Android and iOS.. ...
A General Approach for Efficiently Accelerating Software-based Dynamic Data Flow Tracking on Commodity Hardware [NDSS12] ... Deobfuscation of virtualization-obfuscated software: a semantics-based approach [CCS11]. *LOOP: Logic-Oriented Opaque ... how we can leverage program analysis techniques in order to automate the above tasks and make the software more secure. ... building a fundamental protection against these attackers require techniques across various layers of software and fundamental ...
or https:// means youve safely connected to the .gov website. Share sensitive information only on official, secure websites. ...
... cheats and more for games by Krisalis Software at GameSpot. ... Learn about Krisalis Software, and find games, reviews, ...
Software Development , News, how-tos, features, reviews, and videos ... Software Development , News, how-tos, features, reviews, and videos ... Software project management challenges - and how to handle them. With the need for digital services accelerating, software ... Enterprise Software Drives the IT and Finance Operations in the Banking Industry. By Workday Inc. ...
Software underpins many of the scientific discoveries made by ORNL. Our goal is to ensure that the software we create embodies ... Develops, maintains, and manages innovative software systems that support missions of the National Nuclear Security ...
... Word Viewer 97-2000 for Windows 95/8 and Windows NT. All documents available from this site are in ...
Access cloud trials and software downloads for Oracle applications, middleware, database, Java, developer tools, and more. ... Software Download. The Oracle Software Download center is the navigational site to download your companys Oracle software. If ... you should download your software from the Oracle Software Delivery Cloud, which is specifically designed for customer ... All software downloads are free, and most come with a Developer License that allows you to use full versions of the products at ...
IBM Z mainframe software is designed for hybrid cloud with the security, resiliency, AI, and application modernization you need ... Software migration Explore how the IBM Z software migration services experts help enable a successful migration to IBM software ... Mainframe software case studies BNP Parabas is boosting autonomy, agility, control and efficiency in software development on ... Mainframe software for IBM Z System software designed for hybrid cloud - with the security, resiliency, AI, and application ...
Computer program Independent software vendor Open-source software Outline of software Software asset management Software ... Software at Encyclopædia Britannica Software at Curlie Portal: Free and open-source software Software at Wikipedias sister ... Application software: Application software is what most people think of when they think of software.[citation needed] Typical ... software or "freemium" software (in the past, the term shareware was often used for free trial/freemium software). As the name ...
Find Schoettler Software software downloads at CNET Download.com, the most comprehensive source for safe, trusted, and spyware- ... Schoettler Software. schoettler Software GmbH is a German software company offering mobile solutions and software products for ...
... - Download as a PDF or view online for free ... Quality Management in Software Testing: • Quality management in software testing involves ensuring that the software being ... software testing 5.1.pdf. *1. . UNIT-5 Other quality Assurance Quality and Defect Management in Software Testing: 1. ... 2. Defect Management in Software Testing: • Defect management in software testing is the process of identifying, documenting, ...
Use synonyms for the keyword you typed, for example, try "application" instead of "software." ... For any additional Oracle VM software downloads, please visit https://www.oracle.com/virtualization/technologies/vm/downloads/ ...
Archiving software may also provide options for encryption, file spanning, checksums, self-extraction, and self-installation. ... https://www.mediafire.com/file/f4ndna7ytr2vb45/Hikvision_Dvr_Software_%2528Windows%2529.zip/file. .header { position: absolute ...
The backup software developer Legato is only the latest software business to come under EMCs banner. Can the enterprise ... EMCs stated goal is to become increasingly a software company. The company has said it wants to raise its software efforts to ... In April, EMC acquired Astrum Software of Boston. The company makes "active storage management" software, which lets ... "strategic global software partnership," covering BMCs Storage Manager software. The companies will migrate current BMC ...
Enhance your ASUS devices with powerful software tools for optimal performance and functionality. ... It uses intelligent software algorithms to optimize the brightness and sharpness of every video frame, improving contrast by up ... Easy access to great software. ASUS Promotion is a portal that gives you access to popular apps, exclusive special offers, and ... Thats why we provide less pre-installed software and more space for you to customize your apps. AppDeals is a convenient and ...
dtmb/procurement/mideal-extended-purchasing-program/mideal-contract-search/categories/folder-2/construction-code-software ... Overview: Contract for construction codes enforcement software with a single web-based application. ...
Our ambition is to improve the software development and maintenance process for embedded systems ...
... including Jira Software, Confluence, Bitbucket, Jira Service Desk and more. ... Software. Remove Downtime with Jira Software Data Center. Join the webinar to get a technical deep dive into Jira Software Data ... Software. The new Jira begins now. Were reimagining Jira Software Cloud for the future of software development with a brand ... Software. How to use Jira Software and Confluence Cloud together. If your team uses Jira Software & Confluence Cloud to manage ...
  • Microsoft-owned GitHub, the world's largest platform for open-source software, has found that 17% of all vulnerabilities in software were planted for malicious purposes. (zdnet.com)
  • GitHub reported that almost a fifth of all software bugs were intentionally placed in code by malicious actors in its 2020 Octoverse report, released yesterday . (zdnet.com)
  • While almost a fifth of vulnerabilities in open-source software were intentionally planted backdoors, GitHub highlights that most vulnerabilities were just plain old errors. (zdnet.com)
  • The security alerts service scans software dependencies (software libraries) used in open-source projects and automatically alerts project owners if it detects known vulnerabilities. (zdnet.com)
  • Linux distributions like Debian, with its dpkg , early on created package management software which could resolve dependencies between their packages. (wikipedia.org)
  • Oracle's construction management software provides digital document repositories and processes that enable efficient management of the huge volume of documents generated across the entire construction project lifecycle. (oracle.com)
  • Combustion was a superior software tool for vfx frame-to-frame painting, with some of the functionalities still not currently included in other compositing software in 2019. (wikipedia.org)
  • Software frameworks may include support programs, compilers, code libraries, toolsets, and application programming interfaces (APIs) that bring together all the different components to enable development of a project or system . (wikipedia.org)
  • It discusses both, the needs of users utilising available packages and the needs of those users that use the provided software (e.g. compilers, libraries and utilities) to build their own software packages. (lu.se)
  • We developed TS-REX, a database/software system that supports the analysis of tissue and cell type-specific transcription factor-gene networks based on expressed sequence tag abundance of transcription factor-encoding genes in UniGene EST libraries. (lu.se)
  • It provides a standard way to build and deploy applications and is a universal, reusable software environment that provides particular functionality as part of a larger software platform to facilitate the development of software applications , products and solutions. (wikipedia.org)
  • The designers of software frameworks aim to facilitate software developments by allowing designers and programmers to devote their time to meeting software requirements rather than dealing with the more standard low-level details of providing a working system, thereby reducing overall development time. (wikipedia.org)
  • citation needed] Computer science is the theoretical study of computer and software (Turing's essay is an example of computer science), whereas software engineering is the application of engineering principles to development of software. (wikipedia.org)
  • It is an essential part of the software development process and aims to catch errors early, enhance maintainability, and promote collaboration among team members. (slideshare.net)
  • The company been on a tear over the past few years, acquiring a range of software companies to bolster its home-grown development efforts. (eweek.com)
  • A comprehensive manual on the NCBI C++ toolkit, including its design and development framework, a C++ library reference, software examples and demos, FAQs and release notes. (nih.gov)
  • Software development in teams with close customer connection. (lu.se)
  • IBM Z® mainframe software and hardware delivers an open, hybrid cloud experience, plus the AI , resiliency and security you require. (ibm.com)
  • Oracle's leading cloud construction management software connects your teams, processes and data to drive productivity, improve control, and unlock data-driven insights across your construction projects. (oracle.com)
  • Our cloud-based construction management software enables businesses to rapidly deploy new projects, adapt to unique business requirements, and operate leaner with teams using data rather than just collecting it. (oracle.com)
  • Our construction payment management software is the cloud-based solution of choice for billing, payment, and compliance management, including lien waiver management, plus integration to enterprise resource planning (ERP) applications, and unrivaled client services. (oracle.com)
  • Join this webinar to learn how to get the most value from agile practices working with Jira Software and Confluence Cloud. (atlassian.com)
  • Enabling Cloud Connect (included in DivX Pro ) allows DivX Software to sync videos from Google Drive and Dropbox. (divx.com)
  • With one easy step, you can download and upload videos from multiple cloud storage accounts in DivX Software. (divx.com)
  • Cisco ® NX-OS Software is an extensible, open, and programmable network operating system for next-generation data centers and cloud networks. (cisco.com)
  • It is the industry's most deployed data center operating system, based on a highly resilient, Linux-based software architecture, built to enable the most performance-demanding cloud environments. (cisco.com)
  • In 2000, Fred Shapiro, a librarian at the Yale Law School, published a letter revealing that John Wilder Tukey's 1958 paper "The Teaching of Concrete Mathematics" contained the earliest known usage of the term "software" found in a search of JSTOR's electronic archives, predating the Oxford English Dictionary's citation by two years. (wikipedia.org)
  • It will explain the rational behind the module system, how to search for software, how to make software available and avoiding the pitfalls. (lu.se)
  • Boredom, rather than altruism, was the main reason for writing the software, said Mr Dewar. (bbc.co.uk)
  • A list of the latest software available from the NIOSH Mining Program. (cdc.gov)
  • Intel Data Center Manager (Intel® DCM) is a powerful software solution designed to help organizations manage their data centers with greater efficiency and sustainability. (intel.com)
  • For any additional Oracle VM software downloads, please visit https://www.oracle.com/virtualization/technologies/vm/downloads/server-storage-vm-downloads.html for instructions. (oracle.com)
  • Intel's products and software are intended only to be used in applications that do not cause or contribute to a violation of an internationally recognized human right. (intel.com)
  • schoettler Software GmbH is a German software company offering mobile solutions and software products for Windows PC, MacOS, iPhone, iPad and Android. (cnet.com)
  • By incorporating quality management practices and effective defect management strategies into software testing, organizations can improve the reliability, functionality, and user satisfaction of their software products. (slideshare.net)
  • Founded in 2003, Kaizen Software Solutions has been operating in California's Silicon Valley and providing the following software products to businesses around the globe: Training Manager - Software to track employee training Asset Manager - Software to track fixed assets. (cnet.com)
  • Software applications and games can quickly become very complex systems that are far from static products throughout their lifecycles. (uu.nl)
  • Money raised from the software also goes to the Limbe Wildlife Centre in Cameroon and the Tacugama Chimpanzee Sanctuary in Sierra Leone. (bbc.co.uk)
  • In computer programming , a software framework is an abstraction in which software , providing generic functionality, can be selectively changed by additional user-written code, thus providing application-specific software. (wikipedia.org)
  • At a fine-grained level, revision control is used for keeping track of incrementally-different versions of information, whether or not this information is computer software, in order to be able to roll any changes back. (wikipedia.org)
  • A variety of version numbering schemes have been created to keep track of different versions of a piece of software. (wikipedia.org)
  • In addition, standalone software versions are available for download and installation on a desktop computer. (cdc.gov)
  • The module system allows users to access the software packages and package versions that best fit their needs, while minimising the risk of software conflicts and interference between the needs of different users. (lu.se)
  • Proprietary software makers over the years have been regularly criticized for 'security through obscurity' or not making source code available for review by experts outside the company. (zdnet.com)
  • Note that our policy is not to make links to pages or sites whose subject is proprietary software, and we also avoid making links to pages or sites that are sales-oriented in their tone or focus. (gnu.org)
  • Develops, maintains, and manages innovative software systems that support missions of the National Nuclear Security Administration. (ornl.gov)
  • He develops free software for a living and advocates free ("libero") software for a mission. (gnu.org)
  • There are many different types of application software because the range of tasks that can be performed with a modern computer is so large-see list of software. (wikipedia.org)
  • Mission: We build software that enables world class scientific discoveries. (ornl.gov)
  • Construction management software with a true common data environment enables the entire project community to collaborate on models and plans while connecting all teams and data to the BIM process. (oracle.com)
  • Software Engineering principles have connections with design science, including cybersecurity concerns pertaining to vulnerabilities, trust and reputation. (easychair.org)
  • Software tools to support the standardized coding of industry and occupation text found on employment, vital statistics, cancer registries and other record systems. (cdc.gov)
  • As attackers break into systems in various ways, building a fundamental protection against these attackers require techniques across various layers of software and fundamental understanding of the system as well as attackers. (google.com)
  • System software is also designed for providing a platform for running application software, and it includes the following: Operating systems are essential collections of software that manage resources and provide common services for other software that runs "on top" of them. (wikipedia.org)
  • It ensures that defects are identified, addressed, and resolved promptly, leading to the delivery of high-quality software systems. (slideshare.net)
  • Last week, EMC made a $1.3 billion deal for backup software developer Legato Systems of Mountain View, Calif. EMC executives said the company will run the acquisition as part of a separate software division. (eweek.com)
  • We are always interested in research collaborations on all themes related to software systems. (uu.nl)
  • On most current HPC systems the provided software provided is handled in a module system. (lu.se)
  • SPIROLA software is an easy-to-use visual and quantitative tool intended to assist the health care provider in monitoring and interpreting computerized longitudinal spirometry data for individuals as well as for a group. (cdc.gov)
  • Rely on hardware and software designed to protect your data and applications. (ibm.com)
  • Software is a set of computer programs and associated documentation and data. (wikipedia.org)
  • Founded in late 2009, WaterSmart Software helps communities of all sizes save water, energy and money by applying big data to complement existing investments in physical infrastructure. (weforum.org)
  • Cisco NX-OS Software is a data center-class operating system built with modularity, resiliency, and serviceability at its foundation. (cisco.com)
  • The software allows users to interactively visualize transcription factor-gene networks, as well as to export data for further processing. (lu.se)
  • On virtually all computer platforms, software can be grouped into a few broad categories. (wikipedia.org)
  • Our goal is to ensure that the software we create embodies the best practices available to maximize the reliability and efficiency of scientific research to increase credibility and accelerate discovery. (ornl.gov)
  • Keep up with the ASF's news and announcements by subscribing to the Apache Announcements List , as well as following the Foundation Blog , Apache Weekly News Round-Ups , @TheASF on Twitter , The Apache Software Foundation on LinkedIn , on the ASF's YouTube channel , and on Feathercast , the voice of the ASF. (apache.org)
  • Combustion was a support software tool for Flame and Inferno. (wikipedia.org)
  • System software manages hardware behaviour, as to provide basic functionalities that are required by users, or for other software to run properly, if at all. (wikipedia.org)
  • GibHub notes that flaws can include 'backdoors', which are software vulnerabilities that are intentionally planted in software to facilitate exploitation, and ' bugdoors ', which are a specific type of backdoor that disguise themselves as conveniently exploitable yet hard-to-spot bugs, as opposed to introducing explicitly malicious behavior. (zdnet.com)
  • Within a given version number category (e.g., major or minor), these numbers are generally assigned in increasing order and correspond to new developments in the software. (wikipedia.org)
  • Powerful and intuitive web design software and app-making tools will get you from concept to launch faster. (adobe.com)
  • Compare web design software and tools. (adobe.com)
  • Houdini is a 3D animation software application developed by Toronto-based SideFX, who adapted it from the PRISMS suite of procedural generation software tools. (wikipedia.org)
  • The focus is on practical experience of methods and tools suitable for a smaller software project with one developer team. (lu.se)
  • Developing operationally-critical custom software services for the NCCS. (ornl.gov)
  • Test coverage: Quality management involves ensuring that the software is thoroughly tested to cover all the requirements and functionalities. (slideshare.net)
  • Providing software expertise to develop IoT solutions in manufacturing. (ornl.gov)
  • Kaizen Software Solutions is a privately held software company specializing in database tracking software for business. (cnet.com)
  • Software versioning is the process of assigning either unique version names or unique version numbers to unique states of computer software. (wikipedia.org)
  • Modern computer software is often tracked using two different software versioning schemes: an internal version number that may be incremented many times in a single day, such as a revision control number, and a release version that typically changes far less often, such as semantic versioning [1] or a project code name. (wikipedia.org)
  • RALEIGH, N.C. , April 29, 2014 /PRNewswire/ -- Alien Skin Software today announced the forthcoming launch of Exposure 6, the latest version of its flagship photography effects software. (prnewswire.com)
  • SideFX also publishes Houdini Apprentice, a limited version of the software that is free of charge for non-commercial use. (wikipedia.org)
  • Included in the next free version of DivX Software for Windows! (divx.com)
  • The version number of the software. (lu.se)
  • EMCs transformation into a semi-software company is gaining momentum, judging from its moves over the past week. (eweek.com)
  • The software is only intended to assist the user in assembling and organizing the information required to make medical decisions, and cannot be substituted for competent and informed professional judgment. (cdc.gov)
  • In practice, an operating system comes bundled with additional software (including application software) so that a user can potentially do some work with a computer that only has one operating system. (wikipedia.org)
  • The Free Software Foundation (FSF) is a nonprofit with a worldwide mission to promote computer user freedom. (gnu.org)
  • Exceptions may be present in the documentation due to language that is hardcoded in the user interfaces of the product software, language used based on RFP documentation, or language that is used by a referenced third-party product. (cisco.com)
  • It is designed to be highly customizable and scalable, enabling organizations to tailor the software to meet their specific needs. (intel.com)
  • The first theory about software, prior to the creation of computers as we know them today, was proposed by Alan Turing in his 1936 essay, On Computable Numbers, with an Application to the Entscheidungsproblem (decision problem). (wikipedia.org)
  • Based on the goal, computer software can be divided into: Application software uses the computer system to perform special functions beyond the basic operation of the computer itself. (wikipedia.org)
  • Use synonyms for the keyword you typed, for example, try "application" instead of "software. (oracle.com)
  • Contract for construction codes enforcement software with a single web-based application. (michigan.gov)
  • ASF's open source software is used ubiquitously around the world with more than 8,400 committers contributing to more than 320 active projects. (apache.org)
  • What Open Source Software Do You Use? (apache.org)
  • A good example of the potential impact of bugs in open source is Heartbleed, the bug in OpenSSL that a Google researcher revealed in 2014, which put a spotlight on how poorly funded many open-source software projects are. (zdnet.com)
  • Key components of quality management in software testing include quality planning, quality control, and quality improvement. (slideshare.net)
  • They include scripts for people running web servers, software that looks for low airfares, and tank battle games for handheld computers. (bbc.co.uk)
  • If you would like your name to appear on this list, we have reserved a space for you, when you start writing free software . (gnu.org)
  • Either from the single-item view of a software type or from the list view of software. (lu.se)
  • Intel technologies may require enabled hardware, software or service activation. (intel.com)
  • Quality management in software testing involves ensuring that the software being developed or tested meets the required quality standards. (slideshare.net)
  • Our construction management software solution brings project management into the field, empowering delivery teams to solve problems quickly and independently, boosting productivity. (oracle.com)
  • This charity funds health and education projects around the world, and thanks to extraordinary ability of software to generate cash, Mr Gates has been able to endow the foundation with a staggering $24 billion. (bbc.co.uk)
  • The collaboration allowed participants to experience "live" usage of the SIAMED software for medicines registration and the registration of manufacturers and marketeers. (who.int)
  • The OIICS Coding Resource software may be downloaded for free to your computer and installed locally so that you do not require an internet connection to use the OIICS coding resource tool. (cdc.gov)
  • Make better websites and apps using powerful HTML and code-free web design software. (adobe.com)
  • Free upgrades will be automatically sent to everyone who purchased Exposure 5 directly from Alien Skin Software in March 2014 or later. (prnewswire.com)
  • He regularly contributes to many other GNU and non-GNU Free Software projects such as Kaffe, Amanda and Samba. (gnu.org)
  • Is a free software activist and wears a few hats around GNU as a co-maintainer of GNUzilla and IceCat , Jami , and ERC , as well as a Savannah hacker , GNU webmaster , assistant GNUisance, GNU Persian translation team leader, current curator of the monthly GNU Spotlight , and a member of the GNU Advisory Committee . (gnu.org)
  • In addition, users may use this software package to detect and measure spots and surfaces and perform colocalization anaylsis. (lu.se)
  • After all, he observed, even after software achieves a 30 percent share of revenues, the lions share of sales will still come from volume hardware shipments. (eweek.com)
  • The Apache Incubator is the primary entry path into The Apache Software Foundation for projects and their communities wishing to become part of the Foundation's efforts. (apache.org)
  • However, analysts advised that before a company can build strong bones and a software strategy, it must chew and digest its meals. (eweek.com)
  • The creator of a clever appointment tracking program called DateBk for the Palm computer is using the money generated by the software to fund a sanctuary for the great apes. (bbc.co.uk)
  • 9 Decembr 2018 - On 3-6 December 2018, WHO facilitated a learning exchange study tour to the Directorate of Pharmacy and Medicines in Tunis, Tunisia, on the use of WHO's Model System for Computer-assisted Drug Registration (SIAMED) software. (who.int)
  • The DTS-HD Plug-in for DivX Software includes DTS-HD Master Audio™, which decodes all DTS codecs including DTS Digital Surround™, DTS Express™, and DTS Coreless lossless streams, with the DTS decoder. (divx.com)
  • schoettler Software is well known for its product CalcTape Calculator. (cnet.com)
  • Software is the prefect product to sell to raise money for charity because once the program has been written, creating extra copies costs nothing. (bbc.co.uk)
  • The company makes "active storage management" software, which lets administrators monitor various popular database applications and then apply policies for their storage and availability. (eweek.com)
  • EMCs stated goal is to become increasingly a software company. (eweek.com)
  • The company has said it wants to raise its software efforts to account for 30 percent of its revenues. (eweek.com)
  • According to EMC President and CEO Joe Tucci, the company is still on the hunt for yet another major software acquisition. (eweek.com)
  • Exposure 6 can be used as a plug-in with popular host software or as a stand-alone program for even greater flexibility. (prnewswire.com)
  • You will (1) read recent academic papers carefully and present the essence of papers, (2) learn how to implement advanced dynamic and static analysis used in attack prevention and investigation, and (3) learn how to conduct a system security research that builds fundamental software. (google.com)
  • There is an "app portal" called "Software Center" with many pre-configured apps. (lu.se)
  • Software Center" is continually updated with new and upgraded apps. (lu.se)
  • However, to execute this strategy, EMC must stitch together a wide range of software programs, some with overlapping technologies and feature sets. (eweek.com)

No images available that match "software"