A dopamine D2/D3 receptor agonist.
Drugs that bind to and activate dopamine receptors.
A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D2-class receptor genes contain INTRONS, and the receptors inhibit ADENYLYL CYCLASES.
An involuntary deep INHALATION with the MOUTH open, often accompanied by the act of stretching.
Drugs that bind to but do not activate DOPAMINE RECEPTORS, thereby blocking the actions of dopamine or exogenous agonists. Many drugs used in the treatment of psychotic disorders (ANTIPSYCHOTIC AGENTS) are dopamine antagonists, although their therapeutic effects may be due to long-term adjustments of the brain rather than to the acute effects of blocking dopamine receptors. Dopamine antagonists have been used for several other clinical purposes including as ANTIEMETICS, in the treatment of Tourette syndrome, and for hiccup. Dopamine receptor blockade is associated with NEUROLEPTIC MALIGNANT SYNDROME.
A series of structurally-related alkaloids that contain the ergoline backbone structure.
A selective D1 dopamine receptor agonist used primarily as a research tool.
A subtype of dopamine D2 receptors that are highly expressed in the LIMBIC SYSTEM of the brain.
A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D1-class receptor genes lack INTRONS, and the receptors stimulate ADENYLYL CYCLASES.
Any drugs that are used for their effects on dopamine receptors, on the life cycle of dopamine, or on the survival of dopaminergic neurons.
Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells.
A dopamine D2-receptor antagonist. It has been used therapeutically as an antidepressant, antipsychotic, and as a digestive aid. (From Merck Index, 11th ed)
Compounds with BENZENE fused to AZEPINES.
Amides of salicylic acid.
One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action.
A derivative of morphine that is a dopamine D2 agonist. It is a powerful emetic and has been used for that effect in acute poisoning. It has also been used in the diagnosis and treatment of parkinsonism, but its adverse effects limit its use.
A substituted benzamide that has antipsychotic properties. It is a dopamine D2 receptor (see RECEPTORS, DOPAMINE D2) antagonist.
A spiro butyrophenone analog similar to HALOPERIDOL and other related compounds. It has been recommended in the treatment of SCHIZOPHRENIA.
The phylogenetically newer part of the CORPUS STRIATUM consisting of the CAUDATE NUCLEUS and PUTAMEN. It is often called simply the striatum.
Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA.
A specific blocker of dopamine receptors. It speeds gastrointestinal peristalsis, causes prolactin release, and is used as antiemetic and tool in the study of dopaminergic mechanisms.
A dopamine D1 receptor agonist that is used as an antihypertensive agent. It lowers blood pressure through arteriolar vasodilation.
A subtype of dopamine D2 receptors that has high affinity for the antipsychotic CLOZAPINE.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
The observable response an animal makes to any situation.
A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279)
The physical activity of a human or an animal as a behavioral phenomenon.
Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE.
A powerful central nervous system stimulant and sympathomimetic. Amphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulation of release of monamines, and inhibiting monoamine oxidase. Amphetamine is also a drug of abuse and a psychotomimetic. The l- and the d,l-forms are included here. The l-form has less central nervous system activity but stronger cardiovascular effects. The d-form is DEXTROAMPHETAMINE.
An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake.
Drugs that block the transport of DOPAMINE into axon terminals or into storage vesicles within terminals. Most of the ADRENERGIC UPTAKE INHIBITORS also inhibit dopamine uptake.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Learning situations in which the sequence responses of the subject are instrumental in producing reinforcement. When the correct response occurs, which involves the selection from among a repertoire of responses, the subject is immediately reinforced.
A region in the MESENCEPHALON which is dorsomedial to the SUBSTANTIA NIGRA and ventral to the RED NUCLEUS. The mesocortical and mesolimbic dopaminergic systems originate here, including an important projection to the NUCLEUS ACCUMBENS. Overactivity of the cells in this area has been suspected to contribute to the positive symptoms of SCHIZOPHRENIA.
A condition characterized by inactivity, decreased responsiveness to stimuli, and a tendency to maintain an immobile posture. The limbs tend to remain in whatever position they are placed (waxy flexibility). Catalepsy may be associated with PSYCHOTIC DISORDERS (e.g., SCHIZOPHRENIA, CATATONIC), nervous system drug toxicity, and other conditions.
A group of related plant alkaloids that contain the BERBERINE heterocyclic ring structure.
Administration of a drug or chemical by the individual under the direction of a physician. It includes administration clinically or experimentally, by human or animal.
An antipsychotic agent that is specific for dopamine D2 receptors. It has been shown to be effective in the treatment of schizophrenia.
A subtype of dopamine D1 receptors that has higher affinity for DOPAMINE and differentially couples to GTP-BINDING PROTEINS.
A tricylic dibenzodiazepine, classified as an atypical antipsychotic agent. It binds several types of central nervous system receptors, and displays a unique pharmacological profile. Clozapine is a serotonin antagonist, with strong binding to 5-HT 2A/2C receptor subtype. It also displays strong affinity to several dopaminergic receptors, but shows only weak antagonism at the dopamine D2 receptor, a receptor commonly thought to modulate neuroleptic activity. Agranulocytosis is a major adverse effect associated with administration of this agent.
The black substance in the ventral midbrain or the nucleus of cells containing the black substance. These cells produce DOPAMINE, an important neurotransmitter in regulation of the sensorimotor system and mood. The dark colored MELANIN is a by-product of dopamine synthesis.
Cytoskeleton specialization at the cytoplasmic side of postsynaptic membrane in SYNAPSES. It is involved in neuronal signaling and NEURONAL PLASTICITY and comprised of GLUTAMATE RECEPTORS; scaffolding molecules (e.g., PSD95, PSD93), and other proteins (e.g., CaCMKII).
Neurotransmitter receptors located on or near presynaptic terminals or varicosities. Presynaptic receptors which bind transmitter molecules released by the terminal itself are termed AUTORECEPTORS.
Transmitter receptors on or near presynaptic terminals (or varicosities) which are sensitive to the transmitter(s) released by the terminal itself. Receptors for the hormones released by hormone-releasing cells are also included.
An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use.
The action of a drug that may affect the activity, metabolism, or toxicity of another drug.

Activation of human D3 dopamine receptor inhibits P/Q-type calcium channels and secretory activity in AtT-20 cells. (1/346)

The D3 dopamine receptor is postulated to play an important role in the regulation of neurotransmitter secretion at both pre- and postsynaptic terminals. However, this hypothesis and the underlying mechanisms remain untested because of the lack of D3-selective ligands, paucity of appropriate model secretory systems, and the weak and inconsistent coupling of D3 receptors to classical signal transduction pathways. The absence of ligands that selectively discriminate between D3 and D2 receptors in vivo precludes the study of D3 receptor function in the brain and necessitates the use of heterologous expression systems. In this report we demonstrate that activation of the human D3 dopamine receptor expressed in the AtT-20 neuroendocrine cell line causes robust inhibition of P/Q-type calcium channels via pertussis toxin-sensitive G-proteins. In addition, using the vesicle trafficking dye FM1-43, we show that D3 receptor activation significantly inhibits spontaneous secretory activity in these cells. Our results not only support the hypothesis that the D3 receptor can regulate secretory activity but also provide insight into the underlying signaling mechanisms. We propose a functional model in which the D3 receptor tightly regulates neurotransmitter release at a synapse by only allowing the propagation of spikes above a certain frequency or burst-duration threshold.  (+info)

Comparison of effects of haloperidol administration on amphetamine-stimulated dopamine release in the rat medial prefrontal cortex and dorsal striatum. (2/346)

Research has shown that there are important neurochemical differences between the mesocortical and mesostriatal dopamine systems. The work reported in this paper has sought to compare the regulation of dopamine release in the medial prefrontal cortex and the anterior caudate-putamen. In vivo microdialysis was used to recover dialysate fluid for subsequent assay for dopamine concentrations. The responses to D2 antagonist (haloperidol) administration, which has been shown to increase impulse-dependent dopamine release, were compared. Results demonstrated a diminished effect of systemic haloperidol administration on dopamine efflux in the prefrontal cortex. The responses to systemic administration of a nonimpulse-dependent, transporter-mediated, dopamine releaser (d-amphetamine) were also contrasted. Results again demonstrated a diminished pharmacological effect in the cortex. The potential interaction of stimulation of these two types of dopamine release was examined by coadministration of these compounds. Haloperidol pretreatment dramatically potentiated the dopamine-releasing effect of amphetamine administration. This effect was observed in both the cortex and the striatum. Subsequent work demonstrated that this effect of haloperidol was mediated by D2-like receptors in the prefrontal cortex. These results are discussed in relation to other neurochemical and neuroanatomical studies demonstrating sparse densities of dopamine transporter sites and dopamine D2 receptors in the cortex compared with the striatum. They demonstrate a functional correlate to the recently reported, largely extrasynaptic localization of dopamine transporter sites in the prefrontal cortex. Furthermore, they demonstrate the existence of cortical D2-like autoreceptors that may normally be "silent" under basal conditions.  (+info)

Tonic dopamine inhibition of L-type Ca2+ channel activity reduces alpha1D Ca2+ channel gene expression. (3/346)

Hormones and neurotransmitters have both short-term and long-term modulatory effects on the activity of voltage-gated Ca2+ channels. Although much is known about the signal transduction underlying short-term modulation, there is far less information on mechanisms that produce long-term effects. Here, the molecular basis of long-lasting suppression of Ca2+ channel current in pituitary melanotropes by chronic dopamine exposure is examined. Experiments involving in vivo and in vitro treatments with the dopaminergic drugs haloperidol, bromocriptine, and quinpirole show that D2 receptors persistently decrease alpha1D L-type Ca2+ channel mRNA and L-type Ca2+ channel current without altering channel gating properties. In contrast, another L-channel (alpha1C) mRNA and P/Q-channel (alpha1A) mRNA are unaffected. The downregulation of alpha1D mRNA does not require decreases in cAMP levels or P/Q-channel activity. However, it is mimicked and occluded by inhibition of L-type channels. Thus, interruption of the positive feedback between L-type Ca2+ channel activity and alpha1D gene expression can account for the long-lasting regulation of L-current produced by chronic activation of D2 dopamine receptors.  (+info)

Multisecond oscillations in firing rate in the basal ganglia: robust modulation by dopamine receptor activation and anesthesia. (4/346)

Multisecond oscillations in firing rate in the basal ganglia: robust modulation by dopamine receptor activation and anesthesia. Studies of CNS electrophysiology have suggested an important role for oscillatory neuronal activity in sensory perception, sensorimotor integration, and movement timing. In extracellular single-unit recording studies in awake, immobilized rats, we have found that many tonically active neurons in the entopeduncular nucleus (n = 15), globus pallidus (n = 31), and substantia nigra pars reticulata (n = 31) have slow oscillations in firing rate in the seconds-to-minutes range. Basal oscillation amplitude ranged up to +/-50% of the mean firing rate. Spectral analysis was performed on spike trains to determine whether these multisecond oscillations were significantly periodic. Significant activity in power spectra (in the 2- to 60-s range of periods) from basal spike trains was found for 56% of neurons in these three nuclei. Spectral peaks corresponded to oscillations with mean periods of approximately 30 s in each nucleus. Multisecond baseline oscillations were also found in 21% of substantia nigra dopaminergic neurons. The dopamine agonist apomorphine (0.32 mg/kg iv, n = 10-15) profoundly affected multisecond oscillations, increasing oscillatory frequency (means of spectral peak periods were reduced to approximately 15 s) and increasing the regularity of the oscillations. Apomorphine effects on oscillations in firing rate were more consistent from unit to unit than were its effects on mean firing rates in the entopeduncular nucleus and substantia nigra. Apomorphine modulation of multisecond periodic oscillations was reversed by either D1 or D2 antagonists and was mimicked by the combination of selective D1 (SKF 81297) and D2 (quinpirole) agonists. Seventeen percent of neurons had additional baseline periodic activity in a faster range (0.4-2.0 s) related to ventilation. Multisecond periodicities were rarely found in neurons in anesthetized rats (n = 29), suggesting that this phenomenon is sensitive to overall reductions in central activity. The data demonstrate significant structure in basal ganglia neuron spiking activity at unexpectedly long time scales, as well as a novel effect of dopamine on firing pattern in this slow temporal domain. The modulation of multisecond periodicities in firing rate by dopaminergic agonists suggests the involvement of these patterns in behaviors and cognitive processes that are affected by dopamine. Periodic firing rate oscillations in basal ganglia output nuclei should strongly affect the firing patterns of target neurons and are likely involved in coordinating neural activity responsible for motor sequences. Modulation of slow, periodic oscillations in firing rate may be an important mechanism by which dopamine influences motor and cognitive processes in normal and dysfunctional states.  (+info)

Relationship between electroacupuncture analgesia and dopamine receptors in nucleus accumbens. (5/346)

AIM: To study the roles of dopamine (DA) D1 and D2 receptors in nucleus accumbens in electroacupuncture analgesia (EAA) and the potentiation of EAA of rats induced by l-tetrahydropalmatine (l-THP), a dopamine receptor antagonist. METHODS: SK&F-38393 and quinpirole hydrochloride (Qui), highly selective agonists of D1 and D2 receptors, respectively were injected into nucleus accumbens of rats. RESULTS: SK&F-38393 (5 and 10 micrograms) attenuated the potentiation of EAA induced by l-THP, 10 micrograms SKF38393 attenuated EAA as well, while Qui (10 and 20 micrograms) had no effect on EAA and the potentiation of EAA induced by l-THP. CONCLUSION: D1 but not D2 receptor in nucleus accumbens play an important role in EAA and the potentiation of EAA induced by l-THP.  (+info)

Altered activity of midbrain dopamine neurons following 7-day withdrawal from chronic cocaine abuse is normalized by D2 receptor stimulation during the early withdrawal phase. (6/346)

Using in vivo single-unit recording in rats, we compared the effects of continuous cocaine infusion via minipump or single daily injections (both 40 mg/kg/d x 14 days, S.C.) on the activity of putative dopamine (DA) neurons in the substantia nigra pars compacta (SNC) and ventral tegmental area (VTA). On days 1-5 after cocaine withdrawal, animals were further treated with single daily injections of DA agonists. On withdrawal day 7 continuous cocaine caused a reduction in spontaneously active neurons in the SNC and reduced bursting in the VTA. In contrast, intermittent cocaine resulted in an increase in the number of active neurons in the VTA. These changes were all reversed by apomorphine or quinpirole given during the first 5 withdrawal days. The D1 antagonist SCH 39166 did not antagonize the effects of apomorphine in either region. The role of D2 receptors in modulating baseline DA activity during intermediate cocaine withdrawal is discussed.  (+info)

Dopamine depresses synaptic inputs into the olfactory bulb. (7/346)

Both observations in humans with disorders of dopaminergic transmission and molecular studies point to an important role for dopamine in olfaction. In this study we found that dopamine receptor activation in the olfactory bulb causes a significant depression of synaptic transmission at the first relay between olfactory receptor neurons and mitral cells. This depression was found to be caused by activation of the D2 subtype of dopamine receptor and was reversible by a specific D2 receptor antagonist. A change in paired-pulse modulation during the depression suggests a presynaptic locus of action. The depression was found to occur independent of synaptic activity. These results provide the first evidence for dopaminergic control of inputs to the main olfactory bulb. The magnitude and locus of dopamine's modulatory capabilities in the bulb suggest important roles for dopamine in odorant processing.  (+info)

Requirement of circadian genes for cocaine sensitization in Drosophila. (8/346)

The circadian clock consists of a feedback loop in which clock genes are rhythmically expressed, giving rise to cycling levels of RNA and proteins. Four of the five circadian genes identified to date influence responsiveness to freebase cocaine in the fruit fly, Drosophila melanogaster. Sensitization to repeated cocaine exposures, a phenomenon also seen in humans and animal models and associated with enhanced drug craving, is eliminated in flies mutant for period, clock, cycle, and doubletime, but not in flies lacking the gene timeless. Flies that do not sensitize owing to lack of these genes do not show the induction of tyrosine decarboxylase normally seen after cocaine exposure. These findings indicate unexpected roles for these genes in regulating cocaine sensitization and indicate that they function as regulators of tyrosine decarboxylase.  (+info)

Quinpirole is not a medical condition or disease, but rather a synthetic compound used in research and medicine. It's a selective agonist for the D2 and D3 dopamine receptors, which means it binds to and activates these receptors, mimicking the effects of dopamine, a neurotransmitter involved in various physiological processes such as movement, motivation, reward, and cognition.

Quinpirole is used primarily in preclinical research to study the role of dopamine receptors in different neurological conditions, including Parkinson's disease, schizophrenia, drug addiction, and others. It helps researchers understand how dopamine systems work and contributes to the development of new therapeutic strategies for these disorders.

It is important to note that quinpirole is not used as a medication in humans or animals but rather as a research tool in laboratory settings.

Dopamine agonists are a class of medications that mimic the action of dopamine, a neurotransmitter in the brain that regulates movement, emotion, motivation, and reinforcement of rewarding behaviors. These medications bind to dopamine receptors in the brain and activate them, leading to an increase in dopaminergic activity.

Dopamine agonists are used primarily to treat Parkinson's disease, a neurological disorder characterized by motor symptoms such as tremors, rigidity, bradykinesia (slowness of movement), and postural instability. By increasing dopaminergic activity in the brain, dopamine agonists can help alleviate some of these symptoms.

Examples of dopamine agonists include:

1. Pramipexole (Mirapex)
2. Ropinirole (Requip)
3. Rotigotine (Neupro)
4. Apomorphine (Apokyn)

Dopamine agonists may also be used off-label to treat other conditions, such as restless legs syndrome or certain types of dopamine-responsive dystonia. However, these medications can have significant side effects, including nausea, dizziness, orthostatic hypotension, compulsive behaviors (such as gambling, shopping, or sexual addiction), and hallucinations. Therefore, they should be used with caution and under the close supervision of a healthcare provider.

Dopamine D2 receptor is a type of metabotropic G protein-coupled receptor that binds to the neurotransmitter dopamine. It is one of five subtypes of dopamine receptors (D1-D5) and is encoded by the gene DRD2. The activation of D2 receptors leads to a decrease in the activity of adenylyl cyclase, which results in reduced levels of cAMP and modulation of ion channels.

D2 receptors are widely distributed throughout the central nervous system (CNS) and play important roles in various physiological functions, including motor control, reward processing, emotion regulation, and cognition. They are also involved in several neurological and psychiatric disorders, such as Parkinson's disease, schizophrenia, drug addiction, and Tourette syndrome.

D2 receptors have two main subtypes: D2 short (D2S) and D2 long (D2L). The D2S subtype is primarily located in the presynaptic terminals and functions as an autoreceptor that regulates dopamine release, while the D2L subtype is mainly found in the postsynaptic neurons and modulates intracellular signaling pathways.

Antipsychotic drugs, which are used to treat schizophrenia and other psychiatric disorders, work by blocking D2 receptors. However, excessive blockade of these receptors can lead to side effects such as extrapyramidal symptoms (EPS), tardive dyskinesia, and hyperprolactinemia. Therefore, the development of drugs that selectively target specific subtypes of dopamine receptors is an active area of research in the field of neuropsychopharmacology.

Yawning is a reflex characterized by the involuntary opening of the mouth and deep inhalation of air, often followed by a long exhalation. While the exact purpose and mechanism of yawning are not fully understood, it's believed to be associated with regulating brain temperature, promoting arousal, or stretching the muscles of the jaw and face. Yawning is contagious in humans and can also be observed in various animal species. It usually occurs when an individual is tired, bored, or during transitions between sleep stages, but its underlying causes remain a subject of ongoing scientific research.

Dopamine antagonists are a class of drugs that block the action of dopamine, a neurotransmitter in the brain associated with various functions including movement, motivation, and emotion. These drugs work by binding to dopamine receptors and preventing dopamine from attaching to them, which can help to reduce the symptoms of certain medical conditions such as schizophrenia, bipolar disorder, and gastroesophageal reflux disease (GERD).

There are several types of dopamine antagonists, including:

1. Typical antipsychotics: These drugs are primarily used to treat psychosis, including schizophrenia and delusional disorders. Examples include haloperidol, chlorpromazine, and fluphenazine.
2. Atypical antipsychotics: These drugs are also used to treat psychosis but have fewer side effects than typical antipsychotics. They may also be used to treat bipolar disorder and depression. Examples include risperidone, olanzapine, and quetiapine.
3. Antiemetics: These drugs are used to treat nausea and vomiting. Examples include metoclopramide and prochlorperazine.
4. Dopamine agonists: While not technically dopamine antagonists, these drugs work by stimulating dopamine receptors and can be used to treat conditions such as Parkinson's disease. However, they can also have the opposite effect and block dopamine receptors in high doses, making them functionally similar to dopamine antagonists.

Common side effects of dopamine antagonists include sedation, weight gain, and movement disorders such as tardive dyskinesia. It's important to use these drugs under the close supervision of a healthcare provider to monitor for side effects and adjust the dosage as needed.

Ergolines are a group of ergot alkaloids that have been widely used in the development of various pharmaceutical drugs. These compounds are known for their ability to bind to and stimulate specific receptors in the brain, particularly dopamine receptors. As a result, they have been explored for their potential therapeutic benefits in the treatment of various neurological and psychiatric conditions, such as Parkinson's disease, migraine, and depression.

However, ergolines can also have significant side effects, including hallucinations, nausea, and changes in blood pressure. In addition, some ergot alkaloids have been associated with a rare but serious condition called ergotism, which is characterized by symptoms such as muscle spasms, vomiting, and gangrene. Therefore, the use of ergolines must be carefully monitored and managed to ensure their safety and effectiveness.

Some specific examples of drugs that contain ergolines include:

* Dihydroergotamine (DHE): used for the treatment of migraine headaches
* Pergolide: used for the treatment of Parkinson's disease
* Cabergoline: used for the treatment of Parkinson's disease and certain types of hormonal disorders

It is important to note that while ergolines have shown promise in some therapeutic areas, they are not without their risks. As with any medication, it is essential to consult with a healthcare provider before using any drug containing ergolines to ensure that it is safe and appropriate for an individual's specific needs.

The compound 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine is a type of benzazepine derivative. Benzazepines are a class of heterocyclic compounds containing a benzene fused to a diazepine ring. Specifically, 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine is a derivative with a phenyl group attached to the benzazepine ring and two hydroxyl groups at positions 7 and 8 of the diazepine ring.

This compound does not have a specific medical definition, as it is not a drug or a medication that is used in clinical practice. However, like many other chemical compounds, it may have potential uses in pharmaceutical research and development, including as a lead compound for the design and synthesis of new drugs with therapeutic activity.

It's worth noting that the specific biological activity and medical relevance of this compound would depend on its chemical properties and any interactions it may have with biological systems, which would need to be studied in detail through scientific research.

Dopamine D3 receptors are a type of G protein-coupled receptor that bind to the neurotransmitter dopamine. They are classified as part of the D2-like family of dopamine receptors, which also includes the D2 and D4 receptors. The D3 receptor is primarily expressed in the limbic areas of the brain, including the hippocampus and the nucleus accumbens, where it plays a role in regulating motivation, reward, and cognition.

D3 receptors have been found to be involved in several neurological and psychiatric disorders, such as Parkinson's disease, schizophrenia, and drug addiction. In Parkinson's disease, the loss of dopamine-producing neurons in the substantia nigra results in a decrease in dopamine levels and an increase in D3 receptor expression. This increase in D3 receptor expression has been linked to the development of motor symptoms such as bradykinesia and rigidity.

In schizophrenia, antipsychotic medications that block D2-like receptors, including D3 receptors, are used to treat positive symptoms such as hallucinations and delusions. However, selective D3 receptor antagonists have also been shown to have potential therapeutic effects in treating negative symptoms of schizophrenia, such as apathy and anhedonia.

In drug addiction, D3 receptors have been found to play a role in the rewarding effects of drugs of abuse, such as cocaine and amphetamines. Selective D3 receptor antagonists have shown promise in reducing drug-seeking behavior and preventing relapse in animal models of addiction.

Overall, dopamine D3 receptors play an important role in several neurological and psychiatric disorders, and further research is needed to fully understand their functions and potential therapeutic uses.

Dopamine D1 receptors are a type of G protein-coupled receptor that bind to the neurotransmitter dopamine. They are classified as D1-like receptors, along with D5 receptors, and are activated by dopamine through a stimulatory G protein (Gs).

D1 receptors are widely expressed in the central nervous system, including the striatum, prefrontal cortex, hippocampus, and amygdala. They play important roles in various physiological functions, such as movement control, motivation, reward processing, working memory, and cognition.

Activation of D1 receptors leads to increased levels of intracellular cyclic adenosine monophosphate (cAMP) and activation of protein kinase A (PKA), which in turn modulate the activity of various downstream signaling pathways. Dysregulation of dopamine D1 receptor function has been implicated in several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, attention deficit hyperactivity disorder (ADHD), and drug addiction.

Dopamine agents are medications that act on dopamine receptors in the brain. Dopamine is a neurotransmitter, a chemical messenger that transmits signals in the brain and other areas of the body. It plays important roles in many functions, including movement, motivation, emotion, and cognition.

Dopamine agents can be classified into several categories based on their mechanism of action:

1. Dopamine agonists: These medications bind to dopamine receptors and mimic the effects of dopamine. They are used to treat conditions such as Parkinson's disease, restless legs syndrome, and certain types of dopamine-responsive dystonia. Examples include pramipexole, ropinirole, and rotigotine.
2. Dopamine precursors: These medications provide the building blocks for the body to produce dopamine. Levodopa is a commonly used dopamine precursor that is converted to dopamine in the brain. It is often used in combination with carbidopa, which helps to prevent levodopa from being broken down before it reaches the brain.
3. Dopamine antagonists: These medications block the action of dopamine at its receptors. They are used to treat conditions such as schizophrenia and certain types of nausea and vomiting. Examples include haloperidol, risperidone, and metoclopramide.
4. Dopamine reuptake inhibitors: These medications increase the amount of dopamine available in the synapse (the space between two neurons) by preventing its reuptake into the presynaptic neuron. They are used to treat conditions such as attention deficit hyperactivity disorder (ADHD) and depression. Examples include bupropion and nomifensine.
5. Dopamine release inhibitors: These medications prevent the release of dopamine from presynaptic neurons. They are used to treat conditions such as Tourette's syndrome and certain types of chronic pain. Examples include tetrabenazine and deutetrabenazine.

It is important to note that dopamine agents can have significant side effects, including addiction, movement disorders, and psychiatric symptoms. Therefore, they should be used under the close supervision of a healthcare provider.

Dopamine receptors are a type of G protein-coupled receptor that bind to and respond to the neurotransmitter dopamine. There are five subtypes of dopamine receptors (D1-D5), which are classified into two families based on their structure and function: D1-like (D1 and D5) and D2-like (D2, D3, and D4).

Dopamine receptors play a crucial role in various physiological processes, including movement, motivation, reward, cognition, emotion, and neuroendocrine regulation. They are widely distributed throughout the central nervous system, with high concentrations found in the basal ganglia, limbic system, and cortex.

Dysfunction of dopamine receptors has been implicated in several neurological and psychiatric disorders, such as Parkinson's disease, schizophrenia, attention deficit hyperactivity disorder (ADHD), drug addiction, and depression. Therefore, drugs targeting dopamine receptors have been developed for the treatment of these conditions.

Sulpiride is an antipsychotic drug that belongs to the chemical class of benzamides. It primarily acts as a selective dopamine D2 and D3 receptor antagonist. Sulpiride is used in the treatment of various psychiatric disorders such as schizophrenia, psychosis, anxiety, and depression. In addition, it has been found to be effective in managing gastrointestinal disorders like gastroparesis due to its prokinetic effects on the gastrointestinal tract.

The medical definition of Sulpiride is as follows:

Sulpiride (INN, BAN), also known as Sultopride (USAN) or SP, is a selective dopamine D2 and D3 receptor antagonist used in the treatment of various psychiatric disorders such as schizophrenia, psychosis, anxiety, and depression. It has been found to be effective in managing gastrointestinal disorders like gastroparesis due to its prokinetic effects on the gastrointestinal tract. Sulpiride is available under various brand names worldwide, including Dogmatil, Sulpitac, and Espirid."

Please note that this definition includes information about the drug's therapeutic uses, which are essential aspects of understanding a medication in its entirety.

Benzazepines are a class of heterocyclic compounds that contain a benzene fused to a diazepine ring. In the context of pharmaceuticals, benzazepines refer to a group of drugs with various therapeutic uses, such as antipsychotics and antidepressants. Some examples of benzazepine-derived drugs include clozapine, olanzapine, and loxoprofen. These drugs have complex mechanisms of action, often involving multiple receptor systems in the brain.

Salicylamides are organic compounds that consist of a salicylic acid molecule (a type of phenolic acid) linked to an amide group. They are derivatives of salicylic acid and are known for their analgesic, anti-inflammatory, and antipyretic properties. Salicylamides have been used in various pharmaceutical and therapeutic applications, including the treatment of pain, fever, and inflammation. However, they have largely been replaced by other compounds such as acetylsalicylic acid (aspirin) due to their lower potency and potential side effects.

Dopamine is a type of neurotransmitter, which is a chemical messenger that transmits signals in the brain and nervous system. It plays several important roles in the body, including:

* Regulation of movement and coordination
* Modulation of mood and motivation
* Control of the reward and pleasure centers of the brain
* Regulation of muscle tone
* Involvement in memory and attention

Dopamine is produced in several areas of the brain, including the substantia nigra and the ventral tegmental area. It is released by neurons (nerve cells) and binds to specific receptors on other neurons, where it can either excite or inhibit their activity.

Abnormalities in dopamine signaling have been implicated in several neurological and psychiatric conditions, including Parkinson's disease, schizophrenia, and addiction.

Apomorphine is a non-selective dopamine receptor agonist, which means that it activates dopamine receptors in the brain. It has a high affinity for D1 and D2 dopamine receptors and is used medically to treat Parkinson's disease, particularly in cases of severe or intractable motor fluctuations.

Apomorphine can be administered subcutaneously (under the skin) as a solution or as a sublingual (under the tongue) film. It works by stimulating dopamine receptors in the brain, which helps to reduce the symptoms of Parkinson's disease such as stiffness, tremors, and difficulty with movement.

In addition to its use in Parkinson's disease, apomorphine has also been investigated for its potential therapeutic benefits in other neurological disorders, including alcohol use disorder and drug addiction. However, more research is needed to establish its safety and efficacy in these conditions.

Raclopride is not a medical condition but a drug that belongs to the class of dopamine receptor antagonists. It's primarily used in research and diagnostic settings as a radioligand in positron emission tomography (PET) scans to visualize and measure the distribution and availability of dopamine D2 and D3 receptors in the brain.

In simpler terms, Raclopride is a compound that can be labeled with a radioactive isotope and then introduced into the body to track the interaction between the radioligand and specific receptors (in this case, dopamine D2 and D3 receptors) in the brain. This information can help researchers and clinicians better understand neurochemical processes and disorders related to dopamine dysfunction, such as Parkinson's disease, schizophrenia, and drug addiction.

It is important to note that Raclopride is not used as a therapeutic agent in clinical practice due to its short half-life and the potential for side effects associated with dopamine receptor blockade.

Spiperone is an antipsychotic drug that belongs to the chemical class of diphenylbutylpiperidines. It has potent dopamine D2 receptor blocking activity and moderate serotonin 5-HT2A receptor affinity. Spiperone is used primarily in research settings for its ability to bind to and block dopamine receptors, which helps scientists study the role of dopamine in various physiological processes.

In clinical practice, spiperone has been used off-label to treat chronic schizophrenia, but its use is limited due to its significant side effects, including extrapyramidal symptoms (involuntary muscle movements), tardive dyskinesia (irregular, jerky movements), and neuroleptic malignant syndrome (a rare but potentially fatal complication characterized by fever, muscle rigidity, and autonomic instability).

It's important to note that spiperone is not approved by the US Food and Drug Administration (FDA) for use in the United States. Its use is more common in research settings or in countries where it may be approved for specific indications.

The neostriatum is a component of the basal ganglia, a group of subcortical nuclei in the brain that are involved in motor control, procedural learning, and other cognitive functions. It is composed primarily of two types of neurons: medium spiny neurons and aspiny interneurons. The neostriatum receives input from various regions of the cerebral cortex and projects to other parts of the basal ganglia, forming an important part of the cortico-basal ganglia-thalamo-cortical loop.

In medical terminology, the neostriatum is often used interchangeably with the term "striatum," although some sources reserve the term "neostriatum" for the caudate nucleus and putamen specifically, while using "striatum" to refer to the entire structure including the ventral striatum (also known as the nucleus accumbens).

Damage to the neostriatum has been implicated in various neurological conditions, such as Huntington's disease and Parkinson's disease.

The nucleus accumbens is a part of the brain that is located in the ventral striatum, which is a key region of the reward circuitry. It is made up of two subregions: the shell and the core. The nucleus accumbens receives inputs from various sources, including the prefrontal cortex, amygdala, and hippocampus, and sends outputs to the ventral pallidum and other areas.

The nucleus accumbens is involved in reward processing, motivation, reinforcement learning, and addiction. It plays a crucial role in the release of the neurotransmitter dopamine, which is associated with pleasure and reinforcement. Dysfunction in the nucleus accumbens has been implicated in various neurological and psychiatric conditions, including substance use disorders, depression, and obsessive-compulsive disorder.

Domperidone is a medication that belongs to the class of dopamine antagonists. It works by blocking the action of dopamine, a chemical in the brain that can cause nausea and vomiting. Domperidone is primarily used to treat symptoms of gastroesophageal reflux disease (GERD) and gastric motility disorders, including bloating, fullness, and regurgitation. It works by increasing the contractions of the stomach muscles, which helps to move food and digestive juices through the stomach more quickly.

Domperidone is available in various forms, such as tablets, suspension, and injection. The medication is generally well-tolerated, but it can cause side effects such as dry mouth, diarrhea, headache, and dizziness. In rare cases, domperidone may cause more serious side effects, including irregular heart rhythms, tremors, or muscle stiffness.

It is important to note that domperidone has a risk of causing cardiac arrhythmias, particularly at higher doses and in patients with pre-existing heart conditions. Therefore, it should be used with caution and only under the supervision of a healthcare professional.

Fenoldopam is a selective peripheral dopamine-1 receptor agonist used in the treatment of severe hypertension. It works by relaxing blood vessels, which lowers blood pressure. It is typically administered through a continuous intravenous (IV) infusion in a hospital setting.

Here's a brief medical definition:

Fenoldopam: A selective dopamine-1 receptor agonist, chemically described as (±)-(3-hydroxy-1,2,3,4-tetrahydro-2-naphthalenyl)methylamine, used as a potent vasodilator in the treatment of severe hypertension. It acts on dopamine receptors found in vascular smooth muscle, causing relaxation and decreased peripheral resistance, thereby reducing blood pressure. Fenoldopam is available for intravenous administration.

Dopamine D4 receptor (DRD4) is a type of dopamine receptor that belongs to the family of G protein-coupled receptors. It is activated by the neurotransmitter dopamine and plays a role in various physiological functions, including regulation of movement, motivation, reward processing, cognition, and emotional responses.

The DRD4 gene contains a variable number of tandem repeats (VNTR) polymorphism in its coding region, which results in different isoforms of the receptor with varying lengths of the third intracellular loop. This genetic variation has been associated with several neuropsychiatric disorders, such as attention-deficit/hyperactivity disorder (ADHD), substance use disorders, and personality traits like novelty seeking.

The D4 receptor is widely expressed in the brain, particularly in the limbic system, prefrontal cortex, hippocampus, and amygdala. It has a lower affinity for dopamine than other dopamine receptors (D1-D3) and exhibits a slower rate of dissociation from dopamine, suggesting that it may act as a modulator of dopaminergic signaling rather than a primary mediator.

In summary, the Dopamine D4 receptor is a type of dopamine receptor involved in various physiological functions and has been associated with several neuropsychiatric disorders due to genetic variations in its coding region.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

'Animal behavior' refers to the actions or responses of animals to various stimuli, including their interactions with the environment and other individuals. It is the study of the actions of animals, whether they are instinctual, learned, or a combination of both. Animal behavior includes communication, mating, foraging, predator avoidance, and social organization, among other things. The scientific study of animal behavior is called ethology. This field seeks to understand the evolutionary basis for behaviors as well as their physiological and psychological mechanisms.

Haloperidol is an antipsychotic medication, which is primarily used to treat schizophrenia and symptoms of psychosis, such as delusions, hallucinations, paranoia, or disordered thought. It may also be used to manage Tourette's disorder, tics, agitation, aggression, and hyperactivity in children with developmental disorders.

Haloperidol works by blocking the action of dopamine, a neurotransmitter in the brain, which helps to regulate mood and behavior. It is available in various forms, including tablets, liquid, and injectable solutions. The medication can cause side effects such as drowsiness, restlessness, muscle stiffness, and uncontrolled movements. In rare cases, it may also lead to more serious neurological side effects.

As with any medication, haloperidol should be taken under the supervision of a healthcare provider, who will consider the individual's medical history, current medications, and other factors before prescribing it.

"Motor activity" is a general term used in the field of medicine and neuroscience to refer to any kind of physical movement or action that is generated by the body's motor system. The motor system includes the brain, spinal cord, nerves, and muscles that work together to produce movements such as walking, talking, reaching for an object, or even subtle actions like moving your eyes.

Motor activity can be voluntary, meaning it is initiated intentionally by the individual, or involuntary, meaning it is triggered automatically by the nervous system without conscious control. Examples of voluntary motor activity include deliberately lifting your arm or kicking a ball, while examples of involuntary motor activity include heartbeat, digestion, and reflex actions like jerking your hand away from a hot stove.

Abnormalities in motor activity can be a sign of neurological or muscular disorders, such as Parkinson's disease, cerebral palsy, or multiple sclerosis. Assessment of motor activity is often used in the diagnosis and treatment of these conditions.

The corpus striatum is a part of the brain that plays a crucial role in movement, learning, and cognition. It consists of two structures called the caudate nucleus and the putamen, which are surrounded by the external and internal segments of the globus pallidus. Together, these structures form the basal ganglia, a group of interconnected neurons that help regulate voluntary movement.

The corpus striatum receives input from various parts of the brain, including the cerebral cortex, thalamus, and other brainstem nuclei. It processes this information and sends output to the globus pallidus and substantia nigra, which then project to the thalamus and back to the cerebral cortex. This feedback loop helps coordinate and fine-tune movements, allowing for smooth and coordinated actions.

Damage to the corpus striatum can result in movement disorders such as Parkinson's disease, Huntington's disease, and dystonia. These conditions are characterized by abnormal involuntary movements, muscle stiffness, and difficulty initiating or controlling voluntary movements.

Amphetamine is a central nervous system stimulant drug that works by increasing the levels of certain neurotransmitters (chemical messengers) in the brain, such as dopamine and norepinephrine. It is used medically to treat conditions such as attention deficit hyperactivity disorder (ADHD), narcolepsy, and obesity, due to its appetite-suppressing effects.

Amphetamines can be prescribed in various forms, including tablets, capsules, or liquids, and are available under several brand names, such as Adderall, Dexedrine, and Vyvanse. They are also known by their street names, such as speed, uppers, or wake-ups, and can be abused for their euphoric effects and ability to increase alertness, energy, and concentration.

Long-term use of amphetamines can lead to dependence, tolerance, and addiction, as well as serious health consequences, such as cardiovascular problems, mental health disorders, and malnutrition. It is essential to use amphetamines only under the supervision of a healthcare provider and follow their instructions carefully.

Cocaine is a highly addictive stimulant drug derived from the leaves of the coca plant (Erythroxylon coca). It is a powerful central nervous system stimulant that affects the brain and body in many ways. When used recreationally, cocaine can produce feelings of euphoria, increased energy, and mental alertness; however, it can also cause serious negative consequences, including addiction, cardiovascular problems, seizures, and death.

Cocaine works by increasing the levels of dopamine in the brain, a neurotransmitter associated with pleasure and reward. This leads to the pleasurable effects that users seek when they take the drug. However, cocaine also interferes with the normal functioning of the brain's reward system, making it difficult for users to experience pleasure from natural rewards like food or social interactions.

Cocaine can be taken in several forms, including powdered form (which is usually snorted), freebase (a purer form that is often smoked), and crack cocaine (a solid form that is typically heated and smoked). Each form of cocaine has different risks and potential harms associated with its use.

Long-term use of cocaine can lead to a number of negative health consequences, including addiction, heart problems, malnutrition, respiratory issues, and mental health disorders like depression or anxiety. It is important to seek help if you or someone you know is struggling with cocaine use or addiction.

Dopamine uptake inhibitors are a class of medications that work by blocking the reuptake of dopamine, a neurotransmitter, into the presynaptic neuron. This results in an increased concentration of dopamine in the synapse, leading to enhanced dopaminergic transmission and activity.

These drugs are used in various medical conditions where dopamine is implicated, such as depression, attention deficit hyperactivity disorder (ADHD), and neurological disorders like Parkinson's disease. They can also be used to treat substance abuse disorders, such as cocaine addiction, by blocking the reuptake of dopamine and reducing the rewarding effects of the drug.

Examples of dopamine uptake inhibitors include:

* Bupropion (Wellbutrin), which is used to treat depression and ADHD
* Methylphenidate (Ritalin, Concerta), which is used to treat ADHD
* Amantadine (Symmetrel), which is used to treat Parkinson's disease and also has antiviral properties.

It's important to note that dopamine uptake inhibitors can have side effects, including increased heart rate, blood pressure, and anxiety. They may also have the potential for abuse and dependence, particularly in individuals with a history of substance abuse. Therefore, these medications should be used under the close supervision of a healthcare provider.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Operant conditioning is a type of learning in which behavior is modified by its consequences, either reinforcing or punishing the behavior. It was first described by B.F. Skinner and involves an association between a response (behavior) and a consequence (either reward or punishment). There are two types of operant conditioning: positive reinforcement, in which a desirable consequence follows a desired behavior, increasing the likelihood that the behavior will occur again; and negative reinforcement, in which a undesirable consequence is removed following a desired behavior, also increasing the likelihood that the behavior will occur again.

For example, if a child cleans their room (response) and their parent gives them praise or a treat (positive reinforcement), the child is more likely to clean their room again in the future. If a child is buckling their seatbelt in the car (response) and the annoying buzzer stops (negative reinforcement), the child is more likely to buckle their seatbelt in the future.

It's important to note that operant conditioning is a form of learning, not motivation. The behavior is modified by its consequences, regardless of the individual's internal state or intentions.

The Ventral Tegmental Area (VTA) is a collection of neurons located in the midbrain that is part of the dopamine system. It is specifically known as the A10 group and is the largest source of dopaminergic neurons in the brain. These neurons project to various regions, including the prefrontal cortex, amygdala, hippocampus, and nucleus accumbens, and are involved in reward, motivation, addiction, and various cognitive functions. The VTA also contains GABAergic and glutamatergic neurons that modulate dopamine release and have various other functions.

Catalepsy is a medical condition characterized by a trance-like state, with reduced sensitivity to pain and external stimuli, muscular rigidity, and fixed postures. In this state, the person's body may maintain any position in which it is placed for a long time, and there is often a decreased responsiveness to social cues or communication attempts.

Catalepsy can be a symptom of various medical conditions, including neurological disorders such as epilepsy, Parkinson's disease, or brain injuries. It can also occur in the context of mental health disorders, such as severe depression, catatonic schizophrenia, or dissociative identity disorder.

In some cases, catalepsy may be induced intentionally through hypnosis or other forms of altered consciousness practices. However, when it occurs spontaneously or as a symptom of an underlying medical condition, it can be a serious concern and requires medical evaluation and treatment.

Berberine alkaloids are a type of natural compound found in several plants, including the Berberis species (such as barberry and tree turmeric), goldenseal, Oregon grape, and phellodendron. The most well-known and researched berberine alkaloid is berberine itself, which has a yellow color and is commonly used in traditional medicine for various purposes, such as treating diarrhea, reducing inflammation, and combating bacterial and fungal infections.

Berberine alkaloids have a complex chemical structure that includes a nitrogen atom, making them basic in nature. They are known to interact with several biological targets, including enzymes and receptors, which contributes to their diverse pharmacological activities. Some of the key mechanisms of action of berberine alkaloids include:

1. Inhibition of DNA gyrase: Berberine alkaloids can interfere with bacterial DNA replication by inhibiting the activity of DNA gyrase, an enzyme that helps to unwind and supercoil DNA during replication. This makes them effective against a wide range of bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE).
2. Interaction with cell membranes: Berberine alkaloids can interact with the lipid bilayer of cell membranes, disrupting their integrity and increasing permeability. This can lead to the death of bacteria, fungi, and cancer cells.
3. Modulation of gene expression: Berberine has been shown to regulate the expression of various genes involved in metabolic processes, inflammation, and cell growth. For example, it can activate AMP-activated protein kinase (AMPK), a key enzyme that regulates energy metabolism, which may contribute to its potential benefits in treating diabetes, obesity, and nonalcoholic fatty liver disease.
4. Inhibition of inflammatory mediators: Berberine alkaloids can inhibit the production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), which are involved in the development of various inflammatory diseases.
5. Antioxidant activity: Berberine alkaloids have antioxidant properties, which can help protect cells from damage caused by reactive oxygen species (ROS). This may contribute to their potential benefits in treating neurodegenerative disorders and cancer.

In summary, berberine alkaloids exhibit a wide range of pharmacological activities, including antibacterial, antifungal, anti-inflammatory, antioxidant, and metabolic regulatory effects. These properties make them promising candidates for the development of new therapeutic agents to treat various diseases, such as infections, inflammation, diabetes, obesity, and cancer. However, further research is needed to fully understand their mechanisms of action and potential side effects before they can be safely and effectively used in clinical settings.

Self-administration, in the context of medicine and healthcare, refers to the act of an individual administering medication or treatment to themselves. This can include various forms of delivery such as oral medications, injections, or topical treatments. It is important that individuals who self-administer are properly trained and understand the correct dosage, timing, and technique to ensure safety and effectiveness. Self-administration promotes independence, allows for timely treatment, and can improve overall health outcomes.

Remoxipride is not a medication that is currently in medical use. It was a antipsychotic drug that was used in the treatment of schizophrenia, but it was withdrawn from the market in the late 1990s due to concerns about its safety. Specifically, it was found to be associated with an increased risk of a serious side effect called agranulocytosis, which is a condition characterized by a dangerously low white blood cell count.

Remoxipride belongs to a class of drugs known as benzamides, which are a type of atypical antipsychotic. These medications work by blocking the action of dopamine, a neurotransmitter in the brain that is thought to play a role in the development of psychosis. However, remoxipride has been replaced by other, safer and more effective antipsychotic medications.

It's important to note that if you are taking any medication, it is always best to consult with your healthcare provider for accurate information about its uses, side effects, and potential risks. They can provide you with the most up-to-date information and help you make informed decisions about your treatment.

Dopamine D5 receptor is a type of dopamine receptor that belongs to the family of G protein-coupled receptors. It is also known as D5R or DRD5. These receptors are found in various parts of the brain, including the cortex and the hippocampus.

The activation of Dopamine D5 receptors leads to the stimulation of several intracellular signaling pathways, including the cAMP-dependent pathway, which results in the modulation of neuronal excitability, neurotransmitter release, and other cellular functions.

Dopamine D5 receptors have been implicated in various physiological processes, such as cognition, emotion, motor control, and reward processing. They have also been associated with several neurological and psychiatric disorders, including schizophrenia, Parkinson's disease, attention deficit hyperactivity disorder (ADHD), and drug addiction.

The medical definition of "Receptors, Dopamine D5" can be summarized as follows:

Dopamine D5 receptor is a type of G protein-coupled receptor that binds dopamine and activates several intracellular signaling pathways, leading to the modulation of various physiological processes. These receptors have been implicated in several neurological and psychiatric disorders and are a target for drug development.

Clozapine is an atypical antipsychotic medication that is primarily used to treat schizophrenia in patients who have not responded to other antipsychotic treatments. It is also used off-label for the treatment of severe aggression, suicidal ideation, and self-injurious behavior in individuals with developmental disorders.

Clozapine works by blocking dopamine receptors in the brain, particularly the D4 receptor, which is thought to be involved in the development of schizophrenia. It also has a strong affinity for serotonin receptors, which contributes to its unique therapeutic profile.

Clozapine is considered a medication of last resort due to its potential side effects, which can include agranulocytosis (a severe decrease in white blood cell count), myocarditis (inflammation of the heart muscle), seizures, orthostatic hypotension (low blood pressure upon standing), and weight gain. Because of these risks, patients taking clozapine must undergo regular monitoring of their blood counts and other vital signs.

Despite its potential side effects, clozapine is often effective in treating treatment-resistant schizophrenia and has been shown to reduce the risk of suicide in some patients. It is available in tablet and orally disintegrating tablet formulations.

The Substantia Nigra is a region in the midbrain that plays a crucial role in movement control and reward processing. It is composed of two parts: the pars compacta and the pars reticulata. The pars compacta contains dopamine-producing neurons, whose loss or degeneration is associated with Parkinson's disease, leading to motor symptoms such as tremors, rigidity, and bradykinesia.

In summary, Substantia Nigra is a brain structure that contains dopamine-producing cells and is involved in movement control and reward processing. Its dysfunction or degeneration can lead to neurological disorders like Parkinson's disease.

Post-synaptic density (PSD) is a specialized region within the post-synaptic membrane of chemical synapses in the central nervous system. It is a structurally and functionally complex area that is enriched with various proteins, including neurotransmitter receptors, scaffolding proteins, signaling molecules, and cytoskeletal elements.

PSD plays a crucial role in synaptic transmission, plasticity, and maintenance by anchoring and organizing the post-synaptic components, regulating receptor clustering and trafficking, and mediating intracellular signaling cascades. The size, shape, and protein composition of PSD can change dynamically in response to synaptic activity, contributing to the experience-dependent remodeling of neural circuits during learning, memory, and development.

The morphological and molecular features of PSD have been extensively studied using various techniques, including electron microscopy, biochemical fractionation, immunostaining, and super-resolution imaging. These studies have revealed a highly heterogeneous and dynamic structure that varies across different synapse types, brain regions, and developmental stages.

Presynaptic receptors are a type of neuroreceptor located on the presynaptic membrane of a neuron, which is the side that releases neurotransmitters. These receptors can be activated by neurotransmitters or other signaling molecules released from the postsynaptic neuron or from other nearby cells.

When activated, presynaptic receptors can modulate the release of neurotransmitters from the presynaptic neuron. They can have either an inhibitory or excitatory effect on neurotransmitter release, depending on the type of receptor and the signaling molecule that binds to it.

For example, activation of certain presynaptic receptors can decrease the amount of calcium that enters the presynaptic terminal, which in turn reduces the amount of neurotransmitter released into the synapse. Other presynaptic receptors, when activated, can increase the release of neurotransmitters.

Presynaptic receptors play an important role in regulating neuronal communication and are involved in various physiological processes, including learning, memory, and pain perception. They are also targeted by certain drugs used to treat neurological and psychiatric disorders.

Autoreceptors are a type of receptor found on the surface of neurons or other cells that are activated by neurotransmitters (chemical messengers) released by the same cell that is expressing the autoreceptor. In other words, they are receptors that a neuron has for its own neurotransmitter.

Autoreceptors play an important role in regulating the release of neurotransmitters from the presynaptic terminal (the end of the neuron that releases the neurotransmitter). When a neurotransmitter binds to its autoreceptor, it can inhibit or excite the further release of that same neurotransmitter. This negative feedback mechanism helps maintain a balance in the concentration of neurotransmitters in the synaptic cleft (the space between two neurons where neurotransmission occurs).

Examples of autoreceptors include dopamine D2 receptors on dopaminergic neurons, serotonin 5-HT1A receptors on serotonergic neurons, and acetylcholine M2 receptors on cholinergic neurons. Dysregulation of autoreceptor function has been implicated in various neurological and psychiatric disorders.

Reserpine is an alkaloid derived from the Rauwolfia serpentina plant, which has been used in traditional medicine for its sedative and hypotensive effects. In modern medicine, reserpine is primarily used to treat hypertension (high blood pressure) due to its ability to lower both systolic and diastolic blood pressure.

Reserpine works by depleting catecholamines, including norepinephrine, epinephrine, and dopamine, from nerve terminals in the sympathetic nervous system. This leads to a decrease in peripheral vascular resistance and heart rate, ultimately resulting in reduced blood pressure.

Reserpine is available in various forms, such as tablets or capsules, and is typically administered orally. Common side effects include nasal congestion, dizziness, sedation, and gastrointestinal disturbances like diarrhea and nausea. Long-term use of reserpine may also lead to depression in some individuals. Due to its potential for causing depression, other antihypertensive medications are often preferred over reserpine when possible.

A drug interaction is the effect of combining two or more drugs, or a drug and another substance (such as food or alcohol), which can alter the effectiveness or side effects of one or both of the substances. These interactions can be categorized as follows:

1. Pharmacodynamic interactions: These occur when two or more drugs act on the same target organ or receptor, leading to an additive, synergistic, or antagonistic effect. For example, taking a sedative and an antihistamine together can result in increased drowsiness due to their combined depressant effects on the central nervous system.
2. Pharmacokinetic interactions: These occur when one drug affects the absorption, distribution, metabolism, or excretion of another drug. For example, taking certain antibiotics with grapefruit juice can increase the concentration of the antibiotic in the bloodstream, leading to potential toxicity.
3. Food-drug interactions: Some drugs may interact with specific foods, affecting their absorption, metabolism, or excretion. An example is the interaction between warfarin (a blood thinner) and green leafy vegetables, which can increase the risk of bleeding due to enhanced vitamin K absorption from the vegetables.
4. Drug-herb interactions: Some herbal supplements may interact with medications, leading to altered drug levels or increased side effects. For instance, St. John's Wort can decrease the effectiveness of certain antidepressants and oral contraceptives by inducing their metabolism.
5. Drug-alcohol interactions: Alcohol can interact with various medications, causing additive sedative effects, impaired judgment, or increased risk of liver damage. For example, combining alcohol with benzodiazepines or opioids can lead to dangerous levels of sedation and respiratory depression.

It is essential for healthcare providers and patients to be aware of potential drug interactions to minimize adverse effects and optimize treatment outcomes.

Quinpirole may also reduce relapse in adolescent rat models of cocaine addiction. Experiments in flies found quinpirole may ... Quinpirole is a psychoactive drug and research chemical which acts as a selective D2 and D3 receptor agonist. It is used in ... Quinpirole has been shown to increase locomotion and sniffing behavior in mice treated with it. At least one study has found ... Another study in rats show that quinpirole produces significant THC-like effects when metabolic degradation of anandamide is ...
Rats received ten quinpirole injections in the test environment (Group Paired) or in the home cage (Group Unpaired), and saline ... to explore the contribution of associational mechanisms to the expression of sensitization to the dopamine agonist quinpirole. ... Rats received ten quinpirole injections in the test environment (Group Paired) or in the home cage (Group Unpaired), and saline ... With a lower sensitizing dose of quinpirole (0.1 mg/kg) used in one experiment, only the Paired group showed locomotor ...
Kappa-opioid agonist U69593 potentiates locomotor sensitization to the D2/D3 agonist quinpirole: pre- and postsynaptic ... Williams, J.E.; Woolverton, W.L. 1990: The D2 agonist quinpirole potentiates the discriminative stimulus effects of the D1 ... A mu agonist but not a kappa agonist substitutes for a dopamine d2 agonist in a quinpirole vs saline drug discrimination ... A dose-response study of separate and combined effects of the serotonin agonist 8-OH-DPAT and the dopamine agonist quinpirole ...
Quinpirole and even U69593, which by itself did not induce sensitization, increased the proportion of dopamine D2 receptors in ... Results showed that co-treatment of quinpirole and U69593 had a robust accelerating effect on the acquisition of sensitized ... Repeated injections of the D2/D3 dopamine agonist, quinpirole, induce locomotor sensitization and compulsive checking behavior ... Kappa-opioid receptor stimulation quickens pathogenesis of compulsive checking in the quinpirole sensitization model of ...
However, this pretreatment resulted in a marked decrease in quinpirole-induced locomotion and stereotyped behaviours. ... Administration of quinpirole (1 mg/kg) caused a temporal biphasic response characterized by a first phase of immobility (0-50 ... Pretreatment with both endocannabinoid degradation inhibitors did not affect the hypoactivity actions of quinpirole. ... inhibition of endocannabinoid degradation on behavioural actions of the dopamine D-2/D-3 receptor agonist quinpirole in male ...
Anti-Dopamine Transporter Antibody, NT, clone DAT-Nt culture supernatant, clone DAT-Nt, Chemicon®; Synonyms: DAT; find Sigma-Aldrich-MAB369 MSDS, related peer-reviewed papers, technical documents, similar products & more at Sigma-Aldrich
In contrast to the data shown in Figure 1, activation of CB1 receptors in the presence of quinpirole resulted in a dose- ... As shown in Figure 1, the CB1 receptor agonist HU210 and the dopamine D2 receptor agonist quinpirole both inhibited cAMP ... HU210 reversed the quinpirole-mediated inhibition of forskolin-stimulated cAMP accumulation in a concentration-dependent manner ... In contrast, HU210 and quinpirole in combination augmented cAMP accumulation. This augmentation was blocked by the CB1 receptor ...
Effects of administration of A-68930 (A), SCH-23390 (B), quinpirole (C), or raclopride (D), on striatal levels of Cdk5-pTyr15 ... quinpirole hydrochloride (5 mg/kg of free base; Sigma-Aldrich), raclopride tartrate (1 mg/kg of free base; Sigma-Aldrich), L- ... striatal levels of Cdk5-pTyr15 were significantly decreased following administration of a D2 receptor agonist quinpirole (5 mg/ ... quinpirole (5 mg/kg), or raclopride (1 mg/kg), 30 min before sacrifice. ...
... while quinpirole (10 microM) had no significant effect. Our results provide direct evidence for modulation by dopamine of ... while the D2/3 receptor agonist quinpirole (10 microM) had no effect. The currents evoked by application of AMPA (5 microM) ...
Cross-sensitization to quinpirole was temporary; responsiveness to quinpirole decreased with further quinpirole injections. ... Cross sensitization between the locomotor activating effects of the dopamine d2 agonists bromocriptine and quinpirole Society ... or quinpirole (0.1 mg/kg IP). Repeated bromocriptine in the test box but not in the home cage caused progressive increases in ... and either cocaine or heroin and lack of permanence of the cross-sensitization between bromocriptine and quinpirole raise ...
Quinpirole results in decreased transport of Barium]]. CTD. PMID:11124974. NCBI chr 8:49,708,927...49,772,876 Ensembl chr 8: ... Quinpirole results in decreased transport of Barium]; Nifedipine inhibits the reaction [DRD2 protein affects the reaction [ ...
Louis, MO) cocaine HCl, 6-hydroxydopamine, apomorphine] or RBI [(Natick, MA) SKF38393, quinpirole, eticlopride]. ... The pump was filled with quinpirole, set to administer a dose of 1 mg · kg−1 · d−1, and then implanted subcutaneously in the ... 3 weeks after the lesion we implanted a subcutaneous osmotic pump that continuously supplied quinpirole, a D2 agonist (1 mg · ...
In contrast to the striatum, NPA and quinpirole increased the DAT half-life, which was blocked by eticlopride and by itself had ... However, the dopamine D2 receptor agonists R-(−)-propylnorapomorphine hydrochloride (NPA) and quinpirole decreased the half- ...
Now, although quinpirole did reduce motor output. The Qatari foreign minister just pledged to continue sending weapons and ...
agonist quinpirole (QP), Ca2+ removal from incubation medium and CaM antagonist. W7 failed to affect the activation. However, ...
A. Tammimäki, K. Pietilä, H. Raattamaa, and L. Ahtee, "Effect of quinpirole on striatal dopamine release and locomotor activity ...
... quinpirole, and carmoxirole, which inhibit norepinephrine release and produce a decrease in arterial blood pressure; in some ...
Culm K. E., Lugo-Escobar N., Hope B. T.Hammer R. P., Neuropsychopharmacology, 29, 1823 - 1830 (2004), "Repeated Quinpirole ... Increases cAMP-dependent Protein Kinase Activity and CREB Phosphorylation in Nucleus Accumbens and Reverses Quinpirole-induced ...
Culm K. E., Lugo-Escobar N., Hope B. T.Hammer R. P., Neuropsychopharmacology, 29, 1823 - 1830 (2004), "Repeated Quinpirole ... Increases cAMP-dependent Protein Kinase Activity and CREB Phosphorylation in Nucleus Accumbens and Reverses Quinpirole-induced ...
DopamineQuinolinic AcidQuinpiroleReceptors, Dopamine D1EnkephalinsReceptors, Opioid, muDopamine AgonistsOxidopamineHaloperidol ... DopamineBirdsQuinolinic AcidNeural PathwaysGlobus PallidusQuinpiroleNeuronsSubstantia NigraReceptors, Dopamine D1 ...
Further, the co-administration of sub-maximum doses of SKF 38393 and quinpirole caused additive increases in ACTH in serum. ... Similarly, administration of either SKF 38393 or quinpirole (1-100 micrograms) into the third ventricle dose-dependently ... The response of ACTH to intraperitoneal injection of quinpirole was blocked by pretreatment with sulpiride and attenuated ... or the D2 agonist quinpirole (0.05-1 mg/kg) dose-dependently elevated both adrenocorticotropic hormone (ACTH) and ...
... quinpirole) and the D2 antagonist sulpiride decreased vacuous chewing. In the present experiment, the effects of the D1 drugs ...
keywords = "Dopamine, MRL mice, Neuropsychiatric lupus, Quinpirole, Self-injurious behavior, Sensitization",. author = "S. Chun ... agonist quinpirole (QNP). To further probe the dopaminergic circuitry and examine whether SIB is associated with development of ... agonist quinpirole (QNP). To further probe the dopaminergic circuitry and examine whether SIB is associated with development of ... agonist quinpirole (QNP). To further probe the dopaminergic circuitry and examine whether SIB is associated with development of ...
Sebastianutto, I., Goyet, E., Andreoli, L., Font-Ingles, J., Moreno-Delgado, D., Bouquier, N., Jahannault-Talignani, C., Moutin, E., Di Menna, L., Maslava, N., Pin, J. P., Fagni, L., Nicoletti, F., Ango, F., Cenci, M. A. & Perroy, J., 2020 Mar 2, In: Journal of Clinical Investigation. 130, 3, p. 1168-1184. Research output: Contribution to journal › Article › peer-review ...
D2 agonist quinpirole [56]), and dopamine receptor antagonists (i.e., D1 receptor antagonist SCH 23390 [56, 82]; D2 receptor ...
Quinpirole 100% * Dopamine D2 Receptors 65% * G-Protein-Coupled Receptor Kinase 2 65% ...
Yavuz, S., Cansu, D. U., Nikolopoulos, D., Crisafulli, F., Antunes, A. M., Adamichou, C., Reid, S., Stagnaro, C., Andreoli, L., Tincani, A., Moraes-Fontes, M. F., Mosca, M., Leonard, D., Jönsen, A., Bengtsson, A., Svenungsson, E., Gunnarsson, I., Dahlqvist, S. R., Sjöwall, C., Bertsias, G., & 2 othersFanouriakis, A. & Rönnblom, L., 2020 Dec, In: Seminars in Arthritis and Rheumatism. 50, 6, p. 1387-1393 7 p.. Research output: Contribution to journal › Article › peer-review ...
The effects of the dopamine D2/3 agonist quinpirole on incentive value and palatability-based choice in a rodent model of ...

No FAQ available that match "quinpirole"

No images available that match "quinpirole"