Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits.
A ribosomal protein that may play a role in controlling cell growth and proliferation. It is a major substrate of RIBOSOMAL PROTEIN S6 KINASES and plays a role in regulating the translation (TRANSLATION, GENETIC) of RNAs that contain an RNA 5' TERMINAL OLIGOPYRIMIDINE SEQUENCE.
The vitamin K-dependent cofactor of activated PROTEIN C. Together with protein C, it inhibits the action of factors VIIIa and Va. A deficiency in protein S; (PROTEIN S DEFICIENCY); can lead to recurrent venous and arterial thrombosis.
A family of protein serine/threonine kinases which act as intracellular signalling intermediates. Ribosomal protein S6 kinases are activated through phosphorylation in response to a variety of HORMONES and INTERCELLULAR SIGNALING PEPTIDES AND PROTEINS. Phosphorylation of RIBOSOMAL PROTEIN S6 by enzymes in this class results in increased expression of 5' top MRNAs. Although specific for RIBOSOMAL PROTEIN S6 members of this class of kinases can act on a number of substrates within the cell. The immunosuppressant SIROLIMUS inhibits the activation of ribosomal protein S6 kinases.
Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION.
An autosomal dominant disorder showing decreased levels of plasma protein S antigen or activity, associated with venous thrombosis and pulmonary embolism. PROTEIN S is a vitamin K-dependent plasma protein that inhibits blood clotting by serving as a cofactor for activated PROTEIN C (also a vitamin K-dependent protein), and the clinical manifestations of its deficiency are virtually identical to those of protein C deficiency. Treatment with heparin for acute thrombotic processes is usually followed by maintenance administration of coumarin drugs for the prevention of recurrent thrombosis. (From Harrison's Principles of Internal Medicine, 12th ed, p1511; Wintrobe's Clinical Hematology, 9th ed, p1523)
A family of ribosomal protein S6 kinases that are considered the major physiological kinases for RIBOSOMAL PROTEIN S6. Unlike RIBOSOMAL PROTEIN S6 KINASES, 90KDa the proteins in this family are sensitive to the inhibitory effects of RAPAMYCIN and contain a single kinase domain. They are referred to as 70kDa proteins, however ALTERNATIVE SPLICING of mRNAs for proteins in this class also results in 85kDa variants being formed.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A family of ribosomal protein S6 kinases that are structurally distinguished from RIBOSOMAL PROTEIN S6 KINASES, 70-KDA by their apparent molecular size and the fact they contain two functional kinase domains. Although considered RIBOSOMAL PROTEIN S6 KINASES, members of this family are activated via the MAP KINASE SIGNALING SYSTEM and have been shown to act on a diverse array of substrates that are involved in cellular regulation such as RIBOSOMAL PROTEIN S6 and CAMP RESPONSE ELEMENT-BINDING PROTEIN.
The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed)
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A rare congenital hypoplastic anemia that usually presents early in infancy. The disease is characterized by a moderate to severe macrocytic anemia, occasional neutropenia or thrombocytosis, a normocellular bone marrow with erythroid hypoplasia, and an increased risk of developing leukemia. (Curr Opin Hematol 2000 Mar;7(2):85-94)
A serine threonine kinase that controls a wide range of growth-related cellular processes. The protein is referred to as the target of RAPAMYCIN due to the discovery that SIROLIMUS (commonly known as rapamycin) forms an inhibitory complex with TACROLIMUS BINDING PROTEIN 1A that blocks the action of its enzymatic activity.
Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis.
A species of gram-negative, aerobic, rod-shaped bacteria found in hot springs of neutral to alkaline pH, as well as in hot-water heaters.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Proteins found in any species of bacterium.
A group of uridine ribonucleotides in which the phosphate residues of each uridine ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape.
The principal alkaloid of ipecac, from the ground roots of Uragoga (or Cephaelis) ipecacuanha or U. acuminata, of the Rubiaceae. It is used as an amebicide in many different preparations and may cause serious cardiac, hepatic, or renal damage and violent diarrhea and vomiting. Emetine inhibits protein synthesis in EUKARYOTIC CELLS but not PROKARYOTIC CELLS.
A species of GRAM-POSITIVE ENDOSPORE-FORMING BACTERIA in the family BACILLACEAE, found in soil, hot springs, Arctic waters, ocean sediments, and spoiled food products.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The small subunit of eubacterial RIBOSOMES. It is composed of the 16S RIBOSOMAL RNA and about 23 different RIBOSOMAL PROTEINS.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
A vitamin-K dependent zymogen present in the blood, which, upon activation by thrombin and thrombomodulin exerts anticoagulant properties by inactivating factors Va and VIIIa at the rate-limiting steps of thrombin formation.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
The small subunit of the 80s ribosome of eukaryotes. It is composed of the 18S RIBOSOMAL RNA and 32 different RIBOSOMAL PROTEINS.
A macrolide compound obtained from Streptomyces hygroscopicus that acts by selectively blocking the transcriptional activation of cytokines thereby inhibiting cytokine production. It is bioactive only when bound to IMMUNOPHILINS. Sirolimus is a potent immunosuppressant and possesses both antifungal and antineoplastic properties.
Serum proteins that negatively regulate the cascade process of COMPLEMENT ACTIVATION. Uncontrolled complement activation and resulting cell lysis is potentially dangerous for the host. The complement system is tightly regulated by inactivators that accelerate the decay of intermediates and certain cell surface receptors.
An antibiotic produced by the soil actinomycete Streptomyces griseus. It acts by inhibiting the initiation and elongation processes during protein synthesis.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
Within most types of eukaryotic CELL NUCLEUS, a distinct region, not delimited by a membrane, in which some species of rRNA (RNA, RIBOSOMAL) are synthesized and assembled into ribonucleoprotein subunits of ribosomes. In the nucleolus rRNA is transcribed from a nucleolar organizer, i.e., a group of tandemly repeated chromosomal genes which encode rRNA and which are transcribed by RNA polymerase I. (Singleton & Sainsbury, Dictionary of Microbiology & Molecular Biology, 2d ed)
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function.
A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
An oligosaccharide antibiotic produced by various STREPTOMYCES.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis.
Protein factors uniquely required during the elongation phase of protein synthesis.
The largest ribonucleoprotein component of RIBOSOMES. It contains the domains which catalyze formation of the peptide bond and translocation of the ribosome along the MESSENGER RNA during GENETIC TRANSLATION.
The rate dynamics in chemical or physical systems.
A process of GENETIC TRANSLATION whereby the formation of a peptide chain is started. It includes assembly of the RIBOSOME components, the MESSENGER RNA coding for the polypeptide to be made, INITIATOR TRNA, and PEPTIDE INITIATION FACTORS; and placement of the first amino acid in the peptide chain. The details and components of this process are unique for prokaryotic protein biosynthesis and eukaryotic protein biosynthesis.
In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION.
Proteins obtained from ESCHERICHIA COLI.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
A peptide initiation factor that binds specifically to the 5' MRNA CAP STRUCTURE of MRNA in the CYTOPLASM. It is a component of the trimeric complex EIF4F.
The functional hereditary units of BACTERIA.
An enzyme that catalyzes the replication of the RNA of coliphage Q beta. EC 2.7.7.-.
Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA.
Constituent of the 40S subunit of eukaryotic ribosomes. 18S rRNA is involved in the initiation of polypeptide synthesis in eukaryotes.
A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE).
The sum of the weight of all the atoms in a molecule.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Hydrocarbons with more than one double bond. They are a reduced form of POLYYNES.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
Protein factors uniquely required during the initiation phase of protein synthesis in GENETIC TRANSLATION.
The functional hereditary units of FUNGI.
'Poisonous fishes' are aquatic organisms belonging to the Phylum Chordata and Class Pisces, that contain toxic substances either in their tissues or secretions, which can cause harmful or lethal effects when ingested, touched, or coming into contact with their released toxins.
Phosphoproteins are proteins that have been post-translationally modified with the addition of a phosphate group, usually on serine, threonine or tyrosine residues, which can play a role in their regulation, function, interaction with other molecules, and localization within the cell.
Electrophoresis in which a second perpendicular electrophoretic transport is performed on the separate components resulting from the first electrophoresis. This technique is usually performed on polyacrylamide gels.
The small ribonucleoprotein component of RIBOSOMES. It contains the MESSENGER RNA binding site and two TRANSFER RNA binding sites - one for the incoming AMINO ACYL TRNA (A site) and the other (P site) for the peptidyl tRNA carrying the elongating peptide chain.
Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA.
The large subunit of the 80s ribosome of eukaryotes. It is composed of the 28S RIBOSOMAL RNA, the 5.8S RIBOSOMAL RNA, the 5S RIBOSOMAL RNA, and about 50 different RIBOSOMAL PROTEINS.
Phosphopeptides are short peptide sequences that contain phosphorylated amino acid residues, typically serine, threonine or tyrosine, and play crucial roles in intracellular signaling transduction pathways by modulating protein-protein interactions and enzymatic activities.
Peptide initiation factors from eukaryotic organisms. Over twelve factors are involved in PEPTIDE CHAIN INITIATION, TRANSLATIONAL in eukaryotic cells. Many of these factors play a role in controlling the rate of MRNA TRANSLATION.
Activated form of factor V. It is an essential cofactor for the activation of prothrombin catalyzed by factor Xa.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
A genus of HALOBACTERIACEAE whose growth requires a high concentration of salt. Binary fission is by constriction.
The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains.
Transport proteins that carry specific substances in the blood or across cell membranes.
Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA.
An enzyme of the transferase class that catalyzes the reaction RNA(n+1) and orthophosphate to yield RNA(n) and a nucleoside diphosphate, or the reverse reaction. ADP, IDP, GDP, UDP, and CDP can act as donors in the latter case. (From Dorland, 27th ed) EC 2.7.7.8.
The large fragment formed when COMPLEMENT C4 is cleaved by COMPLEMENT C1S. The membrane-bound C4b binds COMPLEMENT C2A, a SERINE PROTEASE, to form C4b2a (CLASSICAL PATHWAY C3 CONVERTASE) and subsequent C4b2a3b (CLASSICAL PATHWAY C5 CONVERTASE).
Established cell cultures that have the potential to propagate indefinitely.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes.
Complexes of RNA-binding proteins with ribonucleic acids (RNA).
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
A process of GENETIC TRANSLATION, when an amino acid is transferred from its cognate TRANSFER RNA to the lengthening chain of PEPTIDES.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
A sequence of amino acids in a polypeptide or of nucleotides in DNA or RNA that is similar across multiple species. A known set of conserved sequences is represented by a CONSENSUS SEQUENCE. AMINO ACID MOTIFS are often composed of conserved sequences.
An antibiotic produced by Streptomyces spectabilis. It is active against gram-negative bacteria and used for the treatment of gonorrhea.
A group of ribonucleotides (up to 12) in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
Proteins prepared by recombinant DNA technology.
Constituent of the 50S subunit of prokaryotic ribosomes containing about 120 nucleotides and 34 proteins. It is also a constituent of the 60S subunit of eukaryotic ribosomes. 5S rRNA is involved in initiation of polypeptide synthesis.
A protein found in bacteria and eukaryotic mitochondria which delivers aminoacyl-tRNA's to the A site of the ribosome. The aminoacyl-tRNA is first bound to a complex of elongation factor Tu containing a molecule of bound GTP. The resulting complex is then bound to the 70S initiation complex. Simultaneously the GTP is hydrolyzed and a Tu-GDP complex is released from the 70S ribosome. The Tu-GTP complex is regenerated from the Tu-GDP complex by the Ts elongation factor and GTP.
An essential branched-chain amino acid important for hemoglobin formation.
A regulatory sequence found in the 5' terminal regions of a variety of RNA species. The sequence starts with a CYTIDINE, which is followed by a stretch of 5 to 15 PYRIMIDINE NUCLEOTIDES. Messenger RNA that contains the 5' Terminal Oligo Pyrimidine tract is often referred to as 5' TOP mRNA. The sequence acts as a translational regulator and has been found in mRNAs for PEPTIDE ELONGATION FACTORS and RIBOSOMAL PROTEINS.
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
A trimeric peptide initiation factor complex that associates with the 5' MRNA cap structure of RNA (RNA CAPS) and plays an essential role in MRNA TRANSLATION. It is composed of EUKARYOTIC INITIATION FACTOR-4A; EUKARYOTIC INITIATION FACTOR-4E; and EUKARYOTIC INITIATION FACTOR-4G.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Esters of the hypothetical imidic acids. They react with amines or amino acids to form amidines and are therefore used to modify protein structures and as cross-linking agents.
A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).
Multicellular, eukaryotic life forms of kingdom Plantae (sensu lato), comprising the VIRIDIPLANTAE; RHODOPHYTA; and GLAUCOPHYTA; all of which acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations.
A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4.
Constituent of 50S subunit of prokaryotic ribosomes containing about 3200 nucleotides. 23S rRNA is involved in the initiation of polypeptide synthesis.
RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production.
Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure.
The sequence at the 5' end of the messenger RNA that does not code for product. This sequence contains the ribosome binding site and other transcription and translation regulating sequences.
A multisubunit eukaryotic initiation factor that contains at least 8 distinct polypeptides. It plays a role in recycling of ribosomal subunits to the site of transcription initiation by promoting the dissociation of non-translating ribosomal subunits. It also is involved in promoting the binding of a ternary complex of EUKARYOTIC INITIATION FACTOR-2; GTP; and INITIATOR TRNA to the 40S ribosomal subunit.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Peptide Elongation Factor 2 catalyzes the translocation of peptidyl-tRNA from the A site to the P site of eukaryotic ribosomes by a process linked to the hydrolysis of GTP to GDP.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
A component of eukaryotic initiation factor-4F that is involved in multiple protein interactions at the site of translation initiation. Thus it may serve a role in bringing together various initiation factors at the site of translation initiation.
A genus of anaerobic coccoid METHANOCOCCACEAE whose organisms are motile by means of polar tufts of flagella. These methanogens are found in salt marshes, marine and estuarine sediments, and the intestinal tract of animals.
Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A family of highly acidic calcium-binding proteins found in large concentration in the brain and believed to be glial in origin. They are also found in other organs in the body. They have in common the EF-hand motif (EF HAND MOTIFS) found on a number of calcium binding proteins. The name of this family derives from the property of being soluble in a 100% saturated ammonium sulfate solution.
Macromolecular complexes formed from the association of defined protein subunits.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
Proteins found in any species of fungus.
A protein-serine-threonine kinase that is activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. It plays a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells.
A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
Any method used for determining the location of and relative distances between genes on a chromosome.
Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1.
Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE).
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein.
The univalent radical OH. Hydroxyl radical is a potent oxidizing agent.
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503)
A disorder of HEMOSTASIS in which there is a tendency for the occurrence of THROMBOSIS.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
A method for determining points of contact between interacting proteins or binding sites of proteins to nucleic acids. Protein footprinting utilizes a protein cutting reagent or protease. Protein cleavage is inhibited where the proteins, or nucleic acids and protein, contact each other. After completion of the cutting reaction, the remaining peptide fragments are analyzed by electrophoresis.
A genus of fungi in the family Ophiostomataceae, order OPHIOSTOMATALES. Several species are the source of Dutch elm disease, which is spread by the elm bark beetle.
Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other.
Heat- and storage-labile plasma glycoprotein which accelerates the conversion of prothrombin to thrombin in blood coagulation. Factor V accomplishes this by forming a complex with factor Xa, phospholipid, and calcium (prothrombinase complex). Deficiency of factor V leads to Owren's disease.
The relationships of groups of organisms as reflected by their genetic makeup.
Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.
An absence or deficiency in PROTEIN C which leads to impaired regulation of blood coagulation. It is associated with an increased risk of severe or premature thrombosis. (Stedman's Med. Dict., 26th ed.)
The process of the interaction of BLOOD COAGULATION FACTORS that results in an insoluble FIBRIN clot.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN.
The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals.
Cyanogen bromide (CNBr). A compound used in molecular biology to digest some proteins and as a coupling reagent for phosphoroamidate or pyrophosphate internucleotide bonds in DNA duplexes.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
Peptide elongation factor 1 is a multisubunit protein that is responsible for the GTP-dependent binding of aminoacyl-tRNAs to eukaryotic ribosomes. The alpha subunit (EF-1alpha) binds aminoacyl-tRNA and transfers it to the ribosome in a process linked to GTP hydrolysis. The beta and delta subunits (EF-1beta, EF-1delta) are involved in exchanging GDP for GTP. The gamma subunit (EF-1gamma) is a structural component.
A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
Phosphotransferases that catalyzes the conversion of 1-phosphatidylinositol to 1-phosphatidylinositol 3-phosphate. Many members of this enzyme class are involved in RECEPTOR MEDIATED SIGNAL TRANSDUCTION and regulation of vesicular transport with the cell. Phosphatidylinositol 3-Kinases have been classified both according to their substrate specificity and their mode of action within the cell.
Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
One of the CYCLIC PEPTIDES from Streptomyces that is active against gram-positive bacteria. In veterinary medicine, it has been used in mastitis caused by gram-negative organisms and in dermatologic disorders.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies.
A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.
A specific HLA-B surface antigen subtype. Members of this subtype contain alpha chains that are encoded by the HLA-B*52 allele family.
Viruses whose host is Escherichia coli.
An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers.
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)
The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations.
Polynucleotides are long, multiple-unit chains of nucleotides, the monomers that make up DNA and RNA, which carry genetic information and play crucial roles in various biological processes.
The two dissimilar sized ribonucleoprotein complexes that comprise a RIBOSOME - the large ribosomal subunit and the small ribosomal subunit. The eukaryotic 80S ribosome is composed of a 60S large subunit and a 40S small subunit. The bacterial 70S ribosome is composed of a 50S large subunit and a 30S small subunit.
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)
Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes.
A large collection of DNA fragments cloned (CLONING, MOLECULAR) from a given organism, tissue, organ, or cell type. It may contain complete genomic sequences (GENOMIC LIBRARY) or complementary DNA sequences, the latter being formed from messenger RNA and lacking intron sequences.
Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases.
The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
A family of enzymes that catalyze the endonucleolytic cleavage of RNA. It includes EC 3.1.26.-, EC 3.1.27.-, EC 3.1.30.-, and EC 3.1.31.-.
A plasma protein that is the inactive precursor of thrombin. It is converted to thrombin by a prothrombin activator complex consisting of factor Xa, factor V, phospholipid, and calcium ions. Deficiency of prothrombin leads to hypoprothrombinemia.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.
Peptide Elongation Factor G catalyzes the translocation of peptidyl-tRNA from the A to the P site of bacterial ribosomes by a process linked to hydrolysis of GTP to GDP.
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.

Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. (1/359)

Regulation of translation of mRNAs coding for specific proteins plays an important role in controlling cell growth, differentiation, and transformation. Two proteins have been implicated in the regulation of specific mRNA translation: eukaryotic initiation factor eIF4E and ribosomal protein S6. Increased phosphorylation of eIF4E as well as its overexpression are associated with stimulation of translation of mRNAs with highly structured 5'-untranslated regions. Similarly, phosphorylation of S6 results in preferential translation of mRNAs containing an oligopyrimidine tract at the 5'-end of the message. In the present study, leucine stimulated phosphorylation of the eIF4E-binding protein, 4E-BP1, in L6 myoblasts, resulting in dissociation of eIF4E from the inactive eIF4E.4E-BP1 complex. The increased availability of eIF4E was associated with a 1.6-fold elevation in ornithine decarboxylase relative to global protein synthesis. Leucine also stimulated phosphorylation of the ribosomal protein S6 kinase, p70(S6k), resulting in increased phosphorylation of S6. Hyperphosphorylation of S6 was associated with a 4-fold increase in synthesis of elongation factor eEF1A. Rapamycin, an inhibitor of the protein kinase mTOR, prevented all of the leucine-induced effects. Thus, leucine acting through an mTOR-dependent pathway stimulates the translation of specific mRNAs both by increasing the availability of eIF4E and by stimulating phosphorylation of S6.  (+info)

Resistance of ribosomal protein mRNA translation to protein synthesis shutoff induced by poliovirus. (2/359)

Poliovirus infection induces an overall inhibition of host protein synthesis, although some mRNAs continue to be translated, suggesting different translation requirements for cellular mRNAs. It is known that ribosomal protein mRNAs are translationally regulated and that the phosphorylation of ribosomal protein S6 is involved in the regulation. Here, we report that the translation of ribosomal protein mRNAs resists poliovirus infection and correlates with an increase in p70(s6k) activity and phosphorylation of ribosomal protein S6.  (+info)

Structure and stability of recombinant protein depend on the extra N-terminal methionine residue: S6 permutein from direct and fusion expression systems. (3/359)

Two permuted variants of S6 ribosomal protein were obtained in direct and fusion expression systems, respectively. The product of direct expression contained the extra N-terminal methionine residue. The structural properties and conformational stability of these permuteins were compared using 1-D (1)H-NMR, circular dichroism, intrinsic fluorescence, differential scanning calorimetry and resistance to urea-induced unfolding. A pronounced difference in all the parameters studied has been demonstrated. This means that the structure of recombinant protein can be sensitive to peculiarities of the expression and purification procedures, leading particularly to the presence or absence of the Met at the first position in the target protein sequence.  (+info)

Structure of the S15,S6,S18-rRNA complex: assembly of the 30S ribosome central domain. (4/359)

The crystal structure of a 70-kilodalton ribonucleoprotein complex from the central domain of the Thermus thermophilus 30S ribosomal subunit was solved at 2.6 angstrom resolution. The complex consists of a 104-nucleotide RNA fragment composed of two three-helix junctions that lie at the end of a central helix, and the ribosomal proteins S15, S6, and S18. S15 binds the ribosomal RNA early in the assembly of the 30S ribosomal subunit, stabilizing a conformational reorganization of the two three-helix junctions that creates the RNA fold necessary for subsequent binding of S6 and S18. The structure of the complex demonstrates the central role of S15-induced reorganization of central domain RNA for the subsequent steps of ribosome assembly.  (+info)

Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. (5/359)

Because ribosome biogenesis plays an essential role in cell proliferation, control mechanisms may have evolved to recognize lesions in this critical anabolic process. To test this possibility, we conditionally deleted the gene encoding 40S ribosomal protein S6 in the liver of adult mice. Unexpectedly, livers from fasted animals deficient in S6 grew in response to nutrients even though biogenesis of 40S ribosomes was abolished. However, liver cells failed to proliferate or induce cyclin E expression after partial hepatectomy, despite formation of active cyclin D-CDK4 complexes. These results imply that abrogation of 40S ribosome biogenesis may induce a checkpoint control that prevents cell cycle progression.  (+info)

Cell type specificity and mechanism of control of a gene may be reverted in different strains of Dictyostelium discoideum. (6/359)

Twelve genes which are expressed exclusively in pre-spore cells of Dictyostelium strain AX3 are expressed exclusively in pre-stalk cells of strain AX2. One gene has the opposite behavior: it is expressed in pre-stalk cells in AX3 and in pre-spore cells in AX2. The change in cell type specificity involves a change in the mechanism of control of gene expression. When they are expressed in pre-stalk cells, genes are controlled at the level of transcription, whilst in pre-spore cells, they are controlled at the level of mRNA stability. Genes expressed in pre-stalk cells in strain AX2, fused with an AX2 pre-spore specific promoter, become regulated at the level of mRNA stability. These findings indicate that at least a group of pre-stalk mRNAs possess the cis-destabilizing element typical of pre-spore mRNAs, though they are not destabilized in disaggregated cells. This is due to the fact that ribosomal protein S6, phosphorylation of which is responsible for controlling the stability of pre-spore mRNAs, is not dephosphorylated in disaggregated pre-stalk cells. These cells lack an S6 phosphatase activity which has been purified from disaggregated pre-spore cells.  (+info)

Glucocorticoids abate p70(S6k) and eIF4E function in L6 skeletal myoblasts. (7/359)

The catabolic properties of glucocorticoid hormones are largely attributable to dual regulation of protein degradation and synthesis. With regard to the latter, glucocorticoids modulate the translational machinery, namely that component functional in translation initiation. This investigation revealed that in L6 myoblasts, dexamethasone, a synthetic glucocorticoid, deactivated the ribosomal protein S6 kinase (p70(S6k)) within 4 h, as evidenced by diminished phosphorylation of its physiological substrate, the 40S ribosomal protein S6. This deactivation correlated with dephosphorylation of p70(S6k) at Thr(389), whereas phosphorylation of Ser(411) was unaffected. Furthermore, glucocorticoid administration induced dephosphorylation of the cap-dependent translational repressor, eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1), thereby facilitating conjunction of the inhibitor and eIF4E. The mechanism of action is reminiscent of classical transcriptional regulation by steroid hormone receptors in that these effects were preceded by a temporal lag and were sensitive to inhibitors of glucocorticoid receptor function as well as transcriptional and translational inhibition. Okadaic acid and calyculin A corrected the dexamethasone-induced dephosphorylation of p70(S6k) and 4E-BP1, implicating a PP1- and/or PP2A-like protein phosphatase(s) in the observed phenomena. Hence, glucocorticoids attenuate distal constituents of the phosphatidylinositol-3 kinase signaling pathway and thereby encumber the protein synthetic apparatus.  (+info)

Structure of yeast poly(A) polymerase alone and in complex with 3'-dATP. (8/359)

Polyadenylate [poly(A)] polymerase (PAP) catalyzes the addition of a polyadenosine tail to almost all eukaryotic messenger RNAs (mRNAs). The crystal structure of the PAP from Saccharomyces cerevisiae (Pap1) has been solved to 2.6 angstroms, both alone and in complex with 3'-deoxyadenosine triphosphate (3'-dATP). Like other nucleic acid polymerases, Pap1 is composed of three domains that encircle the active site. The arrangement of these domains, however, is quite different from that seen in polymerases that use a template to select and position their incoming nucleotides. The first two domains are functionally analogous to polymerase palm and fingers domains. The third domain is attached to the fingers domain and is known to interact with the single-stranded RNA primer. In the nucleotide complex, two molecules of 3'-dATP are bound to Pap1. One occupies the position of the incoming base, prior to its addition to the mRNA chain. The other is believed to occupy the position of the 3' end of the mRNA primer.  (+info)

Ribosomal proteins are a type of protein that play a crucial role in the structure and function of ribosomes, which are complex molecular machines found within all living cells. Ribosomes are responsible for translating messenger RNA (mRNA) into proteins during the process of protein synthesis.

Ribosomal proteins can be divided into two categories based on their location within the ribosome:

1. Large ribosomal subunit proteins: These proteins are associated with the larger of the two subunits of the ribosome, which is responsible for catalyzing peptide bond formation during protein synthesis.
2. Small ribosomal subunit proteins: These proteins are associated with the smaller of the two subunits of the ribosome, which is responsible for binding to the mRNA and decoding the genetic information it contains.

Ribosomal proteins have a variety of functions, including helping to stabilize the structure of the ribosome, assisting in the binding of substrates and cofactors necessary for protein synthesis, and regulating the activity of the ribosome. Mutations in ribosomal proteins can lead to a variety of human diseases, including developmental disorders, neurological conditions, and cancer.

Ribosomal Protein S6 (RP S6) is a protein component of the 40S subunit of eukaryotic ribosomes, which are complexes responsible for protein synthesis in cells. Specifically, RP S6 is part of the heterodimer that makes up the head of the 40S subunit.

RP S6 plays a role in regulating translation, the process by which mRNA (messenger RNA) molecules are decoded to produce proteins. It has been found to be involved in the initiation and elongation steps of translation, particularly in response to various cellular signals such as growth factors, hormones, and nutrients.

Phosphorylation of RP S6 is a key regulatory mechanism that modulates its activity during translation. This phosphorylation can be mediated by several kinases, including the p70S6 kinase (p70S6K), which is activated in response to growth factor signaling and nutrient availability.

Abnormalities in RP S6 regulation have been implicated in various diseases, such as cancer, where increased RP S6 phosphorylation has been observed in many tumor types, suggesting a role in promoting cell proliferation and survival.

Protein S is a vitamin K-dependent protein found in the blood that functions as a natural anticoagulant. It plays a crucial role in regulating the body's clotting system by inhibiting the activation of coagulation factors, thereby preventing excessive blood clotting. Protein S also acts as a cofactor for activated protein C, which is another important anticoagulant protein.

Protein S exists in two forms: free and bound to a protein called C4b-binding protein (C4BP). Only the free form of Protein S has biological activity in inhibiting coagulation. Inherited or acquired deficiencies in Protein S can lead to an increased risk of thrombosis, or abnormal blood clot formation, which can cause various medical conditions such as deep vein thrombosis (DVT) and pulmonary embolism (PE). Regular monitoring of Protein S levels is essential for patients with a history of thrombotic events or those who have a family history of thrombophilia.

Ribosomal Protein S6 Kinases (RSKs) are a family of serine/threonine protein kinases that play a crucial role in the regulation of cell growth, proliferation, and survival. They are so named because they phosphorylate and regulate the function of the ribosomal protein S6, which is a component of the 40S ribosomal subunit involved in protein synthesis.

RSKs are activated by various signals, including growth factors, hormones, and mitogens, through a cascade of phosphorylation events involving several upstream kinases such as MAPK/ERK kinase (MEK) and extracellular signal-regulated kinase (ERK). Once activated, RSKs phosphorylate a wide range of downstream targets, including transcription factors, regulators of translation, and cytoskeletal proteins, thereby modulating their activities and functions.

There are four isoforms of RSKs in humans, namely RSK1, RSK2, RSK3, and RSK4, which share a common structural organization and functional domains, including an N-terminal kinase domain, a C-terminal kinase domain, and a linker region that contains several regulatory motifs. Dysregulation of RSKs has been implicated in various pathological conditions, including cancer, cardiovascular diseases, neurological disorders, and diabetes, making them attractive targets for therapeutic intervention.

Ribosomes are complex macromolecular structures composed of ribonucleic acid (RNA) and proteins that play a crucial role in protein synthesis within cells. They serve as the site for translation, where messenger RNA (mRNA) is translated into a specific sequence of amino acids to create a polypeptide chain, which eventually folds into a functional protein.

Ribosomes consist of two subunits: a smaller subunit and a larger subunit. These subunits are composed of ribosomal RNA (rRNA) molecules and proteins. In eukaryotic cells, the smaller subunit is denoted as the 40S subunit, while the larger subunit is referred to as the 60S subunit. In prokaryotic cells, these subunits are named the 30S and 50S subunits, respectively. The ribosome's overall structure resembles a "doughnut" or a "cotton reel," with grooves and binding sites for various factors involved in protein synthesis.

Ribosomes can be found floating freely within the cytoplasm of cells or attached to the endoplasmic reticulum (ER) membrane, forming part of the rough ER. Membrane-bound ribosomes are responsible for synthesizing proteins that will be transported across the ER and ultimately secreted from the cell or inserted into the membrane. In contrast, cytoplasmic ribosomes synthesize proteins destined for use within the cytoplasm or organelles.

In summary, ribosomes are essential components of cells that facilitate protein synthesis by translating mRNA into functional polypeptide chains. They can be found in various cellular locations and exist as either free-floating entities or membrane-bound structures.

Protein S deficiency is a genetic disorder that affects the body's ability to coagulate blood properly. Protein S is a naturally occurring protein in the blood that helps regulate the clotting process by deactivating clotting factors when they are no longer needed. When Protein S levels are too low, it can lead to an increased risk of abnormal blood clots forming within blood vessels, a condition known as thrombophilia.

There are three types of Protein S deficiency: Type I (quantitative deficiency), Type II (qualitative deficiency), and Type III (dysfunctional protein). These types refer to the amount or function of Protein S in the blood. In Type I, there is a decrease in both free and total Protein S levels. In Type II, there is a decrease in functional Protein S despite normal total Protein S levels. In Type III, there is a decrease in free Protein S with normal total Protein S levels.

Protein S deficiency can be inherited or acquired. Inherited forms of the disorder are caused by genetic mutations and are usually present from birth. Acquired forms of Protein S deficiency can develop later in life due to certain medical conditions, such as liver disease, vitamin K deficiency, or the use of certain medications that affect blood clotting.

Symptoms of Protein S deficiency may include recurrent blood clots, usually in the legs (deep vein thrombosis) or lungs (pulmonary embolism), skin discoloration, pain, and swelling in the affected area. In severe cases, it can lead to complications such as chronic leg ulcers, pulmonary hypertension, or damage to the heart or lungs.

Diagnosis of Protein S deficiency typically involves blood tests to measure Protein S levels and function. Treatment may include anticoagulant medications to prevent blood clots from forming or growing larger. Lifestyle modifications such as regular exercise, maintaining a healthy weight, and avoiding smoking can also help reduce the risk of blood clots in people with Protein S deficiency.

Ribosomal Protein S6 Kinases, 70-kDa (p70S6K or RPS6KB1) are serine/threonine protein kinases that play a crucial role in the regulation of cell growth and metabolism. They are so named because they phosphorylate the 40S ribosomal protein S6, which is a component of the small ribosomal subunit. This phosphorylation event is believed to contribute to the control of protein synthesis rates in response to various cellular signals, including growth factors and nutrients.

p70S6K is activated by the PI3K/AKT/mTOR signaling pathway, which is a critical regulator of cell growth, proliferation, and survival. The activation of p70S6K involves a series of phosphorylation events, primarily by mTORC1 (mammalian target of rapamycin complex 1). Once activated, p70S6K promotes several processes related to cell growth, such as:

1. Translation initiation and elongation: Phosphorylation of ribosomal protein S6 and other translation factors enhances the translation of specific mRNAs involved in cell cycle progression, ribosome biogenesis, and metabolic enzymes.
2. Nucleolar formation and rRNA transcription: p70S6K promotes nucleolar formation and increases rRNA transcription by phosphorylating upstream binding factor (UBF), a critical transcriptional regulator of rDNA.
3. mRNA stability: Phosphorylation of certain RNA-binding proteins, such as 4E-BP1, by p70S6K can lead to increased mRNA stability and translation efficiency.

Abnormal regulation of p70S6K has been implicated in various diseases, including cancer, diabetes, and cardiovascular disorders. Therefore, understanding the function and regulation of p70S6K is essential for developing novel therapeutic strategies targeting these conditions.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Ribosomal Protein S6 Kinases, 90-kDa (RSKs) are a group of serine/threonine protein kinases that play a crucial role in signal transduction pathways linked to cell growth, proliferation, and survival. They are so named because they were initially discovered as protein kinases that phosphorylate the 40S ribosomal protein S6, a component of the ribosome involved in translation regulation.

RSKs consist of four isoforms (RSK1-4) encoded by separate genes but sharing similar structures and functions. They have an N-terminal kinase domain, a C-terminal kinase domain, and a linker region containing several regulatory phosphorylation sites. RSKs are activated through the Ras/MAPK (Mitogen-Activated Protein Kinase) signaling cascade, where Ras activates Raf, which in turn activates MEK, ultimately leading to the activation of ERK. Activated ERK then phosphorylates and activates RSKs by promoting a conformational change that allows for autophosphorylation and full kinase activity.

Once activated, RSKs can phosphorylate various substrates involved in transcriptional regulation, cytoskeletal reorganization, protein synthesis, and cell cycle progression. Dysregulation of RSK signaling has been implicated in several diseases, including cancer, where they contribute to tumor growth, metastasis, and drug resistance. Therefore, RSKs are considered potential therapeutic targets for cancer treatment.

Protein biosynthesis is the process by which cells generate new proteins. It involves two major steps: transcription and translation. Transcription is the process of creating a complementary RNA copy of a sequence of DNA. This RNA copy, or messenger RNA (mRNA), carries the genetic information to the site of protein synthesis, the ribosome. During translation, the mRNA is read by transfer RNA (tRNA) molecules, which bring specific amino acids to the ribosome based on the sequence of nucleotides in the mRNA. The ribosome then links these amino acids together in the correct order to form a polypeptide chain, which may then fold into a functional protein. Protein biosynthesis is essential for the growth and maintenance of all living organisms.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Ribosomal RNA (rRNA) is a type of RNA molecule that is a key component of ribosomes, which are the cellular structures where protein synthesis occurs in cells. In ribosomes, rRNA plays a crucial role in the process of translation, where genetic information from messenger RNA (mRNA) is translated into proteins.

Ribosomal RNA is synthesized in the nucleus and then transported to the cytoplasm, where it assembles with ribosomal proteins to form ribosomes. Within the ribosome, rRNA provides a structural framework for the assembly of the ribosome and also plays an active role in catalyzing the formation of peptide bonds between amino acids during protein synthesis.

There are several different types of rRNA molecules, including 5S, 5.8S, 18S, and 28S rRNA, which vary in size and function. These rRNA molecules are highly conserved across different species, indicating their essential role in protein synthesis and cellular function.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Diamond-Blackfan anemia is a rare, congenital bone marrow failure disorder characterized by a decreased production of red blood cells (erythroblasts) in the bone marrow. This results in a reduced number of circulating red blood cells, leading to anemia and related symptoms such as fatigue, weakness, and pallor. The disorder is typically diagnosed in infancy or early childhood and can also be associated with physical abnormalities.

The exact cause of Diamond-Blackfan anemia is not fully understood, but it is believed to involve genetic mutations that affect the development and function of the bone marrow. In many cases, the disorder is inherited in an autosomal dominant manner, meaning that a child has a 50% chance of inheriting the mutated gene from an affected parent. However, some cases may arise spontaneously due to new genetic mutations.

Treatment for Diamond-Blackfan anemia typically involves regular blood transfusions to maintain adequate red blood cell levels and alleviate symptoms. Corticosteroid therapy may also be used to stimulate red blood cell production in some cases. In severe or refractory cases, stem cell transplantation may be considered as a curative treatment option.

TOR (Target Of Rapamycin) Serine-Threonine Kinases are a family of conserved protein kinases that play crucial roles in the regulation of cell growth, proliferation, and metabolism in response to various environmental cues such as nutrients, growth factors, and energy status. They are named after their ability to phosphorylate serine and threonine residues on target proteins.

Mammalian cells express two distinct TOR kinases, mTORC1 and mTORC2, which have different protein compositions and functions. mTORC1 is rapamycin-sensitive and regulates cell growth, proliferation, and metabolism by phosphorylating downstream targets such as p70S6 kinase and 4E-BP1, thereby controlling protein synthesis, autophagy, and lysosome biogenesis. mTORC2 is rapamycin-insensitive and regulates cell survival, cytoskeleton organization, and metabolism by phosphorylating AGC kinases such as AKT and PKCα.

Dysregulation of TOR Serine-Threonine Kinases has been implicated in various human diseases, including cancer, diabetes, and neurological disorders. Therefore, targeting TOR kinases has emerged as a promising therapeutic strategy for the treatment of these diseases.

Bacterial RNA refers to the genetic material present in bacteria that is composed of ribonucleic acid (RNA). Unlike higher organisms, bacteria contain a single circular chromosome made up of DNA, along with smaller circular pieces of DNA called plasmids. These bacterial genetic materials contain the information necessary for the growth and reproduction of the organism.

Bacterial RNA can be divided into three main categories: messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA). mRNA carries genetic information copied from DNA, which is then translated into proteins by the rRNA and tRNA molecules. rRNA is a structural component of the ribosome, where protein synthesis occurs, while tRNA acts as an adapter that brings amino acids to the ribosome during protein synthesis.

Bacterial RNA plays a crucial role in various cellular processes, including gene expression, protein synthesis, and regulation of metabolic pathways. Understanding the structure and function of bacterial RNA is essential for developing new antibiotics and other therapeutic strategies to combat bacterial infections.

'Thermus thermophilus' is not a medical term, but a scientific name for a species of bacteria. It is commonly used in molecular biology and genetics research. Here is the biological definition:

'Thermus thermophilus' is a gram-negative, rod-shaped, thermophilic bacterium found in hot springs and other high-temperature environments. Its optimum growth temperature ranges from 65 to 70°C (149-158°F), with some strains able to grow at temperatures as high as 85°C (185°F). The bacterium's DNA polymerase enzyme, Taq polymerase, is widely used in the Polymerase Chain Reaction (PCR) technique for amplifying and analyzing DNA. 'Thermus thermophilus' has a single circular chromosome and can also have one or more plasmids. Its genome has been fully sequenced, making it an important model organism for studying extremophiles and their adaptations to harsh environments.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

Protein kinases are a group of enzymes that play a crucial role in many cellular processes by adding phosphate groups to other proteins, a process known as phosphorylation. This modification can activate or deactivate the target protein's function, thereby regulating various signaling pathways within the cell. Protein kinases are essential for numerous biological functions, including metabolism, signal transduction, cell cycle progression, and apoptosis (programmed cell death). Abnormal regulation of protein kinases has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

I'm sorry for any confusion, but "Poly U" is not a recognized medical term or abbreviation in the English language. It could potentially refer to Polytechnic University or Hong Kong Polytechnic University, but it does not have a specific medical connotation. If you have more context or information, I'd be happy to help further!

Nucleic acid conformation refers to the three-dimensional structure that nucleic acids (DNA and RNA) adopt as a result of the bonding patterns between the atoms within the molecule. The primary structure of nucleic acids is determined by the sequence of nucleotides, while the conformation is influenced by factors such as the sugar-phosphate backbone, base stacking, and hydrogen bonding.

Two common conformations of DNA are the B-form and the A-form. The B-form is a right-handed helix with a diameter of about 20 Å and a pitch of 34 Å, while the A-form has a smaller diameter (about 18 Å) and a shorter pitch (about 25 Å). RNA typically adopts an A-form conformation.

The conformation of nucleic acids can have significant implications for their function, as it can affect their ability to interact with other molecules such as proteins or drugs. Understanding the conformational properties of nucleic acids is therefore an important area of research in molecular biology and medicine.

Emetine is a medication that is derived from the plant ipecacuanha. It is an alkaloid that has been used in the treatment of certain parasitic infections, particularly those caused by intestinal amoebae. Emetine works by inhibiting protein synthesis in the parasites, which helps to eliminate them from the body.

Emetine is administered orally or by injection and is typically used as a last resort when other treatments have failed. It can cause significant side effects, including nausea, vomiting, and diarrhea, as well as more serious complications such as heart rhythm abnormalities and muscle weakness. As a result, its use is generally restricted to cases where the benefits of treatment outweigh the risks.

It's important to note that emetine should only be used under the close supervision of a healthcare provider, and its use carries a number of precautions and contraindications. It is not recommended for use in pregnant women or people with certain medical conditions, such as heart disease or kidney disease.

"Geobacillus stearothermophilus" is a species of gram-positive, rod-shaped bacteria that is thermophilic, meaning it thrives at relatively high temperatures. It is commonly found in soil and hot springs, and can also be found in other environments such as compost piles, oil fields, and even in some food products.

The bacterium is known for its ability to form endospores that are highly resistant to heat, radiation, and chemicals, making it a useful organism for sterility testing and bioprotection applications. It has an optimum growth temperature of around 60-70°C (140-158°F) and can survive at temperatures up to 80°C (176°F).

In the medical field, "Geobacillus stearothermophilus" is not typically associated with human disease or infection. However, there have been rare cases of infections reported in immunocompromised individuals who have come into contact with contaminated medical devices or materials.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

A small bacterial ribosomal subunit refers to a component of the ribosome in bacteria, which is responsible for protein synthesis. Specifically, it refers to the 30S subunit, which is composed of one 16S rRNA molecule and approximately 21 distinct proteins. This subunit plays a crucial role in decoding the mRNA template during translation, ensuring that the correct amino acids are added to the growing polypeptide chain. The small ribosomal subunit interacts with the mRNA and tRNAs during this process, facilitating accurate and efficient protein synthesis.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Protein C is a vitamin K-dependent protease that functions as an important regulator of coagulation and inflammation. It is a plasma protein produced in the liver that, when activated, degrades clotting factors Va and VIIIa to limit thrombus formation and prevent excessive blood clotting. Protein C also has anti-inflammatory properties by inhibiting the release of pro-inflammatory cytokines and reducing endothelial cell activation. Inherited or acquired deficiencies in Protein C can lead to an increased risk of thrombosis, a condition characterized by abnormal blood clot formation within blood vessels.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

A small ribosomal subunit in eukaryotic cells is a complex cellular structure composed of ribosomal RNA (rRNA) and proteins. It is one of the two subunits that make up the eukaryotic ribosome, which is the site of protein synthesis in the cell. The small subunit is responsible for recognizing and binding to the messenger RNA (mRNA) molecule and decoding the genetic information it contains into a specific sequence of amino acids.

In eukaryotic cells, the small ribosomal subunit is composed of a 18S rRNA molecule and approximately 30 different proteins. The 18S rRNA molecule forms the core of the subunit and provides the structural framework for the binding of the proteins. Together, the rRNA and proteins form a compact and highly organized structure that is capable of carrying out the precise and efficient decoding of mRNA.

The small ribosomal subunit plays a critical role in the initiation of protein synthesis, as it is responsible for recognizing and binding to the cap structure at the 5' end of the mRNA molecule. This interaction allows the subunit to scan along the mRNA until it encounters the start codon, which signals the beginning of the protein-coding region. Once the start codon is located, the small subunit recruits the large ribosomal subunit and initiates the process of elongation, in which the amino acids are linked together to form a polypeptide chain.

Overall, the small ribosomal subunit is an essential component of the eukaryotic protein synthesis machinery, and its proper function is critical for the maintenance of cellular homeostasis and the regulation of gene expression.

Sirolimus is a medication that belongs to a class of drugs called immunosuppressants. It is also known as rapamycin. Sirolimus works by inhibiting the mammalian target of rapamycin (mTOR), which is a protein that plays a key role in cell growth and division.

Sirolimus is primarily used to prevent rejection of transplanted organs, such as kidneys, livers, and hearts. It works by suppressing the activity of the immune system, which can help to reduce the risk of the body rejecting the transplanted organ. Sirolimus is often used in combination with other immunosuppressive drugs, such as corticosteroids and calcineurin inhibitors.

Sirolimus is also being studied for its potential therapeutic benefits in a variety of other conditions, including cancer, tuberous sclerosis complex, and lymphangioleiomyomatosis. However, more research is needed to fully understand the safety and efficacy of sirolimus in these contexts.

It's important to note that sirolimus can have significant side effects, including increased risk of infections, mouth sores, high blood pressure, and kidney damage. Therefore, it should only be used under the close supervision of a healthcare provider.

Complement inactivator proteins are a group of regulatory proteins that help to control and limit the activation of the complement system, which is a part of the immune system. The complement system is a complex series of biochemical reactions that help to eliminate pathogens and damaged cells from the body. However, if not properly regulated, the complement system can also cause damage to healthy tissues and contribute to the development of various diseases.

Complement inactivator proteins work by inhibiting specific components of the complement system, preventing them from activating and causing an immune response. Some examples of complement inactivator proteins include:

1. C1 inhibitor (C1INH): This protein regulates the activation of the classical pathway of the complement system by inhibiting the C1 complex, which is a group of proteins that initiate this pathway.
2. Decay-accelerating factor (DAF or CD55): This protein regulates the activation of both the classical and alternative pathways of the complement system by accelerating the decay of the C3/C5 convertases, which are enzymes that activate the complement components C3 and C5.
3. Membrane cofactor protein (MCP or CD46): This protein regulates the activation of the alternative pathway of the complement system by serving as a cofactor for the cleavage and inactivation of C3b, a component of the C3 convertase.
4. Factor H: This protein also regulates the activation of the alternative pathway of the complement system by acting as a cofactor for the cleavage and inactivation of C3b, and by preventing the formation of the C3 convertase.

Deficiencies or dysfunction of complement inactivator proteins can lead to various diseases, including hereditary angioedema (C1INH deficiency), atypical hemolytic uremic syndrome (factor H deficiency or dysfunction), and age-related macular degeneration (complement component overactivation).

Streptomycin is an antibiotic drug derived from the actinobacterium Streptomyces griseus. It belongs to the class of aminoglycosides and works by binding to the 30S subunit of the bacterial ribosome, thereby inhibiting protein synthesis and leading to bacterial death.

Streptomycin is primarily used to treat a variety of infections caused by gram-negative and gram-positive bacteria, including tuberculosis, brucellosis, plague, tularemia, and certain types of bacterial endocarditis. It is also used as part of combination therapy for the treatment of multidrug-resistant tuberculosis (MDR-TB).

Like other aminoglycosides, streptomycin has a narrow therapeutic index and can cause ototoxicity (hearing loss) and nephrotoxicity (kidney damage) with prolonged use or high doses. Therefore, its use is typically limited to cases where other antibiotics are ineffective or contraindicated.

It's important to note that the use of streptomycin requires careful monitoring of drug levels and kidney function, as well as regular audiometric testing to detect any potential hearing loss.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

The nucleolus is a structure found within the nucleus of eukaryotic cells (cells that contain a true nucleus). It plays a central role in the production and assembly of ribosomes, which are complex molecular machines responsible for protein synthesis. The nucleolus is not a distinct organelle with a membrane surrounding it, but rather a condensed region within the nucleus where ribosomal biogenesis takes place.

The process of ribosome formation begins in the nucleolus with the transcription of ribosomal DNA (rDNA) genes into long precursor RNA molecules called rRNAs (ribosomal RNAs). Within the nucleolus, these rRNA molecules are cleaved, modified, and assembled together with ribosomal proteins to form small and large ribosomal subunits. Once formed, these subunits are transported through the nuclear pores to the cytoplasm, where they come together to form functional ribosomes that can engage in protein synthesis.

In addition to its role in ribosome biogenesis, the nucleolus has been implicated in other cellular processes such as stress response, cell cycle regulation, and aging. Changes in nucleolar structure and function have been associated with various diseases, including cancer and neurodegenerative disorders.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

"Saccharomyces cerevisiae" is not typically considered a medical term, but it is a scientific name used in the field of microbiology. It refers to a species of yeast that is commonly used in various industrial processes, such as baking and brewing. It's also widely used in scientific research due to its genetic tractability and eukaryotic cellular organization.

However, it does have some relevance to medical fields like medicine and nutrition. For example, certain strains of S. cerevisiae are used as probiotics, which can provide health benefits when consumed. They may help support gut health, enhance the immune system, and even assist in the digestion of certain nutrients.

In summary, "Saccharomyces cerevisiae" is a species of yeast with various industrial and potential medical applications.

Sequence homology in nucleic acids refers to the similarity or identity between the nucleotide sequences of two or more DNA or RNA molecules. It is often used as a measure of biological relationship between genes, organisms, or populations. High sequence homology suggests a recent common ancestry or functional constraint, while low sequence homology may indicate a more distant relationship or different functions.

Nucleic acid sequence homology can be determined by various methods such as pairwise alignment, multiple sequence alignment, and statistical analysis. The degree of homology is typically expressed as a percentage of identical or similar nucleotides in a given window of comparison.

It's important to note that the interpretation of sequence homology depends on the biological context and the evolutionary distance between the sequences compared. Therefore, functional and experimental validation is often necessary to confirm the significance of sequence homology.

A gene is a specific sequence of nucleotides in DNA that carries genetic information. Genes are the fundamental units of heredity and are responsible for the development and function of all living organisms. They code for proteins or RNA molecules, which carry out various functions within cells and are essential for the structure, function, and regulation of the body's tissues and organs.

Each gene has a specific location on a chromosome, and each person inherits two copies of every gene, one from each parent. Variations in the sequence of nucleotides in a gene can lead to differences in traits between individuals, including physical characteristics, susceptibility to disease, and responses to environmental factors.

Medical genetics is the study of genes and their role in health and disease. It involves understanding how genes contribute to the development and progression of various medical conditions, as well as identifying genetic risk factors and developing strategies for prevention, diagnosis, and treatment.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Polyribosomes, also known as polysomes, are clusters of ribosomes that are translating the same mRNA molecule simultaneously. They can be found in the cytoplasm of eukaryotic cells and are responsible for the synthesis of proteins. The mRNA molecule serves as a template for the translation process, with multiple ribosomes moving along it and producing multiple copies of the same protein. This allows for efficient and rapid production of large quantities of a single protein. Polyribosomes can be found in high numbers in cells that are actively synthesizing proteins, such as secretory cells or cells undergoing growth and division.

Paromomycin is an antiprotozoal medication, which belongs to the class of aminoglycoside antibiotics. It is primarily used to treat various intestinal infectious diseases caused by protozoa, such as amebiasis (an infection caused by Entamoeba histolytica) and giardiasis (an infection caused by Giardia lamblia). Paromomycin works by inhibiting the protein synthesis in the parasites, leading to their death. It is not typically used to treat bacterial infections in humans, as other aminoglycosides are.

It's important to note that paromomycin has limited systemic absorption and is primarily active within the gastrointestinal tract when taken orally. This makes it a valuable option for treating intestinal parasitic infections without causing significant harm to the beneficial bacteria in the gut or systemically affecting other organs.

Paromomycin is also used in veterinary medicine to treat various protozoal infections in animals, including leishmaniasis in dogs. The medication is available in different forms, such as tablets, capsules, and powder for oral suspension. As with any medication, paromomycin should be taken under the supervision of a healthcare professional, and its use may be subject to specific dosage, frequency, and duration guidelines.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

Ribosomal RNA (rRNA) is a type of RNA that combines with proteins to form ribosomes, which are complex structures inside cells where protein synthesis occurs. The "16S" refers to the sedimentation coefficient of the rRNA molecule, which is a measure of its size and shape. In particular, 16S rRNA is a component of the smaller subunit of the prokaryotic ribosome (found in bacteria and archaea), and is often used as a molecular marker for identifying and classifying these organisms due to its relative stability and conservation among species. The sequence of 16S rRNA can be compared across different species to determine their evolutionary relationships and taxonomic positions.

Peptide elongation factors are a group of proteins that play a crucial role in the process of protein synthesis in cells, specifically during the elongation stage of translation. They assist in the addition of amino acids to the growing polypeptide chain by facilitating the binding of aminoacyl-tRNAs (transfer RNAs with attached amino acids) to the ribosome, where protein synthesis occurs.

In prokaryotic cells, there are two main peptide elongation factors: EF-Tu and EF-G. EF-Tu forms a complex with aminoacyl-tRNA and delivers it to the ribosome's acceptor site (A-site), where the incoming amino acid is matched with the corresponding codon on the mRNA. Once the correct match is made, GTP hydrolysis occurs, releasing EF-Tu from the complex, allowing for peptide bond formation between the new amino acid and the growing polypeptide chain.

EF-G then enters the scene to facilitate translocation, the movement of the ribosome along the mRNA, which shifts the newly formed peptidyl-tRNA from the A-site to the P-site (peptidyl-tRNA site) and makes room for another aminoacyl-tRNA in the A-site. This process continues until protein synthesis is complete.

In eukaryotic cells, the equivalent proteins are called EF1α, EF1β, EF1γ, and EF2 (also known as eEF1A, eEF1B, eEF1G, and eEF2). The overall function remains similar to that in prokaryotes, but the specific mechanisms and protein names differ.

A ribosome is a complex molecular machine found in all living cells, responsible for protein synthesis. It consists of two subunits: the large subunit and the small subunit. The large ribosomal subunit plays a crucial role in the elongation phase of protein synthesis, where it helps catalyze the formation of peptide bonds between amino acids.

The Large Ribosomal Subunit, also known as the 60S subunit in eukaryotic cells (50S in prokaryotic cells), is composed of ribosomal RNA (rRNA) and numerous proteins. In humans, the large ribosomal subunit contains three rRNA molecules (28S, 5.8S, and 5S rRNA) and approximately 49 distinct proteins. Its primary function is to bind to the small ribosomal subunit and form a functional ribosome, which then translates messenger RNA (mRNA) into a polypeptide chain during protein synthesis.

The large ribosomal subunit has several key features, including the peptidyl transferase center (PTC), where peptide bonds are formed between amino acids, and the exit tunnel, through which the nascent polypeptide chain passes as it is being synthesized. The PTC is a crucial component of the large subunit, as it facilitates the transfer of activated amino acids from transfer RNA (tRNA) molecules to the growing polypeptide chain during translation.

In summary, the Large Ribosomal Subunit is a vital component of the ribosome responsible for catalyzing peptide bond formation and facilitating the synthesis of proteins within cells.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Peptide chain initiation in translational terms refers to the process by which the synthesis of a protein begins on a ribosome. This is the first step in translation, where the small ribosomal subunit binds to an mRNA molecule at the start codon (usually AUG), bringing with it the initiator tRNA charged with a specific amino acid (often N-formylmethionine in prokaryotes or methionine in eukaryotes). The large ribosomal subunit then joins this complex, forming a functional initiation complex. This marks the beginning of the elongation phase, where subsequent amino acids are added to the growing peptide chain until termination is reached.

An operon is a genetic unit in prokaryotic organisms (like bacteria) consisting of a cluster of genes that are transcribed together as a single mRNA molecule, which then undergoes translation to produce multiple proteins. This genetic organization allows for the coordinated regulation of genes that are involved in the same metabolic pathway or functional process. The unit typically includes promoter and operator regions that control the transcription of the operon, as well as structural genes encoding the proteins. Operons were first discovered in bacteria, but similar genetic organizations have been found in some eukaryotic organisms, such as yeast.

'Escherichia coli (E. coli) proteins' refer to the various types of proteins that are produced and expressed by the bacterium Escherichia coli. These proteins play a critical role in the growth, development, and survival of the organism. They are involved in various cellular processes such as metabolism, DNA replication, transcription, translation, repair, and regulation.

E. coli is a gram-negative, facultative anaerobe that is commonly found in the intestines of warm-blooded organisms. It is widely used as a model organism in scientific research due to its well-studied genetics, rapid growth, and ability to be easily manipulated in the laboratory. As a result, many E. coli proteins have been identified, characterized, and studied in great detail.

Some examples of E. coli proteins include enzymes involved in carbohydrate metabolism such as lactase, sucrase, and maltose; proteins involved in DNA replication such as the polymerases, single-stranded binding proteins, and helicases; proteins involved in transcription such as RNA polymerase and sigma factors; proteins involved in translation such as ribosomal proteins, tRNAs, and aminoacyl-tRNA synthetases; and regulatory proteins such as global regulators, two-component systems, and transcription factors.

Understanding the structure, function, and regulation of E. coli proteins is essential for understanding the basic biology of this important organism, as well as for developing new strategies for combating bacterial infections and improving industrial processes involving bacteria.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Eukaryotic Initiation Factor-4E (eIF4E) is a protein that plays a crucial role in the initiation phase of protein synthesis in eukaryotic cells. It is a subunit of the eIF4F complex, which also includes eIF4A and eIF4G proteins.

The primary function of eIF4E is to recognize and bind to the 5' cap structure (m7GpppN) of messenger RNA (mRNA), a modified guanine nucleotide that is added to the 5' end of mRNA during transcription. This binding event helps recruit other initiation factors, including eIF4A and eIF4G, to form the eIF4F complex, which subsequently binds to the small ribosomal subunit and promotes the scanning of the 5' untranslated region (5' UTR) of mRNA for the start codon (AUG).

The activity of eIF4E is tightly regulated through various post-translational modifications, such as phosphorylation, and interactions with other regulatory proteins. Dysregulation of eIF4E has been implicated in several human diseases, including cancer, where increased eIF4E expression and activity have been associated with poor prognosis and resistance to therapy.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Qβ replicase, also known as MS2 replicase or R17 replicase, is not a medical term per se, but rather a scientific term used in the field of molecular biology. It refers to an enzyme that is derived from the Qβ bacteriophage (a type of virus that infects bacteria) and is capable of synthesizing RNA complementary to an RNA template. Specifically, Qβ replicase is involved in the replication of the single-stranded RNA genome of the Qβ phage. It has been used in various laboratory settings as a tool for studying RNA replication and as a component in the production of RNA molecules for research purposes.

RNA-binding proteins (RBPs) are a class of proteins that selectively interact with RNA molecules to form ribonucleoprotein complexes. These proteins play crucial roles in the post-transcriptional regulation of gene expression, including pre-mRNA processing, mRNA stability, transport, localization, and translation. RBPs recognize specific RNA sequences or structures through their modular RNA-binding domains, which can be highly degenerate and allow for the recognition of a wide range of RNA targets. The interaction between RBPs and RNA is often dynamic and can be regulated by various post-translational modifications of the proteins or by environmental stimuli, allowing for fine-tuning of gene expression in response to changing cellular needs. Dysregulation of RBP function has been implicated in various human diseases, including neurological disorders and cancer.

18S rRNA (ribosomal RNA) is the smaller subunit of the eukaryotic ribosome, which is the cellular organelle responsible for protein synthesis. The "18S" refers to the sedimentation coefficient of this rRNA molecule, which is a measure of its rate of sedimentation in a centrifuge and is expressed in Svedberg units (S).

The 18S rRNA is a component of the 40S subunit of the ribosome, and it plays a crucial role in the decoding of messenger RNA (mRNA) during protein synthesis. Specifically, the 18S rRNA helps to form the structure of the ribosome and contains several conserved regions that are involved in binding to mRNA and guiding the movement of transfer RNAs (tRNAs) during translation.

The 18S rRNA is also a commonly used molecular marker for evolutionary studies, as its sequence is highly conserved across different species and can be used to infer phylogenetic relationships between organisms. Additionally, the analysis of 18S rRNA gene sequences has been widely used in various fields such as ecology, environmental science, and medicine to study biodiversity, biogeography, and infectious diseases.

A codon is a sequence of three adjacent nucleotides in DNA or RNA that specifies the insertion of a particular amino acid during protein synthesis, or signals the beginning or end of translation. In DNA, these triplets are read during transcription to produce a complementary mRNA molecule, which is then translated into a polypeptide chain during translation. There are 64 possible codons in the standard genetic code, with 61 encoding for specific amino acids and three serving as stop codons that signal the termination of protein synthesis.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Polyenes are a group of antibiotics that contain a long, unsaturated hydrocarbon chain with alternating double and single bonds. They are characterized by their ability to bind to ergosterol, a steroid found in fungal cell membranes, forming pores that increase the permeability of the membrane and lead to fungal cell death.

The most well-known polyene antibiotic is amphotericin B, which is used to treat serious systemic fungal infections such as candidiasis, aspergillosis, and cryptococcosis. Other polyenes include nystatin and natamycin, which are primarily used to treat topical fungal infections of the skin or mucous membranes.

While polyenes are effective antifungal agents, they can also cause significant side effects, particularly when used systemically. These may include kidney damage, infusion reactions, and electrolyte imbalances. Therefore, their use is typically reserved for severe fungal infections that are unresponsive to other treatments.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

Peptide initiation factors are a group of proteins involved in the process of protein synthesis in cells, specifically during the initial stage of elongation called initiation. In this phase, they assist in the assembly of the ribosome, an organelle composed of ribosomal RNA and proteins, at the start codon of a messenger RNA (mRNA) molecule. This marks the beginning of the translation process where the genetic information encoded in the mRNA is translated into a specific protein sequence.

There are three main peptide initiation factors in eukaryotic cells:

1. eIF-2 (eukaryotic Initiation Factor 2): This factor plays a crucial role in binding methionyl-tRNAi, the initiator tRNA, to the small ribosomal subunit. It does so by forming a complex with GTP and the methionyl-tRNAi, which then binds to the 40S ribosomal subunit. Once bound, eIF-2-GTP-Met-tRNAi recognizes the start codon (AUG) on the mRNA.

2. eIF-3: This is a large multiprotein complex that interacts with both the small and large ribosomal subunits and helps stabilize their interaction during initiation. It also plays a role in recruiting other initiation factors to the preinitiation complex.

3. eIF-4F: This factor is a heterotrimeric protein complex consisting of eIF-4A (an ATP-dependent RNA helicase), eIF-4E (which binds the m7G cap structure at the 5' end of most eukaryotic mRNAs), and eIF-4G (a scaffolding protein that bridges interactions between eIF-4A, eIF-4E, and other initiation factors). eIF-4F helps unwind secondary structures in the 5' untranslated region (5' UTR) of mRNAs, promoting efficient recruitment of the 43S preinitiation complex to the mRNA.

Together, these peptide initiation factors facilitate the recognition of the correct start codon and ensure efficient translation initiation in eukaryotic cells.

Fungal genes refer to the genetic material present in fungi, which are eukaryotic organisms that include microorganisms such as yeasts and molds, as well as larger organisms like mushrooms. The genetic material of fungi is composed of DNA, just like in other eukaryotes, and is organized into chromosomes located in the nucleus of the cell.

Fungal genes are segments of DNA that contain the information necessary to produce proteins and RNA molecules required for various cellular functions. These genes are transcribed into messenger RNA (mRNA) molecules, which are then translated into proteins by ribosomes in the cytoplasm.

Fungal genomes have been sequenced for many species, revealing a diverse range of genes that encode proteins involved in various cellular processes such as metabolism, signaling, and regulation. Comparative genomic analyses have also provided insights into the evolutionary relationships among different fungal lineages and have helped to identify unique genetic features that distinguish fungi from other eukaryotes.

Understanding fungal genes and their functions is essential for advancing our knowledge of fungal biology, as well as for developing new strategies to control fungal pathogens that can cause diseases in humans, animals, and plants.

'Poisonous fishes' are species of fish that contain toxic substances in their bodies, which can cause harm or injury to other organisms, including humans. These toxins can be present in various parts of the fish, such as the flesh, skin, organs, or even in the form of venomous spines.

There are several types of poisonous fishes, including:

1. Pufferfish (Fugu): These fish contain a potent neurotoxin called tetrodotoxin (TTX) in their organs, especially the liver and ovaries. TTX is highly toxic and can cause paralysis and death if ingested in even small amounts.
2. Stonefish: Stonefishes are venomous fishes that have sharp, spiny dorsal fins that can inject a painful toxin into the skin when stepped on or touched. The venom can cause severe pain, swelling, and tissue damage, and in some cases, it can lead to respiratory failure and death.
3. Blue-ringed octopuses: While not technically fish, blue-ringed octopuses are often included in discussions of poisonous marine life. They have venom glands that produce a powerful neurotoxin called tetrodotoxin (TTX), which can cause paralysis and death if it enters the bloodstream.
4. Cone snails: Cone snails are predatory mollusks that use a harpoon-like tooth to inject venom into their prey. Some species of cone snail have venom that contains powerful neurotoxins, which can cause paralysis and death in humans.
5. Lionfish: Lionfish are venomous fishes that have spines on their dorsal, pelvic, and anal fins that can inject a painful toxin into the skin when touched or stepped on. The venom can cause pain, swelling, and other symptoms, but it is rarely fatal to humans.

It's important to note that many species of fish can become toxic if they consume harmful algae blooms (HABs) or other contaminants in their environment. These "toxic fishes" are not considered poisonous by definition, as their toxicity is not inherent to their biology.

Phosphoproteins are proteins that have been post-translationally modified by the addition of a phosphate group (-PO3H2) onto specific amino acid residues, most commonly serine, threonine, or tyrosine. This process is known as phosphorylation and is mediated by enzymes called kinases. Phosphoproteins play crucial roles in various cellular processes such as signal transduction, cell cycle regulation, metabolism, and gene expression. The addition or removal of a phosphate group can activate or inhibit the function of a protein, thereby serving as a switch to control its activity. Phosphoproteins can be detected and quantified using techniques such as Western blotting, mass spectrometry, and immunofluorescence.

Two-dimensional (2D) gel electrophoresis is a type of electrophoretic technique used in the separation and analysis of complex protein mixtures. This method combines two types of electrophoresis – isoelectric focusing (IEF) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) – to separate proteins based on their unique physical and chemical properties in two dimensions.

In the first dimension, IEF separates proteins according to their isoelectric points (pI), which is the pH at which a protein carries no net electrical charge. The proteins are focused into narrow zones along a pH gradient established within a gel strip. In the second dimension, SDS-PAGE separates the proteins based on their molecular weights by applying an electric field perpendicular to the first dimension.

The separated proteins form distinct spots on the 2D gel, which can be visualized using various staining techniques. The resulting protein pattern provides valuable information about the composition and modifications of the protein mixture, enabling researchers to identify and compare different proteins in various samples. Two-dimensional gel electrophoresis is widely used in proteomics research, biomarker discovery, and quality control in protein production.

A ribosome is a complex molecular machine found in all living cells, responsible for protein synthesis. It consists of two subunits: the small and the large subunit. The small ribosomal subunit plays a crucial role in decoding the messenger RNA (mRNA) molecule and positioning transfer RNA (tRNA) molecules during translation.

The small ribosomal subunit, specifically, is composed of ribosomal RNA (rRNA) and proteins. In eukaryotic cells, the small ribosomal subunit is composed of a 18S rRNA molecule and approximately 30 distinct proteins. Its primary function is to recognize the start codon on the mRNA and facilitate the binding of the initiator tRNA (tRNAi) to begin the translation process.

Together, the small and large ribosomal subunits form a functional ribosome that translates genetic information from mRNA into proteins, contributing to the maintenance and growth of cells.

Chloroplasts are specialized organelles found in the cells of green plants, algae, and some protists. They are responsible for carrying out photosynthesis, which is the process by which these organisms convert light energy from the sun into chemical energy in the form of organic compounds, such as glucose.

Chloroplasts contain the pigment chlorophyll, which absorbs light energy from the sun. They also contain a system of membranes and enzymes that convert carbon dioxide and water into glucose and oxygen through a series of chemical reactions known as the Calvin cycle. This process not only provides energy for the organism but also releases oxygen as a byproduct, which is essential for the survival of most life forms on Earth.

Chloroplasts are believed to have originated from ancient cyanobacteria that were engulfed by early eukaryotic cells and eventually became integrated into their host's cellular machinery through a process called endosymbiosis. Over time, chloroplasts evolved to become an essential component of plant and algal cells, contributing to their ability to carry out photosynthesis and thrive in a wide range of environments.

A large ribosomal subunit in eukaryotic cells is a complex macromolecular structure composed of ribosomal RNA (rRNA) and proteins. It is one of the two subunits that make up the eukaryotic ribosome, which is the site of protein synthesis in the cell. The large subunit is responsible for catalyzing the formation of peptide bonds between amino acids during protein synthesis.

In eukaryotes, the large ribosomal subunit is composed of three rRNA molecules (5S, 5.8S, and 28S) and approximately 49 proteins. The large subunit has a characteristic shape with a prominent protuberance called the "stalk" that contains proteins involved in binding translation factors and messenger RNA (mRNA).

The large ribosomal subunit plays a critical role in the elongation phase of protein synthesis, where it binds to the small ribosomal subunit and mRNA to form a functional ribosome. The large subunit moves along the mRNA, reading the genetic code and catalyzing the formation of peptide bonds between amino acids as they are brought to the ribosome by transfer RNA (tRNA) molecules.

Phosphopeptides are short peptide sequences that contain one or more phosphorylated amino acid residues, most commonly serine, threonine, or tyrosine. Phosphorylation is a post-translational modification that plays a crucial role in regulating various cellular processes such as signal transduction, protein-protein interactions, enzyme activity, and protein degradation. The addition of a phosphate group to a peptide can alter its charge, conformation, stability, and interaction with other molecules, thereby modulating its function in the cell. Phosphopeptides are often generated by proteolytic digestion of phosphorylated proteins and are used as biomarkers or probes to study protein phosphorylation and signaling pathways in various biological systems.

Eukaryotic initiation factors (eIFs) are a group of proteins that play a crucial role in the process of protein synthesis, also known as translation, in eukaryotic cells. During the initiation phase of translation, these factors help to assemble the necessary components for the formation of the initiation complex on the small ribosomal subunit and facilitate the recruitment of messenger RNA (mRNA) and the transfer RNA carrying the initiator methionine (tRNAi^Met).

There are several eukaryotic initiation factors, each with a specific function in the initiation process. Some of the key eIFs include:

1. eIF1: helps to maintain the correct conformation of the 40S ribosomal subunit and prevents premature binding of tRNAi^Met.
2. eIF1A: stabilizes the interaction between eIF1 and the 40S ribosomal subunit, and also promotes the recruitment of tRNAi^Met.
3. eIF2: forms a ternary complex with GTP and tRNAi^Met, which binds to the 40S ribosomal subunit in an AUG-specific manner.
4. eIF3: interacts with the 40S ribosomal subunit and helps to recruit other initiation factors, including eIF1, eIF1A, and eIF2.
5. eIF4F: a heterotrimeric complex that includes eIF4E (cap-binding protein), eIF4A (DEAD-box RNA helicase), and eIF4G (scaffolding protein). This complex recognizes the 5' cap structure of mRNAs and facilitates their recruitment to the ribosome.
6. eIF5: promotes the hydrolysis of GTP in the eIF2-GTP-tRNAi^Met ternary complex, leading to the dissociation of eIF2-GDP and the formation of a stable 43S preinitiation complex.
7. eIF5B: catalyzes the joining of the 60S ribosomal subunit to form an 80S initiation complex and facilitates the release of eIF1A, eIF2-GDP, and eIF5 from the complex.

These initiation factors play crucial roles in ensuring accurate translation initiation, maintaining translational fidelity, and regulating gene expression at the level of translation. Dysregulation of these processes can lead to various human diseases, including cancer, neurodegenerative disorders, and viral infections.

Factor V, also known as proaccelerin or labile factor, is a protein involved in the coagulation cascade, which is a series of chemical reactions that leads to the formation of a blood clot. Factor V acts as a cofactor for the conversion of prothrombin to thrombin, which is a critical step in the coagulation process.

Inherited deficiencies or abnormalities in Factor V can lead to bleeding disorders. For example, Factor V Leiden is a genetic mutation that causes an increased risk of blood clots, while Factor V deficiency can cause a bleeding disorder.

It's worth noting that "Factor Va" is not a standard medical term. Factor V becomes activated and turns into Factor Va during the coagulation cascade. Therefore, it is possible that you are looking for the definition of "Factor Va" in the context of its role as an activated form of Factor V in the coagulation process.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Halobacterium is a genus of extremely halophilic archaea, which means they require a high salt concentration to grow. They are often found in salt lakes, salt pans, and other hypersaline environments. These microorganisms contain bacteriorhodopsin, a light-driven proton pump, which gives them a purple color and allows them to generate ATP using light energy, similar to photosynthesis in plants. Halobacteria are also known for their ability to survive under extreme conditions, such as high temperatures, radiation, and desiccation.

Transfer RNA (tRNA) is a type of RNA molecule that plays a crucial role in protein synthesis, the process by which cells create proteins. In protein synthesis, tRNAs serve as adaptors, translating the genetic code present in messenger RNA (mRNA) into the corresponding amino acids required to build a protein.

Each tRNA molecule has a distinct structure, consisting of approximately 70-90 nucleotides arranged in a cloverleaf shape with several loops and stems. The most important feature of a tRNA is its anticodon, a sequence of three nucleotides located in one of the loops. This anticodon base-pairs with a complementary codon on the mRNA during translation, ensuring that the correct amino acid is added to the growing polypeptide chain.

Before tRNAs can participate in protein synthesis, they must be charged with their specific amino acids through an enzymatic process involving aminoacyl-tRNA synthetases. These enzymes recognize and bind to both the tRNA and its corresponding amino acid, forming a covalent bond between them. Once charged, the aminoacyl-tRNA complex is ready to engage in translation and contribute to protein formation.

In summary, transfer RNA (tRNA) is a small RNA molecule that facilitates protein synthesis by translating genetic information from messenger RNA into specific amino acids, ultimately leading to the creation of functional proteins within cells.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Restriction mapping is a technique used in molecular biology to identify the location and arrangement of specific restriction endonuclease recognition sites within a DNA molecule. Restriction endonucleases are enzymes that cut double-stranded DNA at specific sequences, producing fragments of various lengths. By digesting the DNA with different combinations of these enzymes and analyzing the resulting fragment sizes through techniques such as agarose gel electrophoresis, researchers can generate a restriction map - a visual representation of the locations and distances between recognition sites on the DNA molecule. This information is crucial for various applications, including cloning, genome analysis, and genetic engineering.

Polyribonucleotide nucleotidyltransferase (PRNT) is not a commonly used medical term, but it is a biological term that refers to an enzyme class with the ability to add nucleotides to the 3'-hydroxyl end of RNA molecules. These enzymes play a crucial role in various cellular processes, including RNA metabolism and repair. They can be found in different organisms, from bacteria to humans.

One well-known example of a PRNT is the RNA polymerase, which synthesizes RNA using DNA as a template during transcription. Another example is the telomere-associated polyribonucleotide nucleotidyltransferase, also known as TERT (telomerase reverse transcriptase), which adds repetitive DNA sequences to the ends of chromosomes (telomeres) to maintain their length and stability.

While PRNTs have significant biological importance, they are not typically referred to in a medical context unless discussing specific diseases or conditions related to their dysfunction.

Complement C4b is a protein fragment that is formed during the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens and damaged cells from the body by tagging them for destruction and attracting immune cells to the site of infection or injury.

C4b is generated when the C4 protein is cleaved into two smaller fragments, C4a and C4b, during the activation of the classical or lectin pathways of the complement system. C4b then binds covalently to the surface of the target cell or pathogen, forming a complex with other complement proteins that can create a membrane attack complex (MAC) and cause cell lysis.

C4b can also act as an opsonin, coating the surface of the target cell or pathogen and making it easier for immune cells to recognize and phagocytose them. Additionally, C4b can activate the alternative pathway of the complement system, leading to further amplification of the complement response.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Northern blotting is a laboratory technique used in molecular biology to detect and analyze specific RNA molecules (such as mRNA) in a mixture of total RNA extracted from cells or tissues. This technique is called "Northern" blotting because it is analogous to the Southern blotting method, which is used for DNA detection.

The Northern blotting procedure involves several steps:

1. Electrophoresis: The total RNA mixture is first separated based on size by running it through an agarose gel using electrical current. This separates the RNA molecules according to their length, with smaller RNA fragments migrating faster than larger ones.

2. Transfer: After electrophoresis, the RNA bands are denatured (made single-stranded) and transferred from the gel onto a nitrocellulose or nylon membrane using a technique called capillary transfer or vacuum blotting. This step ensures that the order and relative positions of the RNA fragments are preserved on the membrane, similar to how they appear in the gel.

3. Cross-linking: The RNA is then chemically cross-linked to the membrane using UV light or heat treatment, which helps to immobilize the RNA onto the membrane and prevent it from washing off during subsequent steps.

4. Prehybridization: Before adding the labeled probe, the membrane is prehybridized in a solution containing blocking agents (such as salmon sperm DNA or yeast tRNA) to minimize non-specific binding of the probe to the membrane.

5. Hybridization: A labeled nucleic acid probe, specific to the RNA of interest, is added to the prehybridization solution and allowed to hybridize (form base pairs) with its complementary RNA sequence on the membrane. The probe can be either a DNA or an RNA molecule, and it is typically labeled with a radioactive isotope (such as ³²P) or a non-radioactive label (such as digoxigenin).

6. Washing: After hybridization, the membrane is washed to remove unbound probe and reduce background noise. The washing conditions (temperature, salt concentration, and detergent concentration) are optimized based on the stringency required for specific hybridization.

7. Detection: The presence of the labeled probe is then detected using an appropriate method, depending on the type of label used. For radioactive probes, this typically involves exposing the membrane to X-ray film or a phosphorimager screen and analyzing the resulting image. For non-radioactive probes, detection can be performed using colorimetric, chemiluminescent, or fluorescent methods.

8. Data analysis: The intensity of the signal is quantified and compared to controls (such as housekeeping genes) to determine the relative expression level of the RNA of interest. This information can be used for various purposes, such as identifying differentially expressed genes in response to a specific treatment or comparing gene expression levels across different samples or conditions.

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

Introns are non-coding sequences of DNA that are present within the genes of eukaryotic organisms, including plants, animals, and humans. Introns are removed during the process of RNA splicing, in which the initial RNA transcript is cut and reconnected to form a mature, functional RNA molecule.

After the intron sequences are removed, the remaining coding sequences, known as exons, are joined together to create a continuous stretch of genetic information that can be translated into a protein or used to produce non-coding RNAs with specific functions. The removal of introns allows for greater flexibility in gene expression and regulation, enabling the generation of multiple proteins from a single gene through alternative splicing.

In summary, introns are non-coding DNA sequences within genes that are removed during RNA processing to create functional RNA molecules or proteins.

Ribonucleoproteins (RNPs) are complexes composed of ribonucleic acid (RNA) and proteins. They play crucial roles in various cellular processes, including gene expression, RNA processing, transport, stability, and degradation. Different types of RNPs exist, such as ribosomes, spliceosomes, and signal recognition particles, each having specific functions in the cell.

Ribosomes are large RNP complexes responsible for protein synthesis, where messenger RNA (mRNA) is translated into proteins. They consist of two subunits: a smaller subunit containing ribosomal RNA (rRNA) and proteins that recognize the start codon on mRNA, and a larger subunit with rRNA and proteins that facilitate peptide bond formation during translation.

Spliceosomes are dynamic RNP complexes involved in pre-messenger RNA (pre-mRNA) splicing, where introns (non-coding sequences) are removed, and exons (coding sequences) are joined together to form mature mRNA. Spliceosomes consist of five small nuclear ribonucleoproteins (snRNPs), each containing a specific small nuclear RNA (snRNA) and several proteins, as well as numerous additional proteins.

Other RNP complexes include signal recognition particles (SRPs), which are responsible for targeting secretory and membrane proteins to the endoplasmic reticulum during translation, and telomerase, an enzyme that maintains the length of telomeres (the protective ends of chromosomes) by adding repetitive DNA sequences using its built-in RNA component.

In summary, ribonucleoproteins are essential complexes in the cell that participate in various aspects of RNA metabolism and protein synthesis.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Translational peptide chain elongation is the process during protein synthesis where activated amino acids are added to the growing peptide chain in a sequence determined by the genetic code present in messenger RNA (mRNA). This process involves several steps:

1. Recognition of the start codon on the mRNA by the small ribosomal subunit, which binds to the mRNA and brings an initiator tRNA with a methionine or formylmethionine amino acid attached into the P site (peptidyl site) of the ribosome.
2. The large ribosomal subunit then joins the small subunit, forming a complete ribosome complex.
3. An incoming charged tRNA with an appropriate amino acid, complementary to the next codon on the mRNA, binds to the A site (aminoacyl site) of the ribosome.
4. Peptidyl transferase, a catalytic domain within the large ribosomal subunit, facilitates the formation of a peptide bond between the amino acids attached to the tRNAs in the P and A sites. The methionine or formylmethionine initiator amino acid is now covalently linked to the second amino acid via this peptide bond.
5. Translocation occurs, moving the tRNA with the growing peptide chain from the P site to the E site (exit site) and shifting the mRNA by one codon relative to the ribosome. The uncharged tRNA is then released from the E site.
6. The next charged tRNA carrying an appropriate amino acid binds to the A site, and the process repeats until a stop codon is reached on the mRNA.
7. Upon encountering a stop codon, release factors recognize it and facilitate the release of the completed polypeptide chain from the final tRNA in the P site. The ribosome then dissociates from the mRNA, allowing for further translational events to occur.

Translational peptide chain elongation is a crucial step in protein synthesis and requires precise coordination between various components of the translation machinery, including ribosomes, tRNAs, amino acids, and numerous accessory proteins.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

A conserved sequence in the context of molecular biology refers to a pattern of nucleotides (in DNA or RNA) or amino acids (in proteins) that has remained relatively unchanged over evolutionary time. These sequences are often functionally important and are highly conserved across different species, indicating strong selection pressure against changes in these regions.

In the case of protein-coding genes, the corresponding amino acid sequence is deduced from the DNA sequence through the genetic code. Conserved sequences in proteins may indicate structurally or functionally important regions, such as active sites or binding sites, that are critical for the protein's activity. Similarly, conserved non-coding sequences in DNA may represent regulatory elements that control gene expression.

Identifying conserved sequences can be useful for inferring evolutionary relationships between species and for predicting the function of unknown genes or proteins.

Spectinomycin is an antibiotic that belongs to the aminoglycoside family. It works by binding to the 30S subunit of the bacterial ribosome, thereby inhibiting protein synthesis and leading to bacterial cell death. Spectinomycin is primarily used to treat infections caused by susceptible strains of Gram-negative and Gram-positive bacteria, including gonorrhea, penicillin-resistant streptococci, and some anaerobes. It is administered parenterally (usually intramuscularly) and has a relatively narrow spectrum of activity compared to other aminoglycosides. Spectinomycin is not commonly used in many countries due to the availability of alternative antibiotics with broader spectra and fewer side effects.

Oligoribonucleotides are short, synthetic chains of ribonucleotides, which are the building blocks of RNA (ribonucleic acid). These chains typically contain fewer than 20 ribonucleotide units, and can be composed of all four types of nucleotides found in RNA: adenine (A), uracil (U), guanine (G), and cytosine (C). They are often used in research for various purposes, such as studying RNA function, regulating gene expression, or serving as potential therapeutic agents.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

5S Ribosomal RNA (5S rRNA) is a type of ribosomal RNA molecule that is a component of the large subunit of the ribosome, a complex molecular machine found in the cells of all living organisms. The "5S" refers to its sedimentation coefficient, a measure of its rate of sedimentation in an ultracentrifuge, which is 5S.

In prokaryotic cells, there are typically one or two copies of 5S rRNA molecules per ribosome, while in eukaryotic cells, there are three to four copies per ribosome. The 5S rRNA plays a structural role in the ribosome and is also involved in the process of protein synthesis, working together with other ribosomal components to translate messenger RNA (mRNA) into proteins.

The 5S rRNA molecule is relatively small, ranging from 100 to 150 nucleotides in length, and has a characteristic secondary structure that includes several stem-loop structures. The sequence and structure of the 5S rRNA are highly conserved across different species, making it a useful tool for studying evolutionary relationships between organisms.

Peptide Elongation Factor Tu, also known as EF-Tu or Tuf, is a protein involved in the process of protein synthesis in prokaryotic cells. It plays a crucial role in the elongation phase of translation, where it facilitates the addition of amino acids to the growing polypeptide chain during protein synthesis.

EF-Tu functions as a binding protein for aminoacyl-tRNA (transfer RNA) complexes. In this role, EF-Tu forms a ternary complex with GTP (guanosine triphosphate) and an aminoacyl-tRNA, which then binds to the A (acceptor) site of the small ribosomal subunit. Once aligned, the GTP in the EF-Tu-tRNA complex is hydrolyzed to GDP (guanosine diphosphate), causing a conformational change that releases the aminoacyl-tRNA into the A site for peptide bond formation.

After releasing the tRNA, EF-Tu recharges with another GTP molecule and is ready to form another ternary complex, thus continuing its role in the elongation of protein synthesis. The recycling of EF-Tu between GDP and GTP forms is facilitated by another elongation factor, EF-Ts (or Tsf).

In summary, Peptide Elongation Factor Tu (EF-Tu) is a vital protein in prokaryotic cells that binds to aminoacyl-tRNA and GTP, forming a ternary complex. This complex delivers the aminoacyl-tRNA to the ribosome for peptide bond formation during protein synthesis elongation.

Leucine is an essential amino acid, meaning it cannot be produced by the human body and must be obtained through the diet. It is one of the three branched-chain amino acids (BCAAs), along with isoleucine and valine. Leucine is critical for protein synthesis and muscle growth, and it helps to regulate blood sugar levels, promote wound healing, and produce growth hormones.

Leucine is found in various food sources such as meat, dairy products, eggs, and certain plant-based proteins like soy and beans. It is also available as a dietary supplement for those looking to increase their intake for athletic performance or muscle recovery purposes. However, it's important to consult with a healthcare professional before starting any new supplement regimen.

A "5' terminal oligopyrimidine sequence" (TOP) is a structural feature found in certain RNAs, including ribosomal RNAs (rRNAs) and some messenger RNAs (mRNAs). The term "pyrimidine" refers to the single-ringed nitrogenous bases thymine (T) and cytosine (C) found in RNA (as opposed to the double-ringed purines adenine [A] and guanine [G]).

In a 5' TOP sequence, a series of pyrimidines (usually Ts) are located at the 5' end of the RNA molecule. Specifically, a 5' TOP sequence is characterized by a conserved motif of CUAAC followed by a varying number of pyrimidines (usually T's). These sequences play an essential role in regulating the translation of proteins involved in cell growth and proliferation, particularly under conditions of nutrient deprivation.

Inhibition of 5' TOP mRNA translation is a key mechanism by which certain drugs, such as rapamycin, exert their effects on cell growth and metabolism.

Complementary DNA (cDNA) is a type of DNA that is synthesized from a single-stranded RNA molecule through the process of reverse transcription. In this process, the enzyme reverse transcriptase uses an RNA molecule as a template to synthesize a complementary DNA strand. The resulting cDNA is therefore complementary to the original RNA molecule and is a copy of its coding sequence, but it does not contain non-coding regions such as introns that are present in genomic DNA.

Complementary DNA is often used in molecular biology research to study gene expression, protein function, and other genetic phenomena. For example, cDNA can be used to create cDNA libraries, which are collections of cloned cDNA fragments that represent the expressed genes in a particular cell type or tissue. These libraries can then be screened for specific genes or gene products of interest. Additionally, cDNA can be used to produce recombinant proteins in heterologous expression systems, allowing researchers to study the structure and function of proteins that may be difficult to express or purify from their native sources.

Protein-Serine-Threonine Kinases (PSTKs) are a type of protein kinase that catalyzes the transfer of a phosphate group from ATP to the hydroxyl side chains of serine or threonine residues on target proteins. This phosphorylation process plays a crucial role in various cellular signaling pathways, including regulation of metabolism, gene expression, cell cycle progression, and apoptosis. PSTKs are involved in many physiological and pathological processes, and their dysregulation has been implicated in several diseases, such as cancer, diabetes, and neurodegenerative disorders.

Saccharomyces cerevisiae proteins are the proteins that are produced by the budding yeast, Saccharomyces cerevisiae. This organism is a single-celled eukaryote that has been widely used as a model organism in scientific research for many years due to its relatively simple genetic makeup and its similarity to higher eukaryotic cells.

The genome of Saccharomyces cerevisiae has been fully sequenced, and it is estimated to contain approximately 6,000 genes that encode proteins. These proteins play a wide variety of roles in the cell, including catalyzing metabolic reactions, regulating gene expression, maintaining the structure of the cell, and responding to environmental stimuli.

Many Saccharomyces cerevisiae proteins have human homologs and are involved in similar biological processes, making this organism a valuable tool for studying human disease. For example, many of the proteins involved in DNA replication, repair, and recombination in yeast have human counterparts that are associated with cancer and other diseases. By studying these proteins in yeast, researchers can gain insights into their function and regulation in humans, which may lead to new treatments for disease.

Eukaryotic Initiation Factor-4F (eIF4F) is a multi-subunit protein complex that plays a crucial role in the initiation phase of eukaryotic mRNA translation. It is involved in the recognition and binding of the 5' cap structure (m7GpppN) of mRNA, which is a characteristic feature of eukaryotic messenger RNAs.

The eIF4F complex consists of three main subunits:

1. eIF4E: This is the cap-binding protein that directly recognizes and binds to the 5' cap structure of mRNA.
2. eIF4A: This is an RNA helicase that unwinds secondary structures in the 5' untranslated region (UTR) of mRNA, allowing for the assembly of the translation initiation complex.
3. eIF4G: This is a scaffolding protein that binds to both eIF4E and eIF4A, as well as other proteins involved in translation initiation, such as poly(A)-binding protein (PABP) and eIF3.

The formation of the eIF4F complex facilitates the recruitment of the small ribosomal subunit to the 5' end of mRNA, followed by scanning along the 5' UTR until an initiation codon (usually AUG) is encountered. Upon recognition of the initiation codon, the large ribosomal subunit joins the complex, forming a functional 80S ribosome that can engage in elongation and ultimately synthesize the protein product.

Dysregulation of eIF4F components has been implicated in various human diseases, including cancer, viral infection, and neurological disorders.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Imidoesters are organic compounds that contain the functional group -N=C(O)R, where R is an organic group. They are derivatives of imidic acids and can be considered as esters of imidic acids. These compounds are reactive and can undergo various chemical reactions, including hydrolysis and condensation with other reagents. Imidoesters have been used in the synthesis of heterocyclic compounds and other organic compounds. They may also have potential applications in medicinal chemistry and drug discovery. However, they are not a commonly used class of compounds in medical or clinical settings.

Insulin is a hormone produced by the beta cells of the pancreatic islets, primarily in response to elevated levels of glucose in the circulating blood. It plays a crucial role in regulating blood glucose levels and facilitating the uptake and utilization of glucose by peripheral tissues, such as muscle and adipose tissue, for energy production and storage. Insulin also inhibits glucose production in the liver and promotes the storage of excess glucose as glycogen or triglycerides.

Deficiency in insulin secretion or action leads to impaired glucose regulation and can result in conditions such as diabetes mellitus, characterized by chronic hyperglycemia and associated complications. Exogenous insulin is used as a replacement therapy in individuals with diabetes to help manage their blood glucose levels and prevent long-term complications.

I apologize for any confusion, but "plants" is not a term that has a medical definition. The term "plants" refers to a large and diverse group of organisms that obtain their energy through photosynthesis, which is the process of converting sunlight into chemical energy. Plants are typically characterized by having cells with cell walls containing cellulose, chloroplasts containing the pigment chlorophyll, and the ability to synthesize their own food through photosynthesis.

In a medical or biological context, you might be thinking of "plant-based" or "phytomedicine," which refer to the use of plants or plant extracts as a form of medicine or treatment. Phytomedicines have been used for thousands of years in many traditional systems of medicine, and some plant-derived compounds have been found to have therapeutic benefits in modern medicine as well. However, "plants" itself does not have a medical definition.

Trypsin is a proteolytic enzyme, specifically a serine protease, that is secreted by the pancreas as an inactive precursor, trypsinogen. Trypsinogen is converted into its active form, trypsin, in the small intestine by enterokinase, which is produced by the intestinal mucosa.

Trypsin plays a crucial role in digestion by cleaving proteins into smaller peptides at specific arginine and lysine residues. This enzyme helps to break down dietary proteins into amino acids, allowing for their absorption and utilization by the body. Additionally, trypsin can activate other zymogenic pancreatic enzymes, such as chymotrypsinogen and procarboxypeptidases, thereby contributing to overall protein digestion.

23S Ribosomal RNA (rRNA) is a type of rRNA that is a component of the large ribosomal subunit in both prokaryotic and eukaryotic cells. In prokaryotes, the large ribosomal subunit contains 50S, which consists of 23S rRNA, 5S rRNA, and around 33 proteins. The 23S rRNA plays a crucial role in the decoding of mRNA during protein synthesis and also participates in the formation of the peptidyl transferase center, where peptide bonds are formed between amino acids.

The 23S rRNA is a long RNA molecule that contains both coding and non-coding regions. It has a complex secondary structure, which includes several domains and subdomains, as well as numerous stem-loop structures. These structures are important for the proper functioning of the ribosome during protein synthesis.

In addition to its role in protein synthesis, 23S rRNA has been used as a target for antibiotics that inhibit bacterial growth. For example, certain antibiotics bind to specific regions of the 23S rRNA and interfere with the function of the ribosome, thereby preventing bacterial protein synthesis and growth. However, because eukaryotic cells do not have a 23S rRNA equivalent, these antibiotics are generally not toxic to human cells.

RNA precursors, also known as primary transcripts or pre-messenger RNAs (pre-mRNAs), refer to the initial RNA molecules that are synthesized during the transcription process in which DNA is copied into RNA. These precursor molecules still contain non-coding sequences and introns, which need to be removed through a process called splicing, before they can become mature and functional RNAs such as messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), or transfer RNAs (tRNAs).

Pre-mRNAs undergo several processing steps, including 5' capping, 3' polyadenylation, and splicing, to generate mature mRNA molecules that can be translated into proteins. The accurate and efficient production of RNA precursors and their subsequent processing are crucial for gene expression and regulation in cells.

Macromolecular substances, also known as macromolecules, are large, complex molecules made up of repeating subunits called monomers. These substances are formed through polymerization, a process in which many small molecules combine to form a larger one. Macromolecular substances can be naturally occurring, such as proteins, DNA, and carbohydrates, or synthetic, such as plastics and synthetic fibers.

In the context of medicine, macromolecular substances are often used in the development of drugs and medical devices. For example, some drugs are designed to bind to specific macromolecules in the body, such as proteins or DNA, in order to alter their function and produce a therapeutic effect. Additionally, macromolecular substances may be used in the creation of medical implants, such as artificial joints and heart valves, due to their strength and durability.

It is important for healthcare professionals to have an understanding of macromolecular substances and how they function in the body, as this knowledge can inform the development and use of medical treatments.

Untranslated regions (UTRs) are sections of an mRNA molecule that do not contain information for protein synthesis. There are two types of UTRs: 5' UTR, which is located at the 5' end of the mRNA molecule, and 3' UTR, which is located at the 3' end.

The 5' UTR typically contains regulatory elements that control the translation of the mRNA into protein. These elements can affect the efficiency and timing of translation, as well as the stability of the mRNA molecule. The 5' UTR may also contain upstream open reading frames (uORFs), which are short sequences that can be translated into small peptides and potentially regulate the translation of the main coding sequence.

The length and sequence composition of the 5' UTR can have significant impacts on gene expression, and variations in these regions have been associated with various diseases, including cancer and neurological disorders. Therefore, understanding the structure and function of 5' UTRs is an important area of research in molecular biology and genetics.

Eukaryotic Initiation Factor-3 (eIF-3) is a multi-subunit protein complex that plays a crucial role in the initiation phase of eukaryotic translation, the process by which genetic information encoded in mRNA is translated into proteins. Specifically, eIF-3 is involved in the assembly of the 43S preinitiation complex (43S PIC), which includes the small ribosomal subunit, various initiation factors, and methionyl-tRNAi (met-tRNAi).

The eIF-3 complex consists of at least 12 different subunits, designated as eIF-3a through eIF-3m. These subunits are believed to play a role in regulating the assembly and disassembly of the 43S PIC, promoting the scanning of mRNA for initiation codons, and facilitating the recruitment of the large ribosomal subunit during translation initiation.

Dysregulation of eIF-3 function has been implicated in various human diseases, including cancer, neurodegenerative disorders, and viral infections. Therefore, understanding the molecular mechanisms underlying eIF-3 function is an important area of research with potential implications for the development of novel therapeutic strategies.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Peptide Elongation Factor 2 (PEF2), also known as Elongation Factor-G (EF-G) in prokaryotes or Translation Elongation Factor 2 (TEF2) in eukaryotes, is a vital protein involved in the elongation phase of protein synthesis, specifically during translation. It facilitates the translocation of peptidyl-tRNA from the A-site to the P-site of the ribosome, thereby enabling the addition of new amino acids to the growing polypeptide chain.

During this process, PEF2/EF-G/TEF2 binds to the ribosome and utilizes the energy from GTP hydrolysis to induce a conformational change in the ribosome, leading to the translocation of peptidyl-tRNA and mRNA. After completing the translocation step, PEF2/EF-G/TEF2 is released from the ribosome and can be reused in subsequent elongation cycles.

In summary, Peptide Elongation Factor 2 (PEF2) is a crucial player in protein synthesis that facilitates the movement of peptidyl-tRNA within the ribosome during translation, allowing for the continuous addition of amino acids to the nascent polypeptide chain.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Eukaryotic Initiation Factor-4G (eIF4G) is a large protein in eukaryotic cells that plays a crucial role in the initiation phase of protein synthesis, also known as translation. It serves as a scaffold or platform that brings together various components required for the assembly of the translation initiation complex.

The eIF4G protein interacts with several other proteins involved in translation initiation, including eIF4E, eIF4A, and the poly(A)-binding protein (PABP). The binding of eIF4G to eIF4E helps recruit the methionine initiator tRNA (tRNAiMet) to the 5' cap structure of mRNA, while its interaction with eIF4A promotes the unwinding of secondary structures in the 5' untranslated region (5' UTR) of mRNA. The association of eIF4G with PABP at the 3' poly(A) tail of mRNA facilitates circularization of the mRNA, promoting efficient translation initiation and recycling of ribosomes.

There are multiple isoforms of eIF4G in eukaryotic cells, such as eIF4GI and eIF4GII, which share structural similarities but may have distinct functions or interact with different sets of proteins during the translation process. Dysregulation of eIF4G function has been implicated in various human diseases, including cancer and neurological disorders.

"Methanococcus" is a genus of archaea, which are single-celled microorganisms that share some characteristics with bacteria but are actually more closely related to eukaryotes. "Methanococcus" species are obligate anaerobes, meaning they can only survive in environments without oxygen. They are also methanogens, which means they produce methane as a byproduct of their metabolism. These microorganisms are commonly found in aquatic environments such as marine sediments and freshwater swamps, where they play an important role in the carbon cycle by breaking down organic matter and producing methane. Some "Methanococcus" species can also be found in the digestive tracts of animals, including humans, where they help to break down food waste and produce methane as a byproduct.

Centrifugation, Density Gradient is a medical laboratory technique used to separate and purify different components of a mixture based on their size, density, and shape. This method involves the use of a centrifuge and a density gradient medium, such as sucrose or cesium chloride, to create a stable density gradient within a column or tube.

The sample is carefully layered onto the top of the gradient and then subjected to high-speed centrifugation. During centrifugation, the particles in the sample move through the gradient based on their size, density, and shape, with heavier particles migrating faster and further than lighter ones. This results in the separation of different components of the mixture into distinct bands or zones within the gradient.

This technique is commonly used to purify and concentrate various types of biological materials, such as viruses, organelles, ribosomes, and subcellular fractions, from complex mixtures. It allows for the isolation of pure and intact particles, which can then be collected and analyzed for further study or use in downstream applications.

In summary, Centrifugation, Density Gradient is a medical laboratory technique used to separate and purify different components of a mixture based on their size, density, and shape using a centrifuge and a density gradient medium.

S100 proteins are a family of calcium-binding proteins that are involved in the regulation of various cellular processes, including cell growth and differentiation, intracellular signaling, and inflammation. They are found in high concentrations in certain types of cells, such as nerve cells (neurons), glial cells (supporting cells in the nervous system), and skin cells (keratinocytes).

The S100 protein family consists of more than 20 members, which are divided into several subfamilies based on their structural similarities. Some of the well-known members of this family include S100A1, S100B, S100 calcium-binding protein A8 (S100A8), and S100 calcium-binding protein A9 (S100A9).

Abnormal expression or regulation of S100 proteins has been implicated in various pathological conditions, such as neurodegenerative diseases, cancer, and inflammatory disorders. For example, increased levels of S100B have been found in the brains of patients with Alzheimer's disease, while overexpression of S100A8 and S100A9 has been associated with the development and progression of certain types of cancer.

Therefore, understanding the functions and regulation of S100 proteins is important for developing new diagnostic and therapeutic strategies for various diseases.

Medical Definition of "Multiprotein Complexes" :

Multiprotein complexes are large molecular assemblies composed of two or more proteins that interact with each other to carry out specific cellular functions. These complexes can range from relatively simple dimers or trimers to massive structures containing hundreds of individual protein subunits. They are formed through a process known as protein-protein interaction, which is mediated by specialized regions on the protein surface called domains or motifs.

Multiprotein complexes play critical roles in many cellular processes, including signal transduction, gene regulation, DNA replication and repair, protein folding and degradation, and intracellular transport. The formation of these complexes is often dynamic and regulated in response to various stimuli, allowing for precise control of their function.

Disruption of multiprotein complexes can lead to a variety of diseases, including cancer, neurodegenerative disorders, and infectious diseases. Therefore, understanding the structure, composition, and regulation of these complexes is an important area of research in molecular biology and medicine.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Fungal proteins are a type of protein that is specifically produced and present in fungi, which are a group of eukaryotic organisms that include microorganisms such as yeasts and molds. These proteins play various roles in the growth, development, and survival of fungi. They can be involved in the structure and function of fungal cells, metabolism, pathogenesis, and other cellular processes. Some fungal proteins can also have important implications for human health, both in terms of their potential use as therapeutic targets and as allergens or toxins that can cause disease.

Fungal proteins can be classified into different categories based on their functions, such as enzymes, structural proteins, signaling proteins, and toxins. Enzymes are proteins that catalyze chemical reactions in fungal cells, while structural proteins provide support and protection for the cell. Signaling proteins are involved in communication between cells and regulation of various cellular processes, and toxins are proteins that can cause harm to other organisms, including humans.

Understanding the structure and function of fungal proteins is important for developing new treatments for fungal infections, as well as for understanding the basic biology of fungi. Research on fungal proteins has led to the development of several antifungal drugs that target specific fungal enzymes or other proteins, providing effective treatment options for a range of fungal diseases. Additionally, further study of fungal proteins may reveal new targets for drug development and help improve our ability to diagnose and treat fungal infections.

Protein-kinase B, also known as AKT, is a group of intracellular proteins that play a crucial role in various cellular processes such as glucose metabolism, apoptosis, cell proliferation, transcription, and cell migration. The AKT family includes three isoforms: AKT1, AKT2, and AKT3, which are encoded by the genes PKBalpha, PKBbeta, and PKBgamma, respectively.

Proto-oncogene proteins c-AKT refer to the normal, non-mutated forms of these proteins that are involved in the regulation of cell growth and survival under physiological conditions. However, when these genes are mutated or overexpressed, they can become oncogenes, leading to uncontrolled cell growth and cancer development.

Activation of c-AKT occurs through a signaling cascade that begins with the binding of extracellular ligands such as insulin-like growth factor 1 (IGF-1) or epidermal growth factor (EGF) to their respective receptors on the cell surface. This triggers a series of phosphorylation events that ultimately lead to the activation of c-AKT, which then phosphorylates downstream targets involved in various cellular processes.

In summary, proto-oncogene proteins c-AKT are normal intracellular proteins that play essential roles in regulating cell growth and survival under physiological conditions. However, their dysregulation can contribute to cancer development and progression.

RNA (Ribonucleic Acid) is a single-stranded, linear polymer of ribonucleotides. It is a nucleic acid present in the cells of all living organisms and some viruses. RNAs play crucial roles in various biological processes such as protein synthesis, gene regulation, and cellular signaling. There are several types of RNA including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear RNA (snRNA), microRNA (miRNA), and long non-coding RNA (lncRNA). These RNAs differ in their structure, function, and location within the cell.

Chromosome mapping, also known as physical mapping, is the process of determining the location and order of specific genes or genetic markers on a chromosome. This is typically done by using various laboratory techniques to identify landmarks along the chromosome, such as restriction enzyme cutting sites or patterns of DNA sequence repeats. The resulting map provides important information about the organization and structure of the genome, and can be used for a variety of purposes, including identifying the location of genes associated with genetic diseases, studying evolutionary relationships between organisms, and developing genetic markers for use in breeding or forensic applications.

DNA restriction enzymes, also known as restriction endonucleases, are a type of enzyme that cut double-stranded DNA at specific recognition sites. These enzymes are produced by bacteria and archaea as a defense mechanism against foreign DNA, such as that found in bacteriophages (viruses that infect bacteria).

Restriction enzymes recognize specific sequences of nucleotides (the building blocks of DNA) and cleave the phosphodiester bonds between them. The recognition sites for these enzymes are usually palindromic, meaning that the sequence reads the same in both directions when facing the opposite strands of DNA.

Restriction enzymes are widely used in molecular biology research for various applications such as genetic engineering, genome mapping, and DNA fingerprinting. They allow scientists to cut DNA at specific sites, creating precise fragments that can be manipulated and analyzed. The use of restriction enzymes has been instrumental in the development of recombinant DNA technology and the Human Genome Project.

Genetic suppression is a concept in genetics that refers to the phenomenon where the expression or function of one gene is reduced or silenced by another gene. This can occur through various mechanisms such as:

* Allelic exclusion: When only one allele (version) of a gene is expressed, while the other is suppressed.
* Epigenetic modifications: Chemical changes to the DNA or histone proteins that package DNA can result in the suppression of gene expression.
* RNA interference: Small RNAs can bind to and degrade specific mRNAs (messenger RNAs), preventing their translation into proteins.
* Transcriptional repression: Proteins called transcription factors can bind to DNA and prevent the recruitment of RNA polymerase, which is necessary for gene transcription.

Genetic suppression plays a crucial role in regulating gene expression and maintaining proper cellular function. It can also contribute to diseases such as cancer when genes that suppress tumor growth are suppressed themselves.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Post-transcriptional RNA processing refers to the modifications and regulations that occur on RNA molecules after the transcription of DNA into RNA. This process includes several steps:

1. 5' capping: The addition of a cap structure, usually a methylated guanosine triphosphate (GTP), to the 5' end of the RNA molecule. This helps protect the RNA from degradation and plays a role in its transport, stability, and translation.
2. 3' polyadenylation: The addition of a string of adenosine residues (poly(A) tail) to the 3' end of the RNA molecule. This process is important for mRNA stability, export from the nucleus, and translation initiation.
3. Intron removal and exon ligation: Eukaryotic pre-messenger RNAs (pre-mRNAs) contain intronic sequences that do not code for proteins. These introns are removed by a process called splicing, where the flanking exons are joined together to form a continuous mRNA sequence. Alternative splicing can lead to different mature mRNAs from a single pre-mRNA, increasing transcriptomic and proteomic diversity.
4. RNA editing: Specific nucleotide changes in RNA molecules that alter the coding potential or regulatory functions of RNA. This process is catalyzed by enzymes like ADAR (Adenosine Deaminases Acting on RNA) and APOBEC (Apolipoprotein B mRNA Editing Catalytic Polypeptide-like).
5. Chemical modifications: Various chemical modifications can occur on RNA nucleotides, such as methylation, pseudouridination, and isomerization. These modifications can influence RNA stability, localization, and interaction with proteins or other RNAs.
6. Transport and localization: Mature mRNAs are transported from the nucleus to the cytoplasm for translation. In some cases, specific mRNAs are localized to particular cellular compartments to ensure local protein synthesis.
7. Degradation: RNA molecules have finite lifetimes and undergo degradation by various ribonucleases (RNases). The rate of degradation can be influenced by factors such as RNA structure, modifications, or interactions with proteins.

A hydroxyl radical is defined in biochemistry and medicine as an extremely reactive species, characterized by the presence of an oxygen atom bonded to a hydrogen atom (OH-). It is formed when a water molecule (H2O) is split into a hydroxide ion (OH-) and a hydrogen ion (H+) in the process of oxidation.

In medical terms, hydroxyl radicals are important in understanding free radical damage and oxidative stress, which can contribute to the development of various diseases, including cancer, cardiovascular disease, and neurodegenerative disorders. They are also involved in the body's natural defense mechanisms against pathogens. However, an overproduction of hydroxyl radicals can cause damage to cellular components such as DNA, proteins, and lipids, leading to cell dysfunction and death.

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

Nucleic acid hybridization is a process in molecular biology where two single-stranded nucleic acids (DNA, RNA) with complementary sequences pair together to form a double-stranded molecule through hydrogen bonding. The strands can be from the same type of nucleic acid or different types (i.e., DNA-RNA or DNA-cDNA). This process is commonly used in various laboratory techniques, such as Southern blotting, Northern blotting, polymerase chain reaction (PCR), and microarray analysis, to detect, isolate, and analyze specific nucleic acid sequences. The hybridization temperature and conditions are critical to ensure the specificity of the interaction between the two strands.

Thrombophilia is a medical condition characterized by an increased tendency to form blood clots (thrombi) due to various genetic or acquired abnormalities in the coagulation system. These abnormalities can lead to a hypercoagulable state, which can cause thrombosis in both veins and arteries. Commonly identified thrombophilias include factor V Leiden mutation, prothrombin G20210A mutation, antithrombin deficiency, protein C deficiency, and protein S deficiency.

Acquired thrombophilias can be caused by various factors such as antiphospholipid antibody syndrome (APS), malignancies, pregnancy, oral contraceptive use, hormone replacement therapy, and certain medical conditions like inflammatory bowel disease or nephrotic syndrome.

It is essential to diagnose thrombophilia accurately, as it may influence the management of venous thromboembolism (VTE) events and guide decisions regarding prophylactic anticoagulation in high-risk situations.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Protein footprinting is a group of techniques used in structural biology to investigate the interactions between proteins and other molecules, such as DNA, RNA, or other proteins. These methods provide information about the spatial arrangement of atoms within a protein or protein complex, as well as details about the binding site and the nature of the interaction with another molecule.

In protein footprinting, the protein of interest is treated with a reagent that modifies specific amino acid residues in a way that can be detected and quantified. The reagents used for protein footprinting can be chemical or enzymatic, and they often target specific side chains or backbone atoms. Examples of such reagents include hydroxyl radicals, which modify the side chains of exposed amino acids; or proteases, which cleave the protein backbone at specific sequences.

The key to protein footprinting is that the presence of another molecule (e.g., DNA, RNA, or protein) can shield certain residues from modification by the reagent. By comparing the pattern of modifications in the presence and absence of the binding partner, researchers can infer which residues are in close proximity to the binding site and thus obtain information about the protein-protein or protein-nucleic acid interface.

Protein footprinting techniques include hydroxyl radical footprinting, chemical modification footprinting, enzymatic footprinting, and crosslinking mass spectrometry. These methods can be used to study various aspects of protein structure and function, such as protein folding, protein-protein interactions, protein-nucleic acid interactions, and post-translational modifications.

"Ophiostoma" is a genus of fungi that are often associated with trees and woody plants. Many species in this genus are able to cause diseases in trees, including the well-known Dutch Elm Disease, which is caused by the species Ophiostoma ulmi and Ophiostoma novo-ulmi. These fungi typically invade the sapwood of trees and can block the water-conducting vessels, leading to wilting and dieback of branches or even death of the entire tree in severe cases. The fungi produce specialized structures called perithecia, which contain asci (sexual spore-producing structures), and ascospores (sexual spores) are released from the perithecia to infect new trees. Some species of Ophiostoma can also be transported by bark beetles, which can carry the fungi into new trees and facilitate their spread.

Ribonucleic acid (RNA) is a type of nucleic acid that plays a crucial role in the process of gene expression. There are several types of RNA molecules, including messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA). These RNA molecules help to transcribe DNA into mRNA, which is then translated into proteins by the ribosomes.

Fungi are a group of eukaryotic organisms that include microorganisms such as yeasts and molds, as well as larger organisms like mushrooms. Like other eukaryotes, fungi contain DNA and RNA as part of their genetic material. The RNA in fungi is similar to the RNA found in other organisms, including humans, and plays a role in gene expression and protein synthesis.

A specific medical definition of "RNA, fungal" does not exist, as RNA is a fundamental component of all living organisms, including fungi. However, RNA can be used as a target for antifungal drugs, as certain enzymes involved in RNA synthesis and processing are unique to fungi and can be inhibited by these drugs. For example, the antifungal drug flucytosine is converted into a toxic metabolite that inhibits fungal RNA and DNA synthesis.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

The cell nucleus is a membrane-bound organelle found in the eukaryotic cells (cells with a true nucleus). It contains most of the cell's genetic material, organized as DNA molecules in complex with proteins, RNA molecules, and histones to form chromosomes.

The primary function of the cell nucleus is to regulate and control the activities of the cell, including growth, metabolism, protein synthesis, and reproduction. It also plays a crucial role in the process of mitosis (cell division) by separating and protecting the genetic material during this process. The nuclear membrane, or nuclear envelope, surrounding the nucleus is composed of two lipid bilayers with numerous pores that allow for the selective transport of molecules between the nucleoplasm (nucleus interior) and the cytoplasm (cell exterior).

The cell nucleus is a vital structure in eukaryotic cells, and its dysfunction can lead to various diseases, including cancer and genetic disorders.

Cross-linking reagents are chemical agents that are used to create covalent bonds between two or more molecules, creating a network of interconnected molecules known as a cross-linked structure. In the context of medical and biological research, cross-linking reagents are often used to stabilize protein structures, study protein-protein interactions, and develop therapeutic agents.

Cross-linking reagents work by reacting with functional groups on adjacent molecules, such as amino groups (-NH2) or sulfhydryl groups (-SH), to form a covalent bond between them. This can help to stabilize protein structures and prevent them from unfolding or aggregating.

There are many different types of cross-linking reagents, each with its own specificity and reactivity. Some common examples include glutaraldehyde, formaldehyde, disuccinimidyl suberate (DSS), and bis(sulfosuccinimidyl) suberate (BS3). The choice of cross-linking reagent depends on the specific application and the properties of the molecules being cross-linked.

It is important to note that cross-linking reagents can also have unintended effects, such as modifying or disrupting the function of the proteins they are intended to stabilize. Therefore, it is essential to use them carefully and with appropriate controls to ensure accurate and reliable results.

Factor V, also known as proaccelerin or labile factor, is a protein involved in the coagulation cascade, which is a series of chemical reactions that leads to the formation of a blood clot. Factor V acts as a cofactor for the activation of Factor X to Factor Xa, which is a critical step in the coagulation cascade.

When blood vessels are damaged, the coagulation cascade is initiated to prevent excessive bleeding. During this process, Factor V is activated by thrombin, another protein involved in coagulation, and then forms a complex with activated Factor X and calcium ions on the surface of platelets or other cells. This complex converts prothrombin to thrombin, which then converts fibrinogen to fibrin to form a stable clot.

Deficiency or dysfunction of Factor V can lead to bleeding disorders such as hemophilia B or factor V deficiency, while mutations in the gene encoding Factor V can increase the risk of thrombosis, as seen in the Factor V Leiden mutation.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Ribonucleases (RNases) are a group of enzymes that catalyze the degradation of ribonucleic acid (RNA) molecules by hydrolyzing the phosphodiester bonds. These enzymes play crucial roles in various biological processes, such as RNA processing, turnover, and quality control. They can be classified into several types based on their specificities, mechanisms, and cellular localizations.

Some common classes of ribonucleases include:

1. Endoribonucleases: These enzymes cleave RNA internally, at specific sequences or structural motifs. Examples include RNase A, which targets single-stranded RNA; RNase III, which cuts double-stranded RNA at specific stem-loop structures; and RNase T1, which recognizes and cuts unpaired guanosine residues in RNA molecules.
2. Exoribonucleases: These enzymes remove nucleotides from the ends of RNA molecules. They can be further divided into 5'-3' exoribonucleases, which degrade RNA starting from the 5' end, and 3'-5' exoribonucleases, which start at the 3' end. Examples include Xrn1, a 5'-3' exoribonuclease involved in mRNA decay; and Dis3/RRP6, a 3'-5' exoribonuclease that participates in ribosomal RNA processing and degradation.
3. Specific ribonucleases: These enzymes target specific RNA molecules or regions with high precision. For example, RNase P is responsible for cleaving the 5' leader sequence of precursor tRNAs (pre-tRNAs) during their maturation; and RNase MRP is involved in the processing of ribosomal RNA and mitochondrial RNA molecules.

Dysregulation or mutations in ribonucleases have been implicated in various human diseases, such as neurological disorders, cancer, and viral infections. Therefore, understanding their functions and mechanisms is crucial for developing novel therapeutic strategies.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

Protein C deficiency is a genetic disorder that affects the body's ability to control blood clotting. Protein C is a protein in the blood that helps regulate the formation of blood clots. When blood clots form too easily or do not dissolve properly, they can block blood vessels and lead to serious medical conditions such as deep vein thrombosis (DVT) or pulmonary embolism (PE).

People with protein C deficiency have lower than normal levels of this protein in their blood, which can increase their risk of developing abnormal blood clots. The condition is usually inherited and present from birth, but it may not cause any symptoms until later in life, such as during pregnancy, after surgery, or due to other factors that increase the risk of blood clots.

Protein C deficiency can be classified into two types: type I and type II. Type I deficiency is characterized by lower than normal levels of both functional and immunoreactive protein C in the blood. Type II deficiency is characterized by normal or near-normal levels of immunoreactive protein C, but reduced functional activity.

Protein C deficiency can be diagnosed through blood tests that measure the level and function of protein C in the blood. Treatment may include anticoagulant medications to prevent blood clots from forming or dissolve existing ones. Regular monitoring of protein C levels and careful management of risk factors for blood clots are also important parts of managing this condition.

Blood coagulation, also known as blood clotting, is a complex process that occurs in the body to prevent excessive bleeding when a blood vessel is damaged. This process involves several different proteins and chemical reactions that ultimately lead to the formation of a clot.

The coagulation cascade is initiated when blood comes into contact with tissue factor, which is exposed after damage to the blood vessel wall. This triggers a series of enzymatic reactions that activate clotting factors, leading to the formation of a fibrin clot. Fibrin is a protein that forms a mesh-like structure that traps platelets and red blood cells to form a stable clot.

Once the bleeding has stopped, the coagulation process is regulated and inhibited to prevent excessive clotting. The fibrinolytic system degrades the clot over time, allowing for the restoration of normal blood flow.

Abnormalities in the blood coagulation process can lead to bleeding disorders or thrombotic disorders such as deep vein thrombosis and pulmonary embolism.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

Muscle proteins are a type of protein that are found in muscle tissue and are responsible for providing structure, strength, and functionality to muscles. The two major types of muscle proteins are:

1. Contractile proteins: These include actin and myosin, which are responsible for the contraction and relaxation of muscles. They work together to cause muscle movement by sliding along each other and shortening the muscle fibers.
2. Structural proteins: These include titin, nebulin, and desmin, which provide structural support and stability to muscle fibers. Titin is the largest protein in the human body and acts as a molecular spring that helps maintain the integrity of the sarcomere (the basic unit of muscle contraction). Nebulin helps regulate the length of the sarcomere, while desmin forms a network of filaments that connects adjacent muscle fibers together.

Overall, muscle proteins play a critical role in maintaining muscle health and function, and their dysregulation can lead to various muscle-related disorders such as muscular dystrophy, myopathies, and sarcopenia.

"Xenopus laevis" is not a medical term itself, but it refers to a specific species of African clawed frog that is often used in scientific research, including biomedical and developmental studies. Therefore, its relevance to medicine comes from its role as a model organism in laboratories.

In a broader sense, Xenopus laevis has contributed significantly to various medical discoveries, such as the understanding of embryonic development, cell cycle regulation, and genetic research. For instance, the Nobel Prize in Physiology or Medicine was awarded in 1963 to John R. B. Gurdon and Sir Michael J. Bishop for their discoveries concerning the genetic mechanisms of organism development using Xenopus laevis as a model system.

Cyanogen bromide is a solid compound with the chemical formula (CN)Br. It is a highly reactive and toxic substance that is used in research and industrial settings for various purposes, such as the production of certain types of resins and gels. Cyanogen bromide is an alkyl halide, which means it contains a bromine atom bonded to a carbon atom that is also bonded to a cyano group (a nitrogen atom bonded to a carbon atom with a triple bond).

Cyanogen bromide is classified as a class B poison, which means it can cause harm or death if swallowed, inhaled, or absorbed through the skin. It can cause irritation and burns to the eyes, skin, and respiratory tract, and prolonged exposure can lead to more serious health effects, such as damage to the nervous system and kidneys. Therefore, it is important to handle cyanogen bromide with care and to use appropriate safety precautions when working with it.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Peptide Elongation Factor 1 (PEF1) is not a commonly used medical term, but it is a term used in biochemistry and molecular biology. Here's the definition:

Peptide Elongation Factor 1 (also known as EF-Tu in prokaryotes or EFT1A/EFT1B in eukaryotes) is a protein involved in the elongation phase of protein synthesis, specifically during translation. It plays a crucial role in delivering aminoacyl-tRNAs to the ribosome, enabling the addition of new amino acids to the growing polypeptide chain.

In eukaryotic cells, EF1A and EF1B (also known as EF-Ts) form a complex that helps facilitate the binding of aminoacyl-tRNAs to the ribosome. In prokaryotic cells, EF-Tu forms a complex with GTP and aminoacyl-tRNA, which then binds to the ribosome. Once bound, GTP is hydrolyzed to GDP, causing a conformational change that releases the aminoacyl-tRNA into the acceptor site of the ribosome, allowing for peptide bond formation. The EF-Tu/GDP complex then dissociates from the ribosome and is recycled by another protein called EF-G (EF-G in prokaryotes or EFL1 in eukaryotes).

Therefore, Peptide Elongation Factor 1 plays a critical role in ensuring that the correct amino acids are added to the growing peptide chain during protein synthesis.

Skeletal muscle, also known as striated or voluntary muscle, is a type of muscle that is attached to bones by tendons or aponeuroses and functions to produce movements and support the posture of the body. It is composed of long, multinucleated fibers that are arranged in parallel bundles and are characterized by alternating light and dark bands, giving them a striped appearance under a microscope. Skeletal muscle is under voluntary control, meaning that it is consciously activated through signals from the nervous system. It is responsible for activities such as walking, running, jumping, and lifting objects.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Phosphatidylinositol 3-Kinases (PI3Ks) are a family of enzymes that play a crucial role in intracellular signal transduction. They phosphorylate the 3-hydroxyl group of the inositol ring in phosphatidylinositol and its derivatives, which results in the production of second messengers that regulate various cellular processes such as cell growth, proliferation, differentiation, motility, and survival.

PI3Ks are divided into three classes based on their structure and substrate specificity. Class I PI3Ks are further subdivided into two categories: class IA and class IB. Class IA PI3Ks are heterodimers consisting of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85α, p85β, p55γ, or p50γ). They are primarily activated by receptor tyrosine kinases and G protein-coupled receptors. Class IB PI3Ks consist of a catalytic subunit (p110γ) and a regulatory subunit (p101 or p84/87). They are mainly activated by G protein-coupled receptors.

Dysregulation of PI3K signaling has been implicated in various human diseases, including cancer, diabetes, and autoimmune disorders. Therefore, PI3Ks have emerged as important targets for drug development in these areas.

Transfer RNA (tRNA) is a type of RNA molecule that plays a crucial role in protein synthesis. It serves as the adaptor molecule that translates the genetic code present in messenger RNA (mRNA) into the corresponding amino acids, which are then linked together to form a polypeptide chain during protein synthesis.

Aminoacyl tRNA is a specific type of tRNA molecule that has been charged or activated with an amino acid. This process is called aminoacylation and is carried out by enzymes called aminoacyl-tRNA synthetases. Each synthetase specifically recognizes and attaches a particular amino acid to its corresponding tRNA, ensuring the fidelity of protein synthesis. Once an amino acid is attached to a tRNA, it forms an aminoacyl-tRNA complex, which can then participate in translation and contribute to the formation of a new protein.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Thiostrepton is an antibiotic and antiproliferative agent that is derived from the bacterium Streptomyces azureus. It belongs to the family of thiostreptons, which are cyclic oligopeptides with unique structures and various biological activities. Thiostrepton has been used primarily in veterinary medicine for the treatment of infections caused by gram-positive bacteria, such as mastitis in cows.

In addition to its antibacterial properties, thiostrepton has also been found to have antiproliferative and proapoptotic effects on various cancer cells, including breast, ovarian, and colon cancer cells. These effects are thought to be mediated by the inhibition of protein synthesis and the regulation of gene expression. However, its use as a therapeutic agent in humans is still being investigated due to its potential toxicity and limited bioavailability.

It's worth noting that thiostrepton is not commonly used in clinical practice, and its medical definition is mainly related to its chemical structure, antibacterial properties, and potential anticancer effects.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Immunoblotting, also known as western blotting, is a laboratory technique used in molecular biology and immunogenetics to detect and quantify specific proteins in a complex mixture. This technique combines the electrophoretic separation of proteins by gel electrophoresis with their detection using antibodies that recognize specific epitopes (protein fragments) on the target protein.

The process involves several steps: first, the protein sample is separated based on size through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Next, the separated proteins are transferred onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric field. The membrane is then blocked with a blocking agent to prevent non-specific binding of antibodies.

After blocking, the membrane is incubated with a primary antibody that specifically recognizes the target protein. Following this, the membrane is washed to remove unbound primary antibodies and then incubated with a secondary antibody conjugated to an enzyme such as horseradish peroxidase (HRP) or alkaline phosphatase (AP). The enzyme catalyzes a colorimetric or chemiluminescent reaction that allows for the detection of the target protein.

Immunoblotting is widely used in research and clinical settings to study protein expression, post-translational modifications, protein-protein interactions, and disease biomarkers. It provides high specificity and sensitivity, making it a valuable tool for identifying and quantifying proteins in various biological samples.

Southern blotting is a type of membrane-based blotting technique that is used in molecular biology to detect and locate specific DNA sequences within a DNA sample. This technique is named after its inventor, Edward M. Southern.

In Southern blotting, the DNA sample is first digested with one or more restriction enzymes, which cut the DNA at specific recognition sites. The resulting DNA fragments are then separated based on their size by gel electrophoresis. After separation, the DNA fragments are denatured to convert them into single-stranded DNA and transferred onto a nitrocellulose or nylon membrane.

Once the DNA has been transferred to the membrane, it is hybridized with a labeled probe that is complementary to the sequence of interest. The probe can be labeled with radioactive isotopes, fluorescent dyes, or chemiluminescent compounds. After hybridization, the membrane is washed to remove any unbound probe and then exposed to X-ray film (in the case of radioactive probes) or scanned (in the case of non-radioactive probes) to detect the location of the labeled probe on the membrane.

The position of the labeled probe on the membrane corresponds to the location of the specific DNA sequence within the original DNA sample. Southern blotting is a powerful tool for identifying and characterizing specific DNA sequences, such as those associated with genetic diseases or gene regulation.

HLA-B52 is a specific antigen of the human leukocyte antigen (HLA) system, which is located on chromosome 6 and plays an important role in the immune system. The HLA system helps the body to recognize and distinguish its own cells from foreign substances such as viruses and bacteria.

HLA-B52 is a type of HLA-B antigen, which is a group of proteins found on the surface of cells that help the immune system identify and destroy infected or damaged cells. The HLA-B52 antigen is most commonly found in individuals of Asian descent, particularly those from Japan and Korea.

It's important to note that the presence or absence of the HLA-B52 antigen does not necessarily indicate the presence or absence of a specific disease. However, certain genetic associations have been reported between HLA-B52 and some diseases such as Behçet's disease, which is a chronic inflammatory disorder that causes symptoms such as mouth sores, genital sores, eye inflammation, and skin lesions.

Coliphages are viruses that infect and replicate within certain species of bacteria that belong to the coliform group, particularly Escherichia coli (E. coli). These viruses are commonly found in water and soil environments and are frequently used as indicators of fecal contamination in water quality testing. Coliphages are not harmful to humans or animals, but their presence in water can suggest the potential presence of pathogenic bacteria or other microorganisms that may pose a health risk. There are two main types of coliphages: F-specific RNA coliphages and somatic (or non-F specific) DNA coliphages.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

A multigene family is a group of genetically related genes that share a common ancestry and have similar sequences or structures. These genes are arranged in clusters on a chromosome and often encode proteins with similar functions. They can arise through various mechanisms, including gene duplication, recombination, and transposition. Multigene families play crucial roles in many biological processes, such as development, immunity, and metabolism. Examples of multigene families include the globin genes involved in oxygen transport, the immune system's major histocompatibility complex (MHC) genes, and the cytochrome P450 genes associated with drug metabolism.

Molecular evolution is the process of change in the DNA sequence or protein structure over time, driven by mechanisms such as mutation, genetic drift, gene flow, and natural selection. It refers to the evolutionary study of changes in DNA, RNA, and proteins, and how these changes accumulate and lead to new species and diversity of life. Molecular evolution can be used to understand the history and relationships among different organisms, as well as the functional consequences of genetic changes.

Polynucleotides are long, chain-like molecules composed of repeating units called nucleotides. Each nucleotide contains a sugar molecule (deoxyribose in DNA or ribose in RNA), a phosphate group, and a nitrogenous base (adenine, guanine, cytosine, thymine in DNA or adenine, guanine, uracil, cytosine in RNA). In DNA, the nucleotides are joined together by phosphodiester bonds between the sugar of one nucleotide and the phosphate group of the next, creating a double helix structure. In RNA, the nucleotides are also joined by phosphodiester bonds but form a single strand. Polynucleotides play crucial roles in storing and transmitting genetic information within cells.

A ribosome is a complex molecular machine found in all living cells, responsible for protein synthesis. It consists of two subunits: the smaller **ribosomal subunit** and the larger **ribosomal subunit**. These subunits are composed of ribosomal RNA (rRNA) and ribosomal proteins.

The small ribosomal subunit is responsible for decoding messenger RNA (mRNA) during protein synthesis, while the large ribosomal subunit facilitates peptide bond formation between amino acids. In eukaryotic cells, the small ribosomal subunit is composed of one 18S rRNA and approximately 30 ribosomal proteins, whereas the large ribosomal subunit contains three larger rRNAs (5S, 5.8S, and 28S or 25S) and around 45-50 ribosomal proteins.

In prokaryotic cells like bacteria, the small ribosomal subunit consists of a single 16S rRNA and approximately 21 ribosomal proteins, while the large ribosomal subunit contains three rRNAs (5S, 5.8S, and 23S) and around 30-33 ribosomal proteins.

These ribosome subunits come together during protein synthesis to form a functional ribosome, which translates the genetic code present in mRNA into a polypeptide chain (protein).

Mitochondria are specialized structures located inside cells that convert the energy from food into ATP (adenosine triphosphate), which is the primary form of energy used by cells. They are often referred to as the "powerhouses" of the cell because they generate most of the cell's supply of chemical energy. Mitochondria are also involved in various other cellular processes, such as signaling, differentiation, and apoptosis (programmed cell death).

Mitochondria have their own DNA, known as mitochondrial DNA (mtDNA), which is inherited maternally. This means that mtDNA is passed down from the mother to her offspring through the egg cells. Mitochondrial dysfunction has been linked to a variety of diseases and conditions, including neurodegenerative disorders, diabetes, and aging.

Reticulocytes are immature red blood cells that still contain remnants of organelles, such as ribosomes and mitochondria, which are typically found in developing cells. These organelles are involved in the process of protein synthesis and energy production, respectively. Reticulocytes are released from the bone marrow into the bloodstream, where they continue to mature into fully developed red blood cells called erythrocytes.

Reticulocytes can be identified under a microscope by their staining characteristics, which reveal a network of fine filaments or granules known as the reticular apparatus. This apparatus is composed of residual ribosomal RNA and other proteins that have not yet been completely eliminated during the maturation process.

The percentage of reticulocytes in the blood can be used as a measure of bone marrow function and erythropoiesis, or red blood cell production. An increased reticulocyte count may indicate an appropriate response to blood loss, hemolysis, or other conditions that cause anemia, while a decreased count may suggest impaired bone marrow function or a deficiency in erythropoietin, the hormone responsible for stimulating red blood cell production.

A "gene library" is not a recognized term in medical genetics or molecular biology. However, the closest concept that might be referred to by this term is a "genomic library," which is a collection of DNA clones that represent the entire genetic material of an organism. These libraries are used for various research purposes, such as identifying and studying specific genes or gene functions.

Peptide mapping is a technique used in proteomics and analytical chemistry to analyze and identify the sequence and structure of peptides or proteins. This method involves breaking down a protein into smaller peptide fragments using enzymatic or chemical digestion, followed by separation and identification of these fragments through various analytical techniques such as liquid chromatography (LC) and mass spectrometry (MS).

The resulting peptide map serves as a "fingerprint" of the protein, providing information about its sequence, modifications, and structure. Peptide mapping can be used for a variety of applications, including protein identification, characterization of post-translational modifications, and monitoring of protein degradation or cleavage.

In summary, peptide mapping is a powerful tool in proteomics that enables the analysis and identification of proteins and their modifications at the peptide level.

RNA splicing is a post-transcriptional modification process in which the non-coding sequences (introns) are removed and the coding sequences (exons) are joined together in a messenger RNA (mRNA) molecule. This results in a continuous mRNA sequence that can be translated into a single protein. Alternative splicing, where different combinations of exons are included or excluded, allows for the creation of multiple proteins from a single gene.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

Endoribonucleases are enzymes that cleave RNA molecules internally, meaning they cut the phosphodiester bond between nucleotides within the RNA chain. These enzymes play crucial roles in various cellular processes, such as RNA processing, degradation, and quality control. Different endoribonucleases recognize specific sequences or structural features in RNA substrates, allowing them to target particular regions for cleavage. Some well-known examples of endoribonucleases include RNase III, RNase T1, and RNase A, each with distinct substrate preferences and functions.

Prothrombin is a protein present in blood plasma, and it's also known as coagulation factor II. It plays a crucial role in the coagulation cascade, which is a complex series of reactions that leads to the formation of a blood clot.

When an injury occurs, the coagulation cascade is initiated to prevent excessive blood loss. Prothrombin is converted into its active form, thrombin, by another factor called factor Xa in the presence of calcium ions, phospholipids, and factor Va. Thrombin then catalyzes the conversion of fibrinogen into fibrin, forming a stable clot.

Prothrombin levels can be measured through a blood test, which is often used to diagnose or monitor conditions related to bleeding or coagulation disorders, such as liver disease or vitamin K deficiency.

Nuclear proteins are a category of proteins that are primarily found in the nucleus of a eukaryotic cell. They play crucial roles in various nuclear functions, such as DNA replication, transcription, repair, and RNA processing. This group includes structural proteins like lamins, which form the nuclear lamina, and regulatory proteins, such as histones and transcription factors, that are involved in gene expression. Nuclear localization signals (NLS) often help target these proteins to the nucleus by interacting with importin proteins during active transport across the nuclear membrane.

Bacteriophage lambda, often simply referred to as phage lambda, is a type of virus that infects the bacterium Escherichia coli (E. coli). It is a double-stranded DNA virus that integrates its genetic material into the bacterial chromosome as a prophage when it infects the host cell. This allows the phage to replicate along with the bacterium until certain conditions trigger the lytic cycle, during which new virions are produced and released by lysing, or breaking open, the host cell.

Phage lambda is widely studied in molecular biology due to its well-characterized life cycle and genetic structure. It has been instrumental in understanding various fundamental biological processes such as gene regulation, DNA recombination, and lysis-lysogeny decision.

Promoter regions in genetics refer to specific DNA sequences located near the transcription start site of a gene. They serve as binding sites for RNA polymerase and various transcription factors that regulate the initiation of gene transcription. These regulatory elements help control the rate of transcription and, therefore, the level of gene expression. Promoter regions can be composed of different types of sequences, such as the TATA box and CAAT box, and their organization and composition can vary between different genes and species.

Gene expression regulation in fungi refers to the complex cellular processes that control the production of proteins and other functional gene products in response to various internal and external stimuli. This regulation is crucial for normal growth, development, and adaptation of fungal cells to changing environmental conditions.

In fungi, gene expression is regulated at multiple levels, including transcriptional, post-transcriptional, translational, and post-translational modifications. Key regulatory mechanisms include:

1. Transcription factors (TFs): These proteins bind to specific DNA sequences in the promoter regions of target genes and either activate or repress their transcription. Fungi have a diverse array of TFs that respond to various signals, such as nutrient availability, stress, developmental cues, and quorum sensing.
2. Chromatin remodeling: The organization and compaction of DNA into chromatin can influence gene expression. Fungi utilize ATP-dependent chromatin remodeling complexes and histone modifying enzymes to alter chromatin structure, thereby facilitating or inhibiting the access of transcriptional machinery to genes.
3. Non-coding RNAs: Small non-coding RNAs (sncRNAs) play a role in post-transcriptional regulation of gene expression in fungi. These sncRNAs can guide RNA-induced transcriptional silencing (RITS) complexes to specific target loci, leading to the repression of gene expression through histone modifications and DNA methylation.
4. Alternative splicing: Fungi employ alternative splicing mechanisms to generate multiple mRNA isoforms from a single gene, thereby increasing proteome diversity. This process can be regulated by RNA-binding proteins that recognize specific sequence motifs in pre-mRNAs and promote or inhibit splicing events.
5. Protein stability and activity: Post-translational modifications (PTMs) of proteins, such as phosphorylation, ubiquitination, and sumoylation, can influence their stability, localization, and activity. These PTMs play a crucial role in regulating various cellular processes, including signal transduction, stress response, and cell cycle progression.

Understanding the complex interplay between these regulatory mechanisms is essential for elucidating the molecular basis of fungal development, pathogenesis, and drug resistance. This knowledge can be harnessed to develop novel strategies for combating fungal infections and improving agricultural productivity.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Fibroblasts are specialized cells that play a critical role in the body's immune response and wound healing process. They are responsible for producing and maintaining the extracellular matrix (ECM), which is the non-cellular component present within all tissues and organs, providing structural support and biochemical signals for surrounding cells.

Fibroblasts produce various ECM proteins such as collagens, elastin, fibronectin, and laminins, forming a complex network of fibers that give tissues their strength and flexibility. They also help in the regulation of tissue homeostasis by controlling the turnover of ECM components through the process of remodeling.

In response to injury or infection, fibroblasts become activated and start to proliferate rapidly, migrating towards the site of damage. Here, they participate in the inflammatory response, releasing cytokines and chemokines that attract immune cells to the area. Additionally, they deposit new ECM components to help repair the damaged tissue and restore its functionality.

Dysregulation of fibroblast activity has been implicated in several pathological conditions, including fibrosis (excessive scarring), cancer (where they can contribute to tumor growth and progression), and autoimmune diseases (such as rheumatoid arthritis).

Peptide Elongation Factor G is a term used in the field of molecular biology, specifically in the process of protein synthesis. It is a bacterial enzyme that plays a crucial role in the elongation stage of translation, which is the process by which genetic information encoded in messenger RNA (mRNA) is converted into a polypeptide chain or protein.

More specifically, Peptide Elongation Factor G (also known as EF-G or Translocase) is responsible for the translocation step during translation. After each amino acid is added to the growing peptide chain, the mRNA and tRNAs must move relative to the ribosome so that the next codon in the mRNA can be read. EF-G facilitates this movement by using energy from GTP hydrolysis to cause a conformational change in the ribosome, resulting in the translocation of the mRNA and tRNAs by one codon.

In summary, Peptide Elongation Factor G is a bacterial enzyme that plays an essential role in the elongation stage of protein synthesis by facilitating the movement of mRNA and tRNAs relative to the ribosome during translation.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

Studies show that the p70 ribosomal protein S6 kinases (S6K1 and S6K2) and p90 ribosomal protein S6 kinases (RSK) both ... Ribosomal protein S6 (rpS6 or eS6) is a component of the 40S ribosomal subunit and is therefore involved in translation. Mouse ... Ruvinsky I, Meyuhas O (June 2006). "Ribosomal protein S6 phosphorylation: from protein synthesis to cell size". Trends in ... Ribosomal+Protein+S6 at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Overview of all the structural ...
... is a ribosomal protein leader involved in the ribosome biogenesis. It is used as an ... S6), the Single-strand DNA-binding protein A (ssbA), S18 (rpsR) and L7/L12 (rpll). Ribosomal protein leader Eckert, I; Weinberg ... A S6:S18 ribosomal leader was predicted in Chlorobia, and its predicted structure differs from that of the validated S6:S18 ... Page for Ribosomal S6:S18 leader at Rfam v t e (Articles with short description, Short description matches Wikidata, Ribosomal ...
Ribosomal+Protein+S6+Kinases,+90-kDa at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Ribosomal+Protein ... There are two known mammalian homologues of S6 Kinase: S6K1 and S6K2. Both p90 and p70 Rsk phosphorylate ribosomal protein s6, ... Erikson, Eleanor; Maller, James L. (1985). "A Protein Kinase from Xenopus Eggs Specific for Ribosomal Protein S6". PNAS. 82 (3 ... In molecular biology, ribosomal s6 kinase (rsk) is a family of protein kinases involved in signal transduction. There are two ...
28S ribosomal protein S6, mitochondrial is a protein that in humans is encoded by the MRPS6 gene. Mammalian mitochondrial ... "Entrez Gene: MRPS6 mitochondrial ribosomal protein S6". Hattori M, Fujiyama A, Taylor TD, et al. (2000). "The DNA sequence of ... Overview of all the structural information available in the PDB for UniProt: P82932 (28S ribosomal protein S6, mitochondrial) ... This gene encodes a 28S subunit protein that belongs to the ribosomal protein S6P family. Pseudogenes corresponding to this ...
Ribosomal protein S6 kinase, 90kDa, polypeptide 6 is a protein in humans that is encoded by the RPS6KA6 gene. This gene encodes ... "Entrez Gene: Ribosomal protein S6 kinase, 90kDa, polypeptide 6". Retrieved 2013-01-15. v t e (Articles with short description, ... a member of ribosomal S6 kinase family, serine-threonin protein kinases which are regulated by growth factors. The encoded ... protein may be distinct from other members of this family, however, as studies suggest it is not growth factor dependent and ...
Ribosomal protein S6 kinase alpha-4 is an enzyme that in humans is encoded by the RPS6KA4 gene. This gene encodes a member of ... "Entrez Gene: RPS6KA4 ribosomal protein S6 kinase, 90kDa, polypeptide 4". Xing J, Ginty DD, Greenberg ME (1996). "Coupling of ... a novel ribosomal S6 kinase family member, is a CREB kinase under dominant control of p38alpha mitogen-activated protein kinase ... Tomás-Zuber M, Mary JL, Lesslauer W (2000). "Control sites of ribosomal S6 kinase B and persistent activation through tumor ...
Chang YW, Traugh JA (Nov 1997). "Phosphorylation of elongation factor 1 and ribosomal protein S6 by multipotential S6 kinase ... Ribosomal protein S6 kinase alpha-1 is an enzyme that in humans is encoded by the RPS6KA1 gene. This gene encodes a member of ... "Entrez Gene: RPS6KA1 ribosomal protein S6 kinase, 90kDa, polypeptide 1". Schouten GJ, Vertegaal AC, Whiteside ST, Israël A, ... Cavet ME, Lehoux S, Berk BC (May 2003). "14-3-3beta is a p90 ribosomal S6 kinase (RSK) isoform 1-binding protein that ...
As the name suggests, its target substrate is the S6 ribosomal protein. Phosphorylation of S6 induces protein synthesis at the ... Ribosomal protein S6 kinase beta-1 (S6K1), also known as p70S6 kinase (p70S6K, p70-S6K), is an enzyme (specifically, a protein ... which phosphorylate several residues of the S6 ribosomal protein. The kinase activity of this protein leads to an increase in ... "Entrez Gene: RPS6KB1 ribosomal protein S6 kinase, 70kDa, polypeptide 1". Chung J, Grammer TC, Lemon KP, Kazlauskas A, Blenis J ...
Ribosomal protein S6 kinase alpha-5 is an enzyme that in humans is encoded by the RPS6KA5 gene. This kinase, together with ... Jiang C, Yu L, Tu Q, Zhao Y, Zhang H, Zhao S (April 2000). "Assignment of a member of the ribosomal protein S6 kinase family, ... "Entrez Gene: RPS6KA5 ribosomal protein S6 kinase, 90kDa, polypeptide 5". Soloaga, Ana; Thomson, Stuart; Wiggin, Giselle R.; ... and stress-activated protein kinase-1 in adult rat cardiac myocytes by G-protein-coupled receptor agonists requires both ...
"Entrez Gene: RPS6KA3 ribosomal protein S6 kinase, 90kDa, polypeptide 3". Moller DE, Xia CH, Tang W, Zhu AX, Jakubowski M ( ... protein S6 kinase, 90kDa, polypeptide 3, also s RPS6KA3, is an enzyme that in humans is encoded by the RPS6KA3 gene. This gene ... Paudel HK (November 1997). "Phosphorylation by neuronal cdc2-like protein kinase promotes dimerization of Tau protein in vitro ... docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo". The Journal of Biological Chemistry. ...
Ribosomal protein S6 kinase alpha-2 is an enzyme that in humans is encoded by the RPS6KA2 gene. This gene encodes a member of ... "Entrez Gene: RPS6KA2 ribosomal protein S6 kinase, 90kDa, polypeptide 2". Roux, Philippe P; Richards Stephanie A; Blenis John ( ... 1999). "90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1". J. Biol. ... docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo". J. Biol. Chem. 274 (5): 2893-8. doi: ...
Ribosomal protein S6 kinase delta-1 is an enzyme that in humans is encoded by the RPS6KC1 gene. GRCm38: Ensembl release 89: ... "Entrez Gene: RPS6KC1 ribosomal protein S6 kinase, 52kDa, polypeptide 1". Hayashi S, Okada T, Igarashi N, et al. (2002). " ... a novel putative member of the ribosome protein S6 kinase family, to chromosome 12q12-q13.1". Genomics. 61 (3): 314-8. doi: ... 2004). "Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins ...
Patel HR, Terada N, Gelfand EW (1996). "Rapamycin-sensitive phosphorylation of ribosomal protein S17 by p70 S6 kinase". Biochem ... RPS17 ribosomal protein S17". Wool IG, Chan YL, Glück A (1996). "Structure and evolution of mammalian ribosomal proteins". ... The protein belongs to the S17E family of ribosomal proteins. It is located in the cytoplasm. As is typical for genes encoding ... 40S ribosomal protein S17 is a protein that in humans is encoded by the RPS17 gene. Ribosomes, the organelles that catalyze ...
Magnuson B, Ekim B, Fingar DC (January 2012). "Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR ... Plant species have TOR proteins in the protein kinase and FKBP-rapamycin binding (FRB) domains that share a similar amino acid ... mTOR links with other proteins and serves as a core component of two distinct protein complexes, mTOR complex 1 and mTOR ... "mTOR protein interactors". Human Protein Reference Database. Johns Hopkins University and the Institute of Bioinformatics. ...
Panasyuk G, Nemazanyy I, Filonenko V, Gout I (May 2008). "Ribosomal protein S6 kinase 1 interacts with and is ubiquitinated by ... "A human protein-protein interaction network: a resource for annotating the proteome". Cell. 122 (6): 957-68. doi:10.1016/j.cell ... Polyubiquitin-C is a protein encoded by the UBC gene in humans. Polyubiquitin-C is one of the sources of ubiquitin, along with ... Chen L, Dong W, Zou T, Ouyang L, He G, Liu Y, Qi Y (August 2008). "Protein phosphatase 4 negatively regulates LPS cascade by ...
Panasyuk G, Nemazanyy I, Filonenko V, Gout I (May 2008). "Ribosomal protein S6 kinase 1 interacts with and is ubiquitinated by ... RING-box protein 1 is a protein that in humans is encoded by the RBX1 gene. This gene encodes an evolutionarily conserved ... The protein plays a unique role in the ubiquitination reaction by heterodimerizing with cullin-1 to catalyze ubiquitin ... It also may be involved in the regulation of protein turn-over. RBX1 has been shown to interact with: CAND1, CUL1, CUL2, CUL4A ...
... "p90 ribosomal S6 kinase 2 exerts a tonic brake on G protein-coupled receptor signaling". Proceedings of the National Academy of ... "A human protein-protein interaction network: a resource for annotating the proteome". Cell. 122 (6): 957-68. doi:10.1016/j.cell ... "A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration". Cell. 125 (4): ... "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173-8. Bibcode:2005Natur. ...
... "p90 ribosomal S6 kinase 2 exerts a tonic brake on G protein-coupled receptor signaling". Proceedings of the National Academy of ... The NDUFB10 protein weighs 21 kDa and is composed of 172 amino acids. NDUFB10 is a subunit of the enzyme NADH dehydrogenase ( ... The protein encoded by this gene is an accessory subunit of the multisubunit NADH:ubiquinone oxidoreductase (complex I) that is ... This protein complex has NADH dehydrogenase activity and oxidoreductase activity. It transfers electrons from NADH to the ...
... which encode ribosomal protein S6 and ribosomal protein S18, respectively. The RNA was shown to interact with S6:S18 protein ... Matelska, D.; Purta, E.; Panek, S.; Boniecki, M. J.; Bujnicki, J. M.; Dunin-Horkawicz, S. (October 2013). "S6:S18 ribosomal ... contributing to the regulation of ribosomal protein levels. ... Babina AM, Soo MW, Fu Y, Meyer MM (December 2015). "An S6:S18 ... Fu Y, Deiorio-Haggar K, Soo MW, Meyer MM (February 2014). "Bacterial RNA motif in the 5' UTR of rpsF interacts with an S6:S18 ...
"S6:S18 ribosomal protein complex interacts with a structural motif present in its own mRNA". RNA. 19 (10): 1341-1348. doi: ... In addition, some ribosomal proteins not only regulate their own expression, but the expression of other proteins as well. ... These are both indications of self-replication, and indicate the possibility that the mRNA that encodes ribosomal proteins ... Harish, Ajith; Caetano-Anollés, Gustavo (2012-03-12). "Ribosomal History Reveals Origins of Modern Protein Synthesis". PLOS ONE ...
... "p90 ribosomal S6 kinase 2 exerts a tonic brake on G protein-coupled receptor signaling". Proc. Natl. Acad. Sci. U.S.A. 103 (12 ... "A human protein-protein interaction network: a resource for annotating the proteome". Cell. 122 (6): 957-68. doi:10.1016/j.cell ... "Large-scale mapping of human protein-protein interactions by mass spectrometry". Mol. Syst. Biol. 3 (1): 89. doi:10.1038/ ... "Large-scale mapping of human protein-protein interactions by mass spectrometry". Mol. Syst. Biol. 3 (1): 89. doi:10.1038/ ...
The encoded protein also associates with eukaryotic initiation factor 4E-binding protein-1 and ribosomal protein S6 kinase. It ... upregulates S6 kinase, the downstream effector ribosomal protein, and it downregulates the mTOR kinase. RPTOR also has a ... Regulatory-associated protein of mTOR also known as raptor or KIAA1303 is an adapter protein that is encoded in humans by the ... RPTOR is an evolutionarily conserved protein with multiple roles in the mTOR pathway. The adapter protein and mTOR kinase form ...
TOR also directly phosphorylates and activates the ribosomal protein S6-kinase (S6K), which promotes ribosome biogenesis. To ... This suggests that cell division may be regulated in part by dilution of Wee1 protein in cells as they grow larger. The protein ... Further experimentation with GFP-tagged proteins and mutant proteins indicates that the medial cortical nodes are formed by the ... Wee1 protein is a tyrosine kinase that normally phosphorylates the Cdc2 cell cycle regulatory protein (the homolog of CDK1 in ...
1990). "Noncoordinated expression of S6, S11, and S14 ribosomal protein genes in leukemic blast cells". Cancer Res. 50 (18): ... RPS11 ribosomal protein S11". Wool IG, Chan YL, Glück A (1996). "Structure and evolution of mammalian ribosomal proteins". ... The protein belongs to the S17P family of ribosomal proteins. It is located in the cytoplasm. The gene product of the E. coli ... 40S ribosomal protein S11 is a protein that in humans is encoded by the RPS11 gene. Ribosomes, the organelles that catalyze ...
2003). "Protein kinase C phosphorylates ribosomal protein S6 kinase betaII and regulates its subcellular localization". Mol. ... 2004). "Interferon-gamma engages the p70 S6 kinase to regulate phosphorylation of the 40S S6 ribosomal protein". Exp. Cell Res ... Ribosomal protein S6 kinase beta-2 is an enzyme that in humans is encoded by the RPS6KB2 gene. This gene encodes a member of ... "Entrez Gene: RPS6KB2 ribosomal protein S6 kinase, 70kDa, polypeptide 2". Lee-Fruman KK, Kuo CJ, Lippincott J, et al. (1999). " ...
Chang YW, Traugh JA (Nov 1997). "Phosphorylation of elongation factor 1 and ribosomal protein S6 by multipotential S6 kinase ... "A human protein-protein interaction network: a resource for annotating the proteome". Cell. 122 (6): 957-68. doi:10.1016/j.cell ... "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173-8. Bibcode:2005Natur. ... Elongation factor 1-delta is a protein that in humans is encoded by the EEF1D gene. This gene encodes a subunit of the ...
Cavet ME, Lehoux S, Berk BC (May 2003). "14-3-3beta is a p90 ribosomal S6 kinase (RSK) isoform 1-binding protein that ... 14-3-3 protein beta/alpha is a protein that in humans is encoded by the YWHAB gene. This gene encodes a protein belonging to ... This highly conserved protein family is found in both plants and mammals. The encoded protein has been shown to interact with ... Yuryev A, Wennogle LP (February 2003). "Novel raf kinase protein-protein interactions found by an exhaustive yeast two-hybrid ...
... coupling to ribosomal protein S6 phosphorylation. », Proc Natl Acad Sci, (1982) 79, p. 3935-9 Pagès G, et al., « Mitogen- ... Pouysségur J, et al., « Role of cell surface carbohydrates and proteins in cell behavior: studies on the biochemical reversion ... activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation », Proc Natl Acad Sci., (1993) 90, p. ... Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and ...
D1 receptor agonism and D2 receptor blockade also increases mRNA translation by phosphorylating ribosomal protein s6, resulting ... cAMP mediated protein kinase A activity also results in the phosphorylation of DARPP-32, an inhibitor of protein phosphatase 1 ... D2 receptor signaling may mediate protein kinase B, arrestin beta 2, and GSK-3 activity, and inhibition of these proteins ... but also signaling through different protein (dopamine receptor-interacting proteins) interactions. The neurotransmitter ...
Pathways leading to the induction of ribosomal protein S6 (rpS6) phosphorylation have also been found to enhance IL-8 protein ... In humans, the interleukin-8 protein is encoded by the CXCL8 gene. IL-8 is initially produced as a precursor peptide of 99 ... There are many receptors on the surface membrane capable of binding IL-8; the most frequently studied types are the G protein- ... Hedges JC, Singer CA, Gerthoffer WT (2000). "Mitogen-activated protein kinases regulate cytokine gene expression in human ...
Studies show that the p70 ribosomal protein S6 kinases (S6K1 and S6K2) and p90 ribosomal protein S6 kinases (RSK) both ... Ribosomal protein S6 (rpS6 or eS6) is a component of the 40S ribosomal subunit and is therefore involved in translation. Mouse ... Ruvinsky I, Meyuhas O (June 2006). "Ribosomal protein S6 phosphorylation: from protein synthesis to cell size". Trends in ... Ribosomal+Protein+S6 at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Overview of all the structural ...
... Proc ... We now provide evidence that two growth-regulated, nucleus- and cytoplasm-localized protein kinases, 90-kDa ribosomal S6 kinase ... RSK) and mitogen-activated protein kinase (MAP kinase), contribute to the serum-induced phosphorylation of c-Fos. The major ...
Phospho-S6 Ribosomal Protein (Ser240/244) (D68F8) XP® Rabbit Monoclonal Antibody (Alexa Fluor® 488 Conjugate) (CST #5018) is ... Monoclonal Antibody for studying S6 Ribosomal Protein (Ser240/Ser244) phosphate. Cited in 15 publications. Validated for ... as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein ... Phospho-S6 Ribosomal Protein (Ser240/244) (D68F8) XP® Rabbit mAb (Alexa Fluor® 488 Conjugate) detects endogenous levels of S6 ...
Phosphorylation of ribosomal protein S6 (RPS6) on ser235/236 and ser240/244 in the pancreatic beta cell increases cell size and ... 1244-P: The Protein Phosphatase PPm1k Regulates Ribosomal Protein S6 Phosphorylation in Beta Cells YANN DELEYE; YANN DELEYE ... The Protein Phosphatase PPm1k Regulates Ribosomal Protein S6 Phosphorylation in Beta Cells. Diabetes 1 June 2021; 70 ( ... Phosphorylation of ribosomal protein S6 (RPS6) on ser235/236 and ser240/244 in the pancreatic beta cell increases cell size and ...
Ribosomal Protein S6 Hypofunction in Postmortem Human Brain Links mTORC1-Dependent Signaling and Schizophrenia Authors: Ibarra- ... Ribosomal Protein S6 Hypofunction in Postmortem Human Brain Links mTORC1-Dependent Signaling and Schizophrenia Authors:. Ibarra ... Print Ribosomal Protein S6 Hypofunction in Postmortem Human Brain Links mTORC1-Dependent Signaling and Schizophrenia ... Ribosomal Protein S6 Hypofunction in Postmortem Human Brain Links mTORC1-Dependent Signaling and Schizophrenia ...
A database of ligand-responsive protein sequences... HOME SEARCH LIGANDS SEQUENCES ABOUT Human ribosomal protein S6 kinase B1. ...
S6 Ribosomal Protein Mouse Monoclonal Antibody detects endogenous levels of S6 Ribosomal Protein protein.. ... The protein belongs to the S6E family of ribosomal proteins. It is the major substrate of protein kinases in the ribosome, with ... Western blot analysis of extracts on different cells, using S6 Ribosomal Protein Mouse Monoclonal Antibody (EAB21309) at 1:1000 ... Protein Agonists, Antagonists and Activators. Protein Inhibitors. Protein Substrates. Stains, Dyes and Fluorescent Reagents. ...
Ribosomal Protein S6 Kinases [D08.811.913.696.620.682.700.862]. *Ribosomal Protein S6 Kinases, 90-kDa [D08.811.913.696.620.682. ... A family of ribosomal protein S6 kinases that are structurally distinguished from RIBOSOMAL PROTEIN S6 KINASES, 70-KDA by their ... Ribosomal Protein S6 Kinases, 90-kDa*Ribosomal Protein S6 Kinases, 90-kDa ... "Ribosomal Protein S6 Kinases, 90-kDa" by people in UAMS Profiles by year, and whether "Ribosomal Protein S6 Kinases, 90-kDa" ...
Ribosomal protein S6 mRNA is a biomarker upregulated in multiple sclerosis, downregulated by interferon treatment, and affected ... Results: The MS/TCAGE association was replicated and rationalized to a single marker, ribosomal protein S6 (RPS6). Expression ...
... and 40S ribosomal protein S6 kinase 1 (S6K1) to promote protein synthesis [3, 4]. The phosphorylated form of 40S ribosome ... rabbit anti-total-S6 Ribosomal Protein (1:1000, Cell Signaling #2217), rabbit anti-TSC1 (1:500, Abcam #ab25882), rabbit anti- ... rabbit anti-phospho-S6 Ribosomal Protein (1:1000, Cell Signaling # 4858), rabbit anti-GAPDH (1:5000, Cell Signaling #2118), ... d Normalized LC3B-II protein levels for experiments shown in a before PI treatment. b-d Quantifications of LC3B-I/II protein ...
... mTOR stimulates the creation of proteins through downstream effectors S6K and ribosomal protein S6 (protein synthesis including ... mTOR stimulates the creation of proteins through downstream effectors S6K and ribosomal protein S6 (protein synthesis including ... mTOR stimulates the creation of proteins through downstream effectors S6K and ribosomal protein S6 (protein synthesis including ... mTOR stimulates the production of proteins through downstream effectors S6K and ribosomal protein Ruxolitinib sulfate S6 ( ...
Ribosomal Protein S6 Kinases, 90-kDa * ribosomal protein S6 kinase, 90kDa, polypeptide 3 ...
Ribosomal protein S6 kinase alpha-3. A. 342. Homo sapiens. Mutation(s): 1 Gene Names: ISPK1, MAPKAPK1B, RPS6KA3, RSK2. EC: 2.7. ... covalent inhibitors of the p90 ribosomal protein S6 kinase RSK2. A cocrystal structure revealed specific noncovalent ... Disruption of these interactions by protein unfolding or proteolysis promoted instantaneous cleavage of the covalent bond. Our ... a chemistry-based framework for engineering sustained covalent inhibition without accumulating permanently modified proteins ...
... ribosomal protein S6 kinase beta-1; ERK1/2, extracellular signal-regulated kinase 1 and 2; PI3, phosphoinositide 3-kinase; AKT ... protein kinase B; Ankrd1, ankyrin repeat domain 1; MuRF1, muscle RING-finger protein-1; MGF, mechanogrowth factor; MCT1/4, ... Effect of resistance exercise on muscle steroid receptor protein content in strength-trained men and women. Steroids. 2009;74( ... The effects of varying doses of T on insulin sensitivity, plasma lipids, apolipoproteins, and C-reactive protein in healthy ...
ribosomal protein S6 kinase 3. 1.0e+000. 1.43. 21. AAC82495.1. 6.1. 66.28. 4.5. 42. ... Protein. Sequence. Theoretical value. Experimental value. Probability. Estd Z. Coverage (%). ncbi ID. pH. Mr (kDa). pH. Mr ( ... S6. PSAPL1 protein. 5.3e+001. 0.3. 7. AAH68579.1. 8.7. 60.74. 8.5. 55. ... Hypothetical protein. 9.8e-001. 1.42. 32. CAD38695.1. 10.1. 68.73. 6.0. 50. ...
Ribosomal Protein S6 Kinase 1 Signaling Regulates Mammalian Life Span. Science 2009, 326, 140-144. [Google Scholar] [CrossRef ... Sirtuins, silent information regulator 2 (sir2) proteins, are protein deacetylases that require NAD+ as a cofactor for the ... Iwasaki, K.; Gleiser, C.A.; Masoro, E.J.; McMahan, C.A.; Seo, E.J.; Yu, B.P. The influence of dietary protein source on ... Martins, R.; Lithgow, G.J.; Link, W. Long live FOXO: Unraveling the role of FOXO proteins in aging and longevity. Aging Cell ...
... from d.58.14.1 Ribosomal protein S6. Timeline for Species Thermus thermophilus [TaxId:274] from d.58.14.1 Ribosomal protein S6: ... from d.58.14.1 Ribosomal protein S6 appears in SCOP 1.57. *Species Thermus thermophilus [TaxId:274] from d.58.14.1 Ribosomal ... Other proteins in same PDB: d1g1xb_, d1g1xc_, d1g1xg_, d1g1xh_. *. Domain d1g1xf_: 1g1x F: [39328]. Other proteins in same PDB ... Family d.58.14.1: Ribosomal protein S6 [54996] (1 protein). *. Protein Ribosomal protein S6 [54997] (1 species). ...
40S ribosomal protein S26: D. 40S ribosomal protein S4, X isoform: E. 60S ribosomal protein L41: F. 40S ribosomal protein S6: G ... 40S ribosomal protein S7: H. 40S ribosomal protein S8: I. 40S ribosomal protein S9: J. 40S ribosomal protein S11: K. 40S ... 40S ribosomal protein S21: M. 40S ribosomal protein S15a: N. 40S ribosomal protein S24: O. 40S ribosomal protein S27: P. 40S ... 40S ribosomal protein S17: S. 40S ribosomal protein S3: T. 40S ribosomal protein S5: U. 40S ribosomal protein S10: V. 40S ...
30S ribosomal protein S6: 8. 30S ribosomal protein S7: 9. 30S ribosomal protein S8: a. 30S ribosomal protein S9: b. 30S ... 50S ribosomal protein L2: A. 50S ribosomal protein L3: B. 50S ribosomal protein L4: C. 50S ribosomal protein L5: D. 50S ... 50S ribosomal protein L9: F. 50S ribosomal protein L10: G. 50S ribosomal protein L11: H. 50S ribosomal protein L13: I. 50S ... 50S ribosomal protein L15: K. 50S ribosomal protein L16: L. 50S ribosomal protein L17: M. 50S ribosomal protein L18: N. 50S ...
... activated protein kinase (AMPK) pathway in MIN-6 cells. Inhibition of autophagy with autophagy inhibitor 3-methyladenine (3-MA ... ribosomal protein S6 kinase) antibody (Cell Signaling Technology, USA, 2708); anti-phospho-S6K antibody (Cell Signaling ... also showed that β cells induced lysosomal degradation of proinsulin through PKD (protein kinase D) under starvation [29]. When ... The extracts were heated to 100°C for 10 min and then mixed with 6× protein loading buffer (TransGen, China, J21020) and heated ...
The HIF-1 activation-inhibitory effects of this compound were associated with the suppression of mTOR/ribosomal protein S6 ... ribosomal protein S6 kinase (p70S6K) and eukaryotic initiation factor 4E (eIF4E) and extracellular signal-regulated kinase (ERK ... An aliquot of protein extracts was used to determine protein concentration by the Bradford method. Fifty micrograms of whole- ... To address the effect of celastrol on HIF-1α protein stability, the protein translation inhibitor CHX was used to prevent de ...
Name: ribosomal protein S6 kinase, polypeptide 2. Synonyms: Rsk3, Rps6ka-rs1, pp90rsk, D17Wsu134e, 90kDa, p90rsk ...
The N5-676 monoclonal antibody specifically detects the S6 ribosomal protein phosphorylated at S244.,/span> ... The N5-676 monoclonal antibody specifically detects the S6 ribosomal protein phosphorylated at S244.,/span> ... is a component of the 40S ribosomal subunit and belongs to the S6E family of ribosomal proteins. The S6 ribosomal protein plays ... The activated S6 ribosomal protein in turn upregulates the ribosomal translation of RNA species coding for other ribosomal ...
Ribosomal protein S6 kinase beta-1 gene variants cause hypertrophic cardiomyopathy.. J Med Genet. 59(10):984-992.*PubMed ... FMRP Interacts with C/D Box snoRNA in the Nucleus and Regulates Ribosomal RNA Methylation.. iScience. 9:399-411.*PubMed ... Cytoplasmic poly (A) binding protein (PABPC2) critically regulates epidermal maintenance and turnover in planarian Schmidtea ...
Ribosomal protein S6 kinase beta-1 gene variants cause hypertrophic cardiomyopathy.. J Med Genet. 59(10):984-992.*PubMed ...
ribosomal protein S6 , S6 Background Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit ... The protein belongs to the S6E family of ribosomal proteins. It is the major substrate of protein kinases in the ribosome, with ... As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through ... This gene encodes a cytoplasmic ribosomal protein that is a component of the 40S subunit. ...
RPS5; ribosomal protein S5 [KO:K02989]. 6194 RPS6; ribosomal protein S6 [KO:K02991]. ... RPLP0; ribosomal protein lateral stalk subunit P0 [KO:K02941]. 6176 RPLP1; ribosomal protein lateral stalk subunit P1 [KO: ... RPLP2; ribosomal protein lateral stalk subunit P2 [KO:K02943]. 102723407 IGH; immunoglobulin heavy variable 4-38-2-like [KO: ... PRKCG; protein kinase C gamma [KO:K19663] [EC:2.7.11.13]. 5594 MAPK1; mitogen-activated protein kinase 1 [KO:K04371] [EC:2.7. ...
... the ribosomal protein S6 kinases pp90rsk and pp70S6K (Tan et al., 1996) and the Ras/mitogen-activated protein kinasespp42,44 ( ... as well as S6 kinases, also regulate cell hypertrophy by inducing protein synthesis, translation initiation factors, and ... Fgf2 has been shown to induce an early response gene involved in ribosomal protein synthesis, and it is required for the ... Ras and S6 kinases activate the cdk2/4 and their respective D cyclins, promoting reentry into S phase (Leone et al., 1997; ...
2006). Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem. Sci. 31, 342-348. doi:10.1016 ... In the liver, insulin activates S6 kinase through the AKT pathway, which promotes protein synthesis and causes an increase in ... 2007). Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu. Rev. Nutr. 27, 293-310. doi: ... S6 The features extracted by tensor decomposition. a Distribution of model parameters and Feature 1 (Fig. 3b). Circles and ...
Protein Name. 30S ribosomal protein S6. Gene. rpsF. Swiss-Prot number. Q9JU24. ...
  • Studies show that the p70 ribosomal protein S6 kinases (S6K1 and S6K2) and p90 ribosomal protein S6 kinases (RSK) both phosphorylate eS6 and that S6K1 and S6K2 predominate this function. (wikipedia.org)
  • We now provide evidence that two growth-regulated, nucleus- and cytoplasm-localized protein kinases, 90-kDa ribosomal S6 kinase (RSK) and mitogen-activated protein kinase (MAP kinase), contribute to the serum-induced phosphorylation of c-Fos. (nih.gov)
  • Ribosomal Protein S6 Kinases, 90-kDa" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus, MeSH (Medical Subject Headings) . (uams.edu)
  • A family of ribosomal protein S6 kinases that are structurally distinguished from RIBOSOMAL PROTEIN S6 KINASES, 70-KDA by their apparent molecular size and the fact they contain two functional kinase domains. (uams.edu)
  • Although considered RIBOSOMAL PROTEIN S6 KINASES, members of this family are activated via the MAP KINASE SIGNALING SYSTEM and have been shown to act on a diverse array of substrates that are involved in cellular regulation such as RIBOSOMAL PROTEIN S6 and CAMP RESPONSE ELEMENT-BINDING PROTEIN. (uams.edu)
  • This graph shows the total number of publications written about "Ribosomal Protein S6 Kinases, 90-kDa" by people in UAMS Profiles by year, and whether "Ribosomal Protein S6 Kinases, 90-kDa" was a major or minor topic of these publications. (uams.edu)
  • Below are the most recent publications written about "Ribosomal Protein S6 Kinases, 90-kDa" by people in Profiles over the past ten years. (uams.edu)
  • It is the major substrate of protein kinases in the ribosome, with subsets of five C-terminal serine residues phosphorylated by different protein kinases. (genetex.com)
  • Protein kinases are one of the largest and most influential of gene families: constituting some 2% of the proteome, they regulate almost all biochemical pathways and may phosphorylate up to 30% of the proteome. (wormbook.org)
  • Protein kinases constitute one of the largest and most important of protein families, accounting for ~2% of genes in a variety of eukaryotic genomes. (wormbook.org)
  • By phosphorylating substrate proteins, kinases modify the activity, location and affinities of up to 30% of all cellular proteins, and direct most cellular processes, particularly in signal transduction and co-ordination of complex pathways. (wormbook.org)
  • Most protein kinases share a common ePK (eukaryotic protein kinase) catalytic domain, and can be identified by sequence similarity with Blast or profile hidden Markov models (HMMs). (wormbook.org)
  • The remaining atypical protein kinases (aPK) belong to several families, some of which have structural, but not sequence similarity to ePKs. (wormbook.org)
  • We identified 438 protein kinase genes, including 20 atypical kinases, and an additional 25 kinase fragments or pseudogenes. (wormbook.org)
  • The p70 ribosomal S6 kinases (S6K) and p90 ribosomal S6 kinases (RSK) are distinct families of Ser/Thr kinases (EC 2.7.11.1) that regulate diverse cellular processes by phosphorylation of ribosomal protein S6 (Rps6). (axonmedchem.com)
  • A family of protein serine/threonine kinases which act as intracellular signalling intermediates. (bvsalud.org)
  • Ribosomal protein S6 kinases are activated through phosphorylation in response to a variety of HORMONES and INTERCELLULAR SIGNALING PEPTIDES AND PROTEINS. (bvsalud.org)
  • Although specific for RIBOSOMAL PROTEIN S6 members of this class of kinases can act on a number of substrates within the cell. (bvsalud.org)
  • The immunosuppressant SIROLIMUS inhibits the activation of ribosomal protein S6 kinases. (bvsalud.org)
  • Ribosomal protein S6 (rpS6 or eS6) is a component of the 40S ribosomal subunit and is therefore involved in translation. (wikipedia.org)
  • Phosphorylation of ribosomal protein S6 (RPS6) on ser235/236 and ser240/244 in the pancreatic beta cell increases cell size and insulin content and influences systemic glucose homeostasis. (diabetesjournals.org)
  • Our phosphoproteomic analysis identified the protein phosphatase, PPm1K, as a novel regulator of RPS6 phosphorylation. (diabetesjournals.org)
  • PPm1K knockdown did not increase phosphorylation of p70 S6 Kinase (S6K) or the mammalian target of rapamycin (mTOR) upstream of RPS6 suggesting that PPm1K regulates RPS6 phosphorylation in an mTOR-S6K independent manner. (diabetesjournals.org)
  • The effects of siRNA-mediated PPm1K knockdown on RPS6 phosphorylation were accompanied by a 1.5 fold increase in protein translation and the induction of an unfolded protein response as determined by an increase in XBP-1 splicing, and BiP expression. (diabetesjournals.org)
  • Together our data identify a new role for the phosphatase PPm1K as a glucose sensitive modulator of RPS6 phosphorylation and protein translation that impacts beta cell insulin content and secretion. (diabetesjournals.org)
  • Results: The MS/TCAGE association was replicated and rationalized to a single marker, ribosomal protein S6 (RPS6). (edu.au)
  • Recombinant protein encompassing a sequence within the center region of human RPS6. (genetex.com)
  • RPS6 antibody detects RPS6 protein at cytoplasm and nucleus by immunofluorescent analysis. (genetex.com)
  • RPS6 is a protein with 28 kDa. (msgp.pt)
  • For instance, it can be activated by oncogenic mutations of PTEN, VHL, the RAS/mitogen-activated protein kinase (MAPK) pathway and the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway. (spandidos-publications.com)
  • The main IRS-1 downstream signaling pathways include type I phosphatidylinositol 3-kinase (PI3K)/Akt (PKB: protein kinase B), mammalian target of rapamycin (mTOR), and mitogen activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK). (biomedcentral.com)
  • Active mTORC1 phosphorylates the eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) and 40S ribosomal protein S6 kinase 1 (S6K1) to promote protein synthesis [ 3 , 4 ]. (springer.com)
  • PI3KCA E545K expression conferred resistance to MEKi plus CDK4i in NRAS-mutant melanoma cell lines and increased phosphorylation of S6 and its upstream kinase S6K1. (aacrjournals.org)
  • S6 is activated downstream of mTOR, and additional inhibition of mTOR or S6K1 reduced S6 phosphorylation and resensitized PI3KCA E545K cells to MEKi plus CDK4i. (aacrjournals.org)
  • The ribosomal protein S6 kinase 1 (S6K1) is one of two mammalian p70-RSK proteins, acting as a downstream mediator of mammalian target of rapamycin (mTOR) in the phosphoinositide 3-kinase (PI3K) pathway and/or the Ras-MAPK pathway . (axonmedchem.com)
  • Autophagy is either positively mediated by the adenosine 5′-monophosphate (AMP) activated protein kinase (AMPK) pathway [ 12 ], or negatively mediated by the mammalian target of rapamycin (mTOR) pathway [ 13 ]. (hindawi.com)
  • Markedly, we found that suppression of HIF-1α accumulation by celastrol correlated with strong dephosphorylation of mammalian target of rapamycin (mTOR) and its effectors, ribosomal protein S6 kinase (p70S6K) and eukaryotic initiation factor 4E (eIF4E) and extracellular signal-regulated kinase (ERK), pathways known to regulate HIF-1α expression at the translational level. (spandidos-publications.com)
  • ROS decreased the mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase signaling, while overexpression of IRS-1 attenuated this inhibition. (biomedcentral.com)
  • Similarly, primary cilia have been implicated in regulation of mTOR signaling, in which Tuberous Sclerosis Complex proteins 1 and 2 (TSC1/2) negatively regulate protein synthesis by inactivating the mTOR complex 1 (mTORC1) at energy limiting states. (springer.com)
  • mTor is one of the body's protein synthesis regulators and energy sensors. (ironmagazine.com)
  • mTor increases protein synthesis in two different ways. (ironmagazine.com)
  • mTor activates the protein known as ribosomal protein S6. (ironmagazine.com)
  • So, not only does mTor increase protein synthesis, it also increases the capacity for protein synthesis. (ironmagazine.com)
  • mTor also inactivates the binding protein 4E-BP1, and this allows the eIF4E*eIF4G complex to form, which is crucial for allowing protein synthesis to take place. (ironmagazine.com)
  • mTor is sensitive to leucine, and low leucine concentrations signal to mTor that there is not enough dietary protein available to build new muscle tissue. (ironmagazine.com)
  • Increased leucine levels signal to mTor that there is enough dietary protein available, and mTor is turned on to start the process of building more muscle tissue. (ironmagazine.com)
  • Though it's not known how exactly leucine activates mTor, it's known that mTor is very sensitive to leucine concentrations, and mTor is critical for an increase in protein synthesis, which equates to more muscle growth. (ironmagazine.com)
  • High levels of ATP activate mTor, and AMP kinase halts the activation of mTor and protein synthesis. (ironmagazine.com)
  • When there isn't enough leucine present, mTor is signaled that there isn't enough building blocks to build muscle tissue and protein synthesis it shut off. (ironmagazine.com)
  • mTor uses leucine as the standard amino acid to turn protein synthesis on or off, so this amino acid should be a staple post workout. (ironmagazine.com)
  • Phosphorylation of RIBOSOMAL PROTEIN S6 by enzymes in this class results in increased expression of 5' top MRNAs. (bvsalud.org)
  • This compound markedly decreased the hypoxia-induced accumulation of HIF-1α protein dose-dependently, whereas it did not affect the expressions of HIF-1β and topoisomerase-I (topo‑I). Furthermore, celastrol prevented hypoxia-induced expression of HIF-1 target genes for vascular endothelial growth factor (VEGF) and erythropoietin (EPO). (spandidos-publications.com)
  • As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome. (genetex.com)
  • Briefly, miRNAs are expected to account for 1-5% of the human genome and to interfere with at least 30% of the protein-coding genes ( 4 , 5 ). (frontiersin.org)
  • Pathways leading to the induction of human eS6 phosphorylation have been found to enhance IL-8 protein synthesis. (wikipedia.org)
  • Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. (ebiocell.com)
  • In the presence of nutrients, mTORC1 is activated and promotes cell growth, including protein synthesis and energy storage. (springer.com)
  • Further analysis revealed that celastrol inhibited HIF-1α protein synthesis, without affecting the expression level of HIF-1α mRNA or degradation of HIF-1α protein. (spandidos-publications.com)
  • Insulin reduces blood amino acid concentrations by limiting the release of amino acids into the bloodstream from skeletal muscle 18 , 20 and promoting protein synthesis in the liver and other tissues 3 . (biorxiv.org)
  • It plays a key role in cell growth and proliferation by regulating INS sensitivity, metabolism, protein synthesis, and cell cycle. (ptglab.com)
  • Supplementing with BCAAs has been shown to increase protein synthesis and decrease muscle breakdown. (ironmagazine.com)
  • While many amino acids play a role in building muscle tissue, leucine is the only amino acid that is proven to be anabolic by directly increasing protein synthesis. (ironmagazine.com)
  • Leucine is unique in its ability to stimulate protein synthesis. (ironmagazine.com)
  • Leucine has an impact on protein synthesis that is up to ten times greater than any other amino acid! (ironmagazine.com)
  • This protein increases the synthesis of components of the protein synthesis pathway. (ironmagazine.com)
  • Ingesting leucine at particular times is critical to increase protein synthesis and to slow muscle degradation. (ironmagazine.com)
  • When ample amounts of leucine are present during training, it keeps the protein synthesis pathway from being shutdown. (ironmagazine.com)
  • This is a period of time when muscle cells are primed for protein synthesis, but only if the right nutrition is consumed. (ironmagazine.com)
  • The protein belongs to the S6E family of ribosomal proteins. (genetex.com)
  • This gene encodes a cytoplasmic ribosomal protein that is a component of the 40S subunit. (genetex.com)
  • The specificity of mAb N5-676 was confirmed by western blot analysis using unconjugated Mouse anti-S6 (pS244) antibody on lysates from untreated (lane 1) or PMA-treated (lane 2) PBMC. (bdbiosciences.com)
  • The protein may contribute to the control of cell growth and proliferation through the selective translation of particular classes of mRNA. (genetex.com)
  • Application of unidirectional pulsatile shear stress to human umbilical vein endothelial cells (HUVECs) decreased PDCD4 protein but not mRNA level. (plos.org)
  • Specifically, the PDCD4 protein combines directly with the mRNA coding region of the target gene ( MYB/c-MYB ) to block translation [2] . (plos.org)
  • RSK phosphorylates a variety of proteins, including transcription factors, immediate-early gene products, translational regulators, enzymes, and structural proteins, that potentially link it to many biological processes such as cell proliferation, cell differentiation, and survival. (axonmedchem.com)
  • Our results establish a chemistry-based framework for engineering sustained covalent inhibition without accumulating permanently modified proteins and peptides. (rcsb.org)
  • The insulin receptor substrate (IRS) proteins are a family of cytoplasmic adaptor proteins recognized for their role in insulin signaling. (biomedcentral.com)
  • The phosphorylated form of 40S ribosome protein S6 is thus a marker for mTORC1 activity. (springer.com)
  • Ribosomal+Protein+S6 at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Overview of all the structural information available in the PDB for UniProt: P62753 (Human 40S ribosomal protein S6) at the PDBe-KB. (wikipedia.org)
  • 2017. Cytoplasmic poly (A) binding protein (PABPC2) critically regulates epidermal maintenance and turnover in planarian Schmidtea mediterranea. . (ncbs.res.in)
  • SCOP: Structural Classification of Proteins and ASTRAL. (berkeley.edu)
  • p90 ribosomal S6 kinase and p70 ribosomal S6 kinase link phosphorylation of the eukaryotic chaperonin containing TCP-1 to growth factor, insulin, and nutrient signaling. (axonmedchem.com)
  • Confocal immunofluorescent analysis of HeLa cells, insulin-treated (left) and LY294002-treated (#9901, right), using Phospho-S6 Ribosomal Protein (Ser240/244) (D68F8) XP ® Rabbit mAb (Alexa Fluor 488 ® Conjugate) (green). (cellsignal.com)
  • Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. (genetex.com)
  • Evidence for GO induced autophagy includes increased levels of isoform B-II microtubule-associated protein 1 light chain 3 (LC3), aggregation of green fluorescence protein-tagged LC3, and increased numbers of autophagic vacuoles in cells. (biomedcentral.com)
  • A protein modification that effectively converts an L-serine residue to O-phospho-L-serine. (reactome.org)
  • Conversely, during starvation mTORC1 is inhibited and autophagy is induced by AMP-activated protein kinase (AMPK), leading to generation of intracellular nutrients and energy during degradation of non-functional or non-essential organelles or protein aggregates [ 4 , 6 ], in turn contributing to cell survival. (springer.com)
  • 2018. FMRP Interacts with C/D Box snoRNA in the Nucleus and Regulates Ribosomal RNA Methylation. . (ncbs.res.in)
  • Incorporation of these electrophiles into a noncovalent kinase-recognition scaffold produced slowly dissociating, covalent inhibitors of the p90 ribosomal protein S6 kinase RSK2. (rcsb.org)
  • S6 Ribosomal Protein Mouse Monoclonal Antibody detects endogenous levels of S6 Ribosomal Protein protein. (ebiocell.com)
  • Herein, we showed that glibenclamide promoted insulin release and further activated autophagy through the adenosine 5′-monophosphate (AMP) activated protein kinase (AMPK) pathway in MIN-6 cells. (hindawi.com)
  • Autophagy is a self-protective pathway of cell catabolism that allows cells to degrade misfolded proteins or damaged organelles, providing energy for cells and maintaining their homeostasis [ 10 , 11 ]. (hindawi.com)
  • In vivo studies further confirmed the inhibitory effect of celastrol on the expression of HIF-1α proteins, leading to a decreased growth of Hep3B cells in a xenograft tumor model. (spandidos-publications.com)
  • The role of the regulatory T cell transcription factor Foxp3 in shaping the transcriptosomes of natural and induced regulatory T cells was analyzed using mice expressing a mutant FOXP3-EGFP fusion protein (Foxp3deltaEGFP). (gsea-msigdb.org)
  • RPS6KB1(Ribosomal protein S6 kinase beta-1) is also named as STK14A, p70 S6KA and belongs to the S6 kinase subfamily. (ptglab.com)
  • RPS6KB1 is a 70 kDa protein and has 5 isoforms with the calculated molecular mass of 51-59 kDa produced by alternative initiation. (ptglab.com)
  • Analysis of S6 (pS244) in activated human peripheral blood mononuclear cells (PBMC). (bdbiosciences.com)
  • Unless otherwise stated all data on this page refer to the human proteins. (guidetopharmacology.org)
  • Protein binding assays determined that bystin binds directly to trophinin and tastin, and that binding is enhanced when cytokeratins 8 and 18 are present. (nih.gov)
  • IRS-1 protein binds to several oncogene proteins. (biomedcentral.com)
  • CD184 is a member of the G-protein-coupled chemokine receptor family with seven membrane-spanning domains, and functions as a coreceptor for X4 HIV-1 entry into CD4+ cells. (thermofisher.com)
  • The heterodimeric TSC complex negatively regulates mTORC1 activity via the GTPase activity of TSC2, towards the small G-protein RHEB (Ras homologue enriched in brain) [ 5 ]. (springer.com)