A group of viruses in the PNEUMOVIRUS genus causing respiratory infections in various mammals. Humans and cattle are most affected but infections in goats and sheep have also been reported.
Pneumovirus infections caused by the RESPIRATORY SYNCYTIAL VIRUSES. Humans and cattle are most affected but infections in goats and sheep have been reported.
The type species of PNEUMOVIRUS and an important cause of lower respiratory disease in infants and young children. It frequently presents with bronchitis and bronchopneumonia and is further characterized by fever, cough, dyspnea, wheezing, and pallor.
A species of PNEUMOVIRUS causing an important respiratory infection in cattle. Symptoms include fever, conjunctivitis, and respiratory distress.
Vaccines or candidate vaccines used to prevent infection with RESPIRATORY SYNCYTIAL VIRUSES.
Infections with viruses of the genus RESPIROVIRUS, family PARAMYXOVIRIDAE. Host cell infection occurs by adsorption, via HEMAGGLUTININ, to the cell surface.
An acute inflammatory disease of the lower RESPIRATORY TRACT, caused by paramyxoviruses, occurring primarily in infants and young children; the viruses most commonly implicated are PARAINFLUENZA VIRUS TYPE 3; RESPIRATORY SYNCYTIAL VIRUS, HUMAN; and METAPNEUMOVIRUS.
Glycoprotein from Sendai, para-influenza, Newcastle Disease, and other viruses that participates in binding the virus to cell-surface receptors. The HN protein possesses both hemagglutinin and neuraminidase activity.
Proteins, usually glycoproteins, found in the viral envelopes of a variety of viruses. They promote cell membrane fusion and thereby may function in the uptake of the virus by cells.
A subfamily of the family MURIDAE comprised of 69 genera. New World mice and rats are included in this subfamily.
Inflammation of the BRONCHIOLES.
Invasion of the host RESPIRATORY SYSTEM by microorganisms, usually leading to pathological processes or diseases.
The top portion of the pharynx situated posterior to the nose and superior to the SOFT PALATE. The nasopharynx is the posterior extension of the nasal cavities and has a respiratory function.
A genus of the subfamily PNEUMOVIRINAE, containing two members: Turkey rhinotracheitis virus and a human Metapneumovirus. Virions lack HEMAGGLUTININ and NEURAMINIDASE.
Proteins found in any species of virus.
Infections with viruses of the family PARAMYXOVIRIDAE. This includes MORBILLIVIRUS INFECTIONS; RESPIROVIRUS INFECTIONS; PNEUMOVIRUS INFECTIONS; HENIPAVIRUS INFECTIONS; AVULAVIRUS INFECTIONS; and RUBULAVIRUS INFECTIONS.
Immunoglobulins produced in response to VIRAL ANTIGENS.
Substances elaborated by viruses that have antigenic activity.
A general term for diseases produced by viruses.
The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle.
Inflammation of the lung parenchyma that is caused by a viral infection.
Layers of protein which surround the capsid in animal viruses with tubular nucleocapsids. The envelope consists of an inner layer of lipids and virus specified proteins also called membrane or matrix proteins. The outer layer consists of one or more types of morphological subunits called peplomers which project from the viral envelope; this layer always consists of glycoproteins.
A species of RESPIROVIRUS frequently isolated from small children with pharyngitis, bronchitis, and pneumonia.
Process of growing viruses in live animals, plants, or cultured cells.
The type species of ORTHOPOXVIRUS, related to COWPOX VIRUS, but whose true origin is unknown. It has been used as a live vaccine against SMALLPOX. It is also used as a vector for inserting foreign DNA into animals. Rabbitpox virus is a subspecies of VACCINIA VIRUS.
Viruses whose genetic material is RNA.
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50).
Ribonucleic acid that makes up the genetic material of viruses.
A species of the genus PNEUMOVIRUS causing pneumonia in mice.
Fluid obtained by THERAPEUTIC IRRIGATION or washout of the nasal cavity and NASAL MUCOSA. The resulting fluid is used in cytologic and immunologic assays of the nasal mucosa such as with the NASAL PROVOCATION TEST in the diagnosis of nasal hypersensitivity.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
Established cell cultures that have the potential to propagate indefinitely.
Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly.
A genus of the family PARAMYXOVIRIDAE (subfamily PARAMYXOVIRINAE) where all the virions have both HEMAGGLUTININ and NEURAMINIDASE activities and encode a non-structural C protein. SENDAI VIRUS is the type species.
A CELL LINE derived from the kidney of the African green (vervet) monkey, (CERCOPITHECUS AETHIOPS) used primarily in virus replication studies and plaque assays.
Diseases of domestic cattle of the genus Bos. It includes diseases of cows, yaks, and zebus.
An infant during the first month after birth.
Divisions of the year according to some regularly recurrent phenomena usually astronomical or climatic. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Suspensions of attenuated or killed viruses administered for the prevention or treatment of infectious viral disease.
A species of RESPIROVIRUS, subfamily PARAMYXOVIRINAE, most often seen in conjunction with a secondary infection of MANNHEIMIA HAEMOLYTICA resulting in pneumonic pasteurellosis (PASTEURELLOSIS, PNEUMONIC).
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The expelling of virus particles from the body. Important routes include the respiratory tract, genital tract, and intestinal tract. Virus shedding is an important means of vertical transmission (INFECTIOUS DISEASE TRANSMISSION, VERTICAL).
Infections with viruses of the genus PNEUMOVIRUS, family PARAMYXOVIRIDAE. This includes RESPIRATORY SYNCYTIAL VIRUS INFECTIONS, an important cause of respiratory disease in humans.
A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey (C. pygerythrus) is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research.
A genus of the family PARAMYXOVIRIDAE (subfamily PNEUMOVIRINAE) where the human and bovine virions have neither hemagglutinin nor neuraminidase activity. RESPIRATORY SYNCYTIAL VIRUS, HUMAN is the type species.
A family of RNA viruses causing INFLUENZA and other diseases. There are five recognized genera: INFLUENZAVIRUS A; INFLUENZAVIRUS B; INFLUENZAVIRUS C; ISAVIRUS; and THOGOTOVIRUS.
The study of the structure, growth, function, genetics, and reproduction of viruses, and VIRUS DISEASES.
Live vaccines prepared from microorganisms which have undergone physical adaptation (e.g., by radiation or temperature conditioning) or serial passage in laboratory animal hosts or infected tissue/cell cultures, in order to produce avirulent mutant strains capable of inducing protective immunity.
Antibodies produced by a single clone of cells.
The assembly of VIRAL STRUCTURAL PROTEINS and nucleic acid (VIRAL DNA or VIRAL RNA) to form a VIRUS PARTICLE.
A family of spherical viruses, of the order MONONEGAVIRALES, somewhat larger than the orthomyxoviruses, and containing single-stranded RNA. Subfamilies include PARAMYXOVIRINAE and PNEUMOVIRINAE.
Minute infectious agents whose genomes are composed of DNA or RNA, but not both. They are characterized by a lack of independent metabolism and the inability to replicate outside living host cells.
The functional hereditary units of VIRUSES.
Visible morphologic changes in cells infected with viruses. It includes shutdown of cellular RNA and protein synthesis, cell fusion, release of lysosomal enzymes, changes in cell membrane permeability, diffuse changes in intracellular structures, presence of viral inclusion bodies, and chromosomal aberrations. It excludes malignant transformation, which is CELL TRANSFORMATION, VIRAL. Viral cytopathogenic effects provide a valuable method for identifying and classifying the infecting viruses.
A form of fluorescent antibody technique utilizing a fluorochrome conjugated to an antibody, which is added directly to a tissue or cell suspension for the detection of a specific antigen. (Bennington, Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984)
A condition characterized by infiltration of the lung with EOSINOPHILS due to inflammation or other disease processes. Major eosinophilic lung diseases are the eosinophilic pneumonias caused by infections, allergens, or toxic agents.
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
A species of RESPIROVIRUS also called hemadsorption virus 2 (HA2), which causes laryngotracheitis in humans, especially children.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
The mucous lining of the NASAL CAVITY, including lining of the nostril (vestibule) and the OLFACTORY MUCOSA. Nasal mucosa consists of ciliated cells, GOBLET CELLS, brush cells, small granule cells, basal cells (STEM CELLS) and glands containing both mucous and serous cells.
Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response.
An acute viral infection in humans involving the respiratory tract. It is marked by inflammation of the NASAL MUCOSA; the PHARYNX; and conjunctiva, and by headache and severe, often generalized, myalgia.
Vaccines in which the infectious microbial nucleic acid components have been destroyed by chemical or physical treatment (e.g., formalin, beta-propiolactone, gamma radiation) without affecting the antigenicity or immunogenicity of the viral coat or bacterial outer membrane proteins.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Method for measuring viral infectivity and multiplication in CULTURED CELLS. Clear lysed areas or plaques develop as the VIRAL PARTICLES are released from the infected cells during incubation. With some VIRUSES, the cells are killed by a cytopathic effect; with others, the infected cells are not killed but can be detected by their hemadsorptive ability. Sometimes the plaque cells contain VIRAL ANTIGENS which can be measured by IMMUNOFLUORESCENCE.
The type species of MORBILLIVIRUS and the cause of the highly infectious human disease MEASLES, which affects mostly children.
The tubular and cavernous organs and structures, by means of which pulmonary ventilation and gas exchange between ambient air and the blood are brought about.
Small synthetic peptides that mimic surface antigens of pathogens and are immunogenic, or vaccines manufactured with the aid of recombinant DNA techniques. The latter vaccines may also be whole viruses whose nucleic acids have been modified.
A subfamily of MURIDAE found nearly world-wide and consisting of about 20 genera. Voles, lemmings, and muskrats are members.
A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures.
A subtype of INFLUENZA A VIRUS with the surface proteins hemagglutinin 1 and neuraminidase 1. The H1N1 subtype was responsible for the Spanish flu pandemic of 1918.
Vaccines or candidate vaccines used to prevent infection with parainfluenza viruses in humans and animals.
Viruses parasitic on plants higher than bacteria.
Viruses whose nucleic acid is DNA.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 3 and neuraminidase 2. The H3N2 subtype was responsible for the Hong Kong flu pandemic of 1968.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
A species of RUBULAVIRUS associated particularly with acute laryngotracheitis (CROUP) in children aged 6 months to 3 years.
Viruses which lack a complete genome so that they cannot completely replicate or cannot form a protein coat. Some are host-dependent defectives, meaning they can replicate only in cell systems which provide the particular genetic function which they lack. Others, called SATELLITE VIRUSES, are able to replicate only when their genetic defect is complemented by a helper virus.
Delivery of medications through the nasal mucosa.
The confinement of a patient in a hospital.
A part of the upper respiratory tract. It contains the organ of SMELL. The term includes the external nose, the nasal cavity, and the PARANASAL SINUSES.
The relationships of groups of organisms as reflected by their genetic makeup.
Noises, normal and abnormal, heard on auscultation over any part of the RESPIRATORY TRACT.
Sudden increase in the incidence of a disease. The concept includes EPIDEMICS and PANDEMICS.
Multinucleated masses produced by the fusion of many cells; often associated with viral infections. In AIDS, they are induced when the envelope glycoprotein of the HIV virus binds to the CD4 antigen of uninfected neighboring T4 cells. The resulting syncytium leads to cell death and thus may account for the cytopathic effect of the virus.
The type species of ALPHAVIRUS normally transmitted to birds by CULEX mosquitoes in Egypt, South Africa, India, Malaya, the Philippines, and Australia. It may be associated with fever in humans. Serotypes (differing by less than 17% in nucleotide sequence) include Babanki, Kyzylagach, and Ockelbo viruses.
Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells.
Species of the genus INFLUENZAVIRUS B that cause HUMAN INFLUENZA and other diseases primarily in humans. Antigenic variation is less extensive than in type A viruses (INFLUENZA A VIRUS) and consequently there is no basis for distinct subtypes or variants. Epidemics are less likely than with INFLUENZA A VIRUS and there have been no pandemics. Previously only found in humans, Influenza B virus has been isolated from seals which may constitute the animal reservoir from which humans are exposed.
Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner.
Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses.
The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos.
The type species of RESPIROVIRUS in the subfamily PARAMYXOVIRINAE. It is the murine version of HUMAN PARAINFLUENZA VIRUS 1, distinguished by host range.
Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow).
The type species of LYSSAVIRUS causing rabies in humans and other animals. Transmission is mostly by animal bites through saliva. The virus is neurotropic multiplying in neurons and myotubes of vertebrates.
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
Sites on an antigen that interact with specific antibodies.
Viral proteins found in either the NUCLEOCAPSID or the viral core (VIRAL CORE PROTEINS).
The quantity of measurable virus in a body fluid. Change in viral load, measured in plasma, is sometimes used as a SURROGATE MARKER in disease progression.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 5 and neuraminidase 1. The H5N1 subtype, frequently referred to as the bird flu virus, is endemic in wild birds and very contagious among both domestic (POULTRY) and wild birds. It does not usually infect humans, but some cases have been reported.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Washing liquid obtained from irrigation of the lung, including the BRONCHI and the PULMONARY ALVEOLI. It is generally used to assess biochemical, inflammatory, or infection status of the lung.
Virus diseases caused by the PICORNAVIRIDAE.
A genus of PICORNAVIRIDAE inhabiting primarily the respiratory tract of mammalian hosts. It includes over 100 human serotypes associated with the COMMON COLD.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
Deoxyribonucleic acid that makes up the genetic material of viruses.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Antibodies that reduce or abolish some biological activity of a soluble antigen or infectious agent, usually a virus.
A protein-nucleic acid complex which forms part or all of a virion. It consists of a CAPSID plus enclosed nucleic acid. Depending on the virus, the nucleocapsid may correspond to a naked core or be surrounded by a membranous envelope.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
The mucous membrane lining the RESPIRATORY TRACT, including the NASAL CAVITY; the LARYNX; the TRACHEA; and the BRONCHI tree. The respiratory mucosa consists of various types of epithelial cells ranging from ciliated columnar to simple squamous, mucous GOBLET CELLS, and glands containing both mucous and serous cells.
An area showing altered staining behavior in the nucleus or cytoplasm of a virus-infected cell. Some inclusion bodies represent "virus factories" in which viral nucleic acid or protein is being synthesized; others are merely artifacts of fixation and staining. One example, Negri bodies, are found in the cytoplasm or processes of nerve cells in animals that have died from rabies.
Disease having a short and relatively severe course.
Inflammation of the lung parenchyma that is associated with BRONCHITIS, usually involving lobular areas from TERMINAL BRONCHIOLES to the PULMONARY ALVEOLI. The affected areas become filled with exudate that forms consolidated patches.
Viral proteins that are components of the mature assembled VIRUS PARTICLES. They may include nucleocapsid core proteins (gag proteins), enzymes packaged within the virus particle (pol proteins), and membrane components (env proteins). These do not include the proteins encoded in the VIRAL GENOME that are produced in infected cells but which are not packaged in the mature virus particle,i.e. the so called non-structural proteins (VIRAL NONSTRUCTURAL PROTEINS).
The type species of VESICULOVIRUS causing a disease symptomatically similar to FOOT-AND-MOUTH DISEASE in cattle, horses, and pigs. It may be transmitted to other species including humans, where it causes influenza-like symptoms.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
The type species of RUBULAVIRUS that causes an acute infectious disease in humans, affecting mainly children. Transmission occurs by droplet infection.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
A nucleoside antimetabolite antiviral agent that blocks nucleic acid synthesis and is used against both RNA and DNA viruses.
The type species of the genus ORTHOHEPADNAVIRUS which causes human HEPATITIS B and is also apparently a causal agent in human HEPATOCELLULAR CARCINOMA. The Dane particle is an intact hepatitis virion, named after its discoverer. Non-infectious spherical and tubular particles are also seen in the serum.
Elements of limited time intervals, contributing to particular results or situations.
The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES.
A species of FLAVIVIRUS, one of the Japanese encephalitis virus group (ENCEPHALITIS VIRUSES, JAPANESE). It can infect birds and mammals. In humans, it is seen most frequently in Africa, Asia, and Europe presenting as a silent infection or undifferentiated fever (WEST NILE FEVER). The virus appeared in North America for the first time in 1999. It is transmitted mainly by CULEX spp mosquitoes which feed primarily on birds, but it can also be carried by the Asian Tiger mosquito, AEDES albopictus, which feeds mainly on mammals.
RNA virus infections refer to diseases caused by viruses that have RNA as their genetic material, which includes a wide range of pathogens affecting humans, animals, and plants, manifesting in various clinical symptoms and potentially leading to significant morbidity and mortality.
Administration of vaccines to stimulate the host's immune response. This includes any preparation intended for active immunological prophylaxis.
DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition.
Resistance to a disease-causing agent induced by the introduction of maternal immunity into the fetus by transplacental transfer or into the neonate through colostrum and milk.
Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens.
Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
The binding of virus particles to receptors on the host cell surface. For enveloped viruses, the virion ligand is usually a surface glycoprotein as is the cellular receptor. For non-enveloped viruses, the virus CAPSID serves as the ligand.
The type species of the genus INFLUENZAVIRUS A that causes influenza and other diseases in humans and animals. Antigenic variation occurs frequently between strains, allowing classification into subtypes and variants. Transmission is usually by aerosol (human and most non-aquatic hosts) or waterborne (ducks). Infected birds shed the virus in their saliva, nasal secretions, and feces.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
A species of ALPHAVIRUS isolated in central, eastern, and southern Africa.
Genotypic differences observed among individuals in a population.
The outer protein protective shell of a virus, which protects the viral nucleic acid.
The mechanism by which latent viruses, such as genetically transmitted tumor viruses (PROVIRUSES) or PROPHAGES of lysogenic bacteria, are induced to replicate and then released as infectious viruses. It may be effected by various endogenous and exogenous stimuli, including B-cell LIPOPOLYSACCHARIDES, glucocorticoid hormones, halogenated pyrimidines, IONIZING RADIATION, ultraviolet light, and superinfecting viruses.
Immunoglobulin preparations used in intravenous infusion, containing primarily IMMUNOGLOBULIN G. They are used to treat a variety of diseases associated with decreased or abnormal immunoglobulin levels including pediatric AIDS; primary HYPERGAMMAGLOBULINEMIA; SCID; CYTOMEGALOVIRUS infections in transplant recipients, LYMPHOCYTIC LEUKEMIA, CHRONIC; Kawasaki syndrome, infection in neonates, and IDIOPATHIC THROMBOCYTOPENIC PURPURA.
Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen.
Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2.
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.
Virus diseases caused by the ORTHOMYXOVIRIDAE.
Transfer of immunity from immunized to non-immune host by administration of serum antibodies, or transplantation of lymphocytes (ADOPTIVE TRANSFER).
A highly reactive aldehyde gas formed by oxidation or incomplete combustion of hydrocarbons. In solution, it has a wide range of uses: in the manufacture of resins and textiles, as a disinfectant, and as a laboratory fixative or preservative. Formaldehyde solution (formalin) is considered a hazardous compound, and its vapor toxic. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p717)
The interactions between a host and a pathogen, usually resulting in disease.
Pathological processes involving the NASOPHARYNX.
Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Group of chemokines with the first two cysteines separated by three amino acids. CX3C chemokines are chemotactic for natural killer cells, monocytes, and activated T-cells.
Serologic tests based on inactivation of complement by the antigen-antibody complex (stage 1). Binding of free complement can be visualized by addition of a second antigen-antibody system such as red cells and appropriate red cell antibody (hemolysin) requiring complement for its completion (stage 2). Failure of the red cells to lyse indicates that a specific antigen-antibody reaction has taken place in stage 1. If red cells lyse, free complement is present indicating no antigen-antibody reaction occurred in stage 1.
The complete genetic complement contained in a DNA or RNA molecule in a virus.
The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS.
Antibodies from non-human species whose protein sequences have been modified to make them nearly identical with human antibodies. If the constant region and part of the variable region are replaced, they are called humanized. If only the constant region is modified they are called chimeric. INN names for humanized antibodies end in -zumab.
The ability of a pathogenic virus to lie dormant within a cell (latent infection). In eukaryotes, subsequent activation and viral replication is thought to be caused by extracellular stimulation of cellular transcription factors. Latency in bacteriophage is maintained by the expression of virally encoded repressors.
Membrane glycoproteins from influenza viruses which are involved in hemagglutination, virus attachment, and envelope fusion. Fourteen distinct subtypes of HA glycoproteins and nine of NA glycoproteins have been identified from INFLUENZA A VIRUS; no subtypes have been identified for Influenza B or Influenza C viruses.
Colloids with a gaseous dispersing phase and either liquid (fog) or solid (smoke) dispersed phase; used in fumigation or in inhalation therapy; may contain propellant agents.
Studies determining the effectiveness or value of processes, personnel, and equipment, or the material on conducting such studies. For drugs and devices, CLINICAL TRIALS AS TOPIC; DRUG EVALUATION; and DRUG EVALUATION, PRECLINICAL are available.
Animals or humans raised in the absence of a particular disease-causing virus or other microorganism. Less frequently plants are cultivated pathogen-free.
A critical subpopulation of regulatory T-lymphocytes involved in MHC Class I-restricted interactions. They include both cytotoxic T-lymphocytes (T-LYMPHOCYTES, CYTOTOXIC) and CD8+ suppressor T-lymphocytes.
Proteins found mainly in icosahedral DNA and RNA viruses. They consist of proteins directly associated with the nucleic acid inside the NUCLEOCAPSID.
A funnel-shaped fibromuscular tube that conducts food to the ESOPHAGUS, and air to the LARYNX and LUNGS. It is located posterior to the NASAL CAVITY; ORAL CAVITY; and LARYNX, and extends from the SKULL BASE to the inferior border of the CRICOID CARTILAGE anteriorly and to the inferior border of the C6 vertebra posteriorly. It is divided into the NASOPHARYNX; OROPHARYNX; and HYPOPHARYNX (laryngopharynx).
Subset of helper-inducer T-lymphocytes which synthesize and secrete the interleukins IL-4, IL-5, IL-6, and IL-10. These cytokines influence B-cell development and antibody production as well as augmenting humoral responses.
A group of viruses in the genus PESTIVIRUS, causing diarrhea, fever, oral ulcerations, hemorrhagic syndrome, and various necrotic lesions among cattle and other domestic animals. The two species (genotypes), BVDV-1 and BVDV-2 , exhibit antigenic and pathological differences. The historical designation, BVDV, consisted of both (then unrecognized) genotypes.
The viscous secretion of mucous membranes. It contains mucin, white blood cells, water, inorganic salts, and exfoliated cells.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
Represents 15-20% of the human serum immunoglobulins, mostly as the 4-chain polymer in humans or dimer in other mammals. Secretory IgA (IMMUNOGLOBULIN A, SECRETORY) is the main immunoglobulin in secretions.
Viruses that produce tumors.
One of the type I interferons produced by fibroblasts in response to stimulation by live or inactivated virus or by double-stranded RNA. It is a cytokine with antiviral, antiproliferative, and immunomodulating activity.
Tendency of the smooth muscle of the tracheobronchial tree to contract more intensely in response to a given stimulus than it does in the response seen in normal individuals. This condition is present in virtually all symptomatic patients with asthma. The most prominent manifestation of this smooth muscle contraction is a decrease in airway caliber that can be readily measured in the pulmonary function laboratory.
Respiratory and conjunctival infections caused by 33 identified serotypes of human adenoviruses.
Diseases of domestic and mountain sheep of the genus Ovis.
Species of the genus LENTIVIRUS, subgenus primate immunodeficiency viruses (IMMUNODEFICIENCY VIRUSES, PRIMATE), that induces acquired immunodeficiency syndrome in monkeys and apes (SAIDS). The genetic organization of SIV is virtually identical to HIV.
A cytokine synthesized by T-LYMPHOCYTES that produces proliferation, immunoglobulin isotype switching, and immunoglobulin production by immature B-LYMPHOCYTES. It appears to play a role in regulating inflammatory and immune responses.
Proteins prepared by recombinant DNA technology.
A copper-containing dye used as a gelling agent for lubricants, for staining of bacteria and for the dyeing of histiocytes and fibroblasts in vivo.
Child hospitalized for short term care.
A family of non-enveloped viruses infecting mammals (MASTADENOVIRUS) and birds (AVIADENOVIRUS) or both (ATADENOVIRUS). Infections may be asymptomatic or result in a variety of diseases.
I'm sorry for any confusion, but the term "Uruguay" is a country's name located in South America and it doesn't have a medical definition. If you have any questions related to medical conditions, diseases, or healthcare in Uruguay, I would be happy to help with those!
Infection of the lung often accompanied by inflammation.
Class of pro-inflammatory cytokines that have the ability to attract and activate leukocytes. They can be divided into at least three structural branches: C; (CHEMOKINES, C); CC; (CHEMOKINES, CC); and CXC; (CHEMOKINES, CXC); according to variations in a shared cysteine motif.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
Infections with viruses of the genus RUBULAVIRUS, family PARAMYXOVIRIDAE.
A CC-type chemokine that is a chemoattractant for EOSINOPHILS; MONOCYTES; and LYMPHOCYTES. It is a potent and selective eosinophil chemotaxin that is stored in and released from PLATELETS and activated T-LYMPHOCYTES. Chemokine CCL5 is specific for CCR1 RECEPTORS; CCR3 RECEPTORS; and CCR5 RECEPTORS. The acronym RANTES refers to Regulated on Activation, Normal T Expressed and Secreted.
Proteins encoded by a VIRAL GENOME that are produced in the organisms they infect, but not packaged into the VIRUS PARTICLES. Some of these proteins may play roles within the infected cell during VIRUS REPLICATION or act in regulation of virus replication or VIRUS ASSEMBLY.
Viruses which produce a mottled appearance of the leaves of plants.
Washing out of the lungs with saline or mucolytic agents for diagnostic or therapeutic purposes. It is very useful in the diagnosis of diffuse pulmonary infiltrates in immunosuppressed patients.
A species of VARICELLOVIRUS that causes INFECTIOUS BOVINE RHINOTRACHEITIS and other associated syndromes in CATTLE.
Vaccines using VIROSOMES as the antigen delivery system that stimulates the desired immune response.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Proteins associated with the inner surface of the lipid bilayer of the viral envelope. These proteins have been implicated in control of viral transcription and may possibly serve as the "glue" that binds the nucleocapsid to the appropriate membrane site during viral budding from the host cell.
The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS.
Respiratory tract diseases are a broad range of medical conditions that affect the nose, throat, windpipe, and lungs, impairing breathing and oxygen uptake, including asthma, chronic obstructive pulmonary disease (COPD), pneumonia, bronchitis, influenza, tuberculosis, and sleep apnea.
A species in the genus HEPATOVIRUS containing one serotype and two strains: HUMAN HEPATITIS A VIRUS and Simian hepatitis A virus causing hepatitis in humans (HEPATITIS A) and primates, respectively.
A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR).
The application of molecular biology to the answering of epidemiological questions. The examination of patterns of changes in DNA to implicate particular carcinogens and the use of molecular markers to predict which individuals are at highest risk for a disease are common examples.
Methods for using more than one primer set in a polymerase chain reaction to amplify more than one segment of the target DNA sequence in a single reaction.
The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.
'Infant, Premature, Diseases' refers to health conditions or abnormalities that specifically affect babies born before 37 weeks of gestation, often resulting from their immature organ systems and increased vulnerability due to preterm birth.
A herpesvirus infection of CATTLE characterized by INFLAMMATION and NECROSIS of the mucous membranes of the upper RESPIRATORY TRACT.

Detection of antibody to bovine syncytial virus and respiratory syncytial virus in bovine fetal serum. (1/1481)

Batches of commercial fetal bovine serum, described by the suppliers as antibody-free, all contained antibody to bovine syncytial virus (BSV) when tested by indirect immunofluorescence. Antibody to bovine respiratory syncytial virus (RSV) was not detected in these sera. Twenty-four percent of individual fetal bovine sera contained antibody to BSV, and 14% contained antibody to RSV when tested by indirect immunofluorescence. BSV antibody titers in fetal sera from dams with high BSV antibody levels were variable but always higher than RSV antibody titers. Radial immunodiffusion studies with BSV-positive sera revealed the presence of immunoglobulin M (IgM), IgG, and IgA, but the quantity of these immunoglobulins was not directly related to the BSV antibody titers. The evidence suggests that the antibody present in fetal sera arose as the result of infection rather than from maternal transfer across the placenta.  (+info)

Maternal immunization. (2/1481)

Maternal immunization can enhance passive immunity of infants to pathogens that cause life-threatening illnesses. In most instances, immunization during pregnancy will provide important protection for the woman as well as for her offspring. The tetanus toxoid and influenza vaccines are examples of vaccines that provide a double benefit. Other vaccines under evaluation include those for respiratory syncytial virus, pneumococci, group B streptococci, and Haemophilus influenzae type b. Although most IgG antibody crosses the placenta in the third trimester, the process is time-dependent, dictating that immunization should be accomplished ideally at least 6 weeks prior to delivery. IgG1 antibodies are transferred preferentially. Maternal immunization has not interfered with active immunization of the infant. Inactivated vaccines administered in the third trimester of pregnancy pose no known risk to the woman or to her fetus.  (+info)

Human antibody responses to mature and immature forms of viral envelope in respiratory syncytial virus infection: significance for subunit vaccines. (3/1481)

A number of antibodies generated during human respiratory syncytial virus (RSV) infection have been cloned by the phage library approach. Antibodies reactive with an immunodominant epitope on the F glycoprotein of this virus have a high affinity for affinity-purified F antigen. These antibodies, however, have a much lower affinity for mature F glycoprotein on the surface of infected cells and are nonneutralizing. In contrast, a potent neutralizing antibody has a high affinity for mature F protein but a much lower affinity for purified F protein or F protein in viral lysates. The data indicate that at least two F protein immunogens are produced during natural RSV infection: immature F, found in viral lysates, and mature F, found on infected cells or virions. Binding studies with polyclonal human immunoglobulin G suggest that the antibody responses to the two immunogens are of similar magnitudes. Competitive binding studies suggest that overlap between the responses is relatively limited. A mature envelope with an antigenic configuration different from that of the immature envelope has an evolutionary advantage in that the infecting virus is less subject to neutralization by the humoral response to the immature envelope that inevitably arises following lysis of infected cells. Subunit vaccines may be at a disadvantage because they most often resemble immature envelope molecules and ignore this aspect of viral evasion.  (+info)

Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees. (4/1481)

The NS2 and SH genes of respiratory syncytial virus (RSV) have been separately deleted from a recombinant wild-type RSV strain, A2 (M. N. Teng and P. L. Collins, J. Virol. 73:466-473, 1998; A. Bukreyev et al., J. Virol. 71:8973-8982, 1997; and this study). The resulting viruses, designated rA2DeltaNS2 and rA2DeltaSH, were administered to chimpanzees to evaluate their levels of attenuation and immunogenicity. Recombinant virus rA2DeltaNS2 replicated to moderate levels in the upper respiratory tract, was highly attenuated in the lower respiratory tract, and induced significant resistance to challenge with wild-type RSV. The replication of rA2DeltaSH virus was only moderately reduced in the lower, but not the upper, respiratory tract. However, chimpanzees infected with either virus developed significantly less rhinorrhea than those infected with wild-type RSV. These findings demonstrate that a recombinant RSV mutant lacking either the NS2 or SH gene is attenuated and indicate that these deletions may be useful as attenuating mutations in new, live recombinant RSV vaccine candidates for both pediatric and elderly populations. The DeltaSH mutation was incorporated into a recombinant form of the cpts248/404 vaccine candidate, was evaluated for safety in seronegative chimpanzees, and can now be evaluated as a vaccine for humans.  (+info)

Efficacy of RD3-0028 aerosol treatment against respiratory syncytial virus infection in immunosuppressed mice. (5/1481)

RD3-0028, a benzodithiin compound, has antiviral activity against respiratory syncytial virus (RSV) in cell culture. We used a mouse model of RSV infection to determine the in vivo effect of RD3-0028. Cyclophosphamide (CYP)-treated, immunosuppressed mice were inoculated intranasally. The lungs of the mice were removed on day 4. The virus titers of the lungs of RD3-0028-treated mice were compared to the virus titers of the lungs of virus-inoculated, untreated control mice. In an effort to increase the therapeutic effectiveness of this compound, RD3-0028 was administered by aerosol to RSV-infected mice by using a head-exposure system. Aerosols generated from reservoirs containing RD3-0028 (7 mg/ml) administered for 2 h twice daily for 3 days significantly reduced the pulmonary titer of RSV-infected mice. It is clear that the minimal effective dose of RD3-0028 for RSV-infected mice is significantly less than that of ribavirin, the only compound currently available for use against RSV disease. Furthermore, the RD3-0028 aerosol administration appeared to protect the lungs of infected, CYP-treated mice against tissue damage, as evidenced by the preservation of the lung architecture and a reduction in pulmonary inflammatory infiltrates. RD3-0028 aerosol was not toxic for mice at the therapeutic dose. The present study demonstrates the effectiveness of aerosol administration of RD3-0028 for RSV-infected mice.  (+info)

A simple and reproducible method for collecting nasal secretions in frail elderly adults, for measurement of virus-specific IgA. (6/1481)

The standard method for collection of respiratory secretions, by use of a nasal wash (NW) to measure virus-specific IgA, is problematic in frail elderly adults. Therefore, a simplified collection approach using a nasal swab (NS) is described. NW and NS samples were collected from healthy young and frail elderly adults, and IgA titers to respiratory syncytial virus (RSV) fusion and attachment glycoproteins were determined by enzyme immunoassay. Correlation between IgA titers in NW and NS was excellent for each of the antigens (correlation coefficients,.71-.93). In addition, NS results were reproducible when frail elderly subjects were sampled several weeks apart and were nearly equivalent to results from NW samples. The ability to sample nasal secretions by use of an NS when an NW is not technically feasible will facilitate the study of mucosal immunity to RSV as well as the study of mucosal response to candidate RSV vaccines in frail elderly populations.  (+info)

Surfactant protein-A enhances respiratory syncytial virus clearance in vivo. (7/1481)

To determine the role of surfactant protein-A(SP-A) in antiviral host defense, mice lacking SP-A (SP-A-/-) were produced by targeted gene inactivation. SP-A-/- and control mice (SP-A+/+) were infected with respiratory syncytial virus (RSV) by intratracheal instillation. Pulmonary infiltration after infection was more severe in SP-A-/- than in SP-A+/+ mice and was associated with increased RSV plaque-forming units in lung homogenates. Pulmonary infiltration with polymorphonuclear leukocytes was greater in the SP-A-/- mice. Levels of proinflammatory cytokines tumor necrosis factor-alpha and interleukin-6 were enhanced in lungs of SP-A-/- mice. After RSV infection, superoxide and hydrogen peroxide generation was deficient in macrophages from SP-A-/- mice, demonstrating a critical role of SP-A in oxidant production associated with RSV infection. Coadministration of RSV with exogenous SP-A reduced viral titers and inflammatory cells in the lung of SP-A-/- mice. These findings demonstrate that SP-A plays an important host defense role against RSV in vivo.  (+info)

Induction of CD95 (Fas) and apoptosis in respiratory epithelial cell cultures following respiratory syncytial virus infection. (8/1481)

Respiratory syncytial virus (RSV) infection is associated with epithelial cell death and vigorous inflammation. In mouse models, and in immunosuppressed patients, CD8(+) T cells are necessary for RSV clearance. In vitro, RSV has been shown to induce expression of several proteins on the respiratory epithelial cell, including RSV proteins, ICAM-1, and MHC class I, that can potentially interact with CD8(+) T cells in initiating apoptosis of the target cell. One mechanism of T-cell-directed cell death is the interaction of FasL on the CD8(+) T lymphocytes and Fas expressed on the target cell. In order to determine the ability of RSV to induce Fas on the respiratory epithelium, we studied the RSV infection of a human respiratory epithelial cell line (A549) in vitro. Fas mRNA and protein levels are increased two-to-fourfold following RSV infection, and transcriptional upregulation of Fas was demonstrated using promoter/reporter gene constructs. RSV infection directly resulted in cellular apoptosis, and the frequency of apoptotic cells was further increased by cross-linking with antibodies to Fas. These data demonstrate that RSV infection induces cellular apoptosis and suggest that interactions of surface Fas with T cells may further augment this process in vivo.  (+info)

Respiratory Syncytial Viruses (RSV) are a common type of virus that cause respiratory infections, particularly in young children and older adults. They are responsible for inflammation and narrowing of the small airways in the lungs, leading to breathing difficulties and other symptoms associated with bronchiolitis and pneumonia.

The term "syncytial" refers to the ability of these viruses to cause infected cells to merge and form large multinucleated cells called syncytia, which is a characteristic feature of RSV infections. The virus spreads through respiratory droplets when an infected person coughs or sneezes, and it can also survive on surfaces for several hours, making transmission easy.

RSV infections are most common during the winter months and can cause mild to severe symptoms depending on factors such as age, overall health, and underlying medical conditions. While RSV is typically associated with respiratory illnesses in children, it can also cause significant disease in older adults and immunocompromised individuals. Currently, there is no vaccine available for RSV, but antiviral medications and supportive care are used to manage severe infections.

Respiratory Syncytial Virus (RSV) infections refer to the clinical illnesses caused by the Respiratory Syncytial Virus. RSV is a highly contagious virus that spreads through respiratory droplets, contact with infected surfaces, or direct contact with infected people. It primarily infects the respiratory tract, causing inflammation and damage to the cells lining the airways.

RSV infections can lead to a range of respiratory illnesses, from mild, cold-like symptoms to more severe conditions such as bronchiolitis (inflammation of the small airways in the lungs) and pneumonia (infection of the lung tissue). The severity of the infection tends to depend on factors like age, overall health status, and presence of underlying medical conditions.

In infants and young children, RSV is a leading cause of bronchiolitis and pneumonia, often resulting in hospitalization. In older adults, people with weakened immune systems, and those with chronic heart or lung conditions, RSV infections can also be severe and potentially life-threatening.

Symptoms of RSV infection may include runny nose, cough, sneezing, fever, wheezing, and difficulty breathing. Treatment typically focuses on managing symptoms and providing supportive care, although hospitalization and more aggressive interventions may be necessary in severe cases or for high-risk individuals. Preventive measures such as hand hygiene, wearing masks, and avoiding close contact with infected individuals can help reduce the spread of RSV.

Respiratory Syncytial Virus (RSV) is a highly contagious virus that causes infections in the respiratory system. In humans, it primarily affects the nose, throat, lungs, and bronchioles (the airways leading to the lungs). It is a major cause of lower respiratory tract infections and bronchiolitis (inflammation of the small airways in the lung) in young children, but can also infect older children and adults.

Human Respiratory Syncytial Virus (hRSV) belongs to the family Pneumoviridae and is an enveloped, single-stranded, negative-sense RNA virus. The viral envelope contains two glycoproteins: the G protein, which facilitates attachment to host cells, and the F protein, which mediates fusion of the viral and host cell membranes.

Infection with hRSV typically occurs through direct contact with respiratory droplets from an infected person or contaminated surfaces. The incubation period ranges from 2 to 8 days, after which symptoms such as runny nose, cough, sneezing, fever, and wheezing may appear. In severe cases, particularly in infants, young children, older adults, and individuals with weakened immune systems, hRSV can cause pneumonia or bronchiolitis, leading to hospitalization and, in rare cases, death.

Currently, there is no approved vaccine for hRSV; however, passive immunization with palivizumab, a monoclonal antibody, is available for high-risk infants to prevent severe lower respiratory tract disease caused by hRSV. Supportive care and prevention of complications are the mainstays of treatment for hRSV infections.

Respiratory Syncytial Virus (RSV), bovine refers to a species-specific strain of the Respiratory Syncytial Virus that primarily infects cattle. It is a member of the Pneumoviridae family and Orthopneumovirus genus. This virus is closely related to human RSV, and it can cause respiratory infections in young calves, leading to symptoms such as nasal discharge, coughing, difficulty breathing, and pneumonia.

Bovine RSV shares many similarities with its human counterpart, including the ability to form syncytia (multinucleated giant cells) in infected tissues. However, bovine RSV is not known to infect humans or cause disease in humans. It is primarily studied as a model organism for understanding the biology and pathogenesis of RSV infections in general.

Respiratory Syncytial Virus (RSV) vaccines are immunizations designed to protect against the RSV infection, which is a major cause of respiratory tract illnesses in infants and young children worldwide. The virus can also cause serious illness in older adults and people with weakened immune systems.

There are currently no approved RSV vaccines available on the market, although several candidates are in various stages of development and clinical trials. Most of the vaccine candidates are aimed at preventing severe lower respiratory tract disease caused by RSV infection in infants and young children.

RSV vaccines typically work by stimulating the immune system to produce antibodies against the virus, which can help prevent infection or reduce the severity of symptoms if infection occurs. Some vaccine candidates use live-attenuated viruses, while others use inactivated viruses or viral proteins to induce an immune response.

While RSV vaccines have shown promise in clinical trials, developing a safe and effective vaccine has proven challenging due to the risk of vaccine-associated enhanced respiratory disease (VAERD), a rare but serious complication that can occur when certain types of RSV vaccines are given to people who have previously been infected with the virus. Therefore, ongoing research is focused on developing vaccines that can safely and effectively protect against RSV infection while minimizing the risk of VAERD.

Respiroviruses are a genus of viruses in the family *Paramyxoviridae* that includes several important human pathogens, such as parainfluenza virus (PIV) types 1, 2, and 3, and human respiratory syncytial virus (HRSV). These viruses are primarily transmitted through respiratory droplets and direct contact with infected individuals.

Respirovirus infections mainly affect the respiratory tract and can cause a range of symptoms, from mild upper respiratory tract illness to severe lower respiratory tract infections. The severity of the disease depends on various factors, including the age and overall health status of the infected individual.

Parainfluenza viruses are a common cause of acute respiratory infections in children, particularly in those under five years old. They can lead to croup, bronchitis, pneumonia, and other respiratory tract complications. In adults, PIV infections are usually less severe but can still cause upper respiratory symptoms, such as the common cold.

Human respiratory syncytial virus is another important respirovirus that primarily affects young children, causing bronchiolitis and pneumonia. Reinfection with HRSV can occur throughout life, although subsequent infections are typically less severe than the initial infection. In older adults and individuals with compromised immune systems, HRSV infections can lead to serious complications, including pneumonia and exacerbation of chronic lung diseases.

Prevention strategies for respirovirus infections include good personal hygiene practices, such as frequent handwashing and covering the mouth and nose when coughing or sneezing. Vaccines are not available for most respiroviruses; however, research is ongoing to develop effective vaccines against these viruses, particularly HRSV.

Viral bronchiolitis is a common respiratory infection in infants and young children, typically caused by a viral pathogen such as the respiratory syncytial virus (RSV). The infection leads to inflammation and congestion of the small airways (bronchioles) in the lungs, resulting in symptoms like wheezing, cough, difficulty breathing, and rapid breathing.

The infection usually spreads through respiratory droplets when an infected person coughs or sneezes. The virus can also survive on surfaces for several hours, making it easy to contract the infection by touching contaminated objects and then touching the face.

Most cases of viral bronchiolitis are mild and resolve within 1-2 weeks with supportive care, including increased fluid intake, humidified air, and fever reduction. However, in severe cases or in high-risk infants (such as those born prematurely or with underlying heart or lung conditions), hospitalization may be necessary to manage complications like dehydration, respiratory distress, or oxygen deprivation.

Preventive measures include good hand hygiene, avoiding close contact with sick individuals, and ensuring that infants and young children receive appropriate vaccinations and immunizations as recommended by their healthcare provider.

I'm sorry for any confusion, but "HN protein" is not a widely recognized or established medical term. HN is an abbreviation commonly used in virology to refer to the hemagglutinin-neuraminidase protein found on the surface of certain viruses, such as the paramyxoviridae family which includes viruses like parainfluenza and Hendra virus.

The HN protein plays a crucial role in the virus's ability to infect host cells. It helps the virus attach to and enter the host cell, and also assists in the release of new virus particles from infected cells. However, without more specific context, it's difficult to provide a more precise definition of "HN protein." If you have more details about the context in which this term was used, I'd be happy to try to provide a more specific answer.

Viral fusion proteins are specialized surface proteins found on the envelope of enveloped viruses. These proteins play a crucial role in the viral infection process by mediating the fusion of the viral membrane with the target cell membrane, allowing the viral genetic material to enter the host cell and initiate replication.

The fusion protein is often synthesized as an inactive precursor, which undergoes a series of conformational changes upon interaction with specific receptors on the host cell surface. This results in the exposure of hydrophobic fusion peptides or domains that insert into the target cell membrane, bringing the two membranes into close proximity and facilitating their merger.

A well-known example of a viral fusion protein is the gp120/gp41 complex found on the Human Immunodeficiency Virus (HIV). The gp120 subunit binds to CD4 receptors and chemokine coreceptors on the host cell surface, triggering conformational changes in the gp41 subunit that expose the fusion peptide and enable membrane fusion. Understanding the structure and function of viral fusion proteins is important for developing antiviral strategies and vaccines.

Sigmodontinae is a subfamily of rodents, more specifically within the family Cricetidae. This group is commonly known as the New World rats and mice, and it includes over 300 species that are primarily found in North, Central, and South America. The members of Sigmodontinae vary greatly in size and habits, with some being arboreal while others live on the ground or burrow. Some species have specialized diets, such as eating insects or seeds, while others are more generalist feeders. This subfamily is also notable for its high degree of speciation and diversity, making it an interesting subject for evolutionary biologists and ecologists.

Bronchiolitis is a common respiratory infection in infants and young children, typically caused by a viral infection. It is characterized by inflammation and congestion of the bronchioles (the smallest airways in the lungs), which can lead to difficulty breathing and wheezing.

The most common virus that causes bronchiolitis is respiratory syncytial virus (RSV), but other viruses such as rhinovirus, influenza, and parainfluenza can also cause the condition. Symptoms of bronchiolitis may include cough, wheezing, rapid breathing, difficulty feeding, and fatigue.

In severe cases, bronchiolitis can lead to respiratory distress and require hospitalization. Treatment typically involves supportive care, such as providing fluids and oxygen therapy, and in some cases, medications to help open the airways may be used. Prevention measures include good hand hygiene and avoiding close contact with individuals who are sick.

Respiratory tract infections (RTIs) are infections that affect the respiratory system, which includes the nose, throat (pharynx), voice box (larynx), windpipe (trachea), bronchi, and lungs. These infections can be caused by viruses, bacteria, or, less commonly, fungi.

RTIs are classified into two categories based on their location: upper respiratory tract infections (URTIs) and lower respiratory tract infections (LRTIs). URTIs include infections of the nose, sinuses, throat, and larynx, such as the common cold, flu, laryngitis, and sinusitis. LRTIs involve the lower airways, including the bronchi and lungs, and can be more severe. Examples of LRTIs are pneumonia, bronchitis, and bronchiolitis.

Symptoms of RTIs depend on the location and cause of the infection but may include cough, congestion, runny nose, sore throat, difficulty breathing, wheezing, fever, fatigue, and chest pain. Treatment for RTIs varies depending on the severity and underlying cause of the infection. For viral infections, treatment typically involves supportive care to manage symptoms, while antibiotics may be prescribed for bacterial infections.

The nasopharynx is the uppermost part of the pharynx (throat), which is located behind the nose. It is a muscular cavity that serves as a passageway for air and food. The nasopharynx extends from the base of the skull to the lower border of the soft palate, where it continues as the oropharynx. Its primary function is to allow air to flow into the respiratory system through the nostrils while also facilitating the drainage of mucus from the nose into the throat. The nasopharynx contains several important structures, including the adenoids and the opening of the Eustachian tubes, which connect the middle ear to the back of the nasopharynx.

Metapneumovirus is a type of virus that can cause respiratory infections in humans and animals. The human metapneumovirus (HMPV) is a leading cause of acute respiratory infection (ARI), particularly in young children, the elderly, and people with weakened immune systems. It is associated with a wide range of clinical manifestations, ranging from mild upper respiratory symptoms to severe bronchiolitis and pneumonia.

HMPV is an enveloped, single-stranded RNA virus that belongs to the Pneumoviridae family, subfamily Pneumovirinae, and genus Metapneumovirus. It was first identified in 2001, although it is believed to have been circulating in humans for at least 50 years before its discovery. HMPV is transmitted through respiratory droplets and direct contact with infected individuals or contaminated surfaces.

The incubation period of HMPV ranges from 3 to 6 days, after which symptoms such as cough, fever, nasal congestion, sore throat, and difficulty breathing may appear. In severe cases, HMPV can lead to bronchitis, bronchiolitis, or pneumonia, requiring hospitalization, especially in high-risk populations. Currently, there is no specific antiviral treatment for HMPV infections, and management typically involves supportive care, such as oxygen therapy, hydration, and respiratory support if necessary. Prevention measures include good hand hygiene, wearing masks, and avoiding close contact with infected individuals.

Viral proteins are the proteins that are encoded by the viral genome and are essential for the viral life cycle. These proteins can be structural or non-structural and play various roles in the virus's replication, infection, and assembly process. Structural proteins make up the physical structure of the virus, including the capsid (the protein shell that surrounds the viral genome) and any envelope proteins (that may be present on enveloped viruses). Non-structural proteins are involved in the replication of the viral genome and modulation of the host cell environment to favor viral replication. Overall, a thorough understanding of viral proteins is crucial for developing antiviral therapies and vaccines.

Paramyxoviridae is a family of viruses that includes several important pathogens causing respiratory infections in humans and animals. According to the medical perspective, Paramyxoviridae infections refer to the diseases caused by these viruses.

Some notable human paramyxovirus infections include:

1. Respiratory Syncytial Virus (RSV) Infection: RSV is a common cause of respiratory tract infections, particularly in young children and older adults. It can lead to bronchiolitis and pneumonia, especially in infants and patients with compromised immune systems.
2. Measles (Rubeola): Measles is a highly contagious viral disease characterized by fever, cough, coryza (runny nose), conjunctivitis, and a maculopapular rash. It can lead to severe complications such as pneumonia, encephalitis, and even death, particularly in malnourished children and individuals with weakened immune systems.
3. Parainfluenza Virus Infection: Parainfluenza viruses are responsible for upper and lower respiratory tract infections, including croup, bronchitis, and pneumonia. They mainly affect young children but can also infect adults, causing mild to severe illnesses.
4. Mumps: Mumps is a contagious viral infection that primarily affects the salivary glands, causing painful swelling. It can lead to complications such as meningitis, encephalitis, deafness, and orchitis (inflammation of the testicles) in rare cases.
5. Human Metapneumovirus (HMPV) Infection: HMPV is a respiratory virus that can cause upper and lower respiratory tract infections, similar to RSV and parainfluenza viruses. It mainly affects young children and older adults, leading to bronchitis, pneumonia, and exacerbations of chronic lung diseases.

Prevention strategies for Paramyxoviridae infections include vaccination programs, practicing good personal hygiene, and implementing infection control measures in healthcare settings.

Antibodies, viral are proteins produced by the immune system in response to an infection with a virus. These antibodies are capable of recognizing and binding to specific antigens on the surface of the virus, which helps to neutralize or destroy the virus and prevent its replication. Once produced, these antibodies can provide immunity against future infections with the same virus.

Viral antibodies are typically composed of four polypeptide chains - two heavy chains and two light chains - that are held together by disulfide bonds. The binding site for the antigen is located at the tip of the Y-shaped structure, formed by the variable regions of the heavy and light chains.

There are five classes of antibodies in humans: IgA, IgD, IgE, IgG, and IgM. Each class has a different function and is distributed differently throughout the body. For example, IgG is the most common type of antibody found in the bloodstream and provides long-term immunity against viruses, while IgA is found primarily in mucous membranes and helps to protect against respiratory and gastrointestinal infections.

In addition to their role in the immune response, viral antibodies can also be used as diagnostic tools to detect the presence of a specific virus in a patient's blood or other bodily fluids.

An antigen is any substance that can stimulate an immune response, particularly the production of antibodies. Viral antigens are antigens that are found on or produced by viruses. They can be proteins, glycoproteins, or carbohydrates present on the surface or inside the viral particle.

Viral antigens play a crucial role in the immune system's recognition and response to viral infections. When a virus infects a host cell, it may display its antigens on the surface of the infected cell. This allows the immune system to recognize and target the infected cells for destruction, thereby limiting the spread of the virus.

Viral antigens are also important targets for vaccines. Vaccines typically work by introducing a harmless form of a viral antigen to the body, which then stimulates the production of antibodies and memory T-cells that can recognize and respond quickly and effectively to future infections with the actual virus.

It's worth noting that different types of viruses have different antigens, and these antigens can vary between strains of the same virus. This is why there are often different vaccines available for different viral diseases, and why flu vaccines need to be updated every year to account for changes in the circulating influenza virus strains.

Viral diseases are illnesses caused by the infection and replication of viruses in host organisms. These infectious agents are obligate parasites, meaning they rely on the cells of other living organisms to survive and reproduce. Viruses can infect various types of hosts, including animals, plants, and microorganisms, causing a wide range of diseases with varying symptoms and severity.

Once a virus enters a host cell, it takes over the cell's machinery to produce new viral particles, often leading to cell damage or death. The immune system recognizes the viral components as foreign and mounts an immune response to eliminate the infection. This response can result in inflammation, fever, and other symptoms associated with viral diseases.

Examples of well-known viral diseases include:

1. Influenza (flu) - caused by influenza A, B, or C viruses
2. Common cold - usually caused by rhinoviruses or coronaviruses
3. HIV/AIDS - caused by human immunodeficiency virus (HIV)
4. Measles - caused by measles morbillivirus
5. Hepatitis B and C - caused by hepatitis B virus (HBV) and hepatitis C virus (HCV), respectively
6. Herpes simplex - caused by herpes simplex virus type 1 (HSV-1) or type 2 (HSV-2)
7. Chickenpox and shingles - both caused by varicella-zoster virus (VZV)
8. Rabies - caused by rabies lyssavirus
9. Ebola - caused by ebolaviruses
10. COVID-19 - caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

Prevention and treatment strategies for viral diseases may include vaccination, antiviral medications, and supportive care to manage symptoms while the immune system fights off the infection.

Virus replication is the process by which a virus produces copies or reproduces itself inside a host cell. This involves several steps:

1. Attachment: The virus attaches to a specific receptor on the surface of the host cell.
2. Penetration: The viral genetic material enters the host cell, either by invagination of the cell membrane or endocytosis.
3. Uncoating: The viral genetic material is released from its protective coat (capsid) inside the host cell.
4. Replication: The viral genetic material uses the host cell's machinery to produce new viral components, such as proteins and nucleic acids.
5. Assembly: The newly synthesized viral components are assembled into new virus particles.
6. Release: The newly formed viruses are released from the host cell, often through lysis (breaking) of the cell membrane or by budding off the cell membrane.

The specific mechanisms and details of virus replication can vary depending on the type of virus. Some viruses, such as DNA viruses, use the host cell's DNA polymerase to replicate their genetic material, while others, such as RNA viruses, use their own RNA-dependent RNA polymerase or reverse transcriptase enzymes. Understanding the process of virus replication is important for developing antiviral therapies and vaccines.

Viral pneumonia is a type of pneumonia caused by viral infection. It primarily affects the upper and lower respiratory tract, leading to inflammation of the alveoli (air sacs) in the lungs. This results in symptoms such as cough, difficulty breathing, fever, fatigue, and chest pain. Common viruses that can cause pneumonia include influenza virus, respiratory syncytial virus (RSV), and adenovirus. Viral pneumonia is often milder than bacterial pneumonia but can still be serious, especially in young children, older adults, and people with weakened immune systems. Treatment typically involves supportive care, such as rest, hydration, and fever reduction, while the body fights off the virus. In some cases, antiviral medications may be used to help manage symptoms and prevent complications.

Viral envelope proteins are structural proteins found in the envelope that surrounds many types of viruses. These proteins play a crucial role in the virus's life cycle, including attachment to host cells, fusion with the cell membrane, and entry into the host cell. They are typically made up of glycoproteins and are often responsible for eliciting an immune response in the host organism. The exact structure and function of viral envelope proteins vary between different types of viruses.

Parainfluenza Virus 3, Human (HPIV-3) is an enveloped, single-stranded RNA virus that belongs to the family Paramyxoviridae and genus Respirovirus. It is one of the four serotypes of human parainfluenza viruses (HPIVs), which are important causes of acute respiratory tract infections in infants, young children, and immunocompromised individuals.

HPIV-3 primarily infects the upper and lower respiratory tract, causing a wide range of clinical manifestations, from mild to severe respiratory illnesses. The incubation period for HPIV-3 infection is typically 3-7 days. In infants and young children, HPIV-3 can cause croup (laryngotracheobronchitis), bronchiolitis, and pneumonia, while in adults, it usually results in mild upper respiratory tract infections, such as the common cold.

The virus is transmitted through direct contact with infected respiratory secretions or contaminated surfaces, and infection can occur throughout the year but tends to peak during fall and winter months. Currently, there are no approved vaccines for HPIV-3; treatment is primarily supportive and focuses on managing symptoms and complications.

Virus cultivation, also known as virus isolation or viral culture, is a laboratory method used to propagate and detect viruses by introducing them to host cells and allowing them to replicate. This process helps in identifying the specific virus causing an infection and studying its characteristics, such as morphology, growth pattern, and sensitivity to antiviral agents.

The steps involved in virus cultivation typically include:

1. Collection of a clinical sample (e.g., throat swab, blood, sputum) from the patient.
2. Preparation of the sample by centrifugation or filtration to remove cellular debris and other contaminants.
3. Inoculation of the prepared sample into susceptible host cells, which can be primary cell cultures, continuous cell lines, or embryonated eggs, depending on the type of virus.
4. Incubation of the inoculated cells under appropriate conditions to allow viral replication.
5. Observation for cytopathic effects (CPE), which are changes in the host cells caused by viral replication, such as cell rounding, shrinkage, or lysis.
6. Confirmation of viral presence through additional tests, like immunofluorescence assays, polymerase chain reaction (PCR), or electron microscopy.

Virus cultivation is a valuable tool in diagnostic virology, vaccine development, and research on viral pathogenesis and host-virus interactions. However, it requires specialized equipment, trained personnel, and biosafety measures due to the potential infectivity of the viruses being cultured.

Vaccinia virus is a large, complex DNA virus that belongs to the Poxviridae family. It is the virus used in the production of the smallpox vaccine. The vaccinia virus is not identical to the variola virus, which causes smallpox, but it is closely related and provides cross-protection against smallpox infection.

The vaccinia virus has a unique replication cycle that occurs entirely in the cytoplasm of infected cells, rather than in the nucleus like many other DNA viruses. This allows the virus to evade host cell defenses and efficiently produce new virions. The virus causes the formation of pocks or lesions on the skin, which contain large numbers of virus particles that can be transmitted to others through close contact.

Vaccinia virus has also been used as a vector for the delivery of genes encoding therapeutic proteins, vaccines against other infectious diseases, and cancer therapies. However, the use of vaccinia virus as a vector is limited by its potential to cause adverse reactions in some individuals, particularly those with weakened immune systems or certain skin conditions.

RNA viruses are a type of virus that contain ribonucleic acid (RNA) as their genetic material, as opposed to deoxyribonucleic acid (DNA). RNA viruses replicate by using an enzyme called RNA-dependent RNA polymerase to transcribe and replicate their RNA genome.

There are several different groups of RNA viruses, including:

1. Negative-sense single-stranded RNA viruses: These viruses have a genome that is complementary to the mRNA and must undergo transcription to produce mRNA before translation can occur. Examples include influenza virus, measles virus, and rabies virus.
2. Positive-sense single-stranded RNA viruses: These viruses have a genome that can serve as mRNA and can be directly translated into protein after entry into the host cell. Examples include poliovirus, rhinoviruses, and coronaviruses.
3. Double-stranded RNA viruses: These viruses have a genome consisting of double-stranded RNA and use a complex replication strategy involving both transcription and reverse transcription. Examples include rotaviruses and reoviruses.

RNA viruses are known to cause a wide range of human diseases, ranging from the common cold to more severe illnesses such as hepatitis C, polio, and COVID-19. Due to their high mutation rates and ability to adapt quickly to new environments, RNA viruses can be difficult to control and treat with antiviral drugs or vaccines.

A lung is a pair of spongy, elastic organs in the chest that work together to enable breathing. They are responsible for taking in oxygen and expelling carbon dioxide through the process of respiration. The left lung has two lobes, while the right lung has three lobes. The lungs are protected by the ribcage and are covered by a double-layered membrane called the pleura. The trachea divides into two bronchi, which further divide into smaller bronchioles, leading to millions of tiny air sacs called alveoli, where the exchange of gases occurs.

Neutralization tests are a type of laboratory assay used in microbiology and immunology to measure the ability of a substance, such as an antibody or antitoxin, to neutralize the activity of a toxin or infectious agent. In these tests, the substance to be tested is mixed with a known quantity of the toxin or infectious agent, and the mixture is then incubated under controlled conditions. After incubation, the mixture is tested for residual toxicity or infectivity using a variety of methods, such as cell culture assays, animal models, or biochemical assays.

The neutralization titer is then calculated based on the highest dilution of the test substance that completely neutralizes the toxin or infectious agent. Neutralization tests are commonly used in the diagnosis and evaluation of immune responses to vaccines, as well as in the detection and quantification of toxins and other harmful substances.

Examples of neutralization tests include the serum neutralization test for measles antibodies, the plaque reduction neutralization test (PRNT) for dengue virus antibodies, and the cytotoxicity neutralization assay for botulinum neurotoxins.

A viral RNA (ribonucleic acid) is the genetic material found in certain types of viruses, as opposed to viruses that contain DNA (deoxyribonucleic acid). These viruses are known as RNA viruses. The RNA can be single-stranded or double-stranded and can exist as several different forms, such as positive-sense, negative-sense, or ambisense RNA. Upon infecting a host cell, the viral RNA uses the host's cellular machinery to translate the genetic information into proteins, leading to the production of new virus particles and the continuation of the viral life cycle. Examples of human diseases caused by RNA viruses include influenza, COVID-19 (SARS-CoV-2), hepatitis C, and polio.

Murine pneumonia virus (MPV) is not a widely recognized or officially established medical term. However, it may refer to the Pneumonia Virus of Mice (PVM), which is a pathogen that affects mice and can cause interstitial pneumonia.

PVM is an enveloped, single-stranded, negative-sense RNA virus belonging to the family Paramyxoviridae and the genus Pneumovirus. It primarily infects laboratory mice but has also been found in wild mouse populations. The virus replicates in the respiratory epithelium, leading to interstitial pneumonia and inflammation of the airways.

It is essential to note that Murine Pneumonia Virus should not be confused with Hantavirus Pulmonary Syndrome (HPS), which is also known as "mouse-related pulmonary syndrome." HPS is a severe, sometimes fatal, respiratory disease in humans caused by exposure to hantaviruses, which are found in rodents.

Nasal lavage fluid refers to the fluid that is obtained through a process called nasal lavage or nasal washing. This procedure involves instilling a saline solution into the nose and then allowing it to drain out, taking with it any mucus, debris, or other particles present in the nasal passages. The resulting fluid can be collected and analyzed for various purposes, such as diagnosing sinus infections, allergies, or other conditions affecting the nasal cavity and surrounding areas.

It is important to note that the term "nasal lavage fluid" may also be used interchangeably with "nasal wash fluid," "nasal irrigation fluid," or "sinus rinse fluid." These terms all refer to the same basic concept of using a saline solution to clean out the nasal passages and collect the resulting fluid for analysis.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Antiviral agents are a class of medications that are designed to treat infections caused by viruses. Unlike antibiotics, which target bacteria, antiviral agents interfere with the replication and infection mechanisms of viruses, either by inhibiting their ability to replicate or by modulating the host's immune response to the virus.

Antiviral agents are used to treat a variety of viral infections, including influenza, herpes simplex virus (HSV) infections, human immunodeficiency virus (HIV) infection, hepatitis B and C, and respiratory syncytial virus (RSV) infections.

These medications can be administered orally, intravenously, or topically, depending on the type of viral infection being treated. Some antiviral agents are also used for prophylaxis, or prevention, of certain viral infections.

It is important to note that antiviral agents are not effective against all types of viruses and may have significant side effects. Therefore, it is essential to consult with a healthcare professional before starting any antiviral therapy.

Respirovirus is not typically used as a formal medical term in modern taxonomy. However, historically, it was used to refer to a genus of viruses within the family Paramyxoviridae, order Mononegavirales. This genus included several important human and animal pathogens that cause respiratory infections.

Human respiroviruses include:
1. Human parainfluenza virus (HPIV) types 1, 2, and 3: These viruses are a common cause of upper and lower respiratory tract infections, such as croup, bronchitis, and pneumonia, particularly in young children.
2. Sendai virus (also known as murine respirovirus): This virus primarily infects rodents but can occasionally cause mild respiratory illness in humans, especially those who work closely with these animals.

The term "respirovirus" is not officially recognized by the International Committee on Taxonomy of Viruses (ICTV) anymore, and these viruses are now classified under different genera within the subfamily Pneumovirinae: Human parainfluenza viruses 1 and 3 belong to the genus Orthorubulavirus, while Human parainfluenza virus 2 is placed in the genus Metapneumovirus.

Vero cells are a line of cultured kidney epithelial cells that were isolated from an African green monkey (Cercopithecus aethiops) in the 1960s. They are named after the location where they were initially developed, the Vervet Research Institute in Japan.

Vero cells have the ability to divide indefinitely under certain laboratory conditions and are often used in scientific research, including virology, as a host cell for viruses to replicate. This allows researchers to study the characteristics of various viruses, such as their growth patterns and interactions with host cells. Vero cells are also used in the production of some vaccines, including those for rabies, polio, and Japanese encephalitis.

It is important to note that while Vero cells have been widely used in research and vaccine production, they can still have variations between different cell lines due to factors like passage number or culture conditions. Therefore, it's essential to specify the exact source and condition of Vero cells when reporting experimental results.

Cattle diseases are a range of health conditions that affect cattle, which include but are not limited to:

1. Bovine Respiratory Disease (BRD): Also known as "shipping fever," BRD is a common respiratory illness in feedlot cattle that can be caused by several viruses and bacteria.
2. Bovine Viral Diarrhea (BVD): A viral disease that can cause a variety of symptoms, including diarrhea, fever, and reproductive issues.
3. Johne's Disease: A chronic wasting disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis. It primarily affects the intestines and can cause severe diarrhea and weight loss.
4. Digital Dermatitis: Also known as "hairy heel warts," this is a highly contagious skin disease that affects the feet of cattle, causing lameness and decreased productivity.
5. Infectious Bovine Keratoconjunctivitis (IBK): Also known as "pinkeye," IBK is a common and contagious eye infection in cattle that can cause blindness if left untreated.
6. Salmonella: A group of bacteria that can cause severe gastrointestinal illness in cattle, including diarrhea, dehydration, and septicemia.
7. Leptospirosis: A bacterial disease that can cause a wide range of symptoms in cattle, including abortion, stillbirths, and kidney damage.
8. Blackleg: A highly fatal bacterial disease that causes rapid death in young cattle. It is caused by Clostridium chauvoei and vaccination is recommended for prevention.
9. Anthrax: A serious infectious disease caused by the bacterium Bacillus anthracis. Cattle can become infected by ingesting spores found in contaminated soil, feed or water.
10. Foot-and-Mouth Disease (FMD): A highly contagious viral disease that affects cloven-hooved animals, including cattle. It is characterized by fever and blisters on the feet, mouth, and teats. FMD is not a threat to human health but can have serious economic consequences for the livestock industry.

It's important to note that many of these diseases can be prevented or controlled through good management practices, such as vaccination, biosecurity measures, and proper nutrition. Regular veterinary care and monitoring are also crucial for early detection and treatment of any potential health issues in your herd.

A newborn infant is a baby who is within the first 28 days of life. This period is also referred to as the neonatal period. Newborns require specialized care and attention due to their immature bodily systems and increased vulnerability to various health issues. They are closely monitored for signs of well-being, growth, and development during this critical time.

I'm sorry for any confusion, but "seasons" is not a term that has a medical definition. Seasons refer to the four divisions of the year (spring, summer, autumn or fall, and winter) based on the position of the earth in its orbit around the sun. If you have any questions related to health or medicine, I'd be happy to try to help answer those!

A viral vaccine is a biological preparation that introduces your body to a specific virus in a way that helps your immune system build up protection against the virus without causing the illness. Viral vaccines can be made from weakened or inactivated forms of the virus, or parts of the virus such as proteins or sugars. Once introduced to the body, the immune system recognizes the virus as foreign and produces an immune response, including the production of antibodies. These antibodies remain in the body and provide immunity against future infection with that specific virus.

Viral vaccines are important tools for preventing infectious diseases caused by viruses, such as influenza, measles, mumps, rubella, polio, hepatitis A and B, rabies, rotavirus, chickenpox, shingles, and some types of cancer. Vaccination programs have led to the control or elimination of many infectious diseases that were once common.

It's important to note that viral vaccines are not effective against bacterial infections, and separate vaccines must be developed for each type of virus. Additionally, because viruses can mutate over time, it is necessary to update some viral vaccines periodically to ensure continued protection.

Parainfluenza Virus 3, Bovine (PIV-3, Bovine) is a species-specific virus that belongs to the family Paramyxoviridae and genus Respirovirus. It primarily infects cattle and is one of the major causes of respiratory illness in young calves, known as bovine respiratory disease complex (BRDC). The virus is transmitted through direct contact with infected animals or contaminated fomites and mainly affects the upper and lower respiratory tract.

The Bovine Parainfluenza Virus 3 has a single-stranded, negative-sense RNA genome that encodes for several structural and non-structural proteins. The viral envelope contains two glycoprotein spikes: the hemagglutinin-neuraminidase (HN) protein and the fusion (F) protein. These proteins play crucial roles in the attachment, fusion, and entry of the virus into the host cell.

Clinical signs of Bovine Parainfluenza Virus 3 infection include coughing, nasal discharge, fever, difficulty breathing, and reduced appetite. In severe cases, it can lead to pneumonia, which may result in significant economic losses for the cattle industry. Although vaccines are available to control the spread of this virus, they might not always prevent infection or transmission but can help reduce the severity of clinical signs and minimize the impact on animal health and productivity.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Virus shedding refers to the release of virus particles by an infected individual, who can then transmit the virus to others through various means such as respiratory droplets, fecal matter, or bodily fluids. This occurs when the virus replicates inside the host's cells and is released into the surrounding environment, where it can infect other individuals. The duration of virus shedding varies depending on the specific virus and the individual's immune response. It's important to note that some individuals may shed viruses even before they show symptoms, making infection control measures such as hand hygiene, mask-wearing, and social distancing crucial in preventing the spread of infectious diseases.

Pneumovirus infections refer to respiratory illnesses caused by viruses belonging to the Pneumoviridae family, specifically human respirovirus (hRSV) and human metapneumovirus (hMPV). These viruses primarily infect the respiratory tract and can cause a wide range of symptoms, from mild upper respiratory tract infections to severe lower respiratory tract illnesses such as bronchiolitis and pneumonia.

Human respirovirus (hRSV) is a leading cause of bronchiolitis and pneumonia in infants and young children, while human metapneumovirus (hMPV) tends to infect older children and adults, causing similar respiratory symptoms. Both viruses can also cause more severe disease in immunocompromised individuals, the elderly, and those with underlying medical conditions.

Transmission of these viruses typically occurs through close contact with infected individuals or contaminated surfaces, and they are highly contagious. Preventive measures include good hygiene practices, such as frequent handwashing and avoiding close contact with sick individuals. Currently, there are no vaccines available to prevent pneumovirus infections, but antiviral treatments and supportive care can help manage the symptoms and reduce the risk of complications.

'Cercopithecus aethiops' is the scientific name for the monkey species more commonly known as the green monkey. It belongs to the family Cercopithecidae and is native to western Africa. The green monkey is omnivorous, with a diet that includes fruits, nuts, seeds, insects, and small vertebrates. They are known for their distinctive greenish-brown fur and long tail. Green monkeys are also important animal models in biomedical research due to their susceptibility to certain diseases, such as SIV (simian immunodeficiency virus), which is closely related to HIV.

Pneumovirus is a genus of viruses in the family Pneumoviridae, order Mononegavirales. It includes several species that can cause respiratory infections in humans and animals. The most well-known species that infect humans is Human Respiratory Syncytial Virus (HRSV), which is a major cause of bronchiolitis and pneumonia in young children, the elderly, and immunocompromised individuals. Other human pneumoviruses include Human Metapneumovirus (HMPV) and Avian Metapneumovirus subtype C (AMPV-C). These viruses can cause similar respiratory symptoms, ranging from mild to severe.

Pneumoviruses are enveloped, negative-sense, single-stranded RNA viruses that replicate in the cytoplasm of infected cells. They have a nonsegmented genome and encode several structural proteins, including an attachment protein, fusion protein, matrix protein, and nucleocapsid protein. The virions are typically pleomorphic, with a diameter of 150-250 nm.

Transmission of pneumoviruses occurs through respiratory droplets or direct contact with contaminated surfaces. Preventive measures include good hygiene practices, such as hand washing and covering the mouth and nose when coughing or sneezing. There are currently no vaccines available for human pneumoviruses, but several candidates are in development. Treatment is primarily supportive and may include oxygen therapy, mechanical ventilation, and antiviral medications in severe cases.

Orthomyxoviridae is a family of viruses that includes influenza A, B, and C viruses, which are the causative agents of flu in humans and animals. These viruses are enveloped, meaning they have a lipid membrane derived from the host cell, and have a single-stranded, negative-sense RNA genome. The genome is segmented, meaning it consists of several separate pieces of RNA, which allows for genetic reassortment or "shuffling" when two different strains infect the same cell, leading to the emergence of new strains.

The viral envelope contains two major glycoproteins: hemagglutinin (HA) and neuraminidase (NA). The HA protein is responsible for binding to host cells and facilitating entry into the cell, while NA helps release newly formed virus particles from infected cells by cleaving sialic acid residues on the host cell surface.

Orthomyxoviruses are known to cause respiratory infections in humans and animals, with influenza A viruses being the most virulent and capable of causing pandemics. Influenza B viruses typically cause less severe illness and are primarily found in humans, while influenza C viruses generally cause mild upper respiratory symptoms and are also mainly restricted to humans.

Virology is the study of viruses, their classification, and their effects on living organisms. It involves the examination of viral genetic material, viral replication, how viruses cause disease, and the development of antiviral drugs and vaccines to treat or prevent virus infections. Virologists study various types of viruses that can infect animals, plants, and microorganisms, as well as understand their evolution and transmission patterns.

Attenuated vaccines consist of live microorganisms that have been weakened (attenuated) through various laboratory processes so they do not cause disease in the majority of recipients but still stimulate an immune response. The purpose of attenuation is to reduce the virulence or replication capacity of the pathogen while keeping it alive, allowing it to retain its antigenic properties and induce a strong and protective immune response.

Examples of attenuated vaccines include:

1. Sabin oral poliovirus vaccine (OPV): This vaccine uses live but weakened polioviruses to protect against all three strains of the disease-causing poliovirus. The weakened viruses replicate in the intestine and induce an immune response, which provides both humoral (antibody) and cell-mediated immunity.
2. Measles, mumps, and rubella (MMR) vaccine: This combination vaccine contains live attenuated measles, mumps, and rubella viruses. It is given to protect against these three diseases and prevent their spread in the population.
3. Varicella (chickenpox) vaccine: This vaccine uses a weakened form of the varicella-zoster virus, which causes chickenpox. By introducing this attenuated virus into the body, it stimulates an immune response that protects against future infection with the wild-type virus.
4. Yellow fever vaccine: This live attenuated vaccine is used to prevent yellow fever, a viral disease transmitted by mosquitoes in tropical and subtropical regions of Africa and South America. The vaccine contains a weakened form of the yellow fever virus that cannot cause the disease but still induces an immune response.
5. Bacillus Calmette-Guérin (BCG) vaccine: This live attenuated vaccine is used to protect against tuberculosis (TB). It contains a weakened strain of Mycobacterium bovis, which does not cause TB in humans but stimulates an immune response that provides some protection against the disease.

Attenuated vaccines are generally effective at inducing long-lasting immunity and can provide robust protection against targeted diseases. However, they may pose a risk for individuals with weakened immune systems, as the attenuated viruses or bacteria could potentially cause illness in these individuals. Therefore, it is essential to consider an individual's health status before administering live attenuated vaccines.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

Virus assembly, also known as virion assembly, is the final stage in the virus life cycle where individual viral components come together to form a complete viral particle or virion. This process typically involves the self-assembly of viral capsid proteins around the viral genome (DNA or RNA) and, in enveloped viruses, the acquisition of a lipid bilayer membrane containing viral glycoproteins. The specific mechanisms and regulation of virus assembly vary among different viral families, but it is often directed by interactions between viral structural proteins and genomic nucleic acid.

Paramyxoviridae is a family of negative-sense, single-stranded RNA viruses that include several medically important pathogens. These viruses are characterized by their enveloped particles and helical symmetry. The paramyxoviruses can cause respiratory infections, neurological disorders, and other systemic diseases in humans, animals, and birds.

Some notable members of the Paramyxoviridae family include:

* Human respirovirus (also known as human parainfluenza virus): causes upper and lower respiratory tract infections in children and adults.
* Human orthopneumovirus (also known as respiratory syncytial virus, or RSV): a major cause of bronchiolitis and pneumonia in infants and young children.
* Measles morbillivirus: causes measles, a highly contagious viral disease characterized by fever, rash, and cough.
* Mumps virus: causes mumps, an acute infectious disease that primarily affects the salivary glands.
* Hendra virus and Nipah virus: zoonotic paramyxoviruses that can cause severe respiratory and neurological disease in humans and animals.

Effective vaccines are available for some paramyxoviruses, such as measles and mumps, but there are currently no approved vaccines for others, such as RSV and Nipah virus. Antiviral therapies are also limited, with only a few options available for the treatment of severe paramyxovirus infections.

A virus is a small infectious agent that replicates inside the living cells of an organism. It is not considered to be a living organism itself, as it lacks the necessary components to independently maintain its own metabolic functions. Viruses are typically composed of genetic material, either DNA or RNA, surrounded by a protein coat called a capsid. Some viruses also have an outer lipid membrane known as an envelope.

Viruses can infect all types of organisms, from animals and plants to bacteria and archaea. They cause various diseases by invading the host cell, hijacking its machinery, and using it to produce numerous copies of themselves, which can then infect other cells. The resulting infection and the immune response it triggers can lead to a range of symptoms, depending on the virus and the host organism.

Viruses are transmitted through various means, such as respiratory droplets, bodily fluids, contaminated food or water, and vectors like insects. Prevention methods include vaccination, practicing good hygiene, using personal protective equipment, and implementing public health measures to control their spread.

Viral genes refer to the genetic material present in viruses that contains the information necessary for their replication and the production of viral proteins. In DNA viruses, the genetic material is composed of double-stranded or single-stranded DNA, while in RNA viruses, it is composed of single-stranded or double-stranded RNA.

Viral genes can be classified into three categories: early, late, and structural. Early genes encode proteins involved in the replication of the viral genome, modulation of host cell processes, and regulation of viral gene expression. Late genes encode structural proteins that make up the viral capsid or envelope. Some viruses also have structural genes that are expressed throughout their replication cycle.

Understanding the genetic makeup of viruses is crucial for developing antiviral therapies and vaccines. By targeting specific viral genes, researchers can develop drugs that inhibit viral replication and reduce the severity of viral infections. Additionally, knowledge of viral gene sequences can inform the development of vaccines that stimulate an immune response to specific viral proteins.

A Cytopathic Effect (CPE) is a visible change in the cell or group of cells due to infection by a pathogen, such as a virus. When the cytopathic effect is caused specifically by a viral infection, it is referred to as a "Viral Cytopathic Effect" (VCPE).

The VCPE can include various changes in the cell's morphology, size, and structure, such as rounding, shrinkage, multinucleation, inclusion bodies, and formation of syncytia (multinucleated giant cells). These changes are often used to identify and characterize viruses in laboratory settings.

The VCPE is typically observed under a microscope after the virus has infected cell cultures, and it can help researchers determine the type of virus, the degree of infection, and the effectiveness of antiviral treatments. The severity and timing of the VCPE can vary depending on the specific virus and the type of cells that are infected.

The Fluorescent Antibody Technique (FAT), Direct is a type of immunofluorescence assay used in laboratory diagnostic tests. It is a method for identifying and locating specific antigens in cells or tissues by using fluorescent-labeled antibodies that directly bind to the target antigen.

In this technique, a sample (such as a tissue section or cell smear) is prepared and then treated with a fluorescently labeled primary antibody that specifically binds to the antigen of interest. After washing away unbound antibodies, the sample is examined under a fluorescence microscope. If the antigen is present in the sample, it will be visible as distinct areas of fluorescence, allowing for the direct visualization and localization of the antigen within the cells or tissues.

Direct FAT is commonly used in diagnostic laboratories to identify and diagnose various infectious diseases, including bacterial, viral, and fungal infections. It can also be used to detect specific proteins or antigens in research and clinical settings.

Pulmonary eosinophilia is a condition characterized by an increased number of eosinophils, a type of white blood cell, in the lungs or pulmonary tissues. Eosinophils play a role in the body's immune response to parasites and allergens, but an overabundance can contribute to inflammation and damage in the lungs.

The condition may be associated with various underlying causes, such as:

1. Asthma or allergic bronchopulmonary aspergillosis (ABPA)
2. Eosinophilic lung diseases, like eosinophilic pneumonia or idiopathic hypereosinophilic syndrome
3. Parasitic infections, such as ascariasis or strongyloidiasis
4. Drug reactions, including certain antibiotics and anti-inflammatory drugs
5. Connective tissue disorders, like rheumatoid arthritis or Churg-Strauss syndrome
6. Malignancies, such as lymphoma or leukemia
7. Other less common conditions, like tropical pulmonary eosinophilia or cryptogenic organizing pneumonia

Symptoms of pulmonary eosinophilia can vary but often include cough, shortness of breath, wheezing, and chest discomfort. Diagnosis typically involves a combination of clinical evaluation, imaging studies, and laboratory tests, such as complete blood count (CBC) with differential, bronchoalveolar lavage (BAL), or lung biopsy. Treatment depends on the underlying cause and may include corticosteroids, antibiotics, or antiparasitic medications.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

Parainfluenza Virus 1, Human (HPIV-1) is a type of respiratory virus that belongs to the family Paramyxoviridae and genus Respirovirus. It is one of the four serotypes of human parainfluenza viruses (HPIVs), which are important causes of acute respiratory infections in children, immunocompromised individuals, and the elderly.

HPIV-1 primarily infects the upper respiratory tract, causing symptoms such as cough, runny nose, sore throat, and fever. However, it can also cause lower respiratory tract infections, including bronchitis, bronchiolitis, and pneumonia, particularly in young children and infants.

HPIV-1 is transmitted through respiratory droplets or direct contact with infected individuals. The incubation period for HPIV-1 infection ranges from 2 to 7 days, after which symptoms can last for up to 10 days. There is no specific antiviral treatment available for HPIV-1 infections, and management typically involves supportive care such as hydration, fever reduction, and respiratory support if necessary.

Prevention measures include good hand hygiene, avoiding close contact with infected individuals, and practicing cough etiquette. Vaccines are not currently available for HPIV-1 infections, but research is ongoing to develop effective vaccines against these viruses.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Nasal mucosa refers to the mucous membrane that lines the nasal cavity. It is a delicate, moist, and specialized tissue that contains various types of cells including epithelial cells, goblet cells, and glands. The primary function of the nasal mucosa is to warm, humidify, and filter incoming air before it reaches the lungs.

The nasal mucosa produces mucus, which traps dust, allergens, and microorganisms, preventing them from entering the respiratory system. The cilia, tiny hair-like structures on the surface of the epithelial cells, help move the mucus towards the back of the throat, where it can be swallowed or expelled.

The nasal mucosa also contains a rich supply of blood vessels and immune cells that help protect against infections and inflammation. It plays an essential role in the body's defense system by producing antibodies, secreting antimicrobial substances, and initiating local immune responses.

Virus receptors are specific molecules (commonly proteins) on the surface of host cells that viruses bind to in order to enter and infect those cells. This interaction between the virus and its receptor is a critical step in the infection process. Different types of viruses have different receptor requirements, and identifying these receptors can provide important insights into the biology of the virus and potential targets for antiviral therapies.

Influenza, also known as the flu, is a highly contagious viral infection that attacks the respiratory system of humans. It is caused by influenza viruses A, B, or C and is characterized by the sudden onset of fever, chills, headache, muscle pain, sore throat, cough, runny nose, and fatigue. Influenza can lead to complications such as pneumonia, bronchitis, and ear infections, and can be particularly dangerous for young children, older adults, pregnant women, and people with weakened immune systems or chronic medical conditions. The virus is spread through respiratory droplets produced when an infected person coughs, sneezes, or talks, and can also survive on surfaces for a period of time. Influenza viruses are constantly changing, which makes it necessary to get vaccinated annually to protect against the most recent and prevalent strains.

Inactivated vaccines, also known as killed or non-live vaccines, are created by using a version of the virus or bacteria that has been grown in a laboratory and then killed or inactivated with chemicals, heat, or radiation. This process renders the organism unable to cause disease, but still capable of stimulating an immune response when introduced into the body.

Inactivated vaccines are generally considered safer than live attenuated vaccines since they cannot revert back to a virulent form and cause illness. However, they may require multiple doses or booster shots to maintain immunity because the immune response generated by inactivated vaccines is not as robust as that produced by live vaccines. Examples of inactivated vaccines include those for hepatitis A, rabies, and influenza (inactivated flu vaccine).

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

A viral plaque assay is a laboratory technique used to measure the infectivity and concentration of viruses in a sample. This method involves infecting a monolayer of cells (usually in a petri dish or multi-well plate) with a known volume of a virus-containing sample, followed by overlaying the cells with a nutrient-agar medium to restrict viral spread and enable individual plaques to form.

After an incubation period that allows for viral replication and cell death, the cells are stained, and clear areas or "plaques" become visible in the monolayer. Each plaque represents a localized region of infected and lysed cells, caused by the progeny of a single infectious virus particle. The number of plaques is then counted, and the viral titer (infectious units per milliliter or PFU/mL) is calculated based on the dilution factor and volume of the original inoculum.

Viral plaque assays are essential for determining viral titers, assessing virus-host interactions, evaluating antiviral agents, and studying viral pathogenesis.

Measles virus is a single-stranded, negative-sense RNA virus belonging to the genus Morbillivirus in the family Paramyxoviridae. It is the causative agent of measles, a highly contagious infectious disease characterized by fever, cough, runny nose, and a red, blotchy rash. The virus primarily infects the respiratory tract and then spreads throughout the body via the bloodstream.

The genome of the measles virus is approximately 16 kilobases in length and encodes for eight proteins: nucleocapsid (N), phosphoprotein (P), matrix protein (M), fusion protein (F), hemagglutinin (H), large protein (L), and two non-structural proteins, V and C. The H protein is responsible for binding to the host cell receptor CD150 (SLAM) and mediating viral entry, while the F protein facilitates fusion of the viral and host cell membranes.

Measles virus is transmitted through respiratory droplets and direct contact with infected individuals. The virus can remain airborne for up to two hours in a closed space, making it highly contagious. Measles is preventable through vaccination, which has led to significant reductions in the incidence of the disease worldwide.

The Respiratory System is a complex network of organs and tissues that work together to facilitate the process of breathing, which involves the intake of oxygen and the elimination of carbon dioxide. This system primarily includes the nose, throat (pharynx), voice box (larynx), windpipe (trachea), bronchi, bronchioles, lungs, and diaphragm.

The nostrils or mouth take in air that travels through the pharynx, larynx, and trachea into the lungs. Within the lungs, the trachea divides into two bronchi, one for each lung, which further divide into smaller tubes called bronchioles. At the end of these bronchioles are tiny air sacs known as alveoli where the exchange of gases occurs. Oxygen from the inhaled air diffuses through the walls of the alveoli into the bloodstream, while carbon dioxide, a waste product, moves from the blood to the alveoli and is exhaled out of the body.

The diaphragm, a large muscle that separates the chest from the abdomen, plays a crucial role in breathing by contracting and relaxing to change the volume of the chest cavity, thereby allowing air to flow in and out of the lungs. Overall, the Respiratory System is essential for maintaining life by providing the body's cells with the oxygen needed for metabolism and removing waste products like carbon dioxide.

Synthetic vaccines are artificially produced, designed to stimulate an immune response and provide protection against specific diseases. Unlike traditional vaccines that are derived from weakened or killed pathogens, synthetic vaccines are created using synthetic components, such as synthesized viral proteins, DNA, or RNA. These components mimic the disease-causing agent and trigger an immune response without causing the actual disease. The use of synthetic vaccines offers advantages in terms of safety, consistency, and scalability in production, making them valuable tools for preventing infectious diseases.

Arvicolinae is a subfamily of rodents that includes voles, lemmings, and muskrats. These small mammals are characterized by their short legs, rounded bodies, and short tails. They are primarily found in the northern hemisphere, with the majority of species living in North America and Eurasia.

Arvicolines are known for their high reproductive rate and ability to survive in a variety of habitats, including grasslands, forests, tundra, and wetlands. They have a unique set of teeth called hypsodont teeth, which continue to grow throughout their lives. This adaptation allows them to wear down their teeth as they gnaw on tough plant material.

Many arvicoline species are important prey animals for larger predators, such as hawks, owls, and foxes. Some species, like the muskrat, are also hunted by humans for their fur or meat. In recent years, some arvicoline populations have experienced dramatic fluctuations in size due to changes in their habitats and food supplies, leading to concerns about their conservation status.

Simian Virus 40 (SV40) is a polyomavirus that is found in both monkeys and humans. It is a DNA virus that has been extensively studied in laboratory settings due to its ability to transform cells and cause tumors in animals. In fact, SV40 was discovered as a contaminant of poliovirus vaccines that were prepared using rhesus monkey kidney cells in the 1950s and 1960s.

SV40 is not typically associated with human disease, but there has been some concern that exposure to the virus through contaminated vaccines or other means could increase the risk of certain types of cancer, such as mesothelioma and brain tumors. However, most studies have failed to find a consistent link between SV40 infection and cancer in humans.

The medical community generally agrees that SV40 is not a significant public health threat, but researchers continue to study the virus to better understand its biology and potential impact on human health.

'Influenza A Virus, H1N1 Subtype' is a specific subtype of the influenza A virus that causes flu in humans and animals. It contains certain proteins called hemagglutinin (H) and neuraminidase (N) on its surface, with this subtype specifically having H1 and N1 antigens. The H1N1 strain is well-known for causing the 2009 swine flu pandemic, which was a global outbreak of flu that resulted in significant morbidity and mortality. This subtype can also cause seasonal flu, although the severity and symptoms may vary. It is important to note that influenza viruses are constantly changing, and new strains or subtypes can emerge over time, requiring regular updates to vaccines to protect against them.

Parainfluenza vaccines are vaccines that are designed to protect against parainfluenza virus infections, which are a common cause of respiratory illnesses such as croup, bronchitis, and pneumonia. There are four types of parainfluenza viruses (PIV 1-4), and they are spread from person to person through respiratory droplets.

Currently, there are no licensed vaccines available for parainfluenza viruses in the United States. However, researchers have been working on developing vaccines against PIV1 and PIV3, which are the most common causes of severe lower respiratory tract illnesses in infants and young children.

There are two main types of parainfluenza vaccines that have been developed: live-attenuated vaccines and inactivated vaccines. Live-attenuated vaccines contain weakened strains of the virus, while inactivated vaccines contain killed viruses. Both types of vaccines have shown promise in clinical trials, but further research is needed to determine their safety and effectiveness in larger populations.

Overall, parainfluenza vaccines are an important area of research, as they could help prevent serious respiratory illnesses in young children and other vulnerable populations.

A plant virus is not defined in medical terms, as viruses are typically considered within the context of living organisms and plants are not classified as such. However, I can provide a general virology definition for you:

Plant viruses are small infectious agents that consist of nucleic acid (DNA or RNA) enclosed in a protein coat. They infect various plant species, causing a wide range of symptoms and diseases, which can result in significant economic losses in agriculture and horticulture. Plant viruses lack the ability to replicate outside a host cell, and they rely on the host's metabolic machinery for their reproduction. They can be transmitted through various means, such as insect vectors, seeds, or mechanical contact.

DNA viruses are a type of virus that contain DNA (deoxyribonucleic acid) as their genetic material. These viruses replicate by using the host cell's machinery to synthesize new viral components, which are then assembled into new viruses and released from the host cell.

DNA viruses can be further classified based on the structure of their genomes and the way they replicate. For example, double-stranded DNA (dsDNA) viruses have a genome made up of two strands of DNA, while single-stranded DNA (ssDNA) viruses have a genome made up of a single strand of DNA.

Examples of DNA viruses include herpes simplex virus, varicella-zoster virus, human papillomavirus, and adenoviruses. Some DNA viruses are associated with specific diseases, such as cancer (e.g., human papillomavirus) or neurological disorders (e.g., herpes simplex virus).

It's important to note that while DNA viruses contain DNA as their genetic material, RNA viruses contain RNA (ribonucleic acid) as their genetic material. Both DNA and RNA viruses can cause a wide range of diseases in humans, animals, and plants.

"Influenza A Virus, H3N2 Subtype" is a specific subtype of the influenza A virus that causes respiratory illness and is known to circulate in humans and animals, including birds and pigs. The "H3N2" refers to the two proteins on the surface of the virus: hemagglutinin (H) and neuraminidase (N). In this subtype, the H protein is of the H3 variety and the N protein is of the N2 variety. This subtype has been responsible for several influenza epidemics and pandemics in humans, including the 1968 Hong Kong flu pandemic. It is one of the influenza viruses that are monitored closely by public health authorities due to its potential to cause significant illness and death, particularly in high-risk populations such as older adults, young children, and people with certain underlying medical conditions.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

Parainfluenza Virus 2, Human (HPIV-2) is a type of respiratory virus that belongs to the family Paramyxoviridae and genus Respirovirus. It is one of the four serotypes of human parainfluenza viruses (HPIVs), which also include HPIV-1, HPIV-3, and HPIV-4.

HPIV-2 primarily infects the upper respiratory tract and causes mild to moderate symptoms similar to those caused by other respiratory viruses. The infection can lead to inflammation of the nose, throat, and voice box (larynx), resulting in a runny nose, sore throat, cough, and hoarseness. In some cases, HPIV-2 can also cause croup, a condition characterized by a barking cough and stridor (high-pitched breathing sounds) due to inflammation of the upper airways.

HPIV-2 is highly contagious and spreads through respiratory droplets produced when an infected person talks, coughs, or sneezes. The virus can also be transmitted by touching contaminated surfaces and then touching the mouth, nose, or eyes. HPIV-2 infections are most common in infants and young children, but people of all ages can become infected.

There is no specific treatment for HPIV-2 infections, and management typically involves supportive care to alleviate symptoms. Preventive measures include good hygiene practices, such as frequent handwashing, covering the mouth and nose when coughing or sneezing, and avoiding close contact with sick individuals. Vaccines are not available for HPIV-2 infections, but research is ongoing to develop effective vaccines against these viruses.

Defective viruses are viruses that have lost the ability to complete a full replication cycle and produce progeny virions independently. These viruses require the assistance of a helper virus, which provides the necessary functions for replication. Defective viruses can arise due to mutations, deletions, or other genetic changes that result in the loss of essential genes. They are often non-infectious and cannot cause disease on their own, but they may interfere with the replication of the helper virus and modulate the course of infection. Defective viruses can be found in various types of viruses, including retroviruses, bacteriophages, and DNA viruses.

Intranasal administration refers to the delivery of medication or other substances through the nasal passages and into the nasal cavity. This route of administration can be used for systemic absorption of drugs or for localized effects in the nasal area.

When a medication is administered intranasally, it is typically sprayed or dropped into the nostril, where it is absorbed by the mucous membranes lining the nasal cavity. The medication can then pass into the bloodstream and be distributed throughout the body for systemic effects. Intranasal administration can also result in direct absorption of the medication into the local tissues of the nasal cavity, which can be useful for treating conditions such as allergies, migraines, or pain in the nasal area.

Intranasal administration has several advantages over other routes of administration. It is non-invasive and does not require needles or injections, making it a more comfortable option for many people. Additionally, intranasal administration can result in faster onset of action than oral administration, as the medication bypasses the digestive system and is absorbed directly into the bloodstream. However, there are also some limitations to this route of administration, including potential issues with dosing accuracy and patient tolerance.

Hospitalization is the process of admitting a patient to a hospital for the purpose of receiving medical treatment, surgery, or other health care services. It involves staying in the hospital as an inpatient, typically under the care of doctors, nurses, and other healthcare professionals. The length of stay can vary depending on the individual's medical condition and the type of treatment required. Hospitalization may be necessary for a variety of reasons, such as to receive intensive care, to undergo diagnostic tests or procedures, to recover from surgery, or to manage chronic illnesses or injuries.

A nose, in a medical context, refers to the external part of the human body that is located on the face and serves as the primary organ for the sense of smell. It is composed of bone and cartilage, with a thin layer of skin covering it. The nose also contains nasal passages that are lined with mucous membranes and tiny hairs known as cilia. These structures help to filter, warm, and moisturize the air we breathe in before it reaches our lungs. Additionally, the nose plays an essential role in the process of verbal communication by shaping the sounds we make when we speak.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Respiratory sounds are the noises produced by the airflow through the respiratory tract during breathing. These sounds can provide valuable information about the health and function of the lungs and airways. They are typically categorized into two main types: normal breath sounds and adventitious (or abnormal) breath sounds.

Normal breath sounds include:

1. Vesicular breath sounds: These are soft, low-pitched sounds heard over most of the lung fields during quiet breathing. They are produced by the movement of air through the alveoli and smaller bronchioles.
2. Bronchovesicular breath sounds: These are medium-pitched, hollow sounds heard over the mainstem bronchi and near the upper sternal border during both inspiration and expiration. They are a combination of vesicular and bronchial breath sounds.

Abnormal or adventitious breath sounds include:

1. Crackles (or rales): These are discontinuous, non-musical sounds that resemble the crackling of paper or bubbling in a fluid-filled container. They can be heard during inspiration and are caused by the sudden opening of collapsed airways or the movement of fluid within the airways.
2. Wheezes: These are continuous, musical sounds resembling a whistle. They are produced by the narrowing or obstruction of the airways, causing turbulent airflow.
3. Rhonchi: These are low-pitched, rumbling, continuous sounds that can be heard during both inspiration and expiration. They are caused by the vibration of secretions or fluids in the larger airways.
4. Stridor: This is a high-pitched, inspiratory sound that resembles a harsh crowing or barking noise. It is usually indicative of upper airway narrowing or obstruction.

The character, location, and duration of respiratory sounds can help healthcare professionals diagnose various respiratory conditions, such as pneumonia, chronic obstructive pulmonary disease (COPD), asthma, and bronchitis.

A disease outbreak is defined as the occurrence of cases of a disease in excess of what would normally be expected in a given time and place. It may affect a small and localized group or a large number of people spread over a wide area, even internationally. An outbreak may be caused by a new agent, a change in the agent's virulence or host susceptibility, or an increase in the size or density of the host population.

Outbreaks can have significant public health and economic impacts, and require prompt investigation and control measures to prevent further spread of the disease. The investigation typically involves identifying the source of the outbreak, determining the mode of transmission, and implementing measures to interrupt the chain of infection. This may include vaccination, isolation or quarantine, and education of the public about the risks and prevention strategies.

Examples of disease outbreaks include foodborne illnesses linked to contaminated food or water, respiratory infections spread through coughing and sneezing, and mosquito-borne diseases such as Zika virus and West Nile virus. Outbreaks can also occur in healthcare settings, such as hospitals and nursing homes, where vulnerable populations may be at increased risk of infection.

Giant cells are large, multinucleated cells that result from the fusion of monocytes or macrophages. They can be found in various types of inflammatory and degenerative lesions, including granulomas, which are a hallmark of certain diseases such as tuberculosis and sarcoidosis. There are several types of giant cells, including:

1. Langhans giant cells: These have a horseshoe-shaped or crescentic arrangement of nuclei around the periphery of the cell. They are typically found in granulomas associated with infectious diseases such as tuberculosis and histoplasmosis.
2. Foreign body giant cells: These form in response to the presence of foreign material, such as a splinter or suture, in tissue. The nuclei are usually scattered throughout the cell cytoplasm.
3. Touton giant cells: These are found in certain inflammatory conditions, such as xanthomatosis and granulomatous slack skin. They have a central core of lipid-laden histiocytes surrounded by a ring of nuclei.
4. Osteoclast giant cells: These are multinucleated cells responsible for bone resorption. They can be found in conditions such as giant cell tumors of bone and Paget's disease.

It is important to note that the presence of giant cells alone does not necessarily indicate a specific diagnosis, and their significance must be interpreted within the context of the overall clinical and pathological findings.

Sindbis virus is an alphavirus that belongs to the Togaviridae family. It's named after the location where it was first isolated, in Sindbis, Egypt, in 1952. This virus is primarily transmitted by mosquitoes and can infect a wide range of animals, including birds and humans. In humans, Sindbis virus infection often causes a mild flu-like illness characterized by fever, rash, and joint pain. However, some people may develop more severe symptoms, such as neurological disorders, although this is relatively rare. There is no specific treatment for Sindbis virus infection, and management typically involves supportive care to alleviate symptoms.

Epithelial cells are types of cells that cover the outer surfaces of the body, line the inner surfaces of organs and glands, and form the lining of blood vessels and body cavities. They provide a protective barrier against the external environment, regulate the movement of materials between the internal and external environments, and are involved in the sense of touch, temperature, and pain. Epithelial cells can be squamous (flat and thin), cuboidal (square-shaped and of equal height), or columnar (tall and narrow) in shape and are classified based on their location and function.

Influenza B virus is one of the primary types of influenza viruses that cause seasonal flu in humans. It's an enveloped, negative-sense, single-stranded RNA virus belonging to the family Orthomyxoviridae.

Influenza B viruses are typically found only in humans and circulate widely during the annual flu season. They mutate at a slower rate than Influenza A viruses, which means that immunity developed against one strain tends to provide protection against similar strains in subsequent seasons. However, they can still cause significant illness, especially among young children, older adults, and people with certain chronic medical conditions.

Influenza B viruses are divided into two lineages: Victoria and Yamagata. Vaccines are developed each year to target the most likely strains of Influenza A and B viruses that will circulate in the upcoming flu season.

Cytokines are a broad and diverse category of small signaling proteins that are secreted by various cells, including immune cells, in response to different stimuli. They play crucial roles in regulating the immune response, inflammation, hematopoiesis, and cellular communication.

Cytokines mediate their effects by binding to specific receptors on the surface of target cells, which triggers intracellular signaling pathways that ultimately result in changes in gene expression, cell behavior, and function. Some key functions of cytokines include:

1. Regulating the activation, differentiation, and proliferation of immune cells such as T cells, B cells, natural killer (NK) cells, and macrophages.
2. Coordinating the inflammatory response by recruiting immune cells to sites of infection or tissue damage and modulating their effector functions.
3. Regulating hematopoiesis, the process of blood cell formation in the bone marrow, by controlling the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells.
4. Modulating the development and function of the nervous system, including neuroinflammation, neuroprotection, and neuroregeneration.

Cytokines can be classified into several categories based on their structure, function, or cellular origin. Some common types of cytokines include interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, colony-stimulating factors (CSFs), and transforming growth factors (TGFs). Dysregulation of cytokine production and signaling has been implicated in various pathological conditions, such as autoimmune diseases, chronic inflammation, cancer, and neurodegenerative disorders.

Gene expression regulation, viral, refers to the processes that control the production of viral gene products, such as proteins and nucleic acids, during the viral life cycle. This can involve both viral and host cell factors that regulate transcription, RNA processing, translation, and post-translational modifications of viral genes.

Viral gene expression regulation is critical for the virus to replicate and produce progeny virions. Different types of viruses have evolved diverse mechanisms to regulate their gene expression, including the use of promoters, enhancers, transcription factors, RNA silencing, and epigenetic modifications. Understanding these regulatory processes can provide insights into viral pathogenesis and help in the development of antiviral therapies.

A virion is the complete, infectious form of a virus outside its host cell. It consists of the viral genome (DNA or RNA) enclosed within a protein coat called the capsid, which is often surrounded by a lipid membrane called the envelope. The envelope may contain viral proteins and glycoproteins that aid in attachment to and entry into host cells during infection. The term "virion" emphasizes the infectious nature of the virus particle, as opposed to non-infectious components like individual capsid proteins or naked viral genome.

Sendai virus, also known as murine parainfluenza virus or pneumonia virus of mice, is a species of paramyxovirus that primarily infects rodents. It is an enveloped, negative-sense, single-stranded RNA virus with a nonsegmented genome. The virus is named after the city of Sendai in Japan where it was first isolated in 1952.

Sendai virus is highly contagious and can cause respiratory illness in mice, rats, and other small rodents. It replicates in the respiratory epithelium, leading to inflammation and necrosis of the airways. The virus can also suppress the host's immune response, making infected animals more susceptible to secondary bacterial infections.

In laboratory settings, Sendai virus is sometimes used as a tool for studying viral pathogenesis, immunology, and gene therapy. It has been used as a vector for delivering genes into mammalian cells, including human cells, due to its ability to efficiently infect and transduce a wide range of cell types.

It's important to note that Sendai virus is not known to infect humans or cause disease in humans, and it is not considered a significant public health concern.

Immunization is defined medically as the process where an individual is made immune or resistant to an infectious disease, typically through the administration of a vaccine. The vaccine stimulates the body's own immune system to recognize and fight off the specific disease-causing organism, thereby preventing or reducing the severity of future infections with that organism.

Immunization can be achieved actively, where the person is given a vaccine to trigger an immune response, or passively, where antibodies are transferred to the person through immunoglobulin therapy. Immunizations are an important part of preventive healthcare and have been successful in controlling and eliminating many infectious diseases worldwide.

Rabies is a viral disease that affects the nervous system of mammals, including humans. It's caused by the rabies virus (RV), which belongs to the family Rhabdoviridae and genus Lyssavirus. The virus has a bullet-shaped appearance under an electron microscope and is encased in a lipid envelope.

The rabies virus primarily spreads through the saliva of infected animals, usually via bites. Once inside the body, it travels along nerve fibers to the brain, where it multiplies rapidly and causes inflammation (encephalitis). The infection can lead to symptoms such as anxiety, confusion, hallucinations, seizures, paralysis, coma, and ultimately death if left untreated.

Rabies is almost always fatal once symptoms appear, but prompt post-exposure prophylaxis (PEP), which includes vaccination and sometimes rabies immunoglobulin, can prevent the disease from developing when administered after an exposure to a potentially rabid animal. Pre-exposure vaccination is also recommended for individuals at high risk of exposure, such as veterinarians and travelers visiting rabies-endemic areas.

Immunoglobulin G (IgG) is a type of antibody, which is a protective protein produced by the immune system in response to foreign substances like bacteria or viruses. IgG is the most abundant type of antibody in human blood, making up about 75-80% of all antibodies. It is found in all body fluids and plays a crucial role in fighting infections caused by bacteria, viruses, and toxins.

IgG has several important functions:

1. Neutralization: IgG can bind to the surface of bacteria or viruses, preventing them from attaching to and infecting human cells.
2. Opsonization: IgG coats the surface of pathogens, making them more recognizable and easier for immune cells like neutrophils and macrophages to phagocytose (engulf and destroy) them.
3. Complement activation: IgG can activate the complement system, a group of proteins that work together to help eliminate pathogens from the body. Activation of the complement system leads to the formation of the membrane attack complex, which creates holes in the cell membranes of bacteria, leading to their lysis (destruction).
4. Antibody-dependent cellular cytotoxicity (ADCC): IgG can bind to immune cells like natural killer (NK) cells and trigger them to release substances that cause target cells (such as virus-infected or cancerous cells) to undergo apoptosis (programmed cell death).
5. Immune complex formation: IgG can form immune complexes with antigens, which can then be removed from the body through various mechanisms, such as phagocytosis by immune cells or excretion in urine.

IgG is a critical component of adaptive immunity and provides long-lasting protection against reinfection with many pathogens. It has four subclasses (IgG1, IgG2, IgG3, and IgG4) that differ in their structure, function, and distribution in the body.

An epitope is a specific region on the surface of an antigen (a molecule that can trigger an immune response) that is recognized by an antibody, B-cell receptor, or T-cell receptor. It is also commonly referred to as an antigenic determinant. Epitopes are typically composed of linear amino acid sequences or conformational structures made up of discontinuous amino acids in the antigen. They play a crucial role in the immune system's ability to differentiate between self and non-self molecules, leading to the targeted destruction of foreign substances like viruses and bacteria. Understanding epitopes is essential for developing vaccines, diagnostic tests, and immunotherapies.

Nucleocapsid proteins are structural proteins that are associated with the viral genome in many viruses. They play a crucial role in the formation and stability of the viral particle, also known as the virion. In particular, nucleocapsid proteins bind to the viral RNA or DNA genome and help to protect it from degradation by host cell enzymes. They also participate in the assembly and disassembly of the virion during the viral replication cycle.

In some viruses, such as coronaviruses, the nucleocapsid protein is also involved in regulating the transcription and replication of the viral genome. The nucleocapsid protein of SARS-CoV-2, for example, has been shown to interact with host cell proteins that are involved in the regulation of gene expression, which may contribute to the virus's ability to manipulate the host cell environment and evade the immune response.

Overall, nucleocapsid proteins are important components of many viruses and are often targeted by antiviral therapies due to their essential role in the viral replication cycle.

Viral load refers to the amount or quantity of virus (like HIV, Hepatitis C, SARS-CoV-2) present in an individual's blood or bodily fluids. It is often expressed as the number of virus copies per milliliter of blood or fluid. Monitoring viral load is important in managing and treating certain viral infections, as a higher viral load may indicate increased infectivity, disease progression, or response to treatment.

"Influenza A Virus, H5N1 Subtype" is a specific subtype of the Influenza A virus that is often found in avian species (birds) and can occasionally infect humans. The "H5N1" refers to the specific proteins (hemagglutinin and neuraminidase) found on the surface of the virus. This subtype has caused serious infections in humans, with high mortality rates, especially in cases where people have had close contact with infected birds. It does not commonly spread from person to person, but there is concern that it could mutate and adapt to efficiently transmit between humans, which would potentially cause a pandemic.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Bronchoalveolar lavage (BAL) fluid is a type of clinical specimen obtained through a procedure called bronchoalveolar lavage. This procedure involves inserting a bronchoscope into the lungs and instilling a small amount of saline solution into a specific area of the lung, then gently aspirating the fluid back out. The fluid that is recovered is called bronchoalveolar lavage fluid.

BAL fluid contains cells and other substances that are present in the lower respiratory tract, including the alveoli (the tiny air sacs where gas exchange occurs). By analyzing BAL fluid, doctors can diagnose various lung conditions, such as pneumonia, interstitial lung disease, and lung cancer. They can also monitor the effectiveness of treatments for these conditions by comparing the composition of BAL fluid before and after treatment.

BAL fluid is typically analyzed for its cellular content, including the number and type of white blood cells present, as well as for the presence of bacteria, viruses, or other microorganisms. The fluid may also be tested for various proteins, enzymes, and other biomarkers that can provide additional information about lung health and disease.

Picornaviridae is a family of small, single-stranded RNA viruses that include several important human pathogens. Picornaviridae infections refer to the illnesses caused by these viruses.

The most well-known picornaviruses that cause human diseases are:

1. Enteroviruses: This genus includes poliovirus, coxsackieviruses, echoviruses, and enterovirus 71. These viruses can cause a range of illnesses, from mild symptoms like the common cold to more severe diseases such as meningitis, myocarditis, and paralysis (in the case of poliovirus).
2. Rhinoviruses: These are the most common cause of the common cold. They primarily infect the upper respiratory tract and usually cause mild symptoms like runny nose, sore throat, and cough.
3. Hepatitis A virus (HAV): This picornavirus is responsible for acute hepatitis A infection, which can cause jaundice, fatigue, abdominal pain, and loss of appetite.

Transmission of Picornaviridae infections typically occurs through direct contact with infected individuals or contaminated objects, respiratory droplets, or fecal-oral routes. Preventive measures include maintaining good personal hygiene, practicing safe food handling, and getting vaccinated against poliovirus and hepatitis A (if recommended). Treatment for most picornaviridae infections is generally supportive, focusing on relieving symptoms and ensuring proper hydration.

Rhinovirus is a type of virus that belongs to the Picornaviridae family. It's one of the most common causes of the common cold in humans, responsible for around 10-40% of all adult cases and up to 80% of cases in children. The virus replicates in the upper respiratory tract, leading to symptoms such as nasal congestion, sneezing, sore throat, and cough.

Rhinovirus infections are typically mild and self-limiting, but they can be more severe or even life-threatening in people with weakened immune systems, such as those with HIV/AIDS or who are undergoing cancer treatment. There is no vaccine available to prevent rhinovirus infections, and treatment is generally supportive, focusing on relieving symptoms rather than targeting the virus itself.

The virus can be transmitted through respiratory droplets or direct contact with contaminated surfaces, and it's highly contagious. It can survive on surfaces for several hours, making hand hygiene and environmental disinfection important measures to prevent its spread.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Viral DNA refers to the genetic material present in viruses that consist of DNA as their core component. Deoxyribonucleic acid (DNA) is one of the two types of nucleic acids that are responsible for storing and transmitting genetic information in living organisms. Viruses are infectious agents much smaller than bacteria that can only replicate inside the cells of other organisms, called hosts.

Viral DNA can be double-stranded (dsDNA) or single-stranded (ssDNA), depending on the type of virus. Double-stranded DNA viruses have a genome made up of two complementary strands of DNA, while single-stranded DNA viruses contain only one strand of DNA.

Examples of dsDNA viruses include Adenoviruses, Herpesviruses, and Poxviruses, while ssDNA viruses include Parvoviruses and Circoviruses. Viral DNA plays a crucial role in the replication cycle of the virus, encoding for various proteins necessary for its multiplication and survival within the host cell.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Neutralizing antibodies are a type of antibody that defends against pathogens such as viruses or bacteria by neutralizing their ability to infect cells. They do this by binding to specific regions on the surface proteins of the pathogen, preventing it from attaching to and entering host cells. This renders the pathogen ineffective and helps to prevent or reduce the severity of infection. Neutralizing antibodies can be produced naturally in response to an infection or vaccination, or they can be generated artificially for therapeutic purposes.

A nucleocapsid is a protein structure that encloses the genetic material (nucleic acid) of certain viruses. It is composed of proteins encoded by the virus itself, which are synthesized inside the host cell and then assemble around the viral genome to form a stable complex.

The nucleocapsid plays an important role in the viral life cycle. It protects the viral genome from degradation by host enzymes and helps to facilitate the packaging of the genome into new virus particles during assembly. Additionally, the nucleocapsid can also play a role in the regulation of viral gene expression and replication.

In some viruses, such as coronaviruses, the nucleocapsid is encased within an envelope derived from the host cell membrane, while in others, it exists as a naked capsid. The structure and composition of the nucleocapsid can vary significantly between different virus families.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Respiratory mucosa refers to the mucous membrane that lines the respiratory tract, including the nose, throat, bronchi, and lungs. It is a specialized type of tissue that is composed of epithelial cells, goblet cells, and glands that produce mucus, which helps to trap inhaled particles such as dust, allergens, and pathogens.

The respiratory mucosa also contains cilia, tiny hair-like structures that move rhythmically to help propel the mucus and trapped particles out of the airways and into the upper part of the throat, where they can be swallowed or coughed up. This defense mechanism is known as the mucociliary clearance system.

In addition to its role in protecting the respiratory tract from harmful substances, the respiratory mucosa also plays a crucial role in immune function by containing various types of immune cells that help to detect and respond to pathogens and other threats.

Inclusion bodies, viral are typically described as intracellular inclusions that appear as a result of viral infections. These inclusion bodies consist of aggregates of virus-specific proteins, viral particles, or both, which accumulate inside the host cell's cytoplasm or nucleus during the replication cycle of certain viruses.

The presence of inclusion bodies can sometimes be observed through histological or cytological examination using various staining techniques. Different types of viruses may exhibit distinct morphologies and locations of these inclusion bodies, which can aid in the identification and diagnosis of specific viral infections. However, it is important to note that not all viral infections result in the formation of inclusion bodies, and their presence does not necessarily indicate active viral replication or infection.

An acute disease is a medical condition that has a rapid onset, develops quickly, and tends to be short in duration. Acute diseases can range from minor illnesses such as a common cold or flu, to more severe conditions such as pneumonia, meningitis, or a heart attack. These types of diseases often have clear symptoms that are easy to identify, and they may require immediate medical attention or treatment.

Acute diseases are typically caused by an external agent or factor, such as a bacterial or viral infection, a toxin, or an injury. They can also be the result of a sudden worsening of an existing chronic condition. In general, acute diseases are distinct from chronic diseases, which are long-term medical conditions that develop slowly over time and may require ongoing management and treatment.

Examples of acute diseases include:

* Acute bronchitis: a sudden inflammation of the airways in the lungs, often caused by a viral infection.
* Appendicitis: an inflammation of the appendix that can cause severe pain and requires surgical removal.
* Gastroenteritis: an inflammation of the stomach and intestines, often caused by a viral or bacterial infection.
* Migraine headaches: intense headaches that can last for hours or days, and are often accompanied by nausea, vomiting, and sensitivity to light and sound.
* Myocardial infarction (heart attack): a sudden blockage of blood flow to the heart muscle, often caused by a buildup of plaque in the coronary arteries.
* Pneumonia: an infection of the lungs that can cause coughing, chest pain, and difficulty breathing.
* Sinusitis: an inflammation of the sinuses, often caused by a viral or bacterial infection.

It's important to note that while some acute diseases may resolve on their own with rest and supportive care, others may require medical intervention or treatment to prevent complications and promote recovery. If you are experiencing symptoms of an acute disease, it is always best to seek medical attention to ensure proper diagnosis and treatment.

Bronchopneumonia is a type of pneumonia that involves inflammation and infection of the bronchioles (small airways in the lungs) and alveoli (tiny air sacs in the lungs). It can be caused by various bacteria, viruses, or fungi and often occurs as a complication of a respiratory tract infection.

The symptoms of bronchopneumonia may include cough, chest pain, fever, chills, shortness of breath, and fatigue. In severe cases, it can lead to complications such as respiratory failure or sepsis. Treatment typically involves antibiotics for bacterial infections, antiviral medications for viral infections, and supportive care such as oxygen therapy and hydration.

Viral structural proteins are the protein components that make up the viral particle or capsid, providing structure and stability to the virus. These proteins are encoded by the viral genome and are involved in the assembly of new virus particles during the replication cycle. They can be classified into different types based on their location and function, such as capsid proteins, matrix proteins, and envelope proteins. Capsid proteins form the protein shell that encapsulates the viral genome, while matrix proteins are located between the capsid and the envelope, and envelope proteins are embedded in the lipid bilayer membrane that surrounds some viruses.

Vesicular stomatitis Indiana virus (VSIV) is a single-stranded, negative-sense RNA virus that belongs to the family Rhabdoviridae and genus Vesiculovirus. It is the causative agent of vesicular stomatitis (VS), a viral disease that primarily affects horses and cattle, but can also infect other species including swine, sheep, goats, and humans.

The virus is transmitted through direct contact with infected animals or their saliva, as well as through insect vectors such as black flies and sandflies. The incubation period for VS ranges from 2 to 8 days, after which infected animals develop fever, lethargy, and vesicular lesions in the mouth, nose, and feet. These lesions can be painful and may cause difficulty eating or walking.

In humans, VSIV infection is typically asymptomatic or causes mild flu-like symptoms such as fever, muscle aches, and headache. Occasionally, individuals may develop vesicular lesions on their skin or mucous membranes, particularly if they have had contact with infected animals.

Diagnosis of VSIV infection is typically made through virus isolation from lesion exudates or blood, as well as through serological testing. Treatment is generally supportive and aimed at relieving symptoms, as there are no specific antiviral therapies available for VS. Prevention measures include vaccination of susceptible animals, vector control, and biosecurity measures to prevent the spread of infection between animals.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

The Mumps virus is a single-stranded, negative-sense RNA virus that belongs to the Paramyxoviridae family and Rubulavirus genus. It is the causative agent of mumps, an acute infectious disease characterized by painful swelling of the salivary glands, particularly the parotid glands.

The Mumps virus has a spherical or pleomorphic shape with a diameter of approximately 150-250 nanometers. It is surrounded by a lipid bilayer membrane derived from the host cell, which contains viral glycoproteins that facilitate attachment and entry into host cells.

The M protein, located beneath the envelope, plays a crucial role in virus assembly and budding. The genome of the Mumps virus consists of eight genes encoding nine proteins, including two major structural proteins (nucleocapsid protein and matrix protein) and several non-structural proteins involved in viral replication and pathogenesis.

Transmission of the Mumps virus occurs through respiratory droplets or direct contact with infected saliva. After infection, the incubation period ranges from 12 to 25 days, followed by a prodromal phase characterized by fever, headache, malaise, and muscle pain. The characteristic swelling of the parotid glands usually appears 1-3 days after the onset of symptoms.

Complications of mumps can include meningitis, encephalitis, orchitis, oophoritis, pancreatitis, and deafness. Prevention relies on vaccination with the measles-mumps-rubella (MMR) vaccine, which is highly effective in preventing mumps and its complications.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Ribavirin is an antiviral medication used in the treatment of certain viral infections, including hepatitis C and respiratory syncytial virus (RSV) infection. It works by interfering with viral replication, preventing the virus from multiplying within infected cells. Ribavirin is often used in combination with other antiviral drugs for more effective treatment.

It's important to note that ribavirin can have serious side effects and should only be used under the supervision of a healthcare professional. Additionally, it is not effective against all types of viral infections and its use should be based on a confirmed diagnosis and appropriate medical evaluation.

Hepatitis B virus (HBV) is a DNA virus that belongs to the Hepadnaviridae family and causes the infectious disease known as hepatitis B. This virus primarily targets the liver, where it can lead to inflammation and damage of the liver tissue. The infection can range from acute to chronic, with chronic hepatitis B increasing the risk of developing serious liver complications such as cirrhosis and liver cancer.

The Hepatitis B virus has a complex life cycle, involving both nuclear and cytoplasmic phases. It enters hepatocytes (liver cells) via binding to specific receptors and is taken up by endocytosis. The viral DNA is released into the nucleus, where it is converted into a covalently closed circular DNA (cccDNA) form, which serves as the template for viral transcription.

HBV transcribes several RNAs, including pregenomic RNA (pgRNA), which is used as a template for reverse transcription during virion assembly. The pgRNA is encapsidated into core particles along with the viral polymerase and undergoes reverse transcription to generate new viral DNA. This process occurs within the cytoplasm of the hepatocyte, resulting in the formation of immature virions containing partially double-stranded DNA.

These immature virions are then enveloped by host cell membranes containing HBV envelope proteins (known as surface antigens) to form mature virions that can be secreted from the hepatocyte and infect other cells. The virus can also integrate into the host genome, which may contribute to the development of hepatocellular carcinoma in chronic cases.

Hepatitis B is primarily transmitted through exposure to infected blood or bodily fluids containing the virus, such as through sexual contact, sharing needles, or from mother to child during childbirth. Prevention strategies include vaccination, safe sex practices, and avoiding needle-sharing behaviors. Treatment for hepatitis B typically involves antiviral medications that can help suppress viral replication and reduce the risk of liver damage.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Interferon-gamma (IFN-γ) is a soluble cytokine that is primarily produced by the activation of natural killer (NK) cells and T lymphocytes, especially CD4+ Th1 cells and CD8+ cytotoxic T cells. It plays a crucial role in the regulation of the immune response against viral and intracellular bacterial infections, as well as tumor cells. IFN-γ has several functions, including activating macrophages to enhance their microbicidal activity, increasing the presentation of major histocompatibility complex (MHC) class I and II molecules on antigen-presenting cells, stimulating the proliferation and differentiation of T cells and NK cells, and inducing the production of other cytokines and chemokines. Additionally, IFN-γ has direct antiproliferative effects on certain types of tumor cells and can enhance the cytotoxic activity of immune cells against infected or malignant cells.

West Nile Virus (WNV) is an Flavivirus, which is a type of virus that is spread by mosquitoes. It was first discovered in the West Nile district of Uganda in 1937 and has since been found in many countries throughout the world. WNV can cause a mild to severe illness known as West Nile fever.

Most people who become infected with WNV do not develop any symptoms, but some may experience fever, headache, body aches, joint pain, vomiting, diarrhea, or a rash. In rare cases, the virus can cause serious neurological illnesses such as encephalitis (inflammation of the brain) or meningitis (inflammation of the membranes surrounding the brain and spinal cord). These severe forms of the disease can be fatal, especially in older adults and people with weakened immune systems.

WNV is primarily transmitted to humans through the bite of infected mosquitoes, but it can also be spread through blood transfusions, organ transplants, or from mother to baby during pregnancy, delivery, or breastfeeding. There is no specific treatment for WNV, and most people recover on their own with rest and supportive care. However, hospitalization may be necessary in severe cases. Prevention measures include avoiding mosquito bites by using insect repellent, wearing long sleeves and pants, and staying indoors during peak mosquito activity hours.

RNA virus infections refer to diseases or conditions caused by the invasion and replication of RNA (Ribonucleic acid) viruses in host cells. These viruses use RNA as their genetic material, which is different from DNA (Deoxyribonucleic acid) viruses. Upon entering a host cell, the RNA virus releases its genetic material, which then uses the host cell's machinery to produce new viral components and replicate. This process can lead to various outcomes, depending on the specific virus and the host's immune response:

1. Asymptomatic infection: Some RNA virus infections may not cause any noticeable symptoms and may only be discovered through diagnostic testing.
2. Acute infection: Many RNA viruses cause acute infections, characterized by the rapid onset of symptoms that typically last for a short period (days to weeks). Examples include the common cold (caused by rhinoviruses), influenza (caused by orthomyxoviruses), and some gastrointestinal infections (caused by noroviruses or rotaviruses).
3. Chronic infection: A few RNA viruses can establish chronic infections, where the virus persists in the host for an extended period, sometimes leading to long-term health complications. Examples include HIV (Human Immunodeficiency Virus), HCV (Hepatitis C Virus), and HTLV-1 (Human T-lymphotropic virus type 1).
4. Latent infection: Some RNA viruses, like herpesviruses, can establish latency in the host, where they remain dormant for extended periods but can reactivate under certain conditions, causing recurrent symptoms or diseases.
5. Oncogenic potential: Certain RNA viruses have oncogenic properties and can contribute to the development of cancer. For example, retroviruses like HTLV-1 can cause leukemia and lymphoma by integrating their genetic material into the host cell's DNA and altering gene expression.

Treatment for RNA virus infections varies depending on the specific virus and the severity of the infection. Antiviral medications, immunotherapy, and supportive care are common treatment strategies. Vaccines are also available to prevent some RNA virus infections, such as measles, mumps, rubella, influenza, and hepatitis A and B.

Vaccination is a simple, safe, and effective way to protect people against harmful diseases, before they come into contact with them. It uses your body's natural defenses to build protection to specific infections and makes your immune system stronger.

A vaccination usually contains a small, harmless piece of a virus or bacteria (or toxins produced by these germs) that has been made inactive or weakened so it won't cause the disease itself. This piece of the germ is known as an antigen. When the vaccine is introduced into the body, the immune system recognizes the antigen as foreign and produces antibodies to fight it.

If a person then comes into contact with the actual disease-causing germ, their immune system will recognize it and immediately produce antibodies to destroy it. The person is therefore protected against that disease. This is known as active immunity.

Vaccinations are important for both individual and public health. They prevent the spread of contagious diseases and protect vulnerable members of the population, such as young children, the elderly, and people with weakened immune systems who cannot be vaccinated or for whom vaccination is not effective.

A genetic vector is a vehicle, often a plasmid or a virus, that is used to introduce foreign DNA into a host cell as part of genetic engineering or gene therapy techniques. The vector contains the desired gene or genes, along with regulatory elements such as promoters and enhancers, which are needed for the expression of the gene in the target cells.

The choice of vector depends on several factors, including the size of the DNA to be inserted, the type of cell to be targeted, and the efficiency of uptake and expression required. Commonly used vectors include plasmids, adenoviruses, retroviruses, and lentiviruses.

Plasmids are small circular DNA molecules that can replicate independently in bacteria. They are often used as cloning vectors to amplify and manipulate DNA fragments. Adenoviruses are double-stranded DNA viruses that infect a wide range of host cells, including human cells. They are commonly used as gene therapy vectors because they can efficiently transfer genes into both dividing and non-dividing cells.

Retroviruses and lentiviruses are RNA viruses that integrate their genetic material into the host cell's genome. This allows for stable expression of the transgene over time. Lentiviruses, a subclass of retroviruses, have the advantage of being able to infect non-dividing cells, making them useful for gene therapy applications in post-mitotic tissues such as neurons and muscle cells.

Overall, genetic vectors play a crucial role in modern molecular biology and medicine, enabling researchers to study gene function, develop new therapies, and modify organisms for various purposes.

Maternally-acquired immunity (MAI) refers to the passive immunity that is transferred from a mother to her offspring, typically through the placenta during pregnancy or through breast milk after birth. This immunity is temporary and provides protection to the newborn or young infant against infectious agents, such as bacteria and viruses, based on the mother's own immune experiences and responses.

In humans, maternally-acquired immunity is primarily mediated by the transfer of antibodies called immunoglobulins (IgG) across the placenta to the fetus during pregnancy. This process begins around the 20th week of gestation and continues until birth, providing the newborn with a range of protective antibodies against various pathogens. After birth, additional protection is provided through breast milk, which contains secretory immunoglobulin A (IgA) that helps to prevent infections in the infant's gastrointestinal and respiratory tracts.

Maternally-acquired immunity is an essential mechanism for protecting newborns and young infants, who have not yet developed their own active immune responses. However, it is important to note that maternally-acquired antibodies can also interfere with the infant's response to certain vaccines, as they may neutralize the vaccine antigens before the infant's immune system has a chance to mount its own response. This is one reason why some vaccines are not recommended for young infants and why the timing of vaccinations may be adjusted in cases where maternally-acquired immunity is present.

Immunoenzyme techniques are a group of laboratory methods used in immunology and clinical chemistry that combine the specificity of antibody-antigen reactions with the sensitivity and amplification capabilities of enzyme reactions. These techniques are primarily used for the detection, quantitation, or identification of various analytes (such as proteins, hormones, drugs, viruses, or bacteria) in biological samples.

In immunoenzyme techniques, an enzyme is linked to an antibody or antigen, creating a conjugate. This conjugate then interacts with the target analyte in the sample, forming an immune complex. The presence and amount of this immune complex can be visualized or measured by detecting the enzymatic activity associated with it.

There are several types of immunoenzyme techniques, including:

1. Enzyme-linked Immunosorbent Assay (ELISA): A widely used method for detecting and quantifying various analytes in a sample. In ELISA, an enzyme is attached to either the capture antibody or the detection antibody. After the immune complex formation, a substrate is added that reacts with the enzyme, producing a colored product that can be measured spectrophotometrically.
2. Immunoblotting (Western blot): A method used for detecting specific proteins in a complex mixture, such as a protein extract from cells or tissues. In this technique, proteins are separated by gel electrophoresis and transferred to a membrane, where they are probed with an enzyme-conjugated antibody directed against the target protein.
3. Immunohistochemistry (IHC): A method used for detecting specific antigens in tissue sections or cells. In IHC, an enzyme-conjugated primary or secondary antibody is applied to the sample, and the presence of the antigen is visualized using a chromogenic substrate that produces a colored product at the site of the antigen-antibody interaction.
4. Immunofluorescence (IF): A method used for detecting specific antigens in cells or tissues by employing fluorophore-conjugated antibodies. The presence of the antigen is visualized using a fluorescence microscope.
5. Enzyme-linked immunosorbent assay (ELISA): A method used for detecting and quantifying specific antigens or antibodies in liquid samples, such as serum or culture supernatants. In ELISA, an enzyme-conjugated detection antibody is added after the immune complex formation, and a substrate is added that reacts with the enzyme to produce a colored product that can be measured spectrophotometrically.

These techniques are widely used in research and diagnostic laboratories for various applications, including protein characterization, disease diagnosis, and monitoring treatment responses.

Genetic recombination is the process by which genetic material is exchanged between two similar or identical molecules of DNA during meiosis, resulting in new combinations of genes on each chromosome. This exchange occurs during crossover, where segments of DNA are swapped between non-sister homologous chromatids, creating genetic diversity among the offspring. It is a crucial mechanism for generating genetic variability and facilitating evolutionary change within populations. Additionally, recombination also plays an essential role in DNA repair processes through mechanisms such as homologous recombinational repair (HRR) and non-homologous end joining (NHEJ).

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

A viral attachment, in the context of virology, refers to the initial step in the infection process of a host cell by a virus. This involves the binding or adsorption of the viral particle to specific receptors on the surface of the host cell. The viral attachment proteins, often located on the viral envelope or capsid, recognize and interact with these receptors, leading to a close association between the virus and the host cell. This interaction is highly specific, as different viruses may target various cell types based on their unique receptor-binding preferences. Following attachment, the virus can enter the host cell and initiate the replication cycle, ultimately leading to the production of new viral particles and potential disease manifestations.

Influenza A virus is defined as a negative-sense, single-stranded, segmented RNA virus belonging to the family Orthomyxoviridae. It is responsible for causing epidemic and pandemic influenza in humans and is also known to infect various animal species, such as birds, pigs, horses, and seals. The viral surface proteins, hemagglutinin (HA) and neuraminidase (NA), are the primary targets for antiviral drugs and vaccines. There are 18 different HA subtypes and 11 known NA subtypes, which contribute to the diversity and antigenic drift of Influenza A viruses. The zoonotic nature of this virus allows for genetic reassortment between human and animal strains, leading to the emergence of novel variants with pandemic potential.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Semliki Forest Virus (SFV) is an alphavirus in the Togaviridae family, which is primarily transmitted to vertebrates through mosquito vectors. The virus was initially isolated from mosquitoes in the Semliki Forest of Uganda and has since been found in various parts of Africa and Asia. SFV infection in humans can cause a mild febrile illness characterized by fever, headache, muscle pain, and rash. However, it is more commonly known for causing severe disease in animals, particularly non-human primates and cattle, where it can lead to encephalitis or hemorrhagic fever. SFV has also been used as a model organism in laboratory studies of virus replication and pathogenesis.

Genetic variation refers to the differences in DNA sequences among individuals and populations. These variations can result from mutations, genetic recombination, or gene flow between populations. Genetic variation is essential for evolution by providing the raw material upon which natural selection acts. It can occur within a single gene, between different genes, or at larger scales, such as differences in the number of chromosomes or entire sets of chromosomes. The study of genetic variation is crucial in understanding the genetic basis of diseases and traits, as well as the evolutionary history and relationships among species.

A capsid is the protein shell that encloses and protects the genetic material of a virus. It is composed of multiple copies of one or more proteins that are arranged in a specific structure, which can vary in shape and symmetry depending on the type of virus. The capsid plays a crucial role in the viral life cycle, including protecting the viral genome from host cell defenses, mediating attachment to and entry into host cells, and assisting with the assembly of new virus particles during replication.

Viral activation, also known as viral reactivation or virus reactivation, refers to the process in which a latent or dormant virus becomes active and starts to replicate within a host cell. This can occur when the immune system is weakened or compromised, allowing the virus to evade the body's natural defenses and cause disease.

In some cases, viral activation can be triggered by certain environmental factors, such as stress, exposure to UV light, or infection with another virus. Once activated, the virus can cause symptoms similar to those seen during the initial infection, or it may lead to new symptoms depending on the specific virus and the host's immune response.

Examples of viruses that can remain dormant in the body and be reactivated include herpes simplex virus (HSV), varicella-zoster virus (VZV), cytomegalovirus (CMV), and Epstein-Barr virus (EBV). It is important to note that not all viruses can be reactivated, and some may remain dormant in the body indefinitely without causing any harm.

Intravenous Immunoglobulins (IVIG) are a preparation of antibodies, specifically immunoglobulins, that are derived from the plasma of healthy donors. They are administered intravenously to provide passive immunity and help boost the immune system's response in individuals with weakened or compromised immune systems. IVIG can be used for various medical conditions such as primary immunodeficiency disorders, secondary immunodeficiencies, autoimmune diseases, and some infectious diseases. The administration of IVIG can help prevent infections, reduce the severity and frequency of infections, and manage the symptoms of certain autoimmune disorders. It is important to note that while IVIG provides temporary immunity, it does not replace a person's own immune system.

'Immune sera' refers to the serum fraction of blood that contains antibodies produced in response to an antigenic stimulus, such as a vaccine or an infection. These antibodies are proteins known as immunoglobulins, which are secreted by B cells (a type of white blood cell) and can recognize and bind to specific antigens. Immune sera can be collected from an immunized individual and used as a source of passive immunity to protect against infection or disease. It is often used in research and diagnostic settings to identify or measure the presence of specific antigens or antibodies.

Cytotoxic T-lymphocytes, also known as CD8+ T cells, are a type of white blood cell that plays a central role in the cell-mediated immune system. They are responsible for identifying and destroying virus-infected cells and cancer cells. When a cytotoxic T-lymphocyte recognizes a specific antigen presented on the surface of an infected or malignant cell, it becomes activated and releases toxic substances such as perforins and granzymes, which can create pores in the target cell's membrane and induce apoptosis (programmed cell death). This process helps to eliminate the infected or malignant cells and prevent the spread of infection or cancer.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

Orthomyxoviridae is a family of viruses that includes influenza A, B, and C viruses, which can cause respiratory infections in humans. Orthomyxoviridae infections are typically characterized by symptoms such as fever, cough, sore throat, runny or stuffy nose, muscle or body aches, headaches, and fatigue.

Influenza A and B viruses can cause seasonal epidemics of respiratory illness that occur mainly during the winter months in temperate climates. Influenza A viruses can also cause pandemics, which are global outbreaks of disease that occur when a new strain of the virus emerges to which there is little or no immunity in the human population.

Influenza C viruses are less common and typically cause milder illness than influenza A and B viruses. They do not cause epidemics and are not usually included in seasonal flu vaccines.

Orthomyxoviridae infections can be prevented through vaccination, good respiratory hygiene (such as covering the mouth and nose when coughing or sneezing), hand washing, and avoiding close contact with sick individuals. Antiviral medications may be prescribed to treat influenza A and B infections, particularly for people at high risk of complications, such as older adults, young children, pregnant women, and people with certain underlying medical conditions.

Passive immunization is a type of temporary immunity that is transferred to an individual through the injection of antibodies produced outside of the body, rather than through the active production of antibodies in the body in response to vaccination or infection. This can be done through the administration of preformed antibodies, such as immune globulins, which contain a mixture of antibodies that provide immediate protection against specific diseases.

Passive immunization is often used in situations where individuals have been exposed to a disease and do not have time to develop their own active immune response, or in cases where individuals are unable to produce an adequate immune response due to certain medical conditions. It can also be used as a short-term measure to provide protection until an individual can receive a vaccination that will confer long-term immunity.

Passive immunization provides immediate protection against disease, but the protection is typically short-lived, lasting only a few weeks or months. This is because the transferred antibodies are gradually broken down and eliminated by the body over time. In contrast, active immunization confers long-term immunity through the production of memory cells that can mount a rapid and effective immune response upon re-exposure to the same pathogen in the future.

Formaldehyde is a colorless, pungent, and volatile chemical compound with the formula CH2O. It is a naturally occurring substance that is found in certain fruits like apples and vegetables, as well as in animals. However, the majority of formaldehyde used in industry is synthetically produced.

In the medical field, formaldehyde is commonly used as a preservative for biological specimens such as organs, tissues, and cells. It works by killing bacteria and inhibiting the decaying process. Formaldehyde is also used in the production of various industrial products, including adhesives, resins, textiles, and paper products.

However, formaldehyde can be harmful to human health if inhaled or ingested in large quantities. It can cause irritation to the eyes, nose, throat, and skin, and prolonged exposure has been linked to respiratory problems and cancer. Therefore, it is essential to handle formaldehyde with care and use appropriate safety measures when working with this chemical compound.

Host-pathogen interactions refer to the complex and dynamic relationship between a living organism (the host) and a disease-causing agent (the pathogen). This interaction can involve various molecular, cellular, and physiological processes that occur between the two entities. The outcome of this interaction can determine whether the host will develop an infection or not, as well as the severity and duration of the illness.

During host-pathogen interactions, the pathogen may release virulence factors that allow it to evade the host's immune system, colonize tissues, and obtain nutrients for its survival and replication. The host, in turn, may mount an immune response to recognize and eliminate the pathogen, which can involve various mechanisms such as inflammation, phagocytosis, and the production of antimicrobial agents.

Understanding the intricacies of host-pathogen interactions is crucial for developing effective strategies to prevent and treat infectious diseases. This knowledge can help identify new targets for therapeutic interventions, inform vaccine design, and guide public health policies to control the spread of infectious agents.

Nasopharyngeal diseases refer to conditions that affect the nasopharynx, which is the uppermost part of the pharynx (throat) located behind the nose. The nasopharynx is lined with mucous membrane and contains the opening of the Eustachian tubes, which connect to the middle ear.

There are several types of nasopharyngeal diseases, including:

1. Nasopharyngitis: Also known as a "common cold," this is an inflammation of the nasopharynx caused by a viral infection. Symptoms may include a runny nose, sore throat, cough, and fever.
2. Nasopharyngeal cancer: A malignant tumor that develops in the nasopharynx. It is relatively rare but more common in certain populations, such as those of Southeast Asian or Southern Chinese descent. Symptoms may include a lump in the neck, nosebleeds, hearing loss, and difficulty swallowing.
3. Nasopharyngeal stenosis: A narrowing of the nasopharynx that can be congenital or acquired. Acquired stenosis may result from trauma, infection, or inflammation. Symptoms may include difficulty breathing through the nose and snoring.
4. Nasopharyngeal abscess: A collection of pus in the nasopharynx that can be caused by a bacterial infection. Symptoms may include fever, difficulty swallowing, and neck pain or stiffness.
5. Nasopharyngitis allergica: Also known as "hay fever," this is an inflammation of the nasopharynx caused by an allergic reaction to substances such as pollen, dust mites, or pet dander. Symptoms may include a runny nose, sneezing, and itchy eyes.

Treatment for nasopharyngeal diseases depends on the specific condition and its severity. Treatment options may include medications, surgery, or radiation therapy.

Cell fusion is the process by which two or more cells combine to form a single cell with a single nucleus, containing the genetic material from all of the original cells. This can occur naturally in certain biological processes, such as fertilization (when a sperm and egg cell fuse to form a zygote), muscle development (where multiple muscle precursor cells fuse together to create multinucleated muscle fibers), and during the formation of bone (where osteoclasts, the cells responsible for breaking down bone tissue, are multinucleated).

Cell fusion can also be induced artificially in laboratory settings through various methods, including chemical treatments, electrical stimulation, or viral vectors. Induced cell fusion is often used in research to create hybrid cells with unique properties, such as cybrid cells (cytoplasmic hybrids) and heterokaryons (nuclear hybrids). These hybrid cells can help scientists study various aspects of cell biology, genetics, and disease mechanisms.

In summary, cell fusion is the merging of two or more cells into one, resulting in a single cell with combined genetic material. This process occurs naturally during certain biological processes and can be induced artificially for research purposes.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Chemokines are a family of small signaling proteins that play a crucial role in the immune system by recruiting immune cells to sites of infection or injury. They do this by binding to specific receptors on the surface of immune cells and guiding their movement towards the source of the chemokine.

CX3C is a subfamily of chemokines that contains only one member, called fractalkine (CX3CL1). Fractalkine is unique among chemokines because it exists in two forms: a soluble form and a membrane-bound form. The soluble form acts as a chemoattractant for immune cells, while the membrane-bound form functions as an adhesion molecule that helps to tether immune cells to the site of inflammation.

Fractalkine plays important roles in the immune response, including the recruitment and activation of immune cells such as natural killer (NK) cells, T cells, and monocytes/macrophages. It is also involved in the development and maintenance of the nervous system, where it helps to regulate the migration and differentiation of neural progenitor cells.

Abnormalities in fractalkine signaling have been implicated in a variety of diseases, including neurological disorders such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease, as well as inflammatory conditions such as rheumatoid arthritis and atherosclerosis.

Complement fixation tests are a type of laboratory test used in immunology and serology to detect the presence of antibodies in a patient's serum. These tests are based on the principle of complement activation, which is a part of the immune response. The complement system consists of a group of proteins that work together to help eliminate pathogens from the body.

In a complement fixation test, the patient's serum is mixed with a known antigen and complement proteins. If the patient has antibodies against the antigen, they will bind to it and activate the complement system. This results in the consumption or "fixation" of the complement proteins, which are no longer available to participate in a secondary reaction.

A second step involves adding a fresh source of complement proteins and a dye-labeled antibody that recognizes a specific component of the complement system. If complement was fixed during the first step, it will not be available for this secondary reaction, and the dye-labeled antibody will remain unbound. Conversely, if no antibodies were present in the patient's serum, the complement proteins would still be available for the second reaction, leading to the binding of the dye-labeled antibody.

The mixture is then examined under a microscope or using a spectrophotometer to determine whether the dye-labeled antibody has bound. If it has not, this indicates that the patient's serum contains antibodies specific to the antigen used in the test, and a positive result is recorded.

Complement fixation tests have been widely used for the diagnosis of various infectious diseases, such as syphilis, measles, and influenza. However, they have largely been replaced by more modern serological techniques, like enzyme-linked immunosorbent assays (ELISAs) and nucleic acid amplification tests (NAATs), due to their increased sensitivity, specificity, and ease of use.

A viral genome is the genetic material (DNA or RNA) that is present in a virus. It contains all the genetic information that a virus needs to replicate itself and infect its host. The size and complexity of viral genomes can vary greatly, ranging from a few thousand bases to hundreds of thousands of bases. Some viruses have linear genomes, while others have circular genomes. The genome of a virus also contains the information necessary for the virus to hijack the host cell's machinery and use it to produce new copies of the virus. Understanding the genetic makeup of viruses is important for developing vaccines and antiviral treatments.

Innate immunity, also known as non-specific immunity or natural immunity, is the inherent defense mechanism that provides immediate protection against potentially harmful pathogens (like bacteria, viruses, fungi, and parasites) without the need for prior exposure. This type of immunity is present from birth and does not adapt to specific threats over time.

Innate immune responses involve various mechanisms such as:

1. Physical barriers: Skin and mucous membranes prevent pathogens from entering the body.
2. Chemical barriers: Enzymes, stomach acid, and lysozyme in tears, saliva, and sweat help to destroy or inhibit the growth of microorganisms.
3. Cellular responses: Phagocytic cells (neutrophils, monocytes, macrophages) recognize and engulf foreign particles and pathogens, while natural killer (NK) cells target and eliminate virus-infected or cancerous cells.
4. Inflammatory response: When an infection occurs, the innate immune system triggers inflammation to increase blood flow, recruit immune cells, and remove damaged tissue.
5. Complement system: A group of proteins that work together to recognize and destroy pathogens directly or enhance phagocytosis by coating them with complement components (opsonization).

Innate immunity plays a crucial role in initiating the adaptive immune response, which is specific to particular pathogens and provides long-term protection through memory cells. Both innate and adaptive immunity work together to maintain overall immune homeostasis and protect the body from infections and diseases.

Monoclonal antibodies are laboratory-produced proteins that mimic the immune system's ability to fight off harmful antigens such as viruses and cancer cells. They are created by fusing a single B cell (the type of white blood cell responsible for producing antibodies) with a tumor cell, resulting in a hybrid cell called a hybridoma. This hybridoma can then be cloned to produce a large number of identical cells, all producing the same antibody, hence "monoclonal."

Humanized monoclonal antibodies are a type of monoclonal antibody that have been genetically engineered to include human components. This is done to reduce the risk of an adverse immune response in patients receiving the treatment. In this process, the variable region of the mouse monoclonal antibody, which contains the antigen-binding site, is grafted onto a human constant region. The resulting humanized monoclonal antibody retains the ability to bind to the target antigen while minimizing the immunogenicity associated with murine (mouse) antibodies.

In summary, "antibodies, monoclonal, humanized" refers to a type of laboratory-produced protein that mimics the immune system's ability to fight off harmful antigens, but with reduced immunogenicity due to the inclusion of human components in their structure.

Virus latency, also known as viral latency, refers to a state of infection in which a virus remains dormant or inactive within a host cell for a period of time. During this phase, the virus does not replicate or cause any noticeable symptoms. However, under certain conditions such as stress, illness, or a weakened immune system, the virus can become reactivated and begin to produce new viruses, potentially leading to disease.

One well-known example of a virus that exhibits latency is the varicella-zoster virus (VZV), which causes chickenpox in children. After a person recovers from chickenpox, the virus remains dormant in the nervous system for years or even decades. In some cases, the virus can reactivate later in life, causing shingles, a painful rash that typically occurs on one side of the body.

Virus latency is an important concept in virology and infectious disease research, as it has implications for understanding the persistence of viral infections, developing treatments and vaccines, and predicting the risk of disease recurrence.

Hemagglutinin (HA) glycoproteins are surface proteins found on influenza viruses. They play a crucial role in the virus's ability to infect and spread within host organisms.

The HAs are responsible for binding to sialic acid receptors on the host cell's surface, allowing the virus to attach and enter the cell. After endocytosis, the viral and endosomal membranes fuse, releasing the viral genome into the host cell's cytoplasm.

There are several subtypes of hemagglutinin (H1-H18) identified so far, with H1, H2, and H3 being common in human infections. The significant antigenic differences among these subtypes make them important targets for the development of influenza vaccines. However, due to their high mutation rate, new vaccine formulations are often required to match the circulating virus strains.

In summary, hemagglutinin glycoproteins on influenza viruses are essential for host cell recognition and entry, making them important targets for diagnosis, prevention, and treatment of influenza infections.

Aerosols are defined in the medical field as suspensions of fine solid or liquid particles in a gas. In the context of public health and medicine, aerosols often refer to particles that can remain suspended in air for long periods of time and can be inhaled. They can contain various substances, such as viruses, bacteria, fungi, or chemicals, and can play a role in the transmission of respiratory infections or other health effects.

For example, when an infected person coughs or sneezes, they may produce respiratory droplets that can contain viruses like influenza or SARS-CoV-2 (the virus that causes COVID-19). Some of these droplets can evaporate quickly and leave behind smaller particles called aerosols, which can remain suspended in the air for hours and potentially be inhaled by others. This is one way that respiratory viruses can spread between people in close proximity to each other.

Aerosols can also be generated through medical procedures such as bronchoscopy, suctioning, or nebulizer treatments, which can produce aerosols containing bacteria, viruses, or other particles that may pose an infection risk to healthcare workers or other patients. Therefore, appropriate personal protective equipment (PPE) and airborne precautions are often necessary to reduce the risk of transmission in these settings.

"Evaluation studies" is a broad term that refers to the systematic assessment or examination of a program, project, policy, intervention, or product. The goal of an evaluation study is to determine its merits, worth, and value by measuring its effects, efficiency, and impact. There are different types of evaluation studies, including formative evaluations (conducted during the development or implementation of a program to provide feedback for improvement), summative evaluations (conducted at the end of a program to determine its overall effectiveness), process evaluations (focusing on how a program is implemented and delivered), outcome evaluations (assessing the short-term and intermediate effects of a program), and impact evaluations (measuring the long-term and broad consequences of a program).

In medical contexts, evaluation studies are often used to assess the safety, efficacy, and cost-effectiveness of new treatments, interventions, or technologies. These studies can help healthcare providers make informed decisions about patient care, guide policymakers in developing evidence-based policies, and promote accountability and transparency in healthcare systems. Examples of evaluation studies in medicine include randomized controlled trials (RCTs) that compare the outcomes of a new treatment to those of a standard or placebo treatment, observational studies that examine the real-world effectiveness and safety of interventions, and economic evaluations that assess the costs and benefits of different healthcare options.

"Specific Pathogen-Free (SPF)" is a term used to describe animals or organisms that are raised and maintained in a controlled environment, free from specific pathogens (disease-causing agents) that could interfere with research outcomes or pose a risk to human or animal health. The "specific" part of the term refers to the fact that the exclusion of pathogens is targeted to those that are relevant to the particular organism or research being conducted.

To maintain an SPF status, animals are typically housed in specialized facilities with strict biosecurity measures, such as air filtration systems, quarantine procedures, and rigorous sanitation protocols. They are usually bred and raised in isolation from other animals, and their health status is closely monitored to ensure that they remain free from specific pathogens.

It's important to note that SPF does not necessarily mean "germ-free" or "sterile," as some microorganisms may still be present in the environment or on the animals themselves, even in an SPF facility. Instead, it means that the animals are free from specific pathogens that have been identified and targeted for exclusion.

In summary, Specific Pathogen-Free Organisms refer to animals or organisms that are raised and maintained in a controlled environment, free from specific disease-causing agents that are relevant to the research being conducted or human/animal health.

CD8-positive T-lymphocytes, also known as CD8+ T cells or cytotoxic T cells, are a type of white blood cell that plays a crucial role in the adaptive immune system. They are named after the CD8 molecule found on their surface, which is a protein involved in cell signaling and recognition.

CD8+ T cells are primarily responsible for identifying and destroying virus-infected cells or cancerous cells. When activated, they release cytotoxic granules that contain enzymes capable of inducing apoptosis (programmed cell death) in the target cells. They also produce cytokines such as interferon-gamma, which can help coordinate the immune response and activate other immune cells.

CD8+ T cells are generated in the thymus gland and are a type of T cell, which is a lymphocyte that matures in the thymus and plays a central role in cell-mediated immunity. They recognize and respond to specific antigens presented on the surface of infected or cancerous cells in conjunction with major histocompatibility complex (MHC) class I molecules.

Overall, CD8+ T cells are an essential component of the immune system's defense against viral infections and cancer.

Viral core proteins are the structural proteins that make up the viral capsid or protein shell, enclosing and protecting the viral genome. These proteins play a crucial role in the assembly of the virion, assist in the infection process by helping to deliver the viral genome into the host cell, and may also have functions in regulating viral replication. The specific composition and structure of viral core proteins vary among different types of viruses.

The pharynx is a part of the digestive and respiratory systems that serves as a conduit for food and air. It is a musculo-membranous tube extending from the base of the skull to the level of the sixth cervical vertebra where it becomes continuous with the esophagus.

The pharynx has three regions: the nasopharynx, oropharynx, and laryngopharynx. The nasopharynx is the uppermost region, which lies above the soft palate and is connected to the nasal cavity. The oropharynx is the middle region, which includes the area between the soft palate and the hyoid bone, including the tonsils and base of the tongue. The laryngopharynx is the lowest region, which lies below the hyoid bone and connects to the larynx.

The primary function of the pharynx is to convey food from the oral cavity to the esophagus during swallowing and to allow air to pass from the nasal cavity to the larynx during breathing. It also plays a role in speech, taste, and immune defense.

Th2 cells, or T helper 2 cells, are a type of CD4+ T cell that plays a key role in the immune response to parasites and allergens. They produce cytokines such as IL-4, IL-5, IL-13 which promote the activation and proliferation of eosinophils, mast cells, and B cells, leading to the production of antibodies such as IgE. Th2 cells also play a role in the pathogenesis of allergic diseases such as asthma, atopic dermatitis, and allergic rhinitis.

It's important to note that an imbalance in Th1/Th2 response can lead to immune dysregulation and disease states. For example, an overactive Th2 response can lead to allergic reactions while an underactive Th2 response can lead to decreased ability to fight off parasitic infections.

It's also worth noting that there are other subsets of CD4+ T cells such as Th1, Th17, Treg and others, each with their own specific functions and cytokine production profiles.

Bovine viral diarrhea (BVD) is a viral disease that primarily affects cattle, but can also infect other ruminants such as sheep and goats. The disease is caused by the bovine viral diarrhea virus (BVDV), which belongs to the family Flaviviridae and genus Pestivirus.

There are two biotypes of BVDV, type 1 and type 2, which can be further divided into various subtypes based on their genetic makeup. The virus can cause a range of clinical signs in infected animals, depending on the age and immune status of the animal, as well as the strain of the virus.

Acute infection with BVDV can cause fever, lethargy, loss of appetite, nasal discharge, and diarrhea, which can be severe and life-threatening in young calves. In addition, BVDV can cause reproductive problems such as abortion, stillbirth, and the birth of persistently infected (PI) calves. PI animals are those that were infected with BVDV in utero and have the virus continuously present in their bloodstream and other tissues throughout their lives. These animals serve as a source of infection for other cattle and can spread the virus to naive herds.

BVDV is transmitted through direct contact with infected animals or their bodily fluids, such as saliva, nasal secretions, and feces. The virus can also be spread indirectly through contaminated feed, water, and equipment. Prevention and control measures for BVDV include biosecurity practices, vaccination, and testing to identify and remove PI animals from herds.

Mucus is a viscous, slippery secretion produced by the mucous membranes that line various body cavities such as the respiratory and gastrointestinal tracts. It serves to lubricate and protect these surfaces from damage, infection, and foreign particles. Mucus contains water, proteins, salts, and other substances, including antibodies, enzymes, and glycoproteins called mucins that give it its characteristic gel-like consistency.

In the respiratory system, mucus traps inhaled particles such as dust, allergens, and pathogens, preventing them from reaching the lungs. The cilia, tiny hair-like structures lining the airways, move the mucus upward toward the throat, where it can be swallowed or expelled through coughing or sneezing. In the gastrointestinal tract, mucus helps protect the lining of the stomach and intestines from digestive enzymes and other harmful substances.

Excessive production of mucus can occur in various medical conditions such as allergies, respiratory infections, chronic lung diseases, and gastrointestinal disorders, leading to symptoms such as coughing, wheezing, nasal congestion, and diarrhea.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Immunoglobulin A (IgA) is a type of antibody that plays a crucial role in the immune function of the human body. It is primarily found in external secretions, such as saliva, tears, breast milk, and sweat, as well as in mucous membranes lining the respiratory and gastrointestinal tracts. IgA exists in two forms: a monomeric form found in serum and a polymeric form found in secretions.

The primary function of IgA is to provide immune protection at mucosal surfaces, which are exposed to various environmental antigens, such as bacteria, viruses, parasites, and allergens. By doing so, it helps prevent the entry and colonization of pathogens into the body, reducing the risk of infections and inflammation.

IgA functions by binding to antigens present on the surface of pathogens or allergens, forming immune complexes that can neutralize their activity. These complexes are then transported across the epithelial cells lining mucosal surfaces and released into the lumen, where they prevent the adherence and invasion of pathogens.

In summary, Immunoglobulin A (IgA) is a vital antibody that provides immune defense at mucosal surfaces by neutralizing and preventing the entry of harmful antigens into the body.

Oncogenic viruses are a type of viruses that have the ability to cause cancer in host cells. They do this by integrating their genetic material into the DNA of the infected host cell, which can lead to the disruption of normal cellular functions and the activation of oncogenes (genes that have the potential to cause cancer). This can result in uncontrolled cell growth and division, ultimately leading to the formation of tumors. Examples of oncogenic viruses include human papillomavirus (HPV), hepatitis B virus (HBV), and human T-cell leukemia virus type 1 (HTLV-1). It is important to note that only a small proportion of viral infections lead to cancer, and the majority of cancers are not caused by viruses.

Interferon-beta (IFN-β) is a type of cytokine - specifically, it's a protein that is produced and released by cells in response to stimulation by a virus or other foreign substance. It belongs to the interferon family of cytokines, which play important roles in the body's immune response to infection.

IFN-β has antiviral properties and helps to regulate the immune system. It works by binding to specific receptors on the surface of cells, which triggers a signaling cascade that leads to the activation of genes involved in the antiviral response. This results in the production of proteins that inhibit viral replication and promote the death of infected cells.

IFN-β is used as a medication for the treatment of certain autoimmune diseases, such as multiple sclerosis (MS). In MS, the immune system mistakenly attacks the protective coating around nerve fibers in the brain and spinal cord, causing inflammation and damage to the nerves. IFN-β has been shown to reduce the frequency and severity of relapses in people with MS, possibly by modulating the immune response and reducing inflammation.

It's important to note that while IFN-β is an important component of the body's natural defense system, it can also have side effects when used as a medication. Common side effects of IFN-β therapy include flu-like symptoms such as fever, chills, and muscle aches, as well as injection site reactions. More serious side effects are rare but can occur, so it's important to discuss the risks and benefits of this treatment with a healthcare provider.

Bronchial hyperresponsiveness (BHR) or bronchial hyperreactivity (BH) is a medical term that refers to the increased sensitivity and exaggerated response of the airways to various stimuli. In people with BHR, the airways narrow (constrict) more than usual in response to certain triggers such as allergens, cold air, exercise, or irritants like smoke or fumes. This narrowing can cause symptoms such as wheezing, coughing, chest tightness, and shortness of breath.

BHR is often associated with asthma and other respiratory conditions, including chronic obstructive pulmonary disease (COPD) and bronchiectasis. It is typically diagnosed through a series of tests that measure the degree of airway narrowing in response to various stimuli. These tests may include spirometry, methacholine challenge test, or histamine challenge test.

BHR can be managed with medications such as bronchodilators and anti-inflammatory drugs, which help to relax the muscles around the airways and reduce inflammation. It is also important to avoid triggers that can exacerbate symptoms and make BHR worse.

Adenoviruses are a group of viruses that commonly cause respiratory infections such as bronchitis, pneumonia, and fevers in humans. They can also cause conjunctivitis (pink eye), croup, and stomach and intestinal inflammation (gastroenteritis). Adenovirus infections are most common in children, but people of any age can be infected. The viruses spread through the air when an infected person coughs or sneezes, or through contact with contaminated surfaces or objects. There is no specific treatment for adenovirus infections, and most people recover on their own within a week or two. However, some people may develop more severe illness, particularly those with weakened immune systems. Preventive measures include frequent hand washing and avoiding close contact with infected individuals. Some adenoviruses can also cause serious diseases in people with compromised immune systems, such as transplant recipients and people undergoing cancer treatment. There are vaccines available to prevent some types of adenovirus infections in military recruits, who are at higher risk due to close living quarters and stress on the immune system from basic training.

I'm happy to help, but I want to clarify that the term "sheep diseases" refers to a wide range of health issues that can affect sheep populations. It's not a single medical condition with a specific definition. Here are some examples of common diseases that can affect sheep:

1. Ovine Johne's Disease (OJD): A chronic, infectious disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis. It affects the intestines and can cause weight loss, diarrhea, and death.
2. Footrot: A highly contagious bacterial infection that affects the feet of sheep, causing lameness, swelling, and pain. It's caused by the bacteria Dichelobacter nodosus.
3. Caseous Lymphadenitis (CL): A chronic infectious disease caused by the bacterium Corynebacterium pseudotuberculosis. It affects the lymph nodes and can cause abscesses, weight loss, and death.
4. Contagious Ecthyma (Orf): A highly contagious viral infection that affects the skin and mucous membranes of sheep, causing sores and lesions.
5. Mastitis: An inflammation of the mammary gland in sheep, usually caused by a bacterial infection. It can cause decreased milk production, fever, and loss of appetite.
6. Pneumonia: A respiratory infection that can affect sheep, causing coughing, difficulty breathing, and fever. It can be caused by various bacteria or viruses.
7. Enterotoxemia: A potentially fatal disease caused by the overproduction of toxins in the intestines of sheep, usually due to a bacterial infection with Clostridium perfringens.
8. Polioencephalomalacia (PEM): A neurological disorder that affects the brain of sheep, causing symptoms such as blindness, circling, and seizures. It's often caused by a thiamine deficiency or excessive sulfur intake.
9. Toxoplasmosis: A parasitic infection that can affect sheep, causing abortion, stillbirth, and neurological symptoms.
10. Blue tongue: A viral disease that affects sheep, causing fever, respiratory distress, and mouth ulcers. It's transmitted by insect vectors and is often associated with climate change.

Simian Immunodeficiency Virus (SIV) is a retrovirus that primarily infects African non-human primates and is the direct ancestor of Human Immunodeficiency Virus type 2 (HIV-2). It is similar to HIV in its structure, replication strategy, and ability to cause an immunodeficiency disease in its host. SIV infection in its natural hosts is typically asymptomatic and non-lethal, but it can cause AIDS-like symptoms in other primate species. Research on SIV in its natural hosts has provided valuable insights into the mechanisms of HIV pathogenesis and potential strategies for prevention and treatment of AIDS.

Interleukin-13 (IL-13) is a cytokine that plays a crucial role in the immune response, particularly in the development of allergic inflammation and hypersensitivity reactions. It is primarily produced by activated Th2 cells, mast cells, basophils, and eosinophils. IL-13 mediates its effects through binding to the IL-13 receptor complex, which consists of the IL-13Rα1 and IL-4Rα chains.

IL-13 has several functions in the body, including:

* Regulation of IgE production by B cells
* Induction of eosinophil differentiation and activation
* Inhibition of proinflammatory cytokine production by macrophages
* Promotion of mucus production and airway hyperresponsiveness in the lungs, contributing to the pathogenesis of asthma.

Dysregulation of IL-13 has been implicated in various diseases, such as allergic asthma, atopic dermatitis, and chronic rhinosinusitis. Therefore, targeting IL-13 with biologic therapies has emerged as a promising approach for the treatment of these conditions.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Alcian Blue is a type of dye that is commonly used in histology, which is the study of the microscopic structure of tissues. It is particularly useful for staining acidic mucopolysaccharides and proteoglycans, which are important components of the extracellular matrix in many tissues.

Alcian Blue binds to these negatively charged molecules through ionic interactions, forming a complex that can be visualized under a microscope. The dye is often used in combination with other stains to provide contrast and highlight specific structures within tissues.

The intensity of the Alcian Blue stain can also provide information about the degree of sulfation or carboxylation of the mucopolysaccharides, which can be useful in diagnosing certain diseases or abnormalities. For example, changes in the staining pattern of proteoglycans have been associated with various types of arthritis and other joint disorders.

Overall, Alcian Blue is an important tool in the field of histology and has contributed significantly to our understanding of tissue structure and function.

A "hospitalized child" refers to a minor (an individual who has not yet reached the age of majority, which varies by country but is typically 18 in the US) who has been admitted to a hospital for the purpose of receiving medical treatment and care. This term can encompass children of all ages, from infants to teenagers, and may include those who are suffering from a wide range of medical conditions or injuries, requiring various levels of care and intervention.

Hospitalization can be necessary for a variety of reasons, including but not limited to:

1. Acute illnesses that require close monitoring, such as pneumonia, meningitis, or sepsis.
2. Chronic medical conditions that need ongoing management, like cystic fibrosis, cancer, or congenital heart defects.
3. Severe injuries resulting from accidents, such as fractures, burns, or traumatic brain injuries.
4. Elective procedures, such as surgeries for orthopedic issues or to correct congenital abnormalities.
5. Mental health disorders that necessitate inpatient care and treatment.

Regardless of the reason for hospitalization, healthcare professionals strive to provide comprehensive, family-centered care to ensure the best possible outcomes for their young patients. This may involve working closely with families to address their concerns, providing education about the child's condition and treatment plan, and coordinating care across various disciplines and specialties.

Adenoviridae is a family of viruses that includes many species that can cause various types of illnesses in humans and animals. These viruses are non-enveloped, meaning they do not have a lipid membrane, and have an icosahedral symmetry with a diameter of approximately 70-90 nanometers.

The genome of Adenoviridae is composed of double-stranded DNA, which contains linear chromosomes ranging from 26 to 45 kilobases in length. The family is divided into five genera: Mastadenovirus, Aviadenovirus, Atadenovirus, Siadenovirus, and Ichtadenovirus.

Human adenoviruses are classified under the genus Mastadenovirus and can cause a wide range of illnesses, including respiratory infections, conjunctivitis, gastroenteritis, and upper respiratory tract infections. Some serotypes have also been associated with more severe diseases such as hemorrhagic cystitis, hepatitis, and meningoencephalitis.

Adenoviruses are highly contagious and can be transmitted through respiratory droplets, fecal-oral route, or by contact with contaminated surfaces. They can also be spread through contaminated water sources. Infections caused by adenoviruses are usually self-limiting, but severe cases may require hospitalization and supportive care.

I'm sorry for any confusion, but "Uruguay" is not a medical term. It is the name of a country located in South America, known officially as the Oriental Republic of Uruguay. If you have any questions about medical terms or health-related topics, I'd be happy to help!

To provide some general information about Uruguay, it is bordered by Argentina to the west and Brazil to the north and east, with the Atlantic Ocean to the south and southeast. The capital and largest city of Uruguay is Montevideo. Uruguay is known for its rich cultural history, beautiful landscapes, and progressive social policies.

Pneumonia is an infection or inflammation of the alveoli (tiny air sacs) in one or both lungs. It's often caused by bacteria, viruses, or fungi. Accumulated pus and fluid in these air sacs make it difficult to breathe, which can lead to coughing, chest pain, fever, and difficulty breathing. The severity of symptoms can vary from mild to life-threatening, depending on the underlying cause, the patient's overall health, and age. Pneumonia is typically diagnosed through a combination of physical examination, medical history, and diagnostic tests such as chest X-rays or blood tests. Treatment usually involves antibiotics for bacterial pneumonia, antivirals for viral pneumonia, and supportive care like oxygen therapy, hydration, and rest.

Chemokines are a family of small cytokines, or signaling proteins, that are secreted by cells and play an important role in the immune system. They are chemotactic, meaning they can attract and guide the movement of various immune cells to specific locations within the body. Chemokines do this by binding to G protein-coupled receptors on the surface of target cells, initiating a signaling cascade that leads to cell migration.

There are four main subfamilies of chemokines, classified based on the arrangement of conserved cysteine residues near the amino terminus: CXC, CC, C, and CX3C. Different chemokines have specific roles in inflammation, immune surveillance, hematopoiesis, and development. Dysregulation of chemokine function has been implicated in various diseases, including autoimmune disorders, infections, and cancer.

In summary, Chemokines are a group of signaling proteins that play a crucial role in the immune system by directing the movement of immune cells to specific locations within the body, thus helping to coordinate the immune response.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

Rubulavirus infections refer to a group of viral illnesses caused by members of the Rubulavirus genus, which is part of the Paramyxoviridae family. The most well-known rubulavirus is the mumps virus, which causes mumps, a contagious disease characterized by swelling of the salivary glands, fever, and pain while chewing or swallowing. Other rubulaviruses include parainfluenza viruses 1 and 3, which can cause respiratory illnesses such as bronchitis and pneumonia. Rubulavirus infections are typically spread through respiratory droplets or direct contact with infected individuals. Vaccination is available for some rubulavirus infections, such as mumps.

Chemokine (C-C motif) ligand 5, also known as RANTES (Regulated on Activation, Normal T cell Expressed and Secreted), is a chemokine that plays a crucial role in the immune system. It is a small signaling protein that attracts and activates immune cells, such as leukocytes, to the sites of infection or inflammation. Chemokine CCL5 binds to specific receptors on the surface of target cells, including CCR1, CCR3, and CCR5, and triggers a cascade of intracellular signaling events that result in cell migration and activation.

Chemokine CCL5 is involved in various physiological and pathological processes, such as wound healing, immune surveillance, and inflammation. It has been implicated in the pathogenesis of several diseases, including HIV infection, rheumatoid arthritis, multiple sclerosis, and cancer. In HIV infection, Chemokine CCL5 can bind to and inhibit the entry of the virus into CD4+ T cells by blocking the interaction between the viral envelope protein gp120 and the chemokine receptor CCR5. However, in advanced stages of HIV infection, the virus may develop resistance to this inhibitory effect, leading to increased viral replication and disease progression.

Viral nonstructural proteins (NS) are viral proteins that are not part of the virion structure. They play various roles in the viral life cycle, such as replication of the viral genome, transcription, translation regulation, and modulation of the host cell environment to favor virus replication. These proteins are often produced in large quantities during infection and can manipulate or disrupt various cellular pathways to benefit the virus. They may also be involved in evasion of the host's immune response. The specific functions of viral nonstructural proteins vary depending on the type of virus.

Mosaic viruses are a group of plant viruses that can cause mottled or mosaic patterns of discoloration on leaves, which is why they're named as such. These viruses infect a wide range of plants, including important crops like tobacco, tomatoes, and cucumbers. The infection can lead to various symptoms such as stunted growth, leaf deformation, reduced yield, or even plant death.

Mosaic viruses are typically spread by insects, such as aphids, that feed on the sap of infected plants and then transmit the virus to healthy plants. They can also be spread through contaminated seeds, tools, or contact with infected plant material. Once inside a plant, these viruses hijack the plant's cellular machinery to replicate themselves, causing damage to the host plant in the process.

It is important to note that mosaic viruses are not related to human or animal health; they only affect plants.

Bronchoalveolar lavage (BAL) is a medical procedure in which a small amount of fluid is introduced into a segment of the lung and then gently suctioned back out. The fluid contains cells and other materials that can be analyzed to help diagnose various lung conditions, such as inflammation, infection, or cancer.

The procedure is typically performed during bronchoscopy, which involves inserting a thin, flexible tube with a light and camera on the end through the nose or mouth and into the lungs. Once the bronchoscope is in place, a small catheter is passed through the bronchoscope and into the desired lung segment. The fluid is then introduced and suctioned back out, and the sample is sent to a laboratory for analysis.

BAL can be helpful in diagnosing various conditions such as pneumonia, interstitial lung diseases, alveolar proteinosis, and some types of cancer. It can also be used to monitor the effectiveness of treatment for certain lung conditions. However, like any medical procedure, it carries some risks, including bleeding, infection, and respiratory distress. Therefore, it is important that the procedure is performed by a qualified healthcare professional in a controlled setting.

Bovine Herpesvirus 1 (BoHV-1) is a species-specific virus that belongs to the family Herpesviridae, subfamily Alphaherpesvirinae, and genus Varicellovirus. This virus is the causative agent of Infectious Bovine Rhinotracheitis (IBR), which is a significant respiratory disease in cattle. The infection can also lead to reproductive issues, including abortions, stillbirths, and inflammation of the genital tract (infectious pustular vulvovaginitis) in cows and infertility in bulls.

The virus is primarily transmitted through direct contact with infected animals, their respiratory secretions, or contaminated objects. Once an animal is infected, BoHV-1 establishes a lifelong latency in the nervous system, from where it can periodically reactivate and shed the virus, even without showing any clinical signs. This makes eradication of the virus challenging in cattle populations.

Vaccines are available to control IBR, but they may not prevent infection or shedding entirely. Therefore, ongoing management practices, such as biosecurity measures and surveillance programs, are essential to minimize the impact of this disease on cattle health and productivity.

Virosomes are artificially constructed spherical vesicles composed of lipids and viral envelope proteins. They are used as a delivery system for vaccines and other therapeutic agents. In the context of vaccines, virosomes can be used to present viral antigens to the immune system in a way that mimics a natural infection, thereby inducing a strong immune response.

Virosome-based vaccines have several advantages over traditional vaccines. For example, they are non-infectious, meaning they do not contain live or attenuated viruses, which makes them safer for certain populations such as immunocompromised individuals. Additionally, virosomes can be engineered to target specific cells in the body, leading to more efficient uptake and presentation of antigens to the immune system.

Virosome-based vaccines have been developed for a variety of diseases, including influenza, hepatitis A, and HIV. While they are not yet widely used, they show promise as a safe and effective alternative to traditional vaccine approaches.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Viral matrix proteins are structural proteins that play a crucial role in the morphogenesis and life cycle of many viruses. They are often located between the viral envelope and the viral genome, serving as a scaffold for virus assembly and budding. These proteins also interact with other viral components, such as the viral genome, capsid proteins, and envelope proteins, to form an infectious virion. Additionally, matrix proteins can have regulatory functions, influencing viral transcription, replication, and host cell responses. The specific functions of viral matrix proteins vary among different virus families.

Virulence, in the context of medicine and microbiology, refers to the degree or severity of damage or harm that a pathogen (like a bacterium, virus, fungus, or parasite) can cause to its host. It is often associated with the ability of the pathogen to invade and damage host tissues, evade or suppress the host's immune response, replicate within the host, and spread between hosts.

Virulence factors are the specific components or mechanisms that contribute to a pathogen's virulence, such as toxins, enzymes, adhesins, and capsules. These factors enable the pathogen to establish an infection, cause tissue damage, and facilitate its transmission between hosts. The overall virulence of a pathogen can be influenced by various factors, including host susceptibility, environmental conditions, and the specific strain or species of the pathogen.

Respiratory tract diseases refer to a broad range of medical conditions that affect the respiratory system, which includes the nose, throat (pharynx), windpipe (trachea), bronchi, bronchioles, and lungs. These diseases can be categorized into upper and lower respiratory tract infections based on the location of the infection.

Upper respiratory tract infections affect the nose, sinuses, pharynx, and larynx, and include conditions such as the common cold, flu, sinusitis, and laryngitis. Symptoms often include nasal congestion, sore throat, cough, and fever.

Lower respiratory tract infections affect the trachea, bronchi, bronchioles, and lungs, and can be more severe. They include conditions such as pneumonia, bronchitis, and tuberculosis. Symptoms may include cough, chest congestion, shortness of breath, and fever.

Respiratory tract diseases can also be caused by allergies, irritants, or genetic factors. Treatment varies depending on the specific condition and severity but may include medications, breathing treatments, or surgery in severe cases.

Hepatitis A virus (HAV) is the causative agent of hepatitis A, a viral infection that causes inflammation of the liver. It is a small, non-enveloped, single-stranded RNA virus belonging to the Picornaviridae family and Hepatovirus genus. The virus primarily spreads through the fecal-oral route, often through contaminated food or water, or close contact with an infected person. After entering the body, HAV infects hepatocytes in the liver, leading to liver damage and associated symptoms such as jaundice, fatigue, abdominal pain, and nausea. The immune system eventually clears the infection, providing lifelong immunity against future HAV infections. Preventive measures include vaccination and practicing good hygiene to prevent transmission.

An open reading frame (ORF) is a continuous stretch of DNA or RNA sequence that has the potential to be translated into a protein. It begins with a start codon (usually "ATG" in DNA, which corresponds to "AUG" in RNA) and ends with a stop codon ("TAA", "TAG", or "TGA" in DNA; "UAA", "UAG", or "UGA" in RNA). The sequence between these two points is called a coding sequence (CDS), which, when transcribed into mRNA and translated into amino acids, forms a polypeptide chain.

In eukaryotic cells, ORFs can be located in either protein-coding genes or non-coding regions of the genome. In prokaryotic cells, multiple ORFs may be present on a single strand of DNA, often organized into operons that are transcribed together as a single mRNA molecule.

It's important to note that not all ORFs necessarily represent functional proteins; some may be pseudogenes or result from errors in genome annotation. Therefore, additional experimental evidence is typically required to confirm the expression and functionality of a given ORF.

Molecular epidemiology is a branch of epidemiology that uses laboratory techniques to identify and analyze the genetic material (DNA, RNA) of pathogens or host cells to understand their distribution, transmission, and disease associations in populations. It combines molecular biology methods with epidemiological approaches to investigate the role of genetic factors in disease occurrence and outcomes. This field has contributed significantly to the identification of infectious disease outbreaks, tracking the spread of antibiotic-resistant bacteria, understanding the transmission dynamics of viruses, and identifying susceptible populations for targeted interventions.

Multiplex polymerase chain reaction (Multiplex PCR) is a laboratory technique that allows the simultaneous amplification and detection of multiple specific DNA sequences in a single reaction. This method utilizes multiple sets of primers, each specifically designed to recognize and bind to a unique target sequence within the DNA sample.

The process involves several steps:

1. Denaturation: The DNA sample is heated to separate the double-stranded DNA into single strands.
2. Annealing: Primers specific to the target sequences are added, and the mixture is cooled, allowing the primers to attach to their respective complementary sequences on the DNA strands.
3. Extension/Amplification: Polymerase enzymes extend the primers along the DNA template, synthesizing new strands of DNA that contain the target sequence. This step is repeated multiple times (usually 25-40 cycles) to exponentially amplify the targeted sequences.

In multiplex PCR, several primer sets are used in a single reaction, allowing for the simultaneous amplification of different target sequences. After amplification, various methods can be employed to distinguish and detect the specific products, such as gel electrophoresis, capillary electrophoresis, or microarray analysis.

Multiplex PCR is widely used in diagnostic tests, pathogen detection, genetic testing, and research applications where multiple DNA targets need to be analyzed simultaneously.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

A "premature infant" is a newborn delivered before 37 weeks of gestation. They are at greater risk for various health complications and medical conditions compared to full-term infants, due to their immature organ systems and lower birth weight. Some common diseases and health issues that premature infants may face include:

1. Respiratory Distress Syndrome (RDS): A lung disorder caused by the lack of surfactant, a substance that helps keep the lungs inflated. Premature infants, especially those born before 34 weeks, are at higher risk for RDS.
2. Intraventricular Hemorrhage (IVH): Bleeding in the brain's ventricles, which can lead to developmental delays or neurological issues. The risk of IVH is inversely proportional to gestational age, meaning that the earlier the infant is born, the higher the risk.
3. Necrotizing Enterocolitis (NEC): A gastrointestinal disease where the intestinal tissue becomes inflamed and can die. Premature infants are at greater risk for NEC due to their immature digestive systems.
4. Jaundice: A yellowing of the skin and eyes caused by an accumulation of bilirubin, a waste product from broken-down red blood cells. Premature infants may have higher rates of jaundice due to their liver's immaturity.
5. Infections: Premature infants are more susceptible to infections because of their underdeveloped immune systems. Common sources of infection include the mother's genital tract, bloodstream, or hospital environment.
6. Anemia: A condition characterized by a low red blood cell count or insufficient hemoglobin. Premature infants may develop anemia due to frequent blood sampling, rapid growth, or inadequate erythropoietin production.
7. Retinopathy of Prematurity (ROP): An eye disorder affecting premature infants, where abnormal blood vessel growth occurs in the retina. Severe ROP can lead to vision loss or blindness if not treated promptly.
8. Developmental Delays: Premature infants are at risk for developmental delays due to their immature nervous systems and environmental factors such as sensory deprivation or separation from parents.
9. Patent Ductus Arteriosus (PDA): A congenital heart defect where the ductus arteriosus, a blood vessel that connects two major arteries in the fetal heart, fails to close after birth. Premature infants are at higher risk for PDA due to their immature cardiovascular systems.
10. Hypothermia: Premature infants have difficulty maintaining body temperature and are at risk for hypothermia, which can lead to increased metabolic demands, poor feeding, and infection.

Infectious Bovine Rhinotracheitis (IBR) is a viral disease in cattle, also known as Red Nose or Cattle Distemper. It is caused by the bovine herpesvirus type 1 (BoHV-1). The virus primarily affects the upper respiratory tract, leading to symptoms such as nasal discharge, sneezing, coughing, and fever. In severe cases, it can also cause ulcers in the mouth and cornea, abortions in pregnant cows, and inflammation of the genital organs (infectious pustular vulvovaginitis or balanoposthitis).

IBR is highly contagious and can be spread through direct contact with infected animals, contaminated feed and water, and aerosols from respiratory secretions. The virus can establish latency in the nervous system of recovered animals, which can lead to recurrent outbreaks in a herd. IBR is a significant disease in the cattle industry due to its economic impact, including decreased milk production, weight loss, reduced fertility, and increased mortality rates. Vaccination is available to control the spread of the disease and reduce its clinical signs.

Antibody specificity refers to the ability of an antibody to bind to a specific epitope or antigenic determinant on an antigen. Each antibody has a unique structure that allows it to recognize and bind to a specific region of an antigen, typically a small portion of the antigen's surface made up of amino acids or sugar residues. This highly specific binding is mediated by the variable regions of the antibody's heavy and light chains, which form a pocket that recognizes and binds to the epitope.

The specificity of an antibody is determined by its unique complementarity-determining regions (CDRs), which are loops of amino acids located in the variable domains of both the heavy and light chains. The CDRs form a binding site that recognizes and interacts with the epitope on the antigen. The precise fit between the antibody's binding site and the epitope is critical for specificity, as even small changes in the structure of either can prevent binding.

Antibody specificity is important in immune responses because it allows the immune system to distinguish between self and non-self antigens. This helps to prevent autoimmune reactions where the immune system attacks the body's own cells and tissues. Antibody specificity also plays a crucial role in diagnostic tests, such as ELISA assays, where antibodies are used to detect the presence of specific antigens in biological samples.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

Membrane fusion is a fundamental biological process that involves the merging of two initially separate lipid bilayers, such as those surrounding cells or organelles, to form a single continuous membrane. This process plays a crucial role in various physiological events including neurotransmitter release, hormone secretion, fertilization, viral infection, and intracellular trafficking of proteins and lipids. Membrane fusion is tightly regulated and requires the participation of specific proteins called SNAREs (Soluble NSF Attachment Protein REceptors) and other accessory factors that facilitate the recognition, approximation, and merger of the membranes. The energy required to overcome the repulsive forces between the negatively charged lipid headgroups is provided by these proteins, which undergo conformational changes during the fusion process. Membrane fusion is a highly specific and coordinated event, ensuring that the correct membranes fuse at the right time and place within the cell.

CD4-positive T-lymphocytes, also known as CD4+ T cells or helper T cells, are a type of white blood cell that plays a crucial role in the immune response. They express the CD4 receptor on their surface and help coordinate the immune system's response to infectious agents such as viruses and bacteria.

CD4+ T cells recognize and bind to specific antigens presented by antigen-presenting cells, such as dendritic cells or macrophages. Once activated, they can differentiate into various subsets of effector cells, including Th1, Th2, Th17, and Treg cells, each with distinct functions in the immune response.

CD4+ T cells are particularly important in the immune response to HIV (human immunodeficiency virus), which targets and destroys these cells, leading to a weakened immune system and increased susceptibility to opportunistic infections. The number of CD4+ T cells is often used as a marker of disease progression in HIV infection, with lower counts indicating more advanced disease.

I apologize, but "sheep" is not a term that has a medical definition. It is a common animal with the scientific name Ovis aries. If you have any medical or health-related questions, I would be happy to try and help answer those for you.

Bovine Virus Diarrhea-Mucosal Disease (BVD-MD) is a complex of diseases caused by the Bovine Virus Diarrhea virus (BVDV) and is a significant problem in the global cattle industry. The disease can manifest in various forms, from mild respiratory or reproductive issues to severe, life-threatening conditions such as mucosal disease.

Mucosal disease is the most acute form of BVD-MD and occurs when an animal that has been persistently infected (PI) with a specific strain of BVDV develops a secondary infection with a cytopathic biotype of the virus. PI animals are those that were infected in utero with BVDV before they developed immune competence, resulting in them shedding large amounts of the virus throughout their lives.

The secondary infection with the cytopathic biotype of BVDV causes extensive damage to the animal's lymphoid tissues and gastrointestinal tract, leading to severe clinical signs such as:

1. Profuse diarrhea
2. High fever (up to 41°C or 105.8°F)
3. Ulcerative lesions in the mouth, esophagus, and intestines
4. Severe dehydration
5. Depression and loss of appetite
6. Weight loss
7. Weakness
8. Increased respiratory rate
9. Swelling of the head, neck, and brisket
10. Death within 2-3 weeks after the onset of clinical signs

Morbidity and mortality rates in BVD-MD outbreaks can be high, causing significant economic losses for farmers due to decreased production, increased veterinary costs, and animal deaths. Prevention strategies include vaccination programs, biosecurity measures, and testing for PI animals to remove them from the herd.

Eosinophilia is a medical condition characterized by an abnormally high concentration of eosinophils in the circulating blood. Eosinophils are a type of white blood cell that play an important role in the immune system, particularly in fighting off parasitic infections and regulating allergic reactions. However, when their numbers become excessively high, they can contribute to tissue damage and inflammation.

Eosinophilia is typically defined as a count of more than 500 eosinophils per microliter of blood. Mild eosinophilia (up to 1,500 cells/μL) may not cause any symptoms and may be discovered during routine blood tests. However, higher levels of eosinophilia can lead to various symptoms such as coughing, wheezing, skin rashes, and organ damage, depending on the underlying cause.

The causes of eosinophilia are varied and can include allergic reactions, parasitic infections, autoimmune disorders, certain medications, and some types of cancer. Accurate diagnosis and treatment of eosinophilia require identification and management of the underlying cause.

Paramyxovirinae is a subfamily of viruses in the family Paramyxoviridae, order Mononegavirales. These viruses are enveloped, negative-sense, single-stranded RNA viruses that cause various diseases in animals and humans. The subfamily includes several important human pathogens such as:

1. Respiratory syncytial virus (RSV): A major cause of respiratory tract infections in infants, young children, and older adults.
2. Human metapneumovirus (HMPV): Another common cause of respiratory illness, particularly in children.
3. Parainfluenza viruses (PIVs): Responsible for upper and lower respiratory tract infections, including croup, bronchitis, and pneumonia.
4. Mumps virus: Causes the infectious disease mumps, characterized by swelling of the salivary glands.
5. Measles virus: A highly contagious virus that causes measles, a serious respiratory illness with characteristic rash.
6. Hendra virus and Nipah virus: Zoonotic viruses that can cause severe respiratory and neurological diseases in humans and animals.

These viruses share common structural and genetic features, such as an enveloped virion with a helical nucleocapsid, and a genome consisting of non-segmented, negative-sense single-stranded RNA. They also utilize similar replication strategies and have related gene arrangements.

Mononuclear leukocytes are a type of white blood cells (leukocytes) that have a single, large nucleus. They include lymphocytes (B-cells, T-cells, and natural killer cells), monocytes, and dendritic cells. These cells play important roles in the body's immune system, including defending against infection and disease, and participating in immune responses and surveillance. Mononuclear leukocytes can be found in the bloodstream as well as in tissues throughout the body. They are involved in both innate and adaptive immunity, providing specific and nonspecific defense mechanisms to protect the body from harmful pathogens and other threats.

Avian sarcoma viruses (ASVs) are a group of retroviruses that primarily infect birds and cause various types of tumors, particularly sarcomas. These viruses contain an oncogene, which is a gene that has the ability to transform normal cells into cancerous ones. The oncogene in ASVs is often derived from cellular genes called proto-oncogenes, which are normally involved in regulating cell growth and division.

ASVs can be divided into two main types: non-defective and defective. Non-defective ASVs contain a complete set of viral genes that allow them to replicate independently, while defective ASVs lack some of the necessary viral genes and require assistance from other viruses to replicate.

One well-known example of an avian sarcoma virus is the Rous sarcoma virus (RSV), which was first discovered in chickens by Peyton Rous in 1910. RSV causes a highly malignant form of sarcoma in chickens and has been extensively studied as a model system for cancer research. The oncogene in RSV is called v-src, which is derived from the normal cellular gene c-src.

Avian sarcoma viruses have contributed significantly to our understanding of the molecular mechanisms underlying cancer development and have provided valuable insights into the role of oncogenes in tumorigenesis.

A premature infant is a baby born before 37 weeks of gestation. They may face various health challenges because their organs are not fully developed. The earlier a baby is born, the higher the risk of complications. Prematurity can lead to short-term and long-term health issues, such as respiratory distress syndrome, jaundice, anemia, infections, hearing problems, vision problems, developmental delays, and cerebral palsy. Intensive medical care and support are often necessary for premature infants to ensure their survival and optimal growth and development.

Culture techniques are methods used in microbiology to grow and multiply microorganisms, such as bacteria, fungi, or viruses, in a controlled laboratory environment. These techniques allow for the isolation, identification, and study of specific microorganisms, which is essential for diagnostic purposes, research, and development of medical treatments.

The most common culture technique involves inoculating a sterile growth medium with a sample suspected to contain microorganisms. The growth medium can be solid or liquid and contains nutrients that support the growth of the microorganisms. Common solid growth media include agar plates, while liquid growth media are used for broth cultures.

Once inoculated, the growth medium is incubated at a temperature that favors the growth of the microorganisms being studied. During incubation, the microorganisms multiply and form visible colonies on the solid growth medium or turbid growth in the liquid growth medium. The size, shape, color, and other characteristics of the colonies can provide important clues about the identity of the microorganism.

Other culture techniques include selective and differential media, which are designed to inhibit the growth of certain types of microorganisms while promoting the growth of others, allowing for the isolation and identification of specific pathogens. Enrichment cultures involve adding specific nutrients or factors to a sample to promote the growth of a particular type of microorganism.

Overall, culture techniques are essential tools in microbiology and play a critical role in medical diagnostics, research, and public health.

Cross reactions, in the context of medical diagnostics and immunology, refer to a situation where an antibody or a immune response directed against one antigen also reacts with a different antigen due to similarities in their molecular structure. This can occur in allergy testing, where a person who is allergic to a particular substance may have a positive test result for a different but related substance because of cross-reactivity between them. For example, some individuals who are allergic to birch pollen may also have symptoms when eating certain fruits, such as apples, due to cross-reactive proteins present in both.

... (RSV), also called human respiratory syncytial virus (hRSV) and human orthopneumovirus, is a common ... The virus was later renamed human orthopneumovirus, or human respiratory syncytial virus (hRSV). Several other pneumoviruses ... This is synonymous with human respiratory syncytial virus (hRSV), which is often shortened to just RSV. It belongs to the genus ... contagious virus that causes infections of the respiratory tract. It is a negative-sense, single-stranded RNA virus. Its name ...
"Use of the Pfizer Respiratory Syncytial Virus Vaccine During Pregnancy for the Prevention of Respiratory Syncytial Virus- ... A respiratory syncytial virus vaccine, or RSV vaccine, is a vaccine which protects against infection by respiratory syncytial ... Respiratory syncytial virus vaccine is indicated for active immunization for the prevention of lower respiratory tract disease ... to prevent lower respiratory tract disease and severe lower respiratory tract disease caused by respiratory syncytial virus in ...
... (BRSV) is pneumovirus closely related to human respiratory syncytial virus (RSV) that is a ... "Bovine respiratory syncytial virus infection enhances Pasteurella multocida adherence on respiratory epithelial cells". ... "Review on bovine respiratory syncytial virus and bovine parainfluenza - usual suspects in bovine respiratory disease - a ... Larsen, L. E. (2000-03-01). "Bovine Respiratory Syncytial Virus (BRSV): A review". Acta Veterinaria Scandinavica. 41 (1): 1-24 ...
... is a glycoprotein produced by respiratory syncytial virus. Some features of the G protein ... "Functional Features of the Respiratory Syncytial Virus G Protein". Viruses. 13 (7): 1214. doi:10.3390/v13071214. PMC 8310105. ... Li XQ, Fu ZF, Alvarez R, Henderson C, Tripp RA (January 2006). "Respiratory syncytial virus (RSV) infects neuronal cells and ... Harcourt J, Alvarez R, Jones LP, Henderson C, Anderson LJ, Tripp RA (February 2006). "Respiratory syncytial virus G protein and ...
... human respiratory syncytial virus •Bos primigenius: bovine respiratory syncytial virus •Rodentia: murine pneumonia virus Mild ... Human respiratory syncytial virus (HRSV) is the most known orthopneumovirus because of its direct correlation and importance in ... "Respiratory Syncytial Virus Infection (RSV)". Centers for Disease Control and Prevention. Retrieved 2019-06-03. McIntosh, K. M ... ISBN 978-0-88167-552-8. Collins, Peter L. (1991). "The Molecular Biology of Human Respiratory Syncytial Virus (RSV) of the ...
"Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review ... respiratory syncytial virus and influenza vaccines. She has worked extensively with American Indian populations and in Africa ... as an Epidemiologic Intelligence Officer in the Bacterial Respiratory Diseases Branch. In 1996, as part of her job at the CDC, ...
Caballero MT, Polack FP (May 2018). "Respiratory syncytial virus is an "opportunistic" killer". Pediatric Pulmonology. 53 (5): ... Cytomegalovirus is a family of opportunistic viruses, most frequently associated with respiratory infection. Human polyomavirus ... Opportunistic infections caused by feline leukemia virus and feline immunodeficiency virus retroviral infections can be treated ... HIV is a virus that targets T cells of the immune system and, as a result, HIV infection can lead to progressively worsening ...
Building on discoveries that Prince made as a doctoral student, VSI pioneered the prevention of respiratory syncytial virus ( ... Gregory A. Prince; Amy Mathews; Spencer J. Curtis; David D. Porter (2000). "Treatment of Respiratory Syncytial Virus ... Marina S. Boukhvalova; Gregory A. Prince; Jorge C. G. Blanco (2007). "Respiratory Syncytial Virus Infects and Abortively ... Linda G. Byrd; Gregory A. Prince (December 1997). "Animal Models of Respiratory Syncytial Virus Infection". Clinical Infectious ...
Lactoferrin in HBM can also inhibit the invasion and proliferation of respiratory syncytial virus (RSV), which is a virus ... CDC (2023-03-16). "Learn about Respiratory Syncytial Virus Infection (RSV)". Centers for Disease Control and Prevention. ... Adenovirus is another group of viruses that targets the mucosal membrane of the human respiratory tract. It usually causes mild ... For some individuals, HBM may not be suitable for use, as it may transmit of viruses and other pathogens to infants. For ...
Mumps virus (Paramyxoviridae) Human respiratory syncytial virus (Paramyxoviridae) Parainfluenza (Paramyxoviridae) Rabies ( ... ssRNA viruses include the Ebola virus, hantaviruses, influenza viruses, the Lassa fever virus, and the rabies virus. ... Human-specific −ssRNA viruses include the measles virus and the mumps virus. Many diseases caused by −ssRNA viruses have been ... Negative-strand RNA viruses (−ssRNA viruses) are a group of related viruses that have negative-sense, single-stranded genomes ...
Typical viruses include respiratory syncytial virus, rhinovirus, influenza, and others. Bacteria are uncommon pathogens but may ... These viruses may be spread through the air when people cough or by direct contact. Risk factors include exposure to tobacco ... Upper respiratory tract infections (URTI's) often precede acute bronchitis, with overlapping symptoms including headache, nasal ... At least one other lower respiratory tract symptom, such as sputum production, wheezing, chest pain. No alternative explanation ...
This is most commonly caused by respiratory syncytial virus (RSV, also known as human pneumovirus). Other agents that cause ... Acute bronchiolitis is usually the result of infection by respiratory syncytial virus (72% of cases) or human rhinovirus (26% ... Carbonell-Estrany X, Figueras-Aloy J, Law BJ (November 2004). "Identifying risk factors for severe respiratory syncytial virus ... Graham BS, Anderson LJ (2013). Challenges and Opportunities for Respiratory Syncytial Virus Vaccines. Current Topics in ...
HS has also been shown to serve as cellular receptor for a number of viruses, including the respiratory syncytial virus. One ... "Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection". Journal of Virology. 74 (22): 10508-13. ... October 1999). "A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry". Cell. 99 (1): 13-22. doi: ... and those that generate a herpes simplex virus 1 glycoprotein D (HSV-1 gD) binding site (HS3ST2, HS3ST3A1, HS3ST3B1, HS3ST4, ...
The company stated that it would no longer develop Motavizumab for the prevention of respiratory syncytial virus (RSV), and as ... It is being investigated by MedImmune (today a subsidiary of AstraZeneca) for the prevention of respiratory syncytial virus ... "Pharmacological management of human respiratory syncytial virus infection". Expert Opinion on Pharmacotherapy. 21 (18): 2293- ...
27 January 2019). Challenges and Opportunities for Respiratory Syncytial Virus Vaccines. Springer-Verlag. ISBN 9783642389184. ... especially Respiratory Syncytial Virus (RSV), an important cause of morbidity and mortality in young children and the elderly ... and chief of the Respiratory and Enteric Viruses Branch of the CDC Division of Viral and Rickettsial Diseases (1982-2006). From ... He was director of the Division of Viral Diseases in the National Center for Immunization and Respiratory Diseases at the CDC ( ...
"Passive immunisation against respiratory syncytial virus: a cost-effectiveness analysis". Archives of Disease in Childhood. 95 ... Microantibodies can stop viruses such as HIV from infecting cells in vitro. Antibodies are produced naturally by the body and ... virus-neutralizing microantibody". The Journal of General Virology. 86 (Pt 6): 1791-800. doi:10.1099/vir.0.80812-0. PMID ... which includes the production of antibodies that destroy infectious agents such as bacteria and viruses. Some infections can be ...
... is a humanized monoclonal antibody against respiratory syncytial virus. "WHO Drug Information" (PDF). Archived from ...
2009 Human Metapneumovirus and Respiratory Syncytial Virus Disease in Children, Yemen - Sept. 2006 Respiratory Syncytial Virus ... Najla Al-Sonboli et al., "Respiratory Syncytial Virus and Human Metapneumovirus in Children with Acute Respiratory Infections ... Najla Al-Sonboli et al., "Human Metapneumovirus and Respiratory Syncytial Virus Disease in Children, Yemen - Volume 12, Number ... Tripp, Ralph A. (2010-03-15), "Pneumovirus and Metapneumovirus: Respiratory Syncytial Virus and Human Metapneumovirus", Topley ...
Historical instances of the phenomenon were seen in vaccine candidates for respiratory syncytial virus (RSV), SARS-CoV, Middle ... "Brief History and Characterization of Enhanced Respiratory Syncytial Virus Disease". Clinical and Vaccine Immunology. 23 (3): ... Vaccine-associated enhanced respiratory disease (VAERD), or simply enhanced respiratory disease (ERD), is an adverse event ... inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus". ...
August 2018). "Orally Efficacious Broad-Spectrum Ribonucleoside Analog Inhibitor of Influenza and Respiratory Syncytial Viruses ... "Korona virus: Koji se lekovi protiv Kovida-19 koriste u Srbiji" [Corona virus: What anti-Covid-19 drugs are used in Serbia]. 22 ... In experiments in animals favipiravir has shown activity against West Nile virus, yellow fever virus, foot-and-mouth disease ... Nipah virus is a causative agent of outbreaks of encephalitis with pneumonia and has a high case fatality rate. The first ...
"Increased concordance of severe respiratory syncytial virus infection in identical twins". Pediatrics. 121 (3): 493-6. doi: ...
"Whole blood gene expression in infants with respiratory syncytial virus bronchiolitis". BMC Infectious Diseases. 6: 175. doi: ...
"Use of the Pfizer Respiratory Syncytial Virus Vaccine During Pregnancy for the Prevention of Respiratory Syncytial Virus- ... In the European Union, nirsevimab is indicated for the prevention of respiratory syncytial virus RSV lower respiratory tract ... is a human recombinant monoclonal antibody with activity against respiratory syncytial virus (RSV). It is a respiratory ... "Respiratory syncytial virus (RSV) immunisation programme: JCVI advice, 7 June 2023". Medicines and Healthcare products ...
"Ribavirin for respiratory syncytial virus infection of the lower respiratory tract in infants and young children". The Cochrane ... Smee DF, Matthews TR (July 1986). "Metabolism of ribavirin in respiratory syncytial virus-infected and uninfected cells". ... The aerosol form has been used in the past to treat respiratory syncytial virus-related diseases in children, although the ... Such hypermutation can be lethal to RNA viruses. Neither of these mechanisms explains ribavirin's effect on many DNA viruses, ...
Diseases, Committee on Infectious (1 September 1993). "Use of Ribavirin in the Treatment of Respiratory Syncytial Virus ... was approved under the name Virazole by the Food and Drug Administration for the treatment of respiratory syncytial virus (RSV ... "Press Announcements - FDA approves first test to confirm the presence of Human T-cell Lymphotropic Virus-I/II antibodies". www. ... an upper respiratory tract disease that primarily affects children. In 1991, ICN created the SPAG-2 (Small Particle Aerosol ...
... at the cell surface is the receptor for the respiratory syncytial virus (RSV) fusion protein. Interference with the ... Shakeri A, Mastrangelo P, Griffin JK, Moraes TJ, Hegele RG (Nov 2014). "Respiratory syncytial virus receptor expression in the ... Bilawchuk LM, Griffiths CD, Jensen LD, Elawar F, Marchant DJ (Aug 2017). "The Susceptibilities of Respiratory Syncytial Virus ... "Identification of nucleolin as a cellular receptor for human respiratory syncytial virus". Nature Medicine. 17 (9): 1132-5. doi ...
Cases of respiratory syncytial virus (RSV) in India mainly occur in North India in the winter. This virus causes lower ... Broor, S; Parveen, S; Maheshwari, M (2018). "Respiratory syncytial virus infections in India: Epidemiology and need for vaccine ... respiratory tract infection. India, like many other countries, uses the World Health Organization system for reporting and ...
"Structural characterization of the human respiratory syncytial virus fusion protein core". Proceedings of the National Academy ...
Respiratory syncytial virus (RSV) is a very common, contagious virus that causes infections of the respiratory tract. RSV is ... Coultas JA, Smyth R, Openshaw PJ (October 2019). "Respiratory syncytial virus (RSV): a scourge from infancy to old age". Thorax ... Griffiths C, Drews SJ, Marchant DJ (January 2017). "Respiratory Syncytial Virus: Infection, Detection, and New Options for ... PMID 33864736.{{cite journal}}: CS1 maint: multiple names: authors list (link) "FDA Approves First Respiratory Syncytial Virus ...
Nosocomial respiratory syncytial virus infections: the "Cold War" has not ended. Clin Infect Dis 2000;31(2):590-6. CDC. Acute ... Modes of transmission of respiratory syncytial virus. J Pediatr 1981;99(1):100-3. Evans MR, Meldrum R, Lane W, et al. An ... Respiratory syncytial viral infection in children with compromised immune function. N Engl J Med 1986;315(2):77-81. Lui SL, Luk ... Update: universal precautions for prevention of transmission of human immunodeficiency virus, hepatitis B virus, and other ...
You touch a surface that has the virus on it, like a doorknob, and then touch your face before washing your hands ... However, some infants, and people with weakened immune systems, can continue to spread the virus even after they stop showing ... You get virus droplets from a cough or sneeze in your eyes, nose, or mouth ... You have direct contact with the virus, like kissing the face of a child with RSV ...
... is a very common virus that leads to mild, cold-like symptoms in adults and older healthy children. It can be more serious in ... is a very common virus that leads to mild, cold-like symptoms in adults and older healthy children. It can be more serious in ... Respiratory syncytial virus (RSV) is a very common virus that leads to mild, cold-like symptoms in adults and older healthy ... RSV; Palivizumab; Respiratory syncytial virus immune globulin; Bronchiolitis - RSV; URI - RSV; Upper respiratory illness - RSV ...
... is the leading cause of lower respiratory tract infections (LRTIs) in infants and young children.{file44441}The clinical entity ... Infection with respiratory syncytial virus (RSV; see the image below), which manifests primarily as bronchiolitis or viral ... encoded search term (Respiratory Syncytial Virus Infection) and Respiratory Syncytial Virus Infection What to Read Next on ... 2010arexvy-respiratory-syncytial-virus-rsv-vaccine-adjuvanted-4000359Drugs. Drugs respiratory syncytial virus (RSV) vaccine, ...
Respiratory syncytial virus (RSV), also called human respiratory syncytial virus (hRSV) and human orthopneumovirus, is a common ... The virus was later renamed human orthopneumovirus, or human respiratory syncytial virus (hRSV). Several other pneumoviruses ... This is synonymous with human respiratory syncytial virus (hRSV), which is often shortened to just RSV. It belongs to the genus ... contagious virus that causes infections of the respiratory tract. It is a negative-sense, single-stranded RNA virus. Its name ...
Learn about Respiratory Syncytial Virus (RSV) Immunizations Recs ... Respiratory syncytial (sin-SISH-uhl) virus, or RSV, is a common ... respiratory virus that usually causes mild, cold-like symptoms. Most people recover in a week or two, but RSV can be serious. ...
Respiratory syncytial virus (RSV) is a common respiratory virus that usually causes mild, cold-like symptoms but can also ... Protecting Infants from Respiratory Syncytial Virus (RSV). *Algorithms for Diagnosing the Endemic Mycoses Blastomycosis, ... Coronavirus and Other Respiratory Viruses Division. National Center for Immunization and Respiratory Diseases. Centers for ... Protecting Infants from Respiratory Syncytial Virus (RSV), Thursday, October 26, 2023, please visit TCEO and follow these 9 ...
New CDC report examines 2014-2017 respiratory syncytial virus seasons. ... New CDC report examines 2014-2017 respiratory syncytial virus seasons. ... Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in young children worldwide (1-3). In ... and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young ...
Respiratory Syncytial Virus (RSV) News and Research. RSS Respiratory syncytial virus (RSV) causes mild, cold-like symptoms in ... Tests can tell if your child has the virus. Further Reading. *Respiratory Syncytial Virus (RSV) in Children ... today announced that it has started a Phase 1/2 trial of its respiratory syncytial virus (RSV) vaccine candidate in healthy ... Vaccines and monoclonal antibodies being developed for respiratory syncytial virus A new study reviews recent advancements made ...
Respiratory syncytial virus (RSV), a common cause of winter outbreaks of acute respiratory disease, results in an estimated ... Respiratory syncytial virus is an important cause of community-acquired lower respiratory infection among hospitalized adults. ... An update on approaches to the development of respiratory syncytial virus (RSV) and parainfluenza virus type 3 (PIV3) vaccines ... Respiratory syncytial virus infection in the elderly. Eur J Clin Microbiol Infect Dis 1996;15:777-81. * Whimbey E, Couch RB, ...
... is a major cause of respiratory illness in young children. Learn how to recognize the signs and symptoms of this contagious ... Virus respiratorio sincitial. What Is Respiratory Syncytial Virus (RSV)?. Respiratory syncytial (sin-SISH-ul) virus (RSV) is a ... How Is Respiratory Syncytial Virus (RSV) Infection Treated?. Most cases of respiratory syncytial virus infection are mild and ... Is Respiratory Syncytial Virus (RSV) Contagious?. Respiratory syncytial virus is highly contagious. It spreads through droplets ...
... Arch Otolaryngol Head Neck Surg. 1998 Jul;124(7):777-83. doi: ... Results: Respiratory syncytial virus induced profound effects on the ciliated cells: ciliostasis, clumping, and loss of cilia ... Background: A suitable model for respiratory syncytial virus (RSV) infection has yet to be developed. ... Objective: To describe an in vitro model of human respiratory epithelium in primary cell culture linked with a computer ...
... is the leading cause of lower respiratory tract infections (LRTIs) in infants and young children.{file44441}The clinical entity ... Infection with respiratory syncytial virus (RSV; see the image below), which manifests primarily as bronchiolitis or viral ... encoded search term (Respiratory Syncytial Virus Infection) and Respiratory Syncytial Virus Infection What to Read Next on ... Fast Five Quiz: Overview of Pediatric Respiratory Syncytial Virus * Fast Five Quiz: Pediatric Respiratory Syncytial Virus ...
To download a certificate of origin for Human respiratory syncytial virus (VR-1803), enter the lot number exactly as it appears ... To download a certificate of analysis for Human respiratory syncytial virus (VR-1803), enter the lot number exactly as it ... The certificate of analysis for that lot of Human respiratory syncytial virus (VR-1803) is not currently available online. ... The certificate of origin for that lot of Human respiratory syncytial virus (VR-1803) is not currently available online. ...
Respiratory Syncytial Virus. (RSV). Pronounced: RES-pi-ra-to-re sin-SISH-al VI-rus ... Respiratory Syncytial Virus (RSV). In: Bennett J, Dolin R, Blaser M, eds. Mandell, Douglas, and Bennetts Principles and ... Respiratory syncytial virus. American Lung Association website. Available at: http://www.lung.org/lung-disease/respiratory- ... syncytial-virus. Accessed January 13, 2020.. Respiratory syncytial virus. Kids Health-Nemours Foundation website. Available at ...
RSV in active immunization for the prevention of lower respiratory tract disease (LRTD) caused by Respiratory Syncytial Virus ( ... MVA-BN RSV, is being developed for the prevention of respiratory syncytial virus (RSV) in older adults. The vaccine ... Bavarian Nordics vaccine candidate, MVA-BN RSV, is being developed for the prevention of respiratory syncytial virus (RSV) in ... Nuance Pharma Announces Clearance of IND Application for Respiratory Syncytial Virus (RSV) Vaccine in China ...
Influenza virus and respiratory syncytial virus (RSV) disease have been increasing in Orange County for the last several weeks ... with AAP recommendations and the recent California Department of Public Health CAHAN advisory Early Respiratory Syncytial Virus ... Compared to pre-pandemic epidemiology this is an early start to the season for both these respiratory viruses. Australias ...
Learn more about respiratory syncytial virus prevention and treatment, and the approach North Memorial Health takes to helping ... What is a respiratory syncytial virus (RSV) infection?. An RSV infection is a condition that causes swelling in your childs ... Know More: Respiratory Syncytial Virus. Trustworthy information, straight from the source. Education is the first step in an ... The RSV virus is the most common cause of lung infections in infants and young children. An RSV infection can happen at any age ...
Respiratory syncytial virus (RSV) is a common respiratory virus that usually causes mild, cold-like symptoms but can also ... Protecting Infants from Respiratory Syncytial Virus (RSV). *Algorithms for Diagnosing the Endemic Mycoses Blastomycosis, ... Coronavirus and Other Respiratory Viruses Division. National Center for Immunization and Respiratory Diseases. Centers for ... Protecting Infants from Respiratory Syncytial Virus (RSV), Thursday, October 26, 2023, please visit TCEO and follow these 9 ...
Respiratory Syncytial Virus Consortium in Europe (RESCEU) Investigators. Respiratory Syncytial Virus-Associated Hospital ... Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: ... The burden of respiratory syncytial virus (RSV) associated acute lower respiratory infections in children with Down syndrome: A ... Distinct patterns of within-host virus populations between two subgroups of human respiratory syncytial virus Autoren: Lin, Gu- ...
... November 7, 2023. Kennedy Ferruggia, Assistant ... Risk factors for severe respiratory syncytial virus infection during the first year of life: development and validation of a ... RSV is a common virus that could lead to respiratory infections. The virus is proven to be dangerous, particularly in infants. ... prediction model that could calculate the risk of hospitalization following the diagnosis of a respiratory syncytial virus (RSV ...
Epidemiology and diagnosis of human respiratory syncytial virus infections. In Human Respiratory syncytial virus infection ... Respiratory syncytial virus and other respiratory viruses. Pediatr Infect Dis J 2003;22:S6-S10.. ... Structural and Functional Aspects of Viroporins in Human Respiratory Viruses: Respiratory Syncytial Virus and Coronaviruses. By ... of Palivizumab and Respiratory Syncytial Virus Immune Globulin Intravenous for the Prevention of Respiratory Syncytial Virus ...
Respiratory Syncytial Virus Surveillance Data test results are based upon 23 active, voluntary sentinel laboratories reporting ... National Respiratory and Enteric Virus Surveillance System (CDC). Oregon is recruiting for RSV sentinel laboratories. *If your ...
Regarding an earlier announcement on a cluster of patients infected with Respiratory Syncytial Virus in an infirmary... ... Regarding an earlier announcement on a cluster of patients infected with Respiratory Syncytial Virus in an infirmary ward, the ... Appropriate viral tests were arranged for the patients and the test results were positive for Respiratory Syncytial Virus. They ... Update on cluster of respiratory syncytial virus cases in Pok Oi Hospital ...
Respiratory syncytial virus (RSV) is a frequent cause of hospitalization among infants. To compare patient management in Europe ... International variation in the management of infants hospitalized with respiratory syncytial virus. International RSV Study ... Respiratory Syncytial Virus Infections / diagnosis * Respiratory Syncytial Virus Infections / mortality * Respiratory Syncytial ... we analyzed the charts of 1,563 pediatric patients hospitalized with laboratory-confirmed RSV lower respiratory infections ...
... and Baroness Margaret Ritchie discuss the impact of Respiratory Syncytial Virus ... ... Respiratory Syncytial Virus (RSV). Accessed November 2022.. [xv] Fusco, F, et al. (2022) The burden of respiratory syncytial ... RSV is a respiratory virus that impacts nearly all infants by the age of two.[i] While in most cases the virus is mild,[ii] it ... The localised impact of Respiratory Syncytial Virus (RSV) on infants, families and the NHS. Rebecca Catterick, General Manager ...
Rapid Visual Tests and Fluorescent Immunoassays products puts reliable tests in providers to detect Respiratory syncytial virus ... Respiratory syncytial virus (RSV) is a very common cause of respiratory tract infection especially in young children. RSV is a ... Mortality Associated With the Influenza and Respiratory Syncytial Virus in the United States. JAMA, January 8, 2003 - Vol 289, ... A dipstick immunoassay which allows for the rapid, qualitative detection of respiratory syncytial virus (RSV) antigen (viral ...
... vaccine Abrysvo is indicated to prevent lower respiratory tract disease caused by RSV in individuals 60 years of age and older. ... Pfizer Incs bivalent respiratory syncytial virus (RSV) vaccine Abrysvo is indicated to prevent lower respiratory tract disease ... FDA Approves Abrysvo to Prevent Respiratory Syncytial Virus in Older Adults. Jun 1, 2023. PT Staff ... U.S. FDA Approves ABRYSVOâ„¢, Pfizers Vaccine for the Prevention of Respiratory Syncytial Virus (RSV) in Older Adults. Pfizer. ...
Respiratory syncytial virus (RSV) is a common viral infection that affects people of all ages, with infants and older adults ... Respiratory syncytial virus (RSV) infections typically overlap with flu season, occurring in the late fall and winter. However ... A common bug called respiratory syncytial virus (RSV) can affect anyone, but affects infants at a higher rate. Because of this ... Women now have a vaccine they can take during pregnancy to help protect their newborn from respiratory syncytial virus (RSV), ...
Prevention of RSV, Respiratory Syncytial Virus. The number one way to prevent infection of RSV or any viral infection is ... RSV, or respiratory syncytial virus, can be a frightening word to the parent of a young child. You may know someone whose child ... Medications for RSV, Respiratory Syncytial Virus. There is no specific medication available for RSV. However, medications such ... be positively diagnosed by collecting respiratory secretions and testing for the presence of the respiratory syncytial virus. ...
  • Homelessness has not previously been identified as a risk tions as the safety-net hospital for the Seattle metropolitan factor for respiratory syncytial virus (RSV) infection. (cdc.gov)
  • Only 10% (4/40) persons as an at-risk population for severe RSV disease of patients with RSV infection who were readmitted within might guide prioritization strategies for RSV vaccines 30 days had a positive swab specimen for the same virus at and therapeutics as they become available. (cdc.gov)
  • Infection rates are typically higher during the cold winter months, causing bronchiolitis in infants, common colds in adults, and more serious respiratory illnesses, such as pneumonia, in the elderly and immunocompromised. (wikipedia.org)
  • Following initial infection via the eyes or nose, the virus infects the epithelial cells of the upper and lower airway, causing inflammation, cell damage, and airway obstruction. (wikipedia.org)
  • RSV infection can present with a wide variety of signs and symptoms that range from mild upper respiratory tract infections (URTI) to severe and potentially life-threatening lower respiratory tract infections (LRTI) requiring hospitalization and mechanical ventilation. (wikipedia.org)
  • Bronchiolitis is a common lower respiratory tract infection characterized by inflammation and obstruction of the small airways in the lungs. (wikipedia.org)
  • Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in young children worldwide ( 1 - 3 ). (cdc.gov)
  • What Are the Signs & Symptoms of Respiratory Syncytial Virus (RSV) Infection? (kidshealth.org)
  • Respiratory Syncytial Virus (RSV) Infection: When Should I Call the Doctor? (kidshealth.org)
  • How Is Respiratory Syncytial Virus (RSV) Infection Diagnosed? (kidshealth.org)
  • How Is Respiratory Syncytial Virus (RSV) Infection Treated? (kidshealth.org)
  • Most cases of respiratory syncytial virus infection are mild and don't need medical treatment. (kidshealth.org)
  • A suitable model for respiratory syncytial virus (RSV) infection has yet to be developed. (nih.gov)
  • Specific diagnostic tests for confirmation of respiratory syncytial virus (RSV) infection are readily available. (medscape.com)
  • Respiratory Syncytial Virus Infection (RSV): Trends and Surveillance. (medscape.com)
  • Defining the Epidemiology and Burden of Severe Respiratory Syncytial Virus Infection Among Infants and Children in Western Countries. (medscape.com)
  • Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. (medscape.com)
  • Palivizumab Prophylaxis in Infants and Young Children at Increased Risk of Hospitalization for Respiratory Syncytial Virus Infection. (medscape.com)
  • Perez-Yarza EG, Moreno A, Lazaro P, Mejias A, Ramilo O. The association between respiratory syncytial virus infection and the development of childhood asthma: a systematic review of the literature. (medscape.com)
  • Respiratory syncytial virus (RSV) infection in adults. (epnet.com)
  • Risk factors for severe respiratory syncytial virus infection during the first year of life: development and validation of a clinical prediction model. (pharmacytimes.com)
  • Nearly 100% of children in the USA are infected with the virus by 2 to 3 years of age, several hundred infants may die directly from the infection, while the deaths of an additional several thousand may be attributed to RSV-related complications ( Nair et al, 2010 ). (intechopen.com)
  • Respiratory syncytial virus (RSV) is a very common cause of respiratory tract infection especially in young children. (quidel.com)
  • RSV is a very common virus infection that often resembles the common cold with mild symptoms such as a runny nose, coughing and low-grade fever. (quidel.com)
  • When an RSV infection becomes more serious and progresses to bronchiolitis, patient management goals are to relieve respiratory distress, alleviate airway obstruction and improve oxygen levels. (quidel.com)
  • One more 42-year-old patient in the ward had presented with upper respiratory infection symptoms. (gov.hk)
  • The diagnosis of bronchiolitis was made in the presence of a history of upper respiratory tract infection followed by the acute onset of respiratory distress with cough, breathlessness, and wheeze and clinical signs of chest hyperinflation, tachypnea, rhonchi, or crepitations occurring during a winter epidemic of bronchiolitis attributed to RSV ( 12 ). (snmjournals.org)
  • The proportion of positive RSV infection was higher in patients hospitalized with acute respiratory infection compared to those with mild symptoms in out-patient clinics. (who.int)
  • La proportion d'infections positives au VRS était plus élevée chez les patients hospitalisés pour une infection respiratoire aiguë que chez les patients en consultation externe souffrant de légers symptômes. (who.int)
  • Healthcare personnel, childcare providers, and staff at long-term care facilities should stay home and not go to work when they have fever or symptoms of respiratory infection to reduce the spread of respiratory infections including RSV. (cdc.gov)
  • PF-07960613 is under development for the prevention of respiratory syncytial virus infection and coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). (pharmaceutical-technology.com)
  • It's most often caused by infection from the respiratory syncytial virus , or RSV. (osmosis.org)
  • To quantify mortality attributable to influenza and respiratory syncytial virus (RSV) infection in children. (bmj.com)
  • Respiratory Syncytial Virus (RSV) is an upper respiratory infection most commonly found in children and infants. (theemergencycenter.com)
  • Pulmonary A2 strain respiratory syncytial virus infection of BALB/c laboratory mice persisted for up to 7 days after initial infection with peak virus titres being recovered on day 4. (microbiologyresearch.org)
  • This local CTL response was preceded by a rapid transient virus-specific lymphocyte transformation response which was detectable only 3 days after intranasal infection. (microbiologyresearch.org)
  • IgG was the first class of virus-specific immunoglobulin to be detected in the lungs of infected animals after experimental infection. (microbiologyresearch.org)
  • However, IgG was not detected until day 10 post-infection, 5 days after the initial decline of virus shedding. (microbiologyresearch.org)
  • Immunoglobulin class specific antibody response in serum, spleen, lungs and bronchioal- veolar washings after primary and secondary Sendai virus infection of germ free mice. (microbiologyresearch.org)
  • Study of experimental RS virus infection in cotton rats. (microbiologyresearch.org)
  • On September 22, 2023, members of the Advisory Committee on Immunization Practices (ACIP) voted, 11-1, to recommend maternal RSV vaccine for pregnant people during 32 through 36 weeks gestation, using seasonal administration, to prevent RSV lower respiratory tract infection in infants. (cdc.gov)
  • Human respiratory syncytial virus (RSV) is a primary cause of paediatric severe acute respiratory infection (SARI) worldwide, especially in developing countries. (who.int)
  • Respiratory syncytial virus (RSV) (see the image below) is the leading cause of lower respiratory tract infections (LRTIs) in infants and young children. (medscape.com)
  • Respiratory syncytial virus (RSV), also called human respiratory syncytial virus (hRSV) and human orthopneumovirus, is a common, contagious virus that causes infections of the respiratory tract. (wikipedia.org)
  • While RSV can cause respiratory tract infections in people of all ages and is among common childhood infections, its presentation often varies between age groups and immune status. (wikipedia.org)
  • Childhood RSV infections are fairly self-limited with typical upper respiratory tract signs and symptoms, such as nasal congestion, runny nose, cough, and low-grade fever. (wikipedia.org)
  • Approximately 15-50% of children will go on to develop more serious lower respiratory tracts infections, such as bronchiolitis, viral pneumonia, or croup. (wikipedia.org)
  • RSV is a common virus that could lead to respiratory infections. (pharmacytimes.com)
  • Human respiratory syncytial virus (RSV) is a ubiquitous virus of worldwide distribution and is the leading cause of infant morbidity from respiratory infections. (intechopen.com)
  • RSV is a common virus that can cause acute lower respiratory tract infections such as pneumonia and bronchiolitis. (politicshome.com)
  • To compare patient management in Europe, the United States, and Australia, we analyzed the charts of 1,563 pediatric patients hospitalized with laboratory-confirmed RSV lower respiratory infections during recent RSV seasons. (nih.gov)
  • There are many other viruses that infect the respiratory tract and there is a large overlap of symptoms among these infections. (quidel.com)
  • Respiratory syncytial virus (RSV) infections typically overlap with flu season, occurring in the late fall and winter. (blackdoctor.org)
  • We conducted a prospective study using sentinel-based influenza surveillance to detect RSV by real time PCR in patients with acute respiratory infections, enrolled during two seasons (2014/15, 2015/16). (who.int)
  • RSV remains important viral etiological agent causing influenza-like illness and severe acute respiratory infections especially among infants in Morocco. (who.int)
  • Clinicians should also talk to their patients about other vaccines available this fall to help prevent respiratory infections. (cdc.gov)
  • RSV can cause upper respiratory infections (such as colds) and lower respiratory tract infections such as bronchiolitis and pneumonia. (uintacounty.com)
  • PF-07960613 is under clinical development by Pfizer and currently in Phase II for Respiratory Syncytial Virus (RSV) Infections. (pharmaceutical-technology.com)
  • According to GlobalData, Phase II drugs for Respiratory Syncytial Virus (RSV) Infections does not have sufficient historical data to build an indication benchmark PTSR for Phase II. (pharmaceutical-technology.com)
  • GSK -3888550A is under development for the prevention of respiratory syncytial virus infections. (pharmaceutical-technology.com)
  • We are proud to announce these filings for the use of our RSV vaccine candidate, mRNA-1345, in the European Union, Switzerland, Australia, and the U.S. RSV is a major cause of lower respiratory tract infections in older adults and can cause a significant burden to health systems through hospitalizations and emergency care admissions," said Stéphane Bancel, Chief Executive Officer of Moderna. (technologynetworks.com)
  • Overview of Viral Infections A virus is a microorganism, a tiny living organism. (msdmanuals.com)
  • Always treat respiratory infections in young children as a potential medical emergency , and schedule a doctor appointment at the first sign of symptoms. (theemergencycenter.com)
  • Systemic cell-mediated and antibody responses in infants with respiratory syncytial virus infections. (microbiologyresearch.org)
  • What is the main cause of severe acute respiratory infections on the US-Mexico border? (medscape.com)
  • Acute respiratory infections in pediatric long-term care facilities are associated with significant health and financial burdens. (medscape.com)
  • Many children were hospitalized for respiratory infections during the fall of 2014. (medscape.com)
  • Dual infections with bacteria and viruses are associated with high mortality. (who.int)
  • Interferons (IFNs) are secreted cytokines with the ability to activate expression of IFN stimulated genes that increase resistance of cells to virus infections. (lu.se)
  • A recent survey found that nearly all centers administer bronchodilators to most respiratory syncytial virus (RSV) bronchiolitis patients, with the β-agonist drug albuterol being prescribed most commonly ( 2 ). (snmjournals.org)
  • The Centers for Disease Control and Prevention (CDC) is issuing this Health Alert Network (HAN) Health Advisory to notify clinicians and caregivers about increases in respiratory syncytial virus (RSV) activity across some parts of the Southeastern United States in recent weeks, suggesting a continued shift toward seasonal RSV trends observed prior to the COVID-19 pandemic. (cdc.gov)
  • Available at https://www.acog.org/clinical/clinical-guidance/practice-advisory/articles/2023/09/maternal-respiratory-syncytial-virus-vaccination . (medscape.com)
  • The trial is being conducted at approximately 115 sites across the U.S. and Germany and is designed to run through the RSV season 2022/2023 with topline results expected mid 2023 if the pre-defined number of lower-respiratory tract disease events has occurred. (prnewswire.com)
  • RSV was discovered in 1956 when researchers isolated a virus from a population of chimpanzees with respiratory illness. (wikipedia.org)
  • In 1957, this same virus was identified by Robert M. Chanock in children with respiratory illness. (wikipedia.org)
  • Health care providers and public health officials use RSV circulation data to guide diagnostic testing and to time the administration of RSV immunoprophylaxis for populations at high risk for severe respiratory illness ( 6 ). (cdc.gov)
  • Respiratory syncytial (sin-SISH-ul) virus (RSV) is a major cause of respiratory illness in children. (kidshealth.org)
  • The analysis showed that RSVpreF produced vaccine efficacy of 66.7% (96.66% CI: 28.8%, 85.8%) against RSV-associated lower respiratory tract illness (LRTI-RSV) as defined by 2 or more symptoms. (pharmacytimes.com)
  • As most American parents already know, cases of respiratory syncytial virus (RSV), a common illness of childhood, are surging this year. (blackdoctor.org)
  • RSV is a virus, therefore, antibiotics are not useful in treating the illness. (justmommies.com)
  • RSV the most common respiratory illness in babies and young children. (newbornscreening.info)
  • Today, CDC recommended the first respiratory syncytial virus (RSV) vaccine for pregnant people to protect their newborn from severe RSV illness. (cdc.gov)
  • MVA-BN RSV, is being developed for the prevention of respiratory syncytial virus (RSV) in older adults. (prnewswire.com)
  • Millions more older adults may do the same in coming weeks and months, a new University of Michigan poll suggests, as they seek protection against a virus that is especially good at infecting older lungs. (news-medical.net)
  • The virus poses the most danger to older adults who have lung, heart, kidney or immune system conditions, or diabetes, and those who live in nursing homes or other group settings. (news-medical.net)
  • RSV is a significant cause of severe respiratory disease in older adults, and it can cause disability and death. (pfizer.com)
  • In a new study conducted by researchers from the University of Helsinki and Helsinki University Hospital, researchers generated a 16-variable clinical prediction model that could calculate the risk of hospitalization following the diagnosis of a respiratory syncytial virus (RSV). (pharmacytimes.com)
  • Respiratory syncytial virus (RSV), a common cause of winter outbreaks of acute respiratory disease, results in an estimated 90,000 hospitalizations and 4500 deaths each year from lower respiratory tract disease among infants and young children in the United States (1). (cdc.gov)
  • Editorial Note: During the RSV season, health-care providers should consider RSV as a cause of acute respiratory disease in both children and adults. (cdc.gov)
  • In adults, RSV usually causes upper respiratory tract symptoms but can cause lower respiratory tract disease, especially in elderly and in immunocompromised persons (4-6). (cdc.gov)
  • Available at: http://www.lung.org/lung-disease/respiratory-syncytial-virus. (epnet.com)
  • Influenza virus and respiratory syncytial virus (RSV) disease have been increasing in Orange County for the last several weeks. (constantcontact.com)
  • The incubation period of RSV respiratory disease is estimated to be three to five days (Black, 2003). (intechopen.com)
  • Pfizer Inc's bivalent respiratory syncytial virus (RSV) vaccine Abrysvo is indicated to prevent lower respiratory tract disease caused by RSV in individuals 60 years of age and older. (pharmacytimes.com)
  • The BLA is based on positive data from a prespecified interim analysis of the pivotal AReSVi-006 ( A dult R espiratory S yncytial V irus) phase III trial, which showed high overall vaccine efficacy against RSV lower respiratory tract disease (LRTD) in adults aged 60 years and older. (gsk.com)
  • All cause mortality data were examined as well as deaths classified by primary cause to respiratory diseases (chapter VIII, International Classification of Disease 9th revision). (bmj.com)
  • RSV (respiratory syncytial virus) is a highly contagious respiratory disease, which generally occurs between October and April, with cases peaking in December. (monaghan.ie)
  • Moderna, Inc. (Nasdaq:MRNA), a biotechnology company pioneering messenger RNA (mRNA) therapeutics and vaccines, provided an update on regulatory submissions for mRNA-1345, a vaccine for the prevention of RSV-associated lower respiratory tract disease (RSV-LRTD) and acute respiratory disease (ARD) in adults aged 60 years or older. (technologynetworks.com)
  • Scholars@Duke publication: Respiratory syncytial virus and seasonal influenza cause similar illnesses in children with sickle cell disease. (duke.edu)
  • BACKGROUND: Respiratory syncytial virus (RSV) is a cause of acute chest syndrome (ACS) in sickle cell disease (SCD), but its clinical course and acute complications have not been well characterized. (duke.edu)
  • Respiratory syncytial virus (RSV) is a frequent cause of hospitalization among infants. (nih.gov)
  • RSV is a common cause of respiratory hospitalization in infants, and reinfection remains common in later life: it is a notable pathogen in all age groups. (wikipedia.org)
  • This includes supplemental oxygen when indicated, management of respiratory secretions and maintaining hydration. (medscape.com)
  • Secretions can be analyzed for virus in the laboratory by means of culture, antigen-revealing techniques, or polymerase chain reaction (PCR). (medscape.com)
  • RSV is readily spread from contact with respiratory secretions from infected individuals or contaminated surfaces and objects. (quidel.com)
  • RSV can be positively diagnosed by collecting respiratory secretions and testing for the presence of the respiratory syncytial virus. (justmommies.com)
  • The virus spreads through tiny droplets that go into the air when a sick person blows their nose, coughs, or sneezes. (medlineplus.gov)
  • It spreads through droplets containing the virus when an infected person coughs or sneezes. (kidshealth.org)
  • When you cough or sneeze, tiny droplets of the virus are sprayed into the air. (justmommies.com)
  • If inhaled into the lungs, these droplets can also spread the virus. (justmommies.com)
  • RSV is an RNA virus, and transmission occurs primarily via respiratory droplets when a person coughs or sneezes, or through direct contact with a contaminated surface. (cdc.gov)
  • It's transmitted when an infected person sneezes or coughs, which spreads thousands of droplets containing the virus into the surrounding area up to about two meters, or six feet, away. (osmosis.org)
  • When someone with RSV coughs or sneezes, a nearby person can get the virus by breathing in or touching droplets in the air that have the virus. (msdmanuals.com)
  • Respiratory and Enteric Viruses Br, Div of Viral and Rickettsial Diseases, National Center for Infectious Diseases, CDC. (cdc.gov)
  • Appropriate viral tests were arranged for the patients and the test results were positive for Respiratory Syncytial Virus. (gov.hk)
  • The virus has a lipid envelope that contains viral glycoproteins that are involved in entry of the virus into cells and fusion of the viral envelope with cell membranes. (quidel.com)
  • Traditionally, laboratories used viral culture to detect influenza virus and improvements in virus culture techniques allowed for results within 48-72 hours. (quidel.com)
  • Le VRS demeure un agent étiologique viral important au Maroc, responsable de syndromes de type grippal et d'infections respiratoires aiguës sévères, en particulier chez les nourrissons. (who.int)
  • Results: Respiratory syncytial virus (RSV) is the most common viral bronchiolitis in young children. (benthamscience.com)
  • Sendai virus-induced cell mediated cytotoxicity in vitro: the role of viral glycoproteins in cell mediated cytotoxicity. (microbiologyresearch.org)
  • Respiratory syncytial virus (RSV) is most known to infect the human respiratory tract and cause bronchiolitis , which is an inflammation of the bronchioles , the smallest air passages of the lungs. (osmosis.org)
  • RSV is one of many viruses that infect the respiratory tract. (msdmanuals.com)
  • It is a contagious virus that can only transmit from human to human, and it can infect a person repeatedly throughout their lifetime. (theemergencycenter.com)
  • Contaminated surfaces, saliva, mucus, and skin surfaces can harbor the virus and infect others. (theemergencycenter.com)
  • Upon entering the body , the virus encounters the epithelial cells lining the nasopharynx , which is the part of your throat nearest your nose. (osmosis.org)
  • We found that functional inhibition, genetic ablation, and inactivation by post-translational modification of OGG1 significantly augment IFN-λ expression in epithelial cells infected by human respiratory syncytial virus (RSV). (lu.se)
  • Nous avons réalisé une étude prospective en recourant à la surveillance de la grippe basée sur des sites sentinelles dans le but de dépister le VRS grâce à la PCR en temps réel chez des patients souffrant d'infections respiratoires aiguës recrutés au cours de deux saisons (2014-2015 et 2015-2016). (who.int)
  • Respiratory syncytial virus (RSV) is a very common virus that leads to mild, cold-like symptoms in adults and older healthy children. (medlineplus.gov)
  • Respiratory syncytial virus (RSV) is a common respiratory virus that usually causes mild, cold-like symptoms but can also affect the lungs. (cdc.gov)
  • Respiratory syncytial (sin-SISH-uhl) virus, or RSV , is a common respiratory virus that usually causes mild, cold-like symptoms. (cdc.gov)
  • i] While in most cases the virus is mild,[ii] it can also lead to more severe complications as the leading cause of bronchiolitis in infants. (politicshome.com)
  • While this respiratory virus often causes mild, cold-like symptoms, RSV in children can be serious and may cause severe illnesses. (valleybaptist.net)
  • Respiratory illnesses caused by RSV - such as bronchiolitis or pneumonia - usually last about a week, but some symptoms, such as a cough, can last several weeks. (kidshealth.org)
  • Respiratory syncytial virus is the most common virus causing pneumonia, particularly in young infants, followed by influenza viruses. (who.int)
  • Hospital- of specimens containing influenza A/B virus and RSV by ized adults with RSV were more likely to be homeless, and using a rapid PCR assay (Focus Diagnostics, https://www. (cdc.gov)
  • Adults 60 years of age and older may receive a single dose of Respiratory Syncytial Virus (RSV) vaccine, using shared clinical decision-making. (mclaren.org)
  • As the virus has become more widespread around the world, researchers reported that over 100,000 children have died each year due to RSV. (pharmacytimes.com)
  • viii] Furthermore, a lack of data on the prevalence of the virus means that the burden of RSV in infants and children could be greater than estimates suggest. (politicshome.com)
  • Human Respiratory Syncytial Virus (RSV) is an underdiagnosed, often lethal respiratory pathogen affecting infants and children as well as the elderly, immunocompromised, and long-term care facility populations. (genetex.com)
  • What Is Respiratory Syncytial Virus (RSV) in Children? (valleybaptist.net)
  • About 58,000 children younger than 5 years old are hospitalized because of the respiratory syncytial virus (RSV) annually in the United States. (valleybaptist.net)
  • If you're a parent or guardian, here are some other things you need to know about RSV, including how to help protect your children against this virus. (valleybaptist.net)
  • However, even after recovery, very young infants and children with weakened immune systems can continue to spread the virus for 1 to 3 weeks. (uintacounty.com)
  • The virus is common in children under 2 years, though people of all ages can get it. (mclaren.org)
  • 7 Respiratory syncytial virus (RSV) is also recognised as a cause of excess winter mortality particularly in young children and the elderly population. (bmj.com)
  • The HSE is urging parents to be vigilant of their children's symptoms as GPs and hospitals report a rise in the numbers of young children affected by respiratory symptoms and viruses, including RSV . (monaghan.ie)
  • This virus spreads when someone coughs or sneezes and it mostly affects babies and young children under 2 years old, especially babies under 6 months old. (monaghan.ie)
  • People with young children should wash their hands a lot to keep from passing on the virus. (msdmanuals.com)
  • While most cases of RSV show minor symptoms, the virus causes up to 125,000 hospitalizations in children annually. (theemergencycenter.com)
  • Assure that high risk infants are given Palivizumab, in accordance with AAP recommendations and the recent California Department of Public Health CAHAN advisory Early Respiratory Syncytial Virus Activity and Use of Palivizumab . (constantcontact.com)
  • The American Academy of Pediatrics has released updated guidelines addressing palivizumab prophylaxis for respiratory syncytial virus (RSV). (medscape.com)
  • Respiratory syncytial virus-neutralizing serum antibody titers in infants following palivizumab prophylaxis with an abbreviated dosing regimen. (bvsalud.org)
  • Monthly injections of palivizumab during the respiratory syncytial virus (RSV) season in at- risk infants reduces RSV-associated hospitalizations . (bvsalud.org)
  • This study evaluated the lower respiratory tract distribution characteristics of nebulized bronchodilators in infants with acute bronchiolitis. (snmjournals.org)
  • This response like the acute CTL response was found to be restricted to the lower respiratory tract. (microbiologyresearch.org)
  • RSV is a common virus that causes acute respiratory tract illnesses. (blackdoctor.org)
  • The first Americans over age 60 just started rolling up their sleeves to get vaccinated against respiratory syncytial virus, or RSV, now that brand-new vaccines have started to arrive at pharmacies and clinics. (news-medical.net)
  • General Manager at Sanofi Vaccines UK and Ireland, Rebecca Catterick, and Baroness Margaret Ritchie discuss the impact of Respiratory Syncytial Virus (RSV) in our society, with ideas on how it can be mitigated through enhanced understanding and proactive approaches to treatment. (politicshome.com)
  • This is the first fall and winter virus season where vaccines are available for the three major respiratory viruses -COVID-19, RSV and flu. (cdc.gov)
  • RSV is a common contagious virus affecting the lungs and breathing passages. (gsk.com)
  • Respiratory syncytial virus, or RSV, is a common virus that affects the lungs and breathing passages. (uintacounty.com)
  • Respiratory syncytial virus (RSV) is a common virus that affects the lungs, making breathing difficult. (mclaren.org)
  • Virus antigen within the lungs was found to be restricted essentially to the alveolar regions. (microbiologyresearch.org)
  • Other viruses such as human rhinovirus and coronavirus could be etiological agents. (benthamscience.com)
  • This report uses a new statistical method that analyzes polymerase chain reaction laboratory detections reported to the National Respiratory and Enteric Virus Surveillance System (NREVSS) to determine RSV seasonality nationally and by region for three recent seasons (2014-2017). (cdc.gov)
  • CDC reported RSV seasonality nationally, by U.S. Department of Health and Human Services (HHS) regions* and for the state of Florida, using a new statistical method that analyzes polymerase chain reaction (PCR) laboratory detections reported to the National Respiratory and Enteric Virus Surveillance System (NREVSS) ( https://www.cdc.gov/surveillance/nrevss/index.html ). (cdc.gov)
  • RSV activity in the United States is monitored by the National Respiratory and Enteric Virus Surveillance System (NREVSS), a voluntary, laboratory-based system. (cdc.gov)
  • Reported by: National Respiratory and Enteric Virus Surveillance System collaborating laboratories. (cdc.gov)
  • Nationally, the weekly percentage of positive detections reported to the National Respiratory and Enteric Virus Surveillance System (NREVSS), a national laboratory-based surveillance network, has remained below the season onset threshold of polymerase chain reaction (PCR) test positivity of 3.0% for 2 consecutive weeks. (cdc.gov)
  • Virus active weeks were defined from clinical and virological surveillance data. (bmj.com)
  • Human respiratory syncytial virus and influenza seasonality patterns-Early findings from the WHO global respiratory syncytial virus surveillance. (physiciansweekly.com)
  • Compared to pre-pandemic epidemiology this is an early start to the season for both these respiratory viruses. (constantcontact.com)
  • Since July 1992, a total of 100 clinical and public health laboratories in 47 states have participated in NREVSS and have reported weekly to CDC the number of specimens tested for RSV by the antigen-detection and virus-isolation methods and the number of positive results. (cdc.gov)
  • The clinical status on admission was scored according to the respiratory rate (RR), oxygen saturation (SatO 2 ), subcostal indrawing, chest auscultation, and general evaluation, with each parameter graded on a scale of 0-2. (snmjournals.org)
  • Babies often get it when older kids carry the virus home from school and pass it to them. (kidshealth.org)
  • As infants work harder to breathe, they can also show signs of respiratory distress, such as subcostal retractions (when the belly pulls under the ribcage), intercostal retractions (when the muscles between the ribs pull inward), grunting, and nasal flaring. (wikipedia.org)
  • ABSTRACT Respiratory syncytial virus (RSV) is a leading cause of mortality and morbidity in young infants, little was known on its circulation types and patterns in Morocco. (who.int)
  • There are currently two strains of Respiratory Syncytial Virus (A and B), and each strain varies regarding the severity of the symptoms. (theemergencycenter.com)
  • The virus was later renamed human orthopneumovirus, or human respiratory syncytial virus (hRSV). (wikipedia.org)
  • To download a certificate of analysis for Human respiratory syncytial virus ( VR-1803 ), enter the lot number exactly as it appears on your product label or packing slip. (atcc.org)
  • The certificate of analysis for that lot of Human respiratory syncytial virus ( VR-1803 ) is not currently available online. (atcc.org)
  • At Sanofi, we recognise the impact that COVID-19 has had on the NHS and the additional difficulty of managing forthcoming winter seasons as COVID-19 potentially co-circulates with flu, RSV and other respiratory viruses. (politicshome.com)
  • To describe an in vitro model of human respiratory epithelium in primary cell culture linked with a computer microscope interface that allows evaluation and imaging of living RSV-infected respiratory epithelium. (nih.gov)
  • The virus travels down past the trachea and main bronchi to eventually reach the bronchioles , its primary target. (osmosis.org)