Viruses containing two or more pieces of nucleic acid (segmented genome) from different parents. Such viruses are produced in cells coinfected with different strains of a given virus.
The type species of the genus INFLUENZAVIRUS A that causes influenza and other diseases in humans and animals. Antigenic variation occurs frequently between strains, allowing classification into subtypes and variants. Transmission is usually by aerosol (human and most non-aquatic hosts) or waterborne (ducks). Infected birds shed the virus in their saliva, nasal secretions, and feces.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 3 and neuraminidase 2. The H3N2 subtype was responsible for the Hong Kong flu pandemic of 1968.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 5 and neuraminidase 1. The H5N1 subtype, frequently referred to as the bird flu virus, is endemic in wild birds and very contagious among both domestic (POULTRY) and wild birds. It does not usually infect humans, but some cases have been reported.
Semidomesticated variety of European polecat much used for hunting RODENTS and/or RABBITS and as a laboratory animal. It is in the subfamily Mustelinae, family MUSTELIDAE.
Virus diseases caused by the ORTHOMYXOVIRIDAE.
A subtype of INFLUENZA A VIRUS with the surface proteins hemagglutinin 1 and neuraminidase 1. The H1N1 subtype was responsible for the Spanish flu pandemic of 1918.
A serotype of ORTHOREOVIRUS, MAMMALIAN causing serious pathology in laboratory rodents, characterized by diarrhea, oily coat, jaundice, and multiple organ involvement.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 9 and neuraminidase 2. The H9N2 subtype usually infects domestic birds (POULTRY) but there have been some human infections reported.
A species in the ORTHOBUNYAVIRUS genus of the family BUNYAVIRIDAE. Serotypes are found in temperate and arctic regions and each is closely associated with a single species of vector mosquito. The vertebrate hosts are usually small mammals but several serotypes infect humans.
The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle.
Membrane glycoproteins from influenza viruses which are involved in hemagglutination, virus attachment, and envelope fusion. Fourteen distinct subtypes of HA glycoproteins and nine of NA glycoproteins have been identified from INFLUENZA A VIRUS; no subtypes have been identified for Influenza B or Influenza C viruses.
The functional hereditary units of VIRUSES.
Infection of domestic and wild fowl and other BIRDS with INFLUENZA A VIRUS. Avian influenza usually does not sicken birds, but can be highly pathogenic and fatal in domestic POULTRY.
A genus of the family CEBIDAE consisting of four species: S. boliviensis, S. orstedii (red-backed squirrel monkey), S. sciureus (common squirrel monkey), and S. ustus. They inhabit tropical rain forests in Central and South America. S. sciureus is used extensively in research studies.
A genus of REOVIRIDAE, causing acute gastroenteritis in BIRDS and MAMMALS, including humans. Transmission is horizontal and by environmental contamination. Seven species (Rotaviruses A thru G) are recognized.
An acute viral infection in humans involving the respiratory tract. It is marked by inflammation of the NASAL MUCOSA; the PHARYNX; and conjunctiva, and by headache and severe, often generalized, myalgia.
Live vaccines prepared from microorganisms which have undergone physical adaptation (e.g., by radiation or temperature conditioning) or serial passage in laboratory animal hosts or infected tissue/cell cultures, in order to produce avirulent mutant strains capable of inducing protective immunity.
An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992)
A family of unenveloped RNA viruses with cubic symmetry. The twelve genera include ORTHOREOVIRUS; ORBIVIRUS; COLTIVIRUS; ROTAVIRUS; Aquareovirus, Cypovirus, Phytoreovirus, Fijivirus, Seadornavirus, Idnoreovirus, Mycoreovirus, and Oryzavirus.
Proteins found in any species of virus.
A genus of the family REOVIRIDAE infecting vertebrates only. Transmission is horizontal and infected species include humans, birds, cattle, monkeys, sheep, swine, baboons, and bats. MAMMALIAN ORTHOREOVIRUS is the type species.
Infections produced by reoviruses, general or unspecified.
Ribonucleic acid that makes up the genetic material of viruses.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 1 and neuraminidase 2. It is endemic in both human and pig populations.
Viruses whose genetic material is RNA.
Proteins that form the CAPSID of VIRUSES.
Substances elaborated by viruses that have antigenic activity.
Specific hemagglutinin subtypes encoded by VIRUSES.
A family of viruses, mainly arboviruses, consisting of a single strand of RNA. Virions are enveloped particles 90-120 nm diameter. The complete family contains over 300 members arranged in five genera: ORTHOBUNYAVIRUS; HANTAVIRUS; NAIROVIRUS; PHLEBOVIRUS; and TOSPOVIRUS.
Vaccines used to prevent infection by viruses in the family ORTHOMYXOVIRIDAE. It includes both killed and attenuated vaccines. The composition of the vaccines is changed each year in response to antigenic shifts and changes in prevalence of influenza virus strains. The vaccine is usually bivalent or trivalent, containing one or two INFLUENZAVIRUS A strains and one INFLUENZAVIRUS B strain.
The relationships of groups of organisms as reflected by their genetic makeup.
"Ducks" is not a recognized medical term or condition in human health; it may refer to various anatomical structures in animals, such as the ducks of the heart valves, but it does not have a standalone medical definition.
The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS.
Domesticated birds raised for food. It typically includes CHICKENS; TURKEYS, DUCKS; GEESE; and others.
The type species of ORTHOPOXVIRUS, related to COWPOX VIRUS, but whose true origin is unknown. It has been used as a live vaccine against SMALLPOX. It is also used as a vector for inserting foreign DNA into animals. Rabbitpox virus is a subspecies of VACCINIA VIRUS.
Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses.
Warm-blooded VERTEBRATES possessing FEATHERS and belonging to the class Aves.
The expelling of virus particles from the body. Important routes include the respiratory tract, genital tract, and intestinal tract. Virus shedding is an important means of vertical transmission (INFECTIOUS DISEASE TRANSMISSION, VERTICAL).
An enzyme that catalyses RNA-template-directed extension of the 3'- end of an RNA strand by one nucleotide at a time, and can initiate a chain de novo. (Enzyme Nomenclature, 1992, p293)
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response.
Agglutination of ERYTHROCYTES by a virus.
A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS.
Diseases of birds which are raised as a source of meat or eggs for human consumption and are usually found in barnyards, hatcheries, etc. The concept is differentiated from BIRD DISEASES which is for diseases of birds not considered poultry and usually found in zoos, parks, and the wild.
Proteins found mainly in icosahedral DNA and RNA viruses. They consist of proteins directly associated with the nucleic acid inside the NUCLEOCAPSID.
The outer protein protective shell of a virus, which protects the viral nucleic acid.
Infection with any of the rotaviruses. Specific infections include human infantile diarrhea, neonatal calf diarrhea, and epidemic diarrhea of infant mice.
Process of growing viruses in live animals, plants, or cultured cells.
Established cell cultures that have the potential to propagate indefinitely.
A general term for diseases produced by viruses.
A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures.
A species of ARENAVIRUS, part of the Old World Arenaviruses (ARENAVIRUSES, OLD WORLD), and the etiologic agent of LASSA FEVER. LASSA VIRUS is a common infective agent in humans in West Africa. Its natural host is the multimammate mouse Mastomys natalensis.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
Immunoglobulins produced in response to VIRAL ANTIGENS.
The assembly of VIRAL STRUCTURAL PROTEINS and nucleic acid (VIRAL DNA or VIRAL RNA) to form a VIRUS PARTICLE.
Viruses parasitic on plants higher than bacteria.
The complete genetic complement contained in a DNA or RNA molecule in a virus.
Vaccines or candidate vaccines used to prevent infection with ROTAVIRUS.
Viruses whose nucleic acid is DNA.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
Viruses which lack a complete genome so that they cannot completely replicate or cannot form a protein coat. Some are host-dependent defectives, meaning they can replicate only in cell systems which provide the particular genetic function which they lack. Others, called SATELLITE VIRUSES, are able to replicate only when their genetic defect is complemented by a helper virus.
Diseases of domestic swine and of the wild boar of the genus Sus.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
The use of techniques that produce a functional MUTATION or an effect on GENE EXPRESSION of a specific gene of interest in order to identify the role or activity of the gene product of that gene.
Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA.
The type species of ALPHAVIRUS normally transmitted to birds by CULEX mosquitoes in Egypt, South Africa, India, Malaya, the Philippines, and Australia. It may be associated with fever in humans. Serotypes (differing by less than 17% in nucleotide sequence) include Babanki, Kyzylagach, and Ockelbo viruses.
Proteins conjugated with nucleic acids.
The type species of MORBILLIVIRUS and the cause of the highly infectious human disease MEASLES, which affects mostly children.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 5 and neuraminidase 2. The H5N2 subtype has been found to be highly pathogenic in chickens.
The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.
The type species of LYSSAVIRUS causing rabies in humans and other animals. Transmission is mostly by animal bites through saliva. The virus is neurotropic multiplying in neurons and myotubes of vertebrates.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
The type species of ORBIVIRUS causing a serious disease in sheep, especially lambs. It may also infect wild ruminants and other domestic animals.
A CELL LINE derived from the kidney of the African green (vervet) monkey, (CERCOPITHECUS AETHIOPS) used primarily in virus replication studies and plaque assays.
A genus of the family BUNYAVIRIDAE containing over 150 viruses, most of which are transmitted by mosquitoes or flies. They are arranged in groups defined by serological criteria, each now named for the original reference species (previously called serogroups). Many species have multiple serotypes or strains.
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.
The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50).
Method for measuring viral infectivity and multiplication in CULTURED CELLS. Clear lysed areas or plaques develop as the VIRAL PARTICLES are released from the infected cells during incubation. With some VIRUSES, the cells are killed by a cytopathic effect; with others, the infected cells are not killed but can be detected by their hemadsorptive ability. Sometimes the plaque cells contain VIRAL ANTIGENS which can be measured by IMMUNOFLUORESCENCE.
A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey (C. pygerythrus) is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research.
The type species of the genus ORTHOHEPADNAVIRUS which causes human HEPATITIS B and is also apparently a causal agent in human HEPATOCELLULAR CARCINOMA. The Dane particle is an intact hepatitis virion, named after its discoverer. Non-infectious spherical and tubular particles are also seen in the serum.
Virus diseases caused by the BUNYAVIRIDAE.
A species of FLAVIVIRUS, one of the Japanese encephalitis virus group (ENCEPHALITIS VIRUSES, JAPANESE). It can infect birds and mammals. In humans, it is seen most frequently in Africa, Asia, and Europe presenting as a silent infection or undifferentiated fever (WEST NILE FEVER). The virus appeared in North America for the first time in 1999. It is transmitted mainly by CULEX spp mosquitoes which feed primarily on birds, but it can also be carried by the Asian Tiger mosquito, AEDES albopictus, which feeds mainly on mammals.
A species in the ORTHOBUNYAVIRUS genus of the family BUNYAVIRIDAE. A large number of serotypes or strains exist in many parts of the world. They are transmitted by mosquitoes and infect humans in some areas.
A group of viruses in the PNEUMOVIRUS genus causing respiratory infections in various mammals. Humans and cattle are most affected but infections in goats and sheep have also been reported.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 7 and neuraminidase 7. The H7N7 subtype produced an epidemic in 2003 which was highly pathogenic among domestic birds (POULTRY). Some infections in humans were reported.
The mechanism by which latent viruses, such as genetically transmitted tumor viruses (PROVIRUSES) or PROPHAGES of lysogenic bacteria, are induced to replicate and then released as infectious viruses. It may be effected by various endogenous and exogenous stimuli, including B-cell LIPOPOLYSACCHARIDES, glucocorticoid hormones, halogenated pyrimidines, IONIZING RADIATION, ultraviolet light, and superinfecting viruses.
Epidemics of infectious disease that have spread to many countries, often more than one continent, and usually affecting a large number of people.
Serologic tests in which a known quantity of antigen is added to the serum prior to the addition of a red cell suspension. Reaction result is expressed as the smallest amount of antigen which causes complete inhibition of hemagglutination.
The type species of VESICULOVIRUS causing a disease symptomatically similar to FOOT-AND-MOUTH DISEASE in cattle, horses, and pigs. It may be transmitted to other species including humans, where it causes influenza-like symptoms.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 2 and neuraminidase 2. The H2N2 subtype was responsible for the Asian flu pandemic of 1957.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
A form of intestinal obstruction caused by the PROLAPSE of a part of the intestine into the adjoining intestinal lumen. There are four types: colic, involving segments of the LARGE INTESTINE; enteric, involving only the SMALL INTESTINE; ileocecal, in which the ILEOCECAL VALVE prolapses into the CECUM, drawing the ILEUM along with it; and ileocolic, in which the ileum prolapses through the ileocecal valve into the COLON.
The ability of a pathogenic virus to lie dormant within a cell (latent infection). In eukaryotes, subsequent activation and viral replication is thought to be caused by extracellular stimulation of cellular transcription factors. Latency in bacteriophage is maintained by the expression of virally encoded repressors.
A family of RNA viruses causing INFLUENZA and other diseases. There are five recognized genera: INFLUENZAVIRUS A; INFLUENZAVIRUS B; INFLUENZAVIRUS C; ISAVIRUS; and THOGOTOVIRUS.
A subtype of INFLUENZA A VIRUS with the surface proteins hemagglutinin 7 and neuraminidase 9. This avian origin virus was first identified in humans in 2013.
Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA.
A family of RNA viruses naturally infecting rodents and consisting of one genus (ARENAVIRUS) with two groups: Old World Arenaviruses (ARENAVIRUSES, OLD WORLD) and New World Arenaviruses (ARENAVIRUSES, NEW WORLD). Infection in rodents is persistent and silent. Vertical transmission is through milk-, saliva-, or urine-borne routes. Horizontal transmission to humans, monkeys, and other animals is important.
Viruses that produce tumors.
Species of the genus LENTIVIRUS, subgenus primate immunodeficiency viruses (IMMUNODEFICIENCY VIRUSES, PRIMATE), that induces acquired immunodeficiency syndrome in monkeys and apes (SAIDS). The genetic organization of SIV is virtually identical to HIV.
Deoxyribonucleic acid that makes up the genetic material of viruses.
The scroll-like bony plates with curved margins on the lateral wall of the NASAL CAVITY. Turbinates, also called nasal concha, increase the surface area of nasal cavity thus providing a mechanism for rapid warming and humidification of air as it passes to the lung.
An acute febrile human disease caused by the LASSA VIRUS.
The type species of RUBULAVIRUS that causes an acute infectious disease in humans, affecting mainly children. Transmission occurs by droplet infection.
A species of RESPIROVIRUS also called hemadsorption virus 2 (HA2), which causes laryngotracheitis in humans, especially children.
Viral proteins that are components of the mature assembled VIRUS PARTICLES. They may include nucleocapsid core proteins (gag proteins), enzymes packaged within the virus particle (pol proteins), and membrane components (env proteins). These do not include the proteins encoded in the VIRAL GENOME that are produced in infected cells but which are not packaged in the mature virus particle,i.e. the so called non-structural proteins (VIRAL NONSTRUCTURAL PROTEINS).
Viruses which produce a mottled appearance of the leaves of plants.
The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos.
An epithelial cell line derived from a kidney of a normal adult female dog.
Sudden increase in the incidence of a disease. The concept includes EPIDEMICS and PANDEMICS.
A species in the genus HEPATOVIRUS containing one serotype and two strains: HUMAN HEPATITIS A VIRUS and Simian hepatitis A virus causing hepatitis in humans (HEPATITIS A) and primates, respectively.
A species of ALPHAVIRUS isolated in central, eastern, and southern Africa.
Group of alpharetroviruses (ALPHARETROVIRUS) producing sarcomata and other tumors in chickens and other fowl and also in pigeons, ducks, and RATS.
Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly.
The binding of virus particles to receptors on the host cell surface. For enveloped viruses, the virion ligand is usually a surface glycoprotein as is the cellular receptor. For non-enveloped viruses, the virus CAPSID serves as the ligand.
A species of POLYOMAVIRUS apparently infecting over 90% of children but not clearly associated with any clinical illness in childhood. The virus remains latent in the body throughout life and can be reactivated under certain circumstances.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Infections produced by oncogenic viruses. The infections caused by DNA viruses are less numerous but more diverse than those caused by the RNA oncogenic viruses.
Viruses whose taxonomic relationships have not been established.
A species of POLYOMAVIRUS, originally isolated from the brain of a patient with progressive multifocal leukoencephalopathy. The patient's initials J.C. gave the virus its name. Infection is not accompanied by any apparent illness but serious demyelinating disease can appear later, probably following reactivation of latent virus.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The type species of ALPHARETROVIRUS producing latent or manifest lymphoid leukosis in fowl.
The degree of similarity between sequences. Studies of AMINO ACID SEQUENCE HOMOLOGY and NUCLEIC ACID SEQUENCE HOMOLOGY provide useful information about the genetic relatedness of genes, gene products, and species.
INFLAMMATION of any segment of the GASTROINTESTINAL TRACT from ESOPHAGUS to RECTUM. Causes of gastroenteritis are many including genetic, infection, HYPERSENSITIVITY, drug effects, and CANCER.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses.
The type species of RESPIROVIRUS in the subfamily PARAMYXOVIRINAE. It is the murine version of HUMAN PARAINFLUENZA VIRUS 1, distinguished by host range.
A strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) arising during the propagation of S37 mouse sarcoma, and causing lymphoid leukemia in mice. It also infects rats and newborn hamsters. It is apparently transmitted to embryos in utero and to newborns through mother's milk.
Suspensions of attenuated or killed viruses administered for the prevention or treatment of infectious viral disease.
Insertion of viral DNA into host-cell DNA. This includes integration of phage DNA into bacterial DNA; (LYSOGENY); to form a PROPHAGE or integration of retroviral DNA into cellular DNA to form a PROVIRUS.
The type species of the FLAVIVIRUS genus. Principal vector transmission to humans is by AEDES spp. mosquitoes.
A genus of the family HERPESVIRIDAE, subfamily ALPHAHERPESVIRINAE, consisting of herpes simplex-like viruses. The type species is HERPESVIRUS 1, HUMAN.
The type species of TOBAMOVIRUS which causes mosaic disease of tobacco. Transmission occurs by mechanical inoculation.
Process of determining and distinguishing species of bacteria or viruses based on antigens they share.
Genotypic differences observed among individuals in a population.
Pneumovirus infections caused by the RESPIRATORY SYNCYTIAL VIRUSES. Humans and cattle are most affected but infections in goats and sheep have been reported.
The type species of LEPORIPOXVIRUS causing infectious myxomatosis, a severe generalized disease, in rabbits. Tumors are not always present.
Inactivation of viruses by non-immune related techniques. They include extremes of pH, HEAT treatment, ultraviolet radiation, IONIZING RADIATION; DESICCATION; ANTISEPTICS; DISINFECTANTS; organic solvents, and DETERGENTS.
Virus diseases caused by the BIRNAVIRIDAE.
A species of ORTHOPOXVIRUS that is the etiologic agent of COWPOX. It is closely related to but antigenically different from VACCINIA VIRUS.
Visible morphologic changes in cells infected with viruses. It includes shutdown of cellular RNA and protein synthesis, cell fusion, release of lysosomal enzymes, changes in cell membrane permeability, diffuse changes in intracellular structures, presence of viral inclusion bodies, and chromosomal aberrations. It excludes malignant transformation, which is CELL TRANSFORMATION, VIRAL. Viral cytopathogenic effects provide a valuable method for identifying and classifying the infecting viruses.
A species of ORTHOPOXVIRUS causing infections in humans. No infections have been reported since 1977 and the virus is now believed to be virtually extinct.
A country spanning from central Asia to the Pacific Ocean.
The type species of PNEUMOVIRUS and an important cause of lower respiratory disease in infants and young children. It frequently presents with bronchitis and bronchopneumonia and is further characterized by fever, cough, dyspnea, wheezing, and pallor.
Vaccines in which the infectious microbial nucleic acid components have been destroyed by chemical or physical treatment (e.g., formalin, beta-propiolactone, gamma radiation) without affecting the antigenicity or immunogenicity of the viral coat or bacterial outer membrane proteins.
The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A group of viral diseases of diverse etiology but having many similar clinical characteristics; increased capillary permeability, leukopenia, and thrombocytopenia are common to all. Hemorrhagic fevers are characterized by sudden onset, fever, headache, generalized myalgia, backache, conjunctivitis, and severe prostration, followed by various hemorrhagic symptoms. Hemorrhagic fever with kidney involvement is HEMORRHAGIC FEVER WITH RENAL SYNDROME.
A species of ALPHAVIRUS causing an acute dengue-like fever.
The type species in the genus NOROVIRUS, first isolated in 1968 from the stools of school children in Norwalk, Ohio, who were suffering from GASTROENTERITIS. The virions are non-enveloped spherical particles containing a single protein. Multiple strains are named after the places where outbreaks have occurred.
Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen.
A collection of single-stranded RNA viruses scattered across the Bunyaviridae, Flaviviridae, and Togaviridae families whose common property is the ability to induce encephalitic conditions in infected hosts.
DNA virus infections refer to diseases caused by viruses that incorporate double-stranded or single-stranded DNA as their genetic material, replicating within host cell nucleus or cytoplasm, and including various families such as Herpesviridae, Adenoviridae, Papillomaviridae, and Parvoviridae.
Biological properties, processes, and activities of VIRUSES.
The type species of SIMPLEXVIRUS causing most forms of non-genital herpes simplex in humans. Primary infection occurs mainly in infants and young children and then the virus becomes latent in the dorsal root ganglion. It then is periodically reactivated throughout life causing mostly benign conditions.

Yellow fever/Japanese encephalitis chimeric viruses: construction and biological properties. (1/699)

A system has been developed for generating chimeric yellow fever/Japanese encephalitis (YF/JE) viruses from cDNA templates encoding the structural proteins prM and E of JE virus within the backbone of a molecular clone of the YF17D strain. Chimeric viruses incorporating the proteins of two JE strains, SA14-14-2 (human vaccine strain) and JE Nakayama (JE-N [virulent mouse brain-passaged strain]), were studied in cell culture and laboratory mice. The JE envelope protein (E) retained antigenic and biological properties when expressed with its prM protein together with the YF capsid; however, viable chimeric viruses incorporating the entire JE structural region (C-prM-E) could not be obtained. YF/JE(prM-E) chimeric viruses grew efficiently in cells of vertebrate or mosquito origin compared to the parental viruses. The YF/JE SA14-14-2 virus was unable to kill young adult mice by intracerebral challenge, even at doses of 10(6) PFU. In contrast, the YF/JE-N virus was neurovirulent, but the phenotype resembled parental YF virus rather than JE-N. Ten predicted amino acid differences distinguish the JE E proteins of the two chimeric viruses, therefore implicating one or more residues as virus-specific determinants of mouse neurovirulence in this chimeric system. This study indicates the feasibility of expressing protective antigens of JE virus in the context of a live, attenuated flavivirus vaccine strain (YF17D) and also establishes a genetic system for investigating the molecular basis for neurovirulence determinants encoded within the JE E protein.  (+info)

Late domain function identified in the vesicular stomatitis virus M protein by use of rhabdovirus-retrovirus chimeras. (2/699)

Little is known about the mechanisms used by enveloped viruses to separate themselves from the cell surface at the final step of budding. However, small sequences in the Gag proteins of several retroviruses (L domains) have been implicated in this process. A sequence has been identified in the M proteins of rhabdoviruses that closely resembles the PPPPY motif in the L domain of Rous sarcoma virus (RSV), an avian retrovirus. To evaluate whether the PPPY sequence in vesicular stomatitis virus (VSV) M protein has an activity analogous to that of the retroviral sequence, M-Gag chimeras were characterized. The N-terminal 74 amino acids of the VSV (Indiana) M protein, including the PPPY motif, was able to replace the L domain of RSV Gag and allow the assembly and release of virus-like particles. Alanine substitutions in the VSV PPPY motif severely compromised the budding activity of this hybrid protein but not that of another chimera which also contained the RSV PPPPY sequence. We conclude that this VSV sequence is functionally homologous to the RSV L domain in promoting virus particle release, making this the first example of such an activity in a virus other than a retrovirus. Both the RSV and VSV motifs have been shown to interact in vitro with certain cellular proteins that contain a WW interaction module, suggesting that the L domains are sites of interaction with unknown host machinery involved in virus release.  (+info)

Site-specific integration mediated by a hybrid adenovirus/adeno-associated virus vector. (3/699)

Adenovirus (Ad) and adeno-associated virus (AAV) have attractive and complementary properties that can be exploited for gene transfer purposes. Ad vectors are probably the most efficient vehicles to deliver foreign genes both in vitro and in vivo. AAV exhibits the unique ability to establish latency by efficiently integrating at a specific locus of human chromosome 19 (AAVS1). Two viral elements are necessary for the integration at AAVS1: Rep68/78 and the inverted terminal repeats (AAV-ITRs). In this study, we report the development of two helper-dependent adenoviral (HD) vectors, one carrying the Rep78 gene, the other an AAV-ITR-flanked transgene. Although Rep proteins have been demonstrated to interfere with Ad replication, HD Rep78 vector was successfully amplified on serial passages in 293CRE4 cells with a yield of 50-100 transducing units per cell. DNA integration at the AAVS1 site also was demonstrated in hepatoma cells coinfected with the HD-expressing Rep78 and with the second HD vector carrying a transgene flanked by AAV-ITRs. The high transduction efficiency, large cloning capacity, and high titer of the HD, combined with the site-specific integration machinery provided by AAV-derived components, make the Ad/AAV hybrid viruses a promising vehicle for gene therapy.  (+info)

Viral burden and disease progression in rhesus monkeys infected with chimeric simian-human immunodeficiency viruses. (4/699)

To determine the role of viral burden in simian-human immunodeficiency virus (SHIV)-induced disease, cellular provirus and plasma viral RNA levels were measured after inoculation of rhesus monkeys with four different SHIVs. These SHIVs included SHIV-HXBc2 and SHIV-89.6, constructed with env, tat, rev, and vpu derived from either cell line-passaged or primary patient isolates of human immunodeficiency virus type 1; the viral quasispecies SHIV-89.6P derived after in vivo passage of SHIV-89.6; and a molecular clone, SHIV-KB9, derived from SHIV-89.6P. SHIV-HXBc2 and SHIV-89.6 are nonpathogenic in rhesus monkeys; SHIV-89.6P and SHIV-KB9 cause rapid CD4(+) T cell depletion and an immunodeficiency syndrome. Relative SHIV provirus levels were highest during primary infection in monkeys infected with SHIV-89.6P, the virus that caused the most rapid and dramatic CD4(+) T cell depletion. However, by 10 weeks postinoculation, provirus levels were similar in monkeys infected with the pathogenic and nonpathogenic chimeric viruses. The virus infections that resulted in the highest peak and chronic viral RNA levels were the pathogenic viruses SHIV-89.6P and SHIV-KB9. SHIV-89. 6P uniformly caused rapid and profound CD4(+) T cell depletion and immunodeficiency. Infection with the SHIV-KB9 resulted in very low CD4(+) T cell counts without seroconversion in some monkeys and a substantial but less profound CD4(+) T cell depletion and rapid seroconversion in others. Surprisingly, the level of plasma viremia did not differ between SHIV-KB9-infected animals exhibiting these contrasting outcomes, suggesting that host factors may play an important role in AIDS virus pathogenesis.  (+info)

Characterization of a neutralization-escape variant of SHIVKU-1, a virus that causes acquired immune deficiency syndrome in pig-tailed macaques. (5/699)

A chimeric simian-human immunodeficiency virus (SHIV-4) containing the tat, rev, vpu, and env genes of HIV type 1 (HIV-1) in a genetic background of SIVmac239 was used to develop an animal model in which a primate lentivirus expressing the HIV-1 envelope glycoprotein caused acquired immune deficiency syndrome (AIDS) in macaques. An SHIV-infected pig-tailed macaque that died from AIDS at 24 weeks postinoculation experienced two waves of viremia: one extending from weeks 2-8 and the second extending from week 18 until death. Virus (SHIVKU-1) isolated during the first wave was neutralized by antibodies appearing at the end of the first viremic phase, but the virus (SHIVKU-1b) isolated during the second viremic phase was not neutralized by these antibodies. Inoculation of SHIVKU-1b into 4 pig-tailed macaques resulted in severe CD4(+) T cell loss by 2 weeks postinoculation, and all 4 macaques died from AIDS at 23-34 weeks postinoculation. Because this virus had a neutralization-resistant phenotype, we sequenced the env gene and compared these sequences with those of the env gene of SHIVKU-1 and parental SHIV-4. With reference to SHIV-4, SHIVKU-1b had 18 and 6 consensus amino acid substitutions in the gp120 and gp41 regions of Env, respectively. These compared with 10 and 3 amino acid substitutions in the gp120 and gp41 regions of SHIVKU-1. Our data suggested that SHIVKU-1 and SHIVKU-1b probably evolved from a common ancestor but that SHIVKU-1b did not evolve from SHIVKU-1. A chimeric virus, SHIVKU-1bMC17, constructed with the consensus env from the SHIVKU-1b on a background of SHIV-4, confirmed that amino acid substitutions in Env were responsible for the neutralization-resistant phenotype. These results are consistent with the hypothesis that neutralizing antibodies induced by SHIVKU-1 in pig-tailed macaque resulted in the selection of a neutralization-resistant virus that was responsible for the second wave of viremia.  (+info)

T cell-tropic simian immunodeficiency virus (SIV) and simian-human immunodeficiency viruses are readily transmitted by vaginal inoculation of rhesus macaques, and Langerhans' cells of the female genital tract are infected with SIV. (6/699)

Intravaginal inoculation with T cell-tropic molecular clones of simian immunodeficiency virus (SIV) or simian-human immunodeficiency virus (SHIV) or some dual-tropic strains of SIV or SHIV produced systemic infection in rhesus macaques. Vaginal inoculation with other dual-tropic molecular clones of SIV or SHIV did not infect rhesus macaques even after multiple inoculations. While in vitro measures of macrophage tropism do not predict which primate lentiviruses will produce systemic infection after intravaginal inoculation, the level to which a virus replicates in vivo after intravenous inoculation does predict the outcome of intravaginal inoculation. Another series of studies, using combined in situ hybridization and immunolabeling to simultaneously detect SIV RNA and identify the immunophenotype of infected cells, demonstrated that a large proportion (approximately 40% in some animals) of the SIV-infected cells in the vagina and cervix were Langerhans' cells. This is the first in vivo demonstration that Langerhans' cells in the genital tract are infected with SIV and that dendritic cells are significant reservoirs for lentiviruses.  (+info)

Distinct pathogenic sequela in rhesus macaques infected with CCR5 or CXCR4 utilizing SHIVs. (7/699)

Infection of macaques with chimeric simian-human immunodeficiency virus (SHIV) provides an excellent in vivo model for examining the influence of envelope on HIV-1 pathogenesis. Infection with a pathogenic CCR5 (R5)-specific enveloped virus, SHIVSF162P, was compared with infection with the CXCR4 (X4)-specific SHIVSF33A.2. Despite comparable levels of viral replication, animals infected with the R5 and X4 SHIV had distinct pathogenic outcomes. SHIVSF162P caused a dramatic loss of CD4+ intestinal T cells followed by a gradual depletion in peripheral CD4+ T cells, whereas infection with SHIVSF33A.2 caused a profound loss in peripheral T cells that was not paralleled in the intestine. These results suggest a critical role of co-receptor utilization in viral pathogenesis and provide a reliable in vivo model for preclinical examination of HIV-1 vaccines and therapeutic agents in the context of the HIV-1 envelope protein.  (+info)

Recombinant viruses expressing the foot-and-mouth disease virus capsid precursor polypeptide (P1) induce cellular but not humoral antiviral immunity and partial protection in pigs. (8/699)

The importance of the induction of virus neutralizing antibodies to provide protection against foot-and-mouth disease virus (FMDV) infection is well established. However, recent studies with recombinant adenovirus expressing the precursor polypeptide of the viral capsid (P1) indicate that cattle inoculated with this recombinant vector developed partial protection against FMDV infection, in the absence of a detectable specific humoral response. Other viral vectors have been widely used to induce protective immunity against many pathogens, and it has been reported that the use of different vectors for priming and boosting injections can provide a synergistic effect on this response. In this work, we determined the immunogenicity of two recombinant viruses (adenovirus and vaccinia) expressing P1-FMDV, administered either individually or sequentially, and the protection that they induced against FMDV challenge in pigs. A double immunization with the adeno-P1 virus was the most effective strategy at inducing protective immunity. In contrast to previous reports, the use of two different vectors for priming and boosting did not show a synergistic effect on the protection induced against FMD. Interestingly, immunized pigs developed FMDV-specific T cell responses but not detectable antibodies. Thus, the protection observed was likely to be mediated by a cellular immune response.  (+info)

Reassortant viruses are formed when two or more different strains of a virus infect the same cell and exchange genetic material, creating a new strain. This phenomenon is most commonly observed in segmented RNA viruses, such as influenza A and B viruses, where each strain may have a different combination of gene segments. When these reassortant viruses emerge, they can sometimes have altered properties, such as increased transmissibility or virulence, which can pose significant public health concerns. For example, pandemic influenza viruses often arise through the process of reassortment between human and animal strains.

Influenza A virus is defined as a negative-sense, single-stranded, segmented RNA virus belonging to the family Orthomyxoviridae. It is responsible for causing epidemic and pandemic influenza in humans and is also known to infect various animal species, such as birds, pigs, horses, and seals. The viral surface proteins, hemagglutinin (HA) and neuraminidase (NA), are the primary targets for antiviral drugs and vaccines. There are 18 different HA subtypes and 11 known NA subtypes, which contribute to the diversity and antigenic drift of Influenza A viruses. The zoonotic nature of this virus allows for genetic reassortment between human and animal strains, leading to the emergence of novel variants with pandemic potential.

"Influenza A Virus, H3N2 Subtype" is a specific subtype of the influenza A virus that causes respiratory illness and is known to circulate in humans and animals, including birds and pigs. The "H3N2" refers to the two proteins on the surface of the virus: hemagglutinin (H) and neuraminidase (N). In this subtype, the H protein is of the H3 variety and the N protein is of the N2 variety. This subtype has been responsible for several influenza epidemics and pandemics in humans, including the 1968 Hong Kong flu pandemic. It is one of the influenza viruses that are monitored closely by public health authorities due to its potential to cause significant illness and death, particularly in high-risk populations such as older adults, young children, and people with certain underlying medical conditions.

"Influenza A Virus, H5N1 Subtype" is a specific subtype of the Influenza A virus that is often found in avian species (birds) and can occasionally infect humans. The "H5N1" refers to the specific proteins (hemagglutinin and neuraminidase) found on the surface of the virus. This subtype has caused serious infections in humans, with high mortality rates, especially in cases where people have had close contact with infected birds. It does not commonly spread from person to person, but there is concern that it could mutate and adapt to efficiently transmit between humans, which would potentially cause a pandemic.

A ferret is a domesticated mammal that belongs to the weasel family, Mustelidae. The scientific name for the common ferret is Mustela putorius furo. Ferrets are native to Europe and have been kept as pets for thousands of years due to their playful and curious nature. They are small animals, typically measuring between 13-20 inches in length, including their tail, and weighing between 1.5-4 pounds.

Ferrets have a slender body with short legs, a long neck, and a pointed snout. They have a thick coat of fur that can vary in color from white to black, with many different patterns in between. Ferrets are known for their high level of activity and intelligence, and they require regular exercise and mental stimulation to stay healthy and happy.

Ferrets are obligate carnivores, which means that they require a diet that is high in protein and low in carbohydrates. They have a unique digestive system that allows them to absorb nutrients efficiently from their food, but it also means that they are prone to certain health problems if they do not receive proper nutrition.

Ferrets are social animals and typically live in groups. They communicate with each other using a variety of vocalizations, including barks, chirps, and purrs. Ferrets can be trained to use a litter box and can learn to perform simple tricks. With proper care and attention, ferrets can make loving and entertaining pets.

Orthomyxoviridae is a family of viruses that includes influenza A, B, and C viruses, which can cause respiratory infections in humans. Orthomyxoviridae infections are typically characterized by symptoms such as fever, cough, sore throat, runny or stuffy nose, muscle or body aches, headaches, and fatigue.

Influenza A and B viruses can cause seasonal epidemics of respiratory illness that occur mainly during the winter months in temperate climates. Influenza A viruses can also cause pandemics, which are global outbreaks of disease that occur when a new strain of the virus emerges to which there is little or no immunity in the human population.

Influenza C viruses are less common and typically cause milder illness than influenza A and B viruses. They do not cause epidemics and are not usually included in seasonal flu vaccines.

Orthomyxoviridae infections can be prevented through vaccination, good respiratory hygiene (such as covering the mouth and nose when coughing or sneezing), hand washing, and avoiding close contact with sick individuals. Antiviral medications may be prescribed to treat influenza A and B infections, particularly for people at high risk of complications, such as older adults, young children, pregnant women, and people with certain underlying medical conditions.

'Influenza A Virus, H1N1 Subtype' is a specific subtype of the influenza A virus that causes flu in humans and animals. It contains certain proteins called hemagglutinin (H) and neuraminidase (N) on its surface, with this subtype specifically having H1 and N1 antigens. The H1N1 strain is well-known for causing the 2009 swine flu pandemic, which was a global outbreak of flu that resulted in significant morbidity and mortality. This subtype can also cause seasonal flu, although the severity and symptoms may vary. It is important to note that influenza viruses are constantly changing, and new strains or subtypes can emerge over time, requiring regular updates to vaccines to protect against them.

Mammalian Orthoreovirus 3 (Reovirus 3) is a species in the Reoviridae family, Orthoreovirus genus. It is a non-enveloped, double-stranded RNA virus with a segmented genome. This virus is known to infect various mammals, including humans, and primarily targets the respiratory and gastrointestinal systems. However, it generally does not cause any noticeable symptoms or diseases in immunocompetent individuals. The virus has been studied for its potential use as an oncolytic agent in cancer therapy due to its ability to selectively infect and kill cancer cells.

'Influenza A Virus, H9N2 Subtype' is a type of influenza virus that causes respiratory illness in birds and occasionally in humans. It has been found to infect various animal species, including pigs, dogs, and horses. The H9N2 subtype has eight negative-sense RNA segments, encoding several proteins, such as hemagglutinin (H), neuraminidase (N), matrix protein (M), nucleoprotein (NP), nonstructural protein (NS), and three polymerase proteins (PA, PB1, and PB2).

The H9 hemagglutinin and N2 neuraminidase surface glycoproteins define the subtype of this influenza virus. The H9N2 viruses are known to have low pathogenicity in birds but can cause mild to moderate respiratory symptoms in humans, particularly those with occupational exposure to poultry or live bird markets.

H9N2 viruses have sporadically infected humans since their first identification in the 1960s and pose a pandemic threat due to their ability to reassort genetic material with other influenza A viruses, potentially creating new strains with increased transmissibility and pathogenicity for humans.

There is no medical definition or specific virus named "Encephalitis Virus, California." However, there are several viruses that can cause encephalitis (inflammation of the brain) and some of them have been identified in California. Some examples include:

1. West Nile Virus: A mosquito-borne virus that is the most common cause of encephalitis in the United States, including California.
2. St. Louis Encephalitis Virus: Another mosquito-borne virus that is less common but can cause encephalitis, particularly in older adults. It has been identified in California.
3. Californian serogroup viruses (La Crosse, Jamestown Canyon, Snowshoe Hare): These are transmitted through the bite of infected mosquitoes and have been known to cause encephalitis, particularly in children. They are named after California because they were first identified there.
4. Tick-borne encephalitis viruses: There are several tick-borne viruses that can cause encephalitis, including Powassan virus and deer tick virus. These have been reported in California but are rare.

It's important to note that any virus that causes an infection in the body has the potential to spread to the brain and cause encephalitis, so there are many other viruses that could potentially be associated with encephalitis in California or any other location.

Virus replication is the process by which a virus produces copies or reproduces itself inside a host cell. This involves several steps:

1. Attachment: The virus attaches to a specific receptor on the surface of the host cell.
2. Penetration: The viral genetic material enters the host cell, either by invagination of the cell membrane or endocytosis.
3. Uncoating: The viral genetic material is released from its protective coat (capsid) inside the host cell.
4. Replication: The viral genetic material uses the host cell's machinery to produce new viral components, such as proteins and nucleic acids.
5. Assembly: The newly synthesized viral components are assembled into new virus particles.
6. Release: The newly formed viruses are released from the host cell, often through lysis (breaking) of the cell membrane or by budding off the cell membrane.

The specific mechanisms and details of virus replication can vary depending on the type of virus. Some viruses, such as DNA viruses, use the host cell's DNA polymerase to replicate their genetic material, while others, such as RNA viruses, use their own RNA-dependent RNA polymerase or reverse transcriptase enzymes. Understanding the process of virus replication is important for developing antiviral therapies and vaccines.

Hemagglutinin (HA) glycoproteins are surface proteins found on influenza viruses. They play a crucial role in the virus's ability to infect and spread within host organisms.

The HAs are responsible for binding to sialic acid receptors on the host cell's surface, allowing the virus to attach and enter the cell. After endocytosis, the viral and endosomal membranes fuse, releasing the viral genome into the host cell's cytoplasm.

There are several subtypes of hemagglutinin (H1-H18) identified so far, with H1, H2, and H3 being common in human infections. The significant antigenic differences among these subtypes make them important targets for the development of influenza vaccines. However, due to their high mutation rate, new vaccine formulations are often required to match the circulating virus strains.

In summary, hemagglutinin glycoproteins on influenza viruses are essential for host cell recognition and entry, making them important targets for diagnosis, prevention, and treatment of influenza infections.

Viral genes refer to the genetic material present in viruses that contains the information necessary for their replication and the production of viral proteins. In DNA viruses, the genetic material is composed of double-stranded or single-stranded DNA, while in RNA viruses, it is composed of single-stranded or double-stranded RNA.

Viral genes can be classified into three categories: early, late, and structural. Early genes encode proteins involved in the replication of the viral genome, modulation of host cell processes, and regulation of viral gene expression. Late genes encode structural proteins that make up the viral capsid or envelope. Some viruses also have structural genes that are expressed throughout their replication cycle.

Understanding the genetic makeup of viruses is crucial for developing antiviral therapies and vaccines. By targeting specific viral genes, researchers can develop drugs that inhibit viral replication and reduce the severity of viral infections. Additionally, knowledge of viral gene sequences can inform the development of vaccines that stimulate an immune response to specific viral proteins.

'Avian influenza' refers to the infection caused by avian (bird) influenza A viruses. These viruses occur naturally among wild aquatic birds worldwide and can infect domestic poultry and other bird and animal species. Avian influenza viruses do not normally infect humans, but rare cases of human infection have occurred mainly after close contact with infected birds or heavily contaminated environments.

There are many different subtypes of avian influenza viruses based on two proteins on the surface of the virus: hemagglutinin (HA) and neuraminidase (NA). There are 16 known HA subtypes and 9 known NA subtypes, creating a vast number of possible combinations. Some of these combinations cause severe disease and death in birds (e.g., H5N1, H7N9), while others only cause mild illness (e.g., H9N2).

Most avian influenza viruses do not infect humans. However, some forms are zoonotic, meaning they can infect animals and humans. The risk to human health is generally low. When human infections with avian influenza viruses have occurred, most have resulted from direct contact with infected poultry or surfaces contaminated by their feces.

Avian influenza viruses have caused several pandemics in the past, including the 1918 Spanish flu (H1N1), which was an H1N1 virus containing genes of avian origin. The concern is that a highly pathogenic avian influenza virus could mutate to become easily transmissible from human to human, leading to another pandemic. This is one of the reasons why avian influenza viruses are closely monitored by public health authorities worldwide.

"Saimiri" is the genus name for the group of primates known as squirrel monkeys. These small, agile New World monkeys are native to Central and South America and are characterized by their slim bodies, long limbs, and distinctive hairless faces with large eyes. They are omnivorous and known for their active, quick-moving behavior in the trees. There are several species of squirrel monkey, including the Central American squirrel monkey (Saimiri oerstedii) and the much more widespread common squirrel monkey (Saimiri sciureus).

Rotavirus is a genus of double-stranded RNA virus in the Reoviridae family, which is a leading cause of severe diarrhea and gastroenteritis in young children and infants worldwide. The virus infects and damages the cells lining the small intestine, resulting in symptoms such as vomiting, watery diarrhea, abdominal cramps, and fever.

Rotavirus is highly contagious and can be spread through contact with infected individuals or contaminated surfaces, food, or water. The virus is typically transmitted via the fecal-oral route, meaning that it enters the body through the mouth after coming into contact with contaminated hands, objects, or food.

Rotavirus infections are often self-limiting and resolve within a few days to a week, but severe cases can lead to dehydration, hospitalization, and even death, particularly in developing countries where access to medical care and rehydration therapy may be limited. Fortunately, there are effective vaccines available that can prevent rotavirus infection and reduce the severity of symptoms in those who do become infected.

Influenza, also known as the flu, is a highly contagious viral infection that attacks the respiratory system of humans. It is caused by influenza viruses A, B, or C and is characterized by the sudden onset of fever, chills, headache, muscle pain, sore throat, cough, runny nose, and fatigue. Influenza can lead to complications such as pneumonia, bronchitis, and ear infections, and can be particularly dangerous for young children, older adults, pregnant women, and people with weakened immune systems or chronic medical conditions. The virus is spread through respiratory droplets produced when an infected person coughs, sneezes, or talks, and can also survive on surfaces for a period of time. Influenza viruses are constantly changing, which makes it necessary to get vaccinated annually to protect against the most recent and prevalent strains.

Attenuated vaccines consist of live microorganisms that have been weakened (attenuated) through various laboratory processes so they do not cause disease in the majority of recipients but still stimulate an immune response. The purpose of attenuation is to reduce the virulence or replication capacity of the pathogen while keeping it alive, allowing it to retain its antigenic properties and induce a strong and protective immune response.

Examples of attenuated vaccines include:

1. Sabin oral poliovirus vaccine (OPV): This vaccine uses live but weakened polioviruses to protect against all three strains of the disease-causing poliovirus. The weakened viruses replicate in the intestine and induce an immune response, which provides both humoral (antibody) and cell-mediated immunity.
2. Measles, mumps, and rubella (MMR) vaccine: This combination vaccine contains live attenuated measles, mumps, and rubella viruses. It is given to protect against these three diseases and prevent their spread in the population.
3. Varicella (chickenpox) vaccine: This vaccine uses a weakened form of the varicella-zoster virus, which causes chickenpox. By introducing this attenuated virus into the body, it stimulates an immune response that protects against future infection with the wild-type virus.
4. Yellow fever vaccine: This live attenuated vaccine is used to prevent yellow fever, a viral disease transmitted by mosquitoes in tropical and subtropical regions of Africa and South America. The vaccine contains a weakened form of the yellow fever virus that cannot cause the disease but still induces an immune response.
5. Bacillus Calmette-Guérin (BCG) vaccine: This live attenuated vaccine is used to protect against tuberculosis (TB). It contains a weakened strain of Mycobacterium bovis, which does not cause TB in humans but stimulates an immune response that provides some protection against the disease.

Attenuated vaccines are generally effective at inducing long-lasting immunity and can provide robust protection against targeted diseases. However, they may pose a risk for individuals with weakened immune systems, as the attenuated viruses or bacteria could potentially cause illness in these individuals. Therefore, it is essential to consider an individual's health status before administering live attenuated vaccines.

Neuraminidase is an enzyme that occurs on the surface of influenza viruses. It plays a crucial role in the life cycle of the virus by helping it to infect host cells and to spread from cell to cell within the body. Neuraminidase works by cleaving sialic acid residues from glycoproteins, allowing the virus to detach from infected cells and to move through mucus and other bodily fluids. This enzyme is a major target of antiviral drugs used to treat influenza, such as oseltamivir (Tamiflu) and zanamivir (Relenza). Inhibiting the activity of neuraminidase can help to prevent the spread of the virus within the body and reduce the severity of symptoms.

Reoviridae is a family of double-stranded RNA viruses that are non-enveloped and have a segmented genome. The name "Reoviridae" is derived from Respiratory Enteric Orphan virus, as these viruses were initially discovered in respiratory and enteric (gastrointestinal) samples but did not appear to cause any specific diseases.

The family Reoviridae includes several important human pathogens such as rotaviruses, which are a major cause of severe diarrhea in young children worldwide, and orthoreoviruses, which can cause respiratory and systemic infections in humans. Additionally, many Reoviridae viruses infect animals, including birds, mammals, fish, and insects, and can cause a variety of diseases.

Reoviridae virions are typically composed of multiple protein layers that encase the genomic RNA segments. The family is divided into two subfamilies, Sedoreovirinae and Spinareovirinae, based on structural features and genome organization. Reoviruses have a complex replication cycle that involves multiple steps, including attachment to host cells, uncoating of the viral particle, transcription of the genomic RNA, translation of viral proteins, packaging of new virions, and release from infected cells.

Viral proteins are the proteins that are encoded by the viral genome and are essential for the viral life cycle. These proteins can be structural or non-structural and play various roles in the virus's replication, infection, and assembly process. Structural proteins make up the physical structure of the virus, including the capsid (the protein shell that surrounds the viral genome) and any envelope proteins (that may be present on enveloped viruses). Non-structural proteins are involved in the replication of the viral genome and modulation of the host cell environment to favor viral replication. Overall, a thorough understanding of viral proteins is crucial for developing antiviral therapies and vaccines.

Orthoreovirus is a type of virus that belongs to the family Reoviridae. These are non-enveloped viruses with a double-stranded RNA genome. Orthoreoviruses are further classified into three main serotypes (Orthoreovirus 1-3), and they are known to infect both humans and animals, including birds and mammals.

In humans, orthoreovirus infections are usually mild or asymptomatic but can sometimes cause respiratory or gastrointestinal symptoms, particularly in children. The virus is typically transmitted through respiratory droplets or the fecal-oral route. Once inside the host, the virus infects and replicates within cells of the respiratory or intestinal tract, leading to tissue damage and the release of pro-inflammatory cytokines.

Orthoreovirus infections are generally self-limiting, and treatment is typically supportive. However, there is ongoing research into the potential use of orthoreoviruses as oncolytic viruses for cancer therapy, as they have been shown to selectively infect and kill cancer cells while leaving normal cells unharmed.

Reoviridae infections refer to diseases caused by the Reoviridae family of viruses, which are non-enveloped, double-stranded RNA viruses. These viruses are widespread and can infect a variety of hosts, including humans, animals, and insects. The infection typically causes mild respiratory or gastrointestinal symptoms in humans, such as cough, runny nose, sore throat, and diarrhea. In some cases, Reoviridae infections may also lead to more severe diseases, such as meningitis or encephalitis, particularly in immunocompromised individuals. However, it's worth noting that many Reoviridae infections are asymptomatic and do not cause any noticeable illness.

Reoviridae viruses include several genera, such as Orthoreovirus, Rotavirus, Coltivirus, and Orbivirus, among others. Some of the most well-known human pathogens in this family include Rotaviruses, which are a leading cause of severe diarrheal disease in young children worldwide, and Orthoreoviruses, which can cause respiratory illnesses.

Treatment for Reoviridae infections is generally supportive, focusing on managing symptoms such as fever, dehydration, and pain. Antiviral medications are not typically used to treat these infections. Prevention measures include good hygiene practices, such as handwashing and avoiding close contact with infected individuals, as well as vaccination against specific Reoviridae viruses, such as Rotavirus vaccines.

A viral RNA (ribonucleic acid) is the genetic material found in certain types of viruses, as opposed to viruses that contain DNA (deoxyribonucleic acid). These viruses are known as RNA viruses. The RNA can be single-stranded or double-stranded and can exist as several different forms, such as positive-sense, negative-sense, or ambisense RNA. Upon infecting a host cell, the viral RNA uses the host's cellular machinery to translate the genetic information into proteins, leading to the production of new virus particles and the continuation of the viral life cycle. Examples of human diseases caused by RNA viruses include influenza, COVID-19 (SARS-CoV-2), hepatitis C, and polio.

'Influenza A Virus, H1N2 Subtype' is a type of influenza virus that causes respiratory illness in humans and animals. The 'H' and 'N' in the name refer to two proteins on the surface of the virus, hemagglutinin (H) and neuraminidase (N), respectively. In this subtype, the specific forms are H1 and N2.

Influenza A viruses are divided into subtypes based on these surface proteins, and H1N2 is one of several subtypes that can infect humans. The H1N2 virus is known to have circulated in human populations since at least 2001, and it is thought to arise through the reassortment of genes from other influenza A viruses.

Like other influenza viruses, H1N2 can cause a range of symptoms including fever, cough, sore throat, runny or stuffy nose, muscle or body aches, headaches, and fatigue. In some cases, it can lead to more severe illnesses such as pneumonia and bronchitis, particularly in people with weakened immune systems, chronic medical conditions, or the elderly.

It is important to note that influenza viruses are constantly changing, and new subtypes and strains can emerge over time. This is why annual flu vaccinations are recommended to help protect against the most common circulating strains of the virus.

RNA viruses are a type of virus that contain ribonucleic acid (RNA) as their genetic material, as opposed to deoxyribonucleic acid (DNA). RNA viruses replicate by using an enzyme called RNA-dependent RNA polymerase to transcribe and replicate their RNA genome.

There are several different groups of RNA viruses, including:

1. Negative-sense single-stranded RNA viruses: These viruses have a genome that is complementary to the mRNA and must undergo transcription to produce mRNA before translation can occur. Examples include influenza virus, measles virus, and rabies virus.
2. Positive-sense single-stranded RNA viruses: These viruses have a genome that can serve as mRNA and can be directly translated into protein after entry into the host cell. Examples include poliovirus, rhinoviruses, and coronaviruses.
3. Double-stranded RNA viruses: These viruses have a genome consisting of double-stranded RNA and use a complex replication strategy involving both transcription and reverse transcription. Examples include rotaviruses and reoviruses.

RNA viruses are known to cause a wide range of human diseases, ranging from the common cold to more severe illnesses such as hepatitis C, polio, and COVID-19. Due to their high mutation rates and ability to adapt quickly to new environments, RNA viruses can be difficult to control and treat with antiviral drugs or vaccines.

Capsid proteins are the structural proteins that make up the capsid, which is the protective shell of a virus. The capsid encloses the viral genome and helps to protect it from degradation and detection by the host's immune system. Capsid proteins are typically arranged in a symmetrical pattern and can self-assemble into the capsid structure when exposed to the viral genome.

The specific arrangement and composition of capsid proteins vary between different types of viruses, and they play important roles in the virus's life cycle, including recognition and binding to host cells, entry into the cell, and release of the viral genome into the host cytoplasm. Capsid proteins can also serve as targets for antiviral therapies and vaccines.

An antigen is any substance that can stimulate an immune response, particularly the production of antibodies. Viral antigens are antigens that are found on or produced by viruses. They can be proteins, glycoproteins, or carbohydrates present on the surface or inside the viral particle.

Viral antigens play a crucial role in the immune system's recognition and response to viral infections. When a virus infects a host cell, it may display its antigens on the surface of the infected cell. This allows the immune system to recognize and target the infected cells for destruction, thereby limiting the spread of the virus.

Viral antigens are also important targets for vaccines. Vaccines typically work by introducing a harmless form of a viral antigen to the body, which then stimulates the production of antibodies and memory T-cells that can recognize and respond quickly and effectively to future infections with the actual virus.

It's worth noting that different types of viruses have different antigens, and these antigens can vary between strains of the same virus. This is why there are often different vaccines available for different viral diseases, and why flu vaccines need to be updated every year to account for changes in the circulating influenza virus strains.

Hemagglutinins are glycoprotein spikes found on the surface of influenza viruses. They play a crucial role in the viral infection process by binding to sialic acid receptors on host cells, primarily in the respiratory tract. After attachment, hemagglutinins mediate the fusion of the viral and host cell membranes, allowing the viral genome to enter the host cell and initiate replication.

There are 18 different subtypes of hemagglutinin (H1-H18) identified in influenza A viruses, which naturally infect various animal species, including birds, pigs, and humans. The specificity of hemagglutinins for particular sialic acid receptors can influence host range and tissue tropism, contributing to the zoonotic potential of certain influenza A virus subtypes.

Hemagglutination inhibition (HI) assays are commonly used in virology and epidemiology to measure the antibody response to influenza viruses and determine vaccine effectiveness. In these assays, hemagglutinins bind to red blood cells coated with sialic acid receptors, forming a diffuse mat of cells that can be observed visually. The addition of specific antisera containing antibodies against the hemagglutinin prevents this binding and results in the formation of discrete buttons of red blood cells, indicating a positive HI titer and the presence of neutralizing antibodies.

Bunyaviridae is a family of enveloped, single-stranded RNA viruses that includes more than 350 different species. These viruses are named after the type species, Bunyamwera virus, which was first isolated in 1943 from mosquitoes in Uganda.

The genome of Bunyaviridae viruses is divided into three segments: large (L), medium (M), and small (S). The L segment encodes the RNA-dependent RNA polymerase, which is responsible for replication and transcription of the viral genome. The M segment encodes two glycoproteins that form the viral envelope and are involved in attachment and fusion to host cells. The S segment encodes the nucleocapsid protein, which packages the viral RNA, and a non-structural protein that is involved in modulation of the host immune response.

Bunyaviridae viruses are transmitted to humans and animals through arthropod vectors such as mosquitoes, ticks, and sandflies. Some members of this family can cause severe disease in humans, including Hantavirus pulmonary syndrome, Crimean-Congo hemorrhagic fever, and Rift Valley fever.

Prevention and control measures for Bunyaviridae viruses include avoiding contact with vectors, using insect repellent and wearing protective clothing, and implementing vector control programs. There are no specific antiviral treatments available for most Bunyaviridae infections, although ribavirin has been shown to be effective against some members of the family. Vaccines are available for a few Bunyaviridae viruses, such as Hantavirus and Crimean-Congo hemorrhagic fever virus, but they are not widely used due to limitations in production and distribution.

Influenza vaccines, also known as flu shots, are vaccines that protect against the influenza virus. Influenza is a highly contagious respiratory illness that can cause severe symptoms and complications, particularly in young children, older adults, pregnant women, and people with certain underlying health conditions.

Influenza vaccines contain inactivated or weakened viruses or pieces of the virus, which stimulate the immune system to produce antibodies that recognize and fight off the virus. The vaccine is typically given as an injection into the muscle, usually in the upper arm.

There are several different types of influenza vaccines available, including:

* Trivalent vaccines, which protect against three strains of the virus (two A strains and one B strain)
* Quadrivalent vaccines, which protect against four strains of the virus (two A strains and two B strains)
* High-dose vaccines, which contain a higher amount of antigen and are recommended for people aged 65 and older
* Adjuvanted vaccines, which contain an additional ingredient to boost the immune response and are also recommended for people aged 65 and older
* Cell-based vaccines, which are produced using cultured cells rather than eggs and may be recommended for people with egg allergies

It's important to note that influenza viruses are constantly changing, so the vaccine is updated each year to match the circulating strains. It's recommended that most people get vaccinated against influenza every year to stay protected.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

"Ducks" is not a medical term. It is a common name used to refer to a group of birds that belong to the family Anatidae, which also includes swans and geese. Some ducks are hunted for their meat, feathers, or down, but they do not have any specific medical relevance. If you have any questions about a specific medical term or concept, I would be happy to help if you could provide more information!

Virulence, in the context of medicine and microbiology, refers to the degree or severity of damage or harm that a pathogen (like a bacterium, virus, fungus, or parasite) can cause to its host. It is often associated with the ability of the pathogen to invade and damage host tissues, evade or suppress the host's immune response, replicate within the host, and spread between hosts.

Virulence factors are the specific components or mechanisms that contribute to a pathogen's virulence, such as toxins, enzymes, adhesins, and capsules. These factors enable the pathogen to establish an infection, cause tissue damage, and facilitate its transmission between hosts. The overall virulence of a pathogen can be influenced by various factors, including host susceptibility, environmental conditions, and the specific strain or species of the pathogen.

I'm sorry for any confusion, but "poultry" is not a medical term. It is a agricultural and culinary term that refers to domestic birds (such as chickens, ducks, geese, and turkeys) that are kept for their eggs, meat, or feathers. The study and care of these birds would fall under the field of veterinary medicine, but "poultry" itself is not a medical term.

Vaccinia virus is a large, complex DNA virus that belongs to the Poxviridae family. It is the virus used in the production of the smallpox vaccine. The vaccinia virus is not identical to the variola virus, which causes smallpox, but it is closely related and provides cross-protection against smallpox infection.

The vaccinia virus has a unique replication cycle that occurs entirely in the cytoplasm of infected cells, rather than in the nucleus like many other DNA viruses. This allows the virus to evade host cell defenses and efficiently produce new virions. The virus causes the formation of pocks or lesions on the skin, which contain large numbers of virus particles that can be transmitted to others through close contact.

Vaccinia virus has also been used as a vector for the delivery of genes encoding therapeutic proteins, vaccines against other infectious diseases, and cancer therapies. However, the use of vaccinia virus as a vector is limited by its potential to cause adverse reactions in some individuals, particularly those with weakened immune systems or certain skin conditions.

Genetic recombination is the process by which genetic material is exchanged between two similar or identical molecules of DNA during meiosis, resulting in new combinations of genes on each chromosome. This exchange occurs during crossover, where segments of DNA are swapped between non-sister homologous chromatids, creating genetic diversity among the offspring. It is a crucial mechanism for generating genetic variability and facilitating evolutionary change within populations. Additionally, recombination also plays an essential role in DNA repair processes through mechanisms such as homologous recombinational repair (HRR) and non-homologous end joining (NHEJ).

I am not aware of a medical definition for the term "birds." Birds are a group of warm-blooded vertebrates constituting the class Aves, characterized by feathers, toothless beaked jaws, the laying of hard-shelled eggs, and lightweight but strong skeletons. Some birds, such as pigeons and chickens, have been used in medical research, but the term "birds" itself does not have a specific medical definition.

Virus shedding refers to the release of virus particles by an infected individual, who can then transmit the virus to others through various means such as respiratory droplets, fecal matter, or bodily fluids. This occurs when the virus replicates inside the host's cells and is released into the surrounding environment, where it can infect other individuals. The duration of virus shedding varies depending on the specific virus and the individual's immune response. It's important to note that some individuals may shed viruses even before they show symptoms, making infection control measures such as hand hygiene, mask-wearing, and social distancing crucial in preventing the spread of infectious diseases.

RNA-dependent RNA polymerase, also known as RNA replicase, is an enzyme that catalyzes the production of RNA from an RNA template. It plays a crucial role in the replication of certain viruses, such as positive-strand RNA viruses and retroviruses, which use RNA as their genetic material. The enzyme uses the existing RNA strand as a template to create a new complementary RNA strand, effectively replicating the viral genome. This process is essential for the propagation of these viruses within host cells and is a target for antiviral therapies.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Virus receptors are specific molecules (commonly proteins) on the surface of host cells that viruses bind to in order to enter and infect those cells. This interaction between the virus and its receptor is a critical step in the infection process. Different types of viruses have different receptor requirements, and identifying these receptors can provide important insights into the biology of the virus and potential targets for antiviral therapies.

Hemagglutination is a process where red blood cells (RBCs) agglutinate or clump together. Viral hemagglutination refers to the ability of certain viruses to bind to and agglutinate RBCs. This is often due to viral surface proteins known as hemagglutinins, which can recognize and attach to specific receptors on the surface of RBCs.

In virology, viral hemagglutination assays are commonly used for virus identification and quantification. For example, the influenza virus is known to hemagglutinate chicken RBCs, and this property can be used to identify and titrate the virus in a sample. The hemagglutination titer is the highest dilution of a virus that still causes visible agglutination of RBCs. This information can be useful in understanding the viral load in a patient or during vaccine production.

Poultry diseases refer to a wide range of infectious and non-infectious disorders that affect domesticated birds, particularly those raised for meat, egg, or feather production. These diseases can be caused by various factors including viruses, bacteria, fungi, parasites, genetic predisposition, environmental conditions, and management practices.

Infectious poultry diseases are often highly contagious and can lead to significant economic losses in the poultry industry due to decreased production, increased mortality, and reduced quality of products. Some examples of infectious poultry diseases include avian influenza, Newcastle disease, salmonellosis, colibacillosis, mycoplasmosis, aspergillosis, and coccidiosis.

Non-infectious poultry diseases can be caused by factors such as poor nutrition, environmental stressors, and management issues. Examples of non-infectious poultry diseases include ascites, fatty liver syndrome, sudden death syndrome, and various nutritional deficiencies.

Prevention and control of poultry diseases typically involve a combination of biosecurity measures, vaccination programs, proper nutrition, good management practices, and monitoring for early detection and intervention. Rapid and accurate diagnosis of poultry diseases is crucial to implementing effective treatment and prevention strategies, and can help minimize the impact of disease outbreaks on both individual flocks and the broader poultry industry.

Viral core proteins are the structural proteins that make up the viral capsid or protein shell, enclosing and protecting the viral genome. These proteins play a crucial role in the assembly of the virion, assist in the infection process by helping to deliver the viral genome into the host cell, and may also have functions in regulating viral replication. The specific composition and structure of viral core proteins vary among different types of viruses.

A capsid is the protein shell that encloses and protects the genetic material of a virus. It is composed of multiple copies of one or more proteins that are arranged in a specific structure, which can vary in shape and symmetry depending on the type of virus. The capsid plays a crucial role in the viral life cycle, including protecting the viral genome from host cell defenses, mediating attachment to and entry into host cells, and assisting with the assembly of new virus particles during replication.

According to the World Health Organization (WHO), Rotavirus is the most common cause of severe diarrhea among children under 5 years of age. It is responsible for around 215,000 deaths among children in this age group each year.

Rotavirus infection causes inflammation of the stomach and intestines, resulting in symptoms such as vomiting, watery diarrhea, and fever. The virus is transmitted through the fecal-oral route, often through contaminated hands, food, or water. It can also be spread through respiratory droplets when an infected person coughs or sneezes.

Rotavirus infections are highly contagious and can spread rapidly in communities, particularly in settings where children are in close contact with each other, such as child care centers and schools. The infection is usually self-limiting and resolves within a few days, but severe cases can lead to dehydration and require hospitalization.

Prevention measures include good hygiene practices, such as handwashing with soap and water, safe disposal of feces, and rotavirus vaccination. The WHO recommends the inclusion of rotavirus vaccines in national immunization programs to reduce the burden of severe diarrhea caused by rotavirus infection.

Virus cultivation, also known as virus isolation or viral culture, is a laboratory method used to propagate and detect viruses by introducing them to host cells and allowing them to replicate. This process helps in identifying the specific virus causing an infection and studying its characteristics, such as morphology, growth pattern, and sensitivity to antiviral agents.

The steps involved in virus cultivation typically include:

1. Collection of a clinical sample (e.g., throat swab, blood, sputum) from the patient.
2. Preparation of the sample by centrifugation or filtration to remove cellular debris and other contaminants.
3. Inoculation of the prepared sample into susceptible host cells, which can be primary cell cultures, continuous cell lines, or embryonated eggs, depending on the type of virus.
4. Incubation of the inoculated cells under appropriate conditions to allow viral replication.
5. Observation for cytopathic effects (CPE), which are changes in the host cells caused by viral replication, such as cell rounding, shrinkage, or lysis.
6. Confirmation of viral presence through additional tests, like immunofluorescence assays, polymerase chain reaction (PCR), or electron microscopy.

Virus cultivation is a valuable tool in diagnostic virology, vaccine development, and research on viral pathogenesis and host-virus interactions. However, it requires specialized equipment, trained personnel, and biosafety measures due to the potential infectivity of the viruses being cultured.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Viral diseases are illnesses caused by the infection and replication of viruses in host organisms. These infectious agents are obligate parasites, meaning they rely on the cells of other living organisms to survive and reproduce. Viruses can infect various types of hosts, including animals, plants, and microorganisms, causing a wide range of diseases with varying symptoms and severity.

Once a virus enters a host cell, it takes over the cell's machinery to produce new viral particles, often leading to cell damage or death. The immune system recognizes the viral components as foreign and mounts an immune response to eliminate the infection. This response can result in inflammation, fever, and other symptoms associated with viral diseases.

Examples of well-known viral diseases include:

1. Influenza (flu) - caused by influenza A, B, or C viruses
2. Common cold - usually caused by rhinoviruses or coronaviruses
3. HIV/AIDS - caused by human immunodeficiency virus (HIV)
4. Measles - caused by measles morbillivirus
5. Hepatitis B and C - caused by hepatitis B virus (HBV) and hepatitis C virus (HCV), respectively
6. Herpes simplex - caused by herpes simplex virus type 1 (HSV-1) or type 2 (HSV-2)
7. Chickenpox and shingles - both caused by varicella-zoster virus (VZV)
8. Rabies - caused by rabies lyssavirus
9. Ebola - caused by ebolaviruses
10. COVID-19 - caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

Prevention and treatment strategies for viral diseases may include vaccination, antiviral medications, and supportive care to manage symptoms while the immune system fights off the infection.

Simian Virus 40 (SV40) is a polyomavirus that is found in both monkeys and humans. It is a DNA virus that has been extensively studied in laboratory settings due to its ability to transform cells and cause tumors in animals. In fact, SV40 was discovered as a contaminant of poliovirus vaccines that were prepared using rhesus monkey kidney cells in the 1950s and 1960s.

SV40 is not typically associated with human disease, but there has been some concern that exposure to the virus through contaminated vaccines or other means could increase the risk of certain types of cancer, such as mesothelioma and brain tumors. However, most studies have failed to find a consistent link between SV40 infection and cancer in humans.

The medical community generally agrees that SV40 is not a significant public health threat, but researchers continue to study the virus to better understand its biology and potential impact on human health.

Lassa virus is an arenavirus that causes Lassa fever, a type of hemorrhagic fever. It is primarily transmitted to humans through contact with infected rodents or their urine and droppings. The virus can also be spread through person-to-person transmission via direct contact with the blood, urine, feces, or other bodily fluids of an infected person.

The virus was first discovered in 1969 in the town of Lassa in Nigeria, hence its name. It is endemic to West Africa and is a significant public health concern in countries such as Sierra Leone, Liberia, Guinea, and Nigeria. The symptoms of Lassa fever can range from mild to severe and may include fever, sore throat, muscle pain, chest pain, and vomiting. In severe cases, the virus can cause bleeding, organ failure, and death.

Prevention measures for Lassa fever include avoiding contact with rodents, storing food in rodent-proof containers, and practicing good hygiene. There is no vaccine available to prevent Lassa fever, but ribavirin, an antiviral drug, has been shown to be effective in treating the disease if administered early in the course of illness.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Antibodies, viral are proteins produced by the immune system in response to an infection with a virus. These antibodies are capable of recognizing and binding to specific antigens on the surface of the virus, which helps to neutralize or destroy the virus and prevent its replication. Once produced, these antibodies can provide immunity against future infections with the same virus.

Viral antibodies are typically composed of four polypeptide chains - two heavy chains and two light chains - that are held together by disulfide bonds. The binding site for the antigen is located at the tip of the Y-shaped structure, formed by the variable regions of the heavy and light chains.

There are five classes of antibodies in humans: IgA, IgD, IgE, IgG, and IgM. Each class has a different function and is distributed differently throughout the body. For example, IgG is the most common type of antibody found in the bloodstream and provides long-term immunity against viruses, while IgA is found primarily in mucous membranes and helps to protect against respiratory and gastrointestinal infections.

In addition to their role in the immune response, viral antibodies can also be used as diagnostic tools to detect the presence of a specific virus in a patient's blood or other bodily fluids.

Virus assembly, also known as virion assembly, is the final stage in the virus life cycle where individual viral components come together to form a complete viral particle or virion. This process typically involves the self-assembly of viral capsid proteins around the viral genome (DNA or RNA) and, in enveloped viruses, the acquisition of a lipid bilayer membrane containing viral glycoproteins. The specific mechanisms and regulation of virus assembly vary among different viral families, but it is often directed by interactions between viral structural proteins and genomic nucleic acid.

A plant virus is not defined in medical terms, as viruses are typically considered within the context of living organisms and plants are not classified as such. However, I can provide a general virology definition for you:

Plant viruses are small infectious agents that consist of nucleic acid (DNA or RNA) enclosed in a protein coat. They infect various plant species, causing a wide range of symptoms and diseases, which can result in significant economic losses in agriculture and horticulture. Plant viruses lack the ability to replicate outside a host cell, and they rely on the host's metabolic machinery for their reproduction. They can be transmitted through various means, such as insect vectors, seeds, or mechanical contact.

A viral genome is the genetic material (DNA or RNA) that is present in a virus. It contains all the genetic information that a virus needs to replicate itself and infect its host. The size and complexity of viral genomes can vary greatly, ranging from a few thousand bases to hundreds of thousands of bases. Some viruses have linear genomes, while others have circular genomes. The genome of a virus also contains the information necessary for the virus to hijack the host cell's machinery and use it to produce new copies of the virus. Understanding the genetic makeup of viruses is important for developing vaccines and antiviral treatments.

Rotavirus vaccines are preventive measures used to protect against rotavirus infections, which are the leading cause of severe diarrhea and dehydration among infants and young children worldwide. These vaccines contain weakened or inactivated forms of the rotavirus, a pathogen that infects and causes symptoms by multiplying inside cells lining the small intestine.

The weakened or inactivated virus in the vaccine stimulates an immune response in the body, enabling it to recognize and fight off future rotavirus infections more effectively. The vaccines are usually administered orally, as a liquid droplet or on a sugar cube, to mimic natural infection through the gastrointestinal tract.

There are currently two licensed rotavirus vaccines available globally:

1. Rotarix (GlaxoSmithKline): This vaccine contains an attenuated (weakened) strain of human rotavirus and is given in a two-dose series, typically at 2 and 4 months of age.
2. RotaTeq (Merck): This vaccine contains five reassortant viruses, combining human and animal strains to provide broader protection. It is administered in a three-dose series, usually at 2, 4, and 6 months of age.

Rotavirus vaccines have been shown to significantly reduce the incidence of severe rotavirus gastroenteritis and related hospitalizations among infants and young children. The World Health Organization (WHO) recommends the inclusion of rotavirus vaccination in national immunization programs, particularly in countries with high child mortality rates due to diarrheal diseases.

DNA viruses are a type of virus that contain DNA (deoxyribonucleic acid) as their genetic material. These viruses replicate by using the host cell's machinery to synthesize new viral components, which are then assembled into new viruses and released from the host cell.

DNA viruses can be further classified based on the structure of their genomes and the way they replicate. For example, double-stranded DNA (dsDNA) viruses have a genome made up of two strands of DNA, while single-stranded DNA (ssDNA) viruses have a genome made up of a single strand of DNA.

Examples of DNA viruses include herpes simplex virus, varicella-zoster virus, human papillomavirus, and adenoviruses. Some DNA viruses are associated with specific diseases, such as cancer (e.g., human papillomavirus) or neurological disorders (e.g., herpes simplex virus).

It's important to note that while DNA viruses contain DNA as their genetic material, RNA viruses contain RNA (ribonucleic acid) as their genetic material. Both DNA and RNA viruses can cause a wide range of diseases in humans, animals, and plants.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Defective viruses are viruses that have lost the ability to complete a full replication cycle and produce progeny virions independently. These viruses require the assistance of a helper virus, which provides the necessary functions for replication. Defective viruses can arise due to mutations, deletions, or other genetic changes that result in the loss of essential genes. They are often non-infectious and cannot cause disease on their own, but they may interfere with the replication of the helper virus and modulate the course of infection. Defective viruses can be found in various types of viruses, including retroviruses, bacteriophages, and DNA viruses.

Swine diseases refer to a wide range of infectious and non-infectious conditions that affect pigs. These diseases can be caused by viruses, bacteria, fungi, parasites, or environmental factors. Some common swine diseases include:

1. Porcine Reproductive and Respiratory Syndrome (PRRS): a viral disease that causes reproductive failure in sows and respiratory problems in piglets and grower pigs.
2. Classical Swine Fever (CSF): also known as hog cholera, is a highly contagious viral disease that affects pigs of all ages.
3. Porcine Circovirus Disease (PCVD): a group of diseases caused by porcine circoviruses, including Porcine CircoVirus Associated Disease (PCVAD) and Postweaning Multisystemic Wasting Syndrome (PMWS).
4. Swine Influenza: a respiratory disease caused by type A influenza viruses that can infect pigs and humans.
5. Mycoplasma Hyopneumoniae: a bacterial disease that causes pneumonia in pigs.
6. Actinobacillus Pleuropneumoniae: a bacterial disease that causes severe pneumonia in pigs.
7. Salmonella: a group of bacteria that can cause food poisoning in humans and a variety of diseases in pigs, including septicemia, meningitis, and abortion.
8. Brachyspira Hyodysenteriae: a bacterial disease that causes dysentery in pigs.
9. Erysipelothrix Rhusiopathiae: a bacterial disease that causes erysipelas in pigs.
10. External and internal parasites, such as lice, mites, worms, and flukes, can also cause diseases in swine.

Prevention and control of swine diseases rely on good biosecurity practices, vaccination programs, proper nutrition, and management practices. Regular veterinary check-ups and monitoring are essential to detect and treat diseases early.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Reverse genetics is a term used in molecular biology that refers to the process of creating or modifying an organism's genetic material (DNA or RNA) to produce specific phenotypic traits or characteristics. In contrast to traditional forward genetics, where researchers start with an organism and identify the gene responsible for a particular trait, reverse genetics begins with a known gene or DNA sequence and creates an organism that expresses that gene.

In virology, reverse genetics is often used to study viruses by creating infectious clones of their genomes. This allows researchers to manipulate the virus's genetic material and study the effects of specific mutations on viral replication, pathogenesis, and host immune response. By using reverse genetics, scientists can gain insights into the function of individual genes and how they contribute to viral infection and disease.

Overall, reverse genetics is a powerful tool for understanding gene function and developing new strategies for treating genetic diseases or preventing viral infections.

"Chickens" is a common term used to refer to the domesticated bird, Gallus gallus domesticus, which is widely raised for its eggs and meat. However, in medical terms, "chickens" is not a standard term with a specific definition. If you have any specific medical concern or question related to chickens, such as food safety or allergies, please provide more details so I can give a more accurate answer.

Sindbis virus is an alphavirus that belongs to the Togaviridae family. It's named after the location where it was first isolated, in Sindbis, Egypt, in 1952. This virus is primarily transmitted by mosquitoes and can infect a wide range of animals, including birds and humans. In humans, Sindbis virus infection often causes a mild flu-like illness characterized by fever, rash, and joint pain. However, some people may develop more severe symptoms, such as neurological disorders, although this is relatively rare. There is no specific treatment for Sindbis virus infection, and management typically involves supportive care to alleviate symptoms.

Nucleoproteins are complexes formed by the association of proteins with nucleic acids (DNA or RNA). These complexes play crucial roles in various biological processes, such as packaging and protecting genetic material, regulating gene expression, and replication and repair of DNA. In these complexes, proteins interact with nucleic acids through electrostatic, hydrogen bonding, and other non-covalent interactions, leading to the formation of stable structures that help maintain the integrity and function of the genetic material. Some well-known examples of nucleoproteins include histones, which are involved in DNA packaging in eukaryotic cells, and reverse transcriptase, an enzyme found in retroviruses that transcribes RNA into DNA.

Measles virus is a single-stranded, negative-sense RNA virus belonging to the genus Morbillivirus in the family Paramyxoviridae. It is the causative agent of measles, a highly contagious infectious disease characterized by fever, cough, runny nose, and a red, blotchy rash. The virus primarily infects the respiratory tract and then spreads throughout the body via the bloodstream.

The genome of the measles virus is approximately 16 kilobases in length and encodes for eight proteins: nucleocapsid (N), phosphoprotein (P), matrix protein (M), fusion protein (F), hemagglutinin (H), large protein (L), and two non-structural proteins, V and C. The H protein is responsible for binding to the host cell receptor CD150 (SLAM) and mediating viral entry, while the F protein facilitates fusion of the viral and host cell membranes.

Measles virus is transmitted through respiratory droplets and direct contact with infected individuals. The virus can remain airborne for up to two hours in a closed space, making it highly contagious. Measles is preventable through vaccination, which has led to significant reductions in the incidence of the disease worldwide.

'Influenza A Virus, H5N2 Subtype' is a type of influenza virus that primarily infects birds, but has caused sporadic infections in humans who have had close contact with infected poultry or contaminated environments. The 'H5N2' refers to the specific subtype of the hemagglutinin (H) and neuraminidase (N) proteins found on the surface of the virus.

The H5N2 subtype has caused significant outbreaks in poultry populations, leading to substantial economic losses for the farming industry. While human infections with this subtype are rare, they can cause severe respiratory illness and have the potential to cause a pandemic if the virus were to acquire the ability to transmit efficiently from person to person.

It is important to note that seasonal influenza vaccines do not provide protection against H5N2 or other non-seasonal influenza viruses, highlighting the need for ongoing surveillance and research into new vaccine candidates.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

Rabies is a viral disease that affects the nervous system of mammals, including humans. It's caused by the rabies virus (RV), which belongs to the family Rhabdoviridae and genus Lyssavirus. The virus has a bullet-shaped appearance under an electron microscope and is encased in a lipid envelope.

The rabies virus primarily spreads through the saliva of infected animals, usually via bites. Once inside the body, it travels along nerve fibers to the brain, where it multiplies rapidly and causes inflammation (encephalitis). The infection can lead to symptoms such as anxiety, confusion, hallucinations, seizures, paralysis, coma, and ultimately death if left untreated.

Rabies is almost always fatal once symptoms appear, but prompt post-exposure prophylaxis (PEP), which includes vaccination and sometimes rabies immunoglobulin, can prevent the disease from developing when administered after an exposure to a potentially rabid animal. Pre-exposure vaccination is also recommended for individuals at high risk of exposure, such as veterinarians and travelers visiting rabies-endemic areas.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Bluetongue virus (BTV) is an infectious agent that causes Bluetongue disease, a non-contagious viral disease affecting sheep and other ruminants. It is a member of the Orbivirus genus within the Reoviridae family. The virus is transmitted by biting midges of the Culicoides species and can infect various animals such as sheep, cattle, goats, and wild ruminants.

The virus has a double-stranded RNA genome and consists of ten segments that encode seven structural and four non-structural proteins. The clinical signs of Bluetongue disease in sheep include fever, salivation, swelling of the head and neck, nasal discharge, and respiratory distress, which can be severe or fatal. In contrast, cattle usually show milder symptoms or are asymptomatic, although they can serve as reservoirs for the virus.

Bluetongue virus is an important veterinary pathogen that has a significant economic impact on the global sheep industry. The disease is prevalent in many parts of the world, particularly in tropical and subtropical regions, but has also spread to temperate areas due to climate change and the movement of infected animals. Prevention and control measures include vaccination, insect control, and restricting the movement of infected animals.

Vero cells are a line of cultured kidney epithelial cells that were isolated from an African green monkey (Cercopithecus aethiops) in the 1960s. They are named after the location where they were initially developed, the Vervet Research Institute in Japan.

Vero cells have the ability to divide indefinitely under certain laboratory conditions and are often used in scientific research, including virology, as a host cell for viruses to replicate. This allows researchers to study the characteristics of various viruses, such as their growth patterns and interactions with host cells. Vero cells are also used in the production of some vaccines, including those for rabies, polio, and Japanese encephalitis.

It is important to note that while Vero cells have been widely used in research and vaccine production, they can still have variations between different cell lines due to factors like passage number or culture conditions. Therefore, it's essential to specify the exact source and condition of Vero cells when reporting experimental results.

Orthobunyavirus is a genus of viruses in the family Peribunyaviridae, order Bunyavirales. These are enveloped, single-stranded, negative-sense RNA viruses. The genome consists of three segments: large (L), medium (M), and small (S). The L segment encodes the RNA-dependent RNA polymerase, the M segment encodes two glycoproteins (Gn and Gc) and a nonstructural protein (NSm), and the S segment encodes the nucleocapsid protein (N) and a nonstructural protein (NSs).

Orthobunyaviruses are primarily transmitted by arthropods, such as mosquitoes, ticks, and midges, and can cause disease in humans and animals. The diseases caused by orthobunyaviruses range from mild febrile illness to severe hemorrhagic fever and encephalitis. Some of the notable orthobunyaviruses include California encephalitis virus, La Crosse encephalitis virus, Oropouche virus, and Crimean-Congo hemorrhagic fever virus.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

Neutralization tests are a type of laboratory assay used in microbiology and immunology to measure the ability of a substance, such as an antibody or antitoxin, to neutralize the activity of a toxin or infectious agent. In these tests, the substance to be tested is mixed with a known quantity of the toxin or infectious agent, and the mixture is then incubated under controlled conditions. After incubation, the mixture is tested for residual toxicity or infectivity using a variety of methods, such as cell culture assays, animal models, or biochemical assays.

The neutralization titer is then calculated based on the highest dilution of the test substance that completely neutralizes the toxin or infectious agent. Neutralization tests are commonly used in the diagnosis and evaluation of immune responses to vaccines, as well as in the detection and quantification of toxins and other harmful substances.

Examples of neutralization tests include the serum neutralization test for measles antibodies, the plaque reduction neutralization test (PRNT) for dengue virus antibodies, and the cytotoxicity neutralization assay for botulinum neurotoxins.

A viral plaque assay is a laboratory technique used to measure the infectivity and concentration of viruses in a sample. This method involves infecting a monolayer of cells (usually in a petri dish or multi-well plate) with a known volume of a virus-containing sample, followed by overlaying the cells with a nutrient-agar medium to restrict viral spread and enable individual plaques to form.

After an incubation period that allows for viral replication and cell death, the cells are stained, and clear areas or "plaques" become visible in the monolayer. Each plaque represents a localized region of infected and lysed cells, caused by the progeny of a single infectious virus particle. The number of plaques is then counted, and the viral titer (infectious units per milliliter or PFU/mL) is calculated based on the dilution factor and volume of the original inoculum.

Viral plaque assays are essential for determining viral titers, assessing virus-host interactions, evaluating antiviral agents, and studying viral pathogenesis.

'Cercopithecus aethiops' is the scientific name for the monkey species more commonly known as the green monkey. It belongs to the family Cercopithecidae and is native to western Africa. The green monkey is omnivorous, with a diet that includes fruits, nuts, seeds, insects, and small vertebrates. They are known for their distinctive greenish-brown fur and long tail. Green monkeys are also important animal models in biomedical research due to their susceptibility to certain diseases, such as SIV (simian immunodeficiency virus), which is closely related to HIV.

Hepatitis B virus (HBV) is a DNA virus that belongs to the Hepadnaviridae family and causes the infectious disease known as hepatitis B. This virus primarily targets the liver, where it can lead to inflammation and damage of the liver tissue. The infection can range from acute to chronic, with chronic hepatitis B increasing the risk of developing serious liver complications such as cirrhosis and liver cancer.

The Hepatitis B virus has a complex life cycle, involving both nuclear and cytoplasmic phases. It enters hepatocytes (liver cells) via binding to specific receptors and is taken up by endocytosis. The viral DNA is released into the nucleus, where it is converted into a covalently closed circular DNA (cccDNA) form, which serves as the template for viral transcription.

HBV transcribes several RNAs, including pregenomic RNA (pgRNA), which is used as a template for reverse transcription during virion assembly. The pgRNA is encapsidated into core particles along with the viral polymerase and undergoes reverse transcription to generate new viral DNA. This process occurs within the cytoplasm of the hepatocyte, resulting in the formation of immature virions containing partially double-stranded DNA.

These immature virions are then enveloped by host cell membranes containing HBV envelope proteins (known as surface antigens) to form mature virions that can be secreted from the hepatocyte and infect other cells. The virus can also integrate into the host genome, which may contribute to the development of hepatocellular carcinoma in chronic cases.

Hepatitis B is primarily transmitted through exposure to infected blood or bodily fluids containing the virus, such as through sexual contact, sharing needles, or from mother to child during childbirth. Prevention strategies include vaccination, safe sex practices, and avoiding needle-sharing behaviors. Treatment for hepatitis B typically involves antiviral medications that can help suppress viral replication and reduce the risk of liver damage.

Bunyaviridae is a family of viruses that includes several genera capable of causing human disease. These viruses are primarily transmitted to humans through the bite of infected arthropods, such as mosquitoes and ticks, or through contact with infected rodents or their excreta.

Some of the diseases caused by Bunyaviridae infections include:

1. Hantavirus Pulmonary Syndrome (HPS): This is a severe, sometimes fatal, respiratory disease caused by hantaviruses. It is transmitted to humans through contact with infected rodents or their urine and droppings.
2. Crimean-Congo Hemorrhagic Fever (CCHF): This is a serious and often fatal viral hemorrhagic fever caused by the CCHF virus. It is primarily transmitted to humans through the bite of infected ticks, but can also be spread through contact with the blood or tissue of infected animals.
3. Rift Valley Fever (RVF): This is a viral disease that primarily affects animals, but can also infect humans. It is transmitted to humans through contact with the blood or tissue of infected animals, or through the bite of infected mosquitoes.
4. La Crosse Encephalitis: This is a viral disease transmitted to humans through the bite of infected mosquitoes. It primarily affects children and can cause inflammation of the brain (encephalitis).
5. Toscana Virus Infection: This is a viral disease transmitted to humans through the bite of infected sandflies. It can cause symptoms such as fever, headache, and meningitis.

Prevention measures include avoiding contact with rodents and their excreta, using insect repellent and wearing protective clothing to prevent mosquito and tick bites, and seeking prompt medical attention if symptoms of a Bunyaviridae infection develop.

West Nile Virus (WNV) is an Flavivirus, which is a type of virus that is spread by mosquitoes. It was first discovered in the West Nile district of Uganda in 1937 and has since been found in many countries throughout the world. WNV can cause a mild to severe illness known as West Nile fever.

Most people who become infected with WNV do not develop any symptoms, but some may experience fever, headache, body aches, joint pain, vomiting, diarrhea, or a rash. In rare cases, the virus can cause serious neurological illnesses such as encephalitis (inflammation of the brain) or meningitis (inflammation of the membranes surrounding the brain and spinal cord). These severe forms of the disease can be fatal, especially in older adults and people with weakened immune systems.

WNV is primarily transmitted to humans through the bite of infected mosquitoes, but it can also be spread through blood transfusions, organ transplants, or from mother to baby during pregnancy, delivery, or breastfeeding. There is no specific treatment for WNV, and most people recover on their own with rest and supportive care. However, hospitalization may be necessary in severe cases. Prevention measures include avoiding mosquito bites by using insect repellent, wearing long sleeves and pants, and staying indoors during peak mosquito activity hours.

Bunyamwera virus is an enveloped, single-stranded RNA virus that belongs to the family Peribunyaviridae and genus Orthobunyavirus. It was first isolated in 1943 from mosquitoes in the Bunyamwera district of Uganda. The viral genome consists of three segments: large (L), medium (M), and small (S).

The virus is primarily transmitted to vertebrates, including humans, through the bite of infected mosquitoes. It can cause a mild febrile illness in humans, characterized by fever, headache, muscle pain, and rash. However, Bunyamwera virus infection is usually asymptomatic or causes only mild symptoms in humans.

Bunyamwera virus has a wide host range, including mammals, birds, and mosquitoes, and is found in many parts of the world, particularly in tropical and subtropical regions. It is an important pathogen in veterinary medicine, causing disease in livestock such as cattle, sheep, and goats.

Research on Bunyamwera virus has contributed significantly to our understanding of the biology and ecology of bunyaviruses, which are a major cause of human and animal diseases worldwide.

Respiratory Syncytial Viruses (RSV) are a common type of virus that cause respiratory infections, particularly in young children and older adults. They are responsible for inflammation and narrowing of the small airways in the lungs, leading to breathing difficulties and other symptoms associated with bronchiolitis and pneumonia.

The term "syncytial" refers to the ability of these viruses to cause infected cells to merge and form large multinucleated cells called syncytia, which is a characteristic feature of RSV infections. The virus spreads through respiratory droplets when an infected person coughs or sneezes, and it can also survive on surfaces for several hours, making transmission easy.

RSV infections are most common during the winter months and can cause mild to severe symptoms depending on factors such as age, overall health, and underlying medical conditions. While RSV is typically associated with respiratory illnesses in children, it can also cause significant disease in older adults and immunocompromised individuals. Currently, there is no vaccine available for RSV, but antiviral medications and supportive care are used to manage severe infections.

"Influenza A Virus, H7N7 Subtype" is a type of influenza virus that causes respiratory illness in humans and animals. The "H" and "N" in the name refer to two proteins on the surface of the virus, hemagglutinin (H) and neuraminidase (N), respectively. In this subtype, the H7 protein is combined with the N7 protein.

H7N7 viruses are primarily avian influenza viruses, meaning they naturally infect birds. However, they can occasionally infect other animals, including humans, and have caused sporadic human infections and outbreaks, mainly in people who have close contact with infected birds or their droppings.

H7N7 infections in humans can range from mild to severe respiratory illness, and some cases have resulted in death. However, human-to-human transmission of H7N7 viruses is rare. Public health authorities closely monitor H7N7 and other avian influenza viruses due to their potential to cause a pandemic if they acquire the ability to transmit efficiently between humans.

Viral activation, also known as viral reactivation or virus reactivation, refers to the process in which a latent or dormant virus becomes active and starts to replicate within a host cell. This can occur when the immune system is weakened or compromised, allowing the virus to evade the body's natural defenses and cause disease.

In some cases, viral activation can be triggered by certain environmental factors, such as stress, exposure to UV light, or infection with another virus. Once activated, the virus can cause symptoms similar to those seen during the initial infection, or it may lead to new symptoms depending on the specific virus and the host's immune response.

Examples of viruses that can remain dormant in the body and be reactivated include herpes simplex virus (HSV), varicella-zoster virus (VZV), cytomegalovirus (CMV), and Epstein-Barr virus (EBV). It is important to note that not all viruses can be reactivated, and some may remain dormant in the body indefinitely without causing any harm.

A pandemic is a global outbreak of a disease that spreads easily from person to person across a large region, such as multiple continents or worldwide. It is declared by the World Health Organization (WHO) when the spread of a disease poses a significant threat to the global population due to its severity and transmissibility.

Pandemics typically occur when a new strain of virus emerges that has not been previously seen in humans, for which there is little or no pre-existing immunity. This makes it difficult to control the spread of the disease, as people do not have natural protection against it. Examples of pandemics include the 1918 Spanish flu pandemic and the more recent COVID-19 pandemic caused by the SARS-CoV-2 virus.

During a pandemic, healthcare systems can become overwhelmed, and there may be significant social and economic disruption as governments take measures to slow the spread of the disease, such as travel restrictions, quarantines, and lockdowns. Effective vaccines and treatments are critical in controlling the spread of pandemics and reducing their impact on public health.

Hemagglutination inhibition (HI) tests are a type of serological assay used in medical laboratories to detect and measure the amount of antibodies present in a patient's serum. These tests are commonly used to diagnose viral infections, such as influenza or HIV, by identifying the presence of antibodies that bind to specific viral antigens and prevent hemagglutination (the agglutination or clumping together of red blood cells).

In an HI test, a small amount of the patient's serum is mixed with a known quantity of the viral antigen, which has been treated to attach to red blood cells. If the patient's serum contains antibodies that bind to the viral antigen, they will prevent the antigen from attaching to the red blood cells and inhibit hemagglutination. The degree of hemagglutination inhibition can be measured and used to estimate the amount of antibody present in the patient's serum.

HI tests are relatively simple and inexpensive to perform, but they have some limitations. For example, they may not detect early-stage infections before the body has had a chance to produce antibodies, and they may not be able to distinguish between different strains of the same virus. Nonetheless, HI tests remain an important tool for diagnosing viral infections and monitoring immune responses to vaccination or infection.

Vesicular stomatitis Indiana virus (VSIV) is a single-stranded, negative-sense RNA virus that belongs to the family Rhabdoviridae and genus Vesiculovirus. It is the causative agent of vesicular stomatitis (VS), a viral disease that primarily affects horses and cattle, but can also infect other species including swine, sheep, goats, and humans.

The virus is transmitted through direct contact with infected animals or their saliva, as well as through insect vectors such as black flies and sandflies. The incubation period for VS ranges from 2 to 8 days, after which infected animals develop fever, lethargy, and vesicular lesions in the mouth, nose, and feet. These lesions can be painful and may cause difficulty eating or walking.

In humans, VSIV infection is typically asymptomatic or causes mild flu-like symptoms such as fever, muscle aches, and headache. Occasionally, individuals may develop vesicular lesions on their skin or mucous membranes, particularly if they have had contact with infected animals.

Diagnosis of VSIV infection is typically made through virus isolation from lesion exudates or blood, as well as through serological testing. Treatment is generally supportive and aimed at relieving symptoms, as there are no specific antiviral therapies available for VS. Prevention measures include vaccination of susceptible animals, vector control, and biosecurity measures to prevent the spread of infection between animals.

'Influenza A Virus, H2N2 Subtype' is a type of influenza virus that causes flu in humans and animals. It has the surface proteins hemagglutinin 2 (H) and neuraminidase 2 (N). This subtype was responsible for the Asian Flu pandemic in 1957-1958, which is estimated to have caused 1 to 4 million deaths worldwide. Since then, this specific H2N2 subtype has not circulated widely among humans. However, it still exists in animals such as birds and pigs, and there is a risk that it could evolve and infect humans again, which is why it is closely monitored by public health authorities.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Intussusception is a medical condition in which a part of the intestine telescopes into an adjacent section, leading to bowel obstruction and reduced blood flow. It often affects children under 3 years old but can also occur in adults. If not treated promptly, it can result in serious complications such as perforation, peritonitis, or even death. The exact cause is usually unknown, but it may be associated with infections, intestinal disorders, or tumors.

Virus latency, also known as viral latency, refers to a state of infection in which a virus remains dormant or inactive within a host cell for a period of time. During this phase, the virus does not replicate or cause any noticeable symptoms. However, under certain conditions such as stress, illness, or a weakened immune system, the virus can become reactivated and begin to produce new viruses, potentially leading to disease.

One well-known example of a virus that exhibits latency is the varicella-zoster virus (VZV), which causes chickenpox in children. After a person recovers from chickenpox, the virus remains dormant in the nervous system for years or even decades. In some cases, the virus can reactivate later in life, causing shingles, a painful rash that typically occurs on one side of the body.

Virus latency is an important concept in virology and infectious disease research, as it has implications for understanding the persistence of viral infections, developing treatments and vaccines, and predicting the risk of disease recurrence.

Orthomyxoviridae is a family of viruses that includes influenza A, B, and C viruses, which are the causative agents of flu in humans and animals. These viruses are enveloped, meaning they have a lipid membrane derived from the host cell, and have a single-stranded, negative-sense RNA genome. The genome is segmented, meaning it consists of several separate pieces of RNA, which allows for genetic reassortment or "shuffling" when two different strains infect the same cell, leading to the emergence of new strains.

The viral envelope contains two major glycoproteins: hemagglutinin (HA) and neuraminidase (NA). The HA protein is responsible for binding to host cells and facilitating entry into the cell, while NA helps release newly formed virus particles from infected cells by cleaving sialic acid residues on the host cell surface.

Orthomyxoviruses are known to cause respiratory infections in humans and animals, with influenza A viruses being the most virulent and capable of causing pandemics. Influenza B viruses typically cause less severe illness and are primarily found in humans, while influenza C viruses generally cause mild upper respiratory symptoms and are also mainly restricted to humans.

'Influenza A Virus, H7N9 Subtype' is a specific subtype of Influenza A virus that is known to primarily infect birds, but has also caused sporadic human infections in China since 2013. The 'H' and 'N' in the name refer to the proteins hemagglutinin (H) and neuraminidase (N), respectively, on the surface of the virus. In this subtype, the H7 and N9 proteins are found.

The H7N9 virus has caused serious illness in humans, with high fever, cough, and severe pneumonia being common symptoms. Some cases have resulted in death, particularly among those with underlying health conditions or weakened immune systems. The virus is not currently known to transmit efficiently from person to person, but there is concern that it could mutate and acquire the ability to spread more easily between humans, which could potentially lead to a pandemic.

It's important to note that seasonal flu vaccines do not provide protection against H7N9 virus, as it is antigenically distinct from seasonal influenza viruses. However, research and development efforts are ongoing to create a vaccine specifically for this subtype.

RNA-binding proteins (RBPs) are a class of proteins that selectively interact with RNA molecules to form ribonucleoprotein complexes. These proteins play crucial roles in the post-transcriptional regulation of gene expression, including pre-mRNA processing, mRNA stability, transport, localization, and translation. RBPs recognize specific RNA sequences or structures through their modular RNA-binding domains, which can be highly degenerate and allow for the recognition of a wide range of RNA targets. The interaction between RBPs and RNA is often dynamic and can be regulated by various post-translational modifications of the proteins or by environmental stimuli, allowing for fine-tuning of gene expression in response to changing cellular needs. Dysregulation of RBP function has been implicated in various human diseases, including neurological disorders and cancer.

Arenaviridae is a family of viruses that includes several species known to cause disease in humans and animals. The name "Arenaviridae" comes from the Latin word "arena," meaning "sand," due to the sandy appearance of these viruses when viewed under an electron microscope.

The virions (complete virus particles) of Arenaviridae are typically enveloped, spherical or pleomorphic in shape, and measure between 50-300 nanometers in diameter. The genome of Arenaviridae viruses is composed of two single-stranded, negative-sense RNA segments called the L (large) segment and the S (small) segment. These segments encode for several viral proteins, including the glycoprotein (GP), nucleoprotein (NP), and the RNA-dependent RNA polymerase (L).

Arenaviridae viruses are primarily transmitted to humans through contact with infected rodents or their excreta. Some of the most well-known human pathogens in this family include Lassa fever virus, Junín virus, Machupo virus, and Guanarito virus, which can cause severe hemorrhagic fevers. Other Arenaviridae viruses, such as lymphocytic choriomeningitis virus (LCMV), can cause milder illnesses in humans, including fever, rash, and meningitis.

Prevention and control of Arenaviridae infections typically involve reducing exposure to infected rodents and their excreta, as well as the development of vaccines and antiviral therapies for specific viruses in this family.

Oncogenic viruses are a type of viruses that have the ability to cause cancer in host cells. They do this by integrating their genetic material into the DNA of the infected host cell, which can lead to the disruption of normal cellular functions and the activation of oncogenes (genes that have the potential to cause cancer). This can result in uncontrolled cell growth and division, ultimately leading to the formation of tumors. Examples of oncogenic viruses include human papillomavirus (HPV), hepatitis B virus (HBV), and human T-cell leukemia virus type 1 (HTLV-1). It is important to note that only a small proportion of viral infections lead to cancer, and the majority of cancers are not caused by viruses.

Simian Immunodeficiency Virus (SIV) is a retrovirus that primarily infects African non-human primates and is the direct ancestor of Human Immunodeficiency Virus type 2 (HIV-2). It is similar to HIV in its structure, replication strategy, and ability to cause an immunodeficiency disease in its host. SIV infection in its natural hosts is typically asymptomatic and non-lethal, but it can cause AIDS-like symptoms in other primate species. Research on SIV in its natural hosts has provided valuable insights into the mechanisms of HIV pathogenesis and potential strategies for prevention and treatment of AIDS.

Viral DNA refers to the genetic material present in viruses that consist of DNA as their core component. Deoxyribonucleic acid (DNA) is one of the two types of nucleic acids that are responsible for storing and transmitting genetic information in living organisms. Viruses are infectious agents much smaller than bacteria that can only replicate inside the cells of other organisms, called hosts.

Viral DNA can be double-stranded (dsDNA) or single-stranded (ssDNA), depending on the type of virus. Double-stranded DNA viruses have a genome made up of two complementary strands of DNA, while single-stranded DNA viruses contain only one strand of DNA.

Examples of dsDNA viruses include Adenoviruses, Herpesviruses, and Poxviruses, while ssDNA viruses include Parvoviruses and Circoviruses. Viral DNA plays a crucial role in the replication cycle of the virus, encoding for various proteins necessary for its multiplication and survival within the host cell.

In medical terms, turbinates refer to the curled bone shelves that are present inside the nasal passages. They are covered by a mucous membrane and are responsible for warming, humidifying, and filtering the air that we breathe in through our nose. There are three pairs of turbinates in each nasal passage: inferior, middle, and superior turbinates. The inferior turbinate is the largest and most significant contributor to nasal airflow resistance. Inflammation or enlargement of the turbinates can lead to nasal congestion and difficulty breathing through the nose.

Lassa fever is an acute viral hemorrhagic fever caused by the Lassa virus. It is primarily transmitted to humans through contact with infected rodents or their excreta, and it can also spread from person to person via bodily fluids. The symptoms of Lassa fever typically include fever, sore throat, muscle pain, chest pain, headache, and vomiting. In severe cases, the disease can cause bleeding from the mouth and nose, as well as complications such as deafness and encephalitis. Lassa fever is endemic to West Africa, particularly in Nigeria, Guinea, Liberia, and Sierra Leone.

The Mumps virus is a single-stranded, negative-sense RNA virus that belongs to the Paramyxoviridae family and Rubulavirus genus. It is the causative agent of mumps, an acute infectious disease characterized by painful swelling of the salivary glands, particularly the parotid glands.

The Mumps virus has a spherical or pleomorphic shape with a diameter of approximately 150-250 nanometers. It is surrounded by a lipid bilayer membrane derived from the host cell, which contains viral glycoproteins that facilitate attachment and entry into host cells.

The M protein, located beneath the envelope, plays a crucial role in virus assembly and budding. The genome of the Mumps virus consists of eight genes encoding nine proteins, including two major structural proteins (nucleocapsid protein and matrix protein) and several non-structural proteins involved in viral replication and pathogenesis.

Transmission of the Mumps virus occurs through respiratory droplets or direct contact with infected saliva. After infection, the incubation period ranges from 12 to 25 days, followed by a prodromal phase characterized by fever, headache, malaise, and muscle pain. The characteristic swelling of the parotid glands usually appears 1-3 days after the onset of symptoms.

Complications of mumps can include meningitis, encephalitis, orchitis, oophoritis, pancreatitis, and deafness. Prevention relies on vaccination with the measles-mumps-rubella (MMR) vaccine, which is highly effective in preventing mumps and its complications.

Parainfluenza Virus 1, Human (HPIV-1) is a type of respiratory virus that belongs to the family Paramyxoviridae and genus Respirovirus. It is one of the four serotypes of human parainfluenza viruses (HPIVs), which are important causes of acute respiratory infections in children, immunocompromised individuals, and the elderly.

HPIV-1 primarily infects the upper respiratory tract, causing symptoms such as cough, runny nose, sore throat, and fever. However, it can also cause lower respiratory tract infections, including bronchitis, bronchiolitis, and pneumonia, particularly in young children and infants.

HPIV-1 is transmitted through respiratory droplets or direct contact with infected individuals. The incubation period for HPIV-1 infection ranges from 2 to 7 days, after which symptoms can last for up to 10 days. There is no specific antiviral treatment available for HPIV-1 infections, and management typically involves supportive care such as hydration, fever reduction, and respiratory support if necessary.

Prevention measures include good hand hygiene, avoiding close contact with infected individuals, and practicing cough etiquette. Vaccines are not currently available for HPIV-1 infections, but research is ongoing to develop effective vaccines against these viruses.

Viral structural proteins are the protein components that make up the viral particle or capsid, providing structure and stability to the virus. These proteins are encoded by the viral genome and are involved in the assembly of new virus particles during the replication cycle. They can be classified into different types based on their location and function, such as capsid proteins, matrix proteins, and envelope proteins. Capsid proteins form the protein shell that encapsulates the viral genome, while matrix proteins are located between the capsid and the envelope, and envelope proteins are embedded in the lipid bilayer membrane that surrounds some viruses.

Mosaic viruses are a group of plant viruses that can cause mottled or mosaic patterns of discoloration on leaves, which is why they're named as such. These viruses infect a wide range of plants, including important crops like tobacco, tomatoes, and cucumbers. The infection can lead to various symptoms such as stunted growth, leaf deformation, reduced yield, or even plant death.

Mosaic viruses are typically spread by insects, such as aphids, that feed on the sap of infected plants and then transmit the virus to healthy plants. They can also be spread through contaminated seeds, tools, or contact with infected plant material. Once inside a plant, these viruses hijack the plant's cellular machinery to replicate themselves, causing damage to the host plant in the process.

It is important to note that mosaic viruses are not related to human or animal health; they only affect plants.

A virion is the complete, infectious form of a virus outside its host cell. It consists of the viral genome (DNA or RNA) enclosed within a protein coat called the capsid, which is often surrounded by a lipid membrane called the envelope. The envelope may contain viral proteins and glycoproteins that aid in attachment to and entry into host cells during infection. The term "virion" emphasizes the infectious nature of the virus particle, as opposed to non-infectious components like individual capsid proteins or naked viral genome.

Madin-Darby Canine Kidney (MDCK) cells are a type of cell line that is derived from the kidney of a normal, healthy female cocker spaniel. They were first established in 1958 by researchers Madin and Darby. These cells are epithelial in origin and have the ability to form tight junctions, which makes them a popular choice for studying the transport of molecules across biological barriers.

MDCK cells are widely used in scientific research, particularly in the fields of cell biology, virology, and toxicology. They can be used to study various aspects of cell behavior, including cell adhesion, migration, differentiation, and polarization. Additionally, MDCK cells are susceptible to a variety of viruses, making them useful for studying viral replication and host-virus interactions.

In recent years, MDCK cells have also become an important tool in the development and production of vaccines. They can be used to produce large quantities of virus particles that can then be purified and used as vaccine antigens. Overall, Madin-Darby Canine Kidney cells are a valuable resource for researchers studying a wide range of biological phenomena.

A disease outbreak is defined as the occurrence of cases of a disease in excess of what would normally be expected in a given time and place. It may affect a small and localized group or a large number of people spread over a wide area, even internationally. An outbreak may be caused by a new agent, a change in the agent's virulence or host susceptibility, or an increase in the size or density of the host population.

Outbreaks can have significant public health and economic impacts, and require prompt investigation and control measures to prevent further spread of the disease. The investigation typically involves identifying the source of the outbreak, determining the mode of transmission, and implementing measures to interrupt the chain of infection. This may include vaccination, isolation or quarantine, and education of the public about the risks and prevention strategies.

Examples of disease outbreaks include foodborne illnesses linked to contaminated food or water, respiratory infections spread through coughing and sneezing, and mosquito-borne diseases such as Zika virus and West Nile virus. Outbreaks can also occur in healthcare settings, such as hospitals and nursing homes, where vulnerable populations may be at increased risk of infection.

Hepatitis A virus (HAV) is the causative agent of hepatitis A, a viral infection that causes inflammation of the liver. It is a small, non-enveloped, single-stranded RNA virus belonging to the Picornaviridae family and Hepatovirus genus. The virus primarily spreads through the fecal-oral route, often through contaminated food or water, or close contact with an infected person. After entering the body, HAV infects hepatocytes in the liver, leading to liver damage and associated symptoms such as jaundice, fatigue, abdominal pain, and nausea. The immune system eventually clears the infection, providing lifelong immunity against future HAV infections. Preventive measures include vaccination and practicing good hygiene to prevent transmission.

Semliki Forest Virus (SFV) is an alphavirus in the Togaviridae family, which is primarily transmitted to vertebrates through mosquito vectors. The virus was initially isolated from mosquitoes in the Semliki Forest of Uganda and has since been found in various parts of Africa and Asia. SFV infection in humans can cause a mild febrile illness characterized by fever, headache, muscle pain, and rash. However, it is more commonly known for causing severe disease in animals, particularly non-human primates and cattle, where it can lead to encephalitis or hemorrhagic fever. SFV has also been used as a model organism in laboratory studies of virus replication and pathogenesis.

Avian sarcoma viruses (ASVs) are a group of retroviruses that primarily infect birds and cause various types of tumors, particularly sarcomas. These viruses contain an oncogene, which is a gene that has the ability to transform normal cells into cancerous ones. The oncogene in ASVs is often derived from cellular genes called proto-oncogenes, which are normally involved in regulating cell growth and division.

ASVs can be divided into two main types: non-defective and defective. Non-defective ASVs contain a complete set of viral genes that allow them to replicate independently, while defective ASVs lack some of the necessary viral genes and require assistance from other viruses to replicate.

One well-known example of an avian sarcoma virus is the Rous sarcoma virus (RSV), which was first discovered in chickens by Peyton Rous in 1910. RSV causes a highly malignant form of sarcoma in chickens and has been extensively studied as a model system for cancer research. The oncogene in RSV is called v-src, which is derived from the normal cellular gene c-src.

Avian sarcoma viruses have contributed significantly to our understanding of the molecular mechanisms underlying cancer development and have provided valuable insights into the role of oncogenes in tumorigenesis.

Antiviral agents are a class of medications that are designed to treat infections caused by viruses. Unlike antibiotics, which target bacteria, antiviral agents interfere with the replication and infection mechanisms of viruses, either by inhibiting their ability to replicate or by modulating the host's immune response to the virus.

Antiviral agents are used to treat a variety of viral infections, including influenza, herpes simplex virus (HSV) infections, human immunodeficiency virus (HIV) infection, hepatitis B and C, and respiratory syncytial virus (RSV) infections.

These medications can be administered orally, intravenously, or topically, depending on the type of viral infection being treated. Some antiviral agents are also used for prophylaxis, or prevention, of certain viral infections.

It is important to note that antiviral agents are not effective against all types of viruses and may have significant side effects. Therefore, it is essential to consult with a healthcare professional before starting any antiviral therapy.

A viral attachment, in the context of virology, refers to the initial step in the infection process of a host cell by a virus. This involves the binding or adsorption of the viral particle to specific receptors on the surface of the host cell. The viral attachment proteins, often located on the viral envelope or capsid, recognize and interact with these receptors, leading to a close association between the virus and the host cell. This interaction is highly specific, as different viruses may target various cell types based on their unique receptor-binding preferences. Following attachment, the virus can enter the host cell and initiate the replication cycle, ultimately leading to the production of new viral particles and potential disease manifestations.

BK virus, also known as BK polyomavirus, is a type of virus that belongs to the Polyomaviridae family. It is named after the initials of a patient in whom the virus was first isolated. The BK virus is a common infection in humans and is typically acquired during childhood. After the initial infection, the virus remains dormant in the body, often found in the urinary tract and kidneys.

In immunocompetent individuals, the virus usually does not cause any significant problems. However, in people with weakened immune systems, such as those who have undergone organ transplantation or have HIV/AIDS, BK virus can lead to severe complications. One of the most common manifestations of BK virus infection in immunocompromised individuals is hemorrhagic cystitis, a condition characterized by inflammation and bleeding in the bladder. In transplant recipients, BK virus can also cause nephropathy, leading to kidney damage or even failure.

There is no specific treatment for BK virus infection, but antiviral medications may be used to help control the virus's replication in some cases. Maintaining a strong immune system and monitoring viral load through regular testing are essential strategies for managing BK virus infections in immunocompromised individuals.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

A tumor virus infection is a condition in which a person's cells become cancerous or transformed due to the integration and disruption of normal cellular functions by a viral pathogen. These viruses are also known as oncoviruses, and they can cause tumors or cancer by altering the host cell's genetic material, promoting uncontrolled cell growth and division, evading immune surveillance, and inhibiting apoptosis (programmed cell death).

Examples of tumor viruses include:

1. DNA tumor viruses: These are double-stranded DNA viruses that can cause cancer in humans. Examples include human papillomavirus (HPV), hepatitis B virus (HBV), and Merkel cell polyomavirus (MCV).
2. RNA tumor viruses: Also known as retroviruses, these single-stranded RNA viruses can cause cancer in humans. Examples include human T-cell leukemia virus type 1 (HTLV-1) and human immunodeficiency virus (HIV).

Tumor virus infections are responsible for approximately 15-20% of all cancer cases worldwide, making them a significant public health concern. Prevention strategies, such as vaccination against HPV and HBV, have been shown to reduce the incidence of associated cancers.

I'm sorry for any confusion, but "Viruses, Unclassified" is not a recognized medical or scientific category. Generally, viruses are classified based on various characteristics such as genome structure, mode of replication, host range, and symptoms they cause. The International Committee on Taxonomy of Viruses (ICTV) is the organization responsible for the formal classification of viruses.

If you have any specific questions about certain unclassified viral entities or phenomena, I'd be happy to help if I can! Please provide more context so I can give a more accurate and helpful response.

The JC (John Cunningham) virus, also known as human polyomavirus 2 (HPyV-2), is a type of double-stranded DNA virus that belongs to the Polyomaviridae family. It is named after the initials of the patient in whom it was first identified.

JC virus is a ubiquitous virus, meaning that it is commonly found in the general population worldwide. Most people get infected with JC virus during childhood and do not experience any symptoms. After the initial infection, the virus remains dormant in the kidneys and other organs of the body.

However, in individuals with weakened immune systems, such as those with HIV/AIDS or who have undergone organ transplantation, JC virus can reactivate and cause a serious brain infection called progressive multifocal leukoencephalopathy (PML). PML is a rare but often fatal disease that affects the white matter of the brain, causing cognitive decline, weakness, and paralysis.

There is currently no cure for PML, and treatment is focused on managing the underlying immune deficiency and controlling the symptoms of the disease.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Avian leukosis virus (ALV) is a type of retrovirus that primarily affects chickens and other birds. It is responsible for a group of diseases known as avian leukosis, which includes various types of tumors and immunosuppressive conditions. The virus is transmitted horizontally through the shedder's dander, feathers, and vertical transmission through infected eggs.

There are several subgroups of ALV (A, B, C, D, E, and J), each with different host ranges and pathogenicity. Some strains can cause rapid death in young chickens, while others may take years to develop clinical signs. The most common form of the disease is neoplastic, characterized by the development of various types of tumors such as lymphomas, myelomas, and sarcomas.

Avian leukosis virus infection can have significant economic impacts on the poultry industry due to decreased growth rates, increased mortality, and condemnation of infected birds at processing. Control measures include eradication programs, biosecurity practices, vaccination, and breeding for genetic resistance.

Sequence homology is a term used in molecular biology to describe the similarity between the nucleotide or amino acid sequences of two or more genes or proteins. It is a measure of the degree to which the sequences are related, indicating a common evolutionary origin.

In other words, sequence homology implies that the compared sequences have a significant number of identical or similar residues in the same order, suggesting that they share a common ancestor and have diverged over time through processes such as mutation, insertion, deletion, or rearrangement. The higher the degree of sequence homology, the more closely related the sequences are likely to be.

Sequence homology is often used to identify similarities between genes or proteins from different species, which can provide valuable insights into their functions, structures, and evolutionary relationships. It is commonly assessed using various bioinformatics tools and algorithms, such as BLAST (Basic Local Alignment Search Tool), Clustal Omega, and multiple sequence alignment (MSA) methods.

Gastroenteritis is not a medical condition itself, but rather a symptom-based description of inflammation in the gastrointestinal tract, primarily involving the stomach and intestines. It's often referred to as "stomach flu," although it's not caused by influenza virus.

Medically, gastroenteritis is defined as an inflammation of the mucous membrane of the stomach and intestines, usually resulting in symptoms such as diarrhea, abdominal cramps, nausea, vomiting, fever, and dehydration. This condition can be caused by various factors, including viral (like rotavirus or norovirus), bacterial (such as Salmonella, Shigella, or Escherichia coli), or parasitic infections, food poisoning, allergies, or the use of certain medications.

Gastroenteritis is generally self-limiting and resolves within a few days with proper hydration and rest. However, severe cases may require medical attention to prevent complications like dehydration, which can be particularly dangerous for young children, older adults, and individuals with weakened immune systems.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Gene expression regulation, viral, refers to the processes that control the production of viral gene products, such as proteins and nucleic acids, during the viral life cycle. This can involve both viral and host cell factors that regulate transcription, RNA processing, translation, and post-translational modifications of viral genes.

Viral gene expression regulation is critical for the virus to replicate and produce progeny virions. Different types of viruses have evolved diverse mechanisms to regulate their gene expression, including the use of promoters, enhancers, transcription factors, RNA silencing, and epigenetic modifications. Understanding these regulatory processes can provide insights into viral pathogenesis and help in the development of antiviral therapies.

Sendai virus, also known as murine parainfluenza virus or pneumonia virus of mice, is a species of paramyxovirus that primarily infects rodents. It is an enveloped, negative-sense, single-stranded RNA virus with a nonsegmented genome. The virus is named after the city of Sendai in Japan where it was first isolated in 1952.

Sendai virus is highly contagious and can cause respiratory illness in mice, rats, and other small rodents. It replicates in the respiratory epithelium, leading to inflammation and necrosis of the airways. The virus can also suppress the host's immune response, making infected animals more susceptible to secondary bacterial infections.

In laboratory settings, Sendai virus is sometimes used as a tool for studying viral pathogenesis, immunology, and gene therapy. It has been used as a vector for delivering genes into mammalian cells, including human cells, due to its ability to efficiently infect and transduce a wide range of cell types.

It's important to note that Sendai virus is not known to infect humans or cause disease in humans, and it is not considered a significant public health concern.

The Moloney murine leukemia virus (Mo-MLV) is a type of retrovirus, specifically a gammaretrovirus, that is commonly found in mice. It was first discovered and isolated by John Moloney in 1960. Mo-MLV is known to cause various types of cancerous conditions, particularly leukemia, in susceptible mouse strains.

Mo-MLV has a single-stranded RNA genome that is reverse transcribed into double-stranded DNA upon infection of the host cell. This viral DNA then integrates into the host's genome and utilizes the host's cellular machinery to produce new virus particles. The Mo-MLV genome encodes for several viral proteins, including gag (group-specific antigen), pol (polymerase), and env (envelope) proteins, which are essential for the replication cycle of the virus.

Mo-MLV is widely used in laboratory research as a model retrovirus to study various aspects of viral replication, gene therapy, and oncogenesis. It has also been engineered as a vector for gene delivery applications due to its ability to efficiently integrate into the host genome and deliver large DNA sequences. However, it is important to note that Mo-MLV and other retroviruses have the potential to cause insertional mutagenesis, which can lead to unintended genetic alterations and adverse effects in some cases.

A viral vaccine is a biological preparation that introduces your body to a specific virus in a way that helps your immune system build up protection against the virus without causing the illness. Viral vaccines can be made from weakened or inactivated forms of the virus, or parts of the virus such as proteins or sugars. Once introduced to the body, the immune system recognizes the virus as foreign and produces an immune response, including the production of antibodies. These antibodies remain in the body and provide immunity against future infection with that specific virus.

Viral vaccines are important tools for preventing infectious diseases caused by viruses, such as influenza, measles, mumps, rubella, polio, hepatitis A and B, rabies, rotavirus, chickenpox, shingles, and some types of cancer. Vaccination programs have led to the control or elimination of many infectious diseases that were once common.

It's important to note that viral vaccines are not effective against bacterial infections, and separate vaccines must be developed for each type of virus. Additionally, because viruses can mutate over time, it is necessary to update some viral vaccines periodically to ensure continued protection.

Virus integration, in the context of molecular biology and virology, refers to the insertion of viral genetic material into the host cell's genome. This process is most commonly associated with retroviruses, such as HIV (Human Immunodeficiency Virus), which have an enzyme called reverse transcriptase that converts their RNA genome into DNA. This DNA can then integrate into the host's chromosomal DNA, becoming a permanent part of the host's genetic material.

This integration is a crucial step in the retroviral life cycle, allowing the virus to persist within the host cell and evade detection by the immune system. It also means that the viral genome can be passed on to daughter cells when the host cell divides.

However, it's important to note that not all viruses integrate their genetic material into the host's genome. Some viruses, like influenza, exist as separate entities within the host cell and do not become part of the host's DNA.

Yellow fever virus (YFV) is an single-stranded RNA virus belonging to the Flaviviridae family, genus Flavivirus. It is primarily transmitted to humans through the bite of infected mosquitoes, most commonly Aedes and Haemagogus species. The virus is named for the jaundice that can occur in some patients, giving their skin and eyes a yellowish color.

Yellow fever is endemic in tropical regions of Africa and South America, with outbreaks occurring when large numbers of people are infected. After an incubation period of 3 to 6 days, symptoms typically begin with fever, chills, headache, back pain, and muscle aches. In more severe cases, the infection can progress to cause bleeding, organ failure, and death.

Prevention measures include vaccination, mosquito control, and personal protective measures such as wearing long sleeves and using insect repellent in areas where yellow fever is endemic or outbreaks are occurring.

Simplexvirus is a genus of viruses in the family Herpesviridae, subfamily Alphaherpesvirinae. This genus contains two species: Human alphaherpesvirus 1 (also known as HSV-1 or herpes simplex virus type 1) and Human alphaherpesvirus 2 (also known as HSV-2 or herpes simplex virus type 2). These viruses are responsible for causing various medical conditions, most commonly oral and genital herpes. They are characterized by their ability to establish lifelong latency in the nervous system and reactivate periodically to cause recurrent symptoms.

Tobacco mosaic virus (TMV) is not typically considered in the context of medical definitions, as it's primarily known for its impact on plants rather than humans or animals. However, I will provide the botanical definition for your interest.

Tobacco mosaic virus (TMV) is a positive-sense single-stranded RNA virus that infects a wide range of plants, including tobacco, tomatoes, cucumbers, and many ornamental plants. The virus is named after its initial discovery in tobacco plants, which exhibit symptoms such as mosaic patterns of light and dark green on the leaves, leaf curling, and stunted growth. TMV is highly contagious and can be spread through mechanical means, such as touching infected plants or using contaminated tools. It's also one of the most well-studied viruses due to its impact on agriculture and its historical significance in early virology research.

Serotyping is a laboratory technique used to classify microorganisms, such as bacteria and viruses, based on the specific antigens or proteins present on their surface. It involves treating the microorganism with different types of antibodies and observing which ones bind to its surface. Each distinct set of antigens corresponds to a specific serotype, allowing for precise identification and characterization of the microorganism. This technique is particularly useful in epidemiology, vaccine development, and infection control.

Genetic variation refers to the differences in DNA sequences among individuals and populations. These variations can result from mutations, genetic recombination, or gene flow between populations. Genetic variation is essential for evolution by providing the raw material upon which natural selection acts. It can occur within a single gene, between different genes, or at larger scales, such as differences in the number of chromosomes or entire sets of chromosomes. The study of genetic variation is crucial in understanding the genetic basis of diseases and traits, as well as the evolutionary history and relationships among species.

Respiratory Syncytial Virus (RSV) infections refer to the clinical illnesses caused by the Respiratory Syncytial Virus. RSV is a highly contagious virus that spreads through respiratory droplets, contact with infected surfaces, or direct contact with infected people. It primarily infects the respiratory tract, causing inflammation and damage to the cells lining the airways.

RSV infections can lead to a range of respiratory illnesses, from mild, cold-like symptoms to more severe conditions such as bronchiolitis (inflammation of the small airways in the lungs) and pneumonia (infection of the lung tissue). The severity of the infection tends to depend on factors like age, overall health status, and presence of underlying medical conditions.

In infants and young children, RSV is a leading cause of bronchiolitis and pneumonia, often resulting in hospitalization. In older adults, people with weakened immune systems, and those with chronic heart or lung conditions, RSV infections can also be severe and potentially life-threatening.

Symptoms of RSV infection may include runny nose, cough, sneezing, fever, wheezing, and difficulty breathing. Treatment typically focuses on managing symptoms and providing supportive care, although hospitalization and more aggressive interventions may be necessary in severe cases or for high-risk individuals. Preventive measures such as hand hygiene, wearing masks, and avoiding close contact with infected individuals can help reduce the spread of RSV.

Myxoma virus (MYXV) is a member of the Poxviridae family, specifically in the Leporipoxvirus genus. It is a double-stranded DNA virus that naturally infects European rabbits (Oryctolagus cuniculus) and causes a fatal disease called myxomatosis. The virus is transmitted through insect vectors such as mosquitoes and fleas, and it replicates in the cytoplasm of infected cells.

Myxoma virus has been studied extensively as a model organism for viral pathogenesis and host-pathogen interactions. It has also been explored as a potential oncolytic virus for cancer therapy due to its ability to selectively infect and kill certain types of cancer cells while leaving normal cells unharmed. However, it is important to note that the use of Myxoma virus in humans is still experimental and requires further research and development before it can be considered safe and effective for therapeutic purposes.

Virus inactivation is the process of reducing or eliminating the infectivity of a virus, making it no longer capable of replicating and causing infection. This can be achieved through various physical or chemical methods such as heat, radiation, chemicals (like disinfectants), or enzymes that damage the viral genome or disrupt the viral particle's structure.

It is important to note that virus inactivation does not necessarily mean complete destruction of the viral particles; it only implies that they are no longer infectious. The effectiveness of virus inactivation depends on factors such as the type and concentration of the virus, the inactivation method used, and the duration of exposure to the inactivating agent.

Virus inactivation is crucial in various settings, including healthcare, laboratory research, water treatment, food processing, and waste disposal, to prevent the spread of viral infections and ensure safety.

Birnaviridae is a family of viruses that includes several species known to cause infections in animals, including birds and fish. The most well-known member of this family is the infectious bursal disease virus (IBDV), which primarily affects young chickens and causes a highly contagious disease known as Gumboro disease.

Infection with IBDV can result in a range of symptoms, including diarrhea, depression, ruffled feathers, and decreased appetite. In severe cases, the virus can cause significant mortality in infected flocks. Other members of the Birnaviridae family include viruses that infect salmonids (such as infectious pancreatic necrosis virus) and other bird species.

Transmission of Birnaviridae viruses typically occurs through direct contact with infected animals or their feces, as well as through contaminated food and water sources. Prevention and control measures for these infections include good biosecurity practices, vaccination, and proper nutrition and management.

Cowpox virus is a species of the Orthopoxvirus genus, which belongs to the Poxviridae family. It is a double-stranded DNA virus that primarily infects cows and occasionally other animals such as cats, dogs, and humans. The virus causes a mild disease in its natural host, cattle, characterized by the development of pustular lesions on the udder or teats.

In humans, cowpox virus infection can cause a localized skin infection, typically following contact with an infected animal or contaminated fomites. The infection is usually self-limiting and resolves within 1-2 weeks without specific treatment. However, in rare cases, the virus may spread to other parts of the body and cause more severe symptoms.

Historically, cowpox virus has played a significant role in medical research as it was used by Edward Jenner in 1796 to develop the first successful vaccine against smallpox. The similarity between the two viruses allowed for cross-protection, providing immunity to smallpox without exposing individuals to the more deadly disease. Smallpox has since been eradicated globally, and vaccination with cowpox virus is no longer necessary. However, understanding the biology of cowpox virus remains important due to its potential use as a model organism for studying poxvirus infections and developing countermeasures against related viruses.

A Cytopathic Effect (CPE) is a visible change in the cell or group of cells due to infection by a pathogen, such as a virus. When the cytopathic effect is caused specifically by a viral infection, it is referred to as a "Viral Cytopathic Effect" (VCPE).

The VCPE can include various changes in the cell's morphology, size, and structure, such as rounding, shrinkage, multinucleation, inclusion bodies, and formation of syncytia (multinucleated giant cells). These changes are often used to identify and characterize viruses in laboratory settings.

The VCPE is typically observed under a microscope after the virus has infected cell cultures, and it can help researchers determine the type of virus, the degree of infection, and the effectiveness of antiviral treatments. The severity and timing of the VCPE can vary depending on the specific virus and the type of cells that are infected.

Variola virus is the causative agent of smallpox, a highly contagious and deadly disease that was eradicated in 1980 due to a successful global vaccination campaign led by the World Health Organization (WHO). The virus belongs to the family Poxviridae and genus Orthopoxvirus. It is a large, enveloped, double-stranded DNA virus with a complex structure that includes a lipoprotein membrane and an outer protein layer called the lateral body.

The Variola virus has two main clinical forms: variola major and variola minor. Variola major is more severe and deadly, with a mortality rate of up to 30%, while variola minor is less severe and has a lower mortality rate. The virus is transmitted through direct contact with infected individuals or contaminated objects, such as clothing or bedding.

Smallpox was once a major public health threat worldwide, causing millions of deaths and severe illnesses. However, since its eradication, Variola virus has been kept in secure laboratories for research purposes only. The virus is considered a potential bioterrorism agent, and efforts are being made to develop new vaccines and antiviral treatments to protect against possible future outbreaks.

I am not aware of a specific medical definition for the term "China." Generally, it is used to refer to:

1. The People's Republic of China (PRC), which is a country in East Asia. It is the most populous country in the world and the fourth largest by geographical area. Its capital city is Beijing.
2. In a historical context, "China" was used to refer to various dynasties and empires that existed in East Asia over thousands of years. The term "Middle Kingdom" or "Zhongguo" (中国) has been used by the Chinese people to refer to their country for centuries.
3. In a more general sense, "China" can also be used to describe products or goods that originate from or are associated with the People's Republic of China.

If you have a specific context in which you encountered the term "China" related to medicine, please provide it so I can give a more accurate response.

Respiratory Syncytial Virus (RSV) is a highly contagious virus that causes infections in the respiratory system. In humans, it primarily affects the nose, throat, lungs, and bronchioles (the airways leading to the lungs). It is a major cause of lower respiratory tract infections and bronchiolitis (inflammation of the small airways in the lung) in young children, but can also infect older children and adults.

Human Respiratory Syncytial Virus (hRSV) belongs to the family Pneumoviridae and is an enveloped, single-stranded, negative-sense RNA virus. The viral envelope contains two glycoproteins: the G protein, which facilitates attachment to host cells, and the F protein, which mediates fusion of the viral and host cell membranes.

Infection with hRSV typically occurs through direct contact with respiratory droplets from an infected person or contaminated surfaces. The incubation period ranges from 2 to 8 days, after which symptoms such as runny nose, cough, sneezing, fever, and wheezing may appear. In severe cases, particularly in infants, young children, older adults, and individuals with weakened immune systems, hRSV can cause pneumonia or bronchiolitis, leading to hospitalization and, in rare cases, death.

Currently, there is no approved vaccine for hRSV; however, passive immunization with palivizumab, a monoclonal antibody, is available for high-risk infants to prevent severe lower respiratory tract disease caused by hRSV. Supportive care and prevention of complications are the mainstays of treatment for hRSV infections.

Inactivated vaccines, also known as killed or non-live vaccines, are created by using a version of the virus or bacteria that has been grown in a laboratory and then killed or inactivated with chemicals, heat, or radiation. This process renders the organism unable to cause disease, but still capable of stimulating an immune response when introduced into the body.

Inactivated vaccines are generally considered safer than live attenuated vaccines since they cannot revert back to a virulent form and cause illness. However, they may require multiple doses or booster shots to maintain immunity because the immune response generated by inactivated vaccines is not as robust as that produced by live vaccines. Examples of inactivated vaccines include those for hepatitis A, rabies, and influenza (inactivated flu vaccine).

A chick embryo refers to the developing organism that arises from a fertilized chicken egg. It is often used as a model system in biological research, particularly during the stages of development when many of its organs and systems are forming and can be easily observed and manipulated. The study of chick embryos has contributed significantly to our understanding of various aspects of developmental biology, including gastrulation, neurulation, organogenesis, and pattern formation. Researchers may use various techniques to observe and manipulate the chick embryo, such as surgical alterations, cell labeling, and exposure to drugs or other agents.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

**Hemorrhagic fevers, viral** are a group of severe, potentially fatal illnesses caused by viruses that affect the body's ability to regulate its blood vessels and clotting abilities. These viruses belong to several different families including *Filoviridae* (e.g., Ebola, Marburg), *Arenaviridae* (e.g., Lassa, Machupo), *Bunyaviridae* (e.g., Hantavirus, Crimean-Congo hemorrhagic fever virus) and *Flaviviridae* (e.g., Dengue, Yellow Fever).

The initial symptoms are non-specific and include sudden onset of fever, fatigue, muscle aches, joint pains, headache, and vomiting. As the disease progresses, it may lead to capillary leakage, internal and external bleeding, and multi-organ failure resulting in shock and death in severe cases.

The transmission of these viruses can occur through various means depending on the specific virus. For example, some are transmitted via contact with infected animals or their urine/feces (e.g., Hantavirus), others through insect vectors like ticks (Crimean-Congo hemorrhagic fever) or mosquitoes (Dengue, Yellow Fever), and yet others through direct contact with infected body fluids (Ebola, Marburg).

There are no specific treatments for most viral hemorrhagic fevers. However, some experimental antiviral drugs have shown promise in treating certain types of the disease. Supportive care, such as maintaining blood pressure, replacing lost fluids and electrolytes, and managing pain, is critical to improving outcomes. Prevention measures include avoiding areas where the viruses are common, using personal protective equipment when caring for infected individuals or handling potentially contaminated materials, and controlling insect vectors.

Sources: Centers for Disease Control and Prevention (CDC), World Health Organization (WHO).

Chikungunya virus (CHIKV) is an alphavirus from the Togaviridae family that is transmitted to humans through the bite of infected mosquitoes, primarily Aedes aegypti and Aedes albopictus. The name "Chikungunya" is derived from a Makonde word meaning "to become contorted," which describes the stooped posture developed as a result of severe arthralgia (joint pain) that is a primary symptom of infection with this virus.

CHIKV infection typically causes a febrile illness, characterized by an abrupt onset of high fever, severe joint pain, muscle pain, headache, nausea, fatigue, and rash. While the symptoms are usually self-limiting and resolve within 10 days, some individuals may experience persistent or recurring joint pain for several months or even years after the initial infection.

There is no specific antiviral treatment available for Chikungunya virus infection, and management primarily focuses on relieving symptoms with rest, fluids, and over-the-counter pain relievers such as acetaminophen or nonsteroidal anti-inflammatory drugs (NSAIDs). Prevention measures include avoiding mosquito bites through the use of insect repellent, wearing long sleeves and pants, staying in air-conditioned or screened rooms, and eliminating standing water where mosquitoes breed.

Chikungunya virus is found primarily in Africa, Asia, and the Indian subcontinent, but it has also caused outbreaks in Europe and the Americas due to the spread of its vectors, Aedes aegypti and Aedes albopictus. The virus can cause large-scale epidemics, with millions of cases reported during outbreaks. There is currently no approved vaccine for Chikungunya virus infection.

Per the Centers for Disease Control and Prevention (CDC), Norovirus is a highly contagious virus that often causes vomiting and diarrhea. It is a common cause of gastroenteritis, which is an inflammation of the stomach and intestines. This infection is often referred to as the "stomach flu," although it is not related to the influenza virus.

Norovirus spreads easily from person to person, through contaminated food or water, or by touching contaminated surfaces. Symptoms usually develop 12 to 48 hours after exposure and include nausea, vomiting, diarrhea, stomach pain, fever, and headache.

The Norwalk virus is named after Norwalk, Ohio, where an outbreak of the illness occurred in 1968. It was first identified during an investigation into an outbreak of gastroenteritis among school children. The virus was later renamed norovirus in 2002 to reflect its broader range of hosts and clinical manifestations.

It's important to note that while Norwalk virus is a common cause of viral gastroenteritis, there are many other viruses, bacteria, and parasites that can also cause similar symptoms. If you suspect you have norovirus or any other foodborne illness, it's important to seek medical attention and avoid preparing food for others until your symptoms have resolved.

Cross reactions, in the context of medical diagnostics and immunology, refer to a situation where an antibody or a immune response directed against one antigen also reacts with a different antigen due to similarities in their molecular structure. This can occur in allergy testing, where a person who is allergic to a particular substance may have a positive test result for a different but related substance because of cross-reactivity between them. For example, some individuals who are allergic to birch pollen may also have symptoms when eating certain fruits, such as apples, due to cross-reactive proteins present in both.

Encephalitis viruses are a group of viruses that can cause encephalitis, which is an inflammation of the brain. Some of the most common encephalitis viruses include:

1. Herpes simplex virus (HSV) type 1 and 2: These viruses are best known for causing cold sores and genital herpes, but they can also cause encephalitis, particularly in newborns and individuals with weakened immune systems.
2. Varicella-zoster virus (VZV): This virus causes chickenpox and shingles, and it can also lead to encephalitis, especially in people who have had chickenpox.
3. Enteroviruses: These viruses are often responsible for summertime meningitis outbreaks and can occasionally cause encephalitis.
4. Arboviruses: These viruses are transmitted through the bites of infected mosquitoes, ticks, or other insects. Examples include West Nile virus, St. Louis encephalitis virus, Eastern equine encephalitis virus, and Western equine encephalitis virus.
5. Rabies virus: This virus is transmitted through the bite of an infected animal and can cause encephalitis in its later stages.
6. Measles virus: Although rare in developed countries due to vaccination, measles can still cause encephalitis as a complication of the infection.
7. Mumps virus: Like measles, mumps is preventable through vaccination, but it can also lead to encephalitis as a rare complication.
8. Cytomegalovirus (CMV): This virus is a member of the herpesvirus family and can cause encephalitis in people with weakened immune systems, such as those with HIV/AIDS or organ transplant recipients.
9. La Crosse virus: This arbovirus is primarily transmitted through the bites of infected eastern treehole mosquitoes and mainly affects children.
10. Powassan virus: Another arbovirus, Powassan virus is transmitted through the bites of infected black-legged ticks (also known as deer ticks) and can cause severe encephalitis.

It's important to note that many of these viruses are preventable through vaccination or by avoiding exposure to infected animals or mosquitoes. If you suspect you may have been exposed to one of these viruses, consult a healthcare professional for proper diagnosis and treatment.

DNA virus infections refer to diseases or conditions caused by the invasion and replication of DNA viruses in a host organism. DNA viruses are a type of virus that uses DNA as their genetic material. They can cause a variety of diseases, ranging from relatively mild illnesses to severe or life-threatening conditions.

Some examples of DNA viruses include herpes simplex virus (HSV), varicella-zoster virus (VZV), human papillomavirus (HPV), hepatitis B virus (HBV), and adenoviruses. These viruses can cause a range of diseases, including cold sores, genital herpes, chickenpox, shingles, cervical cancer, liver cancer, and respiratory infections.

DNA virus infections typically occur when the virus enters the body through a break in the skin or mucous membranes, such as those found in the eyes, nose, mouth, or genitals. Once inside the body, the virus infects cells and uses their machinery to replicate itself, often causing damage to the host cells in the process.

The symptoms of DNA virus infections can vary widely depending on the specific virus and the severity of the infection. Treatment may include antiviral medications, which can help to reduce the severity and duration of symptoms, as well as prevent the spread of the virus to others. In some cases, vaccines may be available to prevent DNA virus infections.

I'm sorry for any confusion, but "Virus Physiological Phenomena" is not a widely recognized or established medical term or concept. It seems to be a combination of two concepts: "virus" and "physiological phenomena."

1. A virus is a small infectious agent that replicates inside the living cells of an organism. Viruses can cause many different types of illnesses, from the common cold to more serious diseases like HIV/AIDS or hepatitis.

2. Physiological phenomena refer to the functions and activities of living organisms and their parts, including cells, tissues, and organs.

If you're looking for information about how viruses affect physiological processes in the body, I would be happy to help provide some general information on that topic! However, it would be best to consult a specific medical text or expert for more detailed or specialized knowledge.

Medical Definition of "Herpesvirus 1, Human" (also known as Human Herpesvirus 1 or HHV-1):

Herpesvirus 1, Human is a type of herpesvirus that primarily causes infection in humans. It is also commonly referred to as human herpesvirus 1 (HHV-1) or oral herpes. This virus is highly contagious and can be transmitted through direct contact with infected saliva, skin, or mucous membranes.

After initial infection, the virus typically remains dormant in the body's nerve cells and may reactivate later, causing recurrent symptoms. The most common manifestation of HHV-1 infection is oral herpes, characterized by cold sores or fever blisters around the mouth and lips. In some cases, HHV-1 can also cause other conditions such as encephalitis (inflammation of the brain) and keratitis (inflammation of the eye's cornea).

There is no cure for HHV-1 infection, but antiviral medications can help manage symptoms and reduce the severity and frequency of recurrent outbreaks.

As of 2004, H3N2 virus isolates in US swine and turkey stocks were triple reassortants, containing genes from human (HA, NA, ... Swine influenza virus (SIV) or swine-origin influenza virus (S-OIV) refers to any strain of the influenza family of viruses ... G4 EA H1N1, also known as the G4 swine flu virus (G4) is a swine influenza virus strain discovered in China. The virus is a ... A triple reassortment event in a pig host of North American H1N1 swine virus, the human H3N2 virus and avian H1N1 virus ...
2018). "Case of seasonal reassortant A(H1N2) influenza virus infection, the Netherlands, March 2018". Euro Surveill. 23 (15). ... Influenza A virus subtype H1N2 (A/H1N2) is a subtype of the species Influenza A virus (sometimes called bird flu virus). It is ... The virus does not cause more severe illness than other influenza viruses, and no unusual increases in influenza activity have ... Because the hemagglutinin protein of the virus is similar to that of the currently[when?] circulating A(H1N1) viruses and the ...
Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model. Proc. Natl. Acad. Sci. USA, 2006, 103 ... Evaluation of a genetically modified reassortant H5N1 influenza A virus vaccine candidate generated by plasmid-based reverse ... In July, she and researchers found that the H7N9 virus is not pathogenic to poultry, but after the virus invades the human body ... In May, they discovered that the H5N1 virus could indeed reassort with the human influenza virus to obtain the ability to ...
"Macaque proteome response to highly pathogenic avian influenza and 1918 reassortant influenza virus infections". Journal of ... Rhesus macaques, like many macaques, carry the herpes B virus. This virus does not typically harm the monkey, but is very ... Bragg, R. (1997-12-14). "A drop of virus from a monkey kills a researcher in 6 weeks". New York Times. "Yerkes 'family' pulled ... Both viruses stimulated innate immune system inflammation, but the 1918 flu stimulated stronger and more persistent ...
Gerrard, Sonja R.; Li, Li; Barrett, Alan D.; Nichol, Stuart T. (August 2004). "Ngari virus is a Bunyamwera virus reassortant ... Ngari virus (NRIV) is a single-stranded, negative sense, tri-segmented RNA virus. It is a subtype of the Bunyamwera virus (BUNV ... Furthermore, the virus has previously been found within goats and sheep in Mauritania. The virus has been reported primarily in ... Humans that are infected by the virus typically develop severe or fatal hemorrhagic fever. Ngari virus was first isolated in ...
"Bunyamwera virus (BUNV)". Gerrard SR, Li L, Barrett AD, Nichol ST (2004). "Ngari virus is a Bunyamwera virus reassortant that ... Reassortant viruses derived from Bunyamwera orthobunyavirus, such as Ngari virus, have been associated with large outbreaks of ... The N protein is the most abundant protein in virus particles and infected cells and, therefore, the main target in many ... Briese, T.; Bird, B.; Kapoor, V.; Nichol, S. T.; Lipkin, W. I. (12 May 2006). "Batai and Ngari Viruses: M Segment Reassortment ...
... flu strains were caused by reassortment between an avian virus and a human virus. In addition, the H1N1 virus responsible for ... The new reassortant strain will share properties of both of its parental lineages. Reassortment is responsible for some of the ... Studies on host-virus interactions in the chick embryo-influenza virus system. VI. Evidence for multiplicity reactivation of ... The multiplication of influenza virus. II. Multiplicity reactivation of ultraviolet irradiated virus. Virology. 1961 Aug;14:398 ...
The frequent reassortment and cocirculation of the genetically distinct reassortant viruses in a community". J. Med. Virol. 74 ... Two influenza A viruses and two influenza B viruses are among the four flu viruses that a quadrivalent vaccine is intended to ... Influenza B virus is the only species in the genus Betainfluenzavirus in the virus family Orthomyxoviridae. Influenza B virus ... Further diminishing the impact of this virus, "in humans, influenza B viruses evolve slower than A viruses and faster than C ...
"Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ... as the virus did not previously have that function. That type of experiment could then help reveal which parts of the virus's ... "H5N1 Hybrid Viruses Bearing 2009/H1N1 Virus Genes Transmit in Guinea Pigs by Respiratory Droplet". Science. 340 (6139): 1459- ... and also demonstrated that there was a linkage between transmissibility in avian viruses and lethality: while the virus had ...
"Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ... In 2012, the NIHE provided the H5N1 bird flu virus to researchers who transformed it and used the product to infect ferrets. On ...
"Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ... A group of Australian researchers unintentionally changed characteristics of the mousepox virus while trying to develop a virus ... These viruses seem to overcome an obstacle which limits the global impact of natural H5N1. In 2012, scientists further screened ... The modified virus became highly lethal even in vaccinated and naturally resistant mice. In 2011, two laboratories published ...
Among the many viruses and fevers that [Kenneth Smithburn] researched are [...] Bwamba Fever Virus (1939-1943)' Lutwama, J. J ... 2001). "A reassortant bunyavirus isolated from acute hemorrhagic fever cases in Kenya and Somalia". Virology. 291 (2): 185-190 ... where the virus was initially discovered. The distribution of the virus tends to be underestimated because the symptoms are ... Bwamba fever is present in large parts of Africa and antibodies of the virus have been found 'as far south as the Republic of ...
EHDV-6 is thought to be a hybrid form where each of the collected type-6 viruses were all reassortants containing VP2 and VP5 ... other orbiviruses include equine encephalosis virus and African horse sickness virus. Epizootic hemorrhagic disease virus's ... Epizootic hemorrhagic disease virus belongs to the family Reoviridae, a family of double-stranded RNA viruses that includes ... "Detection of a novel reassortant epizootic hemorrhagic disease virus (EHDV) in the USA containing RNA segments derived from ...
"Genetic and pathogenic characterization of a novel reassortant mammalian orthoreovirus 3 (MRV3) from a diarrheic piglet and ... The Abney virus is a virus, isolated from an anal swab of a seventeen-month-old African-American child named Abney who, while ... Infraspecific virus taxa, All stub articles, Virus stubs). ... The isolated virus showed resistance to Ethyl Ether, among ... Rosen L, Hovis JF, Mastrota FM, Bell JA, Huebner RJ (1960). "Observations on a newly recognized virus (Abney) of the reovirus ...
... recombinants and reassortants of severe fever with thrombocytopenia syndrome virus. Ticks Tick Borne Dis. 2017 Mar;8(3):385-390 ... "Bunyaviridae - Negative Sense RNA Viruses - Negative Sense RNA Viruses (2011)". International Committee on Taxonomy of Viruses ... Jamestown Canyon virus, La Crosse encephalitis virus, Oropouche orthobunyavirus, and Snowshoe hare virus (vector: mosquitoes; ... As precautions Cache Valley virus and Hantavirus research are conducted in BSL-2 (or higher), Rift Valley Fever virus research ...
Most H3N2 virus isolates are triple reassortants, containing genes from human (HA, NA, and PB1), swine (NS, NP, and M), and ... Influenza A virus subtype H3N2 (A/H3N2) is a subtype of viruses that causes influenza (flu). H3N2 viruses can infect birds and ... like virus an A/Brisbane/10/2007 (H3N2)-like virus a B/Florida/4/2006-like virus (B/Florida/4/2006 and B/Brisbane/3/2007 (a B/ ... like virus an A/Victoria/210/2009 (an A/Perth/16/2009-like strain) (H3N2)-like virus a B/Brisbane/60/2008-like virus The ...
... is a reassortant that acquired its small and large genome segments from Main Drain virus and its medium genome segment from an ... Lokern virus (LOKV) is a single-stranded, negative sense, tri-segmented RNA virus. It is a subtype of the Bunyamwera virus ( ... The virus has been poorly studied and the effects of the virus on humans is currently unknown. Antibodies have been found ... "ArboCat Virus: Lokern (LOKV)". wwwn.cdc.gov. Retrieved 2022-01-09. "ArboCat Virus: Lokern (LOKV)". wwwn.cdc.gov. Retrieved 2022 ...
... and is also a reassortant strain, combining the HA and NA genes from H10N3 with internal genes from H9N2 viruses. According to ... Influenza A virus subtype H10N3 is a subtype of viruses that causes influenza (flu). It is mostly present in wild avian species ... "Influenza A virus surveillance in live-bird markets: first report of influenza A virus subtype H4N6, H4N9, and H10N3 in ... The virus identified from this individual contains an HA cleavage site that is consistent with a "low pathogenicity avian ...
According to research published by the US National Institutes of Health, the triple reassortant H2N3 virus isolated from ... the swine H2N3 virus was more pathogenic causing severe pneumonia in nonhuman primates. Both viruses replicated in the entire ... H2N3 is a subtype of the influenza A virus. Its name derives from the forms of the two kinds of proteins on the surface of its ... Swine H2N3 virus was also detected to significantly higher titers in nasal and oral swabs indicating the potential for animal- ...
... either by direct transmission of the virus or by contributing one or several RNA segments to reassortants with human strains. " ... As with influenza virus, a dual classification system is used based on two proteins on the surface of the virus. The ... In the intervening years, a virus in mice was shown to be related to the virus causing scours. In 1973, Ruth Bishop and ... In 1976, related viruses were described in several other species of animals. These viruses, all causing acute gastroenteritis, ...
... either by direct transmission of the virus or by contributing one or several RNA segments to reassortants with human strains. ... As with influenza virus, a dual classification system is used based on two proteins on the surface of the virus. The ... VP4 determines how virulent the virus is and it determines the P-type of the virus. In humans there is an association between ... In the intervening years, a virus in mice was shown to be related to the virus causing scours. In 1973, Ruth Bishop and ...
The fifth reassortant virus expresses the attachment protein VP4, (type P1A), from the human rotavirus parent strain and the ... The rotavirus A parent strains of the reassortants were isolated from human and bovine hosts. Four reassortant rotaviruses ... It contain human bovine reassortant strains of rotavirus serotypes G1, G2, G3, G4 and G9. This is world's first thermostable ... Both are taken orally and contain disabled live virus. The World Health Organization recommends that rotavirus vaccine be ...
... the reassortant product of the human H1N1 and an avian influenza virus, which thereafter became the active influenza A virus in ... 2012). "Birds and viruses at a crossroad - surveillance of influenza A virus in Portuguese waterfowl". PLOS ONE. 7 (11): e49002 ... One hypothesis is that the virus strain originated at Fort Riley, Kansas, in viruses in poultry and swine which the fort bred ... "Grippe : un virus plurimillénaire et ravageur découvert seulement en 1933" [Influenza: a multi-millennial and pest virus ...
... when most other isolates were reassortants." In January 2004, the predominant flu virus circulating in humans in Europe was ... viruses, three influenza A (H1) viruses, one influenza A (H7N2) virus, and 71 influenza B viruses. Of the 949 influenza A (H3N2 ... The "H5N1 viruses from human infections and the closely related avian viruses isolated in 2004 and 2005 belong to a single ... "Many experts who follow the ongoing analysis of the H5N1 virus sequences are alarmed at how fast the virus is evolving into an ...
Some diseases that occur as a result of this virus or are associated with this virus include mild upper respiratory illness, ... "Genetic and pathogenic characterization of a novel reassortant mammalian orthoreovirus 3 (MRV3) from a diarrheic piglet and ... the virus is brought into the cell via receptor-mediated endocytosis. Following the internalization of the virus, the viral ... from respiratory enteric orphan virus. The Mammalian orthoreovirus was labeled an orphan virus in the 1950s when it was ...
... respiratory syncytial virus and influenza vaccines. She has worked extensively with American Indian populations and in Africa ... Reassortant Rotavirus Vaccine". New England Journal of Medicine. 354 (1): 23-33. doi:10.1056/NEJMOA052664. PMID 16394299. ... "Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review ...
1 January 2006). "Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine". The New England ... studying food-borne viruses in infants born to HIV positive mothers. She went on to work in Kenya, where she investigated the ...
Gerrard, Sonja R.; Li, Li; Barrett, Alan D.; Nichol, Stuart T. (2004-08-15). "Ngari Virus Is a Bunyamwera Virus Reassortant ... Omsk Hemorrhagic Fever virus, Alkhurma virus, Kyasanur Forest virus (reclassified from B to C) Powassan virus (Deer Tick virus ... Nipah virus Rabies SARS coronavirus Tick-borne encephalitis virus Tick-borne hemorrhagic fever viruses Other hantaviruses Other ... Junin virus, Machupo virus, Guanarito virus, Lassa fever Bunyaviruses: Hantaviruses, Rift Valley Fever, Crimean-Congo ...
Meng B, Li H, Feng C, Guo W, Feng Y, Zhu D, Chen H. Emergence of a novel reassortant H3N6 canine influenza virus. Front ... the March 2019 isolated H3N2 viruses replicated more efficiently than the November 2018 isolated viruses. Our study indicated ... Although the natural hosts of avian influenza viruses (AIVs) are wild birds, multiple subtypes of AIVs have established ... Isolation, identification and phylogenetic analysis of a wild bird-derived H1N1 avian influenza virus in the northern Tianshan ...
This prospective annual release study is designed to evaluate the safety on new influenza virus vaccine strains to be included ... A Randomized, Double-blind, Placebo-controlled Study to Evaluate the Safety of 3 New 6:2 Influenza Virus Reassortants in Adults ... Study to Evaluate the Safety of 3 New 6:2 Influenza Virus Reassortants in Adults ... This prospective annual release study is designed to evaluate the safety on new influenza virus vaccine strains to be included ...
All of the 2009 virus isolates contained an internal protein coding set of genes of the same Eurasian lineage genes except PB1 ... We show evidence that the 2008 Great Black-backed Gull virus was derived from this lineage with a reassortment of a North ... We analyzed six 2009 virus isolates from Canada and found the same phylogenetic lineage had persisted over a larger geographic ... circulate within the two groups of birds and AI viruses isolated from North American gulls frequently possess reassortant ...
Viruses in Humans, Guangdong, China, 2015. 22(8). Shen, Yong-Yi et al. "Novel Reassortant Avian Influenza A(H5N6) Viruses in ... "Novel Reassortant Avian Influenza A(H5N6) Viruses in Humans, Guangdong, China, 2015" vol. 22, no. 8, 2016. Export RIS Citation ... Title : Novel Reassortant Avian Influenza A(H5N6) Viruses in Humans, Guangdong, China, 2015 Personal Author(s) : Shen, Yong-Yi; ... Influenza A(H7N7) Virus among Poultry Workers, Italy, 2013 Cite CITE. Title : Influenza A(H7N7) Virus among Poultry Workers, ...
Scientists call this a quadruple reassortant virus.. 2009 H1N1 Flu in Humans. Are there human infections with 2009 H1N1 virus ... virus. It is likely that other influenza viruses such as 2009 H1N1 virus would also be similarly disinfected by chlorine. ... This new virus was first detected in people in the United States in April 2009. This virus is spreading from person-to-person ... This virus was originally referred to as "swine flu" because laboratory testing showed that many of the genes in the virus were ...
Emerging triple-reassortant influenza C virus with household-associated infection during an influenza A(H3N2) outbreak, China, ... But knowledge about ICV is limited compared with influenza A and B viruses, due to poor systematic surveillance and inability ... Recent research have shown that influenza C virus (ICV) has a possible higher clinical impact than previously thought. ... Herein, a case infected with triple reassortant ICV was identified during an influenza A(H3N2) outbreak, which was the first ...
Avian influenza is a viral disease caused by various strains of avian influenza viruses that can be classified as low ... Identification of two novel reassortant avian influenza a (H5N6) viruses in whooper swans in Korea, 2016 BackgroundOn November ... Identification of two novel reassortant avian influenza a (H5N6) viruses in whooper swans in Korea, 2016 BackgroundOn November ... Avian influenza viruses (AIV) are classified by a combination of two groups of proteins found on the surface of the virus: ...
Pathogenicity of Hantaan virus in newborn mice: Genetic reassortant study demonstrating that a single amino acid change in ... Pathogenicity of Hantaan virus in newborn mice: Genetic reassortant study demonstrating that a single amino acid change in ... Pathogenicity of Hantaan virus in newborn mice: Genetic reassortant study demonstrating that a single amino acid change in ... Pathogenicity of Hantaan virus in newborn mice : Genetic reassortant study demonstrating that a single amino acid change in ...
Molecular evolutionary analyses can trace viral origins by establishing relatedness and divergence times of viruses and … ... Due to the scope and impact of the COVID-19 pandemic there exists a strong desire to understand where the SARS-CoV-2 virus came ... Reassortant Viruses / classification * Reassortant Viruses / genetics* * Reassortant Viruses / pathogenicity * SARS-CoV-2 ... Due to the scope and impact of the COVID-19 pandemic there exists a strong desire to understand where the SARS-CoV-2 virus came ...
As of 2004, H3N2 virus isolates in US swine and turkey stocks were triple reassortants, containing genes from human (HA, NA, ... Swine influenza virus (SIV) or swine-origin influenza virus (S-OIV) refers to any strain of the influenza family of viruses ... G4 EA H1N1, also known as the G4 swine flu virus (G4) is a swine influenza virus strain discovered in China. The virus is a ... A triple reassortment event in a pig host of North American H1N1 swine virus, the human H3N2 virus and avian H1N1 virus ...
Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat ... Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c ... Furthermore, this virus was shown to be highly pathogenic to both birds and mammals and demonstrate tropism for the nervous ... Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions ...
Genetic Characterization of Triple Reassortant H1N1 Influenza Viruses from Pigs in Ohio, unpublished. Influenza A virus (A/ ... virus.. But it is human, must be from Apr.2009 (no date given),. so did the virus survive in the environment without ... In fact, in some cases, it seems like the H1N1 virus is very similar to a virus that caused an outbreak in 2007 at an Ohio ... I researched on my own about viruses myself before the Swine flu virus was a subject of concern, since my illness seems to have ...
Isolation of Madre de Dios Virus (Orthobunyavirus; Bunyaviridae), an Oropouche Virus Species Reassortant, from a Monkey in ... Zika Virus Replicons for Drug Discovery. Xie X, Zou J, Shan C, Yang Y, Kum DB, Dallmeier K, Neyts J, Shi PY. EBioMedicine. 2016 ... Adenosine Analog NITD008 Is a Potent Inhibitor of Zika Virus. Deng YQ, Zhang NN, Li CF, Tian M, Hao JN, Xie XP, Shi PY, Qin CF ... Potential for Zika Virus to Establish a Sylvatic Transmission Cycle in the Americas. Althouse BM, Vasilakis N, Sall AA, Diallo ...
The SL50V variant, characterized by a divergent RNA2 sequence, potentially represents a reassortant variant. In four samples ( ... is an omnipresent virus characterized by a large host range and high genetic variability. Using high-throughput sequencing, we ... RNA in the symptomatology observed could not be established due to a complex infection of original hosts with different viruses ... turnip mosaic virus (TuMV), watermelon mosaic virus (WMV) and zucchini yellow mosaic virus (ZYMV), a carlavirus (potato virus M ...
... and Immunosuppression in Commercial Chickens Challenged with Very Virulent Infectious Bursal Disease Virus Reassortants. ... Effect of Variant Infectious Bursal Disease Virus on Avian Influenza Virus Vaccine Efficacy. Immunosuppressive viruses are ... Virus isolation followed by a virus neutralisation (VN) test in embryonated eggs is considered the gold standard procedure for ... a virus with similar protective efficacy.The CVRM virus was cloned as a bacterial artificial chromosome, by insertion of mini-F ...
1]The H5N1 virus isolated from US wild birds is a new mixed-origin virus (a "reassortant") that is genetically different from ... virus found in Asia, Africa, and other parts of the world; HPAI (H5N6) virus; and (H7N9) virus, has been associated with severe ... No human infections with this new reassortant H5N1 virus have been reported in any country. ... CDC considers the risk to the general public from these newly-identified US HPAI H5 viruses to be low; however, people with ...
... whereas a virus (i.e., SW8) isolated in oriental magpie-robin in 2014 was highly similar to that of A/chicken/Dongguan/2690/ ... whereas a virus (i.e., SW8) isolated in oriental magpie-robin in 2014 was highly similar to that of A/chicken/Dongguan/2690/ ... we examined the viral distribution and mRNA expression profiles of immune-related genes in chickens infected with both viruses ... we examined the viral distribution and mRNA expression profiles of immune-related genes in chickens infected with both viruses ...
... their 8 genetic pieces to create a brand new or reassortant virus. The new H1N1 flu virus appearing in different parts of the ... However, the genetic make-up of this virus implies US and Eurasian swine virus ancestors and suggests that this new virus will ... In our response to this new outbreak, it is important to remember that seasonal influenza viruses are currently pandemic and ... There have been some interesting speculations on the origin of the virus. Early information suggests that this new influenza ...
He identified the first reassortant virus of pandemic H1N1 and swine influenza viruses in pigs. He has recently used cutting- ... He has a passion for studying influenza viruses and other emerging animal viruses of zoonotic potential. He played a leading ...
... suggesting that they could be reassortant viruses. There is evidence that at least 2 of these viruses are not reassortant ... These viruses were isolated from mosquitoes and humans during epidemiologic investigations on the role of CAL serogroup viruses ... They are most closely related to SSH virus. Whether they differ sufficiently to be considered a new group of SSH-like viruses ... Sequence analysis revealed that the Russian viruses differ from other Eurasian and North American CAL serogroup viruses in all ...
Triple reassortant (H3N2) influenza viruses containing gene segments derived from human, swine, and avian influenza viruses, ... Pathobiology of triple reassortant H3N2 influenza viruses in breeder turkeys and its potential implication for vaccine studies ... Technical Abstract: Triple reassortant (TR) H3N2 avian influenza viruses have become endemic in the United States turkey ... The virus replicated to high titers in the oviduct of these turkeys. Because the TR H3N2 viruses in turkeys are endemic and of ...
A reassortant virus is created when different flu subtypes mix. These are often dangerous new viruses with symptoms of both ... The virus does not spread very readily. Even where outbreaks have occurred, the virus is not wiping out those locations. ... What we really need now are preventive measures for this Swine flu virus. Hope WHO can also find an antidote to this virus ... In addition to Swine Flu, Bird Flu and human seasonal flu viruses can infect pigs. The virulent H3N2 Influenza virus subtype is ...
The team created 127 reassortant viruses between a duck isolate of H5N1 and a highly transmissible human H1N1 virus. They ... In the past, avian flu viruses have crossed species barriers by reassorting with mammal-infective viruses in intermediate ... The findings indicate that avian H5N1 subtype viruses have the "potential to acquire mammalian transmissibility by reassortment ... tested the viruses virulence in mice and transmissibility to guinea pigs, which both have avian and mammalian types of airway ...
... virus (pH1N1). These viruses are considered reassortant viruses between a swine-origin influenza A (H3N2) virus circulating in ... In the United States, seven cases of swine-origin triple reassortant influenza A (H3N2) (S-OtrH3N2) virus infection have been ... On November 20, 2011, CDC confirmed three cases of swine-origin triple reassortant influenza A (H3N2) (S-OtrH3N2) virus ... All cases of human infection with S-OtrH3N2 virus containing the M gene from the pH1N1 virus have occurred in 2011 and have ...
... infectious virus in gut-associated lymphoid tissue of mice after oral inoculation with simian-human or bovine-human reassortant ... virus vaccine, vaccine-strain measles virus persists in the gut of certain at-risk children, and, through a complex ... Simian virus 40 (SV40), which is oncogenic in several species, was later found to contaminate many lots of IPV derived from ... Contamination of poliovirus vaccines with simian virus 40 (1955-1963) and subsequent cancer rates. J. Am. Med. Assoc. 279, 292- ...
Candidate Vaccine Viruses. The TGA considers that the following viruses or reassortants are suitable vaccine strains:. *those ... a B/Phuket/3073/2013 (B/Yamagata lineage)-like virus.. The H1N1, H3N2 and B Victoria lineage viruses are recommended for ... In some instances, the same virus is not ideal for both production systems. When this is the case, different viruses with ... Candidate Vaccine Viruses (CVV) recommended for H1N1 and H3N2 may differ for egg- and cell- or recombinant-based vaccines. ...
  • The H1N1 virus that caused that pandemic is now a regular human flu virus and continues to circulate seasonally worldwide. (cdc.gov)
  • 2009 H1N1 (sometimes called "swine flu") is a new influenza virus causing illness in people. (cdc.gov)
  • Are there human infections with 2009 H1N1 virus in the U.S. (cdc.gov)
  • In fact, the 2009 H1N1 virus is the predominant influenza virus in circulation so far during the 2009-2010 flu season. (cdc.gov)
  • There are still uncertainties surrounding the rest of this flu season, including the possibility that seasonal influenza viruses will spread during the winter as they usually do while 2009 H1N1 viruses continue to cause illness. (cdc.gov)
  • Experts believe it's likely that the new 2009 H1N1 virus will continue to circulate among people for some time, perhaps as a typical winter flu. (cdc.gov)
  • In fact, a 2009 H1N1 virus has been selected as the H1N1 vaccine component for the Southern Hemisphere's upcoming seasonal flu vaccine. (cdc.gov)
  • CDC routinely works with states to collect, compile and analyze information about influenza, and has done the same for the 2009 H1N1 virus since the beginning of the outbreak. (cdc.gov)
  • Is the 2009 H1N1 virus contagious? (cdc.gov)
  • The 2009 H1N1 virus is contagious and is spreading from human to human. (cdc.gov)
  • How does the 2009 H1N1 virus spread? (cdc.gov)
  • Spread of the 2009 H1N1 virus is thought to occur in the same way that seasonal flu spreads. (cdc.gov)
  • Getting infected with any influenza virus, including 2009 H1N1, should cause your body to develop immune resistance to that virus so it's not likely that a person would be infected with the identical influenza virus more than once. (cdc.gov)
  • A person may be infected with different influenza viruses (for example, the first time with 2009 H1N1 and the second time with a regular seasonal flu virus. (cdc.gov)
  • According to the United States Centers for Disease Control and Prevention (CDC), in humans the symptoms of the 2009 "swine flu" H1N1 virus are similar to influenza and influenza-like illness in general. (wikipedia.org)
  • The 2009 H1N1 virus is not zoonotic swine flu, as it is not transmitted from pigs to humans, but from person to person through airborne droplets. (wikipedia.org)
  • Once I realized that the genome sequences from the H1N1 swine flu were in the NCBI's virus genome resources database, I had to take a look. (scienceblogs.com)
  • They all said the California swine virus is most closely related to a swine flu virus from Ohio and very different from other H1N1 viruses that have infected humans. (scienceblogs.com)
  • In fact, in some cases, it seems like the H1N1 virus is very similar to a virus that caused an outbreak in 2007 at an Ohio country fair (1). (scienceblogs.com)
  • The sum of the phylogenetic analyses are compelling and support the hypothesis that the California H1N1 swine flu virus may have come from Ohio. (scienceblogs.com)
  • Genetic Characterization of Triple Reassortant H1N1 Influenza Viruses from Pigs in Ohio, unpublished. (scienceblogs.com)
  • The new H1N1 flu virus appearing in different parts of the world has genetic pieces from human influenza, bird influenza, and 2 different types of pig influenzas. (cdc.gov)
  • The team created 127 reassortant viruses between a duck isolate of H5N1 and a highly transmissible human H1N1 virus. (genomeweb.com)
  • The most recent 10 cases, including the three Iowa cases described in this report, were infections with S-OtrH3N2 viruses containing the matrix (M) gene from the pandemic 2009 influenza A (H1N1) virus (pH1N1). (cdc.gov)
  • The H1N1, H3N2 and B Victoria lineage viruses are recommended for trivalent influenza vaccines for 2023 southern hemisphere season. (tga.gov.au)
  • Candidate Vaccine Viruses (CVV) recommended for H1N1 and H3N2 may differ for egg- and cell- or recombinant-based vaccines. (tga.gov.au)
  • The southern hemisphere 2023 vaccine will contain one new strain for the A(H1N1)pdm09-like virus. (tga.gov.au)
  • Influenza vaccine viruses and reagents for H1N1, H3N2 and B viruses. (tga.gov.au)
  • On September 15, 2009, four influenza vaccine manufacturers received approval from the Food and Drug Administration for use of influenza A (H1N1) 2009 monovalent influenza vaccines in the prevention of influenza caused by the 2009 pandemic influenza A (H1N1) virus. (cdc.gov)
  • Influenza activity attributed to 2009 H1N1 viruses has increased during September 2009 and is expected to continue through the fall and winter influenza season. (cdc.gov)
  • The A/PR8 (H1N1) strain used, which was isolated in Puerto Rico in 1934, had a high replication potential in eggs, which enabled the required huge quantities of virus to be obtained. (medscape.com)
  • In 2006, 657 influenza isolates from Australia were antigenically analysed: 402 were A(H3N2), 24 were A(H1N1) and 231 were influenza B viruses. (health.gov.au)
  • Continued antigenic drift was seen with the A(H3N2) viruses from the previous reference strains (A/California/7/2004 and A/New York/55/2004) and drift was also noted in some of the A(H1N1) strains from the reference/vaccine strain A/New Caledonia/20/99, although very few A(H1N1) viruses were isolated in Australia in 2006. (health.gov.au)
  • Before 1998, mainly H1N1 SI viruses (SIV) were isolated from swine in the U.S. Since then, antigenetically distinct reassortant H3N2 and H1N1 SIVs have been identified as causative agents of respiratory disease in pigs on U.S. farms. (usda.gov)
  • In March and early April 2009, a new swine-origin influenza A (H1N1) virus (S-OIV) emerged in Mexico and the United States. (duke.edu)
  • Constant monitoring of genetic changes in the circulating influenza A(H1N1)pdm09 viruses is important for maintaining the sensitivity of molecular detection assays. (who.int)
  • 1,2 In Viet Nam, influenza A(H1N1)pdm09 spread quickly into communities in July 2009 and predominated, comprising about 85-90% of all influenza viruses during August and September of the 2009 season. (who.int)
  • After that, influenza A(H1N1)pdm02 became endemic, co-circulating with influenza A(H3N2) and B viruses. (who.int)
  • Even though isolated 3 months later, the March 2019 isolated H3N2 viruses replicated more efficiently than the November 2018 isolated viruses. (flu.org.cn)
  • Emerging triple-reassortant influenza C virus with household-associated infection during an influenza A(H3N2) outbreak, China, 2022. (bvsalud.org)
  • Herein, a case infected with triple reassortant ICV was identified during an influenza A(H3N2) outbreak, which was the first report of ICV infection in mainland China . (bvsalud.org)
  • Triple reassortant (H3N2) influenza viruses containing gene segments derived from human, swine, and avian influenza viruses, have become endemic in the U.S. turkey population. (usda.gov)
  • In this study, we performed genetic, antigenic and pathobiological characterization of selected H3N2 virus isolates. (usda.gov)
  • Because the TR H3N2 viruses in turkeys are endemic and of economic importance, there is the need for continuos monitoring and improvement of vaccination to provide better protection and lower economic losses in turkey production. (usda.gov)
  • Triple reassortant (TR) H3N2 avian influenza viruses have become endemic in the United States turkey population. (usda.gov)
  • Antigenically, all turkey isolates were similar, showed lesser cross-reactivity to swine origin viruses and did not react with avian origin H3N2 viruses that were not triple reassortants. (usda.gov)
  • The TR H3N2 viruses exhibited poor replication and transmissibility in 4-week-old chickens and 2-week-old ducks, indicating their possible species specific preferences in replication and transmission. (usda.gov)
  • The endemicity of the TR H3N2 viruses in turkeys and associated economic importance underscore the need for their enhanced monitoring and surveillance. (usda.gov)
  • In addition, H3N2 vaccine strains should be updated to offer a better antigenic match with endemic turkey TR H3N2 avian influenza viruses to provide better protection and lower economic losses in turkey production. (usda.gov)
  • On November 20, 2011, CDC confirmed three cases of swine-origin triple reassortant influenza A (H3N2) (S-OtrH3N2) virus infection in children in two counties in Iowa. (cdc.gov)
  • Eighteen human infections with swine-origin influenza A (H3N2) viruses have been identified since 2009 ( 1 , 2 ). (cdc.gov)
  • These viruses are considered reassortant viruses between a swine-origin influenza A (H3N2) virus circulating in North American swine and a pH1N1 virus. (cdc.gov)
  • US CDC, MMWR 11/24/10: Three human infections with triple reassortant H3N2 influenza virus reported in 2010. (flutrackers.com)
  • Monovalent vaccines based on various H3N2 cluster viruses were not able to induce protective immunity against all H3N2 SIVs used for challenge. (usda.gov)
  • the vaccine had 47% efficacy against the predominant influenza A H3N2 subtype and 67% efficacy against influenza B virus infections. (medscape.com)
  • This prospective annual release study is designed to evaluate the safety on new influenza virus vaccine strains to be included in FluMist Quadrivalent for the 2013-2014 influenza season. (astrazenecaclinicaltrials.com)
  • Avian influenza is a viral disease caused by various strains of avian influenza viruses that can be classified as low pathogenic avian influenza (LPAI) or highly pathogenic avian influenza (HPAI). (usgs.gov)
  • AI strains are divided into two groups based on the pathogenicity of the virus, or the ability of the virus to produce disease. (usgs.gov)
  • It has been thought that Eurasian strains of avian influenza viruses enter the United States through the Pacific Flyway (Alaska to Baja California) and that this route is the most likely avenue for emerging Eurasian AIV strains to enter North America. (usgs.gov)
  • AI viruses from both continents, as well as recombinations of both strains, were isolated in Iceland, sometimes from within a single flock of birds, showing that this region is a hotspot of virus movement and genetic reassortment. (usgs.gov)
  • Two Hantaan virus strains, clone 1 (cl-1), which is virulent in newborn mice, and its attenuated mutant (mu11E10), were used to examine the pathogenesis of Hantaan virus infection in a mouse model and identify virus factors relating to virulence. (elsevierpure.com)
  • The CVI988 strain of Marek's disease virus (MDV) is a highly effective vaccine to protect chicken against very virulent strains of MDV. (thepoultrysite.com)
  • Shanika Kurukulasuriya of the Western College of Veterinary Medicine at the University of Saskatchewan in Canada explained recent studies have demonstrated that the majority of Infectious Bursal Disease Viruses (IBDVs) circulating in Canada are 'variant' strains and capable of immunosuppression in broilers. (thepoultrysite.com)
  • Swine Influenza, or Swine Flu, is a highly contagious respiratory disease that originated with pigs and is caused by one of many strains of the Influenza A virus. (projectswole.com)
  • This property may be a consequence of the limited host range of the virus - humans and seals - which limits the generation of new strains by reassortment. (virology.ws)
  • I showed that the influenza C virus genome consists of 7 RNA segments, and demonstrated reassortment among different influenza C virus strains. (virology.ws)
  • The relatively simple methods developed by Burnet in Australia for culturing the virus on chick embryos, involving inoculation into the allantoic cavity, made it easy to obtain sufficient amounts of the virus strains for the vaccine. (medscape.com)
  • Thus, in 1942, 10,000 doses of the first bivalent vaccine containing the A/PR8 and B/Lee virus strains were administered in humans for testing. (medscape.com)
  • This project will explore determine how sequence variation in the UTR's of the influenza vRNA's (particularly, HA and NA) impact the replication/fitness of influenza A viruses by focusing our analysis on the UTR's of high yield reassortants used as vaccine seed stocks and selected naturally circulating strains. (jcvi.org)
  • Differential expression of specific factors observed between avian H7N9 and pdmH1N1 influenza virus strains could explain the variation in disease pathogenicity. (aacc.org)
  • Due to the ability of the virus to overcome the barriers between species, it is also clear that animal strains may act as a natural source of viral genomes, thus promoting mutations and creating new viral genotypes with unknown virulence. (news-medical.net)
  • Although H5N8 subtype viruses have been detected previously in the United States, all have been low pathogenicity AIV of North American wild bird lineage. (cdc.gov)
  • surveillance focused on the subset of avian influenza viruses that pose significant risk of infecting humans, including certain viruses of low pathogenicity in poultry. (nationalacademies.org)
  • These findings provide a framework for future studies examining the molecular mechanisms underlying the pathogenicity of avian H7N9 virus. (aacc.org)
  • Collectively, our data provide new insight into the underlying mechanisms of the differential pathogenicity of avian influenza viruses. (aacc.org)
  • A nan Province, China, to a smallholder distributor in Luang sian lineage influenza A(H5N1) viruses continue to cause serious disease in poultry and sporadic hu- man infections ( 1 ). (cdc.gov)
  • A(H5N1) virus and subsequently in poultry infected with clade 2.3.4 and 2.3.2 viruses in 2006 and 2008, respec- tively ( 2 , 3 ). (cdc.gov)
  • Interclade reassortant influenza A(H5N1) vi- rus genotypes homologous to viruses circulating in south- ern China and Vietnam have also been detected, which indicated previous transboundary virus transfers. (cdc.gov)
  • How- ever, influenza A(H5N1) virus in poultry has not been reported in Laos since mid-2010 ( 4 ). (cdc.gov)
  • After the reported spread of HPAI H5N1 virus in Asia, a large, interagency avian influenza virus, or AIV, surveillance effort was implemented throughout the United States during April 2006 to March of 2011. (cdc.gov)
  • The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). (nature.com)
  • Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. (nature.com)
  • Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. (nature.com)
  • Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. (nature.com)
  • As of 31 March 2015, H5N1 virus caused at least 826 laboratory-confirmed human infections, including 440 deaths across 16 countries 2 . (nature.com)
  • The Qinghai-like Clade 2.2 virus was found to possess a high genetic relationship with viruses isolated from other countries on the migratory flyway of wild birds 4 , suggesting that the migration of wild birds played an important role in circulating H5N1 HPAIV viruses between the different avian populations. (nature.com)
  • As of October 3, 2016, at least 856 cases of human infection with avian influenza A (H5N1) virus in 16 countries had been reported to the World Health Organization, among which 452 had ended in death, for an apparent case fatality rate of 52.8% ( WHO, 2016 ). (frontiersin.org)
  • The findings indicate that avian H5N1 subtype viruses have the "potential to acquire mammalian transmissibility by reassortment," the researchers write. (genomeweb.com)
  • Currently, there is concern that the avian A(H5N1) virus that has infected and killed millions of poultry in many countries will undergo such changes or naturally mutate to make it easily transmissible in humans and hence trigger a pandemic. (health.gov.au)
  • While H9N2's involvement can be traced back two decades to the emergence of H5N1, since 2013 we've seen a sudden surge in the number of new avian reassortants appearing in China - nearly all carrying the incriminating fingerprints of H9N2. (flutrackers.com)
  • In 2011, H9N2 viruses were observed to be co-circulating and co-infecting the same hosts as H5N1 viruses. (who.int)
  • Surveillance for avian influenza viruses must continue in Egypt to monitor further developments in H5N1 circulation in poultry. (who.int)
  • En 2011, on a remarqué que les virus H9N2 circulaient en même temps et co-infectaient les mêmes hôtes que les virus H5N1. (who.int)
  • hivernale 2014-2015, le virus H5N1 a considérablement circulé dans les élevages de volailles, entraînant un nombre d'infections sans précédent chez l'homme. (who.int)
  • La surveillance des virus de la grippe aviaire doit se poursuivre en Égypte afin de déceler les futures évolutions de la circulation du H5N1 dans les populations de volailles. (who.int)
  • Since 2006, the highly pathogenic avian influenza H5N1 virus has circulated among domestic poultry in Egypt, causing massive economic losses in the poultry production sector (1). (who.int)
  • However, the H5N1 virus continued to circulate and it became endemic in 2008, which led to genetic drift of the surface immunogenic glycoproteins (4,5). (who.int)
  • Accordingly, the Egyptian H5N1 viruses diversified into several subclades (classical 2.2.1, 2.2.1.1, 2.2.1.1a and 2.2.1.2), of which at least two subclades co-circulated between 2008 and 2011 (6-8). (who.int)
  • The subclades of H5N1 viruses in Egypt are antigenically distinct and most vaccines used are no longer antigenically matched (2,9). (who.int)
  • Egypt reported more laboratory-confirmed cases of human infection with avian influenza virus H5N1 to the World Health Organization (WHO) between 2003 and 2015 than any other country (346 cases), with 116 deaths, giving a case fatality rate of 33.5 % (10). (who.int)
  • We are lucky this has not yet happened in industrial poultry operations with the highly lethal bird flu virus, H5N1. (scienceblogs.com)
  • 400 million poultry have been culled since 2003 as a result of efforts to control highly pathogenic H5N1 avian influenza ( http://www.fao.org/avianflu/en/index.html ), and there are increasing biological and ecological consequences. (nationalacademies.org)
  • However, the H5N1 virus continued ians collected 2383 cloacal and 1877 ble 1). (who.int)
  • Due to the scope and impact of the COVID-19 pandemic there exists a strong desire to understand where the SARS-CoV-2 virus came from and how it jumped species boundaries to humans. (nih.gov)
  • Transmission of the virus from pigs to humans is rare, and does not always lead to human illness, often resulting only in the production of antibodies in the blood. (wikipedia.org)
  • Direct transmission of a swine flu virus from pigs to humans is occasionally possible (zoonotic swine flu). (wikipedia.org)
  • This virus was highly pathogenic in chickens and humans and posed a significant threat to public health. (nature.com)
  • Since April 2014, new infections of H5N6 avian influenza virus (AIV) in humans and domestic poultry have caused considerable economic losses in the poultry industry and posed an enormous threat to human health worldwide. (frontiersin.org)
  • These viruses were isolated from mosquitoes and humans during epidemiologic investigations on the role of CAL serogroup viruses in the increased incidence of arboviral encephalitis in Russia. (ajtmh.org)
  • The disease in "Contagion" is modeled on the lethal Nipah virus, one of the most threatening new infectious pathogens to jump from animals to humans. (brandeis.edu)
  • Three years later in Bangladesh, a more contagious and virulent strain of the virus was discovered spilling over from bats to humans, killing 75 to 100 percent of infected people. (brandeis.edu)
  • The ancestral hosts for influenza A viruses are aquatic birds, however, it has also been established in some mammals, such as humans and pigs. (health.gov.au)
  • This represents one possible obstacle to the emergence of new pandemic influenza A viruses in humans, namely, the presence of avian-human influenza gene constellations that restrict viral replication in primates. (wiktionary.org)
  • We show that it was derived from several viruses circulating in swine, and that the initial transmission to humans occurred several months before recognition of the outbreak. (duke.edu)
  • Our results highlight the need for systematic surveillance of influenza in swine, and provide evidence that the mixing of new genetic elements in swine can result in the emergence of viruses with pandemic potential in humans. (duke.edu)
  • There is now increasing evidence that animal rotaviruses can infect humans, either through direct transmission of the virus or by contributing one or several genes to reassortants with essentially a human strain genetic background. (news-medical.net)
  • Different examples of identical or (almost identical) transfer of animal rotaviral segments of the virus to humans are described in the literature. (news-medical.net)
  • Most of these viruses refer to segments isolated from cattle or pigs, which have been detected primarily in developing countries with a close cohabitation of humans and animals. (news-medical.net)
  • 1 Since then, the virus has become a seasonal influenza virus and continues to circulate worldwide in humans and pigs. (who.int)
  • Scientists call this a 'quadruple reassortant' virus. (cdc.gov)
  • It has been referred to as a quadruple reassortant. (cdc.gov)
  • These birds were positive for In March 2014, avian influenza in poultry in Laos was avian influenza A virus (H5 subtype) by real-time reverse causedbyanemergentinfluenzaA(H5N6)virus.Genetic transcription PCR (RT-PCR) ( 5 ). (cdc.gov)
  • An experiment with genetic reassortant viruses showed that in newborn mice the M segment is the most related to virulence and the L segment is partly related. (elsevierpure.com)
  • Pigs can be infected by multiple different influenza viruses and "mix-up" their 8 genetic pieces to create a brand new or reassortant virus. (cdc.gov)
  • However, the genetic make-up of this virus implies US and Eurasian swine virus ancestors and suggests that this new virus will end up having a very interesting origin and pedigree. (cdc.gov)
  • The segmented nature of the virus genome permits genetic reassortments to occur during co-infection of a host with different influenza viruses. (usda.gov)
  • We know the current pandemic flu virus has entirely swine genetic components, although some of those components had been in human and bird viruses further back in time. (scienceblogs.com)
  • Both conventional RT-PCR and real-time RT-PCR assays are rapid, sensitive methods for detecting the genetic material of influenza viruses. (who.int)
  • Others, called SATELLITE VIRUSES, are able to replicate only when their genetic defect is complemented by a helper virus. (bvsalud.org)
  • We report highly pathogenic avian influenza (HPAI) in poultry in Laos in March 2014 that was caused by an emergent reassortant influenza A(H5N6) virus, apparently imported by live poultry from China. (cdc.gov)
  • In previous research using gene sequence and phylogenetic analysis, we reported that H5N6 AIV isolated in February 2015 (ZH283) in Pallas's sandgrouse was highly similar to that isolated in a human in December 2015 (A/Guangdong/ZQ874/2015), whereas a virus (i.e. (frontiersin.org)
  • This virus was originally referred to as "swine flu" because laboratory testing showed that many of the genes in the virus were very similar to influenza viruses that normally occur in pigs (swine) in North America. (cdc.gov)
  • It has two genes from flu viruses that normally circulate in pigs in Europe and Asia and bird (avian) genes and human genes. (cdc.gov)
  • In response, we examined the viral distribution and mRNA expression profiles of immune-related genes in chickens infected with both viruses. (frontiersin.org)
  • Do viruses ever reassort across these lines-like influenza A and C exchanging HA genes or something? (virology.ws)
  • The number of upregulated genes was larger than the numbers of downregulated genes in both groups of virus-infected NHBE cells at both time points. (aacc.org)
  • Swine influenza virus (SIV) or swine-origin influenza virus (S-OIV) refers to any strain of the influenza family of viruses that is endemic in pigs. (wikipedia.org)
  • They tested the viruses' virulence in mice and transmissibility to guinea pigs, which both have avian and mammalian types of airway receptors, and found that some reassortments were transmissible by airborne droplet, although they were not lethal. (genomeweb.com)
  • Here's the scenario: Deforestation and intensive pig farming disturb the ecosystem of a group of Southeast Asian bats, causing a new virus to move from the bats to the pigs, then into the human population. (brandeis.edu)
  • Neonatal and susceptible young growing pigs are exposed to viruses that are shed by carriers, including sows, or through exposure to the virus in their environment. (news-medical.net)
  • Whole- genome sequencing indicated the virus was highly similar to the H5N2 reassortant virus from Canada. (cdc.gov)
  • For this purpose, the VP2 gene of infectious bursal disease virus (IBDV) was cloned into CVRM genome by recombination. (thepoultrysite.com)
  • The genome of influenza viruses consist of eight RNA gene segments. (usda.gov)
  • Phleboviruses are enveloped viruses with a genome consisting of three single-stranded RNA molecules. (europa.eu)
  • Viruses which lack a complete genome so that they cannot completely replicate or cannot form a protein coat. (bvsalud.org)
  • We confirmed high levels of virus replication and abundant distribution of avian specific alpha2,3 sialic acid-galactose receptors in the oviduct of these turkeys. (usda.gov)
  • Avian-human influenza A reassortant viruses with the phenotype of restricted replication in primates would not be able to spread efficiently from human to human, and therefore viruses with these gene constellations would not be expected to give rise to pandemic human influenza viruses. (wiktionary.org)
  • However, AIV also frequently infects domestic poultry and wild ducks in Europe and Africa and migrating wild birds that use the east Atlantic flyway may also risk introducing Eurasian strain viruses to North America via this route. (usgs.gov)
  • How does that get explained as a new strain of the virus? (scienceblogs.com)
  • This bivalent vaccine contained 0.5 ml of virus concentrated from 5 ml of allantoic fluid containing influenza A and the same amount of influenza B. One half of the influenza A allantoic fluid contained the A/PR8 strain and the other half contained the Weiss strain, a strain that had been isolated more recently and that was slightly different from A/PR8. (medscape.com)
  • The B viruses isolated were predominately of the B/Victoria-lineage and similar to the reference/vaccine strain B/Malaysia/2506/2004. (health.gov.au)
  • The chapter concludes with an example of a low-pathogen avian influenza outbreak in a group of commercial poultry farms and the steps the industry took to contain further spread of the virus, minimize the risk of exposure, and monitor and prevent further infections. (nationalacademies.org)
  • Aiding and abetting H9N2 in the creation of new viable avian reassortant viruses has been the common practice of housing together many different species of birds and poultry at live bird markets ( LBMs ), where viruses that might never meet up normally in the wild are provided an ideal environment to reassort. (flutrackers.com)
  • ABSTRACT Surveillance for avian influenza viruses in Egyptian poultry has been conducted since 2009. (who.int)
  • Sharing of Influenza Viruses and Access to Vaccines and other Benefits was held in Geneva, from 8 to13 December 2008. (who.int)
  • The Australian Influenza Vaccine Committee (AIVC) met to recommend the composition of the influenza virus vaccines for Australia in 2023. (tga.gov.au)
  • Serological responses to the 2021-2022 vaccines, and the availability of candidate vaccines viruses and reagents were also reviewed by the Committee. (tga.gov.au)
  • Evolution of influenza viruses and corresponding evolution of influenza vaccines. (medscape.com)
  • The ongoing reassortment of swine influenza viruses with three subtypes of influenza virus presently circulating in the U.S. swine herd has important implications for the efficacy of current SIV vaccines. (usda.gov)
  • [ 56 ] The quadrivalent flu vaccines have an additional B virus. (medscape.com)
  • However, people with weakened immune systems might not develop full immunity after infection and might be more likely to get infected with the same influenza virus more than once. (cdc.gov)
  • After subcutaneous inoculation of newborn BALB/c mice, cl-1 caused fatal disease with high viral multiplication in peripheral organs, but mu11E10 produced nonfatal infection with a low level of virus multiplication. (elsevierpure.com)
  • Swine influenza is an infection caused by any of several types of swine influenza viruses. (wikipedia.org)
  • All cases of human infection with S-OtrH3N2 virus containing the M gene from the pH1N1 virus have occurred in 2011 and have been reported from four states: Pennsylvania (three cases), Maine (two), Indiana (two), and Iowa (three) ( 3 ). (cdc.gov)
  • In south-western Europe, Toscana virus infection accounts for the most frequent cause of aseptic meningitis together with enteroviruses and herpesviruses [2]. (europa.eu)
  • Toscana virus infection is not a notifiable disease at the EU/EEA level and there is no EU case definition. (europa.eu)
  • However, Toscana virus infection case definitions have been proposed in the literature [3]. (europa.eu)
  • Serological data such as seroconversion or a four-fold increase in paired sera would also be applicable to Toscana virus as well as the presence of IgM in a unique serum sample is indicative of a probable case of infection. (europa.eu)
  • In this study, we aimed to assess host differentially expressed gene signatures in respiratory tract epithelial cells after influenza A virus pdmH1N1 or H7N9 infection. (aacc.org)
  • H7N9 virus infection induced strong immune response, however cellular repair mechanisms were inhibited at the same time. (aacc.org)
  • 2001. Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. (nationalacademies.org)
  • Historically, influenza vaccine has had 50%-60% efficacy against infection with influenza A viruses and 70% efficacy against influenza B viruses. (medscape.com)
  • Nucleotide sequencing was used to characterize unidentified California (CAL) serogroup virus isolates from Russia. (ajtmh.org)
  • Most of the isolates were identified serologically as snowshoe hare (SSH), Inkoo (INK), and Tahyna (TAH) viruses, but some of the isolates were difficult to classify serologically, suggesting that they could be reassortant viruses. (ajtmh.org)
  • Furthermore, the unsampled history of the epidemic means that the nature and location of the genetically closest swine viruses reveal little about the immediate origin of the epidemic, despite the fact that we included a panel of closely related and previously unpublished swine influenza isolates. (duke.edu)
  • Toscana virus can present serological cross-reactions with other phleboviruses, particularly those included in the Naples phlebovirus species (sandfly fever Naples virus, Granada virus, and to a lesser extent Arrabida, Balkan, Fermo, Saddaguia viruses) or Punique phlebovirus . (europa.eu)
  • But knowledge about ICV is limited compared with influenza A and B viruses , due to poor systematic surveillance and inability to propagate. (bvsalud.org)
  • Molecular evolutionary analyses can trace viral origins by establishing relatedness and divergence times of viruses and identifying past selective pressures. (nih.gov)
  • Like the influenza A and B viruses, the core of influenza C viruses consists of a ribonucleoprotein made up of viral RNA and four proteins. (virology.ws)
  • Laboratory criteria for direct diagnosis such as virus isolation or viral RNA detection in blood or cerebrospinal fluid (CSF) that are used for the aforementioned viruses could also be applied to Toscana virus. (europa.eu)
  • Although the natural hosts of avian influenza viruses (AIVs) are wild birds, multiple subtypes of AIVs have established epidemics in numerous mammals due to their cross-species spillover. (flu.org.cn)
  • The USGS National Wildlife Health Center (NWHC) in collaboration with multiple partners conducts research into the ecology of avian influenza virus and surveillance for highly pathogenic avian influenza (HPAI) viruses leading to several significant findings towards early detection and response to HPAI. (usgs.gov)
  • In domestic birds, however, some AI viruses can be more pathogenic and mutation or recombination of a virus acquired from wild birds can increase disease potential. (usgs.gov)
  • Highly pathogenic AI viruses have been frequently found in wild and domestic European birds, significantly in 2006, and annually since then. (usgs.gov)
  • Furthermore, this virus was shown to be highly pathogenic to both birds and mammals and demonstrate tropism for the nervous system. (nature.com)
  • In the past, avian flu viruses have crossed species barriers by reassorting with mammal-infective viruses in intermediate livestock hosts. (genomeweb.com)
  • Even more nerve-racking, many of the reported Nipah cases spread from person to person - an unsettling reminder of just how easily viruses carried by animals can adapt to human hosts - creating the potential for a pandemic. (brandeis.edu)
  • Most domestic animal species can play a role in the spread of the virus by acting as natural reservoirs of the virus or as intermediate or end hosts. (news-medical.net)
  • This virus is spreading from person-to-person worldwide, probably in much the same way that regular seasonal influenza viruses spread. (cdc.gov)
  • In our response to this new outbreak, it is important to remember that seasonal influenza viruses are currently pandemic and kill 36,000 each year. (cdc.gov)
  • These appearances also represent a major change in Eurasian H5 virus circulation. (cdc.gov)
  • Both viruses have 3 RNA segments of North American wild bird lineage and 5 RNA segments that showed more than 99 percent similarity to the 2014 Eurasian H5N8 viruses. (cdc.gov)
  • First, the Eurasian lineage avian H5N8 virus survived introduction into North America in its entirety. (cdc.gov)
  • Sequence analysis revealed that the Russian viruses differ from other Eurasian and North American CAL serogroup viruses in all of the segments analyzed. (ajtmh.org)
  • Researchers first isolated the Swine Flu virus in a pig back in 1930. (projectswole.com)
  • Nearly all adults have been infected with influenza C virus, which causes mild upper respiratory tract illness. (virology.ws)
  • From Texas A&M University, Blanca Lupiani reported that she and her colleagues recently showed that insertion of LTR (long term repeat) sequences into the CVI988 resulted in the generation of CVRM, a virus with similar protective efficacy.The CVRM virus was cloned as a bacterial artificial chromosome, by insertion of mini-F sequences into the US2 gene by homologous recombination. (thepoultrysite.com)
  • To gain global and dynamic gene expression profiles, the NHBE cells cultured from a 24 year old donor were challenged by 3.0 m.o.i. avian H7N9 virus (A/Taiwan/4-CGMH/2014), H1N1pdm virus (A/California/07/2009), or mock control. (aacc.org)
  • The primer and probe sets in the HA gene were checked for mismatches, and phylogenetic analyses were performed to determine the molecular epidemiology of these viruses. (who.int)
  • Histologic and pathologic findings for the 3 raptors were consistent with those described in previous reports of H5N8 infections, and the severity of the lesions correspond to virus concentrations detected in the tissues by molecular assays. (cdc.gov)
  • In 2006, a Qinghai-like Clade 2.2 virus re-emerged in Qinghai Lake and caused more infections in wild birds, including bar-headed geese and great black-headed gulls. (nature.com)
  • Influenza A virus infections are important causes of morbidity and mortality worldwide, and currently available prevention and treatment methods are suboptimal. (researchgate.net)
  • [ 8 ] With an inactivated virus vaccine, the amount of antigen required to induce immunity is much greater than that for a live-attenuated virus vaccine, because unlike the live-attenuated virus, the inactivated virus does not replicate in the recipient. (medscape.com)
  • a B/Phuket/3073/2013 (B/Yamagata lineage)-like virus. (tga.gov.au)
  • Avian influenza viruses (AIV) are classified by a combination of two groups of proteins found on the surface of the virus: hemagglutinin proteins (H), of which there are 18 (H1-H18), and neuraminidase proteins (N), of which there are 11 (N1-N11). (usgs.gov)
  • The major influenza C virus envelope glycoprotein is called HEF (hemagglutinin-esterase-fusion) because it has the functions of both the HA and the NA. (virology.ws)
  • Consignments from this batch were RT-PCR but negative for neuraminidase (NA) subtype N1 delivered to the villages a week later, and birds at both and were subjected to virus propagation in 9 to 11-day-old locations showed clinical signs of influenza and died sud- specific pathogen-free chicken eggs. (cdc.gov)
  • Wild birds, in particular certain species of waterfowl and shorebirds, are considered to be the natural reservoirs for avian influenza viruses. (usgs.gov)
  • In 2014, in PLoS Path: Genetics, Receptor Binding, and Transmissibility Of Avian H9N2 researchers found evidence of Chinese H9N2 viruses binding preferentially to alpha 2,6 receptor cells - the type commonly found in the human upper respiratory tract - rather than to alpha 2,3 receptor cells which are found in the gastrointestinal tract of birds. (flutrackers.com)
  • These viruses replicated efficiently in 3-week-old turkeys, although poorly in 4-week-old chickens and 2-week-old ducks, indicating the possible species specific preferences of these viruses. (usda.gov)
  • Toscana virus belongs to the Toscana phlebovirus species within the Phlebovirus genus in the Phenuiviridae family [6,7]. (europa.eu)
  • We will also investigate changes in the HA and NA UTRs of a subset of ~6-10 reassortants vaccine seeds which have been serially passaged in mammalian cell culture or eggs to determine if the substrate/species used to propagate the viruses selects for changes in the UTRs that enhance growth under specific conditions. (jcvi.org)
  • The USGS National Wildlife Health Center, in collaboration with the National Institutes of Health Centers of Excellence for Influenza Research and Surveillance (CEIRS), the University of Iceland, and other partners, has explored the ecology and movement of AI viruses in the North Atlantic region since 2010. (usgs.gov)
  • Influenza surveillance in Australia is based on laboratory isolation of influenza viruses, sentinel general practitioner reports of influenza-like illness, and absenteeism data from a major national employer. (health.gov.au)
  • In 1998 an RV vaccine consisting of a Rhesus-human reassortant (Rotashieldâ„¢, Wyeth) was licensed in the U.S., but was withdrawn in 1999 after only a few months of usage following reports in post-marketing surveillance of intussusception among vaccine recipients. (canada.ca)
  • RÉSUMÉ La surveillance des virus de la grippe aviaire dans les populations de volailles égyptiennes est en cours depuis 2009. (who.int)
  • During the first few weeks of surveillance, the virus spread worldwide to 30 countries (as of May 11) by human-to-human transmission, causing the World Health Organization to raise its pandemic alert to level 5 of 6. (duke.edu)
  • virus in 2006, the veterinary authorities influenza viruses in Egypt during 1 year in Egypt implemented a comprehensive of active surveillance in 2015. (who.int)
  • This increase in reassortant avian viruses appears to coincide with recent evolutionary changes in H9N2, which include increased mammalian adaptation. (flutrackers.com)
  • The Nipah virus first emerged in 1998, sweeping through pig farms in Malaysia and Singapore. (brandeis.edu)
  • A leading expert in Nipah virus ecology, Epstein focuses on the source of human contagion: uncannily cute but potentially deadly giant fruit bats - also called "megabats" or "flying foxes. (brandeis.edu)
  • Toscana virus was first isolated in 1971 from sand flies collected in the Tuscany region of Italy and first evidence for its propensity to cause human disease was reported in 1983 [5]. (europa.eu)
  • Additional information on avian influenza viruses are available in the Field Manual of Wildlife Diseases . (usgs.gov)
  • other diseases related to tick-borne viruses that were previously included in the Phlebovirus genus (Uukkuniemi virusDabie bandavirus Heartland bandavirus ) and are now reclassified either in the Uukuvirus or in the Bandavirus genera. (europa.eu)
  • With the on-going European outbreaks of HPAI there is a risk of moving these viruses to North America as well. (usgs.gov)
  • This research has demonstrated the importance of the migratory bird flyways in this region to the intercontinental movement of viruses between Europe and North America. (usgs.gov)
  • Therefore the influenza virion contains 7 RNA segments, not 8 RNAs like influenza A and B viruses. (virology.ws)
  • Phylogenetic analysis showed that this ICV was triple reassortant. (bvsalud.org)
  • Phylogenetic analysis of the H5 viruses detected in the United States resulted in 3 major findings. (cdc.gov)
  • The sequence of the complete genomes including the HA and NA UTRs of low and high yield reassortant vaccine candidate, and seed stocks and their parental viruses (wild type). (jcvi.org)
  • The swine influenza virus is common throughout pig populations worldwide. (wikipedia.org)
  • Molecular characterization of California serogroup viruses isolated in Russia. (ajtmh.org)
  • To monitor the epidemiology of canine influenza viruses (CIVs) in Liaoning, China, we performed three surveillances in November 2018, March 2019, and April 2019. (flu.org.cn)
  • In mouse brain microvascular endothelial cells in vitro, viruses possessing a cl-1-derived M segment grew more rapidly than viruses containing a mu11E10-derived M segment. (elsevierpure.com)