A species of HANTAVIRUS which emerged in the Four Corners area of the United States in 1993. It causes a serious, often fatal pulmonary illness (HANTAVIRUS PULMONARY SYNDROME) in humans. Transmission is by inhaling aerosolized rodent secretions that contain virus particles, carried especially by deer mice (PEROMYSCUS maniculatus) and pinyon mice (P. truei).
Acute respiratory illness in humans caused by the Muerto Canyon virus whose primary rodent reservoir is the deer mouse Peromyscus maniculatus. First identified in the southwestern United States, this syndrome is characterized most commonly by fever, myalgias, headache, cough, and rapid respiratory failure.
A genus of the subfamily SIGMODONTINAE consisting of 49 species. Two of these are widely used in medical research. They are P. leucopus, or the white-footed mouse, and P. maniculatus, or the deer mouse.
A genus of the family BUNYAVIRIDAE causing HANTAVIRUS INFECTIONS, first identified during the Korean war. Infection is found primarily in rodents and humans. Transmission does not appear to involve arthropods. HANTAAN VIRUS is the type species.
Infections with viruses of the genus HANTAVIRUS. This is associated with at least four clinical syndromes: HEMORRHAGIC FEVER WITH RENAL SYNDROME caused by viruses of the Hantaan group; a milder form of HFRS caused by SEOUL VIRUS; nephropathia epidemica caused by PUUMALA VIRUS; and HANTAVIRUS PULMONARY SYNDROME caused by SIN NOMBRE VIRUS.
##### There does not appear to be a recognized medical term or condition specifically named 'Montana.' I can provide information about the state of Montana, if that would be helpful?
Diseases of rodents of the order RODENTIA. This term includes diseases of Sciuridae (squirrels), Geomyidae (gophers), Heteromyidae (pouched mice), Castoridae (beavers), Cricetidae (rats and mice), Muridae (Old World rats and mice), Erethizontidae (porcupines), and Caviidae (guinea pigs).
Animate or inanimate sources which normally harbor disease-causing organisms and thus serve as potential sources of disease outbreaks. Reservoirs are distinguished from vectors (DISEASE VECTORS) and carriers, which are agents of disease transmission rather than continuing sources of potential disease outbreaks.
A mammalian order which consists of 29 families and many genera.
The type species of the genus HANTAVIRUS infecting the rodent Apodemus agrarius and humans who come in contact with it. It causes syndromes of hemorrhagic fever associated with vascular and especially renal pathology.
**I'm sorry for the confusion, but 'Nevada' is not a medical term.** It is a geographical location, specifically a state in the southwestern United States. If you have any medical terms or concepts you would like me to define or explain, please let me know!
whoa, hold up! 'New Mexico' is a state in the United States, it isn't a medical term or concept. It might be confused with a location name or geographical term. Let me know if you need information about a medical topic and I'd be happy to help!
I'm sorry for any confusion, but "Colorado" is a place, specifically a state in the United States, and does not have a medical definition. If you have any questions about medical conditions or terminology, I would be happy to help with those!
Immunoglobulins produced in response to VIRAL ANTIGENS.
Organs and other anatomical structures of non-human vertebrate and invertebrate animals.
Viral proteins found in either the NUCLEOCAPSID or the viral core (VIRAL CORE PROTEINS).
A CELL LINE derived from the kidney of the African green (vervet) monkey, (CERCOPITHECUS AETHIOPS) used primarily in virus replication studies and plaque assays.
Ribonucleic acid that makes up the genetic material of viruses.
A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey (C. pygerythrus) is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.

Patterns of infection with Laguna Negra virus in wild populations of Calomys laucha in the central Paraguayan chaco. (1/64)

In 1995, an outbreak of hantavirus pulmonary syndrome occurred in the central Paraguayan chaco. The primary reservoir of the virus, Laguna Negra virus, was identified as the vesper mouse, Calomys laucha. Over a 15-month period, we collected 1,090 small mammals at 12 locations representing 4 habitats common in the central Paraguayan chaco. Calomys laucha was common in agricultural habitats and uncommon in the native forest habitat. Populations of C. laucha were greater during the dry season months and declined during the wet season. A total of 643 small mammals were tested for antibodies cross-reactive to Sin Nombre virus. All of the antibody-positive animals were C. laucha (crude antibody prevalence ratio 12.1% [25 of 206]). Antibody prevalence ratio increased with body size and was more common among male (18%; n = 115) than among female (4%; n = 96) vesper mice. Antibody prevalence ratio was highest among animals from cropland habitats (18%; n = 72), followed by thorn scrub (13%; n = 46) and pastureland (7%; n = 81) and may be positively correlated to the proportion of C. laucha in the small mammal community. These data suggest that community-level dynamics, in addition to population-level dynamics, may be involved in the transmission of the virus through natural populations of vesper mice.  (+info)

Hantavirus pulmonary syndrome: the new American hemorrhagic fever. (2/64)

The recognition of hantavirus pulmonary syndrome (HPS) after the investigation of a cluster of unexplained respiratory deaths in the southwestern United States during the spring of 1993 showcased our ability to recognize new and emerging diseases, given the correct juxtaposition of a new clinical entity with circumscribed epidemiologic features that are analyzed with novel diagnostic methods. In less than a decade, HPS has become established as a pan-American zoonosis due to numerous viruses maintained by sigmodontine rodents with rodent- and virus-specific epidemiologic profiles. The classical features of the syndrome-acute febrile illness associated with prominent cardiorespiratory compromise after direct contact or inhalation of aerosolized rodent excreta-has been extended to include clinical variants, including disease with frank hemorrhage, that have confirmed that this syndrome is a viral hemorrhagic fever. Efforts are under way to refine prevention strategies, to understand the pathogenesis of the shock, and to identify therapeutic modalities.  (+info)

Characterization of HLA-A2.1-restricted epitopes, conserved in both Hantaan and Sin Nombre viruses, in Hantaan virus-infected patients. (3/64)

Nine different CTL epitopes, conserved in both Hantaan virus (HTNV) and Sin Nombre virus (SNV), were selected for study. The binding affinity of each peptide with HLA-A2.1 molecules in vitro was determined and antigen-specific responses from seven donors who had a previous field infection with HTNV were examined. Although the strength or frequency of CTL activity showed different patterns in the seven patients, five of seven patients showed significant activity against at least one or more epitope peptides. In particular, the peptide ILQDMRNTI (HTNV, aa 334-342; SNV, aa 333-341), which elicited CTL activity in five patients, was shown to be specifically HLA-A2.1-restricted in partially cloned CD8+ T cells and also induced activated and effector CD8+ T cell-producing T cytotoxic (Tc) type 1 cytokines, such as IL-2 and IFN-gamma. The results suggest that this epitope would serve as a useful component for the intervention of both HTNV and SNV infection.  (+info)

Genetic vaccines protect against Sin Nombre hantavirus challenge in the deer mouse (Peromyscus maniculatus). (4/64)

We used a deer mouse (Peromyscus maniculatus) infection model to test the protective efficacy of genetic vaccine candidates for Sin Nombre (SN) virus that were known to provoke immunological responses in BALB/c mice (Bharadwaj et al., Vaccine 17, 2836-2843, 1999 ). Protective epitopes were localized in each of four overlapping cDNA fragments that encoded portions of the SN virus G1 glycoprotein antigen; the nucleocapsid gene also was protective. The protective efficacy of glycoprotein gene fragments correlated with splenocyte proliferation in the presence of cognate antigen, but none induced neutralizing antibodies. Genetic vaccines against SN virus can protect outbred deer mice from infection even in the absence of a neutralizing antibody response.  (+info)

Shedding and intracage transmission of Sin Nombre hantavirus in the deer mouse (Peromyscus maniculatus) model. (5/64)

The mechanism(s) by which Sin Nombre (SN) hantavirus is maintained in deer mouse populations is unclear. Field studies indicate that transmission occurs primarily if not exclusively via a horizontal mechanism. Using an experimental deer mouse infection model in an outdoor laboratory, we tested whether infected rodents shed SN virus in urine, feces, and saliva, whether infected mice transmit infection to naive cage mates, and whether infected dams are able to vertically transmit virus or antibody to offspring. Using pooled samples of urine, feces, and saliva collected from mice infected 8 to 120 days postinoculation (p.i.), we found that a subset of saliva samples, collected between 15 and 90 days p.i., contained viral RNA. Parallel studies conducted on wild-caught, naturally infected deer mice showed a similar pattern of intermittent positivity, also only in saliva samples. Attempts to isolate virus through inoculation of cells or naive deer mice with the secreta or excreta of infected mice were uniformly negative. Of 54 attempts to transmit infection by cohousing infected deer mice with seronegative cage mates, we observed only a single case of transmission, which occurred between 29 and 42 days p.i. Dams passively transferred antibodies to neonatal pups via milk, and those antibodies persisted for at least 2 months after weaning, but none transmitted infection to their pups. Compared to other hantavirus models, SN virus is shed less efficiently and transmits inefficiently among cage mates. Transmission of SN virus among reservoir rodents may require factors that are not required for other hantaviruses.  (+info)

Elevated generation of reactive oxygen/nitrogen species in hantavirus cardiopulmonary syndrome. (6/64)

Hantavirus cardiopulmonary syndrome (HCPS) is a life-threatening respiratory disease characterized by profound pulmonary edema and myocardial depression. Most cases of HCPS in North America are caused by Sin Nombre virus (SNV), which is carried asymptomatically by deer mice (Peromyscus maniculatus). The underlying pathophysiology of HCPS is poorly understood. We hypothesized that pathogenic SNV infection results in increased generation of reactive oxygen/nitrogen species (RONS), which contribute to the morbidity and mortality of HCPS. Human disease following infection with SNV or Andes virus was associated with increased nitrotyrosine (NT) adduct formation in the lungs, heart, and plasma and increased expression of inducible nitric oxide synthase (iNOS) in the lungs compared to the results obtained for normal human volunteers. In contrast, NT formation was not increased in the lungs or cardiac tissue from SNV-infected deer mice, even at the time of peak viral antigen expression. In a murine (Mus musculus) model of HCPS (infection of NZB/BLNJ mice with lymphocytic choriomeningitis virus clone 13), HCPS-like disease was associated with elevated expression of iNOS in the lungs and NT formation in plasma, cardiac tissue, and the lungs. In this model, intraperitoneal injection of 1400W, a specific iNOS inhibitor, every 12 h during infection significantly improved survival without affecting intrapulmonary fluid accumulation or viral replication, suggesting that cardiac damage may instead be the cause of mortality. These data indicate that elevated production of RONS is a feature of pathogenic New World hantavirus infection and that pharmacologic blockade of iNOS activity may be of therapeutic benefit in HCPS cases, possibly by ameliorating the myocardial suppressant effects of RONS.  (+info)

Infection dynamics of Sin Nombre virus after a widespread decline in host populations. (7/64)

Many researchers have speculated that infection dynamics of Sin Nombre virus are driven by density patterns of its major host, Peromyscus maniculatus. Few, if any, studies have examined this question systematically at a realistically large spatial scale, however. We collected data from 159 independent field sites within a 1 million-hectare study area in Nevada and California, from 1995-1998. In 1997, there was a widespread and substantial reduction in host density. This reduction in host density did not reduce seroprevalence of antibody to Sin Nombre virus within host populations. During this period, however, there was a significant reduction in the likelihood that antibody-positive mice had detectable virus in their blood, as determined by reverse-transcriptase polymerase chain reaction. Our findings suggest 2 possible causal mechanisms for this reduction: an apparent change in the age structure of host populations and landscape-scale patterns of host density. This study indicates that a relationship does exist between host density and infection dynamics and that this relationship concurrently operates at different spatial scales. It also highlights the limitations of antibody seroprevalence as a metric of infections, especially during transient host-density fluctuations.  (+info)

Satellite imagery characterizes local animal reservoir populations of Sin Nombre virus in the southwestern United States. (8/64)

The relationship between the risk of hantaviral pulmonary syndrome (HPS), as estimated from satellite imagery, and local rodent populations was examined. HPS risk, predicted before rodent sampling, was highly associated with the abundance of Peromyscus maniculatus, the reservoir of Sin Nombre virus (SNV). P. maniculatus were common in high-risk sites, and populations in high-risk areas were skewed toward adult males, the subclass most frequently infected with SNV. In the year after an El Nino Southern Oscillation (ENSO), captures of P. maniculatus increased only in high-risk areas. During 1998, few sites had infected mice, but by 1999, 1820 of the high-risk sites contained infected mice and the crude prevalence was 30.8%. Only 118 of the low-risk sites contained infected rodents, and the prevalence of infection was lower (8.3%). Satellite imagery identified environmental features associated with SNV transmission within its reservoir population, but at least 2 years of high-risk conditions were needed for SNV to reach high prevalence. Areas with persistently high-risk environmental conditions may serve as refugia for the survival of SNV in local mouse populations.  (+info)

Sin Nombre virus (SNV) is a type of hantavirus that was first identified in 1993 during an outbreak of severe respiratory illness in the Four Corners region of the southwestern United States. The name "Sin Nombre" means "without name" in Spanish and was given to the virus because it had not been previously identified or named.

SNV is primarily carried by deer mice (Peromyscus maniculatus) and can be transmitted to humans through contact with infected rodent urine, droppings, or saliva, or by inhaling aerosolized particles of the virus. The virus causes hantavirus pulmonary syndrome (HPS), a severe and sometimes fatal respiratory disease characterized by fever, muscle aches, coughing, and shortness of breath.

SNV is a single-stranded RNA virus that belongs to the family Bunyaviridae and the genus Hantavirus. It is a select agent, which means that it has the potential to pose a severe threat to public health and safety, and is therefore subject to strict regulations and controls by the Centers for Disease Control and Prevention (CDC) and other federal agencies.

Hantavirus Pulmonary Syndrome (HPS) is a severe, sometimes fatal, respiratory disease in humans caused by infection with hantaviruses. These viruses are spread to people through the aerosolized urine, droppings, or saliva of infected rodents. The virus cannot be transmitted between humans unless there is direct contact with an infected person's blood or bodily fluids. Early symptoms include fatigue, fever, and muscle aches, followed by coughing and shortness of breath as the lungs fill with fluid leading to severe respiratory distress. It's crucial to seek immediate medical attention if you suspect HPS because it can progress rapidly to serious illness or death within days.

"Peromyscus" is not a medical term, but a genus of rodents commonly known as "deer mice." They are small mammals that belong to the family Cricetidae and are found in various parts of North America. Peromyscus mice can carry and transmit diseases, such as Hantavirus Pulmonary Syndrome (HPS), although they are not typically referred to in a medical context unless discussing potential zoonotic risks.

Hantavirus is an etiologic agent for several clinical syndromes, including hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). It's a single-stranded RNA virus belonging to the family Bunyaviridae, genus Orthohantavirus.

These viruses are primarily transmitted to humans by inhalation of aerosolized excreta from infected rodents. The symptoms can range from flu-like illness to severe respiratory distress and renal failure, depending upon the specific hantavirus species. There are no known treatments for HFRS, but early recognition and supportive care can significantly improve outcomes. Ribavirin has been used in some cases of HPS with apparent benefit, although its general efficacy is not well-established

(References: CDC, NIH, WHO)

Hantavirus infections are a group of viral diseases caused by rodent-borne hantaviruses. These viruses are primarily transmitted to humans through the inhalation of aerosolized urine, droppings, or saliva from infected rodents, particularly the deer mouse, white-tailed mouse, and rice rat in North America.

There are several different types of hantavirus infections, including Hantavirus Pulmonary Syndrome (HPS) and Hemorrhagic Fever with Renal Syndrome (HFRS). HPS is more common in the Americas, while HFRS is more prevalent in Europe and Asia.

Symptoms of hantavirus infections can vary depending on the specific type of infection but may include fever, muscle aches, headache, fatigue, and coughing. In severe cases, hantavirus infections can lead to respiratory failure, shock, and even death.

Preventive measures include avoiding contact with rodents, sealing entry points to prevent their entry into homes or buildings, and using appropriate personal protective equipment when cleaning areas where rodents may have been present. Currently, there is no specific treatment for hantavirus infections, but early recognition and supportive care can improve outcomes.

I'm sorry for any confusion, but "Montana" is not a medical term or condition. It is the name of a state in the United States, located in the northwestern region of the country. If you have any questions about medical terminology or health-related topics, I would be happy to help with those instead.

Rodent-borne diseases are infectious diseases transmitted to humans (and other animals) by rodents, their parasites or by contact with rodent urine, feces, or saliva. These diseases can be caused by viruses, bacteria, fungi, or parasites. Some examples of rodent-borne diseases include Hantavirus Pulmonary Syndrome, Leptospirosis, Salmonellosis, Rat-bite fever, and Plague. It's important to note that rodents can also cause allergic reactions in some people through their dander, urine, or saliva. Proper sanitation, rodent control measures, and protective equipment when handling rodents can help prevent the spread of these diseases.

A disease reservoir refers to a population or group of living organisms, including humans, animals, and even plants, that can naturally carry and transmit a particular pathogen (disease-causing agent) without necessarily showing symptoms of the disease themselves. These hosts serve as a source of infection for other susceptible individuals, allowing the pathogen to persist and circulate within a community or environment.

Disease reservoirs can be further classified into:

1. **Primary (or Main) Reservoir**: This refers to the species that primarily harbors and transmits the pathogen, contributing significantly to its natural ecology and maintaining its transmission cycle. For example, mosquitoes are the primary reservoirs for many arboviruses like dengue, Zika, and chikungunya viruses.

2. **Amplifying Hosts**: These hosts can become infected with the pathogen and experience a high rate of replication, leading to an increased concentration of the pathogen in their bodies. This allows for efficient transmission to other susceptible hosts or vectors. For instance, birds are amplifying hosts for West Nile virus, as they can become viremic (have high levels of virus in their blood) and infect feeding mosquitoes that then transmit the virus to other animals and humans.

3. **Dead-end Hosts**: These hosts may become infected with the pathogen but do not contribute significantly to its transmission cycle, as they either do not develop sufficient quantities of the pathogen to transmit it or do not come into contact with potential vectors or susceptible hosts. For example, humans are dead-end hosts for many zoonotic diseases like rabies, as they cannot transmit the virus to other humans.

Understanding disease reservoirs is crucial in developing effective strategies for controlling and preventing infectious diseases, as it helps identify key species and environments that contribute to their persistence and transmission.

"Rodentia" is not a medical term, but a taxonomic category in biology. It refers to the largest order of mammals, comprising over 40% of all mammal species. Commonly known as rodents, this group includes mice, rats, hamsters, gerbils, guinea pigs, squirrels, prairie dogs, capybaras, beavers, and many others.

While "Rodentia" itself is not a medical term, certain conditions or issues related to rodents can have medical implications. For instance, rodents are known to carry and transmit various diseases that can affect humans, such as hantavirus, leptospirosis, salmonellosis, and lymphocytic choriomeningitis (LCMV). Therefore, understanding the biology and behavior of rodents is important in the context of public health and preventive medicine.

Hantaan virus (HTNV) is a species of the genus Orthohantavirus, which causes hemorrhagic fever with renal syndrome (HFRS) in humans. This enveloped, single-stranded, negative-sense RNA virus is primarily transmitted to humans through contact with infected rodents or their excreta, particularly the striped field mouse (Apodemus agrarius) in Asia. The virus was initially isolated in 1976 from the Hantaan River area in Korea.

HTNV infection leads to a spectrum of clinical manifestations in HFRS, ranging from mild to severe forms. The symptoms often include fever, headache, muscle pain, nausea, vomiting, abdominal pain, and blurred vision. In severe cases, it can cause acute renal failure, hypotension, and hemorrhagic complications. The incubation period for HTNV infection typically ranges from 7 to 42 days.

Prevention strategies include avoiding contact with rodents, reducing rodent populations in living areas, using personal protective equipment when handling potentially infected materials, and ensuring proper food storage and waste disposal practices. No specific antiviral treatment is available for HFRS caused by HTNV; however, supportive care, such as fluid replacement and hemodialysis, can help manage severe symptoms and improve outcomes.

I'm sorry for any confusion, but "Nevada" is not a medical term. It is the name of a state in the western United States. If you have any medical questions or terms you would like defined, please let me know and I would be happy to help.

I'm sorry for any confusion, but "New Mexico" is not a medical term or concept. It is a geographical location, specifically a state in the southwestern United States. If you have any questions about medical terms or concepts, I would be happy to try and help answer those for you!

I believe you are looking for a medical condition or term related to the state of Colorado, but there is no specific medical definition for "Colorado." However, Colorado is known for its high altitude and lower oxygen levels, which can sometimes affect visitors who are not acclimated to the elevation. This can result in symptoms such as shortness of breath, fatigue, and headaches, a condition sometimes referred to as "altitude sickness" or "mountain sickness." But again, this is not a medical definition for Colorado itself.

Antibodies, viral are proteins produced by the immune system in response to an infection with a virus. These antibodies are capable of recognizing and binding to specific antigens on the surface of the virus, which helps to neutralize or destroy the virus and prevent its replication. Once produced, these antibodies can provide immunity against future infections with the same virus.

Viral antibodies are typically composed of four polypeptide chains - two heavy chains and two light chains - that are held together by disulfide bonds. The binding site for the antigen is located at the tip of the Y-shaped structure, formed by the variable regions of the heavy and light chains.

There are five classes of antibodies in humans: IgA, IgD, IgE, IgG, and IgM. Each class has a different function and is distributed differently throughout the body. For example, IgG is the most common type of antibody found in the bloodstream and provides long-term immunity against viruses, while IgA is found primarily in mucous membranes and helps to protect against respiratory and gastrointestinal infections.

In addition to their role in the immune response, viral antibodies can also be used as diagnostic tools to detect the presence of a specific virus in a patient's blood or other bodily fluids.

'Animal structures' is a broad term that refers to the various physical parts and organs that make up animals. These structures can include everything from the external features, such as skin, hair, and scales, to the internal organs and systems, such as the heart, lungs, brain, and digestive system.

Animal structures are designed to perform specific functions that enable the animal to survive, grow, and reproduce. For example, the heart pumps blood throughout the body, delivering oxygen and nutrients to the cells, while the lungs facilitate gas exchange between the animal and its environment. The brain serves as the control center of the nervous system, processing sensory information and coordinating motor responses.

Animal structures can be categorized into different systems based on their function, such as the circulatory system, respiratory system, nervous system, digestive system, and reproductive system. Each system is made up of various structures that work together to perform a specific function.

Understanding animal structures and how they function is essential for understanding animal biology and behavior. It also has important implications for human health, as many animals serve as models for studying human disease and developing new treatments.

Nucleocapsid proteins are structural proteins that are associated with the viral genome in many viruses. They play a crucial role in the formation and stability of the viral particle, also known as the virion. In particular, nucleocapsid proteins bind to the viral RNA or DNA genome and help to protect it from degradation by host cell enzymes. They also participate in the assembly and disassembly of the virion during the viral replication cycle.

In some viruses, such as coronaviruses, the nucleocapsid protein is also involved in regulating the transcription and replication of the viral genome. The nucleocapsid protein of SARS-CoV-2, for example, has been shown to interact with host cell proteins that are involved in the regulation of gene expression, which may contribute to the virus's ability to manipulate the host cell environment and evade the immune response.

Overall, nucleocapsid proteins are important components of many viruses and are often targeted by antiviral therapies due to their essential role in the viral replication cycle.

Vero cells are a line of cultured kidney epithelial cells that were isolated from an African green monkey (Cercopithecus aethiops) in the 1960s. They are named after the location where they were initially developed, the Vervet Research Institute in Japan.

Vero cells have the ability to divide indefinitely under certain laboratory conditions and are often used in scientific research, including virology, as a host cell for viruses to replicate. This allows researchers to study the characteristics of various viruses, such as their growth patterns and interactions with host cells. Vero cells are also used in the production of some vaccines, including those for rabies, polio, and Japanese encephalitis.

It is important to note that while Vero cells have been widely used in research and vaccine production, they can still have variations between different cell lines due to factors like passage number or culture conditions. Therefore, it's essential to specify the exact source and condition of Vero cells when reporting experimental results.

A viral RNA (ribonucleic acid) is the genetic material found in certain types of viruses, as opposed to viruses that contain DNA (deoxyribonucleic acid). These viruses are known as RNA viruses. The RNA can be single-stranded or double-stranded and can exist as several different forms, such as positive-sense, negative-sense, or ambisense RNA. Upon infecting a host cell, the viral RNA uses the host's cellular machinery to translate the genetic information into proteins, leading to the production of new virus particles and the continuation of the viral life cycle. Examples of human diseases caused by RNA viruses include influenza, COVID-19 (SARS-CoV-2), hepatitis C, and polio.

'Cercopithecus aethiops' is the scientific name for the monkey species more commonly known as the green monkey. It belongs to the family Cercopithecidae and is native to western Africa. The green monkey is omnivorous, with a diet that includes fruits, nuts, seeds, insects, and small vertebrates. They are known for their distinctive greenish-brown fur and long tail. Green monkeys are also important animal models in biomedical research due to their susceptibility to certain diseases, such as SIV (simian immunodeficiency virus), which is closely related to HIV.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

No FAQ available that match "sin nombre virus"

No images available that match "sin nombre virus"