A group of derivatives of naphthyridine carboxylic acid, quinoline carboxylic acid, or NALIDIXIC ACID.
QUINOLONES containing a 4-oxo (a carbonyl in the para position to the nitrogen). They inhibit the A subunit of DNA GYRASE and are used as antimicrobials. Second generation 4-quinolones are also substituted with a 1-piperazinyl group at the 7-position and a fluorine at the 6-position.
Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection.
A group of QUINOLONES with at least one fluorine atom and a piperazinyl group.
A broad-spectrum antimicrobial carboxyfluoroquinoline.
Naphthyridines are a class of heterocyclic organic compounds containing a naphthyridine nucleus, which is a polycyclic aromatic hydrocarbon made up of two benzene rings fused to a pyridine ring, and they have been studied for their potential pharmacological properties, including as antimicrobial, antiviral, and anticancer agents.
A synthetic fluoroquinolone antibacterial agent that inhibits the supercoiling activity of bacterial DNA GYRASE, halting DNA REPLICATION.
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses).
A synthetic fluoroquinolone (FLUOROQUINOLONES) with broad-spectrum antibacterial activity against most gram-negative and gram-positive bacteria. Norfloxacin inhibits bacterial DNA GYRASE.
Compounds that inhibit the activity of DNA TOPOISOMERASE II. Included in this category are a variety of ANTINEOPLASTIC AGENTS which target the eukaryotic form of topoisomerase II and ANTIBACTERIAL AGENTS which target the prokaryotic form of topoisomerase II.
A bacterial DNA topoisomerase II that catalyzes ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. Gyrase binds to DNA as a heterotetramer consisting of two A and two B subunits. In the presence of ATP, gyrase is able to convert the relaxed circular DNA duplex into a superhelix. In the absence of ATP, supercoiled DNA is relaxed by DNA gyrase.
A bacterial DNA topoisomerase II that catalyzes ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. Topoisomerase IV binds to DNA as a heterotetramer consisting 2 parC and 2 parE subunits. Topoisomerase IV is a decatenating enzyme that resolves interlinked daughter chromosomes following DNA replication.
A broad-spectrum 6-fluoronaphthyridinone antibacterial agent that is structurally related to NALIDIXIC ACID.
Quinolines are heterocyclic aromatic organic compounds consisting of a two-nitrogened benzene ring fused to a pyridine ring, which have been synthesized and used as building blocks for various medicinal drugs, particularly antibiotics and antimalarials.
Substances that reduce the growth or reproduction of BACTERIA.
A synthetic 1,8-naphthyridine antimicrobial agent with a limited bacteriocidal spectrum. It is an inhibitor of the A subunit of bacterial DNA GYRASE.
The L-isomer of Ofloxacin.
The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex.
A synthetic broad-spectrum fluoroquinolone antibacterial agent active against most gram-negative and gram-positive bacteria.
'Azā compounds' are a class of organic molecules containing at least one nitrogen atom in a five-membered ring, often found in naturally occurring substances and pharmaceuticals, with the name derived from the Arabic word "azZa" meaning 'strong' referring to the ring's aromatic stability.
The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
A broad-spectrum antimicrobial fluoroquinolone. The drug strongly inhibits the DNA-supercoiling activity of DNA GYRASE.
Circular duplex DNA isolated from viruses, bacteria and mitochondria in supercoiled or supertwisted form. This superhelical DNA is endowed with free energy. During transcription, the magnitude of RNA initiation is proportional to the DNA superhelicity.
Synthetic antimicrobial related to NALIDIXIC ACID and used in URINARY TRACT INFECTIONS.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.
A nonimmunologic, chemically induced type of photosensitivity producing a sometimes vesiculating dermatitis. It results in hyperpigmentation and desquamation of the light-exposed areas of the skin.
A gram-positive organism found in the upper respiratory tract, inflammatory exudates, and various body fluids of normal and/or diseased humans and, rarely, domestic animals.
Bacteria which retain the crystal violet stain when treated by Gram's method.
The ability of bacteria to resist or to become tolerant to several structurally and functionally distinct drugs simultaneously. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
A group of often glycosylated macrocyclic compounds formed by chain extension of multiple PROPIONATES cyclized into a large (typically 12, 14, or 16)-membered lactone. Macrolides belong to the POLYKETIDES class of natural products, and many members exhibit ANTIBIOTIC properties.
Bacteria which lose crystal violet stain but are stained pink when treated by Gram's method.
'Anaerobic Bacteria' are types of bacteria that do not require oxygen for growth and can often cause diseases in humans, including dental caries, gas gangrene, and tetanus, among others.
Six-membered heterocycles containing an oxygen and a nitrogen.
One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive.
A very effective anticoccidial agent used in poultry.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
Infections by bacteria, general or unspecified.
An antibiotic compound derived from Streptomyces niveus. It has a chemical structure similar to coumarin. Novobiocin binds to DNA gyrase, and blocks adenosine triphosphatase (ATPase) activity. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p189)
A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The type species of the genus BARTONELLA, a gram-negative bacteria found in humans. It is found in the mountain valleys of Peru, Ecuador, and Southwest Columbia where the sandfly (see PHLEBOTOMUS) vector is present. It causes OROYA FEVER and VERRUGA PERUANA.
A plant genus of the family RUTACEAE which is used in Chinese medicine (DRUGS, CHINESE HERBAL). Evodiamine and other quinazoline alkaloids (QUINAZOLINES) are obtained from the fruit of E. ruticarpa.
A rapid-growing, nonphotochromogenic species that is potentially pathogenic, producing lesions of lung, bone, or soft tissue following trauma. It has been found in soil and in injection sites of humans, cattle, and cold-blooded animals. (Dorland, 28th ed)
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
Simultaneous resistance to several structurally and functionally distinct drugs.
Closely congeneric derivatives of the polycyclic naphthacenecarboxamide. (Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1117)
The functional hereditary units of BACTERIA.
A nitroimidazole antiprotozoal agent used in ameba and trichomonas infections. It is partially plasma-bound and also has radiation-sensitizing action.
Glycosylated compounds in which there is an amino substituent on the glycoside. Some of them are clinically important ANTIBIOTICS.
A group of broad-spectrum antibiotics first isolated from the Mediterranean fungus ACREMONIUM. They contain the beta-lactam moiety thia-azabicyclo-octenecarboxylic acid also called 7-aminocephalosporanic acid.
A species of gram-negative, aerobic bacteria primarily found in purulent venereal discharges. It is the causative agent of GONORRHEA.
Compounds that inhibit the activity of DNA TOPOISOMERASES.
Proteins found in any species of bacterium.
Infections caused by bacteria that show up as pink (negative) when treated by the gram-staining method.
Four-membered cyclic AMIDES, best known for the PENICILLINS based on a bicyclo-thiazolidine, as well as the CEPHALOSPORINS based on a bicyclo-thiazine, and including monocyclic MONOBACTAMS. The BETA-LACTAMASES hydrolyze the beta lactam ring, accounting for BETA-LACTAM RESISTANCE of infective bacteria.
Aerobic bacteria are types of microbes that require oxygen to grow and reproduce, and use it in the process of respiration to break down organic matter and produce energy, often found in environments where oxygen is readily available such as the human body's skin, mouth, and intestines.
This drug combination has proved to be an effective therapeutic agent with broad-spectrum antibacterial activity against both gram-positive and gram-negative organisms. It is effective in the treatment of many infections, including PNEUMOCYSTIS PNEUMONIA in AIDS.
Chemicals with two conjoined aromatic rings incorporating two nitrogen atoms and one of the carbons oxidized with a keto oxygen.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106)
Quinolizines are heterocyclic organic compounds containing a bicyclic structure formed by a benzene ring fused to a piperidine ring, which have been used as building blocks in the synthesis of various pharmaceuticals and bioactive molecules.
A subcategory of CHRONIC OBSTRUCTIVE PULMONARY DISEASE. The disease is characterized by hypersecretion of mucus accompanied by a chronic (more than 3 months in 2 consecutive years) productive cough. Infectious agents are a major cause of chronic bronchitis.
Cyclic AMIDES formed from aminocarboxylic acids by the elimination of water. Lactims are the enol forms of lactams.
Gram-negative bacteria occurring in the lower intestinal tracts of man and other animals. It is the most common species of anaerobic bacteria isolated from human soft tissue infections.
A family of gram-negative, facultatively anaerobic, rod-shaped bacteria that do not form endospores. Its organisms are distributed worldwide with some being saprophytes and others being plant and animal parasites. Many species are of considerable economic importance due to their pathogenic effects on agriculture and livestock.
An error-prone mechanism or set of functions for repairing damaged microbial DNA. SOS functions (a concept reputedly derived from the SOS of the international distress signal) are involved in DNA repair and mutagenesis, in cell division inhibition, in recovery of normal physiological conditions after DNA repair, and possibly in cell death when DNA damage is extensive.
A complex that includes several strains of M. avium. M. intracellulare is not easily distinguished from M. avium and therefore is included in the complex. These organisms are most frequently found in pulmonary secretions from persons with a tuberculous-like mycobacteriosis. Strains of this complex have also been associated with childhood lymphadenitis and AIDS; M. avium alone causes tuberculosis in a variety of birds and other animals, including pigs.
Infections with bacteria of the species ESCHERICHIA COLI.
A genus of gram-negative, nonmotile bacteria which are common parasitic inhabitants of the urogenital tracts of humans, cattle, dogs, and monkeys.
Semisynthetic thienamycin that has a wide spectrum of antibacterial activity against gram-negative and gram-positive aerobic and anaerobic bacteria, including many multiresistant strains. It is stable to beta-lactamases. Clinical studies have demonstrated high efficacy in the treatment of infections of various body systems. Its effectiveness is enhanced when it is administered in combination with CILASTATIN, a renal dipeptidase inhibitor.
A species of STENOTROPHOMONAS, formerly called Xanthomonas maltophilia, which reduces nitrate. It is a cause of hospital-acquired ocular and lung infections, especially in those patients with cystic fibrosis and those who are immunosuppressed.
Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing.
Nonsusceptibility of an organism to the action of penicillins.
Gram-negative, non-motile, capsulated, gas-producing rods found widely in nature and associated with urinary and respiratory infections in humans.
The utilization of drugs as reported in individual hospital studies, FDA studies, marketing, or consumption, etc. This includes drug stockpiling, and patient drug profiles.
Proteins isolated from the outer membrane of Gram-negative bacteria.
A genus of gram-positive, aerobic bacteria. Most species are free-living in soil and water, but the major habitat for some is the diseased tissue of warm-blooded hosts.
A group of compounds consisting in part of two rings sharing one atom (usually a carbon) in common.
A large heterogeneous group of mostly alpha-hemolytic streptococci. They colonize the respiratory tract at birth and generally have a low degree of pathogenicity. This group of species includes STREPTOCOCCUS MITIS; STREPTOCOCCUS MUTANS; STREPTOCOCCUS ORALIS; STREPTOCOCCUS SANGUIS; STREPTOCOCCUS SOBRINUS; and the STREPTOCOCCUS MILLERI GROUP. The latter are often beta-hemolytic and commonly produce invasive pyogenic infections including brain and abdominal abscesses.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria that occurs in water, sewage, soil, meat, hospital environments, and on the skin and in the intestinal tract of man and animals as a commensal.
A bacteriostatic antibiotic macrolide produced by Streptomyces erythreus. Erythromycin A is considered its major active component. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins.
Inflammatory responses of the epithelium of the URINARY TRACT to microbial invasions. They are often bacterial infections with associated BACTERIURIA and PYURIA.
A semisynthetic antibiotic produced from Streptomyces mediterranei. It has a broad antibacterial spectrum, including activity against several forms of Mycobacterium. In susceptible organisms it inhibits DNA-dependent RNA polymerase activity by forming a stable complex with the enzyme. It thus suppresses the initiation of RNA synthesis. Rifampin is bactericidal, and acts on both intracellular and extracellular organisms. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1160)
An antibacterial agent that is a semisynthetic analog of LINCOMYCIN.
Enzymes found in many bacteria which catalyze the hydrolysis of the amide bond in the beta-lactam ring. Well known antibiotics destroyed by these enzymes are penicillins and cephalosporins.
A serotype of SALMONELLA ENTERICA that causes mild PARATYPHOID FEVER in humans.
A genus of gram-negative, rod-shaped enterobacteria that can use citrate as the sole source of carbon.
Infections with bacteria of the family ENTEROBACTERIACEAE.
Skin diseases caused by bacteria, fungi, parasites, or viruses.
A renal dehydropeptidase-I and leukotriene D4 dipeptidase inhibitor. Since the antibiotic, IMIPENEM, is hydrolyzed by dehydropeptidase-I, which resides in the brush border of the renal tubule, cilastatin is administered with imipenem to increase its effectiveness. The drug also inhibits the metabolism of leukotriene D4 to leukotriene E4.
Short filamentous organism of the genus Mycoplasma, which binds firmly to the cells of the respiratory epithelium. It is one of the etiologic agents of non-viral primary atypical pneumonia in man.

Mutation of a conserved serine residue in a quinolone-resistant type II topoisomerase alters the enzyme-DNA and drug interactions. (1/2071)

A Ser740 --> Trp mutation in yeast topoisomerase II (top2) and of the equivalent Ser83 in gyrase results in resistance to quinolones and confers hypersensitivity to etoposide (VP-16). We characterized the cleavage complexes induced by the top2(S740W) in the human c-myc gene. In addition to resistance to the fluoroquinolone CP-115,953, top2(S740W) induced novel DNA cleavage sites in the presence of VP-16, azatoxin, amsacrine, and mitoxantrone. Analysis of the VP-16 sites indicated that the changes in the cleavage pattern were reflected by alterations in base preference. C at position -2 and G at position +6 were observed for the top2(S740W) in addition to the previously reported C-1 and G+5 for the wild-type top2. The VP-16-induced top2(S740W) cleavage complexes were also more stable. The most stable sites had strong preference for C-1, whereas the most reversible sites showed no base preference at positions -1 or -2. Different patterns of DNA cleavage were also observed in the absence of drug and in the presence of calcium. These results indicate that the Ser740 --> Trp mutation alters the DNA recognition of top2, enhances its DNA binding, and markedly affects its interactions with inhibitors. Thus, residue 740 of top2 appears critical for both DNA and drug interactions.  (+info)

Vasopressin V2 receptor enhances gain of baroreflex in conscious spontaneously hypertensive rats. (2/2071)

The aim of the present study was to determine the receptor subtype involved in arginine vasopressin (AVP)-induced modulation of baroreflex function in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats using novel nonpeptide AVP V1- and V2-receptor antagonists. Baroreceptor heart rate (HR) reflex was investigated in both SHR and WKY rats which were intravenously administered the selective V1- and V2-receptor antagonists OPC-21268 and OPC-31260, respectively. Baroreflex function was assessed by obtaining alternate pressor and depressor responses to phenylephrine and sodium nitroprusside, respectively, to construct baroreflex curves. In both SHR and WKY rats baroreflex activity was tested before and after intravenous administration of vehicle (20% DMSO), OPC-21268 (10 mg/kg), and OPC-31260 (1 and 10 mg/kg). Vehicle did not significantly alter basal mean arterial pressure (MAP) and HR values or baroreflex function in SHR or WKY rats. The V1-receptor antagonist had no significant effect on resting MAP or HR values or on baroreflex parameters in both groups of rats, although this dose was shown to significantly inhibit the pressor response to AVP (5 ng iv; ANOVA, P < 0.05). In SHR but not WKY rats the V2-receptor antagonist significantly attenuated the gain (or slope) of the baroreflex curve (to 73 +/- 3 and 79 +/- 7% of control for 1 and 10 mg/kg, respectively), although AVP-induced pressor responses were also attenuated with the higher dose of the V2-receptor antagonist. These findings suggest that AVP tonically enhances baroreflex function through a V2 receptor in the SHR.  (+info)

Carrier-mediated lung distribution of HSR-903, a new quinolone antibacterial agent. (3/2071)

HSR-903 [(S)-(-)-5-amino-7-(7-amino-5-azaspiro[2. 4]hept-5-yl)-1-cyclopropyl-6-fluoro-1, 4-dihydro-8-methyl-4-oxoquinoline-3-carboxylic acid methanesulfonate] is a newly synthesized quinolone with a potent antibacterial activity and a low toxicity. The lung concentration of unchanged HSR-903 was about nine times higher than that in plasma after oral administration (5 mg/kg) in rats. In comparative studies, HSR-903 was accumulated more efficiently than levofloxacin, ciprofloxacin, and lomefloxacin in rat lung. To clarify the mechanism of the specific distribution of HSR-903 into the lung, the uptake of [14C]HSR-903 was studied using isolated rat lung cells and an isolated rat lung perfusion technique. Initial uptake of HSR-903 by isolated lung cells was temperature dependent, saturable, stereospecific, and Na+ and Cl- dependent. The Hill coefficients (1. 90 for Na+ and 1.13 for Cl-) suggest that two Na+ and one Cl- are associated with the transport of one HSR-903 molecule. The uptake of HSR-903 was inhibited by other quinolone antibacterial agents, grepafloxacin, and sparfloxacin. The extraction ratio of HSR-903 in isolated lung perfusion was temperature dependent and saturable. These findings suggest that HSR-903 is taken up by the lung cells via a carrier-mediated transport mechanism, resulting in a concentrative distribution into the lung.  (+info)

Activation of a cGMP-stimulated cAMP phosphodiesterase by protein kinase C in a liver Golgi-endosomal fraction. (4/2071)

The ability of Ca2+/phospholipid-dependent protein kinase (protein kinase C, PKC) to stimulate cAMP phosphodiesterase (PDE) activity in a liver Golgi-endosomal (GE) fraction was examined in vivo and in a cell-free system. Injection into rats of 4 beta-phorbol 12-myristate 13-acetate, a known activator of PKC, caused a rapid and marked increase in PKC activity (+325% at 10 min) in the GE fraction, along with an increase in the abundance of the PKC alpha-isoform as seen on Western immunoblots. Concurrently, 4 beta-phorbol 12-myristate 13-acetate treatment caused a time-dependent increase in cAMP PDE activity in the GE fraction (96% at 30 min). Addition of the catalytic subunit of protein kinase A (PKA) to GE fractions from control and 4 beta-phorbol 12-myristate 13-acetate-treated rats led to a comparable increase (130-150%) in PDE activity, suggesting that PKA is probably not involved in the in-vivo effect of 4 beta-phorbol 12-myristate 13-acetate. In contrast, addition of purified PKC increased (twofold) PDE activity in GE fractions from control rats but affected only slightly the activity in GE fractions from 4 beta-phorbol 12-myristate 13-acetate-treated rats. About 50% of the Triton-X-100-solubilized cAMP PDE activity in the GE fraction was immunoprecipitated with an anti-PDE3 antibody. On DEAE-Sephacel chromatography, three peaks of PDE were sequentially eluted: one early peak, which was stimulated by cGMP and inhibited by erythro-9 (2-hydroxy-3-nonyl) adenine (EHNA); a selective inhibitor of type 2 PDEs; and two retarded peaks of activity, which were potently inhibited by cGMP and cilostamide, an inhibitor of type 3 PDEs. Further characterization of peak I by HPLC resolved a major peak which was activated (threefold) by 5 microM cGMP and inhibited (87%) by 25 microM EHNA, and a minor peak which was insensitive to EHNA and cilostamide. 4 beta-Phorbol 12-myristate 13-acetate treatment caused a selective increase (2.5-fold) in the activity associated with DEAE-Sephacel peak I, without changing the K(m) value. These results suggest that PKC selectively activates a PDE2, cGMP-stimulated isoform in the GE fraction.  (+info)

A mutation in QRDR in the ParC subunit of topoisomerase IV was responsible for fluoroquinolone resistance in clinical isolates of Streptococcus pneumoniae. (5/2071)

Forty-one strains of Streptococcus pneumoniae were isolated at Seoul National University Children's Hospital from 1991 to 1997. Isolates were divided into six groups based on MICs of three quinolones, ciprofloxacin, ofloxacin and norfloxacin. Sequencing showed that the isolates which were intermediately resistant to three quinolones or resistant to at least one kind of quinolone had one missense mutation, Lys137-->Asn(AAG-->AAT) substitution in the ParC subunit of topoisomerase IV without additional mutation in QRDR of the GyrA subunit of DNA gyrase. In conclusion, the ParC subunit of DNA topoisomerase IV is the primary target site for fluoroquinolone in S. pneumoniae and Lys137-->Asn substitution renders the quinolone resistance in S. pneumoniae.  (+info)

Inflammatory pseudotumor in a cat with cutaneous mycobacteriosis. (6/2071)

A 5-year-old, castrated male, domestic Shorthair Cat had an ulcerated mass with fistulous tracts on the left hind paw. Homogeneous tan tissue diffusely infiltrated the dermis and subcutis of the paw and extended proximally so that, short of amputation, complete excision was not feasible. Biopsy specimens consisted of granulation tissue with marked proliferation of spindle cells. Neutrophils and histiocytic cells were scattered among the spindle cells. The histiocytic cells had abundant foamy or vacuolated cytoplasm, but features of granulomatous inflammation, such as epithelioid macrophages or granuloma formation, were not observed. The initial impression was inflammatory granulation tissue, but the degree of fibroplasia prompted inclusion of fibrosarcoma in the differential diagnosis. Cutaneous mycobacteriosis was diagnosed when numerous acid-fast bacteria were identified with Kinyoun's stain; Mycobacterium avium was subsequently cultured. The cat was euthanatized because of lack of response to enrofloxacin therapy. At necropsy, lesions were localized to the hind limb. Not only is mycobacteriosis an uncommon cause of cutaneous masses in cats, but this case was unusual because of the lack of granuloma formation and the similarity of the mass to a spindle cell tumor.  (+info)

Indomethacin-induced gastric antral damage in hamsters: are neutrophils involved? (7/2071)

BACKGROUND: A direct role for neutrophils in the pathophysiology of indomethacin-induced gastric damage is controversial. Therefore, such damage was evaluated in hamsters. METHODS: Gastric antral damage was evaluated 4 h after the oro-gastric administration of indomethacin (30 mg/kg). Prior to indomethacin, hamsters were treated with various pharmacological agents: rebamipide, methotrexate or anti-neutrophil serum (ANS). The number of circulating neutrophils was determined from Wright-Giemsa stained blood smears. Myeloperoxidase (MPO) activity was measured as a marker of gastric antral neutrophil infiltration. RESULTS: Indomethacin caused primarily gastric antral damage. By histology, this damage did not penetrate the muscularis mucosa. A significant increase in gastric antral MPO activity was also found in indomethacin-treated hamsters. Rebamipide decreased macroscopic gastric antral damage in a dose-related fashion. Methotrexate treatment reduced the circulating blood neutrophil number by 38-44%, but did not affect gastric damage. ANS treatment resulted in near complete neutropenia, and also in a substantial reduction (84%) in gastric antral MPO activity. However, gastric antral damage was not significantly altered by ANS. CONCLUSIONS: Neutrophils are not directly involved in the pathophysiology of indomethacin-induced damage to the hamster gastric antrum.  (+info)

Pharmacodynamic effects of subinhibitory concentrations of rufloxacin on bacterial virulence factors. (8/2071)

It has been reported that subinhibitory concentrations (sub-MICs) of some fluoroquinolones are still capable of affecting the topological characteristics of DNA (inhibition DNA-gyrase) and that this leads to a reduction in some of the factors responsible for bacterial virulence (by means of the disruption of protein synthesis and alterations in phenotype expression), even though the microorganisms themselves are not killed. The present study investigated the ability of sub-MICs of rufloxacin, an orally absorbed monofluorinated quinolone with a long half-life (28 to 30 h), to interfere with the bacterial virulence parameters of adhesiveness, hemagglutination, hydrophobicity, motility, and filamentation, as well as their interactions with host neutrophilic defenses such as phagocytosis, killing, and oxidative bursts. It was observed that Escherichia coli adhesiveness was significantly reduced at rufloxacin concentrations of 1/32 MIC, hemagglutination and hydrophobicity were significantly reduced at concentrations of, respectively, 1/4 MIC and 1/8 MIC, and motility was significantly reduced at concentrations of 1/16 MIC; filamentation was still present at concentrations of 1/4 MIC. Phagocytosis was not affected, but killing significantly increased from 1/2 MIC to 1/8 MIC; oxidative bursts measured by means of chemiluminescence were not affected. The fact that sub-MICs are still effective in interfering with the parameters of bacterial virulence is useful information that needs to be correlated with pharmacokinetic data in order to extend our knowledge of the most effective concentrations that can be used to optimize treatment schedules, for example, single administrations, particularly in noncomplicated lower urinary tract infections.  (+info)

Quinolones are a class of antibacterial agents that are widely used in medicine to treat various types of infections caused by susceptible bacteria. These synthetic drugs contain a chemical structure related to quinoline and have broad-spectrum activity against both Gram-positive and Gram-negative bacteria. Quinolones work by inhibiting the bacterial DNA gyrase or topoisomerase IV enzymes, which are essential for bacterial DNA replication, transcription, and repair.

The first quinolone antibiotic was nalidixic acid, discovered in 1962. Since then, several generations of quinolones have been developed, with each generation having improved antibacterial activity and a broader spectrum of action compared to the previous one. The various generations of quinolones include:

1. First-generation quinolones (e.g., nalidixic acid): Primarily used for treating urinary tract infections caused by Gram-negative bacteria.
2. Second-generation quinolones (e.g., ciprofloxacin, ofloxacin, norfloxacin): These drugs have improved activity against both Gram-positive and Gram-negative bacteria and are used to treat a wider range of infections, including respiratory, gastrointestinal, and skin infections.
3. Third-generation quinolones (e.g., levofloxacin, sparfloxacin, grepafloxacin): These drugs have enhanced activity against Gram-positive bacteria, including some anaerobes and atypical organisms like Legionella and Mycoplasma species.
4. Fourth-generation quinolones (e.g., moxifloxacin, gatifloxacin): These drugs have the broadest spectrum of activity, including enhanced activity against Gram-positive bacteria, anaerobes, and some methicillin-resistant Staphylococcus aureus (MRSA) strains.

Quinolones are generally well-tolerated, but like all medications, they can have side effects. Common adverse reactions include gastrointestinal symptoms (nausea, vomiting, diarrhea), headache, and dizziness. Serious side effects, such as tendinitis, tendon rupture, peripheral neuropathy, and QT interval prolongation, are less common but can occur, particularly in older patients or those with underlying medical conditions. The use of quinolones should be avoided or used cautiously in these populations.

Quinolone resistance has become an increasing concern due to the widespread use of these antibiotics. Bacteria can develop resistance through various mechanisms, including chromosomal mutations and the acquisition of plasmid-mediated quinolone resistance genes. The overuse and misuse of quinolones contribute to the emergence and spread of resistant strains, which can limit treatment options for severe infections caused by these bacteria. Therefore, it is essential to use quinolones judiciously and only when clinically indicated, to help preserve their effectiveness and prevent further resistance development.

4-Quinolones are a class of antibacterial agents that are chemically characterized by a 4-oxo-1,4-dihydroquinoline ring. They include drugs such as ciprofloxacin, levofloxacin, and moxifloxacin, among others. These antibiotics work by inhibiting the bacterial DNA gyrase or topoisomerase IV enzymes, which are essential for bacterial DNA replication, transcription, repair, and recombination. This leads to bacterial cell death.

4-Quinolones have a broad spectrum of activity against both Gram-positive and Gram-negative bacteria and are used to treat a variety of infections, including urinary tract infections, pneumonia, skin and soft tissue infections, and intra-abdominal infections. However, the use of 4-quinolones is associated with an increased risk of tendinitis and tendon rupture, as well as other serious adverse effects such as peripheral neuropathy, QT interval prolongation, and aortic aneurysm and dissection. Therefore, their use should be restricted to situations where the benefits outweigh the risks.

Anti-infective agents are a class of medications that are used to treat infections caused by various microorganisms such as bacteria, viruses, fungi, and parasites. These agents work by either killing the microorganism or inhibiting its growth, thereby helping to control the infection and alleviate symptoms.

There are several types of anti-infective agents, including:

1. Antibiotics: These are medications that are used to treat bacterial infections. They work by either killing bacteria (bactericidal) or inhibiting their growth (bacteriostatic).
2. Antivirals: These are medications that are used to treat viral infections. They work by interfering with the replication of the virus, preventing it from spreading and causing further damage.
3. Antifungals: These are medications that are used to treat fungal infections. They work by disrupting the cell membrane of the fungus, killing it or inhibiting its growth.
4. Antiparasitics: These are medications that are used to treat parasitic infections. They work by either killing the parasite or inhibiting its growth and reproduction.

It is important to note that anti-infective agents are not effective against all types of infections, and it is essential to use them appropriately to avoid the development of drug-resistant strains of microorganisms.

Fluoroquinolones are a class of antibiotics that are widely used to treat various types of bacterial infections. They work by interfering with the bacteria's ability to replicate its DNA, which ultimately leads to the death of the bacterial cells. Fluoroquinolones are known for their broad-spectrum activity against both gram-positive and gram-negative bacteria.

Some common fluoroquinolones include ciprofloxacin, levofloxacin, moxifloxacin, and ofloxacin. These antibiotics are often used to treat respiratory infections, urinary tract infections, skin infections, and gastrointestinal infections, among others.

While fluoroquinolones are generally well-tolerated, they can cause serious side effects in some people, including tendonitis, nerve damage, and changes in mood or behavior. As with all antibiotics, it's important to use fluoroquinolones only when necessary and under the guidance of a healthcare provider.

Ciprofloxacin is a fluoroquinolone antibiotic that is used to treat various types of bacterial infections, including respiratory, urinary, and skin infections. It works by inhibiting the bacterial DNA gyrase, which is an enzyme necessary for bacterial replication and transcription. This leads to bacterial cell death. Ciprofloxacin is available in oral and injectable forms and is usually prescribed to be taken twice a day. Common side effects include nausea, diarrhea, and headache. It may also cause serious adverse reactions such as tendinitis, tendon rupture, peripheral neuropathy, and central nervous system effects. It is important to note that ciprofloxacin should not be used in patients with a history of hypersensitivity to fluoroquinolones and should be used with caution in patients with a history of seizures, brain injury, or other neurological conditions.

Naphthyridines are a class of heterocyclic organic compounds that contain a naphthyridine core structure, which is a polycyclic aromatic hydrocarbon made up of two benzene rings fused to a tetrahydropyridine ring. They have a variety of pharmacological activities and are used in the development of various therapeutic agents, including antibiotics, antivirals, and anticancer drugs.

In medical terms, naphthyridines do not have a specific clinical definition or application, but they are rather a chemical class that is utilized in the design and synthesis of drugs with potential therapeutic benefits. The unique structure and properties of naphthyridines make them attractive candidates for drug development, particularly in areas where new treatments are needed to overcome drug resistance or improve efficacy.

It's worth noting that while naphthyridines have shown promise in preclinical studies, further research is needed to fully understand their safety and effectiveness in humans before they can be approved as therapeutic agents.

Ofloxacin is an antibacterial drug, specifically a fluoroquinolone. It works by inhibiting the bacterial DNA gyrase, which is essential for the bacteria to replicate. This results in the death of the bacteria and helps to stop the infection. Ofloxacin is used to treat a variety of bacterial infections, including respiratory tract infections, urinary tract infections, skin infections, and sexually transmitted diseases. It is available in various forms, such as tablets, capsules, and eye drops. As with any medication, it should be used only under the direction of a healthcare professional, and its use may be associated with certain risks and side effects.

Microbial sensitivity tests, also known as antibiotic susceptibility tests (ASTs) or bacterial susceptibility tests, are laboratory procedures used to determine the effectiveness of various antimicrobial agents against specific microorganisms isolated from a patient's infection. These tests help healthcare providers identify which antibiotics will be most effective in treating an infection and which ones should be avoided due to resistance. The results of these tests can guide appropriate antibiotic therapy, minimize the potential for antibiotic resistance, improve clinical outcomes, and reduce unnecessary side effects or toxicity from ineffective antimicrobials.

There are several methods for performing microbial sensitivity tests, including:

1. Disk diffusion method (Kirby-Bauer test): A standardized paper disk containing a predetermined amount of an antibiotic is placed on an agar plate that has been inoculated with the isolated microorganism. After incubation, the zone of inhibition around the disk is measured to determine the susceptibility or resistance of the organism to that particular antibiotic.
2. Broth dilution method: A series of tubes or wells containing decreasing concentrations of an antimicrobial agent are inoculated with a standardized microbial suspension. After incubation, the minimum inhibitory concentration (MIC) is determined by observing the lowest concentration of the antibiotic that prevents visible growth of the organism.
3. Automated systems: These use sophisticated technology to perform both disk diffusion and broth dilution methods automatically, providing rapid and accurate results for a wide range of microorganisms and antimicrobial agents.

The interpretation of microbial sensitivity test results should be done cautiously, considering factors such as the site of infection, pharmacokinetics and pharmacodynamics of the antibiotic, potential toxicity, and local resistance patterns. Regular monitoring of susceptibility patterns and ongoing antimicrobial stewardship programs are essential to ensure optimal use of these tests and to minimize the development of antibiotic resistance.

Norfloxacin is a fluoroquinolone antibiotic that is primarily used to treat bacterial infections of the urinary tract, prostate, and skin. It works by inhibiting the bacterial DNA gyrase, which is an essential enzyme involved in DNA replication. This leads to bacterial cell death. Norfloxacin is available as a generic medication and is usually prescribed in oral form, such as tablets or suspension.

Here's the medical definition of Norfloxacin:

Norfloxacin (norfloxacinum) - A synthetic fluoroquinolone antibiotic with a broad spectrum of activity against gram-positive and gram-negative bacteria, including Pseudomonas aeruginosa. It is used to treat urinary tract infections, prostatitis, and skin infections. Norfloxacin inhibits bacterial DNA gyrase, which results in bacterial cell death. The drug is available as a generic medication and is usually prescribed in oral form, such as tablets or suspension. Common side effects include nausea, diarrhea, headache, and dizziness. Norfloxacin may also cause serious adverse reactions, including tendinitis, tendon rupture, peripheral neuropathy, and central nervous system effects. It is contraindicated in patients with a history of hypersensitivity to quinolones or fluoroquinolones.

Topoisomerase II inhibitors are a class of anticancer drugs that work by interfering with the enzyme topoisomerase II, which is essential for DNA replication and transcription. These inhibitors bind to the enzyme-DNA complex, preventing the relaxation of supercoiled DNA and causing DNA strand breaks. This results in the accumulation of double-stranded DNA breaks, which can lead to apoptosis (programmed cell death) in rapidly dividing cells, such as cancer cells. Examples of topoisomerase II inhibitors include etoposide, doxorubicin, and mitoxantrone.

DNA gyrase is a type II topoisomerase enzyme that plays a crucial role in the negative supercoiling and relaxation of DNA in bacteria. It functions by introducing transient double-stranded breaks into the DNA helix, allowing the strands to pass through one another and thereby reducing positive supercoils or introducing negative supercoils as required for proper DNA function, replication, and transcription.

DNA gyrase is composed of two subunits, GyrA and GyrB, which form a heterotetrameric structure (AB-BA) in the functional enzyme. The enzyme's activity is targeted by several antibiotics, such as fluoroquinolones and novobiocin, making it an essential target for antibacterial drug development.

In summary, DNA gyrase is a bacterial topoisomerase responsible for maintaining the correct supercoiling of DNA during replication and transcription, which can be inhibited by specific antibiotics to combat bacterial infections.

DNA Topoisomerase IV is a type of enzyme that plays a crucial role in the relaxation and manipulation of supercoiled DNA during processes such as replication, transcription, and chromosome segregation. It functions by temporarily cleaving and rejoining the DNA strands to allow for the unlinking and separation of DNA molecules. This enzyme primarily targets double-stranded DNA and is especially important in bacteria, where it helps to resolve the topological challenges that arise during DNA replication and segregation of daughter chromosomes during cell division. Inhibition of DNA Topoisomerase IV has been explored as a strategy for developing antibacterial drugs, as this enzyme is essential for bacterial survival and is not found in humans.

Enoxacin is an antibiotic that belongs to a class of drugs called fluoroquinolones. It works by inhibiting the bacterial DNA gyrase, which is an essential enzyme involved in DNA replication and transcription. This leads to bacterial cell death and helps to treat various infections caused by susceptible bacteria. Enoxacin is used to treat a wide range of bacterial infections, including respiratory, urinary tract, skin, and soft tissue infections.

The medical definition of Enoxacin can be stated as:

Enoxacin (INN, USAN, JAN) is a fluoroquinolone antibiotic used to treat various bacterial infections. It is an inhibitor of DNA gyrase and has been found to have good activity against both Gram-positive and Gram-negative bacteria. Enoxacin is available as a 200 mg tablet for oral administration, and its typical dosage ranges from 200 to 600 mg per day, depending on the type and severity of the infection being treated.

It's important to note that like other fluoroquinolones, Enoxacin carries a risk of serious side effects, including tendinitis, tendon rupture, peripheral neuropathy, central nervous system effects, and exacerbation of myasthenia gravis. Therefore, it should be used with caution and only when other antibiotics are not appropriate or have failed.

Quinolines are a class of organic compounds that consist of a bicyclic structure made up of a benzene ring fused to a piperidine ring. They have a wide range of applications, but they are perhaps best known for their use in the synthesis of various medications, including antibiotics and antimalarial drugs.

Quinolone antibiotics, such as ciprofloxacin and levofloxacin, work by inhibiting the bacterial enzymes involved in DNA replication and repair. They are commonly used to treat a variety of bacterial infections, including urinary tract infections, pneumonia, and skin infections.

Quinoline-based antimalarial drugs, such as chloroquine and hydroxychloroquine, work by inhibiting the parasite's ability to digest hemoglobin in the red blood cells. They are commonly used to prevent and treat malaria.

It is important to note that quinolines have been associated with serious side effects, including tendinitis and tendon rupture, nerve damage, and abnormal heart rhythms. As with any medication, it is important to use quinolines only under the supervision of a healthcare provider, and to follow their instructions carefully.

Anti-bacterial agents, also known as antibiotics, are a type of medication used to treat infections caused by bacteria. These agents work by either killing the bacteria or inhibiting their growth and reproduction. There are several different classes of anti-bacterial agents, including penicillins, cephalosporins, fluoroquinolones, macrolides, and tetracyclines, among others. Each class of antibiotic has a specific mechanism of action and is used to treat certain types of bacterial infections. It's important to note that anti-bacterial agents are not effective against viral infections, such as the common cold or flu. Misuse and overuse of antibiotics can lead to antibiotic resistance, which is a significant global health concern.

Nalidixic acid is an antimicrobial agent, specifically a synthetic quinolone derivative. It is primarily used for the treatment of urinary tract infections caused by susceptible strains of gram-negative bacteria, such as Escherichia coli, Proteus mirabilis, and Klebsiella pneumoniae.

Nalidixic acid works by inhibiting bacterial DNA gyrase, an enzyme necessary for DNA replication. This leads to the prevention of DNA synthesis and ultimately results in bacterial cell death. However, its use has become limited due to the emergence of resistance and the availability of more effective antimicrobials.

It is essential to note that nalidixic acid is not typically used as a first-line treatment for urinary tract infections or any other type of infection. It should only be used when other antibiotics are not suitable due to resistance, allergies, or other factors. Additionally, the drug's potential side effects, such as gastrointestinal disturbances, headaches, and dizziness, may limit its use in some patients.

Levofloxacin is an antibiotic medication that belongs to the fluoroquinolone class. It works by interfering with the bacterial DNA replication, transcription, and repair processes, leading to bacterial cell death. Levofloxacin is used to treat a variety of infections caused by susceptible bacteria, including respiratory, skin, urinary tract, and gastrointestinal infections. It is available in various forms, such as tablets, oral solution, and injection, for different routes of administration.

The medical definition of Levofloxacin can be stated as:

Levofloxacin is a synthetic antibacterial drug with the chemical name (-)-(S)-9-fluoro-2,3-dihydro-3-methoxy-10-(4-methyl-1-piperazinyl)-9-oxoanthracene-1-carboxylic acid l-alanyl-l-proline methylester monohydrate. It is the levo isomer of ofloxacin and is used to treat a wide range of bacterial infections by inhibiting bacterial DNA gyrase, thereby preventing DNA replication and transcription. Levofloxacin is available as tablets, oral solution, and injection for oral and parenteral administration.

Microbial drug resistance is a significant medical issue that refers to the ability of microorganisms (such as bacteria, viruses, fungi, or parasites) to withstand or survive exposure to drugs or medications designed to kill them or limit their growth. This phenomenon has become a major global health concern, particularly in the context of bacterial infections, where it is also known as antibiotic resistance.

Drug resistance arises due to genetic changes in microorganisms that enable them to modify or bypass the effects of antimicrobial agents. These genetic alterations can be caused by mutations or the acquisition of resistance genes through horizontal gene transfer. The resistant microbes then replicate and multiply, forming populations that are increasingly difficult to eradicate with conventional treatments.

The consequences of drug-resistant infections include increased morbidity, mortality, healthcare costs, and the potential for widespread outbreaks. Factors contributing to the emergence and spread of microbial drug resistance include the overuse or misuse of antimicrobials, poor infection control practices, and inadequate surveillance systems.

To address this challenge, it is crucial to promote prudent antibiotic use, strengthen infection prevention and control measures, develop new antimicrobial agents, and invest in research to better understand the mechanisms underlying drug resistance.

DNA topoisomerases are enzymes that regulate the topological state of DNA during various cellular processes such as replication, transcription, and repair. They do this by introducing temporary breaks in the DNA strands and allowing the strands to rotate around each other, thereby relieving torsional stress and supercoiling. Topoisomerases are classified into two types: type I and type II.

Type II topoisomerases are further divided into two subtypes: type IIA and type IIB. These enzymes function by forming a covalent bond with the DNA strands, cleaving them, and then passing another segment of DNA through the break before resealing the original strands. This process allows for the removal of both positive and negative supercoils from DNA as well as the separation of interlinked circular DNA molecules (catenanes) or knotted DNA structures.

Type II topoisomerases are essential for cell viability, and their dysfunction has been linked to various human diseases, including cancer and neurodegenerative disorders. They have also emerged as important targets for the development of anticancer drugs that inhibit their activity and induce DNA damage leading to cell death. Examples of type II topoisomerase inhibitors include etoposide, doxorubicin, and mitoxantrone.

Pefloxacin is a fluoroquinolone antibiotic that is primarily used to treat various types of bacterial infections, such as respiratory tract infections, urinary tract infections, skin and soft tissue infections, and sexually transmitted diseases. It works by inhibiting the DNA gyrase enzyme in bacteria, which is necessary for their replication and survival.

The medical definition of Pefloxacin can be stated as follows:

Pefloxacin (INN, USAN) - a fluoroquinolone antibiotic with bactericidal activity against a wide range of gram-positive and gram-negative bacteria. It is used to treat various types of infections caused by susceptible organisms, including respiratory tract infections, urinary tract infections, skin and soft tissue infections, and sexually transmitted diseases. Pefloxacin is available as an oral tablet or injection for intravenous use.

It's important to note that the use of fluoroquinolones like pefloxacin should be reserved for treating serious bacterial infections that are unresponsive to other antibiotics, due to concerns about their potential side effects and the risk of developing antibiotic resistance.

'Aza compounds' is a general term used in chemistry to describe organic compounds containing a nitrogen atom (denoted by the symbol 'N' or 'aza') that has replaced a carbon atom in a hydrocarbon structure. The term 'aza' comes from the Greek word for nitrogen, 'azote.'

In medicinal chemistry and pharmacology, aza compounds are of particular interest because the presence of the nitrogen atom can significantly affect the chemical and biological properties of the compound. For example, aza compounds may exhibit enhanced bioavailability, metabolic stability, or receptor binding affinity compared to their non-aza counterparts.

Some common examples of aza compounds in medicine include:

1. Aza-aromatic compounds: These are aromatic compounds that contain one or more nitrogen atoms in the ring structure. Examples include pyridine, quinoline, and isoquinoline derivatives, which have been used as anti-malarial, anti-inflammatory, and anti-cancer agents.
2. Aza-heterocyclic compounds: These are non-aromatic compounds that contain one or more nitrogen atoms in a cyclic structure. Examples include azepine, diazepine, and triazole derivatives, which have been used as anxiolytic, anti-viral, and anti-fungal agents.
3. Aza-peptides: These are peptide compounds that contain one or more nitrogen atoms in the backbone structure. Examples include azapeptides and azabicyclopeptides, which have been used as enzyme inhibitors and neuroprotective agents.
4. Aza-sugars: These are sugar derivatives that contain one or more nitrogen atoms in the ring structure. Examples include azasugars and iminosugars, which have been used as glycosidase inhibitors and anti-viral agents.

Overall, aza compounds represent an important class of medicinal agents with diverse chemical structures and biological activities.

Bacterial drug resistance is a type of antimicrobial resistance that occurs when bacteria evolve the ability to survive and reproduce in the presence of drugs (such as antibiotics) that would normally kill them or inhibit their growth. This can happen due to various mechanisms, including genetic mutations or the acquisition of resistance genes from other bacteria.

As a result, bacterial infections may become more difficult to treat, requiring higher doses of medication, alternative drugs, or longer treatment courses. In some cases, drug-resistant infections can lead to serious health complications, increased healthcare costs, and higher mortality rates.

Examples of bacterial drug resistance include methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and multidrug-resistant tuberculosis (MDR-TB). Preventing the spread of bacterial drug resistance is crucial for maintaining effective treatments for infectious diseases.

Fleroxacin is a fluoroquinolone antibiotic that is used to treat various types of bacterial infections, including respiratory, urinary tract, and skin infections. It works by inhibiting the DNA gyrase enzyme in bacteria, which is necessary for their replication and survival.

Fleroxacin has a broad spectrum of activity against both gram-positive and gram-negative bacteria, making it useful for treating a variety of infections caused by these organisms. However, like other fluoroquinolones, fleroxacin carries a risk of serious side effects, including tendinitis, tendon rupture, nerve damage, and other central nervous system effects. Therefore, its use is generally reserved for situations where other antibiotics are not effective or appropriate.

Fleroxacin is available in oral tablet form and is typically taken twice daily with a full glass of water. It should be taken on an empty stomach, at least one hour before or two hours after meals. The dosage and duration of treatment will depend on the type and severity of the infection being treated, as well as the patient's overall health status.

It is important to note that fleroxacin, like all antibiotics, should only be used under the guidance of a healthcare professional, and should not be used for viral infections such as the common cold or flu. Misuse of antibiotics can lead to antibiotic resistance, which makes it more difficult to treat bacterial infections in the future.

Superhelical DNA refers to a type of DNA structure that is formed when the double helix is twisted around itself. This occurs due to the presence of negative supercoiling, which results in an overtwisted state that can be described as having a greater number of helical turns than a relaxed circular DNA molecule.

Superhelical DNA is often found in bacterial and viral genomes, where it plays important roles in compacting the genome into a smaller volume and facilitating processes such as replication and transcription. The degree of supercoiling can affect the structure and function of DNA, with varying levels of supercoiling influencing the accessibility of specific regions of the genome to proteins and other regulatory factors.

Superhelical DNA is typically maintained in a stable state by topoisomerase enzymes, which introduce or remove twists in the double helix to regulate its supercoiling level. Changes in supercoiling can have significant consequences for cellular processes, as they can impact the expression of genes and the regulation of chromosome structure and function.

Oxolinic acid is an antimicrobial agent primarily used in the treatment of bacterial infections, particularly those caused by Gram-negative bacteria. It functions as a quinolone antibiotic and works by inhibiting the DNA gyrase enzyme in bacteria, thereby preventing DNA replication and transcription.

Oxolinic acid is available in various forms, such as ointments, creams, and eye drops, and is commonly used to treat conditions like conjunctivitis (pink eye) and other superficial bacterial infections of the skin and eyes. It may also be used for other purposes not mentioned in this definition.

It's important to note that oxolinic acid has limited systemic absorption, which means it is not typically used to treat systemic infections. Additionally, as with any medication, it should only be used under the guidance and supervision of a healthcare professional, as misuse or overuse can lead to antibiotic resistance.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Staphylococcus aureus is a type of gram-positive, round (coccal) bacterium that is commonly found on the skin and mucous membranes of warm-blooded animals and humans. It is a facultative anaerobe, which means it can grow in the presence or absence of oxygen.

Staphylococcus aureus is known to cause a wide range of infections, from mild skin infections such as pimples, impetigo, and furuncles (boils) to more severe and potentially life-threatening infections such as pneumonia, endocarditis, osteomyelitis, and sepsis. It can also cause food poisoning and toxic shock syndrome.

The bacterium is often resistant to multiple antibiotics, including methicillin, which has led to the emergence of methicillin-resistant Staphylococcus aureus (MRSA) strains that are difficult to treat. Proper hand hygiene and infection control practices are critical in preventing the spread of Staphylococcus aureus and MRSA.

Phototoxic dermatitis is a skin reaction that occurs when certain chemicals (known as photosensitizers) in a substance come into contact with the skin and then are exposed to sunlight or artificial UV light. This results in an exaggerated sunburn-like reaction, characterized by redness, swelling, itching, and sometimes blistering of the skin. The reaction usually occurs within a few hours to a couple of days after exposure to the offending agent and light. Common causes include certain medications, essential oils, fragrances, and plants like limes, celery, and parsley. Once the irritant is no longer in contact with the skin and sun exposure is avoided, the symptoms typically resolve within a week or two. Prevention includes avoiding the offending agent and protecting the skin from sunlight through the use of clothing, hats, and broad-spectrum sunscreens.

Streptococcus pneumoniae, also known as the pneumococcus, is a gram-positive, alpha-hemolytic bacterium frequently found in the upper respiratory tract of healthy individuals. It is a leading cause of community-acquired pneumonia and can also cause other infectious diseases such as otitis media (ear infection), sinusitis, meningitis, and bacteremia (bloodstream infection). The bacteria are encapsulated, and there are over 90 serotypes based on variations in the capsular polysaccharide. Some serotypes are more virulent or invasive than others, and the polysaccharide composition is crucial for vaccine development. S. pneumoniae infection can be treated with antibiotics, but the emergence of drug-resistant strains has become a significant global health concern.

Gram-positive bacteria are a type of bacteria that stain dark purple or blue when subjected to the Gram staining method, which is a common technique used in microbiology to classify and identify different types of bacteria based on their structural differences. This staining method was developed by Hans Christian Gram in 1884.

The key characteristic that distinguishes Gram-positive bacteria from other types, such as Gram-negative bacteria, is the presence of a thick layer of peptidoglycan in their cell walls, which retains the crystal violet stain used in the Gram staining process. Additionally, Gram-positive bacteria lack an outer membrane found in Gram-negative bacteria.

Examples of Gram-positive bacteria include Staphylococcus aureus, Streptococcus pyogenes, and Bacillus subtilis. Some Gram-positive bacteria can cause various human diseases, while others are beneficial or harmless.

Multiple bacterial drug resistance (MDR) is a medical term that refers to the resistance of multiple strains of bacteria to several antibiotics or antimicrobial agents. This means that these bacteria have developed mechanisms that enable them to survive and multiply despite being exposed to drugs that were previously effective in treating infections caused by them.

MDR is a significant public health concern because it limits the treatment options available for bacterial infections, making them more difficult and expensive to treat. In some cases, MDR bacteria may cause severe or life-threatening infections that are resistant to all available antibiotics, leaving doctors with few or no effective therapeutic options.

MDR can arise due to various mechanisms, including the production of enzymes that inactivate antibiotics, changes in bacterial cell membrane permeability that prevent antibiotics from entering the bacteria, and the development of efflux pumps that expel antibiotics out of the bacteria. The misuse or overuse of antibiotics is a significant contributor to the emergence and spread of MDR bacteria.

Preventing and controlling the spread of MDR bacteria requires a multifaceted approach, including the judicious use of antibiotics, infection control measures, surveillance, and research into new antimicrobial agents.

Macrolides are a class of antibiotics derived from natural products obtained from various species of Streptomyces bacteria. They have a large ring structure consisting of 12, 14, or 15 atoms, to which one or more sugar molecules are attached. Macrolides inhibit bacterial protein synthesis by binding to the 50S ribosomal subunit, thereby preventing peptide bond formation. Common examples of macrolides include erythromycin, azithromycin, and clarithromycin. They are primarily used to treat respiratory, skin, and soft tissue infections caused by susceptible gram-positive and gram-negative bacteria.

Gram-negative bacteria are a type of bacteria that do not retain the crystal violet stain used in the Gram staining method, a standard technique used in microbiology to classify and identify different types of bacteria based on their structural differences. This method was developed by Hans Christian Gram in 1884.

The primary characteristic distinguishing Gram-negative bacteria from Gram-positive bacteria is the composition and structure of their cell walls:

1. Cell wall: Gram-negative bacteria have a thin peptidoglycan layer, making it more susceptible to damage and less rigid compared to Gram-positive bacteria.
2. Outer membrane: They possess an additional outer membrane that contains lipopolysaccharides (LPS), which are endotoxins that can trigger strong immune responses in humans and animals. The outer membrane also contains proteins, known as porins, which form channels for the passage of molecules into and out of the cell.
3. Periplasm: Between the inner and outer membranes lies a compartment called the periplasm, where various enzymes and other molecules are located.

Some examples of Gram-negative bacteria include Escherichia coli (E. coli), Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella enterica, Shigella spp., and Neisseria meningitidis. These bacteria are often associated with various infections, such as urinary tract infections, pneumonia, sepsis, and meningitis. Due to their complex cell wall structure, Gram-negative bacteria can be more resistant to certain antibiotics, making them a significant concern in healthcare settings.

Anaerobic bacteria are a type of bacteria that do not require oxygen to grow and survive. Instead, they can grow in environments that have little or no oxygen. Some anaerobic bacteria can even be harmed or killed by exposure to oxygen. These bacteria play important roles in many natural processes, such as decomposition and the breakdown of organic matter in the digestive system. However, some anaerobic bacteria can also cause disease in humans and animals, particularly when they infect areas of the body that are normally oxygen-rich. Examples of anaerobic bacterial infections include tetanus, gas gangrene, and dental abscesses.

Oxazines are heterocyclic organic compounds that contain a six-membered ring with one nitrogen atom, one oxygen atom, and four carbon atoms. The structure of oxazine is similar to benzene, but with one methine group (=CH−) replaced by a nitrogen atom and another methine group replaced by an oxygen atom.

Oxazines have important applications in the pharmaceutical industry as they are used in the synthesis of various drugs, including anti-inflammatory, antiviral, and anticancer agents. However, oxazines themselves do not have a specific medical definition, as they refer to a class of chemical compounds rather than a medical condition or treatment.

Bacteria are single-celled microorganisms that are among the earliest known life forms on Earth. They are typically characterized as having a cell wall and no membrane-bound organelles. The majority of bacteria have a prokaryotic organization, meaning they lack a nucleus and other membrane-bound organelles.

Bacteria exist in diverse environments and can be found in every habitat on Earth, including soil, water, and the bodies of plants and animals. Some bacteria are beneficial to their hosts, while others can cause disease. Beneficial bacteria play important roles in processes such as digestion, nitrogen fixation, and biogeochemical cycling.

Bacteria reproduce asexually through binary fission or budding, and some species can also exchange genetic material through conjugation. They have a wide range of metabolic capabilities, with many using organic compounds as their source of energy, while others are capable of photosynthesis or chemosynthesis.

Bacteria are highly adaptable and can evolve rapidly in response to environmental changes. This has led to the development of antibiotic resistance in some species, which poses a significant public health challenge. Understanding the biology and behavior of bacteria is essential for developing strategies to prevent and treat bacterial infections and diseases.

Clopidol is a veterinary medication used primarily in poultry to prevent the formation of blood clots. It is an antithrombotic agent that works by inhibiting the aggregation of platelets, which are small cells in the blood that help form clots. Clopidol is available as a feed additive and is often used to prevent or treat conditions such as thromboembolic disease and ascites in chickens.

It's important to note that Clopidol is not approved for use in humans, and it should be handled with care by individuals who work with the medication in a veterinary setting. As with any medication, it should only be used under the guidance of a licensed veterinarian.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Bacterial infections are caused by the invasion and multiplication of bacteria in or on tissues of the body. These infections can range from mild, like a common cold, to severe, such as pneumonia, meningitis, or sepsis. The symptoms of a bacterial infection depend on the type of bacteria invading the body and the area of the body that is affected.

Bacteria are single-celled microorganisms that can live in many different environments, including in the human body. While some bacteria are beneficial to humans and help with digestion or protect against harmful pathogens, others can cause illness and disease. When bacteria invade the body, they can release toxins and other harmful substances that damage tissues and trigger an immune response.

Bacterial infections can be treated with antibiotics, which work by killing or inhibiting the growth of bacteria. However, it is important to note that misuse or overuse of antibiotics can lead to antibiotic resistance, making treatment more difficult. It is also essential to complete the full course of antibiotics as prescribed, even if symptoms improve, to ensure that all bacteria are eliminated and reduce the risk of recurrence or development of antibiotic resistance.

Novobiocin is an antibiotic derived from the actinomycete species Streptomyces niveus. It belongs to the class of drugs known as aminocoumarins, which function by inhibiting bacterial DNA gyrase, thereby preventing DNA replication and transcription. Novobiocin has activity against a narrow range of gram-positive bacteria, including some strains of Staphylococcus aureus (particularly those resistant to penicillin and methicillin), Streptococcus pneumoniae, and certain mycobacteria. It is used primarily in the treatment of serious staphylococcal infections and is administered orally or intravenously.

It's important to note that Novobiocin has been largely replaced by other antibiotics due to its narrow spectrum of activity, potential for drug interactions, and adverse effects. It is not widely used in clinical practice today.

"Pseudomonas aeruginosa" is a medically important, gram-negative, rod-shaped bacterium that is widely found in the environment, such as in soil, water, and on plants. It's an opportunistic pathogen, meaning it usually doesn't cause infection in healthy individuals but can cause severe and sometimes life-threatening infections in people with weakened immune systems, burns, or chronic lung diseases like cystic fibrosis.

P. aeruginosa is known for its remarkable ability to resist many antibiotics and disinfectants due to its intrinsic resistance mechanisms and the acquisition of additional resistance determinants. It can cause various types of infections, including respiratory tract infections, urinary tract infections, gastrointestinal infections, dermatitis, and severe bloodstream infections known as sepsis.

The bacterium produces a variety of virulence factors that contribute to its pathogenicity, such as exotoxins, proteases, and pigments like pyocyanin and pyoverdine, which aid in iron acquisition and help the organism evade host immune responses. Effective infection control measures, appropriate use of antibiotics, and close monitoring of high-risk patients are crucial for managing P. aeruginosa infections.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

'Bartonella bacilliformis' is a type of bacterium that causes a rare and severe infectious disease known as Carrion's disease, which is prevalent in certain regions of South America, particularly in Peru, Ecuador, and Colombia. The bacteria are transmitted to humans through the bite of infected sandflies.

Carrion's disease has two distinct clinical phases: the acute phase, also known as Oroya fever, which is characterized by fever, severe anemia, and systemic infection; and the chronic phase, called verruga peruana, which presents with skin lesions or wart-like bumps that can ulcerate and bleed.

Early diagnosis and treatment of Carrion's disease are crucial to prevent complications and reduce mortality rates. Antibiotics such as chloramphenicol, azithromycin, and gentamicin are commonly used for the treatment of this condition. Preventive measures include using insect repellent, wearing protective clothing, and avoiding sandfly-infested areas during peak activity times.

Evodia is a plant genus that belongs to the family Rutaceae. It is also known as Evodia rutaecarpa, and its fruit is used in traditional Chinese medicine for treating various conditions such as nausea, vomiting, abdominal pain, and diarrhea. The active constituent of Evodia is evodiamine, which has been studied for its potential medicinal properties, including anti-inflammatory, analgesic, and anti-cancer effects. However, more research is needed to confirm these effects and establish the safety and efficacy of Evodia as a medical treatment.

"Mycobacterium fortuitum" is a rapidly growing mycobacterium (RGM) species that is commonly found in the environment, particularly in soil and water. It is a gram-positive, aerobic, non-tuberculous mycobacteria (NTM) that can cause a variety of infections in humans, including skin and soft tissue infections, lung infections, and disseminated disease.

M. fortuitum is known for its ability to form colonies on solid media within one week, which distinguishes it from other slow-growing mycobacteria such as Mycobacterium tuberculosis. It is also resistant to many common antibiotics, making treatment challenging. Infections caused by M. fortuitum are often associated with exposure to contaminated medical devices or procedures, such as contaminated tattoos, wound care, or invasive medical procedures.

It's important to note that while M. fortuitum can cause infections, it is not considered a highly virulent pathogen and most people who are exposed to it do not develop symptoms. However, individuals with weakened immune systems, such as those with HIV/AIDS or receiving immunosuppressive therapy, may be at higher risk for severe disease.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

"Multiple drug resistance" (MDR) is a term used in medicine to describe the condition where a patient's infection becomes resistant to multiple antimicrobial drugs. This means that the bacteria, virus, fungus or parasite that is causing the infection has developed the ability to survive and multiply despite being exposed to medications that were originally designed to kill or inhibit its growth.

In particular, MDR occurs when an organism becomes resistant to at least one drug in three or more antimicrobial categories. This can happen due to genetic changes in the microorganism that allow it to survive in the presence of these drugs. The development of MDR is a significant concern for public health because it limits treatment options and can make infections harder, if not impossible, to treat.

MDR can develop through several mechanisms, including mutations in the genes that encode drug targets or enzymes involved in drug metabolism, as well as the acquisition of genetic elements such as plasmids and transposons that carry resistance genes. The overuse and misuse of antimicrobial drugs are major drivers of MDR, as they create selective pressure for the emergence and spread of resistant strains.

MDR infections can occur in various settings, including hospitals, long-term care facilities, and communities. They can affect people of all ages and backgrounds, although certain populations may be at higher risk, such as those with weakened immune systems or chronic medical conditions. Preventing the spread of MDR requires a multifaceted approach that includes surveillance, infection control, antimicrobial stewardship, and research into new therapies and diagnostics.

Tetracyclines are a class of antibiotics that are widely used in medicine for their bacteriostatic properties, meaning they inhibit the growth of bacteria without necessarily killing them. They have a broad spectrum of activity and are effective against both Gram-positive and Gram-negative bacteria, as well as some other microorganisms such as rickettsiae, chlamydiae, and mycoplasmas.

Tetracyclines work by binding to the 30S subunit of the bacterial ribosome, thereby inhibiting protein synthesis and preventing the bacteria from multiplying. They are commonly used to treat a variety of infections, including respiratory tract infections, skin and soft tissue infections, urinary tract infections, sexually transmitted diseases, and anthrax exposure.

Some examples of tetracyclines include tetracycline, doxycycline, minocycline, and oxytetracycline. It is important to note that the use of tetracyclines during tooth development (pregnancy and up to the age of 8 years) can cause permanent discoloration of teeth, and they should be avoided in this population unless there are no other treatment options available. Additionally, tetracyclines can also cause photosensitivity, so patients should be advised to avoid excessive sun exposure while taking these medications.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Ornidazole is an antiprotozoal and antibacterial medication. It is primarily used to treat infections caused by susceptible anaerobic bacteria and protozoan parasites. Ornidazole works by disrupting the DNA of these microorganisms, leading to their death.

Common indications for its use include the treatment of various types of bacterial infections such as skin and soft tissue infections, bone and joint infections, intra-abdominal infections, and gynecological infections. It is also used to treat certain protozoan infections, including amebiasis and giardiasis.

Ornidazole is available in various forms, such as tablets, capsules, and intravenous (IV) solutions, and its use should be based on the specific infection being treated and the patient's individual medical history. As with any medication, it can have side effects, and its use should be monitored by a healthcare professional to ensure its safe and effective use.

Aminoglycosides are a class of antibiotics that are derived from bacteria and are used to treat various types of infections caused by gram-negative and some gram-positive bacteria. These antibiotics work by binding to the 30S subunit of the bacterial ribosome, which inhibits protein synthesis and ultimately leads to bacterial cell death.

Some examples of aminoglycosides include gentamicin, tobramycin, neomycin, and streptomycin. These antibiotics are often used in combination with other antibiotics to treat severe infections, such as sepsis, pneumonia, and urinary tract infections.

Aminoglycosides can have serious side effects, including kidney damage and hearing loss, so they are typically reserved for use in serious infections that cannot be treated with other antibiotics. They are also used topically to treat skin infections and prevent wound infections after surgery.

It's important to note that aminoglycosides should only be used under the supervision of a healthcare professional, as improper use can lead to antibiotic resistance and further health complications.

Cephalosporins are a class of antibiotics that are derived from the fungus Acremonium, originally isolated from seawater and cow dung. They have a similar chemical structure to penicillin and share a common four-membered beta-lactam ring in their molecular structure.

Cephalosporins work by inhibiting the synthesis of bacterial cell walls, which ultimately leads to bacterial death. They are broad-spectrum antibiotics, meaning they are effective against a wide range of bacteria, including both Gram-positive and Gram-negative organisms.

There are several generations of cephalosporins, each with different spectra of activity and pharmacokinetic properties. The first generation cephalosporins have a narrow spectrum of activity and are primarily used to treat infections caused by susceptible Gram-positive bacteria, such as Staphylococcus aureus and Streptococcus pneumoniae.

Second-generation cephalosporins have an expanded spectrum of activity that includes some Gram-negative organisms, such as Escherichia coli and Haemophilus influenzae. Third-generation cephalosporins have even broader spectra of activity and are effective against many resistant Gram-negative bacteria, such as Pseudomonas aeruginosa and Klebsiella pneumoniae.

Fourth-generation cephalosporins have activity against both Gram-positive and Gram-negative organisms, including some that are resistant to other antibiotics. They are often reserved for the treatment of serious infections caused by multidrug-resistant bacteria.

Cephalosporins are generally well tolerated, but like penicillin, they can cause allergic reactions in some individuals. Cross-reactivity between cephalosporins and penicillin is estimated to occur in 5-10% of patients with a history of penicillin allergy. Other potential adverse effects include gastrointestinal symptoms (such as nausea, vomiting, and diarrhea), neurotoxicity, and nephrotoxicity.

Neisseria gonorrhoeae is a species of gram-negative, aerobic diplococcus that is the etiologic agent of gonorrhea, a sexually transmitted infection. It is commonly found in the mucous membranes of the reproductive tract, including the cervix, urethra, and rectum, as well as the throat and eyes. The bacterium can cause a range of symptoms, including discharge, burning during urination, and, in women, abnormal menstrual bleeding. If left untreated, it can lead to more serious complications, such as pelvic inflammatory disease and infertility. It is important to note that N. gonorrhoeae has developed resistance to many antibiotics over time, making treatment more challenging. A culture or nucleic acid amplification test (NAAT) is used for the diagnosis of this infection.

Topoisomerase inhibitors are a class of anticancer drugs that work by interfering with the function of topoisomerases, which are enzymes responsible for relaxing supercoiled DNA during processes such as replication and transcription. Topoisomerase I inhibitors selectively bind to and stabilize the cleavage complex formed between topoisomerase I and DNA, preventing the relegation of the broken DNA strand and resulting in DNA damage and cell death. Examples include irinotecan and topotecan. Topoisomerase II inhibitors, on the other hand, bind to and stabilize the cleavage complex formed between topoisomerase II and DNA, leading to double-stranded DNA breaks and cell death. Examples include doxorubicin, etoposide, and mitoxantrone. These drugs are used in the treatment of various types of cancer.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Gram-negative bacterial infections refer to illnesses or diseases caused by Gram-negative bacteria, which are a group of bacteria that do not retain crystal violet dye during the Gram staining procedure used in microbiology. This characteristic is due to the structure of their cell walls, which contain a thin layer of peptidoglycan and an outer membrane composed of lipopolysaccharides (LPS), proteins, and phospholipids.

The LPS component of the outer membrane is responsible for the endotoxic properties of Gram-negative bacteria, which can lead to severe inflammatory responses in the host. Common Gram-negative bacterial pathogens include Escherichia coli (E. coli), Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Proteus mirabilis, among others.

Gram-negative bacterial infections can cause a wide range of clinical syndromes, such as pneumonia, urinary tract infections, bloodstream infections, meningitis, and soft tissue infections. The severity of these infections can vary from mild to life-threatening, depending on the patient's immune status, the site of infection, and the virulence of the bacterial strain.

Effective antibiotic therapy is crucial for treating Gram-negative bacterial infections, but the increasing prevalence of multidrug-resistant strains has become a significant global health concern. Therefore, accurate diagnosis and appropriate antimicrobial stewardship are essential to ensure optimal patient outcomes and prevent further spread of resistance.

Beta-lactams are a class of antibiotics that include penicillins, cephalosporins, carbapenems, and monobactams. They contain a beta-lactam ring in their chemical structure, which is responsible for their antibacterial activity. The beta-lactam ring inhibits the bacterial enzymes necessary for cell wall synthesis, leading to bacterial death. Beta-lactams are commonly used to treat a wide range of bacterial infections, including respiratory tract infections, skin and soft tissue infections, urinary tract infections, and bone and joint infections. However, some bacteria have developed resistance to beta-lactams through the production of beta-lactamases, enzymes that can break down the beta-lactam ring and render the antibiotic ineffective. To overcome this resistance, beta-lactam antibiotics are often combined with beta-lactamase inhibitors, which protect the beta-lactam ring from degradation.

Aerobic bacteria are a type of bacteria that require oxygen to live and grow. These bacteria use oxygen as the final electron acceptor in their respiratory chain to generate energy in the form of ATP (adenosine triphosphate). Aerobic bacteria can be found in various environments, including soil, water, and the air, as well as on the surfaces of living things. Some examples of aerobic bacteria include species of Pseudomonas, Bacillus, and Staphylococcus.

It's worth noting that some bacteria can switch between aerobic and anaerobic metabolism depending on the availability of oxygen. These bacteria are called facultative anaerobes. In contrast, obligate anaerobes are bacteria that cannot tolerate oxygen and will die in its presence.

Trimethoprim-sulfamethoxazole combination is an antibiotic medication used to treat various bacterial infections. It contains two active ingredients: trimethoprim and sulfamethoxazole, which work together to inhibit the growth of bacteria by interfering with their ability to synthesize folic acid, a vital component for their survival.

Trimethoprim is a bacteriostatic agent that inhibits dihydrofolate reductase, an enzyme needed for bacterial growth, while sulfamethoxazole is a bacteriostatic sulfonamide that inhibits the synthesis of tetrahydrofolate by blocking the action of the enzyme bacterial dihydropteroate synthase. The combination of these two agents produces a synergistic effect, increasing the overall antibacterial activity of the medication.

Trimethoprim-sulfamethoxazole is commonly used to treat urinary tract infections, middle ear infections, bronchitis, traveler's diarrhea, and pneumocystis pneumonia (PCP), a severe lung infection that can occur in people with weakened immune systems. It is also used as a prophylactic treatment to prevent PCP in individuals with HIV/AIDS or other conditions that compromise the immune system.

As with any medication, trimethoprim-sulfamethoxazole combination can have side effects and potential risks, including allergic reactions, skin rashes, gastrointestinal symptoms, and blood disorders. It is essential to follow the prescribing physician's instructions carefully and report any adverse reactions promptly.

Quinazolinones are a class of organic compounds that contain a quinazolinone core structure. Quinazolinone is a heterocyclic compound made up of a quinazoline ring fused to a ketone group. This structure contains nitrogen atoms at positions 1, 3, and 9 of the fused benzene and pyridine rings.

Quinazolinones have various biological activities, including anti-cancer, anti-malarial, anti-inflammatory, and kinase inhibitor properties. They are used as building blocks in the synthesis of pharmaceuticals and other organic compounds. Some drugs containing quinazolinone moieties include the chemotherapy agent gefitinib (Iressa) and the antimalarial drug chloroquine.

It is important to note that Quinazolinones are not a medication themselves, but rather a class of organic compounds with various potential medical applications.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Chloramphenicol is an antibiotic medication that is used to treat a variety of bacterial infections. It works by inhibiting the ability of bacteria to synthesize proteins, which essential for their growth and survival. This helps to stop the spread of the infection and allows the body's immune system to clear the bacteria from the body.

Chloramphenicol is a broad-spectrum antibiotic, which means that it is effective against many different types of bacteria. It is often used to treat serious infections that have not responded to other antibiotics. However, because of its potential for serious side effects, including bone marrow suppression and gray baby syndrome, chloramphenicol is usually reserved for use in cases where other antibiotics are not effective or are contraindicated.

Chloramphenicol can be given by mouth, injection, or applied directly to the skin in the form of an ointment or cream. It is important to take or use chloramphenicol exactly as directed by a healthcare provider, and to complete the full course of treatment even if symptoms improve before all of the medication has been taken. This helps to ensure that the infection is fully treated and reduces the risk of antibiotic resistance.

Quinolizines are not a medical term, but a chemical classification for a group of compounds that contain a quinolizine ring in their structure. A quinolizine ring is a polycyclic aromatic hydrocarbon with eight pi electrons and consists of two benzene rings fused to a piperidine ring.

Quinolizines have been studied for their potential medicinal properties, including anti-malarial, anti-cancer, and anti-microbial activities. However, there are no currently approved drugs that contain quinolizine as the primary active ingredient. Therefore, it is not possible to provide a medical definition of 'Quinolizines.'

Chronic bronchitis is a long-term inflammation of the airways (bronchi) in the lungs. It is characterized by a persistent cough that produces excessive mucus or sputum. The cough and mucus production must be present for at least three months in two consecutive years to meet the diagnostic criteria for chronic bronchitis.

The inflammation of the airways can lead to narrowing, obstructing the flow of air into and out of the lungs, resulting in shortness of breath and wheezing. Chronic bronchitis is often associated with exposure to irritants such as tobacco smoke, dust, or chemical fumes over an extended period.

It is a significant component of chronic obstructive pulmonary disease (COPD), which also includes emphysema. While there is no cure for chronic bronchitis, treatments can help alleviate symptoms and slow the progression of the disease. These may include bronchodilators, corticosteroids, and pulmonary rehabilitation. Quitting smoking is crucial in managing this condition.

A lactam is a cyclic amide compound containing a carbonyl group (a double-bonded carbon atom) and a nitrogen atom. The name "lactam" is derived from the fact that these compounds are structurally similar to lactones, which are cyclic esters, but with an amide bond instead of an ester bond.

Lactams can be found in various natural and synthetic compounds, including some antibiotics such as penicillin and cephalosporins. These antibiotics contain a four-membered lactam ring (known as a β-lactam) that is essential for their biological activity. The β-lactam ring makes these compounds highly reactive, allowing them to inhibit bacterial cell wall synthesis and thus kill the bacteria.

In summary, lactams are cyclic amide compounds with a carbonyl group and a nitrogen atom in the ring structure. They can be found in various natural and synthetic compounds, including some antibiotics such as penicillin and cephalosporins.

'Bacteroides fragilis' is a species of gram-negative, anaerobic, rod-shaped bacteria that are commonly found in the human gastrointestinal tract. They are part of the normal gut flora and play an important role in maintaining a healthy digestive system. However, they can also cause infections when they enter other parts of the body, such as the abdomen or bloodstream, particularly in individuals with weakened immune systems.

Bacteroides fragilis is known for its ability to produce enzymes that allow it to resist antibiotics and evade the host's immune system. This makes it a challenging bacterium to treat and can lead to serious and potentially life-threatening infections, such as abscesses, sepsis, and meningitis.

Proper hygiene, such as handwashing and safe food handling practices, can help prevent the spread of Bacteroides fragilis and other bacteria that can cause infections. If an infection does occur, it is typically treated with a combination of surgical drainage and antibiotics that are effective against anaerobic bacteria.

Enterobacteriaceae is a family of gram-negative, rod-shaped bacteria that are commonly found in the intestines of humans and animals. Many species within this family are capable of causing various types of infections, particularly in individuals with weakened immune systems. Some common examples of Enterobacteriaceae include Escherichia coli (E. coli), Klebsiella pneumoniae, Proteus mirabilis, and Salmonella enterica.

These bacteria are typically characterized by their ability to ferment various sugars and produce acid and gas as byproducts. They can also be distinguished by their biochemical reactions, such as their ability to produce certain enzymes or resist specific antibiotics. Infections caused by Enterobacteriaceae can range from mild to severe, depending on the species involved and the overall health of the infected individual.

Some infections caused by Enterobacteriaceae include urinary tract infections, pneumonia, bloodstream infections, and foodborne illnesses. Proper hygiene, such as handwashing and safe food handling practices, can help prevent the spread of these bacteria and reduce the risk of infection.

Mycobacterium avium Complex (MAC) is a group of slow-growing mycobacteria that includes Mycobacterium avium and Mycobacterium intracellulare. These bacteria are commonly found in water, soil, and dust, and can cause pulmonary disease, lymphadenitis, and disseminated infection, particularly in individuals with compromised immune systems, such as those with HIV/AIDS. The infection caused by MAC is often chronic and difficult to eradicate, requiring long-term antibiotic therapy.

Escherichia coli (E. coli) infections refer to illnesses caused by the bacterium E. coli, which can cause a range of symptoms depending on the specific strain and site of infection. The majority of E. coli strains are harmless and live in the intestines of healthy humans and animals. However, some strains, particularly those that produce Shiga toxins, can cause severe illness.

E. coli infections can occur through various routes, including contaminated food or water, person-to-person contact, or direct contact with animals or their environments. Common symptoms of E. coli infections include diarrhea (often bloody), abdominal cramps, nausea, and vomiting. In severe cases, complications such as hemolytic uremic syndrome (HUS) can occur, which may lead to kidney failure and other long-term health problems.

Preventing E. coli infections involves practicing good hygiene, cooking meats thoroughly, avoiding cross-contamination of food during preparation, washing fruits and vegetables before eating, and avoiding unpasteurized dairy products and juices. Prompt medical attention is necessary if symptoms of an E. coli infection are suspected to prevent potential complications.

Ureaplasma is a genus of bacteria that are commonly found in the lower reproductive tract of humans. They belong to the family Mycoplasmataceae and are characterized by their small size and lack of a cell wall. Ureaplasmas are unique because they have the ability to metabolize urea, which they use as a source of energy for growth.

There are several species of Ureaplasma that can infect humans, including Ureaplasma urealyticum and Ureaplasma parvum. These bacteria can cause a variety of clinical syndromes, particularly in individuals with compromised immune systems or underlying respiratory or genitourinary tract disorders.

Infections caused by Ureaplasma are often asymptomatic but can lead to complications such as urethritis, cervicitis, pelvic inflammatory disease, and pneumonia. In newborns, Ureaplasma infections have been associated with bronchopulmonary dysplasia, a chronic lung disorder that can lead to long-term respiratory problems.

Diagnosis of Ureaplasma infections typically involves the use of nucleic acid amplification tests (NAATs) such as polymerase chain reaction (PCR) assays. Treatment usually consists of antibiotics such as macrolides or fluoroquinolones, which are effective against these bacteria.

Imipenem is an antibiotic medication that belongs to the class of carbapenems. It is used to treat various types of bacterial infections, including pneumonia, sepsis, and skin infections. Imipenem works by inhibiting the synthesis of bacterial cell walls, leading to bacterial death.

Imipenem is often combined with another medication called cilastatin, which helps to prevent the breakdown of imipenem in the body and increase its effectiveness. The combination of imipenem and cilastatin is available under the brand name Primaxin.

Like other antibiotics, imipenem should be used with caution and only when necessary, as overuse can lead to antibiotic resistance. It is important to follow the prescribing physician's instructions carefully and complete the full course of treatment, even if symptoms improve before the medication is finished.

Stenotrophomonas maltophilia is a gram-negative, aerobic, non-fermentative bacillus that is commonly found in moist environments such as soil and water. It has emerged as an important nosocomial pathogen, particularly in patients with compromised immune systems or underlying lung diseases.

S. maltophilia can cause a variety of infections, including pneumonia, bacteremia, urinary tract infections, and wound infections. It is inherently resistant to many antibiotics, making it difficult to treat. The bacteria produce biofilms, which can make them even more resistant to antibiotics and host defenses.

Infection with S. maltophilia is associated with high mortality rates, particularly in critically ill patients. Prompt identification and appropriate antimicrobial therapy are essential for the successful management of infections caused by this organism.

A "colony count" is a method used to estimate the number of viable microorganisms, such as bacteria or fungi, in a sample. In this technique, a known volume of the sample is spread onto the surface of a solid nutrient medium in a petri dish and then incubated under conditions that allow the microorganisms to grow and form visible colonies. Each colony that grows on the plate represents an individual cell (or small cluster of cells) from the original sample that was able to divide and grow under the given conditions. By counting the number of colonies that form, researchers can make a rough estimate of the concentration of microorganisms in the original sample.

The term "microbial" simply refers to microscopic organisms, such as bacteria, fungi, or viruses. Therefore, a "colony count, microbial" is a general term that encompasses the use of colony counting techniques to estimate the number of any type of microorganism in a sample.

Colony counts are used in various fields, including medical research, food safety testing, and environmental monitoring, to assess the levels of contamination or the effectiveness of disinfection procedures. However, it is important to note that colony counts may not always provide an accurate measure of the total number of microorganisms present in a sample, as some cells may be injured or unable to grow under the conditions used for counting. Additionally, some microorganisms may form clusters or chains that can appear as single colonies, leading to an overestimation of the true cell count.

Penicillin resistance is the ability of certain bacteria to withstand the antibacterial effects of penicillin, a type of antibiotic. This occurs when these bacteria have developed mechanisms that prevent penicillin from binding to and inhibiting the function of their cell wall biosynthesis proteins, particularly the enzyme transpeptidase.

One common mechanism of penicillin resistance is the production of beta-lactamases, enzymes that can hydrolyze and inactivate the beta-lactam ring structure present in penicillin and other related antibiotics. Another mechanism involves alterations in the bacterial cell wall that prevent penicillin from binding to its target proteins.

Penicillin resistance is a significant concern in clinical settings, as it can limit treatment options for bacterial infections and may necessitate the use of more potent or toxic antibiotics. It is important to note that misuse or overuse of antibiotics can contribute to the development and spread of antibiotic-resistant bacteria, including those resistant to penicillin.

"Klebsiella pneumoniae" is a medical term that refers to a type of bacteria belonging to the family Enterobacteriaceae. It's a gram-negative, encapsulated, non-motile, rod-shaped bacterium that can be found in various environments, including soil, water, and the gastrointestinal tracts of humans and animals.

"Klebsiella pneumoniae" is an opportunistic pathogen that can cause a range of infections, particularly in individuals with weakened immune systems or underlying medical conditions. It's a common cause of healthcare-associated infections, such as pneumonia, urinary tract infections, bloodstream infections, and wound infections.

The bacterium is known for its ability to produce a polysaccharide capsule that makes it resistant to phagocytosis by white blood cells, allowing it to evade the host's immune system. Additionally, "Klebsiella pneumoniae" has developed resistance to many antibiotics, making infections caused by this bacterium difficult to treat and a growing public health concern.

Drug utilization refers to the use of medications by patients or healthcare professionals in a real-world setting. It involves analyzing and evaluating patterns of medication use, including prescribing practices, adherence to treatment guidelines, potential duplications or interactions, and outcomes associated with drug therapy. The goal of drug utilization is to optimize medication use, improve patient safety, and minimize costs while achieving the best possible health outcomes. It can be studied through various methods such as prescription claims data analysis, surveys, and clinical audits.

Bacterial outer membrane proteins (OMPs) are a type of protein found in the outer membrane of gram-negative bacteria. The outer membrane is a unique characteristic of gram-negative bacteria, and it serves as a barrier that helps protect the bacterium from hostile environments. OMPs play a crucial role in maintaining the structural integrity and selective permeability of the outer membrane. They are involved in various functions such as nutrient uptake, transport, adhesion, and virulence factor secretion.

OMPs are typically composed of beta-barrel structures that span the bacterial outer membrane. These proteins can be classified into several groups based on their size, function, and structure. Some of the well-known OMP families include porins, autotransporters, and two-partner secretion systems.

Porins are the most abundant type of OMPs and form water-filled channels that allow the passive diffusion of small molecules, ions, and nutrients across the outer membrane. Autotransporters are a diverse group of OMPs that play a role in bacterial pathogenesis by secreting virulence factors or acting as adhesins. Two-partner secretion systems involve the cooperation between two proteins to transport effector molecules across the outer membrane.

Understanding the structure and function of bacterial OMPs is essential for developing new antibiotics and therapies that target gram-negative bacteria, which are often resistant to conventional treatments.

"Mycobacterium" is a genus of gram-positive, aerobic, rod-shaped bacteria that are characterized by their complex cell walls containing large amounts of lipids. This genus includes several species that are significant in human and animal health, most notably Mycobacterium tuberculosis, which causes tuberculosis, and Mycobacterium leprae, which causes leprosy. Other species of Mycobacterium can cause various diseases in humans, including skin and soft tissue infections, lung infections, and disseminated disease in immunocompromised individuals. These bacteria are often resistant to common disinfectants and antibiotics, making them difficult to treat.

"Spiro compounds" are not specifically classified as medical terms, but they are a concept in organic chemistry. However, I can provide a general definition:

Spiro compounds are a type of organic compound that contains two or more rings, which share a single common atom, known as the "spiro center." The name "spiro" comes from the Greek word for "spiral" or "coiled," reflecting the three-dimensional structure of these molecules.

The unique feature of spiro compounds is that they have at least one spiro atom, typically carbon, which is bonded to four other atoms, two of which belong to each ring. This arrangement creates a specific geometry where the rings are positioned at right angles to each other, giving spiro compounds distinctive structural and chemical properties.

While not directly related to medical terminology, understanding spiro compounds can be essential in medicinal chemistry and pharmaceutical research since these molecules often exhibit unique biological activities due to their intricate structures.

Viridans Streptococci are a group of gram-positive, facultatively anaerobic bacteria that are part of the normal flora in the oral cavity, upper respiratory tract, and gastrointestinal tract. They are called "viridans" because they tend to decolorize slowly and appear greenish in Gram stains. This group includes several species, such as Streptococcus mitis, Streptococcus sanguinis, Streptococcus salivarius, and Streptococcus mutans.

Viridans Streptococci are often associated with dental caries and periodontal disease. However, they can also cause invasive infections, particularly in immunocompromised individuals or those with underlying medical conditions. These infections may include bacteremia, endocarditis, abscesses, and meningitis.

It is important to note that the identification of Viridans Streptococci can be challenging due to their similarities in biochemical characteristics. Therefore, molecular methods such as 16S rRNA gene sequencing are often used for accurate species-level identification.

'Enterobacter cloacae' is a species of Gram-negative, facultatively anaerobic, rod-shaped bacteria that are commonly found in the environment, including in soil, water, and the gastrointestinal tracts of humans and animals. They are part of the family Enterobacteriaceae and can cause various types of infections in humans, particularly in individuals with weakened immune systems or underlying medical conditions.

E. cloacae is known to be an opportunistic pathogen, which means that it typically does not cause disease in healthy people but can take advantage of a weakened host to cause infection. It can cause a range of infections, including urinary tract infections, pneumonia, bacteremia (bloodstream infections), and wound infections.

E. cloacae is often resistant to multiple antibiotics, which can make treatment challenging. In recent years, there has been an increase in the number of E. cloacae isolates that are resistant to carbapenems, a class of antibiotics that are typically reserved for treating serious infections caused by multidrug-resistant bacteria. This has led to concerns about the potential for untreatable infections caused by this organism.

Erythromycin is a type of antibiotic known as a macrolide, which is used to treat various types of bacterial infections. It works by inhibiting the bacteria's ability to produce proteins, which are necessary for the bacteria to survive and multiply. Erythromycin is often used to treat respiratory tract infections, skin infections, and sexually transmitted diseases. It may also be used to prevent endocarditis (inflammation of the lining of the heart) in people at risk of this condition.

Erythromycin is generally considered safe for most people, but it can cause side effects such as nausea, vomiting, and diarrhea. It may also interact with other medications, so it's important to tell your doctor about all the drugs you are taking before starting erythromycin.

Like all antibiotics, erythromycin should only be used to treat bacterial infections, as it is not effective against viral infections such as the common cold or flu. Overuse of antibiotics can lead to antibiotic resistance, which makes it harder to treat infections in the future.

Urinary Tract Infections (UTIs) are defined as the presence of pathogenic microorganisms, typically bacteria, in any part of the urinary system, which includes the kidneys, ureters, bladder, and urethra, resulting in infection and inflammation. The majority of UTIs are caused by Escherichia coli (E. coli) bacteria, but other organisms such as Klebsiella, Proteus, Staphylococcus saprophyticus, and Enterococcus can also cause UTIs.

UTIs can be classified into two types based on the location of the infection:

1. Lower UTI or bladder infection (cystitis): This type of UTI affects the bladder and urethra. Symptoms may include a frequent and urgent need to urinate, pain or burning during urination, cloudy or strong-smelling urine, and discomfort in the lower abdomen or back.

2. Upper UTI or kidney infection (pyelonephritis): This type of UTI affects the kidneys and can be more severe than a bladder infection. Symptoms may include fever, chills, nausea, vomiting, and pain in the flanks or back.

UTIs are more common in women than men due to their shorter urethra, which makes it easier for bacteria to reach the bladder. Other risk factors for UTIs include sexual activity, use of diaphragms or spermicides, urinary catheterization, diabetes, and weakened immune systems.

UTIs are typically diagnosed through a urinalysis and urine culture to identify the causative organism and determine the appropriate antibiotic treatment. In some cases, imaging studies such as ultrasound or CT scan may be necessary to evaluate for any underlying abnormalities in the urinary tract.

Rifampin is an antibiotic medication that belongs to the class of drugs known as rifamycins. It works by inhibiting bacterial DNA-dependent RNA polymerase, thereby preventing bacterial growth and multiplication. Rifampin is used to treat a variety of infections caused by bacteria, including tuberculosis, Haemophilus influenzae, Neisseria meningitidis, and Legionella pneumophila. It is also used to prevent meningococcal disease in people who have been exposed to the bacteria.

Rifampin is available in various forms, including tablets, capsules, and injectable solutions. The medication is usually taken two to four times a day, depending on the type and severity of the infection being treated. Rifampin may be given alone or in combination with other antibiotics.

It is important to note that rifampin can interact with several other medications, including oral contraceptives, anticoagulants, and anti-seizure drugs, among others. Therefore, it is essential to inform your healthcare provider about all the medications you are taking before starting treatment with rifampin.

Rifampin may cause side effects such as nausea, vomiting, diarrhea, dizziness, headache, and changes in the color of urine, tears, sweat, and saliva to a reddish-orange color. These side effects are usually mild and go away on their own. However, if they persist or become bothersome, it is important to consult your healthcare provider.

In summary, rifampin is an antibiotic medication used to treat various bacterial infections and prevent meningococcal disease. It works by inhibiting bacterial DNA-dependent RNA polymerase, preventing bacterial growth and multiplication. Rifampin may interact with several other medications, and it can cause side effects such as nausea, vomiting, diarrhea, dizziness, headache, and changes in the color of body fluids.

Clindamycin is a antibiotic medication used to treat a variety of bacterial infections. It is a type of antibiotic known as a lincosamide, which works by binding to the bacterial ribosome and inhibiting protein synthesis. This leads to the death of the bacteria and helps to clear the infection.

Clindamycin is effective against a wide range of gram-positive and some anaerobic bacteria, making it a useful antibiotic for treating many different types of infections, including skin and soft tissue infections, bone and joint infections, respiratory infections, and dental infections. It is also sometimes used to treat certain types of bacterial vaginal infections.

Like all antibiotics, clindamycin should be used only under the direction of a healthcare provider, as misuse can lead to antibiotic resistance. Additionally, clindamycin can cause side effects such as diarrhea, nausea, and vomiting, and it may increase the risk of developing a serious intestinal infection called Clostridioides difficile-associated diarrhea (CDAD). It is important to follow your healthcare provider's instructions carefully when taking this medication.

Beta-lactamases are enzymes produced by certain bacteria that can break down and inactivate beta-lactam antibiotics, such as penicillins, cephalosporins, and carbapenems. This enzymatic activity makes the bacteria resistant to these antibiotics, limiting their effectiveness in treating infections caused by these organisms.

Beta-lactamases work by hydrolyzing the beta-lactam ring, a structural component of these antibiotics that is essential for their antimicrobial activity. By breaking down this ring, the enzyme renders the antibiotic ineffective against the bacterium, allowing it to continue growing and potentially causing harm.

There are different classes of beta-lactamases (e.g., Ambler Class A, B, C, and D), each with distinct characteristics and mechanisms for breaking down various beta-lactam antibiotics. The emergence and spread of bacteria producing these enzymes have contributed to the growing problem of antibiotic resistance, making it increasingly challenging to treat infections caused by these organisms.

To overcome this issue, researchers have developed beta-lactamase inhibitors, which are drugs that can bind to and inhibit the activity of these enzymes, thus restoring the effectiveness of certain beta-lactam antibiotics. Examples of such combinations include amoxicillin/clavulanate (Augmentin) and piperacillin/tazobactam (Zosyn).

Salmonella Paratyphi A is a bacterium that causes a type of enteric fever known as Paratyphoid fever. It's a gram-negative, rod-shaped bacterium that is motile and non-spore forming. This bacterium is transmitted through the fecal-oral route, often through contaminated food or water. The incubation period for paratyphoid fever can range from 5 to 10 days. Symptoms include high fever, headache, abdominal pain, and sometimes a rash. Paratyphoid fever is a systemic infection that can affect various organs in the body, including the liver, spleen, and bone marrow. It's treated with antibiotics, and prevention measures include good hygiene practices, safe food handling, and vaccination for high-risk populations.

Citrobacter is a genus of facultatively anaerobic, gram-negative, rod-shaped bacteria that are commonly found in the environment, including water, soil, and the gastrointestinal tracts of animals and humans. Members of this genus are capable of fermenting various sugars and producing acid and gas as end products. Some species of Citrobacter have been associated with human diseases, particularly in individuals with weakened immune systems or underlying medical conditions. Infections caused by Citrobacter can include urinary tract infections, pneumonia, bloodstream infections, and meningitis.

Enterobacteriaceae are a large family of gram-negative bacteria that are commonly found in the human gut and surrounding environment. Infections caused by Enterobacteriaceae can occur when these bacteria enter parts of the body where they are not normally present, such as the bloodstream, urinary tract, or abdominal cavity.

Enterobacteriaceae infections can cause a range of symptoms depending on the site of infection. For example:

* Urinary tract infections (UTIs) caused by Enterobacteriaceae may cause symptoms such as frequent urination, pain or burning during urination, and lower abdominal pain.
* Bloodstream infections (bacteremia) caused by Enterobacteriaceae can cause fever, chills, and sepsis, a potentially life-threatening condition characterized by a whole-body inflammatory response to infection.
* Pneumonia caused by Enterobacteriaceae may cause cough, chest pain, and difficulty breathing.
* Intra-abdominal infections (such as appendicitis or diverticulitis) caused by Enterobacteriaceae can cause abdominal pain, fever, and changes in bowel habits.

Enterobacteriaceae infections are typically treated with antibiotics, but the increasing prevalence of antibiotic-resistant strains of these bacteria has made treatment more challenging in recent years. Preventing the spread of Enterobacteriaceae in healthcare settings and promoting good hygiene practices can help reduce the risk of infection.

Infectious skin diseases are conditions characterized by an infection or infestation of the skin caused by various microorganisms such as bacteria, viruses, fungi, or parasites. These organisms invade the skin, causing inflammation, redness, itching, pain, and other symptoms. Examples of infectious skin diseases include:

1. Bacterial infections: Cellulitis, impetigo, folliculitis, and MRSA (methicillin-resistant Staphylococcus aureus) infections are examples of bacterial skin infections.
2. Viral infections: Herpes simplex virus (HSV), varicella-zoster virus (VZV), human papillomavirus (HPV), and molluscum contagiosum are common viruses that can cause skin infections.
3. Fungal infections: Tinea pedis (athlete's foot), tinea corporis (ringworm), candidiasis (yeast infection), and pityriasis versicolor are examples of fungal skin infections.
4. Parasitic infestations: Scabies, lice, and bed bugs are examples of parasites that can cause infectious skin diseases.

Treatment for infectious skin diseases depends on the underlying cause and may include topical or oral antibiotics, antiviral medications, antifungal treatments, or insecticides to eliminate parasitic infestations. Proper hygiene, wound care, and avoiding contact with infected individuals can help prevent the spread of infectious skin diseases.

Cilastatin is a medication that is primarily used as a stabilizer and renal protective agent for the antibiotic imipenem. Cilastatin works by inhibiting the deactivation of imipenem by renal dehydropeptidase-I, which helps maintain its therapeutic effectiveness in the body.

Imipenem/cilastatin is a combination medication used to treat various bacterial infections, including pneumonia, sepsis, and skin and urinary tract infections. Cilastatin does not have any antibacterial activity on its own.

It's important to note that the use of cilastatin should be under medical supervision, as with any medication. Always consult a healthcare professional for accurate information regarding medications and their uses.

"Mycoplasma pneumoniae" is a type of bacteria that lacks a cell wall and can cause respiratory infections, particularly bronchitis and atypical pneumonia. It is one of the most common causes of community-acquired pneumonia. Infection with "M. pneumoniae" typically results in mild symptoms, such as cough, fever, and fatigue, although more severe complications can occur in some cases. The bacteria can also cause various extrapulmonary manifestations, including skin rashes, joint pain, and neurological symptoms. Diagnosis of "M. pneumoniae" infection is typically made through serological tests or PCR assays. Treatment usually involves antibiotics such as macrolides or tetracyclines.

... may refer to: 2-Quinolone 4-Quinolone Quinolone antibiotics This set index article lists chemical compounds articles ...
It and 2-quinolone are the two most important parent (meaning simplified) quinolones. 4-Quinolone exists in equilibrium with a ... The hydroxyquinolines tautomerize to the quinolones. Andriole, VT The Quinolones. Academic Press, 1989. Shi, Pengfei; Wang, ... the 4-quinolone antibiotics, represent a large class of important drugs. The chemical synthesis of quinolones often involves ... 4-Quinolone is an organic compound derived from quinoline. ... 4-quinolone is of little intrinsic value but its derivatives, ...
... at Curlie Healthcare-associated Infections (HAIs)- Quinolones and the Clinical Laboratory CDC Information ... Although not formally a quinolone, nalidixic acid is considered the first quinolone drug. It was introduced in 1962 for ... Quinolones should also not be given to people with a known hypersensitivity to the drug class. The basic pharmacophore, or ... Quinolones are associated with a small risk of tendonitis and tendon rupture; a 2013 review found the incidence of tendon ...
The isomer 4-quinolone is the parent of a large class of quinolone antibiotics. One example is Ravesilone. Tashima, Toshihiko ( ... 2-Quinolone is an organic compound related structurally to quinoline. It is the majority tautomer in equilibrium with 2- ... Media related to 2-Quinolone at Wikimedia Commons (Use dmy dates from December 2021, Articles without InChI source, ECHA ...
Committee on Safety of Medicines; Medicines and Healthcare products Regulatory Agency (2008). "Quinolones". United Kingdom: ...
Although quinolones are highly toxic to mammalian cells in culture, its mechanism of cytotoxic action is not known. Quinolone ... Flumequine is the first quinolone compound with a fluorine atom at the C6-position of the related quinolone basic molecular ... Significant and harmful residues of quinolones have been found in animals treated with quinolones and later slaughtered and ... The quinolones (Third Edition 2000) By Vincent T. Andriole Chapter I History and overview By Dr. Peter Ball (page 5) King DE, ...
Some quinolones exert an inhibitory effect on the cytochrome P-450 system, thereby reducing theophylline clearance and ... Quinolones, including norfloxacin, may enhance the effects of oral anticoagulants, including warfarin or its derivatives or ... The toxicity of drugs that are metabolised by the cytochrome P450 system is enhanced by concomitant use of some quinolones. ... The first members of the quinolone antibacterial class were relatively low potency drugs such as nalidixic acid, used mainly in ...
... is a quinolone antibiotic useful for the treatment of a number of bacterial infections. When taken by mouth or ... quinolones for community-acquired pneumonia: meta-analysis of randomized controlled trials". Clinical Microbiology and ... Atarashi S. "Research and Development of Quinolones in Daiichi Sankyo Co., Ltd" (PDF). Daiichi. Archived from the original (PDF ... Simultaneous use of corticosteroids is present in almost one-third of quinolone-associated tendon rupture. Tendon damage may ...
Quinolones Rubinstein E (2001). "History of quinolones and their side effects". Chemotherapy. 47 Suppl 3 (3): 3-8, discussion ...
... is a quinolone antibiotic used to treat bacterial infections. Pefloxacin has not been approved for use in the United ... Casparian JM, Luchi M, Moffat RE, Hinthorn D (May 2000). "Quinolones and tendon ruptures". South. Med. J. 93 (5): 488-91. doi: ... Drlica K, Zhao X (1 September 1997). "DNA gyrase, topoisomerase IV, and the 4-quinolones". Microbiol Mol Biol Rev. 61 (3): 377- ...
Recently new quinolones were added. Outpatient treatment has become possible even at the onset of the disease, and now we can ...
... like other quinolones and fluoroquinolones, are bactericidal drugs, actively killing bacteria. Quinolones inhibit the bacterial ... Quinolones can enter cells easily and therefore are often used to treat intracellular pathogens such as Legionella pneumophila ... Quinolones Psaty BM (December 2008). "Clinical trial design and selected drug safety issues for antibiotics used to treat ...
Quinolones Alksne L (February 2003). "Balofloxacin Choongwae". Current Opinion in Investigational Drugs. 4 (2): 224-9. PMID ...
Despite quinolones ability to target TopII, they can also inhibit TopIV based on the organisms and type of quinolone. ... 1989) model of quinolone inhibitor binding proposed that, in each DNAgyrase-DNA complex, four quinolone molecules associate ... In particular, smaller quinolones have shown to bind with high affinity in the multi-drug efflux pump in Escherichia coli and ... Quinolones are amongst the most commonly used antibiotics for bacterial infections in humans, and are used to treat illness ...
Quinolones can be an effective alternative. A 2012 study has shown that the presence of Enterobacter cloacae B29 in the gut of ...
Synthetic quinolone antibiotics were discovered by George Lesher and coworkers as a byproduct of chloroquine manufacture in the ... In a technical sense, it is a naphthyridone, not a quinolone: its ring structure is a 1,8-naphthyridine nucleus that contains ... Nalidixic acid (tradenames Nevigramon, NegGram, Wintomylon and WIN 18,320) is the first of the synthetic quinolone antibiotics ... "Disabling and potentially permanent side effects lead to suspension or restrictions of quinolone and fluoroquinolone ...
1992). "Cytotoxicity of quinolones toward eukaryotic cells. Identification of topoisomerase II as the primary cellular target ... Although the reaction product is often shown as a hydroxyquinoline (the enol form), it is believed that the quinolone (keto ... The synthesis of 4-hydroxyquinolines and 4-quinolones is of great importance to a variety of fields, but most notably to the ... there is some discrepancy on whether a substituted 4-hydroxyquinoline or a substituted 4-quinolone is the final product of the ...
Rubinstein E (2001). "History of quinolones and their side effects". Chemotherapy. 47 (Suppl 3): 3-8, discussion 44-8. doi: ...
As quinolones are known to induce arthropathy in juvenile animals, administration of the drug to breast-feeding women cannot be ... Fleroxacin is a quinolone antibiotic. It is sold under the brand names Quinodis and Megalocin. Fleroxacin is a bactericidal ... Like other quinolones and fluoroquinolones the compound eradicates bacteria by interfering with DNA replication (bacterial DNA ... Yoshida H, Nakamura M, Bogaki M, Ito H, Kojima T, Hattori H, Nakamura S (April 1993). "Mechanism of action of quinolones ...
However a recent investigation into the origin of quinolones have discovered that a description for quinolones happened in 1949 ... These include the quinolone class, of which nalidixic acid is often credited as the first to be discovered. Like other ... Emmerson, A. M.; Jones, A. M. (2003-05-01). "The quinolones: decades of development and use". Journal of Antimicrobial ... Bisacchi, Gregory S. (2015-06-25). "Origins of the Quinolone Class of Antibacterials: An Expanded "Discovery Story"". Journal ...
For example, WIN 18,320 was nalidixic acid, the first quinolone antibiotic. The Company was established in 1901 (then called ... "The Quinolones: Decades of Development and Use". Journal of Antimicrobial Chemotherapy. 51 (Suppl 1): 13-20. doi:10.1093/jac/ ...
The quinolone is also active against Gram-negative bacteria After oral administration enoxacin is rapidly and well absorbed ... Yoshida H, Nakamura M, Bogaki M, Ito H, Kojima T, Hattori H, Nakamura S (April 1993). "Mechanism of action of quinolones ... De Sarro A, Zappalá M, Chimirri A, Grasso S, De Sarro GB (July 1993). "Quinolones potentiate cefazolin-induced seizures in DBA/ ... Quinolones and fluoroquinolones are bactericidal drugs, eradicating bacteria by interfering with DNA replication. Like other ...
Quinolones Rafalsky V, Andreeva I, Rjabkova E (July 2006). "Quinolones for uncomplicated acute cystitis in women". The Cochrane ... Rufloxacin is a quinolone antibiotic. It is sold under the brand names, Ruflox, Monos, Qari, Tebraxin, Uroflox, Uroclar. ...
Appelbaum PC (1999). "Quinolone activity against anaerobes". Drugs. 58 Suppl 2: 60-4. doi:10.2165/00003495-199958002-00012. ... Rubinstein E (2001). "History of quinolones and their side effects". Chemotherapy. 47 Suppl 3 (3): 3-8, discussion 44-8. doi: ... Nord CE (1999). "Use of newer quinolones for the treatment of intraabdominal infections: focus on clinafloxacin". Infection. 27 ...
Rubinstein E (2001). "History of quinolones and their side effects". Chemotherapy. 47 Suppl 3 (3): 3-8, discussion 44-8. doi: ...
Quinolones "Recalling the Omniflox (Temafloxacin) Tablets" (PDF). Food and Drug Administration. 1992-06-05. Retrieved 2014-10- ... Gentry LO (December 1991). "Review of quinolones in the treatment of infections of the skin and skin structure". J. Antimicrob ... Rubinstein, E. (2001). "History of quinolones and their side effects". Chemotherapy. 47 Suppl 3 (3): 3-8, discussion 44-8. doi: ...
6). Quinolone antibacterial compounds were first developed in the 1960s and have been in clinical use since the 1980s. FQ ... Maxwell A, Bush NG, Germe T, McKie SJ (2018). "Non-quinolone topoisomerase inhibitors". In Fong IW, Drlica K (eds.). ... Bush NG, Diez-Santos I, Abbott LR, Maxwell A (December 2020). "Quinolones: Mechanism, Lethality and Their Contributions to ...
Praziquantel, a quinolone derivative. The effect of praziquantel on H. heterophyes causes deep lesions on their teguments, and ...
Quinolones show effective prophylaxis mainly with hematological cancer. However, in general, for every five people who are ... The risk of illness and death can be reduced by taking common antibiotics such as quinolones or trimethoprim/sulfamethoxazole ...
Commonly referred to as the first generation quinolones. This first generation also included other quinolone drugs such as ... Cinoxacin is a quinolone antibiotic that has been discontinued in the U.K. as well the United States, both as a branded drug or ... Cinoxacin was an older synthetic antimicrobial related to the quinolone class of antibiotics with activity similar to oxolinic ... Drlica K, Zhao X (September 1997). "DNA gyrase, topoisomerase IV, and the 4-quinolones". Microbiology and Molecular Biology ...
Quinolone may refer to: 2-Quinolone 4-Quinolone Quinolone antibiotics This set index article lists chemical compounds articles ...
What are quinolones? Quinolones are antimicrobial agents effective in the treatment of selected community-acquired and ... How does resistance to quinolones develop? Quinolones inhibit two enzymes that are required for bacterial DNA synthesis, i.e., ... What organisms can be resistant to quinolones? Resistance to quinolones has been reported in a variety of important bacterial ... Resistance to quinolones limits drug selection for treatment of many infections.. *Organisms resistant to quinolones often are ...
In summary, differences in quinolone safety are evidenced by labeling changes to gatifloxacin, the only quinolone to carry a ... to the newer quinolones is an appropriate response to Michael Schelds essay on maintaining quinolone class efficacy in which a ... Quinolone safety and efficacy more important than potency. Emerg Infect Dis. 2004;10:156-7.PubMedGoogle Scholar ... Quinolone Safety and Efficacy. Volume 11, Number 6-June 2005. Article Views: 153. Data is collected weekly and does not include ...
Biosynthesis of the Pseudomonas quinolone signal (PQS) is dependent on the pqsABCDE operon, which is positively regulated by ... In the nosocomial pathogen Pseudomonas aeruginosa, the 2-alkyl-4-quinolone (pqs) signaling pathway is crucial for bacterial ... The PqsR and RhlR transcriptional regulators determine the level of Pseudomonas quinolone signal synthesis in Pseudomonas ...
Antibiotic, Quinolone. Moxifloxacin (Avelox). *View full drug information. Moxifloxacin inhibits the A subunits of DNA gyrase, ...
Conclusions: E. coli with non-susceptibility to quinolones are widespread among the environment of Swiss pig farms and are ... Conclusions: E. coli with non-susceptibility to quinolones are widespread among the environment of Swiss pig farms and are ... Our goal was to phenotypically and genotypically characterize 174 E. coli showing non-susceptibility to quinolones isolated ... Our goal was to phenotypically and genotypically characterize 174 E. coli showing non-susceptibility to quinolones isolated ...
... has recommended restricting the use of fluoroquinolone and quinolone antibiotics. ... PRAC October 2018 - Recommendation to restrict the use of fluoroquinolone and quinolone antibiotics date: 09/11/2018 ... The PRAC has recommended restricting the use of fluoroquinolone and quinolone antibiotics (used by mouth, injection or ... Very rarely, patients treated with fluoroquinolone or quinolone antibiotics have suffered long-term and disabling side effects ...
Randox Food Diagnostics offer an exceptionally reliable ELISA platform for the detection of Quinolones in milk. ... Quinolones are a group of synthetic antimicrobials that inhibit the activity of bacterial within the host. The main application ... Randox Food Diagnostics offer an exceptionally reliable ELISA platform for the detection of Quinolones in milk. ... of quinolones is the treatment of infection, including, gastrointestinal and respiratory infections. However, the presence of ...
We no longer support this version of your browser. We recommend that you upgrade to the latest version of Internet Explorer, Firefox, Chrome or Safari to improve your security and experience using this website. ...
Quinolones. Rifabutin. Clofazimine. Combination of beta-Lactam Antibiotics and beta-Lactamase Inhibitors. The New Macrolides. ... Because the quinolones have been shown to cause arthropathies in studies with immature animals, these drugs should only be used ... Quinolones. A number of fluoroquinolones have been developed that show in vitro activity against M. tuberculosis. The target of ... The quinolones are primarily cleared by renal excretion, and the dosage should be adjusted for those with creatinine clearance ...
Comments:input packing wanted or destination,payment terms and other messages (we prefer you directly send your request to [email protected] or [email protected] for backup ...
Administer oral quinolone antibiotics at least 1 hour before or 4 hours after FOSRENOL. When oral quinolones are given for ... 7.2 Quinolone Antibiotics. Co-administration of FOSRENOL with quinolone antibiotics may reduce the extent of their absorption. ... 7.2 Quinolone Antibiotics 7.3 Levothyroxine 7.4 Use with Other Oral Medications 8 USE IN SPECIFIC POPULATIONS 8.1 Pregnancy 8.2 ... Oral quinolone antibiotics must be taken at least 1 hour before or 4 hours after FOSRENOL. (7.2) ...
Quinolone resistant Haemophilus influenzae. / Gould, Ian M; Forbes, Ken J. In: Journal of Antimicrobial Chemotherapy, Vol. 33, ... Gould, I. M., & Forbes, K. J. (1994). Quinolone resistant Haemophilus influenzae. Journal of Antimicrobial Chemotherapy, 33(1 ... Gould, Ian M ; Forbes, Ken J. / Quinolone resistant Haemophilus influenzae. In: Journal of Antimicrobial Chemotherapy. 1994 ; ... Gould, IM & Forbes, KJ 1994, Quinolone resistant Haemophilus influenzae, Journal of Antimicrobial Chemotherapy, vol. 33, no. ...
The Patent Opposition Database is a site that allows civil society to share resources and learn about the tools needed to oppose the application or granting of unwarranted patents on medicines.
... quinolones need of pharmacovigilance steps of adr monitoring cardiovascular system classification of biological rhythm ... quinolones need of pharmacovigilance steps of adr monitoring cardiovascular system classification of biological rhythm ...
Quinolones. Norfloxacin. J01MA06. 13 (0.99). Glycopeptide. Vancomycin. J01XA01. 11 (0.83). Oxazolidinone. Linezolid. J01XX08. ...
Quinolone. QnrB1. Sulfonamides. sul2. Tetracyclines. tet(A), tet(R). Trimethoprim. dfrA14. Disclaimer:. The resistance ...
Antibiotics such as quinolones, nitrofurantoin. Other chemicals, such as those in mothballs, can also trigger an episode. ...
To analyze the sequence of the region involved in the development of quinolone resistance of the gyrA and parC genes in a ... Bartonella bacilliformis, endemic pathogen of the Andean region, is intrinsically resistant to quinolones.. del Valle, Luis J; ... B. bacilliformis presents a constitutive resistance to quinolones, which may be related to the presence of Ala at position 91 ... Five B. bacilliformis were studied four isolated before 1957, prior to the introduction of quinolones in clinical practice. The ...
Where can buy 4-hydroxy-2-quinolone or what is the price of Dihydroxyquinoline, 4-hydroxy-2-quinolone producer, 4- ... China and India manufacturer of 4-hydroxy-2-quinolone CAS:86-95-3 ... Welcome to contact us for 4-hydroxy-2-quinolone COA or MSDS. ... 4-hydroxy-2-quinolone. *CAS:. 86-95-3. *Synonym:. 4-hydroxy-2-quinolone. 4-hydroxy-2(1H)-Quinolinone. 2,4-Quinolinediol. 4- ... Are you looking for China or India manufacturers of 4-hydroxy-2-quinolone CAS:86-95-3, Dihydroxyquinoline factory or 4- ...
Quinolone ear drops study wins Best Clinical Research Paper Award Published On ... A study about quinolone ear drops led by researchers in the department of pharmaceutical outcomes and policy, won the ... In addition, the study suggests that using quinolones together with steroids might further raise the risk of eardrum ... UF researchers found that children receiving quinolone ear drops are 60 percent more likely to have eardrum perforations ...
... monotherapy options include respiratory quinolone. Prior to the use of a fluoroquinolone, an assessment of contraindications ...
Quinolones often offer an adequate treatment [47]. Effective treatment is based on antibiotics (selected by sensitivity testing ...
Quinolone antibiotics: Animal data indicate that NSAIDs can increase the risk of convulsions associated with quinolone ... Patients taking NSAIDs and quinolone may have increased risk of developing convulsions. ...
In contrast, UK C. coli and C. jejuni isolates showed a significantly higher prevalence of quinolone resistance. Specific ... The prevalence of aminoglycoside, macrolide, quinolone, and tetracycline resistance remained fairly stable from 2001 to 2018 in ... quinolones (24.4%), lincosamides (13.5%), and streptothricins (5%). A total of 57.6% (114/198) C. jejuni carried GBS virulence ... multilocus sequence type (MLST) clonal complexes (e.g., ST-353/464) showed >95% quinolone resistance. This large-scale ...
LR: 20150422; JID: 101285081; 0 (Anti-Bacterial Agents); 0 (Quinolones); EC 3.5.2.6 (beta-Lactamases); OID: NLM: PMC3767592; ...
Quinolones Sulfonamides and Trimethoprim Other Drugs With Specialized Uses Drugs Used Primarily to Treat Mycobacterial ...
  • Quinolone may refer to: 2-Quinolone 4-Quinolone Quinolone antibiotics This set index article lists chemical compounds articles associated with the same name. (wikipedia.org)
  • Data from several studies suggest that there is a link between the agricultural use of antibiotics and the prevalence of antibiotic-resistant bacteria in the pig farm environment, including (fluoro)quinolone resistance. (uzh.ch)
  • The PRAC has recommended restricting the use of fluoroquinolone and quinolone antibiotics (used by mouth, injection or inhalation) following a review of disabling and potentially long-term side effects reported with these medicines. (famhp.be)
  • The review incorporated the views of patients, healthcare professionals and academics presented at EMA's public hearing on fluoroquinolone and quinolone antibiotics in June 2018. (famhp.be)
  • Very rarely, patients treated with fluoroquinolone or quinolone antibiotics have suffered long-term and disabling side effects, mainly involving muscles, tendons and bones and the nervous system. (famhp.be)
  • These patients are at higher risk of tendon injury caused by fluoroquinolone and quinolone antibiotics. (famhp.be)
  • Oral quinolone antibiotics must be taken at least 1 hour before or 4 hours after FOSRENOL. (nih.gov)
  • His letter to the editor emphasizing the paramount importance of a well-established safety profile and documented clinical efficacy in severe infections before a "wholesale change" to the newer quinolones is an appropriate response to Michael Scheld's essay on maintaining quinolone class efficacy in which a "correct spectrum" strategy of using the most potent quinolone to treat the presumed or confirmed pathogen was described and advocated ( 1 ). (cdc.gov)
  • With respect to efficacy, Frothingham writes that ciprofloxacin and levofloxacin have been studied in patient populations with more severe illness, and trials of the newer quinolones have enrolled patients with predominantly mild or moderate community-acquired infections and low overall death rates in comparison. (cdc.gov)
  • Resistance to quinolones occurs through chromosomal mutations in the genes encoding these enzymes and by porin and efflux mutations. (cdc.gov)
  • PCR and sequence analysis were performed to identify chromosomal mutations in the quinolone resistance-determining regions (QRDR) of gyrA and the isolates were screened for the presence of the plasmid-mediated quinolone resistance (PMQR) genes aac-(6')-Ib-cr, qepA, qnrA, qnrB, qnrC, qnrD and qnrS. (uzh.ch)
  • Why is resistance to quinolones important? (cdc.gov)
  • Resistance to quinolones limits drug selection for treatment of many infections. (cdc.gov)
  • Reporting susceptibilities to various quinolones provides the information necessary to choose an appropriate therapy that will minimize the selection of mutations leading to resistance. (cdc.gov)
  • How does resistance to quinolones develop? (cdc.gov)
  • Many resistant organisms have multiple enzyme target site, porin, and efflux mutations, producing high-level resistance to quinolones. (cdc.gov)
  • To analyze the sequence of the region involved in the development of quinolone resistance of the gyrA and parC genes in a series of Bartonella bacilliformis isolates recovered prior to the introduction of quinolones , as well as one clinical isolate recovered in the 1970s, establishing the susceptibility levels to nalidixic acid and ciprofloxacin . (bvsalud.org)
  • B. bacilliformis presents a constitutive resistance to quinolones , which may be related to the presence of Ala at position 91 of GyrA and 85 of ParC. (bvsalud.org)
  • Consider consulting an infectious disease specialist to identify other treatment options, because some Shigella isolates with susceptible ciprofloxacin MICs may harbor one or more quinolone resistance mechanisms. (cdc.gov)
  • Molecular data indicate that most Shigella isolates with ciprofloxacin MICs in the noted range harbor at least one quinolone resistance mechanism. (cdc.gov)
  • Shigella isolates without a quinolone resistance mechanism typically have a ciprofloxacin MIC of ≤0.015 μg/mL. (cdc.gov)
  • In his article, Frothingham reminds us that serious adverse drug effects in patients led to the withdrawal or restriction of 4 quinolones in the last decade and that safety may differ substantially among the quinolones discussed in Scheld's review (ciprofloxacin, gatifloxacin, levofloxacin, moxifloxacin) ( 2 ). (cdc.gov)
  • Currently, with the exception of ciprofloxacin, each of these quinolones contains labeling guidance in the form of a warning (gatifloxacin, moxifloxacin) or a precaution (levofloxacin), and concurrent use with class IA (e.g., quinidine, procainamide) or class III (e.g., amiodarone, sotalol) antiarrhythmics should be avoided to reduce the risk of torsades de pointes per current product labeling. (cdc.gov)
  • Nitrofurantoin is therefore preferable to quinolones (e.g., ciprofloxacin), trimethoprim and pivmecillinam from an environmental point of view (selection risk) when appropriate from a clinical perspective. (janusinfo.se)
  • Background: In the last decade, the growth of the pig-farming industry has led to an increase in antibiotic use, including several used in human medicine, e.g. (fluoro)quinolones. (uzh.ch)
  • Following its evaluation of these side effects, the PRAC has recommended that some medicines, including all those that contain a quinolone antibiotic, should be removed from the market. (famhp.be)
  • Organisms resistant to quinolones often are resistant to other classes of antimicrobials. (cdc.gov)
  • Can an isolate be resistant to one quinolone and susceptible to another? (cdc.gov)
  • Forbes, Ken J. / Quinolone resistant Haemophilus influenzae . (elsevierpure.com)
  • Bartonella bacilliformis, endemic pathogen of the Andean region, is intrinsically resistant to quinolones. (bvsalud.org)
  • Quinolones are a group of synthetic antimicrobials that inhibit the activity of bacterial within the host. (randoxfood.com)
  • quinolones (eg, norfloxacin 400 mg orally once/day) are most widely used. (msdmanuals.com)
  • In the nosocomial pathogen Pseudomonas aeruginosa, the 2-alkyl-4-quinolone (pqs) signaling pathway is crucial for bacterial survival under stressful conditions. (nih.gov)
  • Quinolones inhibit two enzymes that are required for bacterial DNA synthesis, i.e. (cdc.gov)
  • The targets of quinolone activity are the bacterial DNA gyrase and topoisomerase IV, enzymes essential for DNA replication and transcription. (cdc.gov)
  • The main application of quinolones is the treatment of infection, including, gastrointestinal and respiratory infections. (randoxfood.com)
  • Quinolones are antimicrobial agents effective in the treatment of selected community-acquired and nosocomial infections. (cdc.gov)
  • Early quinolones, such as nalidixic acid, had poor systemic distribution and limited activity and were used primarily for Gram-negative urinary tract infections. (cdc.gov)
  • Conclusions: E. coli with non-susceptibility to quinolones are widespread among the environment of Swiss pig farms and are often associated with an MDR phenotype. (uzh.ch)
  • Richard Frothingham should be commended for providing added perspective on the matter of quinolone selection. (cdc.gov)
  • Five B. bacilliformis were studied four isolated before 1957, prior to the introduction of quinolones in clinical practice. (bvsalud.org)
  • As a result of tens of millions of patient exposures, we now have more robust data to work with and are better able to make informed and meaningful safety comparisons, particularly with respect to torsades de pointes, a rare, life-threatening cardiac arrhythmia infrequently associated with quinolone therapy. (cdc.gov)
  • However, the incidence of torsades de pointes associated with each of these agents is ripe for further investigation as we pass the 5-year mark of approval for the new respiratory quinolones. (cdc.gov)
  • EMAILWIRE.COM, April 04, 2024 ) According to the latest analysis by Virtue Market Research in 2023, the Global Quinolones Market was valued at $53.58 Billion and is projected to reach a market size of $74.64 Billion by 2030. (emailwire.com)
  • With the exception of labeling changes regarding glucose homeostasis abnormalities associated with gatifloxacin therapy, the subject of quinolone safety is centered on torsades de pointes. (cdc.gov)
  • Our goal was to phenotypically and genotypically characterize 174 E. coli showing non-susceptibility to quinolones isolated from environmental samples from pig farms. (uzh.ch)
  • In addition, the study suggests that using quinolones together with steroids might further raise the risk of eardrum perforations. (ufl.edu)
  • Investigation of plasmid-mediated quinolone resistance genes in quinolone-resistant Escherichia coli and klebsiella spp. (ktu.edu.tr)
  • Early quinolones, such as nalidixic acid, had poor systemic distribution and limited activity and were used primarily for Gram-negative urinary tract infections. (cdc.gov)
  • and the quinolone antibiotics cinoxacin, nalidixic acid, and pipemidic acid. (medscape.com)
  • New generations of quinolones: with particular attention to levofloxacin. (nih.gov)
  • The new restrictions on the use of fluoroquinolones and quinolones will become applicable after a Commission decision is issued. (medscape.com)
  • Those fluoroquinolones exerting significant effects on haematopoiesis were those with a cyclopropyl moiety at position N1 of their quinolone core structure. (nih.gov)
  • Despite the evident similarity of the quinolone moiety of our compounds with fluoroquinolones, our compounds do not function by inhibiting DNA gyrase. (abo.fi)
  • Quinolones are antimicrobial agents effective in the treatment of selected community-acquired and nosocomial infections. (cdc.gov)
  • The aim of this study was to investigate the presence of known PMQR genes namely qnrA, qnrB, qnrC, qnrS, qnrD, aac(6′)-lb-cr, qepA and oqxAB amongst quinolone-resistant E coli and Klebsiella spp. (ktu.edu.tr)
  • Consequently, inactivation of ExoVII results in hypersensitivity to quinolones. (nih.gov)
  • Cite this: PRAC Recommends Restrictions on Fluoroquinolone, Quinolones - Medscape - Oct 05, 2018. (medscape.com)
  • isolates, with a total of 44% (85/193) of all the isolates were found to be phenotypically resistant to quinolones. (ktu.edu.tr)
  • The aim of this study was to examine the mechanism underlying the elevation in serum creatinine levels caused by a novel des-fluoro(6)-quinolone antibacterial agent, DX-619, in healthy subjects. (nih.gov)
  • Inspired by the broad antibacterial activities of various heterocyclic compounds such as 2-quinolone derivatives, we designed and synthesized new methyl-(2-oxo-1,2-dihydroquinolin-4-yl)-L-alaninate-1,2,3-triazole derivatives via 1,3-dipolar cycloaddition reaction of 1-propargyl-2-quinolone-L-alaninate with appropriate azide groups. (abo.fi)
  • infections which are the most common opportunistic pathogens of gram-negative sepsis is quinolones. (ktu.edu.tr)
  • Exonuclease VII (ExoVII) repairs quinolone-induced DNA damage by excising the tyrosyl-DNA linkage between DNA and trapped DNA gyrase, an essential prokaryotic type II A topoisomerase. (nih.gov)
  • The last several years have seen dramatic uptake of all 3 respiratory quinolones. (cdc.gov)
  • However, the incidence of torsades de pointes associated with each of these agents is ripe for further investigation as we pass the 5-year mark of approval for the new respiratory quinolones. (cdc.gov)
  • In addition, the combination of ExoVII inhibitors with quinolones may allow dose reduction - potentially decreasing side-effects. (nih.gov)
  • Structurally similar Quinolone-related medication has been used in neonates and infants without known side effects (Newby 2017, Dutta 2006, Belet 2004, Drossou 2004, van den Oever 1998, Gürpinar 1997). (e-lactancia.org)
  • Salmonella and Campylobacter ) has already been reported, but the scope of the problems still needs to be identified and the links between quinolone use in animals and the occurrence of problems in infectious disease treatment in humans elucidated. (who.int)
  • With the exception of labeling changes regarding glucose homeostasis abnormalities associated with gatifloxacin therapy, the subject of quinolone safety is centered on torsades de pointes. (cdc.gov)
  • In summary, differences in quinolone safety are evidenced by labeling changes to gatifloxacin, the only quinolone to carry a specific warning regarding glucose homeostasis abnormalities. (cdc.gov)
  • 50 tonnes for proprietary products (mainly USA, European Union, Japan, South Korea) and, because of their lower prices, about 70 tonnes for generic quinolones. (who.int)