A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator.
Sodium chloride-dependent neurotransmitter symporters located primarily on the PLASMA MEMBRANE of serotonergic neurons. They are different than SEROTONIN RECEPTORS, which signal cellular responses to SEROTONIN. They remove SEROTONIN from the EXTRACELLULAR SPACE by high affinity reuptake into PRESYNAPTIC TERMINALS. Regulates signal amplitude and duration at serotonergic synapses and is the site of action of the SEROTONIN UPTAKE INHIBITORS.
Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action.
A serotonin receptor subtype found widely distributed in peripheral tissues where it mediates the contractile responses of variety of tissues that contain SMOOTH MUSCLE. Selective 5-HT2A receptor antagonists include KETANSERIN. The 5-HT2A subtype is also located in BASAL GANGLIA and CEREBRAL CORTEX of the BRAIN where it mediates the effects of HALLUCINOGENS such as LSD.
A serotonin receptor subtype found distributed through the CENTRAL NERVOUS SYSTEM where they are involved in neuroendocrine regulation of ACTH secretion. The fact that this serotonin receptor subtype is particularly sensitive to SEROTONIN RECEPTOR AGONISTS such as BUSPIRONE suggests its role in the modulation of ANXIETY and DEPRESSION.
Compounds that specifically inhibit the reuptake of serotonin in the brain.
Drugs that bind to but do not activate serotonin receptors, thereby blocking the actions of serotonin or SEROTONIN RECEPTOR AGONISTS.
A serotonin receptor subtype found primarily in the CENTRAL NERVOUS SYSTEM and the CHOROID PLEXUS. This receptor subtype is believed to mediate the anorectic action of SEROTONIN, while selective antagonists of the 5-HT2C receptor appear to induce ANXIETY. Several isoforms of this receptor subtype exist, due to adenine deaminase editing of the receptor mRNA.
A serotonin receptor subtype found in the BRAIN; HEART; LUNGS; PLACENTA and DIGESTIVE SYSTEM organs. A number of functions have been attributed to the action of the 5-HT2B receptor including the development of cardiac myocytes (MYOCYTES, CARDIAC) and the contraction of SMOOTH MUSCLE.
A subclass of G-protein coupled SEROTONIN receptors that couple preferentially to the GQ-G11 G-PROTEINS resulting in increased intracellular levels of INOSITOL PHOSPHATES and free CALCIUM.
Drugs used for their effects on serotonergic systems. Among these are drugs that affect serotonin receptors, the life cycle of serotonin, and the survival of serotonergic neurons.
A serotonin receptor subtype found at high levels in the BASAL GANGLIA and the frontal cortex. It plays a role as a terminal autoreceptor that regulates the rate of SEROTONIN release from nerve endings. This serotonin receptor subtype is closely related to and has similar drug binding properties as the 5-HT1D RECEPTOR. It is particularly sensitive to the agonist SUMATRIPTAN and may be involved in mediating the drug's antimigraine effect.
Endogenous compounds and drugs that bind to and activate SEROTONIN RECEPTORS. Many serotonin receptor agonists are used as ANTIDEPRESSANTS; ANXIOLYTICS; and in the treatment of MIGRAINE DISORDERS.
A subclass of G-protein coupled SEROTONIN receptors that couple preferentially to GI-GO G-PROTEINS resulting in decreased intracellular CYCLIC AMP levels.
An adverse drug interaction characterized by altered mental status, autonomic dysfunction, and neuromuscular abnormalities. It is most frequently caused by use of both serotonin reuptake inhibitors and monoamine oxidase inhibitors, leading to excess serotonin availability in the CNS at the serotonin 1A receptor.
Drugs that bind to but do not activate SEROTONIN 5-HT2 RECEPTORS, thereby blocking the actions of SEROTONIN or SEROTONIN 5-HT2 RECEPTOR AGONISTS. Included under this heading are antagonists for one or more specific 5-HT2 receptor subtypes.
A subclass of serotonin receptors that form cation channels and mediate signal transduction by depolarizing the cell membrane. The cation channels are formed from 5 receptor subunits. When stimulated the receptors allow the selective passage of SODIUM; POTASSIUM; and CALCIUM.
Endogenous compounds and drugs that specifically stimulate SEROTONIN 5-HT2 RECEPTORS. Included under this heading are agonists for one or more of the specific 5-HT2 receptor subtypes.
An enzyme that catalyzes the hydroxylation of TRYPTOPHAN to 5-HYDROXYTRYPTOPHAN in the presence of NADPH and molecular oxygen. It is important in the biosynthesis of SEROTONIN.
Endogenous compounds and drugs that specifically stimulate SEROTONIN 5-HT1 RECEPTORS. Included under this heading are agonists for one or more of the specific 5-HT1 receptor subtypes.
A subtype of G-protein-coupled SEROTONIN receptors that preferentially couple to GS STIMULATORY G-PROTEINS resulting in increased intracellular CYCLIC AMP. Several isoforms of the receptor exist due to ALTERNATIVE SPLICING of its mRNA.
Drugs that bind to but do not activate SEROTONIN 5-HT1 RECEPTORS, thereby blocking the actions of SEROTONIN 5-HT1 RECEPTOR AGONISTS. Included under this heading are antagonists for one or more of the specific 5-HT1 receptor subtypes.
Hydroxyindoleacetic acid (5HIAA) is a major metabolite of serotonin, a neurotransmitter, formed by the action of monoamine oxidase and aldehyde dehydrogenase, and its measurement in urine is often used as a biomarker for serotonin synthesis in clinical and research settings.
The first highly specific serotonin uptake inhibitor. It is used as an antidepressant and often has a more acceptable side-effects profile than traditional antidepressants.
A furancarbonitrile that is one of the SEROTONIN UPTAKE INHIBITORS used as an antidepressant. The drug is also effective in reducing ethanol uptake in alcoholics and is used in depressed patients who also suffer from tardive dyskinesia in preference to tricyclic antidepressants, which aggravate this condition.
Neurons whose primary neurotransmitter is SEROTONIN.
A selective serotonin receptor antagonist with weak adrenergic receptor blocking properties. The drug is effective in lowering blood pressure in essential hypertension. It also inhibits platelet aggregation. It is well tolerated and is particularly effective in older patients.
The immediate precursor in the biosynthesis of SEROTONIN from tryptophan. It is used as an antiepileptic and antidepressant.
Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA.
A serotonin uptake inhibitor that is effective in the treatment of depression.
A serotonin 1A-receptor agonist that is used experimentally to test the effects of serotonin.
An ergot derivative that is a congener of LYSERGIC ACID DIETHYLAMIDE. It antagonizes the effects of serotonin in blood vessels and gastrointestinal smooth muscle, but has few of the properties of other ergot alkaloids. Methysergide is used prophylactically in migraine and other vascular headaches and to antagonize serotonin in the carcinoid syndrome.
A selective and irreversible inhibitor of tryptophan hydroxylase, a rate-limiting enzyme in the biosynthesis of serotonin (5-HYDROXYTRYPTAMINE). Fenclonine acts pharmacologically to deplete endogenous levels of serotonin.
A serotonin receptor subtype that is localized to the CAUDATE NUCLEUS; PUTAMEN; the NUCLEUS ACCUMBENS; the HIPPOCAMPUS, and the RAPHE NUCLEI. It plays a role as a terminal autoreceptor that regulates the rate of SEROTONIN release from nerve endings. This serotonin receptor subtype is closely related to and has similar drug binding properties as the 5-HT1B RECEPTOR, but is expressed at low levels. It is particularly sensitive to the agonist SUMATRIPTAN and may be involved in mediating the drug's antimigrane effect.
Tryptamine substituted with two hydroxyl groups in positions 5 and 7. It is a neurotoxic serotonin analog that destroys serotonergic neurons preferentially and is used in neuropharmacology as a tool.
Biogenic amines having only one amine moiety. Included in this group are all natural monoamines formed by the enzymatic decarboxylation of natural amino acids.
Drugs that bind to but do not activate SEROTONIN 5-HT3 RECEPTORS, thereby blocking the actions of SEROTONIN or SEROTONIN 5-HT3 RECEPTOR AGONISTS.
Mood-stimulating drugs used primarily in the treatment of affective disorders and related conditions. Several MONOAMINE OXIDASE INHIBITORS are useful as antidepressants apparently as a long-term consequence of their modulation of catecholamine levels. The tricyclic compounds useful as antidepressive agents (ANTIDEPRESSIVE AGENTS, TRICYCLIC) also appear to act through brain catecholamine systems. A third group (ANTIDEPRESSIVE AGENTS, SECOND-GENERATION) is a diverse group of drugs including some that act specifically on serotonergic systems.
A centrally active drug that apparently both blocks serotonin uptake and provokes transport-mediated serotonin release.
A serotonin antagonist with limited antihistaminic, anticholinergic, and immunosuppressive activity.
One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action.
A structurally and mechanistically diverse group of drugs that are not tricyclics or monoamine oxidase inhibitors. The most clinically important appear to act selectively on serotonergic systems, especially by inhibiting serotonin reuptake.
An N-substituted amphetamine analog. It is a widely abused drug classified as a hallucinogen and causes marked, long-lasting changes in brain serotonergic systems. It is commonly referred to as MDMA or ecstasy.
A selective serotonin reuptake inhibitor that is used in the treatment of DEPRESSION and a variety of ANXIETY DISORDERS.
Membrane proteins whose primary function is to facilitate the transport of molecules across a biological membrane. Included in this broad category are proteins involved in active transport (BIOLOGICAL TRANSPORT, ACTIVE), facilitated transport and ION CHANNELS.
Decarboxylated monoamine derivatives of TRYPTOPHAN.
An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4.
Analogs or derivatives of AMPHETAMINE. Many are sympathomimetics and central nervous system stimulators causing excitation, vasopressin, bronchodilation, and to varying degrees, anorexia, analepsis, nasal decongestion, and some smooth muscle relaxation.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Substances that contain a fused three-ring moiety and are used in the treatment of depression. These drugs block the uptake of norepinephrine and serotonin into axon terminals and may block some subtypes of serotonin, adrenergic, and histamine receptors. However the mechanism of their antidepressant effects is not clear because the therapeutic effects usually take weeks to develop and may reflect compensatory changes in the central nervous system.
A serotonin antagonist and a histamine H1 blocker used as antipruritic, appetite stimulant, antiallergic, and for the post-gastrectomy dumping syndrome, etc.
Semisynthetic derivative of ergot (Claviceps purpurea). It has complex effects on serotonergic systems including antagonism at some peripheral serotonin receptors, both agonist and antagonist actions at central nervous system serotonin receptors, and possibly effects on serotonin turnover. It is a potent hallucinogen, but the mechanisms of that effect are not well understood.
The observable response an animal makes to any situation.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals.
A group of naturally occurring amines derived by enzymatic decarboxylation of the natural amino acids. Many have powerful physiological effects (e.g., histamine, serotonin, epinephrine, tyramine). Those derived from aromatic amino acids, and also their synthetic analogs (e.g., amphetamine), are of use in pharmacology.
A selective serotonin uptake inhibitor that is used in the treatment of depression.
Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation.
The prototypical tricyclic antidepressant. It has been used in major depression, dysthymia, bipolar depression, attention-deficit disorders, agoraphobia, and panic disorders. It has less sedative effect than some other members of this therapeutic group.
A tricyclic antidepressant similar to IMIPRAMINE that selectively inhibits the uptake of serotonin in the brain. It is readily absorbed from the gastrointestinal tract and demethylated in the liver to form its primary active metabolite, desmethylclomipramine.
Piperazines are a class of heterocyclic organic compounds containing a seven-membered ring with two nitrogen atoms at positions 1 and 4, often used in pharmaceuticals as smooth muscle relaxants, antipsychotics, antidepressants, and antihistamines, but can also be found as recreational drugs with stimulant and entactogen properties.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Sodium chloride-dependent neurotransmitter symporters located primarily on the PLASMA MEMBRANE of noradrenergic neurons. They remove NOREPINEPHRINE from the EXTRACELLULAR SPACE by high affinity reuptake into PRESYNAPTIC TERMINALS. It regulates signal amplitude and duration at noradrenergic synapses and is the target of ADRENERGIC UPTAKE INHIBITORS.
An alpha-adrenergic sympathomimetic amine, biosynthesized from tyramine in the CNS and platelets and also in invertebrate nervous systems. It is used to treat hypotension and as a cardiotonic. The natural D(-) form is more potent than the L(+) form in producing cardiovascular adrenergic responses. It is also a neurotransmitter in some invertebrates.
A serotonin receptor antagonist in the CENTRAL NERVOUS SYSTEM used as an antipsychotic.
Chlorinated analog of AMPHETAMINE. Potent neurotoxin that causes release and eventually depletion of serotonin in the CNS. It is used as a research tool.
A chemically heterogeneous group of drugs that have in common the ability to block oxidative deamination of naturally occurring monoamines. (From Gilman, et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p414)
A selective and potent serotonin-2 antagonist that is effective in the treatment of a variety of syndromes related to anxiety and depression. The drug also improves the subjective quality of sleep and decreases portal pressure.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
A technique for measuring extracellular concentrations of substances in tissues, usually in vivo, by means of a small probe equipped with a semipermeable membrane. Substances may also be introduced into the extracellular space through the membrane.
Drugs that block the transport of adrenergic transmitters into axon terminals or into storage vesicles within terminals. The tricyclic antidepressants (ANTIDEPRESSIVE AGENTS, TRICYCLIC) and amphetamines are among the therapeutically important drugs that may act via inhibition of adrenergic transport. Many of these drugs also block transport of serotonin.
An anxiolytic agent and serotonin receptor agonist belonging to the azaspirodecanedione class of compounds. Its structure is unrelated to those of the BENZODIAZAPINES, but it has an efficacy comparable to DIAZEPAM.
Drugs that bind to but do not activate SEROTONIN 5-HT4 RECEPTORS, thereby blocking the actions of SEROTONIN or SEROTONIN RECEPTOR AGONISTS.
Endogenous compounds and drugs that specifically stimulate SEROTONIN 5-HT3 RECEPTORS.
'Nerve tissue proteins' are specialized proteins found within the nervous system's biological tissue, including neurofilaments, neuronal cytoskeletal proteins, and neural cell adhesion molecules, which facilitate structural support, intracellular communication, and synaptic connectivity essential for proper neurological function.
Precursor of epinephrine that is secreted by the adrenal medulla and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers and of the diffuse projection system in the brain arising from the locus ceruleus. It is also found in plants and is used pharmacologically as a sympathomimetic.
Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function.
Endogenous compounds and drugs that specifically stimulate SEROTONIN 5-HT4 RECEPTORS.
A subtype of enteroendocrine cells found in the gastrointestinal MUCOSA, particularly in the glands of PYLORIC ANTRUM; DUODENUM; and ILEUM. These cells secrete mainly SEROTONIN and some neuropeptides. Their secretory granules stain readily with silver (argentaffin stain).
Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states.
Monohydroxy derivatives of cyclohexanes that contain the general formula R-C6H11O. They have a camphorlike odor and are used in making soaps, insecticides, germicides, dry cleaning, and plasticizers.
A dopamine agonist and serotonin antagonist. It has been used similarly to BROMOCRIPTINE as a dopamine agonist and also for MIGRAINE DISORDERS therapy.
A family of vesicular amine transporter proteins that catalyze the transport and storage of CATECHOLAMINES and indolamines into SECRETORY VESICLES.
Drugs capable of inducing illusions, hallucinations, delusions, paranoid ideations, and other alterations of mood and thinking. Despite the name, the feature that distinguishes these agents from other classes of drugs is their capacity to induce states of altered perception, thought, and feeling that are not experienced otherwise.
An affective disorder manifested by either a dysphoric mood or loss of interest or pleasure in usual activities. The mood disturbance is prominent and relatively persistent.
The S-isomer of FENFLURAMINE. It is a serotonin agonist and is used as an anorectic. Unlike fenfluramine, it does not possess any catecholamine agonist activity.
Tryptamine substituted with two hydroxyl groups in positions 5 and 6. It is a neurotoxic serotonin analog that destroys serotonergic neurons preferentially and is used in neuropharmacologic research.
5-Hydroxy-indole-3-ethanol.
Sodium chloride-dependent neurotransmitter symporters located primarily on the PLASMA MEMBRANE of dopaminergic neurons. They remove DOPAMINE from the EXTRACELLULAR SPACE by high affinity reuptake into PRESYNAPTIC TERMINALS and are the target of DOPAMINE UPTAKE INHIBITORS.
Transmitter receptors on or near presynaptic terminals (or varicosities) which are sensitive to the transmitter(s) released by the terminal itself. Receptors for the hormones released by hormone-releasing cells are also included.
A spiro butyrophenone analog similar to HALOPERIDOL and other related compounds. It has been recommended in the treatment of SCHIZOPHRENIA.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
Drugs that inhibit the transport of neurotransmitters into axon terminals or into storage vesicles within terminals. For many transmitters, uptake determines the time course of transmitter action so inhibiting uptake prolongs the activity of the transmitter. Blocking uptake may also deplete available transmitter stores. Many clinically important drugs are uptake inhibitors although the indirect reactions of the brain rather than the acute block of uptake itself is often responsible for the therapeutic effects.
A light-sensitive neuroendocrine organ attached to the roof of the THIRD VENTRICLE of the brain. The pineal gland secretes MELATONIN, other BIOGENIC AMINES and NEUROPEPTIDES.
An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake.
The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Glycoproteins found on the membrane or surface of cells.
Elements of limited time intervals, contributing to particular results or situations.
Clusters of neuronal cell bodies in invertebrates. Invertebrate ganglia may also contain neuronal processes and non-neuronal supporting cells. Many invertebrate ganglia are favorable subjects for research because they have small numbers of functional neuronal types which can be identified from one animal to another.
A tetracyclic compound with antidepressant effects. It may cause drowsiness and hematological problems. Its mechanism of therapeutic action is not well understood, although it apparently blocks alpha-adrenergic, histamine H1, and some types of serotonin receptors.
The physical activity of a human or an animal as a behavioral phenomenon.
Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
The action of a drug that may affect the activity, metabolism, or toxicity of another drug.
Behavior which may be manifested by destructive and attacking action which is verbal or physical, by covert attitudes of hostility or by obstructionism.
The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.
Transport proteins that carry specific substances in the blood or across cell membranes.
A reversible inhibitor of monoamine oxidase type A; (RIMA); (see MONOAMINE OXIDASE INHIBITORS) that has antidepressive properties.
Serotonin derivative proposed as potentiator for hypnotics and sedatives.
A family of hexahydropyridines.
A tricyclic dibenzazepine compound that potentiates neurotransmission. Desipramine selectively blocks reuptake of norepinephrine from the neural synapse, and also appears to impair serotonin transport. This compound also possesses minor anticholinergic activity, through its affinity to muscarinic receptors.
Marked depression appearing in the involution period and characterized by hallucinations, delusions, paranoia, and agitation.
Depressive states usually of moderate intensity in contrast with major depression present in neurotic and psychotic disorders.
Pyridines substituted in any position with an amino group. May be hydrogenated, but must retain at least one double bond.
The rostral part of the frontal lobe, bounded by the inferior precentral fissure in humans, which receives projection fibers from the MEDIODORSAL NUCLEUS OF THE THALAMUS. The prefrontal cortex receives afferent fibers from numerous structures of the DIENCEPHALON; MESENCEPHALON; and LIMBIC SYSTEM as well as cortical afferents of visual, auditory, and somatic origin.
An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES.
An activity in which the body is propelled through water by specific movement of the arms and/or the legs. Swimming as propulsion through water by the movement of limbs, tail, or fins of animals is often studied as a form of PHYSICAL EXERTION or endurance.
Homovanillic acid (HVA) is a major metabolite of dopamine, formed in the body through the catabolic breakdown of this neurotransmitter by the enzyme catechol-O-methyltransferase and then further metabolized in the liver before excretion in urine.
Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders).
Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
A monoamine oxidase inhibitor with antihypertensive properties.
A biogenic amine that is found in animals and plants. In mammals, melatonin is produced by the PINEAL GLAND. Its secretion increases in darkness and decreases during exposure to light. Melatonin is implicated in the regulation of SLEEP, mood, and REPRODUCTION. Melatonin is also an effective antioxidant.
N-methyl-8-azabicyclo[3.2.1]octanes best known for the ones found in PLANTS.
An acetyltransferase with specificity towards the amine group of aromatic alkylamines (arylalkylamines) such as SEROTONIN. This enzyme is also referred to as serotonin acetylase despite the fact that serotonin acetylation can also occur through the action of broad specificity acetyltransferases such as ARYLAMINE N-ACETYLTRANSFERASE.
Drugs that block the transport of DOPAMINE into axon terminals or into storage vesicles within terminals. Most of the ADRENERGIC UPTAKE INHIBITORS also inhibit dopamine uptake.
A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation.
Agents that control agitated psychotic behavior, alleviate acute psychotic states, reduce psychotic symptoms, and exert a quieting effect. They are used in SCHIZOPHRENIA; senile dementia; transient psychosis following surgery; or MYOCARDIAL INFARCTION; etc. These drugs are often referred to as neuroleptics alluding to the tendency to produce neurological side effects, but not all antipsychotics are likely to produce such effects. Many of these drugs may also be effective against nausea, emesis, and pruritus.
'Fluorobenzenes' are aromatic hydrocarbons consisting of a benzene ring substituted with one or more fluorine atoms, characterized by the presence of the highly electronegative fluorine atom(s) that influence the compound's chemical reactivity and physical properties.
The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS.
A symptom complex associated with CARCINOID TUMOR and characterized by attacks of severe flushing of the skin, diarrheal watery stools, bronchoconstriction, sudden drops in blood pressure, edema, and ascites. The carcinoid tumors are usually located in the gastrointestinal tract and metastasize to the liver. Symptoms are caused by tumor secretion of serotonin, prostaglandins, and other biologically active substances. Cardiac manifestations constitute CARCINOID HEART DISEASE. (Dorland, 27th ed; Stedman, 25th ed)
A competitive serotonin type 3 receptor antagonist. It is effective in the treatment of nausea and vomiting caused by cytotoxic chemotherapy drugs, including cisplatin, and has reported anxiolytic and neuroleptic properties.
Feeling or emotion of dread, apprehension, and impending disaster but not disabling as with ANXIETY DISORDERS.
An antidepressive agent and monoamine oxidase inhibitor related to PARGYLINE.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA.
An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE.

Structural features of the ligand-binding domain of the serotonin 5HT3 receptor. (1/2351)

The nicotinic acetylcholine receptor (AChR) and the serotonin type 3 receptor (5HT3R) are members of the ligand-gated ion channel gene family. Both receptors are inhibited by nanomolar concentrations of d-tubocurarine (curare) in a competitive fashion. Chemical labeling studies on the AChR have identified tryptophan residues on the gamma (gammaTrp-55) and delta (deltaTrp-57) subunits that interact with curare. Comparison of the sequences of these two subunits with the 5HT3R shows that a tryptophan residue is found in the homologous position in the 5HT3R (Trp-89), suggesting that this residue may be involved in curare-5HT3R interactions. Site-directed mutagenesis at position Trp-89 markedly reduces the affinity of the 5HT3R for the antagonists curare and granisetron but has little effect on the affinity for the agonist serotonin. To further examine the role of this region of the receptor in ligand-receptor interactions, alanine-scanning mutagenesis analysis of the region centered on Trp-89 (Thr-85 to Trp-94) was carried out, and the ligand binding properties of the mutant receptors were determined. Within this region of the receptor, curare affinity is reduced by substitution only at Trp-89, whereas serotonin affinity is reduced only by substitution at Arg-91. On the other hand, granisetron affinity is reduced by substitutions at Trp-89, Arg-91, and Tyr-93. This differential effect of substitutions on ligand affinity suggests that different ligands may have different points of interaction within the ligand-binding pocket. In addition, the every-other-residue periodicity of the effects on granisetron affinity strongly suggests that this region of the ligand-binding site of the 5HT3R (and by inference, other members of the ligand-gated ion channel family) is in a beta-strand conformation.  (+info)

S-16924 [(R)-2-[1-[2-(2,3-dihydro-benzo[1,4]dioxin-5-yloxy)-ethyl]- pyrrolidin-3yl]-1-(4-fluorophenyl)-ethanone], a novel, potential antipsychotic with marked serotonin1A agonist properties: III. Anxiolytic actions in comparison with clozapine and haloperidol. (2/2351)

S-16924 is a potential antipsychotic that displays agonist and antagonist properties at serotonin (5-HT)1A and 5-HT2A/2C receptors, respectively. In a pigeon conflict procedure, the benzodiazepine clorazepate (CLZ) increased punished responses, an action mimicked by S-16924, whereas the atypical antipsychotic clozapine and the neuroleptic haloperidol were inactive. Similarly, in a Vogel conflict paradigm in rats, CLZ increased punished responses, an action shared by S-16924 but not by clozapine or haloperidol. This action of S-16924 was abolished by the 5-HT1A antagonist WAY-100,635. Ultrasonic vocalizations in rats were inhibited by CLZ, S-16924, clozapine, and haloperidol. However, although WAY-100,635 abolished the action of S-16924, it did not affect clozapine and haloperidol. In a rat elevated plus-maze, CLZ, but not S-16924, clozapine, and haloperidol, increased open-arm entries. Like CLZ, S-16924 increased social interaction in rats, whereas clozapine and haloperidol were inactive. WAY-100,635 abolished this action of S-16924. CLZ, S-16924, clozapine, and haloperidol decreased aggressive interactions in isolated mice, but this effect of S-16924 was not blocked by WAY-100, 635. All drugs inhibited motor behavior, but the separation to anxiolytic doses was more pronounced for S-16924 than for CLZ. Finally, in freely moving rats, CLZ and S-16924, but not clozapine and haloperidol, decreased dialysis levels of 5-HT in the nucleus accumbens: this action of S-16924 was blocked by WAY-100,165. In conclusion, in contrast to haloperidol and clozapine, S-16924 possessed a broad-based profile of anxiolytic activity at doses lower than those provoking motor disruption. Its principal mechanism of action was activation of 5-HT1A (auto)receptors.  (+info)

Intestinal prokinesia by two esters of 4-amino-5-chloro-2- methoxybenzoic acid: involvement of 5-hydroxytryptamine-4 receptors and dissociation from cardiac effects in vivo. (3/2351)

In five fasting, conscious dogs, we compared the prokinetic action of two selective 5-hydroxytryptamine-4 (5-HT4) receptor agonists with low affinity for 5-HT3 receptors ML10302 (2-piperidinoethyl 4-amino-5-chloro-2-methoxybenzoate) and SR59768 (2-[(3S)-3-hydroxypiperidino]ethyl 4-amino-5-chloro-2-methoxybenzoate) in the duodenum and jejunum, using cisapride as a reference compound. Heart rate and rate-corrected QT (QTc) also were monitored to assess whether or not the cardiac effects of cisapride are shared by other 5-HT4 receptor agonists. Both ML10302 and SR59768 dose-dependently stimulated spike activity in the duodenum with similar potencies (dose range, 3-300 nmol/kg i.v.; ED50 values: 24 and 23 nmol/kg i.v., respectively), mimicking the effect of cisapride (30-3000 nmol/kg i.v.). The maximal effect was achieved with the dose of 100 nmol/kg i.v. for both compounds. Similar findings were obtained in the jejunum. Atropine and GR125487 (1-[2-[(methylsulfonyl)amino]ethyl]-4-piperidinyl-methyl 5-fluoro-2-methoxy-1H-indole-3-carboxylate, selective 5-HT4 receptor antagonist), at doses having no effect per se, antagonized intestinal prokinesia by maximal doses of ML10302 and SR59768. Neither ML10302 nor SR59768 had any effect on heart rate or QTc at any of the doses tested, whereas cisapride, at the highest dose (3000 nmol/kg), induced tachycardia and lengthened the QTC (p <.01). In conclusion, ML10302 and SR59768 share with cisapride a similar prokinetic action in the canine duodenum and jejunum in vivo. This effect is mediated by pathways involving activation of 5-HT4 and muscarinic receptors. Unlike cisapride, which induces tachycardia and prolongs the QTc by a mechanism probably unrelated to 5-HT4 receptor activation, ML10302 and SR59768 are devoid of cardiac effects in this model.  (+info)

Selective antiaggressive effects of alnespirone in resident-intruder test are mediated via 5-hydroxytryptamine1A receptors: A comparative pharmacological study with 8-hydroxy-2-dipropylaminotetralin, ipsapirone, buspirone, eltoprazine, and WAY-100635. (4/2351)

The present study characterized the effects of the novel, selective, and potent 5-hydroxytryptamine1A (serotonin) (5-HT1A) receptor agonist, alnespirone [S-20499, (S)-N-4-[5-methoxychroman-3-yl)propylamino)butyl- 8-azaspiro-(4,5)-diacetamide, hydrochloride] on offensive and defensive resident-intruder aggression in wild-type rats and compared its actions with those of the prototypical full 5-HT1A agonist 8-hydroxy-2- dipropylaminotetralin (8-OH-DPAT), the partial 5-HT1A agonists ipsapirone and buspirone, and the mixed 5-HT1A/1B agonist eltoprazine. All five agonists exerted effective dose-dependent decreases of offensive aggressive behavior in resident rats; 8-OH-DPAT was the most potent (ID50 = 0.074 mg/kg), followed by eltoprazine (0.24), buspirone (0.72), ipsapirone (1.08), and alnespirone (1.24). However, in terms of selectivity of the antiaggressive effects as determined by the absence of decrements in social interest and general motor activity, alnespirone appeared to be superior. In the defensive aggression test, neither alnespirone nor any of the other four agonists changed defensive behaviors in the intruder rats. The involvement of 5-HT1A receptors in the antiaggressive actions of these drugs was confirmed by showing that the selective 5-HT1A receptor antagonist WAY-100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2- pyridinyl)cyclohexanecarboxamide trihydrochloride), which was inactive alone, fully prevented the antiaggressive effects of alnespirone, 8-OH-DPAT, and buspirone and partly reversed those of ipsapirone and eltoprazine. The data clearly indicate that alnespirone effectively suppresses offensive aggression with an advantageous profile of action compared with other full or partial 5-HT1A agonists. These selective antiaggressive actions of alnespirone are mediated by stimulating 5-HT1A receptors, presumably the somatodendritic autoreceptors at the raphe nuclei. Furthermore, the data provide evidence for a major involvement of these 5-HT1A receptors in the modulation of aggressive behavior by 8-OH-DPAT, ipsapirone, buspirone, and eltoprazine.  (+info)

Differential addressing of 5-HT1A and 5-HT1B receptors in epithelial cells and neurons. (5/2351)

The 5-HT1A and 5-HT1B serotonin receptors are expressed in a variety of neurons in the central nervous system. While the 5-HT1A receptor is found on somas and dendrites, the 5-HT1B receptor has been suggested to be localized predominantly on axon terminals. To study the intracellular addressing of these receptors, we have used in vitro systems including Madin-Darby canine kidney (MDCK II) epithelial cells and primary neuronal cultures. Furthermore, we have extended these studies to examine addressing in vivo in transgenic mice. In epithelial cells, 5-HT1A receptors are found on both apical and basolateral membranes while 5-HT1B receptors are found exclusively in intracellular vesicles. In hippocampal neuronal cultures, 5-HT1A receptors are expressed on somatodendritic membranes but are absent from axons. In contrast, 5-HT1B receptors are found on both dendritic and axonal membranes, including growth cones where they accumulate. Using 5-HT1A and 5-HT1B knockout mice and the binary tTA/tetO system, we generated mice expressing these receptors in striatal neurons. These in vivo experiments demonstrate that, in striatal medium spiny neurons, the 5-HT1A receptor is restricted to the somatodendritic level, while 5-HT1B receptors are shipped exclusively toward axon terminals. Therefore, in all systems we have examined, there is a differential sorting of the 5-HT1A and 5-HT1B receptors. Furthermore, we conclude that our in vivo transgenic system is the only model that reconstitutes proper sorting of these receptors.  (+info)

[3H]-Mesulergine labels 5-HT7 sites in rat brain and guinea-pig ileum but not rat jejunum. (6/2351)

1. The primary aim of this investigation was to determine whether binding sites corresponding to the 5-HT7 receptor could be detected in smooth muscle of the rat jejunum. Binding studies in rat brain (whole brain minus cerebellum) and guinea-pig ileal longitudinal muscle were also undertaken in order to compare the binding characteristics of these tissues. Studies were performed using [3H]-mesulergine, as it has a high affinity for 5-HT7 receptors. 2. In the rat brain and guinea-pig ileum, pKD values for [3H]-mesulergine of 8.0 +/- 0.04 and 7.9 +/- 0.11 (n = 3) and Bmax values of 9.9 +/- 0.3 and 21.5 +/- 4.9 fmol mg(-1) protein were obtained respectively, but no binding was detected in the rat jejunum. [3H]-mesulergine binding in the rat brain and guinea-pig ileum was displaced with the agonists 5-carboxamidotryptamine (5-CT) > 5-hydroxytryptamine (5-HT) > or = 5-methoxytryptamine (5-MeOT) > sumatriptan and the antagonists risperidone > or = LSD > or = metergoline > ritanserin > > pindolol. 3. Despite the lack of [3H]-mesulergine binding in the rat jejunum, functional studies undertaken revealed a biphasic contractile response to 5-HT which was partly blocked by ondansetron (1 microM). The residual response was present in over 50% of tissues studied and was found to be inhibited by risperidone > LSD > metergoline > mesulergine = ritanserin > pindolol, but was unaffected by RS 102221 (3 microM), cinanserin (30 nM), yohimbine (0.1 microM) and GR 113808 (1 microM). In addition, the agonist order of potency was 5-CT > 5-HT > 5-MeOT > sumatriptan. 4. In conclusion, binding studies performed with [3H]-mesulergine were able to detect 5-HT7 sites in rat brain and guinea-pig ileum, but not in rat jejunum, where a functional 5-HT7-like receptor was present.  (+info)

Effect of 5-HT4 receptor stimulation on the pacemaker current I(f) in human isolated atrial myocytes. (7/2351)

OBJECTIVE: 5-HT4 receptors are present in human atrial cells and their stimulation has been implicated in the genesis of atrial arrhythmias including atrial fibrillation. An I(f)-like current has been recorded in human atrial myocytes, where it is modulated by beta-adrenergic stimulation. In the present study, we investigated the effect of serotonin (5-hydroxytryptamine, 5-HT) on I(f) electrophysiological properties, in order to get an insight into the possible contribution of I(f) to the arrhythmogenic action of 5-HT in human atria. METHODS: Human atrial myocytes were isolated by enzymatic digestion from samples of atrial appendage of patients undergoing coeffective cardiac surgery. Patch-clamped cells were superfused with a modified Tyrode's solution in order to amplify I(f) and reduce overlapping currents. RESULTS AND CONCLUSIONS: A time-dependent, cesium-sensitive increasing inward current, that we had previously described having the electrophysiological properties of the pacemaker current I(f), was elicited by negative steps (-60 to -130 mV) from a holding potential of -40 mV. Boltzmann fit of control activation curves gave a midpoint (V1/2) of -88.9 +/- 2.6 mV (n = 14). 5-HT (1 microM) consistently caused a positive shift of V1/2 of 11.0 +/- 2.0 mV (n = 8, p < 0.001) of the activation curve toward less negative potentials, thus increasing the amount of current activated by clamp steps near the physiological maximum diastolic potential of these cells. The effect was dose-dependent, the EC50 being 0.14 microM. Maximum current amplitude was not changed by 5-HT. 5-HT did not increase I(f) amplitude when the current was maximally activated by cAMP perfused into the cell. The selective 5-HT4 antagonists, DAU 6285 (10 microM) and GR 125487 (1 microM), completely prevented the effect of 5-HT on I(f). The shift of V1/2 caused by 1 microM 5-HT in the presence of DAU 6285 or GR 125487 was 0.3 +/- 1 mV (n = 6) and 1.0 +/- 0.6 mV (n = 5), respectively (p < 0.01 versus 5-HT alone). The effect of 5-HT4 receptor blockade was specific, since neither DAU 6285 nor GR 125487 prevented the effect of 1 microM isoprenaline on I(f). Thus, 5-HT4 stimulation increases I(f) in human atrial myocytes; this effect may contribute to the arrhythmogenic action of 5-HT in human atrium.  (+info)

Vasoconstriction in human isolated middle meningeal arteries: determining the contribution of 5-HT1B- and 5-HT1F-receptor activation. (8/2351)

AIMS: Sumatriptan is a 5-HT1B/1D-receptor agonist which also has affinity for 5-HT1F-receptors. The vasoconstrictor effects of sumatriptan are thought to be 5-HT1B-receptor mediated and these receptors have been shown to be expressed in human cranial blood vessels. However, in the same tissue mRNA coding for 5-HT1F-receptors has also been identified and this study addresses the possibility of whether 5-HT1F-receptor activation contributes to vasoconstriction. METHODS: The ability of two selective 5-HT1B/1D-receptor antagonists (GR125,743 and GR127,935) with no affinity for 5-HT1F-receptors, to inhibit sumatriptan evoked contractions in human isolated middle meningeal artery was investigated. Using a series of 5-HT1B/1D-receptor agonists (sumatriptan, zolmitriptan, CP122,288, L-741,519 and L-741,604), some with high affinity for 5-HTIF-receptors and the non-selective 5-HT-receptor agonists 5-HT and 5-CT, we compared the vasoconstrictor potency of these drugs in human isolated middle meningeal artery with their affinities at cloned human 5-HT1B-, 5-HT1D-and 5-HT1F-receptors expressed in CHO cell lines. RESULTS: GR125,743 antagonized sumatriptan evoked contractions in a competitive manner (apparent pA2 9.1) and GR127,935 antagonized sumatriptan-induced responses in a non-competitive manner (reducing the maximum contraction to 27%). There was a significant correlation between vasoconstrictor potency and 5-HT1B-receptor affinity (r=0.93, P=0.002) but not with 5-HT1D- or 5-HT1F-receptor affinity (r=0.74, P=0.06; r= 0.31, P= 0.49, respectively). CONCLUSIONS: These experiments show that in human middle meningeal artery vasoconstriction to sumatriptan-like agents is 5-HT1B-receptor mediated with little if any contribution from 5-HT1F-receptor activation.  (+info)

Serotonin, also known as 5-hydroxytryptamine (5-HT), is a monoamine neurotransmitter that is found primarily in the gastrointestinal (GI) tract, blood platelets, and the central nervous system (CNS) of humans and other animals. It is produced by the conversion of the amino acid tryptophan to 5-hydroxytryptophan (5-HTP), and then to serotonin.

In the CNS, serotonin plays a role in regulating mood, appetite, sleep, memory, learning, and behavior, among other functions. It also acts as a vasoconstrictor, helping to regulate blood flow and blood pressure. In the GI tract, it is involved in peristalsis, the contraction and relaxation of muscles that moves food through the digestive system.

Serotonin is synthesized and stored in serotonergic neurons, which are nerve cells that use serotonin as their primary neurotransmitter. These neurons are found throughout the brain and spinal cord, and they communicate with other neurons by releasing serotonin into the synapse, the small gap between two neurons.

Abnormal levels of serotonin have been linked to a variety of disorders, including depression, anxiety, schizophrenia, and migraines. Medications that affect serotonin levels, such as selective serotonin reuptake inhibitors (SSRIs), are commonly used to treat these conditions.

Serotonin plasma membrane transport proteins, also known as serotonin transporters (SERTs), are membrane-spanning proteins that play a crucial role in the regulation of serotonergic neurotransmission. They are responsible for the reuptake of serotonin (5-hydroxytryptamine or 5-HT) from the synaptic cleft back into the presynaptic neuron, thereby terminating the signal transmission and allowing for its recycling or degradation.

Structurally, SERTs belong to the family of sodium- and chloride-dependent neurotransmitter transporters and contain 12 transmembrane domains with intracellular N- and C-termini. The binding site for serotonin is located within the transmembrane domain, while the substrate-binding site is formed by residues from both the transmembrane and extracellular loops.

Serotonin transporters are important targets for various psychotropic medications, including selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs), and monoamine oxidase inhibitors (MAOIs). These drugs act by blocking the SERT, increasing synaptic concentrations of serotonin, and enhancing serotonergic neurotransmission. Dysregulation of serotonin transporters has been implicated in several neurological and psychiatric disorders, such as major depressive disorder, anxiety disorders, obsessive-compulsive disorder, and substance abuse.

Serotonin receptors are a type of cell surface receptor that bind to the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). They are widely distributed throughout the body, including the central and peripheral nervous systems, where they play important roles in regulating various physiological processes such as mood, appetite, sleep, memory, learning, and cognition.

There are seven different classes of serotonin receptors (5-HT1 to 5-HT7), each with multiple subtypes, that exhibit distinct pharmacological properties and signaling mechanisms. These receptors are G protein-coupled receptors (GPCRs) or ligand-gated ion channels, which activate intracellular signaling pathways upon serotonin binding.

Serotonin receptors have been implicated in various neurological and psychiatric disorders, including depression, anxiety, schizophrenia, and migraine. Therefore, selective serotonin receptor agonists or antagonists are used as therapeutic agents for the treatment of these conditions.

A serotonin receptor, specifically the 5-HT2A subtype (5-hydroxytryptamine 2A receptor), is a type of G protein-coupled receptor found in the cell membrane. It is activated by the neurotransmitter serotonin and plays a role in regulating various physiological processes, including mood, cognition, sleep, and sensory perception.

The 5-HT2A receptor is widely distributed throughout the central nervous system and has been implicated in several neurological and psychiatric disorders, such as depression, anxiety, schizophrenia, and migraine. It is also the primary target of several psychoactive drugs, including hallucinogens like LSD and psilocybin, as well as atypical antipsychotics used to treat conditions like schizophrenia.

The 5-HT2A receptor signals through a G protein called Gq, which activates a signaling cascade that ultimately leads to the activation of phospholipase C and the production of second messengers such as inositol trisphosphate (IP3) and diacylglycerol (DAG). These second messengers then go on to modulate various cellular processes, including the release of neurotransmitters and the regulation of gene expression.

A serotonin receptor, specifically the 5-HT1A subtype, is a type of G protein-coupled receptor found in the central and peripheral nervous systems. These receptors are activated by the neurotransmitter serotonin (5-hydroxytryptamine or 5-HT) and play important roles in regulating various physiological processes, including neurotransmission, neuronal excitability, and neuroendocrine function.

The 5-HT1A receptor is widely distributed throughout the brain and spinal cord, where it is involved in modulating mood, anxiety, cognition, memory, and pain perception. Activation of this receptor can have both inhibitory and excitatory effects on neuronal activity, depending on the location and type of neuron involved.

In addition to its role in normal physiology, the 5-HT1A receptor has been implicated in various pathological conditions, including depression, anxiety disorders, schizophrenia, and drug addiction. As a result, drugs that target this receptor have been developed for the treatment of these conditions. These drugs include selective serotonin reuptake inhibitors (SSRIs), which increase the availability of serotonin in the synaptic cleft and enhance 5-HT1A receptor activation, as well as direct agonists of the 5-HT1A receptor, such as buspirone, which is used to treat anxiety disorders.

Serotonin uptake inhibitors (also known as Selective Serotonin Reuptake Inhibitors or SSRIs) are a class of medications primarily used to treat depression and anxiety disorders. They work by increasing the levels of serotonin, a neurotransmitter in the brain that helps regulate mood, appetite, and sleep, among other functions.

SSRIs block the reuptake of serotonin into the presynaptic neuron, allowing more serotonin to be available in the synapse (the space between two neurons) for binding to postsynaptic receptors. This results in increased serotonergic neurotransmission and improved mood regulation.

Examples of SSRIs include fluoxetine (Prozac), sertraline (Zoloft), paroxetine (Paxil), citalopram (Celexa), and escitalopram (Lexapro). These medications are generally well-tolerated, with side effects that may include nausea, headache, insomnia, sexual dysfunction, and increased anxiety or agitation. However, they can have serious interactions with other medications, so it is important to inform your healthcare provider of all medications you are taking before starting an SSRI.

Serotonin antagonists are a class of drugs that block the action of serotonin, a neurotransmitter, at specific receptor sites in the brain and elsewhere in the body. They work by binding to the serotonin receptors without activating them, thereby preventing the natural serotonin from binding and transmitting signals.

Serotonin antagonists are used in the treatment of various conditions such as psychiatric disorders, migraines, and nausea and vomiting associated with cancer chemotherapy. They can have varying degrees of affinity for different types of serotonin receptors (e.g., 5-HT2A, 5-HT3, etc.), which contributes to their specific therapeutic effects and side effect profiles.

Examples of serotonin antagonists include ondansetron (used to treat nausea and vomiting), risperidone and olanzapine (used to treat psychiatric disorders), and methysergide (used to prevent migraines). It's important to note that these medications should be used under the supervision of a healthcare provider, as they can have potential risks and interactions with other drugs.

A serotonin receptor, specifically the 5-HT2C (5-hydroxytryptamine 2C) receptor, is a type of G protein-coupled receptor found in the central and peripheral nervous systems. These receptors are activated by the neurotransmitter serotonin (also known as 5-hydroxytryptamine or 5-HT) and play crucial roles in various physiological processes, including mood regulation, appetite control, sleep, and memory.

The 5-HT2C receptor is primarily located on postsynaptic neurons and can also be found on presynaptic terminals. When serotonin binds to the 5-HT2C receptor, it triggers a signaling cascade that ultimately influences the electrical activity of the neuron. This receptor has been associated with several neurological and psychiatric conditions, such as depression, anxiety, schizophrenia, and eating disorders.

Pharmacological agents targeting the 5-HT2C receptor have been developed for the treatment of various diseases. For example, some antipsychotic drugs work as antagonists at this receptor to alleviate positive symptoms of schizophrenia. Additionally, agonists at the 5-HT2C receptor have shown potential in treating obesity due to their anorexigenic effects. However, further research is needed to fully understand the therapeutic and side effects of these compounds.

A serotonin receptor, specifically the 5-HT2B receptor, is a type of G protein-coupled receptor (GPCR) that binds to the neurotransmitter serotonin (5-hydroxytryptamine or 5-HT). These receptors are located on the cell membrane of certain cells, including neurons and other cell types in various organs.

The 5-HT2B receptor is involved in a variety of physiological functions, such as regulating mood, appetite, sleep, and sensory perception. In the cardiovascular system, activation of 5-HT2B receptors can lead to the proliferation of cardiac fibroblasts and changes in the extracellular matrix, which may contribute to heart valve abnormalities.

In the central nervous system, 5-HT2B receptors have been implicated in several neurological conditions, including migraine, depression, and schizophrenia. However, their precise roles in these disorders are not yet fully understood.

Pharmacologically targeting 5-HT2B receptors has led to the development of drugs for various indications, such as antimigraine medications (e.g., telcagepant) and potential treatments for heart failure (e.g., mavacamten). However, some 5-HT2B receptor agonists have also been associated with serious side effects, such as valvular heart disease, which has limited their clinical use.

'Receptors, Serotonin, 5-HT2' refer to a specific family of serotonin receptors that are activated by the neurotransmitter serotonin (5-hydroxytryptamine or 5-HT). These receptors are G protein-coupled receptors and are further divided into several subtypes, including 5-HT2A, 5-HT2B, and 5-HT2C. They are widely distributed throughout the body, including the central nervous system, cardiovascular system, gastrointestinal tract, and respiratory system.

The 5-HT2 receptors play a role in various physiological processes, such as neurotransmission, vasoconstriction, smooth muscle contraction, and cell growth regulation. They are also involved in several pathophysiological conditions, including psychiatric disorders (e.g., depression, anxiety, schizophrenia), migraine, cardiovascular diseases, and pulmonary hypertension.

The 5-HT2 receptors have been a focus of drug development for various therapeutic areas. For example, atypical antipsychotics used to treat schizophrenia work by blocking the 5-HT2A receptor, while certain migraine medications act as agonists at the 5-HT1B/1D and 5-HT2C receptors. However, drugs targeting these receptors must be carefully designed to avoid unwanted side effects, as activation or blockade of these receptors can have significant impacts on various physiological processes.

Serotonin agents are a class of drugs that work on the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) in the brain and elsewhere in the body. They include several types of medications such as:

1. Selective Serotonin Reuptake Inhibitors (SSRIs): These drugs block the reabsorption (reuptake) of serotonin into the presynaptic neuron, increasing the availability of serotonin in the synapse to interact with postsynaptic receptors. SSRIs are commonly used as antidepressants and include medications such as fluoxetine, sertraline, and citalopram.
2. Serotonin-Norepinephrine Reuptake Inhibitors (SNRIs): These drugs block the reabsorption of both serotonin and norepinephrine into the presynaptic neuron, increasing the availability of these neurotransmitters in the synapse. SNRIs are also used as antidepressants and include medications such as venlafaxine and duloxetine.
3. Serotonin Receptor Agonists: These drugs bind to and activate serotonin receptors, mimicking the effects of serotonin. They are used for various indications, including migraine prevention (e.g., sumatriptan) and Parkinson's disease (e.g., pramipexole).
4. Serotonin Receptor Antagonists: These drugs block serotonin receptors, preventing the effects of serotonin. They are used for various indications, including nausea and vomiting (e.g., ondansetron) and as mood stabilizers in bipolar disorder (e.g., olanzapine).
5. Serotonin Synthesis Inhibitors: These drugs block the enzymatic synthesis of serotonin, reducing its availability in the brain. They are used as antidepressants and include medications such as monoamine oxidase inhibitors (MAOIs) like phenelzine and tranylcypromine.

It's important to note that while these drugs all affect serotonin, they have different mechanisms of action and are used for various indications. It's essential to consult a healthcare professional before starting any new medication.

A serotonin receptor, specifically the 5-HT1B receptor, is a type of G protein-coupled receptor found in the cell membrane. It binds to the neurotransmitter serotonin (also known as 5-hydroxytryptamine or 5-HT) and plays a role in regulating various physiological functions, including neurotransmission, vasoconstriction, and smooth muscle contraction.

The 5-HT1B receptor is widely distributed throughout the body, but it is particularly abundant in the brain, where it is involved in modulating mood, cognition, and motor control. When serotonin binds to the 5-HT1B receptor, it activates a signaling pathway that ultimately leads to the inhibition of adenylyl cyclase, which reduces the production of cAMP (cyclic adenosine monophosphate) in the cell. This reduction in cAMP levels can have various effects on cellular function, depending on the specific tissue and context in which the 5-HT1B receptor is expressed.

In addition to its role as a serotonin receptor, the 5-HT1B receptor has also been identified as a target for certain drugs used in the treatment of migraine headaches, such as triptans. These medications bind to and activate the 5-HT1B receptor, which leads to vasoconstriction of cranial blood vessels and inhibition of neuropeptide release, helping to alleviate the symptoms of migraines.

Serotonin receptor agonists are a class of medications that bind to and activate serotonin receptors in the body, mimicking the effects of the neurotransmitter serotonin. These drugs can have various effects depending on which specific serotonin receptors they act upon. Some serotonin receptor agonists are used to treat conditions such as migraines, cluster headaches, and Parkinson's disease, while others may be used to stimulate appetite or reduce anxiety. It is important to note that some serotonin receptor agonists can have serious side effects, particularly when taken in combination with other medications that affect serotonin levels, such as selective serotonin reuptake inhibitors (SSRIs) or monoamine oxidase inhibitors (MAOIs). This can lead to a condition called serotonin syndrome, which is characterized by symptoms such as agitation, confusion, rapid heart rate, high blood pressure, and muscle stiffness.

'Receptors, Serotonin, 5-HT1' refer to a class of serotonin receptors that are activated by the neurotransmitter serotonin (5-hydroxytryptamine or 5-HT) and coupled to G proteins. These receptors play a role in regulating various physiological processes, including neurotransmission, vasoconstriction, and smooth muscle contraction. The 5-HT1 receptor family includes several subtypes (5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F) that differ in their distribution, function, and signaling mechanisms. These receptors are important targets for the treatment of various neurological and psychiatric disorders, such as depression, anxiety, migraine, and schizophrenia.

Serotonin syndrome is a potentially life-threatening condition that arises from excessive serotonergic activity in the central nervous system (CNS) and peripheral nervous system. It is typically caused by the interaction of medications, illicit substances, or dietary supplements that increase serotonin levels or enhance serotonin receptor sensitivity.

The diagnostic criteria for serotonin syndrome include:

1. Presence of a serotonergic medication or drug known to cause the syndrome
2. Development of neuromuscular abnormalities, such as hyperreflexia, myoclonus, tremor, rigidity, or akathisia
3. Autonomic dysfunction, including diaphoresis, tachycardia, hypertension, dilated pupils, and hyperthermia
4. Mental status changes, such as agitation, confusion, hallucinations, or coma
5. Symptoms that develop rapidly, usually within hours of a change in serotonergic medication or dosage

Serotonin syndrome can range from mild to severe, with the most severe cases potentially leading to respiratory failure, rhabdomyolysis, disseminated intravascular coagulation (DIC), and death. Treatment typically involves discontinuation of the offending agent(s), supportive care, and pharmacologic interventions such as cyproheptadine or cooling measures for hyperthermia.

Serotonin 5-HT2 receptor antagonists are a class of drugs that block the action of serotonin, a neurotransmitter, at 5-HT2 receptors. These receptors are found in the central and peripheral nervous systems and are involved in various physiological functions such as mood regulation, cognition, appetite control, and vasoconstriction.

By blocking the action of serotonin at these receptors, serotonin 5-HT2 receptor antagonists can produce a range of effects depending on the specific receptor subtype that they target. For example, some serotonin 5-HT2 receptor antagonists are used to treat psychiatric disorders such as schizophrenia and depression, while others are used to treat migraines or prevent nausea and vomiting associated with chemotherapy.

Some common examples of serotonin 5-HT2 receptor antagonists include risperidone, olanzapine, and paliperidone (used for the treatment of schizophrenia), mirtazapine (used for the treatment of depression), sumatriptan (used for the treatment of migraines), and ondansetron (used to prevent nausea and vomiting).

'Receptors, Serotonin, 5-HT3' refer to a specific type of serotonin receptor called the 5-HT3 receptor, which is a ligand-gated ion channel found in the cell membrane. Serotonin, also known as 5-hydroxytryptamine (5-HT), is a neurotransmitter that plays a role in various physiological functions, including mood regulation, appetite control, and nausea.

The 5-HT3 receptor is activated by serotonin and mediates fast excitatory synaptic transmission in the central and peripheral nervous systems. It is permeable to sodium (Na+), potassium (K+), and calcium (Ca2+) ions, allowing for the rapid depolarization of neurons and the initiation of action potentials.

The 5-HT3 receptor has been a target for drug development, particularly in the treatment of chemotherapy-induced nausea and vomiting, as well as irritable bowel syndrome. Antagonists of the 5-HT3 receptor, such as ondansetron and granisetron, work by blocking the receptor and preventing serotonin from activating it, thereby reducing symptoms of nausea and vomiting.

Serotonin 5-HT2 receptor agonists are a class of compounds that bind to and activate the serotonin 5-HT2 receptors, which are a type of G protein-coupled receptor found in the central and peripheral nervous systems. These receptors play important roles in various physiological processes, including neurotransmission, vasoconstriction, and smooth muscle contraction.

Serotonin 5-HT2 receptor agonists can produce a range of effects depending on the specific subtype of receptor they activate. For example, activation of 5-HT2A receptors has been associated with hallucinogenic effects, while activation of 5-HT2B receptors has been linked to cardiac valvulopathy.

These drugs are used in a variety of clinical settings, including the treatment of psychiatric disorders such as depression and schizophrenia, migraine headaches, and cluster headaches. Examples of serotonin 5-HT2 receptor agonists include LSD, psilocybin, ergotamine, and sumatriptan.

Tryptophan hydroxylase is an enzyme that plays a crucial role in the synthesis of neurotransmitters and hormones, including serotonin and melatonin. It catalyzes the conversion of the essential amino acid tryptophan to 5-hydroxytryptophan (5-HTP), which is then further converted to serotonin. This enzyme exists in two isoforms, TPH1 and TPH2, with TPH1 primarily located in peripheral tissues and TPH2 mainly found in the brain. The regulation of tryptophan hydroxylase activity has significant implications for mood, appetite, sleep, and pain perception.

Serotonin 5-HT1 Receptor Agonists are a class of compounds that bind to and activate the serotonin 5-HT1 receptors, which are G protein-coupled receptors found in the central and peripheral nervous systems. These receptors play important roles in regulating various physiological functions, including neurotransmission, vasoconstriction, and hormone secretion.

Serotonin 5-HT1 Receptor Agonists are used in medical therapy to treat a variety of conditions, such as migraines, cluster headaches, depression, anxiety, and insomnia. Some examples of Serotonin 5-HT1 Receptor Agonists include sumatriptan, rizatriptan, zolmitriptan, naratriptan, and frovatriptan, which are used to treat migraines and cluster headaches by selectively activating the 5-HT1B/1D receptors in cranial blood vessels and sensory nerves.

Other Serotonin 5-HT1 Receptor Agonists, such as buspirone, are used to treat anxiety disorders and depression by acting on the 5-HT1A receptors in the brain. These drugs work by increasing serotonergic neurotransmission, which helps to regulate mood, cognition, and behavior.

Overall, Serotonin 5-HT1 Receptor Agonists are a valuable class of drugs that have shown efficacy in treating various neurological and psychiatric conditions. However, like all medications, they can have side effects and potential drug interactions, so it is important to use them under the guidance of a healthcare professional.

'Receptors, Serotonin, 5-HT4' refer to a specific type of serotonin receptor found in various parts of the body, including the central and peripheral nervous systems. These receptors are activated by the neurotransmitter serotonin (5-hydroxytryptamine or 5-HT) and play an essential role in regulating several physiological functions, such as gastrointestinal motility, cognition, mood, and memory.

The 5-HT4 receptor is a G protein-coupled receptor (GPCR), which means it consists of seven transmembrane domains that span the cell membrane. When serotonin binds to the 5-HT4 receptor, it activates a signaling cascade within the cell, leading to various downstream effects.

The 5-HT4 receptor has been a target for drug development, particularly in treating gastrointestinal disorders such as constipation and irritable bowel syndrome (IBS). Additionally, some evidence suggests that 5-HT4 receptors may play a role in the treatment of depression, anxiety, and cognitive impairment. However, further research is needed to fully understand the therapeutic potential of targeting this receptor.

Serotonin 5-HT1 receptor antagonists are a class of pharmaceutical drugs that block the activation of serotonin 5-HT1 receptors. Serotonin, also known as 5-hydroxytryptamine (5-HT), is a neurotransmitter that plays a role in various physiological functions, including mood regulation, appetite control, and sensory perception. The 5-HT1 receptor family includes several subtypes (5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F) that are widely distributed throughout the central and peripheral nervous systems.

When serotonin binds to these receptors, it triggers a series of intracellular signaling events that can have excitatory or inhibitory effects on neuronal activity. By blocking the interaction between serotonin and 5-HT1 receptors, antagonists modulate the downstream consequences of receptor activation.

Serotonin 5-HT1 receptor antagonists are used in various clinical contexts to treat or manage a range of conditions:

1. Migraine prevention: Some 5-HT1B/1D receptor antagonists, such as sumatriptan and rizatriptan, are highly effective in aborting migraine attacks by constricting dilated cranial blood vessels and reducing the release of pro-inflammatory neuropeptides.
2. Nausea and vomiting: Certain 5-HT3 receptor antagonists, like ondansetron and granisetron, are used to prevent chemotherapy-induced nausea and vomiting by blocking the activation of emetic circuits in the brainstem.
3. Psychiatric disorders: Although not widely used, some 5-HT1A receptor antagonists have shown promise in treating depression and anxiety disorders due to their ability to modulate serotonergic neurotransmission.
4. Neuroprotection: Preclinical studies suggest that 5-HT1A receptor agonists may have neuroprotective effects in various neurological conditions, such as Parkinson's disease and stroke. However, further research is needed to establish their clinical utility.

In summary, serotonin 5-HT1 receptor antagonists are a diverse group of medications with applications in migraine prevention, nausea and vomiting management, psychiatric disorders, and potential neuroprotection. Their unique pharmacological profiles enable them to target specific pathophysiological mechanisms underlying various conditions, making them valuable tools in modern therapeutics.

Hydroxyindoleacetic acid (5HIAA) is a major metabolite of the neurotransmitter serotonin, formed in the body through the enzymatic degradation of serotonin by monoamine oxidase and aldehyde dehydrogenase. 5HIAA is primarily excreted in the urine and its measurement can be used as a biomarker for serotonin synthesis and metabolism in the body.

Increased levels of 5HIAA in the cerebrospinal fluid or urine may indicate conditions associated with excessive serotonin production, such as carcinoid syndrome, while decreased levels may be seen in certain neurodegenerative disorders, such as Parkinson's disease. Therefore, measuring 5HIAA levels can have diagnostic and therapeutic implications for these conditions.

Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) medication that is primarily used to treat major depressive disorder, obsessive-compulsive disorder, bulimia nervosa, panic disorder, and premenstrual dysphoric disorder. It works by increasing the levels of serotonin, a neurotransmitter in the brain that helps maintain mental balance.

Fluoxetine is available under the brand name Prozac and is also available as a generic medication. It comes in various forms, including capsules, tablets, delayed-release capsules, and liquid solution. The typical starting dose for adults with depression is 20 mg per day, but the dosage may be adjusted based on individual patient needs and response to treatment.

Fluoxetine has a relatively long half-life, which means it stays in the body for an extended period of time. This can be beneficial for patients who may have difficulty remembering to take their medication daily, as they may only need to take it once or twice a week. However, it also means that it may take several weeks for the full effects of the medication to become apparent.

As with any medication, fluoxetine can cause side effects, including nausea, dry mouth, sleepiness, insomnia, dizziness, and headache. In some cases, it may also increase the risk of suicidal thoughts or behavior in children, adolescents, and young adults, particularly during the initial stages of treatment. It is important for patients to discuss any concerns about side effects with their healthcare provider.

Citalopram is a type of antidepressant known as a selective serotonin reuptake inhibitor (SSRI). It works by increasing the levels of serotonin, a neurotransmitter in the brain that helps maintain mental balance. Citalopram is primarily used to treat major depressive disorder and is also sometimes used to treat anxiety disorders, such as panic disorder or social anxiety disorder.

The medical definition of Citalopram can be described as follows:

Citalopram (brand name Celexa) is a selective serotonin reuptake inhibitor (SSRI) antidepressant that is primarily used to treat major depressive disorder. It works by increasing the levels of serotonin, a neurotransmitter in the brain that helps maintain mental balance. Citalopram may also be used off-label for the treatment of anxiety disorders, such as panic disorder or social anxiety disorder.

Common side effects of citalopram include nausea, dry mouth, increased sweating, sleepiness, fatigue, and insomnia. More serious side effects can include an increased risk of suicidal thoughts or behavior in children, adolescents, and young adults, as well as an increased risk of bleeding, particularly if taken with other medications that increase the risk of bleeding. Citalopram should be used with caution in patients with a history of heart disease, liver disease, or seizure disorders. It is important to follow the dosage instructions provided by your healthcare provider and to inform them of any other medications you are taking, as well as any medical conditions you have, before starting citalopram.

Serotonergic neurons are specialized types of nerve cells (neurons) that produce, synthesize, and release the neurotransmitter serotonin (5-hydroxytryptamine or 5-HT). These neurons have their cell bodies located in specific brainstem nuclei, such as the dorsal raphe nucleus and median raphe nucleus. They project and innervate various regions of the central nervous system, including the cerebral cortex, hippocampus, hypothalamus, and other brain areas. Serotonergic neurons play crucial roles in regulating numerous physiological functions, such as mood, appetite, sleep, memory, cognition, and sensorimotor activities. Alterations in serotonergic neurotransmission have been implicated in several neurological and psychiatric disorders, including depression, anxiety, schizophrenia, and neurodevelopmental conditions.

Ketanserin is a medication that belongs to a class of drugs called serotonin antagonists. It works by blocking the action of serotonin, a neurotransmitter in the brain, on certain types of receptors. Ketanserin is primarily used for its blood pressure-lowering effects and is also sometimes used off-label to treat anxiety disorders and alcohol withdrawal syndrome.

It's important to note that ketanserin is not approved by the FDA for use in the United States, but it may be available in other countries as a prescription medication. As with any medication, ketanserin should only be used under the supervision of a healthcare provider and should be taken exactly as prescribed.

5-Hydroxytryptophan (5-HTP) is a chemical compound that is produced by the body as a precursor to serotonin, a neurotransmitter that helps regulate mood, appetite, sleep, and pain sensation. 5-HTP is not present in food but can be derived from the amino acid tryptophan, which is found in high-protein foods such as turkey, chicken, milk, and cheese.

5-HTP supplements are sometimes used to treat conditions related to low serotonin levels, including depression, anxiety, insomnia, migraines, and fibromyalgia. However, the effectiveness of 5-HTP for these conditions is not well established, and it can have side effects and interact with certain medications. Therefore, it's important to consult a healthcare provider before taking 5-HTP supplements.

The Raphe Nuclei are clusters of neurons located in the brainstem, specifically in the midline of the pons, medulla oblongata, and mesencephalon (midbrain). These neurons are characterized by their ability to synthesize and release serotonin, a neurotransmitter that plays a crucial role in regulating various functions such as mood, appetite, sleep, and pain perception.

The Raphe Nuclei project axons widely throughout the central nervous system, allowing serotonin to modulate the activity of other neurons. There are several subdivisions within the Raphe Nuclei, each with distinct connections and functions. Dysfunction in the Raphe Nuclei has been implicated in several neurological and psychiatric disorders, including depression, anxiety, and chronic pain.

Paroxetine is a selective serotonin reuptake inhibitor (SSRI) medication that is primarily used to treat major depressive disorders, obsessive-compulsive disorder, panic disorder, social anxiety disorder, generalized anxiety disorder, and post-traumatic stress disorder. It works by increasing the levels of serotonin, a neurotransmitter in the brain that helps maintain mental balance, leading to an improvement in mood and other symptoms associated with these conditions.

Paroxetine is available under various brand names, such as Paxil and Seroxat, and it comes in different forms, including tablets, capsules, and liquid solutions. The medication is typically taken once daily, although the dosage may vary depending on the individual's needs and the specific condition being treated.

As with any medication, paroxetine can have side effects, such as nausea, dizziness, dry mouth, and sleep disturbances. In some cases, it may also cause more serious side effects, including increased risk of suicidal thoughts or behaviors in children, adolescents, and young adults, as well as an increased risk of bleeding and hyponatremia (low sodium levels).

It is important to consult with a healthcare provider before starting paroxetine or any other medication, and to follow their instructions carefully regarding dosage, timing, and potential interactions with other drugs or medical conditions.

Methysergide is a medication that belongs to a class of drugs called ergot alkaloids. It is primarily used for the prophylaxis (prevention) of migraine headaches. Methysergide works by narrowing blood vessels around the brain, which is thought to help prevent migraines.

The medical definition of Methysergide is:
A semisynthetic ergot alkaloid derivative used in the prophylaxis of migraine and cluster headaches. It has both agonist and antagonist properties at serotonin receptors, and its therapeutic effects are thought to be related to its ability to block the binding of serotonin to its receptors. However, methysergide can have serious side effects, including fibrotic reactions in various organs, such as the heart, lungs, and kidneys, so it is usually used only for short periods of time and under close medical supervision.

Fenclonine is not a commonly used medical term or a medication in clinical practice. It's possible that you may have encountered this term in the context of research or scientific studies. Fenclonine is an experimental drug that has been investigated for its potential role as an inhibitor of bacterial enzymes, specifically the D-alanine:D-alanine ligase (DD-transpeptidase) involved in bacterial cell wall biosynthesis.

Inhibiting this enzyme can disrupt the integrity and growth of bacteria, making fenclonine a potential antibiotic agent. However, further research is required to establish its safety, efficacy, and therapeutic applications. As such, it's not currently used as a standard treatment option in human medicine.

For accurate information regarding medical definitions or treatments, consult with healthcare professionals or refer to reputable medical resources.

A serotonin receptor, specifically the 5-HT1D subtype, is a type of G protein-coupled receptor found in the central and peripheral nervous systems. These receptors are activated by the neurotransmitter serotonin (5-hydroxytryptamine or 5-HT) and play important roles in regulating various physiological functions, including neurotransmission, vasoconstriction, and nociception (pain perception).

The 5-HT1D receptor subtype is further divided into several subtypes, including 5-HT1Dα, 5-HT1Dβ, and 5-HT1Dε. These receptors are widely distributed throughout the brain and spinal cord, where they modulate neurotransmission by inhibiting adenylyl cyclase activity and reducing cAMP levels in neurons.

In addition to their role in regulating neurotransmission, 5-HT1D receptors have also been implicated in a variety of neurological and psychiatric disorders, including migraine, depression, anxiety, and addiction. As a result, drugs that target these receptors have been developed for the treatment of these conditions. For example, triptans, which are commonly used to treat migraines, work by selectively activating 5-HT1D receptors in the brain and constricting blood vessels in the meninges, thereby reducing the inflammation and pain associated with migraines.

5,7-Dihydroxytryptamine is a chemical compound that is a derivative of the neurotransmitter serotonin. It is formed by the hydroxylation of serotonin at the 5 and 7 positions of its indole ring. This compound is not typically found in significant concentrations in the body, but it can be synthesized and used for research purposes.

In the laboratory, 5,7-Dihydroxytryptamine has been used as a tool to study the role of serotonin in various physiological processes. For example, researchers have used this compound to selectively destroy serotonergic neurons in animal models, allowing them to investigate the functions of these neurons and their contributions to behavior and brain function.

It is important to note that 5,7-Dihydroxytryptamine is not a medication or therapeutic agent, and it should only be used in research settings under the guidance of trained professionals.

Biogenic monoamines are a type of neurotransmitter, which are chemical messengers that transmit signals in the brain and other parts of the nervous system. They are called "biogenic" because they are derived from biological substances, and "monoamines" because they contain one amine group (-NH2) and are derived from the aromatic amino acids: tryptophan, tyrosine, and phenylalanine.

Examples of biogenic monoamines include:

1. Serotonin (5-hydroxytryptamine or 5-HT): synthesized from the amino acid tryptophan and plays a crucial role in regulating mood, appetite, sleep, memory, and learning.
2. Dopamine: formed from tyrosine and is involved in reward, motivation, motor control, and reinforcement of behavior.
3. Norepinephrine (noradrenaline): also derived from tyrosine and functions as a neurotransmitter and hormone that modulates attention, arousal, and stress responses.
4. Epinephrine (adrenaline): synthesized from norepinephrine and serves as a crucial hormone and neurotransmitter in the body's fight-or-flight response to stress or danger.
5. Histamine: produced from the amino acid histidine, it acts as a neurotransmitter and mediates allergic reactions, immune responses, and regulates wakefulness and appetite.

Imbalances in biogenic monoamines have been linked to various neurological and psychiatric disorders, such as depression, anxiety, Parkinson's disease, and schizophrenia. Therefore, medications that target these neurotransmitters, like selective serotonin reuptake inhibitors (SSRIs) for depression or levodopa for Parkinson's disease, are often used in the treatment of these conditions.

Serotonin 5-HT3 receptor antagonists are a class of medications that work by blocking the serotonin 5-HT3 receptors, which are found in the gastrointestinal tract and the brain. These receptors play a role in regulating nausea and vomiting, among other functions.

When serotonin binds to these receptors, it can trigger a series of events that lead to nausea and vomiting, particularly in response to chemotherapy or surgery. By blocking the 5-HT3 receptors, serotonin cannot bind to them and therefore cannot trigger these events, which helps to reduce nausea and vomiting.

Examples of 5-HT3 receptor antagonists include ondansetron (Zofran), granisetron (Kytril), palonosetron (Aloxi), and dolasetron (Anzemet). These medications are commonly used to prevent and treat nausea and vomiting associated with chemotherapy, radiation therapy, and surgery.

Antidepressive agents are a class of medications used to treat various forms of depression and anxiety disorders. They act on neurotransmitters, the chemical messengers in the brain, to restore the balance that has been disrupted by mental illness. The most commonly prescribed types of antidepressants include selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), and monoamine oxidase inhibitors (MAOIs). These medications can help alleviate symptoms such as low mood, loss of interest in activities, changes in appetite and sleep patterns, fatigue, difficulty concentrating, and thoughts of death or suicide. It is important to note that antidepressants may take several weeks to reach their full effectiveness and may cause side effects, so it is essential to work closely with a healthcare provider to find the right medication and dosage.

Fenfluramine is a drug that was previously used for the short-term treatment of obesity. It works by suppressing appetite and increasing the feeling of fullness. Fenfluramine is an amphetamine derivative and stimulates the release of serotonin, a neurotransmitter in the brain that helps regulate mood, appetite, and sleep.

Fenfluramine was commonly prescribed in combination with phentermine, another appetite suppressant, under the brand name Fen-Phen. However, in 1997, the U.S. Food and Drug Administration (FDA) issued a public health warning about the potential risk of serious heart valve damage associated with the use of fenfluramine and withdrew its approval for the drug's use. Since then, fenfluramine has not been approved for medical use in many countries, including the United States.

Cinanserin is a serotonin antagonist, which is a type of drug that blocks the action of serotonin, a neurotransmitter in the brain. Cinanserin has been investigated for its potential use as a treatment for various conditions, including anxiety, depression, and schizophrenia. However, it is not currently approved for use in clinical practice.

Serotonin antagonists like cinanserin work by blocking the action of serotonin at certain receptors in the brain. This can help to reduce the symptoms of various conditions, such as anxiety and depression, by altering the way that neurons communicate with each other. However, the exact mechanism of action of cinanserin is not fully understood, and more research is needed to determine its potential therapeutic uses.

While cinanserin has shown promise in some studies, it has also been associated with a number of side effects, including dizziness, drowsiness, and dry mouth. Additionally, there is some evidence to suggest that cinanserin may increase the risk of certain types of heart problems, such as irregular heart rhythms. As a result, further research is needed to determine the safety and efficacy of this drug before it can be approved for use in clinical practice.

Dopamine is a type of neurotransmitter, which is a chemical messenger that transmits signals in the brain and nervous system. It plays several important roles in the body, including:

* Regulation of movement and coordination
* Modulation of mood and motivation
* Control of the reward and pleasure centers of the brain
* Regulation of muscle tone
* Involvement in memory and attention

Dopamine is produced in several areas of the brain, including the substantia nigra and the ventral tegmental area. It is released by neurons (nerve cells) and binds to specific receptors on other neurons, where it can either excite or inhibit their activity.

Abnormalities in dopamine signaling have been implicated in several neurological and psychiatric conditions, including Parkinson's disease, schizophrenia, and addiction.

Second-generation antidepressants (SGAs) are a class of medications used primarily for the treatment of depression, although they are also used for other psychiatric and medical conditions. They are called "second-generation" because they were developed after the first generation of antidepressants, which include tricyclic antidepressants (TCAs) and monoamine oxidase inhibitors (MAOIs).

SGAs are also known as atypical antidepressants or novel antidepressants. They work by affecting the levels of neurotransmitters in the brain, such as serotonin, norepinephrine, and dopamine. However, they have a different chemical structure and mechanism of action than first-generation antidepressants.

Some examples of second-generation antidepressants include:

* Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (Prozac), sertraline (Zoloft), and citalopram (Celexa)
* Serotonin-norepinephrine reuptake inhibitors (SNRIs) such as venlafaxine (Effexor) and duloxetine (Cymbalta)
* Norepinephrine and dopamine reuptake inhibitors (NDRIs) such as bupropion (Wellbutrin)
* Atypical antidepressants such as mirtazapine (Remeron), trazodone, and vortioxetine (Brintellix)

SGAs are generally considered to have a more favorable side effect profile than first-generation antidepressants. They are less likely to cause anticholinergic effects such as dry mouth, constipation, and blurred vision, and they are less likely to cause cardiac conduction abnormalities or orthostatic hypotension. However, SGAs may still cause side effects such as nausea, insomnia, sexual dysfunction, and weight gain.

It's important to note that the choice of antidepressant medication should be individualized based on the patient's specific symptoms, medical history, and other factors. It may take some trial and error to find the most effective and well-tolerated medication for a given patient.

N-Methyl-3,4-methylenedioxyamphetamine (also known as MDA) is a synthetic psychoactive drug that belongs to the class of amphetamines. It acts as a central nervous system stimulant and hallucinogen. Chemically, it is a derivative of amphetamine with an additional methylenedioxy ring attached to the 3,4 positions on the aromatic ring. MDA is known for its empathogenic effects, meaning that it can produce feelings of empathy, emotional openness, and euphoria in users. It has been used recreationally as a party drug and at raves, but it also has potential therapeutic uses. However, MDA can have serious side effects, including increased heart rate and blood pressure, hyperthermia, dehydration, and in some cases, serotonin syndrome. As with other psychoactive drugs, MDA should only be used under medical supervision and with a clear understanding of its potential risks and benefits.

Fluvoxamine is a type of antidepressant known as a selective serotonin reuptake inhibitor (SSRI). It works by increasing the levels of serotonin, a neurotransmitter in the brain that helps maintain mental balance. Fluvoxamine is primarily used to treat obsessive-compulsive disorder (OCD) and may also be prescribed for other conditions such as depression, panic disorder, or social anxiety disorder.

The medical definition of Fluvoxamine can be stated as:

Fluvoxamine maleate, a selective serotonin reuptake inhibitor (SSRI), is a psychotropic medication used primarily in the treatment of obsessive-compulsive disorder (OCD). It functions by increasing the availability of serotonin in the synaptic cleft, which subsequently modulates neurotransmission and helps restore emotional balance. Fluvoxamine may also be employed off-label for managing other conditions, such as depression, panic disorder, or social anxiety disorder, subject to clinical judgment and patient needs.

Membrane transport proteins are specialized biological molecules, specifically integral membrane proteins, that facilitate the movement of various substances across the lipid bilayer of cell membranes. They are responsible for the selective and regulated transport of ions, sugars, amino acids, nucleotides, and other molecules into and out of cells, as well as within different cellular compartments. These proteins can be categorized into two main types: channels and carriers (or pumps). Channels provide a passive transport mechanism, allowing ions or small molecules to move down their electrochemical gradient, while carriers actively transport substances against their concentration gradient, requiring energy usually in the form of ATP. Membrane transport proteins play a crucial role in maintaining cell homeostasis, signaling processes, and many other physiological functions.

Tryptamines are a class of organic compounds that contain a tryptamine skeleton, which is a combination of an indole ring and a ethylamine side chain. They are commonly found in nature and can be synthesized in the lab. Some tryptamines have psychedelic properties and are used as recreational drugs, such as dimethyltryptamine (DMT) and psilocybin. Others have important roles in the human body, such as serotonin, which is a neurotransmitter that regulates mood, appetite, and sleep. Tryptamines can also be found in some plants and animals, including certain species of mushrooms, toads, and catnip.

Monoamine oxidase (MAO) is an enzyme found on the outer membrane of mitochondria in cells throughout the body, but primarily in the gastrointestinal tract, liver, and central nervous system. It plays a crucial role in the metabolism of neurotransmitters and dietary amines by catalyzing the oxidative deamination of monoamines. This enzyme exists in two forms: MAO-A and MAO-B, each with distinct substrate preferences and tissue distributions.

MAO-A preferentially metabolizes serotonin, norepinephrine, and dopamine, while MAO-B is mainly responsible for breaking down phenethylamines and benzylamines, as well as dopamine in some cases. Inhibition of these enzymes can lead to increased neurotransmitter levels in the synaptic cleft, which has implications for various psychiatric and neurological conditions, such as depression and Parkinson's disease. However, MAO inhibitors must be used with caution due to their potential to cause serious adverse effects, including hypertensive crises, when combined with certain foods or medications containing dietary amines or sympathomimetic agents.

Amphetamines are a type of central nervous system stimulant drug that increases alertness, wakefulness, and energy levels. They work by increasing the activity of certain neurotransmitters (chemical messengers) in the brain, such as dopamine and norepinephrine. Amphetamines can be prescribed for medical conditions such as attention deficit hyperactivity disorder (ADHD) and narcolepsy, but they are also commonly abused for their ability to produce euphoria, increase confidence, and improve performance in tasks that require sustained attention.

Some common examples of amphetamines include:

* Adderall: a combination of amphetamine and dextroamphetamine, used to treat ADHD and narcolepsy
* Dexedrine: a brand name for dextroamphetamine, used to treat ADHD and narcolepsy
* Vyvanse: a long-acting formulation of lisdexamfetamine, a prodrug that is converted to dextroamphetamine in the body, used to treat ADHD

Amphetamines can be taken orally, snorted, smoked, or injected. Long-term use or abuse of amphetamines can lead to a number of negative health consequences, including addiction, cardiovascular problems, malnutrition, mental health disorders, and memory loss.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

Tricyclic antidepressants (TCAs) are a class of medications that were commonly used to treat depression. The name "tricyclic" comes from the chemical structure of these drugs, which contain three rings in their molecular makeup. TCAs were first developed in the 1950s and remained a popular choice for treating depression until the introduction of selective serotonin reuptake inhibitors (SSRIs) in the late 1980s.

TCAs work by increasing the levels of neurotransmitters, such as serotonin and norepinephrine, in the brain. Neurotransmitters are chemical messengers that transmit signals between nerve cells. By increasing the levels of these neurotransmitters, TCAs can help to improve mood and alleviate symptoms of depression.

Some common examples of tricyclic antidepressants include amitriptyline, imipramine, and nortriptyline. While TCAs are effective in treating depression, they can have significant side effects, including dry mouth, blurred vision, constipation, and drowsiness. In addition, TCAs can be dangerous in overdose and may increase the risk of suicide in some individuals. As a result, they are typically used as a last resort when other treatments have failed.

Overall, tricyclic antidepressants are a class of medications that were commonly used to treat depression but have largely been replaced by newer drugs due to their side effects and potential risks.

Cyproheptadine is an antihistamine and anticholinergic medication that is primarily used to treat symptoms of allergies, such as runny nose, sneezing, and itching. It works by blocking the action of histamine, a substance in the body that causes allergic reactions.

Cyproheptadine also has other uses, including the treatment of migraines and cluster headaches, appetite stimulation in people with certain medical conditions, and as a sedative in some cases. It is available in various forms, such as tablets, capsules, and syrup.

Like all medications, cyproheptadine can have side effects, including drowsiness, dry mouth, dizziness, and blurred vision. It is important to follow the dosage instructions carefully and talk to a healthcare provider if you experience any bothersome or persistent side effects.

Lysergic Acid Diethylamide (LSD) is defined in medical terms as a powerful synthetic hallucinogenic drug. It is derived from lysergic acid, which is found in ergot, a fungus that grows on grains such as rye. LSD is typically distributed as a liquid, tablets, or thin squares of gelatin (commonly known as window panes). It is odorless, colorless, and has a slightly bitter taste.

LSD is considered one of the most potent mood-changing chemicals. Its effects, often called a "trip," can be stimulating, pleasurable, and mind-altering or they can lead to an unpleasant, sometimes terrifying experience called a "bad trip." The effects of LSD are unpredictable depending on factors such as the user's personality, mood, expectations, and the environment in which the drug is used.

In the medical field, LSD has been studied for its potential benefits in treating certain mental health conditions, such as anxiety and depression associated with life-threatening illnesses, but further research is needed to establish its safety and efficacy. It's important to note that the use of LSD outside of approved medical settings and supervision is not legal in most countries and can lead to serious legal consequences.

'Animal behavior' refers to the actions or responses of animals to various stimuli, including their interactions with the environment and other individuals. It is the study of the actions of animals, whether they are instinctual, learned, or a combination of both. Animal behavior includes communication, mating, foraging, predator avoidance, and social organization, among other things. The scientific study of animal behavior is called ethology. This field seeks to understand the evolutionary basis for behaviors as well as their physiological and psychological mechanisms.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Tryptophan is an essential amino acid, meaning it cannot be synthesized by the human body and must be obtained through dietary sources. Its chemical formula is C11H12N2O2. Tryptophan plays a crucial role in various biological processes as it serves as a precursor to several important molecules, including serotonin, melatonin, and niacin (vitamin B3). Serotonin is a neurotransmitter involved in mood regulation, appetite control, and sleep-wake cycles, while melatonin is a hormone that regulates sleep-wake patterns. Niacin is essential for energy production and DNA repair.

Foods rich in tryptophan include turkey, chicken, fish, eggs, cheese, milk, nuts, seeds, and whole grains. In some cases, tryptophan supplementation may be recommended to help manage conditions related to serotonin imbalances, such as depression or insomnia, but this should only be done under the guidance of a healthcare professional due to potential side effects and interactions with other medications.

Biogenic amines are organic compounds that are derived from the metabolic pathways of various biological organisms, including humans. They are formed by the decarboxylation of amino acids, which are the building blocks of proteins. Some examples of biogenic amines include histamine, serotonin, dopamine, and tyramine.

Histamine is a biogenic amine that plays an important role in the immune system's response to foreign invaders, such as allergens. It is also involved in regulating stomach acid production and sleep-wake cycles. Serotonin is another biogenic amine that acts as a neurotransmitter, transmitting signals between nerve cells in the brain. It is involved in regulating mood, appetite, and sleep.

Dopamine is a biogenic amine that functions as a neurotransmitter and is involved in reward and pleasure pathways in the brain. Tyramine is a biogenic amine that is found in certain foods, such as aged cheeses and fermented soy products. It can cause an increase in blood pressure when consumed in large quantities.

Biogenic amines can have various effects on the body, depending on their type and concentration. In general, they play important roles in many physiological processes, but high levels of certain biogenic amines can be harmful and may cause symptoms such as headache, nausea, and hypertension.

Sertraline is a medication that belongs to a class of drugs called selective serotonin reuptake inhibitors (SSRIs). It is primarily used to treat depression, obsessive-compulsive disorder, panic disorder, post-traumatic stress disorder, social anxiety disorder, and in some cases, premenstrual dysphoric disorder.

Sertraline works by increasing the levels of serotonin, a neurotransmitter in the brain that helps maintain mental balance, in the synaptic cleft (the space between two nerve cells where neurotransmitters are released and received). By inhibiting the reuptake of serotonin, sertraline enhances the signal strength and duration of action of this neurotransmitter, which can help alleviate symptoms associated with various mental health conditions.

It is important to note that sertraline should only be taken under the supervision of a healthcare professional, as it may have side effects and potential interactions with other medications. Always consult a medical provider for personalized advice regarding medication use.

Blood platelets, also known as thrombocytes, are small, colorless cell fragments in our blood that play an essential role in normal blood clotting. They are formed in the bone marrow from large cells called megakaryocytes and circulate in the blood in an inactive state until they are needed to help stop bleeding. When a blood vessel is damaged, platelets become activated and change shape, releasing chemicals that attract more platelets to the site of injury. These activated platelets then stick together to form a plug, or clot, that seals the wound and prevents further blood loss. In addition to their role in clotting, platelets also help to promote healing by releasing growth factors that stimulate the growth of new tissue.

Imipramine is a tricyclic antidepressant (TCA) medication that is primarily used to treat depression. It works by increasing the levels of certain neurotransmitters, such as serotonin and norepinephrine, in the brain. Imipramine has been found to be effective in treating various types of depression, including major depressive disorder, dysthymia, and depression that is resistant to other treatments.

In addition to its antidepressant effects, imipramine is also used off-label for the treatment of several other conditions, such as anxiety disorders, attention deficit hyperactivity disorder (ADHD), enuresis (bedwetting), and chronic pain.

Imipramine was first synthesized in the 1950s and has been widely used since then. It is available in various forms, including immediate-release tablets, extended-release capsules, and liquid solutions. As with all medications, imipramine can have side effects, which may include dry mouth, blurred vision, constipation, dizziness, and sedation. In rare cases, it can cause more serious side effects, such as cardiac arrhythmias or seizures.

It is important to use imipramine under the close supervision of a healthcare provider, as dosages may need to be adjusted based on individual patient needs and responses to treatment. Additionally, imipramine should not be stopped abruptly, as doing so can lead to withdrawal symptoms or a recurrence of depression.

Clomipramine is a tricyclic antidepressant drug that is primarily used to treat obsessive-compulsive disorder (OCD). It works by increasing the levels of certain neurotransmitters, such as serotonin and norepinephrine, in the brain. These neurotransmitters are involved in regulating mood and behavior.

Clomipramine is also used off-label to treat other conditions, including panic disorder, depression, chronic pain, and sleep disorders. It is available as a tablet or capsule and is typically taken one to three times a day. Common side effects of clomipramine include dry mouth, constipation, blurred vision, dizziness, and drowsiness.

As with all medications, clomipramine should be used under the close supervision of a healthcare provider, who can monitor its effectiveness and potential side effects. It is important to follow the dosage instructions carefully and to report any unusual symptoms or concerns to the healthcare provider promptly.

Piperazines are a class of heterocyclic organic compounds that contain a seven-membered ring with two nitrogen atoms at positions 1 and 4. They have the molecular formula N-NRR' where R and R' can be alkyl or aryl groups. Piperazines have a wide range of uses in pharmaceuticals, agrochemicals, and as building blocks in organic synthesis.

In a medical context, piperazines are used in the manufacture of various drugs, including some antipsychotics, antidepressants, antihistamines, and anti-worm medications. For example, the antipsychotic drug trifluoperazine and the antidepressant drug nefazodone both contain a piperazine ring in their chemical structure.

However, it's important to note that some piperazines are also used as recreational drugs due to their stimulant and euphoric effects. These include compounds such as BZP (benzylpiperazine) and TFMPP (trifluoromethylphenylpiperazine), which have been linked to serious health risks, including addiction, seizures, and death. Therefore, the use of these substances should be avoided.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Norepinephrine plasma membrane transport proteins, also known as norepinephrine transporters (NET), are membrane-bound proteins that play a crucial role in the regulation of neurotransmission. They are responsible for the reuptake of norepinephrine from the synaptic cleft back into the presynaptic neuron, thereby terminating the signal transmission and preventing excessive stimulation of postsynaptic receptors.

The norepinephrine transporter is a member of the sodium-dependent neurotransmitter transporter family and functions as an antiporter, exchanging one intracellular sodium ion for two extracellular sodium ions along with the transport of norepinephrine. This sodium gradient provides the energy required for the active transport process.

Dysregulation of norepinephrine plasma membrane transport proteins has been implicated in various neurological and psychiatric disorders, such as attention deficit hyperactivity disorder (ADHD), depression, and post-traumatic stress disorder (PTSD). Therefore, understanding the function and regulation of these transporters is essential for developing novel therapeutic strategies to treat these conditions.

Octopamine is not primarily used in medical definitions, but it is a significant neurotransmitter in invertebrates, including insects. It is the equivalent to noradrenaline (norepinephrine) in vertebrates and has similar functions related to the "fight or flight" response, arousal, and motivation. Insects use octopamine for various physiological processes such as learning, memory, regulation of heart rate, and modulation of muscle contraction. It also plays a role in the social behavior of insects like aggression and courtship.

Methiothepin is a non-selective, irreversible antagonist of serotonin (5-HT) receptors, particularly 5-HT1, 5-HT2, and 5-HT3 receptors. It has also been found to act as an antagonist at dopamine D2 receptors and histamine H1 receptors. Methiothepin has been used in research to study the roles of serotonin and other neurotransmitters in various physiological processes, but it is not commonly used clinically due to its lack of selectivity and potential for causing severe side effects.

P-Chloroamphetamine, also known as PCA or 4-chloroamphetamine, is a synthetic stimulant drug that has been used in scientific research but is not commonly used medically. It is a derivative of amphetamine and has similar effects, such as increasing heart rate, blood pressure, and alertness. However, it also has hallucinogenic properties and can cause psychological disturbances.

PCA acts as a releasing agent for the neurotransmitters dopamine, norepinephrine, and serotonin, which are involved in regulating mood, appetite, and other physiological processes. It is classified as a Schedule I controlled substance in the United States due to its high potential for abuse and lack of accepted medical use.

It's important to note that PCA is not approved for any medical use in humans and should only be used in a controlled research setting with appropriate safety measures in place.

Monoamine oxidase inhibitors (MAOIs) are a class of drugs that work by blocking the action of monoamine oxidase, an enzyme found in the brain and other organs of the body. This enzyme is responsible for breaking down certain neurotransmitters, such as serotonin, dopamine, and norepinephrine, which are chemicals that transmit signals in the brain.

By inhibiting the action of monoamine oxidase, MAOIs increase the levels of these neurotransmitters in the brain, which can help to alleviate symptoms of depression and other mood disorders. However, MAOIs also affect other chemicals in the body, including tyramine, a substance found in some foods and beverages, as well as certain medications. As a result, MAOIs can have serious side effects and interactions with other substances, making them a less commonly prescribed class of antidepressants than other types of drugs.

MAOIs are typically used as a last resort when other treatments for depression have failed, due to their potential for dangerous interactions and side effects. They require careful monitoring and dosage adjustment by a healthcare provider, and patients must follow strict dietary restrictions while taking them.

Ritanserin is a medication that belongs to the class of drugs known as serotonin antagonists. It works by blocking the action of serotonin, a neurotransmitter in the brain, which helps to reduce anxiety and improve mood. Ritanserin was initially developed for the treatment of depression and schizophrenia, but its development was discontinued due to its side effects.

The medical definition of Ritanserin is:

A piperazine derivative and a serotonin antagonist that has been used in the treatment of depression and schizophrenia. Its therapeutic effect is thought to be related to its ability to block the action of serotonin at 5HT2 receptors. However, development of ritanserin was discontinued due to its side effects, including orthostatic hypotension, dizziness, and sedation. It has also been studied for its potential in treating cocaine addiction and alcohol withdrawal syndrome.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Microdialysis is a minimally invasive technique used in clinical and research settings to continuously monitor the concentration of various chemicals, such as neurotransmitters, drugs, or metabolites, in biological fluids (e.g., extracellular fluid of tissues, blood, or cerebrospinal fluid). This method involves inserting a small, flexible catheter with a semipermeable membrane into the region of interest. A physiological solution is continuously perfused through the catheter, allowing molecules to diffuse across the membrane based on their concentration gradient. The dialysate that exits the catheter is then collected and analyzed for target compounds using various analytical techniques (e.g., high-performance liquid chromatography, mass spectrometry).

In summary, microdialysis is a valuable tool for monitoring real-time changes in chemical concentrations within biological systems, enabling better understanding of physiological processes or pharmacokinetic properties of drugs.

Adrenergic uptake inhibitors are a class of medications that work by blocking the reuptake of neurotransmitters, such as norepinephrine and dopamine, into the presynaptic neuron. This results in an increase in the amount of neurotransmitter available to bind to postsynaptic receptors, leading to an enhancement of adrenergic transmission.

These medications are used in the treatment of various medical conditions, including depression, attention deficit hyperactivity disorder (ADHD), and narcolepsy. Some examples of adrenergic uptake inhibitors include:

* Tricyclic antidepressants (TCAs): These medications, such as imipramine and amitriptyline, were developed in the 1950s and are used to treat depression, anxiety disorders, and chronic pain.
* Selective serotonin-norepinephrine reuptake inhibitors (SNRIs): These medications, such as venlafaxine and duloxetine, were developed in the 1990s and are used to treat depression, anxiety disorders, and chronic pain.
* Norepinephrine-dopamine reuptake inhibitors (NDRIs): These medications, such as bupropion, are used to treat depression and ADHD.

It's important to note that these medications can have side effects and should be used under the supervision of a healthcare provider.

Buspirone is a medication that belongs to a class of drugs called azapirones, which are used to treat anxiety disorders. It works by affecting the neurotransmitters in the brain, specifically serotonin and dopamine, to produce a calming effect. Buspirone is often used as an alternative to benzodiazepines because it is not habit-forming and has less severe side effects.

The medical definition of buspirone is:

A piperidine derivative and azapirone analogue, with anxiolytic properties. It is believed to work by selectively binding to 5-HT1A receptors and modulating serotonin activity in the brain. Buspirone is used for the management of anxiety disorders and has a lower potential for abuse and dependence than benzodiazepines.

Serotonin 5-HT4 receptor antagonists are a class of pharmaceutical drugs that block the action of serotonin at 5-HT4 receptors. Serotonin, also known as 5-hydroxytryptamine (5-HT), is a neurotransmitter involved in various physiological functions, including mood regulation, gastrointestinal motility, and cognition.

The 5-HT4 receptor is one of several subtypes of serotonin receptors found throughout the body, particularly in the brain, gastrointestinal tract, and cardiovascular system. These receptors are involved in regulating various physiological processes, including gastrointestinal motility, cognition, and mood regulation.

Serotonin 5-HT4 receptor antagonists work by binding to these receptors and preventing serotonin from activating them. This action can have various therapeutic effects, depending on the specific drug and its intended use. For example, some 5-HT4 receptor antagonists are used to treat gastrointestinal disorders such as irritable bowel syndrome (IBS) and gastroparesis, as they help slow down gastrointestinal motility and reduce symptoms such as diarrhea and abdominal pain.

Examples of 5-HT4 receptor antagonists include drugs such as alosetron, cisapride (now withdrawn from the market due to safety concerns), and prucalopride. These drugs are typically administered orally and have varying degrees of selectivity for the 5-HT4 receptor subtype.

It's important to note that while 5-HT4 receptor antagonists can have therapeutic effects, they can also have side effects, including constipation, nausea, and headache. Additionally, some of these drugs may interact with other medications or have potentially serious adverse effects, so it's essential to use them under the guidance of a healthcare professional.

Serotonin 5-HT3 receptor agonists are a class of drugs that selectively bind to and activate the 5-HT3 subtype of serotonin receptors. These receptors are located in the central and peripheral nervous system, particularly in the gastrointestinal tract, chemoreceptor trigger zone, and vagus nerve.

The activation of 5-HT3 receptors by these agonists can lead to various effects, depending on the location of the receptors. In the gastrointestinal tract, 5-HT3 receptor agonists can increase intestinal motility and secretion, which can be useful in treating conditions such as chemotherapy-induced nausea and vomiting.

Examples of 5-HT3 receptor agonists include ondansetron, granisetron, palonosetron, and dolasetron. These drugs are commonly used to prevent and treat nausea and vomiting associated with chemotherapy, radiation therapy, and surgery.

Nerve tissue proteins are specialized proteins found in the nervous system that provide structural and functional support to nerve cells, also known as neurons. These proteins include:

1. Neurofilaments: These are type IV intermediate filaments that provide structural support to neurons and help maintain their shape and size. They are composed of three subunits - NFL (light), NFM (medium), and NFH (heavy).

2. Neuronal Cytoskeletal Proteins: These include tubulins, actins, and spectrins that provide structural support to the neuronal cytoskeleton and help maintain its integrity.

3. Neurotransmitter Receptors: These are specialized proteins located on the postsynaptic membrane of neurons that bind neurotransmitters released by presynaptic neurons, triggering a response in the target cell.

4. Ion Channels: These are transmembrane proteins that regulate the flow of ions across the neuronal membrane and play a crucial role in generating and transmitting electrical signals in neurons.

5. Signaling Proteins: These include enzymes, receptors, and adaptor proteins that mediate intracellular signaling pathways involved in neuronal development, differentiation, survival, and death.

6. Adhesion Proteins: These are cell surface proteins that mediate cell-cell and cell-matrix interactions, playing a crucial role in the formation and maintenance of neural circuits.

7. Extracellular Matrix Proteins: These include proteoglycans, laminins, and collagens that provide structural support to nerve tissue and regulate neuronal migration, differentiation, and survival.

Norepinephrine, also known as noradrenaline, is a neurotransmitter and a hormone that is primarily produced in the adrenal glands and is released into the bloodstream in response to stress or physical activity. It plays a crucial role in the "fight-or-flight" response by preparing the body for action through increasing heart rate, blood pressure, respiratory rate, and glucose availability.

As a neurotransmitter, norepinephrine is involved in regulating various functions of the nervous system, including attention, perception, motivation, and arousal. It also plays a role in modulating pain perception and responding to stressful or emotional situations.

In medical settings, norepinephrine is used as a vasopressor medication to treat hypotension (low blood pressure) that can occur during septic shock, anesthesia, or other critical illnesses. It works by constricting blood vessels and increasing heart rate, which helps to improve blood pressure and perfusion of vital organs.

Neurotransmitter agents are substances that affect the synthesis, storage, release, uptake, degradation, or reuptake of neurotransmitters, which are chemical messengers that transmit signals across a chemical synapse from one neuron to another. These agents can be either agonists, which mimic the action of a neurotransmitter and bind to its receptor, or antagonists, which block the action of a neurotransmitter by binding to its receptor without activating it. They are used in medicine to treat various neurological and psychiatric disorders, such as depression, anxiety, and Parkinson's disease.

Serotonin 5-HT4 receptor agonists are a class of medications that selectively bind to and activate serotonin 5-HT4 receptors. These receptors are found in various parts of the body, including the gastrointestinal tract, brain, and heart.

When serotonin 5-HT4 receptor agonists bind to these receptors, they stimulate a range of physiological responses, such as increasing gastrointestinal motility, improving cognitive function, and regulating cardiac function. These drugs have been used in the treatment of various conditions, including constipation, irritable bowel syndrome, and depression.

Examples of serotonin 5-HT4 receptor agonists include prucalopride, cisapride, mosapride, and tegaserod. However, some of these drugs have been withdrawn from the market due to safety concerns, such as cardiac arrhythmias. Therefore, it is essential to use these medications under the close supervision of a healthcare provider.

Enterochromaffin cells, also known as Kulchitsky cells or enteroendocrine cells, are a type of neuroendocrine cell found in the epithelial lining of the gastrointestinal tract. These cells are responsible for producing and secreting a variety of hormones and neuropeptides that play important roles in regulating gastrointestinal motility, secretion, and sensation.

Enterochromaffin cells are named for their ability to take up chromaffin stains, which contain silver salts and oxidizing agents that react with the catecholamines stored within the cells. These cells can be further classified based on their morphology, location within the gastrointestinal tract, and the types of hormones they produce.

Some examples of hormones produced by enterochromaffin cells include serotonin (5-hydroxytryptamine), histamine, gastrin, somatostatin, and cholecystokinin. Serotonin is one of the most well-known hormones produced by these cells, and it plays a critical role in regulating gastrointestinal motility and secretion, as well as mood and cognition.

Abnormalities in enterochromaffin cell function have been implicated in a number of gastrointestinal disorders, including irritable bowel syndrome (IBS), functional dyspepsia, and gastroparesis. Additionally, mutations in genes associated with enterochromaffin cells have been linked to several inherited cancer syndromes, such as multiple endocrine neoplasia type 1 (MEN1) and neurofibromatosis type 1 (NF1).

Brain chemistry refers to the chemical processes that occur within the brain, particularly those involving neurotransmitters, neuromodulators, and neuropeptides. These chemicals are responsible for transmitting signals between neurons (nerve cells) in the brain, allowing for various cognitive, emotional, and physical functions.

Neurotransmitters are chemical messengers that transmit signals across the synapse (the tiny gap between two neurons). Examples of neurotransmitters include dopamine, serotonin, norepinephrine, GABA (gamma-aminobutyric acid), and glutamate. Each neurotransmitter has a specific role in brain function, such as regulating mood, motivation, attention, memory, and movement.

Neuromodulators are chemicals that modify the effects of neurotransmitters on neurons. They can enhance or inhibit the transmission of signals between neurons, thereby modulating brain activity. Examples of neuromodulators include acetylcholine, histamine, and substance P.

Neuropeptides are small protein-like molecules that act as neurotransmitters or neuromodulators. They play a role in various physiological functions, such as pain perception, stress response, and reward processing. Examples of neuropeptides include endorphins, enkephalins, and oxytocin.

Abnormalities in brain chemistry can lead to various neurological and psychiatric conditions, such as depression, anxiety disorders, schizophrenia, Parkinson's disease, and Alzheimer's disease. Understanding brain chemistry is crucial for developing effective treatments for these conditions.

Cyclohexanols are a class of organic compounds that contain a cyclohexane ring (a six-carbon saturated ring) with a hydroxyl group (-OH) attached to it. The hydroxyl group makes these compounds alcohols, and the cyclohexane ring provides a unique structure that can adopt different conformations.

The presence of the hydroxyl group in cyclohexanols allows them to act as solvents, intermediates in chemical synthesis, and starting materials for the production of other chemicals. They are used in various industries, including pharmaceuticals, agrochemicals, and polymers.

Cyclohexanols can exist in different forms, such as cis- and trans-isomers, depending on the orientation of the hydroxyl group relative to the cyclohexane ring. The physical and chemical properties of these isomers can differ significantly due to their distinct structures and conformations.

Examples of cyclohexanols include cyclohexanol itself (C6H11OH), as well as its derivatives, such as methylcyclohexanol (C7H13OH) and phenylcyclohexanol (C12H15OH).

Methysergide, commonly known as methylergometrine or metergoline, is not typically considered a medication in the medical field. It is actually a derivative of ergot alkaloids, which are fungal metabolites that have been used in medicine for their vasoconstrictive and oxytocic properties.

Methysergide has been used in the past as a migraine prophylaxis medication due to its ability to block serotonin receptors in the brain. However, its use is now limited due to its potential to cause serious side effects such as fibrotic reactions in various organs, including the heart, lungs, and kidneys.

Therefore, methysergide/metergoline is not commonly used in modern medical practice, and its use is typically reserved for highly specific cases under close medical supervision.

Vesicular Monoamine Transporter Proteins (VMATs) are a type of transmembrane protein that play a crucial role in the packaging and transport of monoamines, such as serotonin, dopamine, and norepinephrine, into synaptic vesicles within neurons. There are two main isoforms of VMATs, VMAT1 and VMAT2, which differ in their distribution and function.

VMAT1 (also known as SLC18A1) is primarily found in neuroendocrine cells and is responsible for transporting monoamines into large dense-core vesicles. VMAT2 (also known as SLC18A2), on the other hand, is mainly expressed in presynaptic neurons and is involved in the transport of monoamines into small synaptic vesicles.

Both VMAT1 and VMAT2 are integral membrane proteins that utilize a proton gradient to drive the uptake of monoamines against their concentration gradient, allowing for their storage and subsequent release during neurotransmission. Dysregulation of VMAT function has been implicated in several neurological and psychiatric disorders, including Parkinson's disease and depression.

Hallucinogens are a class of psychoactive substances that alter perception, mood, and thought, often causing hallucinations, which are profound distortions in a person's perceptions of reality. These substances work by disrupting the normal functioning of the brain, particularly the parts that regulate mood, sensory perception, sleep, hunger, and sexual behavior.

Hallucinogens can be found in various forms, including plants, mushrooms, and synthetic compounds. Some common examples of hallucinogens include LSD (d-lysergic acid diethylamide), psilocybin (found in certain species of mushrooms), DMT (dimethyltryptamine), and ayahuasca (a plant-based brew from South America).

The effects of hallucinogens can vary widely depending on the specific substance, the dose, the individual's personality, mood, and expectations, and the environment in which the drug is taken. These effects can range from pleasant sensory experiences and heightened emotional awareness to terrifying hallucinations and overwhelming feelings of anxiety or despair.

It's important to note that hallucinogens can be dangerous, particularly when taken in high doses or in combination with other substances. They can also cause long-term psychological distress and may trigger underlying mental health conditions. As such, they should only be used under the guidance of a trained medical professional for therapeutic purposes.

A depressive disorder is a mental health condition characterized by persistent feelings of sadness, hopelessness, and loss of interest or pleasure in activities. It can also include changes in sleep, appetite, energy levels, concentration, and self-esteem, as well as thoughts of death or suicide. Depressive disorders can vary in severity and duration, with some people experiencing mild and occasional symptoms, while others may have severe and chronic symptoms that interfere with their ability to function in daily life.

There are several types of depressive disorders, including major depressive disorder (MDD), persistent depressive disorder (PDD), and postpartum depression. MDD is characterized by symptoms that interfere significantly with a person's ability to function and last for at least two weeks, while PDD involves chronic low-grade depression that lasts for two years or more. Postpartum depression occurs in women after childbirth and can range from mild to severe.

Depressive disorders are thought to be caused by a combination of genetic, biological, environmental, and psychological factors. Treatment typically involves a combination of medication, psychotherapy (talk therapy), and lifestyle changes.

Dexfenfluramine is a medication that was previously used as an appetite suppressant for weight loss. It is a stereoisomer (enantiomer) of fenfluramine, which is another appetite suppressant. Dexfenfluramine works by increasing the levels of serotonin in the brain, which helps to reduce appetite and promote weight loss.

However, dexfenfluramine was withdrawn from the market in 1997 due to concerns about its safety. Studies found that long-term use of dexfenfluramine was associated with an increased risk of primary pulmonary hypertension, a rare but serious condition that can lead to heart failure. Additionally, when dexfenfluramine was used in combination with phentermine (a different appetite suppressant), there was an increased risk of valvular heart disease.

Therefore, dexfenfluramine is no longer available for medical use and its prescription is not recommended due to these safety concerns.

5,6-Dihydroxytryptamine is a chemical compound that is classified as a derivative of tryptamine. Tryptamine is a naturally occurring amine that is formed from the essential amino acid, tryptophan. 5,6-Dihydroxytryptamine is formed by the hydroxylation of tryptamine at the 5th and 6th carbon atoms of its indole ring structure.

This compound is not typically found in significant quantities in biological systems under normal conditions. However, it can be synthesized and has been studied for its potential pharmacological properties. Like other tryptamines, 5,6-Dihydroxytryptamine has an affinity for various serotonin receptors, and it has been found to act as a full agonist at the 5-HT1A receptor.

It is worth noting that 5,6-Dihydroxytryptamine should not be confused with 5-HTP (5-Hydroxytryptophan) or serotonin (5-HT), which are also tryptamine derivatives but have different structures and functions in the body.

I'm sorry for any confusion, but "Hydroxytryptophol" is not a recognized or established term in medicine or biochemistry. It seems like it might be a combination of "hydroxytryptophan," which is a naturally occurring amino acid, and "-ol," which is a suffix often used to denote an alcohol. However, I can't find any scientific literature or studies referring to a compound named "Hydroxytryptophol." It's possible there might be a spelling mistake or a misunderstanding in the term. If you have more context or information, I'd be happy to help further!

Dopamine plasma membrane transport proteins, also known as dopamine transporters (DAT), are a type of protein found in the cell membrane that play a crucial role in the regulation of dopamine neurotransmission. They are responsible for the reuptake of dopamine from the synaptic cleft back into the presynaptic neuron, thereby terminating the signal transduction of dopamine and regulating the amount of dopamine available for further release.

Dopamine transporters belong to the family of sodium-dependent neurotransmitter transporters and are encoded by the SLC6A3 gene in humans. Abnormalities in dopamine transporter function have been implicated in several neurological and psychiatric disorders, including Parkinson's disease, attention deficit hyperactivity disorder (ADHD), and substance use disorders.

In summary, dopamine plasma membrane transport proteins are essential for the regulation of dopamine neurotransmission by mediating the reuptake of dopamine from the synaptic cleft back into the presynaptic neuron.

Autoreceptors are a type of receptor found on the surface of neurons or other cells that are activated by neurotransmitters (chemical messengers) released by the same cell that is expressing the autoreceptor. In other words, they are receptors that a neuron has for its own neurotransmitter.

Autoreceptors play an important role in regulating the release of neurotransmitters from the presynaptic terminal (the end of the neuron that releases the neurotransmitter). When a neurotransmitter binds to its autoreceptor, it can inhibit or excite the further release of that same neurotransmitter. This negative feedback mechanism helps maintain a balance in the concentration of neurotransmitters in the synaptic cleft (the space between two neurons where neurotransmission occurs).

Examples of autoreceptors include dopamine D2 receptors on dopaminergic neurons, serotonin 5-HT1A receptors on serotonergic neurons, and acetylcholine M2 receptors on cholinergic neurons. Dysregulation of autoreceptor function has been implicated in various neurological and psychiatric disorders.

Spiperone is an antipsychotic drug that belongs to the chemical class of diphenylbutylpiperidines. It has potent dopamine D2 receptor blocking activity and moderate serotonin 5-HT2A receptor affinity. Spiperone is used primarily in research settings for its ability to bind to and block dopamine receptors, which helps scientists study the role of dopamine in various physiological processes.

In clinical practice, spiperone has been used off-label to treat chronic schizophrenia, but its use is limited due to its significant side effects, including extrapyramidal symptoms (involuntary muscle movements), tardive dyskinesia (irregular, jerky movements), and neuroleptic malignant syndrome (a rare but potentially fatal complication characterized by fever, muscle rigidity, and autonomic instability).

It's important to note that spiperone is not approved by the US Food and Drug Administration (FDA) for use in the United States. Its use is more common in research settings or in countries where it may be approved for specific indications.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Neurotransmitter uptake inhibitors are a class of drugs that work by blocking the reuptake of neurotransmitters, such as serotonin, norepinephrine, and dopamine, into the presynaptic neuron after they have been released into the synapse. This results in an increased concentration of these neurotransmitters in the synapse, which can enhance their signal transduction and lead to therapeutic effects.

These drugs are commonly used in the treatment of various psychiatric disorders, such as depression, anxiety, and attention deficit hyperactivity disorder (ADHD). They include selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), and norepinephrine reuptake inhibitors (NRIs).

It's important to note that while neurotransmitter uptake inhibitors can be effective in treating certain conditions, they may also have potential side effects and risks. Therefore, it is essential to use them under the guidance and supervision of a healthcare professional.

The pineal gland, also known as the epiphysis cerebri, is a small endocrine gland located in the brain. It is shaped like a pinecone, hence its name, and is situated near the center of the brain, between the two hemispheres, attached to the third ventricle. The primary function of the pineal gland is to produce melatonin, a hormone that helps regulate sleep-wake cycles and circadian rhythms in response to light and darkness. Additionally, it plays a role in the onset of puberty and has been suggested to have other functions related to cognition, mood, and reproduction, although these are not as well understood.

Cocaine is a highly addictive stimulant drug derived from the leaves of the coca plant (Erythroxylon coca). It is a powerful central nervous system stimulant that affects the brain and body in many ways. When used recreationally, cocaine can produce feelings of euphoria, increased energy, and mental alertness; however, it can also cause serious negative consequences, including addiction, cardiovascular problems, seizures, and death.

Cocaine works by increasing the levels of dopamine in the brain, a neurotransmitter associated with pleasure and reward. This leads to the pleasurable effects that users seek when they take the drug. However, cocaine also interferes with the normal functioning of the brain's reward system, making it difficult for users to experience pleasure from natural rewards like food or social interactions.

Cocaine can be taken in several forms, including powdered form (which is usually snorted), freebase (a purer form that is often smoked), and crack cocaine (a solid form that is typically heated and smoked). Each form of cocaine has different risks and potential harms associated with its use.

Long-term use of cocaine can lead to a number of negative health consequences, including addiction, heart problems, malnutrition, respiratory issues, and mental health disorders like depression or anxiety. It is important to seek help if you or someone you know is struggling with cocaine use or addiction.

Genetic polymorphism refers to the occurrence of multiple forms (called alleles) of a particular gene within a population. These variations in the DNA sequence do not generally affect the function or survival of the organism, but they can contribute to differences in traits among individuals. Genetic polymorphisms can be caused by single nucleotide changes (SNPs), insertions or deletions of DNA segments, or other types of genetic rearrangements. They are important for understanding genetic diversity and evolution, as well as for identifying genetic factors that may contribute to disease susceptibility in humans.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Membrane glycoproteins are proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. They are integral components of biological membranes, spanning the lipid bilayer and playing crucial roles in various cellular processes.

The glycosylation of these proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus during protein folding and trafficking. The attached glycans can vary in structure, length, and composition, which contributes to the diversity of membrane glycoproteins.

Membrane glycoproteins can be classified into two main types based on their orientation within the lipid bilayer:

1. Type I (N-linked): These glycoproteins have a single transmembrane domain and an extracellular N-terminus, where the oligosaccharides are predominantly attached via asparagine residues (Asn-X-Ser/Thr sequon).
2. Type II (C-linked): These glycoproteins possess two transmembrane domains and an intracellular C-terminus, with the oligosaccharides linked to tryptophan residues via a mannose moiety.

Membrane glycoproteins are involved in various cellular functions, such as:

* Cell adhesion and recognition
* Receptor-mediated signal transduction
* Enzymatic catalysis
* Transport of molecules across membranes
* Cell-cell communication
* Immunological responses

Some examples of membrane glycoproteins include cell surface receptors (e.g., growth factor receptors, cytokine receptors), adhesion molecules (e.g., integrins, cadherins), and transporters (e.g., ion channels, ABC transporters).

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

In invertebrate biology, ganglia are clusters of neurons that function as a centralized nervous system. They can be considered as the equivalent to a vertebrate's spinal cord and brain. Ganglia serve to process sensory information, coordinate motor functions, and integrate various neural activities within an invertebrate organism.

Invertebrate ganglia are typically found in animals such as arthropods (insects, crustaceans), annelids (earthworms), mollusks (snails, squids), and cnidarians (jellyfish). The structure of the ganglia varies among different invertebrate groups.

For example, in arthropods, the central nervous system consists of a pair of connected ganglia called the supraesophageal ganglion or brain, and the subesophageal ganglion, located near the esophagus. The ventral nerve cord runs along the length of the body, containing pairs of ganglia that control specific regions of the body.

In mollusks, the central nervous system is composed of several ganglia, which can be fused or dispersed, depending on the species. In cephalopods (such as squids and octopuses), the brain is highly developed and consists of several lobes that perform various functions, including learning and memory.

Overall, invertebrate ganglia are essential components of the nervous system that allow these animals to respond to environmental stimuli, move, and interact with their surroundings.

Mianserin is a tetracyclic antidepressant (TCA) that is primarily used to treat major depressive disorders. It functions by inhibiting the reuptake of neurotransmitters such as serotonin and noradrenaline, thereby increasing their availability in the brain and helping to alleviate symptoms of depression.

Mianserin also has additional properties, including antihistamine and anti-cholinergic effects, which can help reduce some side effects commonly associated with other antidepressants, such as insomnia and agitation. However, these same properties can also lead to side effects such as drowsiness, dry mouth, and orthostatic hypotension (a drop in blood pressure upon standing).

It's important to note that mianserin is not commonly prescribed due to its narrow therapeutic index and the risk of serious side effects, including agranulocytosis (a severe decrease in white blood cells), which can increase the risk of infection. As with any medication, it should only be taken under the close supervision of a healthcare provider.

"Motor activity" is a general term used in the field of medicine and neuroscience to refer to any kind of physical movement or action that is generated by the body's motor system. The motor system includes the brain, spinal cord, nerves, and muscles that work together to produce movements such as walking, talking, reaching for an object, or even subtle actions like moving your eyes.

Motor activity can be voluntary, meaning it is initiated intentionally by the individual, or involuntary, meaning it is triggered automatically by the nervous system without conscious control. Examples of voluntary motor activity include deliberately lifting your arm or kicking a ball, while examples of involuntary motor activity include heartbeat, digestion, and reflex actions like jerking your hand away from a hot stove.

Abnormalities in motor activity can be a sign of neurological or muscular disorders, such as Parkinson's disease, cerebral palsy, or multiple sclerosis. Assessment of motor activity is often used in the diagnosis and treatment of these conditions.

I'm sorry for any confusion, but "Pyridines" is not a medical term. It is a chemical term that refers to a class of organic compounds with the chemical structure of a six-membered ring containing one nitrogen atom and five carbon atoms (heterocyclic aromatic compound).

In a biological or medical context, pyridine derivatives can be found in various natural and synthetic substances. For example, some medications contain pyridine rings as part of their chemical structure. However, "Pyridines" itself is not a medical term or condition.

A drug interaction is the effect of combining two or more drugs, or a drug and another substance (such as food or alcohol), which can alter the effectiveness or side effects of one or both of the substances. These interactions can be categorized as follows:

1. Pharmacodynamic interactions: These occur when two or more drugs act on the same target organ or receptor, leading to an additive, synergistic, or antagonistic effect. For example, taking a sedative and an antihistamine together can result in increased drowsiness due to their combined depressant effects on the central nervous system.
2. Pharmacokinetic interactions: These occur when one drug affects the absorption, distribution, metabolism, or excretion of another drug. For example, taking certain antibiotics with grapefruit juice can increase the concentration of the antibiotic in the bloodstream, leading to potential toxicity.
3. Food-drug interactions: Some drugs may interact with specific foods, affecting their absorption, metabolism, or excretion. An example is the interaction between warfarin (a blood thinner) and green leafy vegetables, which can increase the risk of bleeding due to enhanced vitamin K absorption from the vegetables.
4. Drug-herb interactions: Some herbal supplements may interact with medications, leading to altered drug levels or increased side effects. For instance, St. John's Wort can decrease the effectiveness of certain antidepressants and oral contraceptives by inducing their metabolism.
5. Drug-alcohol interactions: Alcohol can interact with various medications, causing additive sedative effects, impaired judgment, or increased risk of liver damage. For example, combining alcohol with benzodiazepines or opioids can lead to dangerous levels of sedation and respiratory depression.

It is essential for healthcare providers and patients to be aware of potential drug interactions to minimize adverse effects and optimize treatment outcomes.

Aggression is defined in medical terms as behavior that is intended to cause harm or damage to another individual or their property. It can take the form of verbal or physical actions and can be a symptom of various mental health disorders, such as intermittent explosive disorder, conduct disorder, antisocial personality disorder, and dementia. Aggression can also be a side effect of certain medications or a result of substance abuse. It is important to note that aggression can have serious consequences, including physical injury, emotional trauma, and legal repercussions. If you or someone you know is experiencing problems with aggression, it is recommended to seek help from a mental health professional.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Moclobemide is a type of antidepressant known as a reversible inhibitor of monoamine oxidase A (RIMA). It works by increasing the levels of neurotransmitters (chemical messengers) in the brain, such as serotonin and noradrenaline, which helps to improve mood and alleviate symptoms of depression.

Moclobemide is specifically designed to inhibit only monoamine oxidase A, which metabolizes neurotransmitters in the brain, and not monoamine oxidase B, which is found in other parts of the body. This selectivity reduces the risk of serious side effects associated with non-selective monoamine oxidase inhibitors (MAOIs), such as hypertensive crisis caused by interactions with tyramine-rich foods or certain medications.

Moclobemide is used to treat major depressive disorders and may also be used off-label for other conditions, such as social anxiety disorder or panic disorder. It is available in various forms, including tablets and oral solution, and is typically taken two to three times a day. As with any medication, moclobemide should be taken under the supervision of a healthcare provider, who will determine the appropriate dosage and monitor for potential side effects.

5-Methoxytryptamine is a psychedelic tryptamine that is found in some plants and animals, as well as being produced synthetically. It is structurally similar to the neurotransmitter serotonin and is known for its ability to alter perception, thought, and mood. 5-Methoxytryptamine is also referred to as "mexamine" or "O-methylated tryptamine." It is a Schedule I controlled substance in the United States, making it illegal to possess or distribute without a license from the Drug Enforcement Administration (DEA).

In the medical field, 5-Methoxytryptamine does not have a specific use as a medication. However, it has been used in some research settings to study its effects on the brain and behavior. It is important to note that the use of 5-Methoxytryptamine or any other psychedelic substance should only be done under the supervision of trained medical professionals in a controlled setting due to the potential risks associated with their use.

Piperidines are not a medical term per se, but they are a class of organic compounds that have important applications in the pharmaceutical industry. Medically relevant piperidines include various drugs such as some antihistamines, antidepressants, and muscle relaxants.

A piperidine is a heterocyclic amine with a six-membered ring containing five carbon atoms and one nitrogen atom. The structure can be described as a cyclic secondary amine. Piperidines are found in some natural alkaloids, such as those derived from the pepper plant (Piper nigrum), which gives piperidines their name.

In a medical context, it is more common to encounter specific drugs that belong to the class of piperidines rather than the term itself.

Desipramine is a tricyclic antidepressant (TCA) that is primarily used to treat depression. It works by increasing the levels of certain neurotransmitters, such as norepinephrine and serotonin, in the brain. These neurotransmitters are important for maintaining mood, emotion, and behavior.

Desipramine is also sometimes used off-label to treat other conditions, such as anxiety disorders, chronic pain, and attention deficit hyperactivity disorder (ADHD). It is available in oral form and is typically taken one to three times a day.

Like all medications, desipramine can cause side effects, which can include dry mouth, blurred vision, constipation, dizziness, and drowsiness. More serious side effects are rare but can include heart rhythm problems, seizures, and increased suicidal thoughts or behavior in some people, particularly children and adolescents.

It is important to take desipramine exactly as prescribed by a healthcare provider and to report any bothersome or unusual symptoms promptly. Regular follow-up appointments with a healthcare provider are also recommended to monitor the effectiveness and safety of the medication.

Major Depressive Disorder (MDD), also simply referred to as depression, is a serious mental health condition characterized by the presence of one or more major depressive episodes. A major depressive episode is a period of at least two weeks during which an individual experiences a severely depressed mood and/or loss of interest or pleasure in nearly all activities, accompanied by at least four additional symptoms such as significant changes in appetite or weight, sleep disturbances, psychomotor agitation or retardation, fatigue or loss of energy, feelings of worthlessness or excessive guilt, difficulty thinking, concentrating, or making decisions, and recurrent thoughts of death or suicide.

MDD can significantly impair an individual's ability to function in daily life, and it is associated with increased risks of suicide, substance abuse, and other mental health disorders. The exact cause of MDD is not fully understood, but it is believed to result from a complex interplay of genetic, biological, environmental, and psychological factors. Treatment typically involves a combination of psychotherapy (such as cognitive-behavioral therapy) and medication (such as selective serotonin reuptake inhibitors or tricyclic antidepressants).

Depression is a mood disorder that is characterized by persistent feelings of sadness, hopelessness, and loss of interest in activities. It can also cause significant changes in sleep, appetite, energy level, concentration, and behavior. Depression can interfere with daily life and normal functioning, and it can increase the risk of suicide and other mental health disorders. The exact cause of depression is not known, but it is believed to be related to a combination of genetic, biological, environmental, and psychological factors. There are several types of depression, including major depressive disorder, persistent depressive disorder, postpartum depression, and seasonal affective disorder. Treatment for depression typically involves a combination of medication and psychotherapy.

Aminopyridines are a group of organic compounds that contain an amino group (-NH2) attached to a pyridine ring, which is a six-membered aromatic heterocycle containing one nitrogen atom. Aminopyridines have various pharmacological properties and are used in the treatment of several medical conditions.

The most commonly used aminopyridines in medicine include:

1. 4-Aminopyridine (also known as Fampridine): It is a potassium channel blocker that is used to improve walking ability in patients with multiple sclerosis (MS) and other neurological disorders. It works by increasing the conduction of nerve impulses in demyelinated nerves, thereby improving muscle strength and coordination.
2. 3,4-Diaminopyridine: It is a potassium channel blocker that is used to treat Lambert-Eaton myasthenic syndrome (LEMS), a rare autoimmune disorder characterized by muscle weakness. It works by increasing the release of acetylcholine from nerve endings, thereby improving muscle strength and function.
3. 2-Aminopyridine: It is an experimental drug that has been studied for its potential use in treating various neurological disorders, including MS, Parkinson's disease, and stroke. It works by increasing the release of neurotransmitters from nerve endings, thereby improving neuronal communication.

Like all medications, aminopyridines can have side effects, including gastrointestinal symptoms, headache, dizziness, and in rare cases, seizures. It is important to use these drugs under the supervision of a healthcare provider and follow their dosage instructions carefully.

The prefrontal cortex is the anterior (frontal) part of the frontal lobe in the brain, involved in higher-order cognitive processes such as planning complex cognitive behavior, personality expression, decision making, and moderating social behavior. It also plays a significant role in working memory and executive functions. The prefrontal cortex is divided into several subregions, each associated with specific cognitive and emotional functions. Damage to the prefrontal cortex can result in various impairments, including difficulties with planning, decision making, and social behavior regulation.

Histamine is defined as a biogenic amine that is widely distributed throughout the body and is involved in various physiological functions. It is derived primarily from the amino acid histidine by the action of histidine decarboxylase. Histamine is stored in granules (along with heparin and proteases) within mast cells and basophils, and is released upon stimulation or degranulation of these cells.

Once released into the tissues and circulation, histamine exerts a wide range of pharmacological actions through its interaction with four types of G protein-coupled receptors (H1, H2, H3, and H4 receptors). Histamine's effects are diverse and include modulation of immune responses, contraction and relaxation of smooth muscle, increased vascular permeability, stimulation of gastric acid secretion, and regulation of neurotransmission.

Histamine is also a potent mediator of allergic reactions and inflammation, causing symptoms such as itching, sneezing, runny nose, and wheezing. Antihistamines are commonly used to block the actions of histamine at H1 receptors, providing relief from these symptoms.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Synaptic transmission is the process by which a neuron communicates with another cell, such as another neuron or a muscle cell, across a junction called a synapse. It involves the release of neurotransmitters from the presynaptic terminal of the neuron, which then cross the synaptic cleft and bind to receptors on the postsynaptic cell, leading to changes in the electrical or chemical properties of the target cell. This process is critical for the transmission of signals within the nervous system and for controlling various physiological functions in the body.

I'm sorry for any confusion, but "swimming" is not typically considered a medical term. It refers to the act of moving through water using your arms and legs in a rhythmic pattern, often as a form of exercise, recreation, or competition. However, if you're referring to a medical condition related to swimming, such as "swimmer's ear" (otitis externa), I would be happy to provide a definition for that.

Swimmer's ear is a type of outer ear infection caused by water remaining in the ear after swimming or bathing, creating a moist environment that can lead to bacterial growth. It can also be caused by scratching or damaging the lining of the ear canal through the use of cotton swabs or other objects. Symptoms may include itching, redness, pain, and sometimes discharge from the ear. If left untreated, swimmer's ear can lead to more serious complications, such as hearing loss or damage to the inner ear.

Homovanillic acid (HVA) is a major metabolite of dopamine, a neurotransmitter in the human body. It is formed in the body when an enzyme called catechol-O-methyltransferase (COMT) breaks down dopamine. HVA can be measured in body fluids such as urine, cerebrospinal fluid, and plasma to assess the activity of dopamine and the integrity of the dopaminergic system. Increased levels of HVA are associated with certain neurological disorders, including Parkinson's disease, while decreased levels may indicate dopamine deficiency or other conditions affecting the nervous system.

A radioligand assay is a type of in vitro binding assay used in molecular biology and pharmacology to measure the affinity and quantity of a ligand (such as a drug or hormone) to its specific receptor. In this technique, a small amount of a radioactively labeled ligand, also known as a radioligand, is introduced to a sample containing the receptor of interest. The radioligand binds competitively with other unlabeled ligands present in the sample for the same binding site on the receptor. After allowing sufficient time for binding, the reaction is stopped, and the amount of bound radioligand is measured using a technique such as scintillation counting. The data obtained from this assay can be used to determine the dissociation constant (Kd) and maximum binding capacity (Bmax) of the receptor-ligand interaction, which are important parameters in understanding the pharmacological properties of drugs and other ligands.

Indole is not strictly a medical term, but it is a chemical compound that can be found in the human body and has relevance to medical and biological research. Indoles are organic compounds that contain a bicyclic structure consisting of a six-membered benzene ring fused to a five-membered pyrrole ring.

In the context of medicine, indoles are particularly relevant due to their presence in certain hormones and other biologically active molecules. For example, the neurotransmitter serotonin contains an indole ring, as does the hormone melatonin. Indoles can also be found in various plant-based foods, such as cruciferous vegetables (e.g., broccoli, kale), and have been studied for their potential health benefits.

Some indoles, like indole-3-carbinol and diindolylmethane, are found in these vegetables and can have anti-cancer properties by modulating estrogen metabolism, reducing inflammation, and promoting cell death (apoptosis) in cancer cells. However, it is essential to note that further research is needed to fully understand the potential health benefits and risks associated with indoles.

Pargyline is an antihypertensive drug and a irreversible monoamine oxidase inhibitor (MAOI) of type B. It works by blocking the breakdown of certain chemicals in the brain, such as neurotransmitters, which can help improve mood and behavior in people with depression.

Pargyline is not commonly used as a first-line treatment for depression due to its potential for serious side effects, including interactions with certain foods and medications that can lead to dangerously high blood pressure. It is also associated with a risk of serotonin syndrome when taken with selective serotonin reuptake inhibitors (SSRIs) or other drugs that increase serotonin levels in the brain.

Pargyline is available only through a prescription and should be used under the close supervision of a healthcare provider.

Melatonin is a hormone that is produced by the pineal gland in the brain. It helps regulate sleep-wake cycles and is often referred to as the "hormone of darkness" because its production is stimulated by darkness and inhibited by light. Melatonin plays a key role in synchronizing the circadian rhythm, the body's internal clock that regulates various biological processes over a 24-hour period.

Melatonin is primarily released at night, and its levels in the blood can rise and fall in response to changes in light and darkness in an individual's environment. Supplementing with melatonin has been found to be helpful in treating sleep disorders such as insomnia, jet lag, and delayed sleep phase syndrome. It may also have other benefits, including antioxidant properties and potential uses in the treatment of certain neurological conditions.

It is important to note that while melatonin supplements are available over-the-counter in many countries, they should still be used under the guidance of a healthcare professional, as their use can have potential side effects and interactions with other medications.

Tropane alkaloids are a class of naturally occurring compounds that contain a tropane ring in their chemical structure. This ring is composed of a seven-membered ring with two nitrogen atoms, one of which is part of a piperidine ring. Tropane alkaloids are found in various plants, particularly those in the Solanaceae family, which includes nightshade, belladonna, and datura. Some well-known tropane alkaloids include atropine, scopolamine, and cocaine. These compounds have diverse pharmacological activities, such as anticholinergic, local anesthetic, and central nervous system stimulant effects.

Arylalkylamine N-acetyltransferase (AANAT) is an enzyme that plays a crucial role in the regulation of melatonin synthesis in the body. It catalyzes the acetylation of serotonin to produce N-acetylserotonin, which is then converted to melatonin by the enzyme acetylserotonin O-methyltransferase (ASMT).

Melatonin is a hormone that helps regulate sleep-wake cycles and other physiological processes in the body. The activity of AANAT is influenced by light exposure, with higher levels of activity occurring in darkness and lower levels during light exposure. This allows melatonin production to be synchronized with the day-night cycle, contributing to the regulation of circadian rhythms.

Genetic variations in the AANAT gene have been associated with differences in sleep patterns, mood regulation, and other physiological processes. Dysregulation of AANAT activity has been implicated in various conditions, including insomnia, depression, and seasonal affective disorder.

Dopamine uptake inhibitors are a class of medications that work by blocking the reuptake of dopamine, a neurotransmitter, into the presynaptic neuron. This results in an increased concentration of dopamine in the synapse, leading to enhanced dopaminergic transmission and activity.

These drugs are used in various medical conditions where dopamine is implicated, such as depression, attention deficit hyperactivity disorder (ADHD), and neurological disorders like Parkinson's disease. They can also be used to treat substance abuse disorders, such as cocaine addiction, by blocking the reuptake of dopamine and reducing the rewarding effects of the drug.

Examples of dopamine uptake inhibitors include:

* Bupropion (Wellbutrin), which is used to treat depression and ADHD
* Methylphenidate (Ritalin, Concerta), which is used to treat ADHD
* Amantadine (Symmetrel), which is used to treat Parkinson's disease and also has antiviral properties.

It's important to note that dopamine uptake inhibitors can have side effects, including increased heart rate, blood pressure, and anxiety. They may also have the potential for abuse and dependence, particularly in individuals with a history of substance abuse. Therefore, these medications should be used under the close supervision of a healthcare provider.

The hippocampus is a complex, curved formation in the brain that resembles a seahorse (hence its name, from the Greek word "hippos" meaning horse and "kampos" meaning sea monster). It's part of the limbic system and plays crucial roles in the formation of memories, particularly long-term ones.

This region is involved in spatial navigation and cognitive maps, allowing us to recognize locations and remember how to get to them. Additionally, it's one of the first areas affected by Alzheimer's disease, which often results in memory loss as an early symptom.

Anatomically, it consists of two main parts: the Ammon's horn (or cornu ammonis) and the dentate gyrus. These structures are made up of distinct types of neurons that contribute to different aspects of learning and memory.

Antipsychotic agents are a class of medications used to manage and treat psychosis, which includes symptoms such as delusions, hallucinations, paranoia, disordered thought processes, and agitated behavior. These drugs work by blocking the action of dopamine, a neurotransmitter in the brain that is believed to play a role in the development of psychotic symptoms. Antipsychotics can be broadly divided into two categories: first-generation antipsychotics (also known as typical antipsychotics) and second-generation antipsychotics (also known as atypical antipsychotics).

First-generation antipsychotics, such as chlorpromazine, haloperidol, and fluphenazine, were developed in the 1950s and have been widely used for several decades. They are generally effective in reducing positive symptoms of psychosis (such as hallucinations and delusions) but can cause significant side effects, including extrapyramidal symptoms (EPS), such as rigidity, tremors, and involuntary movements, as well as weight gain, sedation, and orthostatic hypotension.

Second-generation antipsychotics, such as clozapine, risperidone, olanzapine, quetiapine, and aripiprazole, were developed more recently and are considered to have a more favorable side effect profile than first-generation antipsychotics. They are generally effective in reducing both positive and negative symptoms of psychosis (such as apathy, anhedonia, and social withdrawal) and cause fewer EPS. However, they can still cause significant weight gain, metabolic disturbances, and sedation.

Antipsychotic agents are used to treat various psychiatric disorders, including schizophrenia, bipolar disorder, major depressive disorder with psychotic features, delusional disorder, and other conditions that involve psychosis or agitation. They can be administered orally, intramuscularly, or via long-acting injectable formulations. The choice of antipsychotic agent depends on the individual patient's needs, preferences, and response to treatment, as well as the potential for side effects. Regular monitoring of patients taking antipsychotics is essential to ensure their safety and effectiveness.

Fluorobenzenes are a group of organic compounds that consist of a benzene ring (a cyclic structure with six carbon atoms in a hexagonal arrangement) substituted with one or more fluorine atoms. The general chemical formula for a fluorobenzene is C6H5F, but this can vary depending on the number of fluorine atoms present in the molecule.

Fluorobenzenes are relatively stable and non-reactive compounds due to the strong carbon-fluorine bond. They are used as starting materials in the synthesis of various pharmaceuticals, agrochemicals, and other specialty chemicals. Some fluorobenzenes also have potential applications as refrigerants, fire extinguishing agents, and solvents.

It is worth noting that while fluorobenzenes themselves are not considered to be particularly hazardous, some of their derivatives can be toxic or environmentally harmful, so they must be handled with care during production and use.

Platelet aggregation is the clumping together of platelets (thrombocytes) in the blood, which is an essential step in the process of hemostasis (the stopping of bleeding) after injury to a blood vessel. When the inner lining of a blood vessel is damaged, exposure of subendothelial collagen and tissue factor triggers platelet activation. Activated platelets change shape, become sticky, and release the contents of their granules, which include ADP (adenosine diphosphate).

ADP then acts as a chemical mediator to attract and bind additional platelets to the site of injury, leading to platelet aggregation. This forms a plug that seals the damaged vessel and prevents further blood loss. Platelet aggregation is also a crucial component in the formation of blood clots (thrombosis) within blood vessels, which can have pathological consequences such as heart attacks and strokes if they obstruct blood flow to vital organs.

Malignant carcinoid syndrome is a complex of symptoms that occur in some people with malignant tumors (carcinoids) that secrete large amounts of hormone-like substances, particularly serotonin. These symptoms can include flushing of the face and upper body, diarrhea, rapid heartbeat, difficulty breathing, and abdominal pain and distention. In addition, these individuals may have chronic inflammation of the heart valves (endocarditis) leading to heart failure. It is important to note that not all people with carcinoid tumors will develop malignant carcinoid syndrome, but those who do require specific treatment for their symptoms and hormonal imbalances.

Ondansetron is a medication that is primarily used to prevent nausea and vomiting caused by chemotherapy, radiation therapy, or surgery. It is a selective antagonist of 5-HT3 receptors, which are found in the brain and gut and play a role in triggering the vomiting reflex. By blocking these receptors, ondansetron helps to reduce the frequency and severity of nausea and vomiting.

The drug is available in various forms, including tablets, oral solution, and injection, and is typically administered 30 minutes before chemotherapy or surgery, and then every 8 to 12 hours as needed. Common side effects of ondansetron include headache, constipation, and diarrhea.

It's important to note that ondansetron should be used under the supervision of a healthcare provider, and its use may be contraindicated in certain individuals, such as those with a history of allergic reactions to the drug or who have certain heart conditions.

Anxiety: A feeling of worry, nervousness, or unease, typically about an imminent event or something with an uncertain outcome. In a medical context, anxiety refers to a mental health disorder characterized by feelings of excessive and persistent worry, fear, or panic that interfere with daily activities. It can also be a symptom of other medical conditions, such as heart disease, diabetes, or substance abuse disorders. Anxiety disorders include generalized anxiety disorder, panic disorder, social anxiety disorder, and phobias.

Clorgyline is a type of medication known as a monoamine oxidase inhibitor (MAOI). It works by blocking the action of an enzyme called monoamine oxidase, which helps to break down certain chemicals in the brain called neurotransmitters. This leads to an increase in the levels of these neurotransmitters in the brain, which can help to improve mood and alleviate symptoms of depression.

Clorgyline is not commonly used as a first-line treatment for depression due to its potential for serious side effects and interactions with certain foods and other medications. It may be used in some cases where other treatments have been unsuccessful, or in research settings to study the role of monoamine oxidase in various physiological processes.

It's important to note that MAOIs like clorgyline require careful monitoring by a healthcare provider and should only be used under close medical supervision due to the risk of serious side effects and interactions.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

The brainstem is the lower part of the brain that connects to the spinal cord. It consists of the midbrain, pons, and medulla oblongata. The brainstem controls many vital functions such as heart rate, breathing, and blood pressure. It also serves as a relay center for sensory and motor information between the cerebral cortex and the rest of the body. Additionally, several cranial nerves originate from the brainstem, including those that control eye movements, facial movements, and hearing.

Reserpine is an alkaloid derived from the Rauwolfia serpentina plant, which has been used in traditional medicine for its sedative and hypotensive effects. In modern medicine, reserpine is primarily used to treat hypertension (high blood pressure) due to its ability to lower both systolic and diastolic blood pressure.

Reserpine works by depleting catecholamines, including norepinephrine, epinephrine, and dopamine, from nerve terminals in the sympathetic nervous system. This leads to a decrease in peripheral vascular resistance and heart rate, ultimately resulting in reduced blood pressure.

Reserpine is available in various forms, such as tablets or capsules, and is typically administered orally. Common side effects include nasal congestion, dizziness, sedation, and gastrointestinal disturbances like diarrhea and nausea. Long-term use of reserpine may also lead to depression in some individuals. Due to its potential for causing depression, other antihypertensive medications are often preferred over reserpine when possible.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Vasoconstriction is a medical term that refers to the narrowing of blood vessels due to the contraction of the smooth muscle in their walls. This process decreases the diameter of the lumen (the inner space of the blood vessel) and reduces blood flow through the affected vessels. Vasoconstriction can occur throughout the body, but it is most noticeable in the arterioles and precapillary sphincters, which control the amount of blood that flows into the capillary network.

The autonomic nervous system, specifically the sympathetic division, plays a significant role in regulating vasoconstriction through the release of neurotransmitters like norepinephrine (noradrenaline). Various hormones and chemical mediators, such as angiotensin II, endothelin-1, and serotonin, can also induce vasoconstriction.

Vasoconstriction is a vital physiological response that helps maintain blood pressure and regulate blood flow distribution in the body. However, excessive or prolonged vasoconstriction may contribute to several pathological conditions, including hypertension, stroke, and peripheral vascular diseases.

A serotonin receptor agonist is an agonist of one or more serotonin receptors. They activate serotonin receptors in a manner ... Activation of the 5-HT2A receptor is also implicated in serotonin syndrome caused by indirect serotonin receptor agonists like ... Most of these drugs also act as agonists of other serotonin receptors. Not all 5-HT2A receptor agonists are psychoactive. The ... AS-19 is a 5-HT7 receptor agonist that has been used in scientific research. Serotonin receptor antagonist "Eltoprazine - Elto ...
A serotonin antagonist, or serotonin receptor antagonist, is a drug used to inhibit the action of serotonin and serotonergic ... Wikimedia Commons has media related to Serotonin receptor antagonists. Serotonin+Antagonists at the U.S. National Library of ... Although some non-selective serotonin antagonists may have a particular affinity for a specific 5-HT receptor (and thus may be ... drugs at serotonin (5-HT) receptors. Antagonists of the 5-HT2A receptor are sometimes used as atypical antipsychotics (contrast ...
Nichols, DE; Nichols, CD (2008). "Serotonin receptors". Chemical Reviews. 108 (5): 1614-41. doi:10.1021/cr078224o. PMID ... They are an extension of selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors ( ... A serotonin-norepinephrine-dopamine reuptake inhibitor (SNDRI), also known as a triple reuptake inhibitor (TRI), is a type of ... Media related to Serotonin-norepinephrine-dopamine reuptake inhibitors at Wikimedia Commons (All articles with bare URLs for ...
The 5-HT receptors, the receptors for serotonin, are located on the cell membrane of nerve cells and other cell types in ... Serotonin can also bind to auto-receptors on the presynaptic neuron to regulate the synthesis and release of serotonin. ... Serotonin primarily acts through its receptors and its effects depend on which cells and tissues express these receptors. ... Since location of serotonin receptors contribute to behavioral responses, this suggests serotonin is part of specific pathways ...
Mechanisms of serotonergic drugs implicated in serotonin syndrome... Stimulation of serotonin receptors... LSD U. Braun U; ... The syndrome is caused by increased serotonin in the CNS. It was originally suspected that agonism of 5-HT1A receptors in ... Nisijima K, Yoshino T, Yui K, Katoh S (January 2001). "Potent serotonin (5-HT)(2A) receptor antagonists completely prevent the ... Serotonin toxicity has a rapid onset after the administration of a serotonergic drug and responds to serotonin blockade such as ...
Serotonin binds a number of receptors, including the 5-HT3 receptors, which are ligand-gated ion channels that allow the ... This molecule binds multiple postsynaptic receptors including the NMDA receptor, AMPA receptor, and kainate receptors. These ... Metabotropic receptors, which are also called G-protein-coupled receptors, act on an ion channel through the intracellular ... Serotonin". Brain Mind Center at Alpha Online. R. Bowen (2008). "Histamine and Histamine Receptors". "Excitotoxicity and Cell ...
The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled ... "Primary structure of the human platelet serotonin 5-HT2A receptor: identify with frontal cortex serotonin 5-HT2A receptor". ... 5-HT is short for 5-hydroxy-tryptamine or serotonin. This is the main excitatory receptor subtype among the GPCRs for serotonin ... Feng J, Cai X, Zhao J, Yan Z (September 2001). "Serotonin receptors modulate GABA(A) receptor channels through activation of ...
Wu PH, Gurevich N, Carlen PL (1988). "Serotonin-1A receptor activation in hippocampal CA1 neurons by 8-hydroxy-2-(di-n- ... 5-HT2C receptors (Ki = 52.48 nM) 5-HT4 receptors (Ki = 501.18 nM) 5-HT6 receptors (Ki = 69.18 nM) 5-HT7 receptors (Ki = 5.01 nM ... 5-HT1B receptors (Ki = 35 nM) 5-HT1D receptors (Ki = 7.3 nM) 5-HT1E receptors (Ki = 3151 nM) 5-HT1F receptors (Ki = 1166 nM) 5- ... Roth, Brian (2006). The serotonin receptors. Humana Press. p. 133. ISBN 978-1-58829-568-2. S. Nigra / Domenech T, et al., 1997 ...
Tryptamine acts as a non-selective serotonin receptor agonist to activate serotonin receptors, and a serotonin-norepinephrine- ... They act via serotonin 2A receptor agonism. When compounds bind to serotonin 5-HT2A receptors, they modulate the activity of ... As a result of containing a phenethylamine group LSD agonises dopamine receptors as well as serotonin receptors, making it more ... Mechanisms of serotonergic drugs implicated in serotonin syndrome... Stimulation of serotonin receptors... LSD "AMT". DrugWise. ...
"Entrez Gene: HTR1D 5-hydroxytryptamine (serotonin) receptor 1D". Hoyer, D., 2019. Serotonin receptors nomenclature. The ... "Chromosomal mapping of A1 and A2 adenosine receptors, VIP receptor, and a new subtype of serotonin receptor". Genomics. 11 (1 ... 5-hydroxytryptamine (serotonin) receptor 1D, also known as HTR1D, is a 5-HT receptor, but also denotes the human gene encoding ... "Molecular cloning and functional characterization of a human 5-HT1B serotonin receptor: a homologue of the rat 5-HT1B receptor ...
ISBN 978-0-07-148869-3. Olivier B, van Wijngaarden I, Soudijn W (10 July 1997). Serotonin Receptors and their Ligands. Elsevier ... Phenoxybenzamine also has irreversible antagonist/weak partial agonist properties at the serotonin 5-HT2A receptor. Due to its ... They are used as antihypertensives because they block alpha-receptor-mediated vasoconstriction. The block on alpha-2 receptors ... Based on known information about the structures of these receptors, it likely involves attack by the cysteine at position 3.36 ...
... serotonin or various neurotransmitters; temporal lobe dysfunction or seizures; the NMDA receptor; activation of the limbic ...
Mohr P, Decker M, Enzensperger C, Lehmann J (2006). "Dopamine/serotonin receptor ligands. 12(1): SAR studies on hexahydro- ... It belongs to the D1-like receptor family along with the D1 receptor subtype. D5 receptor is a subtype of the dopamine receptor ... D5 receptor is highly homologous to the D1 receptor. Their amino acid sequences are 49% to 80% identical. D5 receptor has a ... It has been shown that M1-Muscarinic receptors cooperate with D5 receptors and beta-2 adrenergic receptors to consolidate cued ...
They act by antagonizing serotonin receptors such as 5-HT2A and inhibiting the reuptake of serotonin, norepinephrine, and/or ... and 5-HT3 receptors, and acts as a partial agonist of the human 5-HT2A and 5-HT2C receptors. Serotonin modulator and stimulator ... as it is a serotonin-dopamine reuptake inhibitor and 5-HT2A and 5-HT2C receptor antagonist, but not grouped as such. Lubazodone ... and H1 receptors, as partial agonists of the 5-HT1A receptor, and as inhibitors of the transporters. mCPP is an antagonist of ...
Amphetamine, for example, is an indirect agonist of postsynaptic dopamine, norepinephrine, and serotonin receptors in each ... Serotonin: Similarly, after some research suggested that drugs that block the recycling, or reuptake, of serotonin seemed to ... Synapses containing receptors with excitatory effects are called Type I synapses, while Type II synapses contain receptors with ... Orexin receptor antagonists a new class of sleeping pill, National Sleep Foundation. "Acetylcholine Receptors". Ebi.ac.uk. ...
Olivier B, van Wijngaarden I, Soudijn W (10 July 1997). Serotonin Receptors and their Ligands. Elsevier. pp. 149-. ISBN 978-0- ... Methylergometrine is an agonist or antagonist to serotonin, dopamine, and α-adrenergic receptors. Its specific binding and ... Methylergometrine is an agonist of the serotonin 5-HT2B receptor and is maybe linked to cardiac valvulopathy. Methylergometrine ... specific contraction of smooth uterus muscle via serotonin 5-HT2A receptors, while blood vessels are affected to a lesser ...
... has also been shown to act as a serotonin 5-HT1A and 5-HT1B receptor antagonist, similarly to propranolol and ... May 1993). "(-)Tertatolol is a potent antagonist at pre- and postsynaptic serotonin 5-HT1A receptors in the rat brain". Naunyn- ... Soudijn, W.; Olivier, Berend; Wijngaarden, I. van (1997). Serotonin receptors and their ligands. Amsterdam: Elsevier. ISBN 0- ... molecular field analysis method of the affinity of beta-adrenoreceptor blocking agents for 5-HT1A and 5-HT1B receptors". Eur. J ...
"Serotonin receptors in the human brain--IV. Autoradiographic mapping of serotonin-2 receptors". Neuroscience. 21 (1): 123-139. ... With tritium (3H) radioactively labeled ketanserin is used as a radioligand for serotonin 5-HT2 receptors, e.g. in receptor ... Eastwood SL, Burnet PW, Gittins R, Baker K, Harrison PJ (November 2001). "Expression of serotonin 5-HT(2A) receptors in the ... This radio-labeling has enabled the study of serotonin 5-HT2A receptor distribution in the human brain. An autoradiography ...
Olivier B, van Wijngaarden I, Soudijn W (1997). Serotonin Receptors and their Ligands. Elsevier. p. 332. ISBN 978-0-444-82041-9 ... H1 receptor antagonists, Muscarinic antagonists, Nitriles, Selective serotonin reuptake inhibitors, Tricyclic antidepressants, ... and D2 receptors; the H1 receptor has not been assayed, but cyanodothiepin is less sedating than the related drug cianopramine ... It also has moderate affinity for the muscarinic acetylcholine receptors and weak/negligible affinity for the α1-adrenergic, 5- ...
Berend Olivier (10 July 1997). Serotonin Receptors and Their Ligands. Elsevier. p. 167. ISBN 978-0-444-82041-9. Retrieved 6 May ... Glemanserin (INN) (developmental code name MDL-11,939) is a drug which acts as a potent and selective 5-HT2A receptor ... 1988). "Pharmacological effects of MDL 11,939: A selective, centrally acting antagonist of 5-HT2 receptors". Drug Development ... glemanserin resulted in the development of the widely used and even more potent and selective 5-HT2A receptor antagonist ...
With increased receptor selectivity compared to TCAs, undesired effects such as poor tolerability are avoided. Serotonin is ... Selective serotonin reuptake inhibitors (SSRIs) selectively inhibit the reuptake of serotonin and are a widely used group of ... A serious, but rare, side effect of SNRIs is serotonin syndrome, which is caused by an excess of serotonin in the body. ... Agents with dual serotonin and norepinephrine reuptake inhibition (SNRIs) are sometimes called non-tricyclic serotonin and ...
Glennon RA, Dukat M, Westkaemper RB (2000-01-01). "Serotonin Receptor Subtypes and Ligands". American College of ... Serotonin receptor agonists, Tryptamines, Phenols, 5-HT3 agonists, All stub articles, Nervous system drug stubs). ... "Selectivity of sterically fixed tryptamine and 5-methoxytryptamine derivatives for serotonin receptor subtypes, II: Structure- ... closely related to the neurotransmitter serotonin which acts as a moderately selective full agonist at the 5-HT3 receptor. 5- ...
5HT2A is the serotonin receptor gene. The serotonin 2A receptor gene has been associated with both hyper locomotion, ADHD, as ... HTR2B a serotonin receptor gene. CTNNA2 encodes for a brain-expressed α-catenin that has been associated with Excitement- ... Another theory suggests that binge eating involves reward seeking, as evidenced by decreased serotonin binding receptors of ... DRD4 is the dopamine D4 receptor gene and is associated with ADHD and novelty seeking behaviors. It has been proposed that ...
These include alpha-2 adrenergic and 5-HT receptors; serotonin and norepinephrine transporters (SERT, NET); inflammatory ... Factors contributing to this occurrence include genetics, psychological stress, and altered receptor sensitivity at the gut ...
"Antiemetic Serotonin-5-HT3 Receptor Blockers". StatPearls. PMID 30020690. "List of 5HT3 receptor antagonists ( ... 5-HT3A antagonists have been shown to help prevent nausea and vomiting as well as the negative effects of serotonin in the G.I ... 5hydroxytryptamine receptor antagonists)". Al Saqr, Ahmed; Annaji, Manjusha; Poudel, Ishwor; Aldawsari, Mohammed F.; Alrbyawi, ...
"Antiemetic Serotonin-5-HT3 Receptor Blockers". StatPearls. StatPearls Publishing. PMID 30020690. "List of 5HT3 receptor ... Leonurine weakly binds to multiple GABA receptor sites including the GABA-A receptor. but shows much higher affinity as a 5- ... Rauwald, H. W.; Kuchta, K.; Savtschenko, A.; Brückner, A.; Rusch, C.; Appel, K. (August 2013). "GABAA receptor binding assays ... Leonurine has demonstrated antidepressant-like action and has been shown to increase levels of serotonin, noradrenaline, and ...
... affects certain serotonin (5-HT) receptors; in particular, it has been shown to antagonize the 5-HT3 receptor, which is ... Further specific receptors it has been demonstrated to function on are NMDA and the D1 dopamine receptor. Cocaine also blocks ... Filip M, Bubar MJ, Cunningham KA (September 2004). "Contribution of serotonin (5-hydroxytryptamine; 5-HT) 5-HT2 receptor ... An overabundance of 5-HT3 receptors is reported in cocaine-conditioned rats, though 5-HT3's role is unclear. The 5-HT2 receptor ...
"Serotonin and serotonin receptors in hallucinogen action". Handbook of the Behavioral Neurobiology of Serotonin. Handbook of ... While ergometrine acts at α-adrenergic, dopaminergic, and serotonin receptors (the 5-HT2 receptor), it exerts on the uterus ( ... This can be attributed to activation of 5-HT2A receptors. Ergometrine is an agonist of the serotonin 5-HT2B receptor and has ... Serotonin receptor agonists, World Health Organization essential medicines, Wikipedia medicine articles ready to translate, ...
It acts on serotonin and dopamine receptors. Specifically, it is an agonist of dopamine D2-like receptors and serotonin 5-HT6 ... receptors and an antagonist of serotonin 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors.[citation needed] It also has affinity for ... 177-. ISBN 978-94-011-4439-1. Closse A (May 1983). "[3H]Mesulergine, a selective ligand for serotonin-2 receptors". Life Sci. ... Serotonin receptor antagonists, Sulfamides, All stub articles, Nervous system drug stubs). ...
"Serotonin and serotonin receptors in hallucinogen action". Handbook of the Behavioral Neurobiology of Serotonin. Handbook of ... Ergine interacts with serotonin, dopamine, and adrenergic receptors similarly to but with lower affinity than lysergic acid ... The psychedelic effects of ergine can be attributed to activation of serotonin 5-HT2A receptors. The biosynthetic pathway to ... f.): receptor profiling of lysergic acid amide and other potential psychedelic LSD-like compounds by computational and binding ...
These drugs block dopamine receptors and some also block serotonin receptors (such as chlorpromazine, the first antipsychotic ... Serotonergic psychedelics act through modulation of serotonin receptors. Most of these drugs share a high affinity for the 5- ... All three of these classes each have their own receptor-mu, kappa, and delta. Opioids will bind to the receptor for the ... Convergence upon the GABAA receptor is why tolerance for one drug in the group will most likely cause cross-tolerance for the ...
This gene is a member of the family of human serotonin receptors, which are G protein-coupled receptors that stimulate cAMP ... 5-HT receptor 5-HT1 receptor 5-HT2 receptor 5-HT3 receptor 5-HT5 receptor 5-HT6 receptor 5-HT7 receptor GRCh38: Ensembl release ... "Entrez Gene: HTR4 5-hydroxytryptamine (serotonin) receptor 4". Hegde SS, Eglen RM (October 1996). "Peripheral 5-HT4 receptors ... Cichon S, Kesper K, Propping P, Nöthen MM (1998). "Assignment of the human serotonin 4 receptor gene (HTR4) to the long arm of ...
... interacts with serotonin, adrenergic, and dopamine receptors. It is an agonist of serotonin receptors including the ... Ergotamine is an agonist of the serotonin 5-HT2B receptor and has been associated with cardiac valvulopathy. Despite acting as ... Pytliak M, Vargová V, Mechírová V, Felšöci M (2011). "Serotonin receptors - from molecular biology to clinical applications". ... May 2014). "Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic ...
A serotonin receptor agonist is an agonist of one or more serotonin receptors. They activate serotonin receptors in a manner ... Activation of the 5-HT2A receptor is also implicated in serotonin syndrome caused by indirect serotonin receptor agonists like ... Most of these drugs also act as agonists of other serotonin receptors. Not all 5-HT2A receptor agonists are psychoactive. The ... AS-19 is a 5-HT7 receptor agonist that has been used in scientific research. Serotonin receptor antagonist "Eltoprazine - Elto ...
5-HT3 receptors). Recombinant expression of the only identified receptor subunit (5-HT3A) yields functional 5-HT3 receptors. ... The neurotransmitter serotonin (5-hydroxytryptamine or 5-HT) mediates rapid excitatory responses through ligand-gated channels ... The 5-HT3B subunit is a major determinant of serotonin-receptor function Nature. 1999 Jan 28;397(6717):359-63. doi: 10.1038/ ... 5-HT3 receptors). Recombinant expression of the only identified receptor subunit (5-HT3A) yields functional 5-HT3 receptors. ...
Selective serotonin reuptake inhibitors. Class Summary. The selective serotonin reuptake inhibitors (SSRIs) work by blocking ... Alpha-1 Receptor Antagonists. Class Summary. Novel pilot studies in combat veterans suggest alpha-1 antagonists have efficacy ... It is a potent, selective inhibitor of neuronal serotonin reuptake. It also has a weak effect on norepinephrine and dopamine ... Fluoxetine selectively inhibits presynaptic serotonin reuptake with minimal or no effect on the reuptake of norepinephrine or ...
A Paradoxical Locomotor Response in Serotonin 5-HT2C Receptor Mutant Mice Message Subject (Your Name) has forwarded a page to ... A Paradoxical Locomotor Response in Serotonin 5-HT2C Receptor Mutant Mice. Lora K. Heisler and Laurence H. Tecott ... A Paradoxical Locomotor Response in Serotonin 5-HT2C Receptor Mutant Mice ... A Paradoxical Locomotor Response in Serotonin 5-HT2C Receptor Mutant Mice ...
Clozapine binds to dopamine D2 receptor with 20 times lower affinity than for serotonin-2 receptor. ... Atypical antipsychotics (serotonin dopamine receptor antagonists). Class Summary. Atypical (or second generation) ... Benzodiazepines bind to a specific benzodiazepine receptor on GABA receptor complex, thereby increasing GABA affinity for its ... Acetylcholine receptor inhibitors. Class Summary. The most promising development for treating tardive dystonia and all other ...
Metabotropic Glutamate Receptor Activation Modulates Kainate and Serotonin Calcium Response in Astrocytes. Laurel L. Haak, H. ... 1995) Serotonin receptors: subtypes, functional responses, and therapeutic relevance. Pharmacol Ther 66:339-368. ... 1995) 5HT6 and 5HT7 serotonin receptors: molecular biology and pharmacology. Neurotransmissions 9:1-5. ... 5HT receptors are found throughout the brain, and high densities are found in the SCN and cortex. Many 5HT receptors seem to be ...
Mansour TE Novel Serotonin Receptors In Fasciola: Characterization By Studies On Adenylate Cyclase Activation And [3h]LSD ... As a result, serotonin receptors in the flukes represent sites that may be amenable to selective manipulation by new ... Serotonin (5-HT) receptors coupled to adenylate cyelase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] in the liver fluke ... "Novel Serotonin Receptors In Fasciola: Characterization By Studies On Adenylate Cyclase Activation And [3h]LSD Binding". ...
Most of the d-LSD- binding sites may be associated with a post-synaptic serotonin receptor, instead of presynaptic recepors ... "D-LSD Binding to Brain Homogenates: Possible Relationship to Serotonin Receptors" Life Sci. 1974;15:1935-1944. ... Possible Relationship to Serotonin Receptors Life Sci 1974 15:1935-1944 ...
... serotonin uptake. Our evidence suggests that D-[3H]LSD binds to post-synaptic serotonin receptors. ... "Stereospecific binding of D-lysergic Acid Diethylamide (LSD) To Brain Membranes: Relationship To Serotonin Receptors". ... Destruction of presynaptic serotonin neuronal elements by lesioning the midbrain raphe nuclei does not change the affinity or ... Serotonin is the only putative neurotransmitter with affinity (EDso = 3 mcM) for the LSD binding site, and psychotropically ...
... serotonin receptors (5-HTR) have been considered a major target of drugs, and the 5-HT1B and 5-HT1D agonists h ... Since the early days of migrainous research, serotonin receptors (5-HTR) have been considered a major target of drugs, and the ... Outlining migrainous through dihydroergotamine-serotonin receptor interactions using quantum biochemistry. Posted by Jose X. ... as well as the influence of each protein segment to DHE-serotonin receptor binding. Finally, for completeness, we compared our ...
5HT (Serotonin) 2A Receptor, 5HT2A R, 100 ul - 1 vial ist auf Lager und wird versandt, sobald es wieder verfügbar ist ... The MSDS of 5HT for (Serotonin) is available from Karlan upon request. ... The MSDS of 5HT for (Serotonin) is available from Karlan upon request. ... Serotonin) is available from Karlan upon request. ...
Potent and selective serotonin 5-HT1B receptor agonist €105.00 1089 Desmethyl-S 14506 Building Block for labelled 5-HT1A ... The GPCR-A17 class includes all 5-HT2 and 5-HT6 receptors, while 5-HT1, 5-HT4 5HT-5 and 5HT7 receptors form an individual class ... Based on a phylogenetic analysis, the family of serotonin (5-HT) receptors should be separated into two different classes among ... Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands. Gen. ...
Receptor-mediated mutual-effect amplification elicited by phenylephrine and serotonin in isolated rabbit aorta.. G J Christ, J ... Receptor-mediated mutual-effect amplification elicited by phenylephrine and serotonin in isolated rabbit aorta.. G J Christ, J ... Receptor-mediated mutual-effect amplification elicited by phenylephrine and serotonin in isolated rabbit aorta.. G J Christ, J ... Receptor-mediated mutual-effect amplification elicited by phenylephrine and serotonin in isolated rabbit aorta. ...
... and Type 3 Serotonin Receptors. Carla V. Rothlin, Eleonora Katz, Miguel Verbitsky and A. Belén Elgoyhen ... and Type 3 Serotonin Receptors. Carla V. Rothlin, Eleonora Katz, Miguel Verbitsky and A. Belén Elgoyhen ... and Type 3 Serotonin Receptors. Carla V. Rothlin, Eleonora Katz, Miguel Verbitsky and A. Belén Elgoyhen ... and the type 3 serotonin receptor antagonist ICS-205,930 block ACh-evoked currents in α9-injected Xenopus laevis oocytes with ...
Serotonin 2A receptors (HTR2A) play a crucial role in the therapeutic response to antidepressant. The activity of serotonergic ... Serotonin 2A receptors (HTR2A) play a crucial role in the therapeutic response to antidepressant. The activity of serotonergic ... Serotonin 2A receptor polymorphism rs3803189 mediated by dynamics of default mode network: a potential biomarker for ... Patients received selective serotonin reuptake inhibitors (SSRIs) treatment with conventional dose in the next two weeks.. We ...
However, early warning signs suggest that serotonin receptor antagonists can cause harm, including arrhythmia. Our objective is ... such as serotonin receptor antagonists, is often prescribed for patients experiencing these symptoms. ... that decrease the cardiac risk associated with serotonin receptor antagonists among surgery and chemotherapy patients. Eligible ... of different strategies that can be used to mitigate cardiac risk amongst patients taking serotonin antagonist receptors. Such ...
Cortical Serotonin Type-2 Receptor Density in Parents of Children with Autism Spectrum Disorders Academic Article ...
Tag: serotonin receptors. Serotonin (5-HT): receptors, agonists and antagonists. Serotonin receptors characteristics, ...
Affinity of (±)-Pindolol, (-)-Penbutolol, and (-)-Tertatolol for Pre- and Postsynaptic Serotonin 5-HT1A Receptors in Human and ... Affinity of (±)-Pindolol, (-)-Penbutolol, and (-)-Tertatolol for Pre- and Postsynaptic Serotonin 5-HT1A Receptors in Human and ...
... noradrenergic transmission by serotonin reuptake inhibitors: a microdialysis study in rat brain Egileak: Fernández-Pastor B,... ... Involvement of serotonin 5-HT3 receptors in the modulation of ... Involvement of serotonin 5-HT3 receptors in the modulation of ... PUBLICACION_Involvement_of_serotonin_5-HT3_receptors_in_the_modulation_of_noradrenergic_transmission_by_serotonin_reuptake_ ... noradrenergic transmission by serotonin reuptake inhibitors: a microdialysis study in rat brain Egileak:. Fernández-Pastor B, ...
... Medical Test. Diseases (3). Access to Serotonin Receptor HTR2A Genotyping is restricted. ...
... receptors has been hypothesized in the etiology and/or treatment of anxiety, depression, sleep disorders,... ... Regulation of Brain Serotonin Receptors. Teitler, Milt / Albany Medical College. NIH 1991. R01 MH. Regulation of Brain ... Serotonin Receptors. Teitler, Milt / Albany Medical College. NIH 1990. R01 MH. Regulation of Brain Serotonin Receptors. Titeler ... Regulation of Brain Serotonin Receptors. Titeler, Milt / Albany Medical College. NIH 1988. R01 MH. Regulation of Radiolabelled ...
A wealth of evidence implicates the serotonin 1A (5-HT1A) receptor in the pathophysiology of depression. Stimulation of the 5- ... We highlight that pre- and post-synaptic 5-HT1A receptors may have divergent roles in the pathophysiology and treatment of ... We describe how experimental medicine approaches can be helpful in profiling the effects of 5-HT1A receptor modulation on the ... HT1A receptor is an existing therapeutic target for treating depression and anxiety, using drugs such as buspirone and ...
... for the Treatment of Parkinsons Disease [ Vol. 23 , Issue. 7 ] ... We reported recently that stimulation of serotonin 1A (5-HT1A) receptors on astrocytes promoted astrocyte proliferation and ... Next, we review neuroprotective effects induced by stimulation of 5-HT1A receptors on astrocytes. The review discusses new ... 5-HT,sub,1A,/sub, receptor, S100β, astrocyte, Parkinsons disease, neuroprotection, dopaminergic neuron. ...
Early and Long-Term Impaired T Lymphocyte Immune Reconstitution after Wire Blood Transplantation with Antithymocyte Globulin. preceding CB engraftment [20/77 (26%), median first recovery 12 and second 26.5 days] or no. ...
866-386-3500 or 715-386-8407 ...
Serotonin receptors control mood, emotion, and many other behaviors, and are targets for many important drugs ... Molecule of the Month: Serotonin Receptor. Serotonin receptors control mood, emotion, and many other behaviors, and are targets ... Serotonin Receptors (PDB entries 4iar and 4ib4). Researchers are trying to make serotonin-mimicking drugs more specific by ... Like the serotonin receptor, the serotonin transporter is the target of many drugs used to treat depression. For instance, the ...
5HT (Serotonin) 2A Receptor, 5HT2A R, 100 ul - 1 vial ist auf Lager und wird versandt, sobald es wieder verfügbar ist ... The MSDS of 5HT for (Serotonin) is available from Karlan upon request. ... The MSDS of 5HT for (Serotonin) is available from Karlan upon request. ... Serotonin) is available from Karlan upon request. ...
... behavioural and pharmacological analyses of the selective serotonin 1B agonist CP-94,253 ... 5-HT1B receptors modulate components of satiety in the rat: ... 5-HT1B receptors modulate components of satiety in the rat: ... behavioural and pharmacological analyses of the selective serotonin 1B agonist CP-94,253. ...
M G , Rochford , J J & Heisler , L K 2018 , Nucleus of the Solitary Tract Serotonin 5-HT 2C Receptors Modulate Food Intake ... Nucleus of the Solitary Tract Serotonin 5-HT2C Receptors Modulate Food Intake. ... Nucleus_of_the_Solitary_Tract_Serotonin_5_HT2C_Receptors_Modulate_Food_Intake.pdf (4.527Mb) ...
  • Our results will provide information regarding the utility of different strategies that can be used to mitigate cardiac risk amongst patients taking serotonin antagonist receptors. (biomedcentral.com)
  • In order to address this question the distribution and regulation of the 125I-DOI labelled receptors will be determined and compared with the distribution and regulation of 3H-ketanserin (an antagonist) labelled 5-HT2 receptors in multiple brain regions. (grantome.com)
  • d) In order to investigate the role of the brain 5HT1A receptor systems in the actions of antidepressants and novel anxiolytics the affects of these drugs on 3H-BMY 7378 (the first 5HT1A receptor antagonist radioligand), and on the associated 5HT1A receptor-mediated inhibition of adenylate cyclase activity will be monitored. (grantome.com)
  • Can serotonin 5-HT3 receptor antagonist ondansetron (Zofran) prevent opioid withdrawral symptoms? (opioids.wiki)
  • [1] If this is not sufficient, a serotonin antagonist such as cyproheptadine may be used. (wikipedia.org)
  • In the absence of subtype selective ligands, action at the 5-HT$\sb7$ receptor is currently defined as activation by the endogenous ligand serotonin in the presence of the 5-HT$\rm\sb{1A}$ antagonist ($-$)pindolol and the 5-HT$\rm\sb{1D}$ agonist sumatriptan. (uconn.edu)
  • Chronic treatment of the tectum with SB-224289, a selective antagonist of 5-HT 1B receptors, disrupted the topographic map. (uky.edu)
  • In contrast, exposure to WAY-100635, a selective antagonist of 5-HT 1A receptors, refined it. (uky.edu)
  • the dopamine hypersensitivity hypothesis and the serotonin-dopamine antagonist hypothesis. (who.int)
  • The neuroleptic-induced TD with those who did serotonin-dopamine antagonist hypothesis not develop it under comparatively similar maintains that drugs which have a high conditions. (who.int)
  • Travelers taking atovaquone-proguanil for malaria prophylaxis should avoid using cimetidine (an H2 receptor antagonist) because this medication interferes with proguanil metabolism. (cdc.gov)
  • Our objective is to identify the most effective interventions that mitigate the risk of adverse cardiac events associated with serotonin receptor antagonists in patients undergoing surgery and chemotherapy through a systematic review and network meta-analysis. (biomedcentral.com)
  • It is a potent, selective inhibitor of neuronal serotonin reuptake. (medscape.com)
  • However, the conductance of these homomeric receptors (sub-picosiemens) is too small to be resolved directly, and contrasts with a robust channel conductance displayed by neuronal 5-HT3 receptors (9-17 pS). (nih.gov)
  • Neuronal 5-HT3 receptors also display a permeability to calcium ions and a current-voltage relationship that differ from those of homomeric receptors. (nih.gov)
  • Destruction of presynaptic serotonin neuronal elements by lesioning the midbrain raphe nuclei does not change the affinity or maximum number of detectable in vitro D-[3H]LSD binding sites. (erowid.org)
  • The roles that the multiple 5HT receptor systems play in brain function are still largely unknown, as are the neuronal mechanisms through which 5HT receptors alter cellular function. (grantome.com)
  • Circadian hypothalamic and limbic hippocampal in-vitro responses to agents or antidepressants consistent with 5-HT$\sb7$ receptor pharmacology were investigated using: Fos immunohistochemistry as a marker of neuronal activation and 5-HT$\sb7$ receptor binding as a measure of receptor regulation changes. (uconn.edu)
  • Our evidence suggests that D-[3H]LSD binds to post-synaptic serotonin receptors. (erowid.org)
  • Most of the d-LSD- binding sites may be associated with a post-synaptic serotonin receptor, instead of presynaptic recepors with serotonergic inputs. (erowid.org)
  • Serotonergic psychedelics like psilocybin, LSD, and mescaline act as 5-HT2A receptor agonists. (wikipedia.org)
  • The 25-NB (NBOMe) series is a family of phenethylamine serotonergic psychedelics that, unlike other classes of serotonergic psychedelics, act as highly selective 5-HT2A receptor agonists. (wikipedia.org)
  • Most Axon Ligands™ in this category of compounds are labeled antipsychotic (typical, or atypical), since many of the common drugs to treat this class of mental disorders show affinity for both dopaminergic and serotonergic receptors (among several others). (axonmedchem.com)
  • Serotonin receptors characteristics, classification and drugs that influence serotonergic transmission. (pharmacologycorner.com)
  • Serotonin syndrome ( SS ) is a group of symptoms that may occur with the use of certain serotonergic medications or drugs . (wikipedia.org)
  • Serotonin syndrome is typically caused by the use of two or more serotonergic medications or drugs. (wikipedia.org)
  • The specific serotonergic receptor mechanisms invoked in the modulation of circadian rhythms, however, are not clear. (uconn.edu)
  • This work hypothesizes that the 5-HT$\sb7$ receptor is involved in serotonergic regulation of circadian rhythmicity and is mechanistically implicated in post-synaptic actions of antidepressant treatment. (uconn.edu)
  • The results obtained in these investigations suggest that Fos expression in the hypothalamus and hippocampus is acutely induced in response to serotonergic agents, including antidepressants, in a profile consistent with the 5-HT$\sb7$ receptor and that these responses are desensitized after chronic administration. (uconn.edu)
  • [6] (Many of these symptoms may be side effects of the drug or drug interaction causing excessive levels of serotonin rather than an effect of elevated serotonin itself. (wikipedia.org)
  • In some cases, however, serotonin may inhibit dopamine production, which means that low levels of serotonin can lead to an overproduction of dopamine. (medicalnewstoday.com)
  • In addition, they found that people with autism spectrum disorder are more likely to have lower levels of serotonin in certain areas of the brain. (healthline.com)
  • Drugs that increase extracellular serotonin levels such as serotonin reuptake inhibitors (e.g., fluoxetine, venlafaxine), serotonin releasing agents (e.g., fenfluramine, MDMATooltip methylenedioxymethamphetamine), and monoamine oxidase inhibitors (e.g., phenelzine, moclobemide) are indirect non-selective serotonin receptor agonists. (wikipedia.org)
  • The selective serotonin reuptake inhibitors (SSRIs) work by blocking the reuptake of serotonin. (medscape.com)
  • Patients received selective serotonin reuptake inhibitors (SSRIs) treatment with conventional dose in the next two weeks. (physiciansweekly.com)
  • However, activation of 5-HT1A raphe autoreceptors has also been suggested to be responsible for the delay in the therapeutic action of conventional antidepressants such as selective serotonin reuptake inhibitors (SSRIs). (ox.ac.uk)
  • Predictive Models to Identify Small Molecule Activators and Inhibitors of Opioid Receptors. (acs.org)
  • While low serotonin doesn't necessarily cause depression, increasing serotonin through the use of selective serotonin reuptake inhibitors (SSRIs) is one of the most effective treatments for depression . (healthline.com)
  • Clozapine binds to dopamine D2 receptor with 20 times lower affinity than for serotonin-2 receptor. (medscape.com)
  • Serotonin is the only putative neurotransmitter with affinity (EDso = 3 mcM) for the LSD binding site, and psychotropically active alkylindoleamines are also potent displacing agents. (erowid.org)
  • The regional distribution in monkey brain of D-[3H]LSD binding and high affinity [3H]serotonin uptake, a marker for pre-synaptic serotonin nerve terminal density, shows some correlation. (erowid.org)
  • Scatchard analysis indicated multiple binding sites which, when resolved into two components, gave for the high affinity site an apparent dissociation constant of 25 nM and a receptor concentration of 160 fmoles/mg protein. (erowid.org)
  • c) Preliminary studies have demonstrated that 125I-DOI labels either alternatively, a unique 5HT2 receptor with high affinity for 5HT2 agonists or, alternatively, a unique 5HT2 receptor distinct from that labelled by 3H-ketanserin. (grantome.com)
  • Some of these prokinetic agents, such as mosapride and cisapride , classic benzamides , have only moderate affinity for 5HT 4 receptors. (wikipedia.org)
  • Prucalopride , a first in class benzofuran , is a selective, high affinity serotonin (5-HT 4 ) receptor agonist that stimulates colonic mass movements, which provide the main propulsive force to defecation . (wikipedia.org)
  • Other molecules, including macrolides such as mitemcinal and erythromycin , have affinity for the motilin receptor where they act as agonists resulting in prokinetic properties. (wikipedia.org)
  • Drugs with serotoninergic properties have the ability to increase the level of serotonin or to act as direct agonists of postsynaptic serotonin receptors in the central nervous system (CNS). (medscape.com)
  • The results indicate that [3H]LSD can be used to label the 5-HT receptors coupled to adenylate cyclase activity. (erowid.org)
  • Alterations in the amount of 5-HT1D receptors, the interaction of the 5HT1D receptor with its associated GTP-binding protein, and the coupling between 5HT1D receptors and brain adenylate cyclase activity due to these perturbations will be monitored. (grantome.com)
  • The activity of this receptor is mediated by G proteins that inhibit adenylate cyclase activity. (osenses.com)
  • Dopamine and serotonin are chemical messengers, or neurotransmitters, that help regulate many bodily functions. (medicalnewstoday.com)
  • People sometimes refer to dopamine and serotonin as the "happy hormones" due to the roles they play in regulating mood and emotion. (medicalnewstoday.com)
  • Dopamine and serotonin are involved in similar bodily processes, but they operate differently. (medicalnewstoday.com)
  • This article looks at the differences and similarities between dopamine and serotonin, their relationship, and their links with medical conditions and overall health. (medicalnewstoday.com)
  • Although both dopamine and serotonin relay messages between neurons and affect mood and concentration, they have some other distinct functions. (medicalnewstoday.com)
  • Both dopamine and serotonin are neurotransmitters with positive associations. (medicalnewstoday.com)
  • As neuromodulators, dopamine and serotonin also send signals that last longer than the signals of other neurotransmitters. (medicalnewstoday.com)
  • Dopamine and serotonin also have different effects on appetite. (medicalnewstoday.com)
  • Which conditions have links to dopamine and serotonin? (medicalnewstoday.com)
  • Dopamine and serotonin are neurotransmitters. (healthline.com)
  • While dopamine and serotonin affect many of the same things, they do so in slightly different ways. (healthline.com)
  • Here, we give a rundown of the differences between dopamine and serotonin when it comes to depression, digestion, sleep, and more. (healthline.com)
  • Both dopamine and serotonin are involved in depression, though experts are still trying to figure out the details. (healthline.com)
  • Dopamine and serotonin both also play roles in psychological conditions other than depression. (healthline.com)
  • It's not just your brain - you also have dopamine and serotonin in your gut, where they play a role in digestion . (healthline.com)
  • These data suggest that glutamate, acting at several metabotropic receptors expressed by astrocytes, could modulate glial activity evoked by neurotransmitters and thereby influence the ongoing modulation of neurons by astrocytes. (jneurosci.org)
  • Agonists of serotonin (5-HT)-1 receptors modulate the synaptic strength of the connection between retinal ganglion cells and neurons of the frog optic tectum in brain slices (Brain Res. (uky.edu)
  • Fluoxetine selectively inhibits presynaptic serotonin reuptake with minimal or no effect on the reuptake of norepinephrine or dopamine. (medscape.com)
  • The neurotransmitter serotonin (5-hydroxytryptamine or 5-HT) mediates rapid excitatory responses through ligand-gated channels (5-HT3 receptors). (nih.gov)
  • All of these behaviors, and many more, are controlled in part by the neurotransmitter serotonin. (rcsb.org)
  • The majority of concerning combinations involve the use of a monoamine oxidase inhibitor (MAOI), a selective serotonin reuptake inhibitor (SSRI), or a serotonin-norepinephrine reuptake inhibitor (SNRI). (medscape.com)
  • consider an alternative antimalarial prophylaxis to atovaquone-proguanil for travelers taking this selective serotonin reuptake inhibitor (SSRI). (cdc.gov)
  • 5-HT), a neurotransmitter and hormone and the endogenous ligand of the serotonin receptors. (wikipedia.org)
  • 5-HT(1B) receptor regulation of serotonin (5-HT) release by endogenous 5-HT in the substantia nigra. (ox.ac.uk)
  • Altered sensitivity of multiple brain serotonin (5HT) receptors has been hypothesized in the etiology and/or treatment of anxiety, depression, sleep disorders, sexual behaviors, and psychosis. (grantome.com)
  • The Serotonin 1A (5-HT1A) Receptor as a Pharmacological Target in Depression. (ox.ac.uk)
  • A wealth of evidence implicates the serotonin 1A (5-HT1A) receptor in the pathophysiology of depression. (ox.ac.uk)
  • Stimulation of the 5-HT1A receptor is an existing therapeutic target for treating depression and anxiety, using drugs such as buspirone and tandospirone. (ox.ac.uk)
  • This narrative review provides a brief overview of the 5-HT1A receptor, the evidence implicating it in depression and in the effects of conventional antidepressant treatment. (ox.ac.uk)
  • We highlight that pre- and post-synaptic 5-HT1A receptors may have divergent roles in the pathophysiology and treatment of depression. (ox.ac.uk)
  • We describe how experimental medicine approaches can be helpful in profiling the effects of 5-HT1A receptor modulation on the different clinical domains of depression, and outline some potential neurocognitive models that could be used to test the effects of 5-HT1A biased agonists. (ox.ac.uk)
  • Like the serotonin receptor, the serotonin transporter is the target of many drugs used to treat depression. (rcsb.org)
  • This receptor also has a high distribution within other areas of the limbic system, particularly the hippocampus, possibly implicating the 5-HT$\sb7$ receptor in the pathology of depression. (uconn.edu)
  • The corticotropin-releasing factor receptor 1 (CRFR1) and serotonin 2A receptor (5-HT2AR) are linked to cellular mechanisms underlying stress anxiety and depression . (bvsalud.org)
  • A selective novel KOP receptor agonist emerged as a notable result and is proposed as a new chemotype for the study of the KOP receptor in the etiology of drug addiction, depression, and/or pain. (acs.org)
  • Researchers have been studying the link between serotonin and depression for more than 5 decades. (healthline.com)
  • While they initially thought that low serotonin levels caused depression, they now know that isn't the case. (healthline.com)
  • This suggests that simply increasing serotonin isn't what treats depression. (healthline.com)
  • Serotonin type-1A receptor imaging in depression. (bvsalud.org)
  • In the present study, we provide evidence that the α9 nicotinic acetylcholine receptor (nAChR) shares pharmacological properties with members of the Cys-loop family of receptors. (aspetjournals.org)
  • Other prokinetic drugs may increase acetylcholine concentrations by stimulating the M 1 receptor which causes acetylcholine release, or by inhibiting the enzyme acetylcholinesterase which metabolizes acetylcholine. (wikipedia.org)
  • Propranolol is a nonselective beta-adrenergic receptor blocking agent. (medscape.com)
  • Both receptors are members of the G protein -coupled receptor (GPCR) superfamily and encode class I PSD-95/DiscsLarge/ Zona Occludens 1 (PDZ) binding motifs (-S/T-x-V/I/L) at the end of their carboxyl-terminal tails . (bvsalud.org)
  • Abzalov R.A. Role of 5-HT2B serotonin receptor agonist in the regulation of pumping function of the heart / R. A. Abzalov , R.R . Abzalov, A. M. Valeev, N. I. Abzalov, A. A. Gulyakov // Bulletin of Experimental Biology and Medicine July - 2015. (kpfu.ru)
  • Serotonin binds to the portion of the receptor on the outside of the cell (shown here at the top of the picture). (rcsb.org)
  • Ergotamine is much larger than serotonin, with a portion similar to serotonin (shown in green) that binds deep in the receptor pocket, and the rest binding higher in the pocket. (rcsb.org)
  • The discovery of a new series of compounds that are potent, selective 5-HT 2C receptor agonists is described herein as we continue our efforts to optimize the 2-phenylcyclopropylmethylamine scaffold. (johnshopkins.edu)
  • To increase their quality of life and treatment satisfaction, antiemetic medication, such as serotonin receptor antagonists, is often prescribed for patients experiencing these symptoms. (biomedcentral.com)
  • Figure S1: Plot of competitive inhibition of 3 H -diprenorphine binding at the KOP receptor. (acs.org)
  • Figure S3 shows the cAMP accumulation inhibition curves at DOP and MOP receptors. (acs.org)
  • They are also neuromodulators, meaning that, unlike other neurotransmitters, they are able to communicate with many neurons that are near as well as far away from the dopamine or serotonin release site. (medicalnewstoday.com)
  • The heteromeric receptors also display distinctive pharmacological properties. (nih.gov)
  • In addition, it adds further evidence that the α9 nAChR and the cholinergic receptor present at the base of cochlear outer hair cells have similar pharmacological properties. (aspetjournals.org)
  • Furthermore, we predict the relevance (energetically) of the DHE regions, as well as the influence of each protein segment to DHE-serotonin receptor binding. (chemaxon.com)
  • Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands. (axonmedchem.com)
  • Once serotonin has finished its signaling task, it is transported back into the nerve cell by a serotonin transporter protein. (rcsb.org)
  • Structures for many other G protein-coupled receptors have been solved, including opsin and adrenergic receptors. (rcsb.org)
  • The structures of the serotonin receptor, and several other GPCRs, were determined using an engineered protein that has another small protein inserted into the protein chain. (rcsb.org)
  • What protein was used in the serotonin receptor structures? (rcsb.org)
  • That gene codes for the 5-HT3 receptor, a protein that responds to the brain-signaling chemical serotonin. (opioids.wiki)
  • A synthetic peptide from mouse 5HT1B receptor conjugated to blue carrier protein was used as the antigen. (osenses.com)
  • Cavill, D, Waterman, S & Gordon, T 2002, ' Failure to detect antibodies to the second extracellular loop of the serotonin 5-HT4 receptor in systemic lupus erythematosus and primary Sjogren's syndrome ', Lupus , vol. 11, no. 3, pp. 197-198. (edu.au)
  • Although metabotropic glutamate receptor (mGluR) modulation has been studied extensively in neurons, it has not been investigated in astrocytes. (jneurosci.org)
  • Taken together, the results from the present studies accordingly support the hypotheses that the 5-HT$\sb7$ receptor is involved in the modulation of circadian rhythms and is implicated in the mechanism of action of antidepressants. (uconn.edu)
  • IMPORTANCE Serotonin (5-hydroxytryptamine) receptor 2a (5-HT2AR) signaling is important for modulation of corticostriatal pathways and prefrontal activity during cognition. (uniba.it)
  • Based on a phylogenetic analysis, the family of serotonin (5-HT) receptors should be separated into two different classes among the subgroup of biogenic amine receptors of the rhodopsin-like family of GPCRs . (axonmedchem.com)
  • FUNCTION: This is one of the several different receptors for 5-hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. (osenses.com)
  • Many atypical antipsychotics, such as aripiprazole, asenapine, clozapine, lurasidone, quetiapine, and ziprasidone, are 5-HT1A receptor partial agonists, and this action is thought to contribute to their beneficial effects on negative symptoms in schizophrenia. (wikipedia.org)
  • Expression of serotonin 5-HT(2A) receptors in the human cerebellum and alterations in schizophrenia. (ox.ac.uk)
  • The occurrence of human cerebellar serotonin 5-HT(2A) receptors (5-HT(2A)R) is equivocal and their status in schizophrenia unknown. (ox.ac.uk)
  • We reported recently that stimulation of serotonin 1A (5-HT 1A ) receptors on astrocytes promoted astrocyte proliferation and upregulated antioxidative molecules to act as a neuroprotectant in parkinsonian mice. (currentmedicinalchemistry.com)
  • Next, we review neuroprotective effects induced by stimulation of 5-HT 1A receptors on astrocytes. (currentmedicinalchemistry.com)
  • Modifications focused on the alkoxyl substituent present on the aromatic ring led to the identification of improved ligands with better potency at the 5-HT 2C receptor and excellent selectivity against the 5-HT 2A and 5-HT 2B receptors. (johnshopkins.edu)
  • LSD, on the other hand, interferes with serotonin receptors involved in perception, inducing hallucinations and synesthesia. (rcsb.org)
  • Most of the serotonin in your body is found in the digestive system where it helps to control the motions needed for digestion. (rcsb.org)
  • The most notable exceptions are cerebral cortical areas which are highest in D-[3H]LSD binding and only intermediate in [3H]serotonin uptake. (erowid.org)
  • Peripheral blood samples were collected and analyzed for styrene and platelet monoamine-oxidase-type-B (MAOB) activity, lymphocyte sigma receptor binding, and serotonin uptake by platelets, which were used as markers of neurochemical function. (cdc.gov)
  • A weak positive association between platelet serotonin uptake and blood styrene concentration was observed. (cdc.gov)
  • In the perioperative setting, it may prove challenging to differentiate serotonin toxicity from other syndromes that have similar manifestations. (medscape.com)
  • The ergoline antimigraine agent ergotamine also acts on this receptor. (wikipedia.org)
  • In addition to being 5-HT1B agonists, triptans (i.e. sumatriptan, almotriptan, zolmitriptan, naratriptan, eletriptan, frovatriptan and rizatriptan) are also agonists at the 5-HT1D receptor, which contributes to their antimigraine effect caused by vasoconstriction of blood vessels in the brain. (wikipedia.org)
  • Serotonin receptor with an antimigraine drug. (rcsb.org)
  • Moreover, whereas neither γ-aminobutyric acid nor glycine modified ACh-evoked currents, serotonin blocked responses to ACh in a concentration-dependent manner. (aspetjournals.org)
  • Azapirones such as buspirone, gepirone, and tandospirone are 5-HT1A receptor partial agonists marketed primarily as anxiolytics, but also as antidepressants. (wikipedia.org)
  • The antidepressants vilazodone and vortioxetine are 5-HT1A receptor partial agonists. (wikipedia.org)
  • b) in order to determine the susceptibility of the 5-HT1D receptors system to sensitivity changes, 5HT transmission in rats will be altered by acute and chronic administration of serotonin neurotoxins, receptor antagonists, agonists, anxiolytics, antidepressants, and electroconvulsive shock. (grantome.com)
  • This transporter is found in the cell membrane, and transports a sodium ion and a chloride ion along with each molecule of serotonin. (rcsb.org)
  • Serotonin transporter and receptor expression in osteocytic MLO-Y4 cells. (bvsalud.org)
  • The development of 5-HT1A 'biased agonism', using compounds such as NLX-101, offers the opportunity to further elucidate the roles of pre- and post-synaptic 5-HT1A receptors. (ox.ac.uk)
  • Serotonin 2A receptors (HTR2A) play a crucial role in the therapeutic response to antidepressant. (physiciansweekly.com)
  • [3] Therefore, 5-HT 4 receptors have been identified as potential therapeutic targets for diseases related to GI dysmotility such as chronic constipation . (wikipedia.org)
  • The pharmacological specificity and other characteristics of the fluke receptors appear to differ from the properties of reported mammalian 5-HT receptors. (erowid.org)
  • Detailed radioligand binding and adenylate cyclase studies of the 5HT1D receptor will be performed in various mammalian tissues including rat and human brain. (grantome.com)
  • Serotonin is involved in how you process your emotions, which can affect your overall mood. (healthline.com)
  • Serotonin affects emotional processing, which can have significant effects on mood. (healthline.com)
  • Finally, the results emphasise that expression of a receptor gene is a mutifaceted process. (ox.ac.uk)
  • Most of the differences between receptors are found in these more distant portions of the binding site, and may provide new opportunities for designing specific drugs. (rcsb.org)
  • Furthermore, chronic treatments pharmacologically consistent with 5-HT$\sb7$ receptor activation produced alterations in aMT6s excretion profiles suggestive of a delayed shift in circadian phase. (uconn.edu)
  • Their hallucinogenic effects are specifically mediated by activation of the 5-HT2A receptor. (wikipedia.org)
  • Activation of a wide range of serotonin receptors by serotonin itself or by certain prokinetic drugs results in enhanced gastrointestinal motility. (wikipedia.org)
  • Pharmacological manipulation of receptor activation resulted in changes in the activity-dependent visual map that is created at the tectum by retinal ganglion cell terminals. (uky.edu)
  • We conclude that both 5-HT 1A and 5-HT 1B receptors are present in the adult frog tectum and that changes in their activation levels can produce changes in retinotectal transmission levels that drive visual plasticity in opposite directions. (uky.edu)
  • Activation of the serotonin (5-HT) 5-HT 2C receptor (5-HT 2C R) suppresses both food intake and reward-related behaviors and is thus poised to regulate BED. (utmb.edu)
  • Atypical (or second generation) antipsychotics (eg, clozapine, risperidone, olanzapine) bind to dopamine D2 receptors and may improve tardive dystonia when lower doses are used. (medscape.com)
  • We have now used autoradiographic receptor binding techniques to determine the location of 5-HT 1A and 5-HT 1B binding sites in the laminated optic tectum. (uky.edu)
  • In some cases, this leads to an excitatory response in the cells, and in other cases it is inhibitory, all depending on the particular receptor and its individual cellular context. (rcsb.org)
  • Serotonin is released from vesicles in nerve cells and picked up by receptors on the target cell surface. (rcsb.org)