A species of gram-negative, aerobic bacteria isolated from soil and water as well as clinical specimens. Occasionally it is an opportunistic pathogen.
A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants.
A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection.
Infections with bacteria of the genus PSEUDOMONAS.
A widely used industrial solvent.
A species of nonpathogenic fluorescent bacteria found in feces, sewage, soil, and water, and which liquefy gelatin.
Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules.
A family of isomeric, colorless aromatic hydrocarbon liquids, that contain the general formula C6H4(CH3)2. They are produced by the destructive distillation of coal or by the catalytic reforming of petroleum naphthenic fractions. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
Catalyzes the oxidation of catechol to 2-hydroxymuconate semialdehyde in the carbazole and BENZOATE degradation via HYDROXYLATION pathways. It also catalyzes the conversion of 3-methylcatechol to cis, cis-2-hydroxy-6-oxohept-2,4-dienoate in the TOLUENE and XYLENE degradation pathway. This enzyme was formerly characterized as EC 1.13.1.2.
Elimination of ENVIRONMENTAL POLLUTANTS; PESTICIDES and other waste using living organisms, usually involving intervention of environmental or sanitation engineers.
Non-heme iron-containing enzymes that incorporate two atoms of OXYGEN into the substrate. They are important in biosynthesis of FLAVONOIDS; GIBBERELLINS; and HYOSCYAMINE; and for degradation of AROMATIC HYDROCARBONS.
Proteins found in any species of bacterium.
A group of 1,2-benzenediols that contain the general formula R-C6H5O2.
The functional hereditary units of BACTERIA.
Derivatives of BENZOIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxybenzene structure.
A bicyclic monoterpene ketone found widely in plants, especially CINNAMOMUM CAMPHORA. It is used topically as a skin antipruritic and as an anti-infective agent.
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
An enzyme that catalyzes the conversion of 4,5-dihydro-4-oxo-5-imidazolepropanoate to urocanate and water. EC 4.2.1.49.
Fatty acid biopolymers that are biosynthesized by microbial polyhydroxyalkanoate synthase enzymes. They are being investigated for use as biodegradable polyesters.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
An enzyme that catalyzes the oxidation of catechol to muconic acid with the use of Fe3+ as a cofactor. This enzyme was formerly characterized as EC 1.13.1.1 and EC 1.99.2.2.
Derivatives of adipic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,6-carboxy terminated aliphatic structure.
A species of gram-negative bacteria in the genus PSEUDOMONAS, containing multiple genomovars. It is distinguishable from other pseudomonad species by its ability to use MALTOSE and STARCH as sole carbon and energy sources. It can degrade ENVIRONMENTAL POLLUTANTS and has been used as a model organism to study denitrification.
Viruses whose host is Pseudomonas. A frequently encountered Pseudomonas phage is BACTERIOPHAGE PHI 6.
A species of gram-negative, fluorescent, phytopathogenic bacteria in the genus PSEUDOMONAS. It is differentiated into approximately 50 pathovars with different plant pathogenicities and host specificities.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION.
Methyl, propyl, butyl, and ethyl esters of p-hydroxybenzoic acid. They have been approved by the FDA as antimicrobial agents for foods and pharmaceuticals. (From Hawley's Condensed Chemical Dictionary, 11th ed, p872)
An antiseptic and disinfectant aromatic alcohol.
A fungistatic compound that is widely used as a food preservative. It is conjugated to GLYCINE in the liver and excreted as hippuric acid.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.
Benzoic acid or benzoic acid esters substituted with one or more chlorine atoms.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Derivatives of phenylacetic acid. Included under this heading are a variety of acid forms, salts, esters, and amides that contain the benzeneacetic acid structure. Note that this class of compounds should not be confused with derivatives of phenyl acetate, which contain the PHENOL ester of ACETIC ACID.
Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation.
A DNA-directed RNA polymerase found in BACTERIA. It is a holoenzyme that consists of multiple subunits including sigma factor 54.
The generic name for the group of aliphatic hydrocarbons Cn-H2n+2. They are denoted by the suffix -ane. (Grant & Hackh's Chemical Dictionary, 5th ed)
Any member of the class of enzymes that catalyze the cleavage of the substrate and the addition of water to the resulting molecules, e.g., ESTERASES, glycosidases (GLYCOSIDE HYDROLASES), lipases, NUCLEOTIDASES, peptidases (PEPTIDE HYDROLASES), and phosphatases (PHOSPHORIC MONOESTER HYDROLASES). EC 3.
Organic compounds containing carbon and hydrogen in the form of an unsaturated, usually hexagonal ring structure. The compounds can be single ring, or double, triple, or multiple fused rings.
A colorless, toxic liquid with a strong aromatic odor. It is used to make rubbers, polymers and copolymers, and polystyrene plastics.
Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom.
A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5.
A soluble cytochrome P-450 enzyme that catalyzes camphor monooxygenation in the presence of putidaredoxin, putidaredoxin reductase, and molecular oxygen. This enzyme, encoded by the CAMC gene also known as CYP101, has been crystallized from bacteria and the structure is well defined. Under anaerobic conditions, this enzyme reduces the polyhalogenated compounds bound at the camphor-binding site.
Derivatives of SUCCINIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,4-carboxy terminated aliphatic structure.
The presence of bacteria, viruses, and fungi in the soil. This term is not restricted to pathogenic organisms.
Analogs or derivatives of mandelic acid (alpha-hydroxybenzeneacetic acid).
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
An enzyme that catalyzes the oxidation of protocatechuate to 3-carboxy-cis-cis-muconate in the presence of molecular oxygen. It contains ferric ion. EC 1.13.11.3.
A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
Eight-carbon saturated hydrocarbon group of the methane series. Include isomers and derivatives.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
Oxidoreductases that are specific for ALDEHYDES.
Encrustations, formed from microbes (bacteria, algae, fungi, plankton, or protozoa) embedding in extracellular polymers, that adhere to surfaces such as teeth (DENTAL DEPOSITS); PROSTHESES AND IMPLANTS; and catheters. Biofilms are prevented from forming by treating surfaces with DENTIFRICES; DISINFECTANTS; ANTI-INFECTIVE AGENTS; and antifouling agents.
Two-ring crystalline hydrocarbons isolated from coal tar. They are used as intermediates in chemical synthesis, as insect repellents, fungicides, lubricants, preservatives, and, formerly, as topical antiseptics.
Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation.
A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99).
Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA.
A colorless liquid with a sharp burning taste and slight odor. It is used as a local anesthetic and to reduce pain associated with LIDOCAINE injection. Also, it is used in the manufacture of other benzyl compounds, as a pharmaceutic aid, and in perfumery and flavoring.
Substances that reduce the growth or reproduction of BACTERIA.
Alcohols derived from the aryl radical (C6H5CH2-) and defined by C6H5CHOH. The concept includes derivatives with any substituents on the benzene ring.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
Enzymes that catalyze the transposition of double bond(s) in a steroid molecule. EC 5.3.3.
The rate dynamics in chemical or physical systems.
Benzoate derivatives substituted by one or more hydroxy groups in any position on the benzene ring.
Low-molecular-weight compounds produced by microorganisms that aid in the transport and sequestration of ferric iron. (The Encyclopedia of Molecular Biology, 1994)
A 2,4,6-trinitrotoluene, which is an explosive chemical that can cause skin irritation and other toxic consequences.
A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell.
Enzymes that transfer the ADP-RIBOSE group of NAD or NADP to proteins or other small molecules. Transfer of ADP-ribose to water (i.e., hydrolysis) is catalyzed by the NADASES. The mono(ADP-ribose)transferases transfer a single ADP-ribose. POLY(ADP-RIBOSE) POLYMERASES transfer multiple units of ADP-ribose to protein targets, building POLY ADENOSINE DIPHOSPHATE RIBOSE in linear or branched chains.
A protein which is a subunit of RNA polymerase. It effects initiation of specific RNA chains from DNA.
A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1.
The salts or esters of salicylic acids, or salicylate esters of an organic acid. Some of these have analgesic, antipyretic, and anti-inflammatory activities by inhibiting prostaglandin synthesis.
An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis.
Bacteria which lose crystal violet stain but are stained pink when treated by Gram's method.
Enzymes that catalyze the breakage of a carbon-oxygen bond leading to unsaturated products via the removal of water. EC 4.2.1.
One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses).
Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell.
A water-soluble, colorless crystal with an acid taste that is used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. (Hawley's Condensed Chemical Dictionary, 12th ed, p1099; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1851)
The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)
The study, utilization, and manipulation of those microorganisms capable of economically producing desirable substances or changes in substances, and the control of undesirable microorganisms.
Drug metabolizing enzymes which oxidize methyl ethers. Usually found in liver microsomes.
One of the FURANS with a carbonyl thereby forming a cyclic lactone. It is an endogenous compound made from gamma-aminobutyrate and is the precursor of gamma-hydroxybutyrate. It is also used as a pharmacological agent and solvent.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Iron-containing proteins that transfer electrons, usually at a low potential, to flavoproteins; the iron is not present as in heme. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
An autosomal recessive genetic disease of the EXOCRINE GLANDS. It is caused by mutations in the gene encoding the CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR expressed in several organs including the LUNG, the PANCREAS, the BILIARY SYSTEM, and the SWEAT GLANDS. Cystic fibrosis is characterized by epithelial secretory dysfunction associated with ductal obstruction resulting in AIRWAY OBSTRUCTION; chronic RESPIRATORY INFECTIONS; PANCREATIC INSUFFICIENCY; maldigestion; salt depletion; and HEAT PROSTRATION.
Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc.
Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions.
The sum of the weight of all the atoms in a molecule.
A highly volatile inhalation anesthetic used mainly in short surgical procedures where light anesthesia with good analgesia is required. It is also used as an industrial solvent. Prolonged exposure to high concentrations of the vapor can lead to cardiotoxicity and neurological impairment.
A phenomenon where microorganisms communicate and coordinate their behavior by the accumulation of signaling molecules. A reaction occurs when a substance accumulates to a sufficient concentration. This is most commonly seen in bacteria.
Salts of alginic acid that are extracted from marine kelp and used to make dental impressions and as absorbent material for surgical dressings.
Substances which pollute the soil. Use for soil pollutants in general or for which there is no specific heading.
Mold and yeast inhibitor. Used as a fungistatic agent for foods, especially cheeses.
Oxidoreductases that are specific for KETONES.
Antibiotic pigment produced by Pseudomonas aeruginosa.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
An enzyme that catalyzes the first step of histidine catabolism, forming UROCANIC ACID and AMMONIA from HISTIDINE. Deficiency of this enzyme is associated with elevated levels of serum histidine and is called histidinemia (AMINO ACID METABOLISM, INBORN ERRORS).
Toxins produced, especially by bacterial or fungal cells, and released into the culture medium or environment.
Enzymes of the isomerase class that catalyze reactions in which a group can be regarded as eliminated from one part of a molecule, leaving a double bond, while remaining covalently attached to the molecule. (From Enzyme Nomenclature, 1992) EC 5.5.
A genus of gram-negative bacteria of the family MORAXELLACEAE, found in soil and water and of uncertain pathogenicity.
Proteins isolated from the outer membrane of Gram-negative bacteria.
The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166)
A P450 oxidoreductase that catalyzes the hydroxylation of the terminal carbon of linear hydrocarbons such as octane and FATTY ACIDS in the omega position. The enzyme may also play a role in the oxidation of a variety of structurally unrelated compounds such as XENOBIOTICS, and STEROIDS.
The usually underground portions of a plant that serve as support, store food, and through which water and mineral nutrients enter the plant. (From American Heritage Dictionary, 1982; Concise Dictionary of Biology, 1990)
Diseases of plants.
Enzymes that catalyze the cleavage of a carbon-sulfur bond by means other than hydrolysis or oxidation. EC 4.4.
The genetic complement of a BACTERIA as represented in its DNA.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Liquids that dissolve other substances (solutes), generally solids, without any change in chemical composition, as, water containing sugar. (Grant & Hackh's Chemical Dictionary, 5th ed)
A species of gram-negative bacteria in the genus PSEUDOMONAS, which is found in SOIL and WATER.
A sugar acid formed by the oxidation of the C-6 carbon of GLUCOSE. In addition to being a key intermediate metabolite of the uronic acid pathway, glucuronic acid also plays a role in the detoxification of certain drugs and toxins by conjugating with them to form GLUCURONIDES.
Organic esters or salts of sulfonic acid derivatives containing an aliphatic hydrocarbon radical.
Body of knowledge related to the use of organisms, cells or cell-derived constituents for the purpose of developing products which are technically, scientifically and clinically useful. Alteration of biologic function at the molecular level (i.e., GENETIC ENGINEERING) is a central focus; laboratory methods used include TRANSFECTION and CLONING technologies, sequence and structure analysis algorithms, computer databases, and gene and protein structure function analysis and prediction.
The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
Steroid derivatives formed by oxidation of a methyl group on the side chain or a methylene group in the ring skeleton to form a ketone.
Vertical transmission of hereditary characters by DNA from cytoplasmic organelles such as MITOCHONDRIA; CHLOROPLASTS; and PLASTIDS, or from PLASMIDS or viral episomal DNA.
Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13).
The presence of bacteria, viruses, and fungi in water. This term is not restricted to pathogenic organisms.
An estrogenic steroid produced by HORSES. It has a total of five double bonds in the A- and B-ring. High concentration of equilenin is found in the URINE of pregnant mares.
Organic compounds containing the carboxy group (-COOH). This group of compounds includes amino acids and fatty acids. Carboxylic acids can be saturated, unsaturated, or aromatic.
Those components of an organism that determine its capacity to cause disease but are not required for its viability per se. Two classes have been characterized: TOXINS, BIOLOGICAL and surface adhesion molecules that effect the ability of the microorganism to invade and colonize a host. (From Davis et al., Microbiology, 4th ed. p486)
Polymers of organic acids and alcohols, with ester linkages--usually polyethylene terephthalate; can be cured into hard plastic, films or tapes, or fibers which can be woven into fabrics, meshes or velours.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
Isomeric forms and derivatives of octanol (C8H17OH).

The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants. (1/1206)

The alk genes are located on the OCT plasmid of Pseudomonas oleovorans and encode an inducible pathway for the utilization of n-alkanes as carbon and energy sources. We have investigated the influence of alternative carbon sources on the induction of this pathway in P. oleovorans and Escherichia coli alk+ recombinants. In doing so, we confirmed earlier reports that induction of alkane hydroxylase activity in pseudomonads is subject to carbon catabolite repression. Specifically, synthesis of the monooxygenase component AlkB is repressed at the transcriptional level. The alk genes have been cloned into plasmid pGEc47, which has a copy number of about 5 to 10 per cell in both E. coli and pseudomonads. Pseudomonas putida GPo12 is a P. oleovorans derivative cured of the OCT plasmid. Upon introduction of pGEc47 in this strain, carbon catabolite repression of alkane hydroxylase activity was reduced significantly. In cultures of recombinant E. coli HB101 and W3110 carrying pGEc47, induction of AlkB and transcription of the alkB gene were no longer subject to carbon catabolite repression. This suggests that carbon catabolite repression of alkane degradation is regulated differently in Pseudomonas and in E. coli strains. These results also indicate that PalkBFGHJKL, the Palk promoter, might be useful in attaining high expression levels of heterologous genes in E. coli grown on inexpensive carbon sources which normally trigger carbon catabolite repression of native expression systems in this host.  (+info)

Purification and characterization of gentisate 1,2-dioxygenases from Pseudomonas alcaligenes NCIB 9867 and Pseudomonas putida NCIB 9869. (2/1206)

Two 3-hydroxybenzoate-inducible gentisate 1,2-dioxygenases were purified to homogeneity from Pseudomonas alcaligenes NCIB 9867 (P25X) and Pseudomonas putida NCIB 9869 (P35X), respectively. The estimated molecular mass of the purified P25X gentisate 1, 2-dioxygenase was 154 kDa, with a subunit mass of 39 kDa. Its structure is deduced to be a tetramer. The pI of this enzyme was established to be 4.8 to 5.0. The subunit mass of P35X gentisate 1, 2-dioxygenase was 41 kDa, and this enzyme was deduced to exist as a dimer, with a native molecular mass of about 82 kDa. The pI of P35X gentisate 1,2-dioxygenase was around 4.6 to 4.8. Both of the gentisate 1,2-dioxygenases exhibited typical saturation kinetics and had apparent Kms of 92 and 143 microM for gentisate, respectively. Broad substrate specificities were exhibited towards alkyl and halogenated gentisate analogs. Both enzymes had similar kinetic turnover characteristics for gentisate, with kcat/Km values of 44.08 x 10(4) s-1 M-1 for the P25X enzyme and 39.34 x 10(4) s-1 M-1 for the P35X enzyme. Higher kcat/Km values were expressed by both enzymes against the substituted gentisates. Significant differences were observed between the N-terminal sequences of the first 23 amino acid residues of the P25X and P35X gentisate 1,2-dioxygenases. The P25X gentisate 1,2-dioxygenase was stable between pH 5.0 and 7.5, with the optimal pH around 8.0. The P35X enzyme showed a pH stability range between 7.0 and 9.0, and the optimum pH was also 8.0. The optimal temperature for both P25X and P35X gentisate 1, 2-dioxygenases was around 50 degrees C, but the P35X enzyme was more heat stable than that from P25X. Both enzymes were strongly stimulated by 0.1 mM Fe2+ but were completely inhibited by the presence of 5 mM Cu2+. Partial inhibition of both enzymes was also observed with 5 mM Mn2+, Zn2+, and EDTA.  (+info)

Degradation of chloronitrobenzenes by a coculture of Pseudomonas putida and a Rhodococcus sp. (3/1206)

A single microorganism able to mineralize chloronitrobenzenes (CNBs) has not been reported, and degradation of CNBs by coculture of two microbial strains was attempted. Pseudomonas putida HS12 was first isolated by analogue enrichment culture using nitrobenzene (NB) as the substrate, and this strain was observed to possess a partial reductive pathway for the degradation of NB. From high-performance liquid chromatography-mass spectrometry and 1H nuclear magnetic resonance analyses, NB-grown cells of P. putida HS12 were found to convert 3- and 4-CNBs to the corresponding 5- and 4-chloro-2-hydroxyacetanilides, respectively, by partial reduction and subsequent acetylation. For the degradation of CNBs, Rhodococcus sp. strain HS51, which degrades 4- and 5-chloro-2-hydroxyacetanilides, was isolated and combined with P. putida HS12 to give a coculture. This coculture was confirmed to mineralize 3- and 4-CNBs in the presence of an additional carbon source. A degradation pathway for 3- and 4-CNBs by the two isolated strains was also proposed.  (+info)

Role of the alternative sigma factor sigmaS in expression of the AlkS regulator of the Pseudomonas oleovorans alkane degradation pathway. (4/1206)

The AlkS protein activates transcription from the PalkB promoter, allowing the expression of a number of genes required for the assimilation of alkanes in Pseudomonas oleovorans. We have identified the promoter from which the alkS gene is transcribed, PalkS, and analyzed its expression under different conditions and genetic backgrounds. Transcription from PalkS was very low during the exponential phase of growth and increased considerably when cells reached the stationary phase. The PalkS -10 region was similar to the consensus described for promoters recognized by Escherichia coli RNA polymerase bound to the alternative sigma factor sigmaS, which directs the expression of many stationary-phase genes. Reporter strains containing PalkS-lacZ transcriptional fusions showed that PalkS promoter is very weakly expressed in a Pseudomonas putida strain bearing an inactivated allele of the gene coding for sigmaS, rpoS. When PalkS was transferred to E. coli, transcription started at the same site and expression was higher in stationary phase only if sigmaS-RNA polymerase was present. The low levels of AlkS protein generated in the absence of sigmaS were enough to support a partial induction of the PalkB promoter. The -10 and -35 regions of PalkS promoter also show some similarity to the consensus recognized by sigmaD-RNA polymerase, the primary form of RNA polymerase. We propose that in exponential phase PalkS is probably recognized both by sigmaD-RNA polymerase (inefficiently) and by sigmaS-RNA polymerase (present at low levels), leading to low-level expression of the alkS gene. sigmaS-RNA polymerase would be responsible for the high level of activity of PalkS observed in stationary phase.  (+info)

Reduction of cell lysate viscosity during processing of poly(3-hydroxyalkanoates) by chromosomal integration of the staphylococcal nuclease gene in Pseudomonas putida. (5/1206)

Poly(3-hydroxyalkanoates) (PHAs) are biodegradable thermoplastics which are accumulated by many bacterial species in the form of intracellular granules and which are thought to serve as reserves of carbon and energy. Pseudomonas putida accumulates a polyester, composed of medium-side-chain 3-hydroxyalkanoic acids, which has excellent film-forming properties. Industrial processing of PHA involves purification of the PHA granules from high-cell-density cultures. After the fermentation process, cells are lysed by homogenization and PHA granules are purified by chemical treatment and repeated washings to yield a PHA latex. Unfortunately, the liberation of chromosomal DNA during lysis causes a dramatic increase in viscosity, which is problematic in the subsequent purification steps. Reduction of the viscosity is generally achieved by the supplementation of commercially available nuclease preparations or by heat treatment; however, both procedures add substantial costs to the process. As a solution to this problem, a nuclease-encoding gene from Staphylococcus aureus was integrated into the genomes of several PHA producers. Staphylococcal nuclease is readily expressed in PHA-producing Pseudomonas strains and is directed to the periplasm, and occasionally to the culture medium, without affecting PHA production or strain stability. During downstream processing, the viscosity of the lysate from a nuclease-integrated Pseudomonas strain was reduced to a level similar to that observed for the wild-type strain after treatment with commercial nuclease. The nuclease gene was also functionally integrated into the chromosomes of other PHA producers, including Ralstonia eutropha.  (+info)

Phenotypic expression of PCR-generated random mutations in a Pseudomonas putida gene after its introduction into an Acinetobacter chromosome by natural transformation. (6/1206)

Localized sets of random point mutations generated by PCR amplification can be transferred efficiently to the chromosome of Acinetobacter ADP1 (also known as strain BD413) by natural transformation. The technique does not require cloning of PCR fragments in plasmids: PCR-amplified DNA fragments are internalized by cells and directly incorporated into their genomes by homologous recombination. Previously such procedures for random mutagenesis could be applied only to Acinetobacter genes affording the selection of mutant phenotypes. Here we describe the construction of a vector and recipient that allow for mutagenesis, recovery, and expression of heterologous genes that may lack a positive selection. The plasmid carries an Acinetobacter chromosomal segment interrupted by a multiple cloning site next to a kanamycin resistance marker. The insertion of heterologous DNA into the multiple cloning site prepares the insert as a target for PCR mutagenesis. PCR amplifies the kanamycin resistance marker and a flanking region of Acinetobacter DNA along with the insert of heterologous DNA. Nucleotide sequence identity between the flanking regions and corresponding chromosomal segments in an engineered Acinetobacter recipient allows homologous recombination of the PCR-amplified DNA fragments into a specific chromosomal docking site from which they can be expressed. The recipient strain contains only a portion of the kanamycin resistance gene, so donor DNA containing both this gene and the mutagenized insert can be selected by demanding growth of recombinants in the presence of kanamycin. The effectiveness of the technique was demonstrated with the relatively GC-rich Pseudomonas putida xylE gene. After only one round of PCR amplification (35 cycles), donor DNA produced transformants of which up to 30% carried a defective xylE gene after growth at 37 degrees C. Of recombinant clones that failed to express xylE at 37 degrees C, about 10% expressed the gene when grown at 22 degrees C. The techniques described here could be adapted to prepare colonies with an altered function in any gene for which either a selection or a suitable phenotypic screen exists.  (+info)

cumA, a gene encoding a multicopper oxidase, is involved in Mn2+ oxidation in Pseudomonas putida GB-1. (7/1206)

Pseudomonas putida GB-1-002 catalyzes the oxidation of Mn2+. Nucleotide sequence analysis of the transposon insertion site of a nonoxidizing mutant revealed a gene (designated cumA) encoding a protein homologous to multicopper oxidases. Addition of Cu2+ increased the Mn2+-oxidizing activity of the P. putida wild type by a factor of approximately 5. The growth rates of the wild type and the mutant were not affected by added Cu2+. A second open reading frame (designated cumB) is located downstream from cumA. Both cumA and cumB probably are part of a single operon. The translation product of cumB was homologous (level of identity, 45%) to that of orf74 of Bradyrhizobium japonicum. A mutation in orf74 resulted in an extended lag phase and lower cell densities. Similar growth-related observations were made for the cumA mutant, suggesting that the cumA mutation may have a polar effect on cumB. This was confirmed by site-specific gene replacement in cumB. The cumB mutation did not affect the Mn2+-oxidizing ability of the organism but resulted in decreased growth. In summary, our data indicate that the multicopper oxidase CumA is involved in the oxidation of Mn2+ and that CumB is required for optimal growth of P. putida GB-1-002.  (+info)

Homogenization and crystallization of histidine ammonia-lyase by exchange of a surface cysteine residue. (8/1206)

Histidase (histidine ammonia-lyase, EC 4.3.1.3) from Pseudomonas putida was expressed in Escherichia coli and purified. In the absence of thiols the tetrameric enzyme gave rise to undefined aggregates and suitable crystals could not be obtained. The solvent accessibility along the chain was predicted from the amino acid sequence. Among the seven cysteines, only one was labeled as 'solvent-exposed'. The exchange of this cysteine to alanine abolished all undefined aggregations and yielded readily crystals diffracting to 1.8 A resolution.  (+info)

报告人简介:. Professor, Department of Microbiology and Molecular Genetics, University of California, Davis,. Editor for Applied and Environmental Microbiology(AEM). 报告摘要:. Motile bacteria have the ability tosampletheir environment and detect and move toward available growth substrates using a process called chemotaxis. Many soil bacteria are capable of degrading a wide variety of organic compounds including toxic pollutants and man-made chemicals. Chemotaxis can increase the efficiency of the biodegradation process. The most common sensory proteins used for bacterial chemotaxis are cell-surface receptors called methyl-accepting chemotaxis proteins, and the genomes of soil bacteria often harbor up to 60 chemoreceptor genes. P. putida is chemotactic to most substrates on which it is capable of growth, and it uses several different strategies to detect potential growth substrates. In this presentation it will be described and discussed that the different types of ...
TY - CONF. T1 - Bioproduction of substituted aromatics from renewables by solvent-tolerant Pseudomonas putida S12. AU - Verhoef, S. AU - Wierckx, NJP. AU - Ballerstedt, H. AU - de Winde, JH. AU - Ruijssenaars, HJ. PY - 2009. Y1 - 2009. KW - Geen BTA classificatie. M3 - Abstract. ER - ...
The genome of the soil bacterium Pseudomonas putida KT2440 bears two virtually identical arsRBCH operons putatively encoding resistance to inorganic arsenic species. Single and double chromosomal deletions in each of these ars clusters of this bacterium were tested for arsenic sensitivity and found that the contribution of each operon to the resistance to the metalloid was not additive, as either cluster sufficed to endow cells with high-level resistance. However, otherwise identical traits linked to each of the ars sites diverged when temperature was decreased. Growth of the various mutants at 15°C (instead of the standard 30°C for P. putida) uncovered that ars2 affords a much higher resistance to As (III) than the ars1 counterpart. Reverse transcription polymerase chain reaction of arsB1 and arsB2 genes as well as lacZ fusions to the Pars1 and Pars2 promoters traced the difference to variations in transcription of the corresponding gene sets at each temperature. Functional redundancy may ...
Given its high surplus and low cost, glycerol has emerged as interesting carbon substrate for the synthesis of value-added chemicals. The soil bacterium Pseudomonas putida KT2440 can use glycerol to synthesize medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA), a class of biopolymers of industrial interest. Here, glycerol metabolism in P. putida KT2440 was studied on the level of gene expression (transcriptome) and metabolic fluxes (fluxome), using precisely adjusted chemostat cultures, growth kinetics and stoichiometry, to gain a systematic understanding of the underlying metabolic and regulatory network. Glycerol-grown P. putida KT2440 has a maintenance energy requirement [0.039 (mmolglycerol (gCDW h)−1)] that is about sixteen times lower than that of other bacteria, such as Escherichia coli, which provides a great advantage to use this substrate commercially. The shift from carbon (glycerol) to nitrogen (ammonium) limitation drives the modulation of specific genes involved in glycerol
Given its high surplus and low cost, glycerol has emerged as interesting carbon substrate for the synthesis of value-added chemicals. The soil bacterium Pseudomonas putida KT2440 can use glycerol to synthesize medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA), a class of biopolymers of industrial interest. Here, glycerol metabolism in P. putida KT2440 was studied on the level of gene expression (transcriptome) and metabolic fluxes (fluxome), using precisely adjusted chemostat cultures, growth kinetics and stoichiometry, to gain a systematic understanding of the underlying metabolic and regulatory network. Glycerol-grown P. putida KT2440 has a maintenance energy requirement [0.039 (mmolglycerol (gCDW h)−1)] that is about sixteen times lower than that of other bacteria, such as Escherichia coli, which provides a great advantage to use this substrate commercially. The shift from carbon (glycerol) to nitrogen (ammonium) limitation drives the modulation of specific genes involved in glycerol
Given its high surplus and low cost, glycerol has emerged as interesting carbon substrate for the synthesis of value-added chemicals. The soil bacterium Pseudomonas putida KT2440 can use glycerol to synthesize medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA), a class of biopolymers of industrial interest. Here, glycerol metabolism in P. putida KT2440 was studied on the level of gene expression (transcriptome) and metabolic fluxes (fluxome), using precisely adjusted chemostat cultures, growth kinetics and stoichiometry, to gain a systematic understanding of the underlying metabolic and regulatory network. Glycerol-grown P. putida KT2440 has a maintenance energy requirement [0.039 (mmolglycerol (gCDW h)(-1))] that is about sixteen times lower than that of other bacteria, such as Escherichia coli, which provides a great advantage to use this substrate commercially. The shift from carbon (glycerol) to nitrogen (ammonium) limitation drives the modulation of specific genes involved in glycerol ...
Background|br /|The genetic network of the TOL plasmid pWW0 of the soil bacterium Pseudomonas putida mt-2 for catabolism of m-xylene is an archetypal model for environmental biodegradation of aromatic pollutants. Although nearly every metabolic and transcriptional component of this regulatory system is known to an extraordinary molecular detail, the complexity of its architecture is still perplexing. To gain an insight into the inner layout of this network a logic model of the TOL system was implemented, simulated and experimentally validated. This analysis made sense of the specific regulatory topology out on the basis of an unprecedented network motif around which the entire genetic circuit for m-xylene catabolism gravitates.|br /|Results|br /|The most salient feature of the whole TOL regulatory network is the control exerted by two distinct but still intertwined regulators (XylR and XylS) on expression of two separated catabolic operons (upper and lower) for catabolism of m-xylene. Following model
Pseudomonas putida KT2440 is the only fully sequenced P. putida strain. Thus, for transcriptomics and proteomics studies with other P. putida strains, the P. putida KT2440 genomic database serves as standard reference. The utility of KT2440 whole-genome, high-density oligonucleotide microarrays for transcriptomics studies of other Pseudomonas strains was investigated. To this end, microarray hybridizations were performed with genomic DNAs of subcultures of P. putida KT2440 (DSM6125), the type strain (DSM291T), plasmid pWW0-containing KT2440-derivative strain mt-2 (DSM3931), the solvent-tolerant P. putida S12, and several other Pseudomonas strains. Depending on the strain tested, 22 to 99% of all genetic elements were identified in the genomic DNAs. The efficacy of these microarrays to study cellular function was determined for all strains included in the study. The vast majority of DSM6125 genes encoding proteins of primary metabolism and genes involved in the catabolism of aromatic compounds ...
Cytochrome P450cam (a camphor hydroxylase) isolated from soil bacterium Pseudomonas putida shows potent importance in environmental applications such as the degradation of chlorinated organic pollutants and insect control agents. Introducing such chemicals can be hazardous to the environment due to their lack of biodegradation. In this thesis, I have studied the role of several P450cam mutants in the oxidation of 3-chloroindole to isatin and the role of wild type P450cam in the dealkylation of 1,4-dibutoxybenzene, a potent feeding-deterrent against stored product pests. Mutant (E156G/V247F/V253G/F256S) was the most active in the conversion of 3-chloroindole by P450cam. We propose two mechanisms for the dechlorination of 3-chloroindole by P450cam. To investigate structure-activity patterns of 1,4-dialkoxybenzenes against beetles, the octanol-water partition coefficients of selected dialkoxybenzenes were investigated. Furthermore, P. putida strain ATCC17453 was able to metabolize ...
An enzyme found in a bacterium that consumes nicotine for nitrogen and carbon shows potentials as another smoking cessation alternative.
Pseudomonas putida is a well-known plant growth promoting bacterium (PGPB) with the capacity to improve plant growth. The objective of this study was to assess the effect of P. putida towards plant growth and its interaction with its microbial ecosystem. P. putida strain PF1P was isolated from the rhizosphere of banana plant (Musa species). The isolated P. putida strain PF1P possess ability to secrete acetic acid (42.1 µg/mL) and gibberellic acid (10.1 µg/mL). Further study conducted showed that P. putida strain PF1P was able to increase 54.6% of fresh plant weight and 51.3% of root length for Brassica chinensis var parachinensis. Soil microbial assessment indicates that P. putida strain PF1P did not have any detrimental effects as Shannon diversity index showed an increase in the microbial diversity from 2.635 to 2.903 with the colony forming unit per gram of soil increase from 9 × 107 to 5 × 109, respectively for control and treated soil. Soil health check also showed that
TY - JOUR. T1 - In Vivo Enzymology. T2 - A Deuterium NMR Study of Formaldehyde Dismutase in Pseudomonas putida F61a and Staphylococcus aureus. AU - Mason, Ralph P.. AU - Sanders, Jeremy K M. PY - 1989/1/1. Y1 - 1989/1/1. N2 - High-resolution deuterium NMR spectroscopy has been used to follow the detoxifying metabolism of [D2]formaldehyde in vivo in several bacterial species. Production of [D2]methanol in Escherichia coli confirms that the oxidation and reduction pathways of metabolism are independent in this organism. Efficient production of equimolar quantities of [D]formate and [D3]methanol in Pseudomonas putida F61a and Staphylococcus aureus implicates a formaldehyde dismutase, or cannizzarase, activity. These observations imply that the unusual formaldehyde resistance in P. putida F61 a is a direct result of efficient dismutation acting as a route for detoxification. Cross-dismutation experiments yield an enzymic kinetic isotope effect of ca. 4 for H vs D transfer and a similar spectrum of ...
TY - JOUR. T1 - Silver nanotoxicity using a light-emitting biosensor Pseudomonas putida isolated from a wastewater treatment plant. AU - Dams, R I. AU - Biswas, A. AU - Olesiejuk, A. AU - Fernandes, T. AU - Christofi, N. PY - 2011/11/15. Y1 - 2011/11/15. N2 - The effect of silver ions, nano- and micro-particles on a luminescent biosensor bacterium Pseudomonas putida originally isolated from activated sludge was assessed. The bacterium carrying a stable chromosomal copy of the lux operon (luxCDABE) was able to detect toxicity of ionic and particulate silver over short term incubations ranging from 30 to 240 min. The IC50 values obtained at different time intervals showed that highest toxicity (lowest IC50) was obtained after 90 min incubation for all toxicants and this is considered the optimum incubation for testing. The data show that ionic silver is the most toxic followed by nanosilver particles with microsilver particles being least toxic. Release of nanomaterials is likely to have an effect ...
The synthesis and degradation of polyhydroxyalkanoates (PHAs), the storage polymer of many bacteria, is linked to the operation of central carbon metabolism. To rationalize the impact of PHA accumulation on central carbon metabolism of the prototype bacterium Pseudomonas putida, we have revisited PHA production in quantitative physiology experiments in the wild-type strain vs. a PHA negative mutant growing under low nitrogen conditions. When octanoic acid was used as PHA precursor and as carbon and energy source, we have detected higher intracellular flux via acetyl-CoA in the mutant strain than in the wild type, which correlates with the stimulation of the TCA cycle and glyoxylate shunt observed on the transcriptional level. The mutant defective in carbon and energy storage spills the additional resources, releasing CO2 instead of generating biomass. Hence, P. putida operates the metabolic network to optimally exploit available resources and channels excess carbon and energy to storage via PHA, ...
High Cell Density (HCD) cultivation of bacteria is essential for the majority of industrial processes to achieve high volumetric productivity (g L(-1) h(-1) ) of a bioproduct of interest. This study developed a fed batch bioprocess using glucose as sole carbon and energy source for the HCD of the well described biocatalyst Pseudomonas putida KT2440 without the supply of oxygen enriched air. Growth kinetics data from batch fermentations were used for building a bioprocess model and designing feeding strategies. An exponential followed by linearly increasing feeding strategy of glucose was found to be effective in maintaining biomass productivity while also delaying the onset of dissolved oxygen (supplied via compressed air) limitation. A final cell dry weight (CDW) of 102 g L(-1) was achieved in 33 h with a biomass productivity of 3.1 g L(-1) h(-1) which are the highest ever reported values for P. putida strains using glucose without the supply of pure oxygen or oxygen enriched air. The ...
de Eugenio, L.I., García, P., Luengo, J.M., Sanz, J., San Román, J., García, J.L., and Prieto, M.A. (2007) Biochemical evidence that phaZ gene encodes a specific intracellular medium chain length polyhydroxyalkanoate depolymerase in Pseudomonas putida KT2442: characterization of a paradigmatic enzyme. J Biol Chem 282: 4951-4962 ...
TY - JOUR. T1 - Transcriptome analysis of a phenol-producing Pseudomonas putida S12 construct: genetic and physiological basis for improved production.. AU - Wierckx, NJP. AU - Ballerstedt, H. AU - de Bont, JAM. AU - de Winde, JH. AU - Ruijssenaars, HJ. AU - Wery, J. PY - 2008. Y1 - 2008. KW - CWTS 0.75 ,= JFIS , 2.00. M3 - Article. VL - 190. JO - Journal of Bacteriology. JF - Journal of Bacteriology. SN - 0021-9193. IS - 2822-30. ER - ...
TY - JOUR. T1 - Salicylate degradation by a cold-adapted Pseudomonas sp. AU - Ahn, Eunsol. AU - Choi, Ki Young. AU - Kang, Beom Sik. AU - Zylstra, Gerben J.. AU - Kim, Dockyu. AU - Kim, Eungbin. N1 - Publisher Copyright: © 2017, Springer-Verlag Berlin Heidelberg and the University of Milan. Copyright: Copyright 2017 Elsevier B.V., All rights reserved.. PY - 2017/6/1. Y1 - 2017/6/1. N2 - Pseudomonas sp. strain MC1 was characterized as a cold-adapted, naphthalene-degrading bacterium that is able to grow in a broad temperature range of 5-30°C. MC1 harbors a catabolic plasmid, designated pYIC1, which is almost identical to the archetypal NAH7 plasmid from the mesophilic bacterium Pseudomonas putida G7. On pYIC1, the catabolic genes for naphthalene degradation are clustered in two operons: nahAa-Ab-Ac-Ad-B-F-C-Q-E-D encoding the conversion of naphthalene to salicylate, and nahG-T-H-I-N-L-O-M-K-J encoding the conversion of salicylate through meta-cleavage pathway to pyruvate and acetyl CoA. NahH, ...
A number of genetic determinants required for bacterial colonization of solid surfaces and biofilm formation have been identified in different micro-organisms. There are fewer accounts of mutations that favour the transition to a sessile mode of life. Here we report the isolation of random transposon Pseudomonas putida KT2440 mutants showing increased biofilm formation, and the detailed characterization of one of them. This mutant exhibits a complex phenotype, including altered colony morphology, increased production of extracellular polymeric substances and enhanced swarming motility, along with the formation of denser and more complex biofilms than the parental strain. Sequence analysis revealed that the pleiotropic phenotype exhibited by the mutant resulted from the accumulation of two mutations: a transposon insertion, which disrupted a predicted outer membrane lipoprotein, and a point mutation in lapG, a gene involved in the turnover of the large adhesin LapA. The contribution of each ...
Caracterización de la fasina PhaF de Pseudomonas putida KT2442 y de su unión a polímeros de poli-3-hidroxibutirato Conference Paper 2008 ...
We have cloned, sequenced, and heterologously expressed a periplasmic cytochrome c from a lupanine-utilizing Pseudomonas putida strain. Aerobic batch cultivation of Escherichia coli TB1 harboring the cytochrome c gene placed downstream of the lac promoter in pUC9 vector resulted in significant production of the holo-cytochrome c in the periplasm (4 mg of hemoprotein/liter of culture). The recombinant cytochrome c was purified to homogeneity and was found to be functional in accepting electrons from lupanine hydroxylase while catalyzing hydroxylation of lupanine. Comparison of the N-terminal amino acid sequence of the isolated cytochrome c with that deduced from the DNA sequence indicated that the signal sequence was processed at the bond position predicted by the SigPep program. The molecular size of the cytochrome c determined by electrospray mass spectrometry (9,595) was in precise agreement with that predicted from the nucleotide sequence ...
Pseudomonas putida ATCC ® 47054D-5™ Designation: Genomic DNA from Pseudomonas putida strain KT2440 TypeStrain=False Application:
Achieving a sustainable society requires, among other things, the use of renewable feedstocks to replace chemicals obtained from petroleum-derived compounds. Crude glycerol synthesized inexpensively as a byproduct of biodiesel production is currently considered a waste product, which can potentially be converted into value-added compounds by bacterial fermentation. This study aimed at evaluating several characterized P. putida strains to produce medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA) using raw glycerol as the only carbon/energy source. Among all tested strains, P. putida KT2440 most efficiently synthesized mcl-PHA under nitrogen-limiting conditions, amassing more than 34% of its cell dry weight as PHA. Disruption of the PHA depolymerase gene (phaZ) in P. putida KT2440 enhanced the biopolymer titer up to 47% PHA (%wt/wt). The low biomass and PHA titer found in the mutant strain and the wild-type strain KT2440 seems to be triggered by the high production of the side-product citrate during
Achieving a sustainable society requires, among other things, the use of renewable feedstocks to replace chemicals obtained from petroleum-derived compounds. Crude glycerol synthesized inexpensively as a byproduct of biodiesel production is currently considered a waste product, which can potentially be converted into value-added compounds by bacterial fermentation. This study aimed at evaluating several characterized P. putida strains to produce medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA) using raw glycerol as the only carbon/energy source. Among all tested strains, P. putida KT2440 most efficiently synthesized mcl-PHA under nitrogen-limiting conditions, amassing more than 34% of its cell dry weight as PHA. Disruption of the PHA depolymerase gene (phaZ) in P. putida KT2440 enhanced the biopolymer titer up to 47% PHA (%wt/wt). The low biomass and PHA titer found in the mutant strain and the wild-type strain KT2440 seems to be triggered by the high production of the side-product citrate during
Coloured scanning electron micrograph (SEM) of Pseudomonas putida, Gram-negative, aerobic, enteric, rod prokaryote. Pseudomonas putida is a ubiquitous soil bacterium. Strains of P. putida have the ability to degrade organic solvents or hydrocarbons. This strain was isolated from a soil environment that had high levels of caffeine. It is known to biodegrade caffeine. Thus different strains of Pseudomonas putida can be used for bioremediation. Magnification: x1,600 when shortest axis printed at 25 millimetres. - Stock Image C032/1985
Large externalized, repeat-rich proteins are emerging as important factors in the attachment of bacteria to biotic and abiotic surfaces. An intriguing new study of the plant-associated terrestrial microbe Pseudomonas putida by Manuel Espinosa-Urgels group that is reported in this issue of Molecular Microbiology has revealed that LapF, a huge protein (, 6000 aa) associated with the cell surface, is required for microcolony assembly from single attached cells, and in turn, formation of biofilms. Mutants defective in IapF exhibit competitive deficiencies in the rhizosphere. On both biotic and abiotic surfaces, these mutants undergo normal irreversible attachment, but cannot advance beyond this point to form multicellular clusters. The lapF phenotype is nutritionally conditional and is only manifested under a subset of growth regimes. Accordingly, lapF gene expression is controlled by the stress-responsive sigma factor RpoS and is elevated within growing microcolonies on abiotic surfaces and plant ...
HERNANDEZ-MONTIEL, Luis G et al. Efficiency of two inoculation methods of Pseudomonas putida on growth and yield of tomato plants. J. Soil Sci. Plant Nutr. [online]. 2017, vol.17, n.4, pp.1003-1012. ISSN 0718-9516. http://dx.doi.org/10.4067/S0718-95162017000400012.. The objective of this study was to determine the efficiency of applying microcapsules and liquid inoculation of three Pseudomonas putida strains on growth and yield of tomato plants in greenhouse where the results showed differences between both treatments. Rhizobacterial strainsFA-8, FA-56, and FA-60 of P. putida, were assessed individually and combined to determine their capacity to produce indoleacetic acid (IAA). The three strains demonstrated the capacity to produce IAAin vitro, of which FA-56 stood out with 23.02 µg mL-1 in the microcapsule treatment with significant increases in plant height, stem diameter, radical volume, dry biomass, fruit yield, and rhizobacterial population (CFU). These responses could have been ...
HERNANDEZ-MONTIEL, Luis G et al. Efficiency of two inoculation methods of Pseudomonas putida on growth and yield of tomato plants. J. Soil Sci. Plant Nutr. [online]. 2017, vol.17, n.4, pp.1003-1012. ISSN 0718-9516. http://dx.doi.org/10.4067/S0718-95162017000400012.. The objective of this study was to determine the efficiency of applying microcapsules and liquid inoculation of three Pseudomonas putida strains on growth and yield of tomato plants in greenhouse where the results showed differences between both treatments. Rhizobacterial strainsFA-8, FA-56, and FA-60 of P. putida, were assessed individually and combined to determine their capacity to produce indoleacetic acid (IAA). The three strains demonstrated the capacity to produce IAAin vitro, of which FA-56 stood out with 23.02 µg mL-1 in the microcapsule treatment with significant increases in plant height, stem diameter, radical volume, dry biomass, fruit yield, and rhizobacterial population (CFU). These responses could have been ...
We have conducted a preliminary exploration of how alternating light/darkness cycles affect the growth pattern of the heterotrophic, plant-colonizing bacterium Pseudomonas putida KT2440. Cultures of this strain grown overnight in liquid medium were spotted on the center of Petri dishes containing rich medium with 1% agar and either Coomassie brilliant blue or Congo red (50 μg/ml). These dyes bind proteins and other extracellular polymeric substances, respectively, and allow direct visualization of surface changes appearing during colony growth. Plates were incubated for 16h in the dark, sealed with Parafilm to avoid excessive desiccation and transferred to a growth chamber with artificial illumination (white, broad spectrum compact fluorescent lamps with a CRI ≈ 82, 3,500K; Ev ≈ 32,000 lux), set at light/darkness cycles of 16 h/8 h, under constant temperature (30 ± 0.3°C). Control plates were kept in the same conditions but wrapped in aluminum foil. In a second set of experiments, plates ...
The catabolism of glutarate in P. aeruginosa PAO1 depends on GcdH, whose expression is under the control of the GcdR transcriptional activator (38). The catabolism of glutarate in E. coli depends on CsiD and LhgO (20). The expression of csiD in E. coli is significantly upregulated during carbon starvation (39). However, the two pathways cooperate in glutarate catabolism in P. putida KT2440 and both GcdH and CsiD are induced during carbon starvation (19). In this study, it was found that two regulators, CsiR and GcdR, control the two pathways described above in P. putida KT2440, respectively. CsiR cannot interact with the gcdH promoter region (Fig. 4C) and has no effect on the transcription of gcdH (Fig. 4A). Similarly, GcdR cannot interact with the csiD promoter region (Fig. 4D) and has no effect on the transcription of csiD (Fig. 4A). In contrast to GcdH, which is present universally in Pseudomonas species, CsiD and LhgO may be acquired via horizontal gene transfer and are sporadically ...
Pseudomonas putida is a Gram-negative, rod-shaped, saprotrophic soil bacterium. Based on 16S rRNA analysis, P. putida was taxonomically confirmed to be a Pseudomonas species (sensu stricto) and placed, along with several other species, in the P. putida group, to which it lends its name. A variety of P. putida, called multiplasmid hydrocarbon-degrading Pseudomonas, is the first patented organism in the world. Because it is a living organism, the patent was disputed and brought before the United States Supreme Court in the historic court case Diamond v. Chakrabarty, which the inventor, Ananda Mohan Chakrabarty, won. It demonstrates a very diverse metabolism, including the ability to degrade organic solvents such as toluene. This ability has been put to use in bioremediation, or the use of microorganisms to biodegrade oil. Use of P. putida is preferable to some other Pseudomonas species capable of such degradation, as it is a safe species of bacteria, unlike P. aeruginosa, for example, which is an ...
Microorganism. The organism, Pseudomonas putida DSM 548 (pJP4), was maintained by weekly subculturing with 2% (w/v) nutrient agar slants that were stored in a refrigerator at 4ºC and the organism was activated by incubation at 28ºC, for 24 hrs. o-cresol biodegradation was performed by using recombinant P. putida. The plasmid pJP4 was purified from Ralstonia eutropha JMP134 (formerly Alcaligenes) and the transformation of the related plasmid was executed chemically with 0.1 MCaCl2 solutions in our work previously (unpublished data). Pseudomonas putida DSM 548 and Ralstonia eutropha were obtained from the DSMZ (Deuthsche Sammlung Von Mikroorganismen und Zellkulturen GmbH, Braunschweig), Germany.. Medium and culture conditions. The bacteria were grown on nutrient agar (NA), OXOID CM3. For adaptation experiments of the cells to o-cresol, which was also used as a sole carbon source, a simple minimal salts medium (MSM) was used (Mamma et al. 2004). Cells were grown in a synthetic mineral salt medium ...
Pseudomonas putida 3SK, a solvent resistant strain, produced extracellular lipase. We observed that there was another lipolytic enzyme, which had no lipase activity in P. putida 3SK. This lipolytic enzyme, an esterase, was cloned in Escherichia coli and sequenced. The cloned esterase gene, which designated estA, had single open reading frame of 1941 nucleotides. The estA gene encoded a protein of 646 amino acids and was predicted to belong to the GDSL family of lipolytic enzymes. The consensus motif GxSxxDxG, which was a characteristic feature of the GDSL lipolytic enzymes, was found in estA. A putative catalytic triad, $Ser^{38}$, $Asp^{172}$, and $His^{313}$ was also determined. The calculated molecular weight was 69.6kDa and theoretical isoelectric point (pI) was 4.68. The esterase expressed in E. coli was purified by Ni-NTA affinity chromatography and FPLC gel filtration chromatography. The molecular weight of the purified esterase was about 65kDa and judging from the immunoblot analysis, an ...
Pseudomonas putida is a Gram-negative, rod-shaped, saprotrophic soil bacterium. Based on 16S rRNA analysis, P. putida was taxonomically confirmed to be a pseudomonas species (sensu stricto) and placed, along with several other species, in the P. putida group, to which it lends its name.,ref,{{#invoke:Citation/CS1,citation ,CitationClass=journal }},/ref, A variety of P. putida, called multi-plasmid hydrocarbon-degrading Pseudomonas, is the first patented organism in the world. Because it is a living organism, the patent was disputed and brought before the United States Supreme Court in the historic court case Diamond v. Chakrabarty which the inventor, Ananda Mohan Chakrabarty, won. It demonstrates a very diverse metabolism, including the ability to degrade organic solvents such as toluene.,ref,{{#invoke:Citation/CS1,citation ,CitationClass=journal }},/ref, This ability has been put to use in bioremediation, or the use of microorganisms to biodegrade oil. Use of P. putida is preferable to some ...
The toluene-degrading and solvent-tolerant strain Pseudomonas putida DOT-T1E was investigated with respect to its suitability and economic efficiency as biocatalyst in aqueous-organic two-phase systems with aliphatic solvents as organic phase (Rojas et al. 2004, chapter 4 and 5) and to its adaptive responses to the solvent decanol. The adaptive changes on the level of cell morphology (chapter 2), membrane fatty acids and permeability (chapter 3), as well as energetics and surface properties (chapter 5) of P. putida DOT-T1E have been investigated in order to ascertain information about the strains suitability for two-phase biotransformation systems (chapter 4). The morphological adaptation to the presence of solvents was observable in changes of the cell size of P. putida DOT-T1E. Those changes were dependent on the cellular activity and occurred only after addition of non-lethal solvent concentrations. The cells reacted to the presence of organic solvents by decreasing the ratio between surface ...
Members of the genus Pseudomonas are