Procedures by which protein structure and function are changed or created in vitro by altering existing or synthesizing new structural genes that direct the synthesis of proteins with sought-after properties. Such procedures may include the design of MOLECULAR MODELS of proteins using COMPUTER GRAPHICS or other molecular modeling techniques; site-specific mutagenesis (MUTAGENESIS, SITE-SPECIFIC) of existing genes; and DIRECTED MOLECULAR EVOLUTION techniques to create new genes.
Generating tissue in vitro for clinical applications, such as replacing wounded tissues or impaired organs. The use of TISSUE SCAFFOLDING enables the generation of complex multi-layered tissues and tissue structures.
Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc.
The use of DNA recombination (RECOMBINATION, GENETIC) to prepare a large gene library of novel, chimeric genes from a population of randomly fragmented DNA from related gene sequences.
Methods and techniques used to genetically modify cells' biosynthetic product output and develop conditions for growing the cells as BIOREACTORS.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
The techniques used to produce molecules exhibiting properties that conform to the demands of the experimenter. These techniques combine methods of generating structural changes with methods of selection. They are also used to examine proposed mechanisms of evolution under in vitro selection conditions.
A serine endopeptidase isolated from Bacillus subtilis. It hydrolyzes proteins with broad specificity for peptide bonds, and a preference for a large uncharged residue in P1. It also hydrolyzes peptide amides. (From Enzyme Nomenclature, 1992) EC 3.4.21.62.
Application of principles and practices of engineering science to biomedical research and health care.
Processes involved in the formation of TERTIARY PROTEIN STRUCTURE.
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The internal fragments of precursor proteins (INternal proTEINS) that are autocatalytically removed by PROTEIN SPLICING. The flanking fragments (EXTEINS) are ligated forming mature proteins. The nucleic acid sequences coding for inteins are considered to be MOBILE GENETIC ELEMENTS. Inteins are composed of self-splicing domains and an endonuclease domain which plays a role in the spread of the intein's genomic sequence. Mini-inteins are composed of the self-splicing domains only.
The ability of a protein to retain its structural conformation or its activity when subjected to physical or chemical manipulations.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat.
Body of knowledge related to the use of organisms, cells or cell-derived constituents for the purpose of developing products which are technically, scientifically and clinically useful. Alteration of biologic function at the molecular level (i.e., GENETIC ENGINEERING) is a central focus; laboratory methods used include TRANSFECTION and CLONING technologies, sequence and structure analysis algorithms, computer databases, and gene and protein structure function analysis and prediction.
The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to alpha helices, beta strands (which align to form beta sheets) or other types of coils. This is the first folding level of protein conformation.
The rate dynamics in chemical or physical systems.
Cell growth support structures composed of BIOCOMPATIBLE MATERIALS. They are specially designed solid support matrices for cell attachment in TISSUE ENGINEERING and GUIDED TISSUE REGENERATION uses.
A field of biological research combining engineering in the formulation, design, and building (synthesis) of novel biological structures, functions, and systems.
The excision of in-frame internal protein sequences (INTEINS) of a precursor protein, coupled with ligation of the flanking sequences (EXTEINS). Protein splicing is an autocatalytic reaction and results in the production of two proteins from a single primary translation product: the intein and the mature protein.
Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
A collection of cloned peptides, or chemically synthesized peptides, frequently consisting of all possible combinations of amino acids making up an n-amino acid peptide.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Proteins prepared by recombinant DNA technology.
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties.
Physical forces and actions in living things.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
Proteins produced from GENES that have acquired MUTATIONS.
Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function.
Temperate bacteriophage of the genus INOVIRUS which infects enterobacteria, especially E. coli. It is a filamentous phage consisting of single-stranded DNA and is circularly permuted.
An enzyme that catalyzes the transfer of a formyl group from N10-formyltetrahydrofolate to N1-(5-phospho-D-ribosyl)glycinamide to yield N2-formyl-N1-(5-phospho-D-ribosyl)glycinamide and tetrahydrofolate. It plays a role in the de novo purine biosynthetic pathway.
Techniques utilizing cells that express RECOMBINANT FUSION PROTEINS engineered to translocate through the CELL MEMBRANE and remain attached to the outside of the cell.
A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed)
An enzyme that activates tyrosine with its specific transfer RNA. EC 6.1.1.1.
The application of engineering principles and methods to living organisms or biological systems.
Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
Enzymes that catalyze the endohydrolysis of 1,4-alpha-glycosidic linkages in STARCH; GLYCOGEN; and related POLYSACCHARIDES and OLIGOSACCHARIDES containing 3 or more 1,4-alpha-linked D-glucose units.
Biologically functional sequences of DNA chemically synthesized in vitro.
Methods and techniques used to modify or select cells and develop conditions for growing cells for biosynthetic production of molecules (METABOLIC ENGINEERING), for generation of tissue structures and organs in vitro (TISSUE ENGINEERING), or for other BIOENGINEERING research objectives.
Proteins found in any species of bacterium.
Enzymes that catalyze the transfer of hydroxymethyl or formyl groups. EC 2.1.2.
Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
"Chemical Engineering is a branch of engineering that deals with the design, construction, and operation of plants and machinery for large-scale chemical processing of raw materials into finished or partially finished products and for the disposal or recycling of byproducts."
A genus of BACILLACEAE that are spore-forming, rod-shaped cells. Most species are saprophytic soil forms with only a few species being pathogenic.
Any of a variety of procedures which use biomolecular probes to measure the presence or concentration of biological molecules, biological structures, microorganisms, etc., by translating a biochemical interaction at the probe surface into a quantifiable physical signal.
An enzyme that catalyzes reversibly the conversion of D-glyceraldehyde 3-phosphate to dihydroxyacetone phosphate. A deficiency in humans causes nonspherocytic hemolytic disease (ANEMIA, HEMOLYTIC, CONGENITAL NONSPHEROCYTIC). EC 5.3.1.1.
The determination of the concentration of a given component in solution (the analyte) by addition of a liquid reagent of known strength (the titrant) until an equivalence point is reached (when the reactants are present in stoichiometric proportions). Often an indicator is added to make the equivalence point visible (e.g., a change in color).
The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include pharmacokinetics, dosage analysis, or drug administration analysis.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
A large collection of DNA fragments cloned (CLONING, MOLECULAR) from a given organism, tissue, organ, or cell type. It may contain complete genomic sequences (GENOMIC LIBRARY) or complementary DNA sequences, the latter being formed from messenger RNA and lacking intron sequences.
The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A species of GRAM-POSITIVE ENDOSPORE-FORMING BACTERIA in the family BACILLACEAE, found in soil, hot springs, Arctic waters, ocean sediments, and spoiled food products.
Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.
A thiol-containing non-essential amino acid that is oxidized to form CYSTINE.
Computer-based representation of physical systems and phenomena such as chemical processes.
The region of an enzyme that interacts with its substrate to cause the enzymatic reaction.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
NMR spectroscopy on small- to medium-size biological macromolecules. This is often used for structural investigation of proteins and nucleic acids, and often involves more than one isotope.
Artificial organs that are composites of biomaterials and cells. The biomaterial can act as a membrane (container) as in BIOARTIFICIAL LIVER or a scaffold as in bioartificial skin.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17.
A family of SERINE ENDOPEPTIDASES isolated from Bacillus subtilis. EC 3.4.21.-
Databases containing information about PROTEINS such as AMINO ACID SEQUENCE; PROTEIN CONFORMATION; and other properties.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
The thermodynamic interaction between a substance and WATER.
A field of biology concerned with the development of techniques for the collection and manipulation of biological data, and the use of such data to make biological discoveries or predictions. This field encompasses all computational methods and theories for solving biological problems including manipulation of models and datasets.
Water swollen, rigid, 3-dimensional network of cross-linked, hydrophilic macromolecules, 20-95% water. They are used in paints, printing inks, foodstuffs, pharmaceuticals, and cosmetics. (Grant & Hackh's Chemical Dictionary, 5th ed)
A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task.
Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation.
The characteristic 3-dimensional shape and arrangement of multimeric proteins (aggregates of more than one polypeptide chain).
A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed)
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
Condition of having pores or open spaces. This often refers to bones, bone implants, or bone cements, but can refer to the porous state of any solid substance.
DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition.
A process that includes the determination of AMINO ACID SEQUENCE of a protein (or peptide, oligopeptide or peptide fragment) and the information analysis of the sequence.
Sequential operating programs and data which instruct the functioning of a digital computer.
The accumulation of an electric charge on a object
A field of medicine concerned with developing and using strategies aimed at repair or replacement of damaged, diseased, or metabolically deficient organs, tissues, and cells via TISSUE ENGINEERING; CELL TRANSPLANTATION; and ARTIFICIAL ORGANS and BIOARTIFICIAL ORGANS and tissues.
The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
Tools or devices for generating products using the synthetic or chemical conversion capacity of a biological system. They can be classical fermentors, cell culture perfusion systems, or enzyme bioreactors. For production of proteins or enzymes, recombinant microorganisms such as bacteria, mammalian cells, or insect or plant cells are usually chosen.
A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair.
The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Polymers of organic acids and alcohols, with ester linkages--usually polyethylene terephthalate; can be cured into hard plastic, films or tapes, or fibers which can be woven into fabrics, meshes or velours.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which VEGETABLE PROTEINS is available.
The portion of an interactive computer program that issues messages to and receives commands from a user.
A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM.
Glycoside Hydrolases are a class of enzymes that catalyze the hydrolysis of glycosidic bonds, resulting in the breakdown of complex carbohydrates and oligosaccharides into simpler sugars.
Materials fabricated by BIOMIMETICS techniques, i.e., based on natural processes found in biological systems.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
The process by which two molecules of the same chemical composition form a condensation product or polymer.
A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds.
The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
Submicron-sized fibers with diameters typically between 50 and 500 nanometers. The very small dimension of these fibers can generate a high surface area to volume ratio, which makes them potential candidates for various biomedical and other applications.
A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter.
Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Proteins obtained from ESCHERICHIA COLI.
Procedures for enhancing and directing tissue repair and renewal processes, such as BONE REGENERATION; NERVE REGENERATION; etc. They involve surgically implanting growth conducive tracks or conduits (TISSUE SCAFFOLDING) at the damaged site to stimulate and control the location of cell repopulation. The tracks or conduits are made from synthetic and/or natural materials and may include support cells and induction factors for CELL GROWTH PROCESSES; or CELL MIGRATION.
Commonly observed structural components of proteins formed by simple combinations of adjacent secondary structures. A commonly observed structure may be composed of a CONSERVED SEQUENCE which can be represented by a CONSENSUS SEQUENCE.
Renewal or repair of lost bone tissue. It excludes BONY CALLUS formed after BONE FRACTURES but not yet replaced by hard bone.
Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS).
Methods for maintaining or growing CELLS in vitro.
The characteristic three-dimensional shape of a molecule.
The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations.
An essential amino acid that is required for the production of HISTAMINE.
Salts and esters of the 10-carbon monocarboxylic acid-decanoic acid.
A network of cross-linked hydrophilic macromolecules used in biomedical applications.
An interdisciplinary field in materials science, ENGINEERING, and BIOLOGY, studying the use of biological principles for synthesis or fabrication of BIOMIMETIC MATERIALS.
The process of cleaving a chemical compound by the addition of a molecule of water.
Hydrocarbon-rich byproducts from the non-fossilized BIOMASS that are combusted to generate energy as opposed to fossilized hydrocarbon deposits (FOSSIL FUELS).
Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).

Assembly requirements of PU.1-Pip (IRF-4) activator complexes: inhibiting function in vivo using fused dimers. (1/4007)

Gene expression in higher eukaryotes appears to be regulated by specific combinations of transcription factors binding to regulatory sequences. The Ets factor PU.1 and the IRF protein Pip (IRF-4) represent a pair of interacting transcription factors implicated in regulating B cell-specific gene expression. Pip is recruited to its binding site on DNA by phosphorylated PU.1. PU.1-Pip interaction is shown to be template directed and involves two distinct protein-protein interaction surfaces: (i) the ets and IRF DNA-binding domains; and (ii) the phosphorylated PEST region of PU.1 and a lysine-requiring putative alpha-helix in Pip. Thus, a coordinated set of protein-protein and protein-DNA contacts are essential for PU.1-Pip ternary complex assembly. To analyze the function of these factors in vivo, we engineered chimeric repressors containing the ets and IRF DNA-binding domains connected by a flexible POU domain linker. When stably expressed, the wild-type fused dimer strongly repressed the expression of a rearranged immunoglobulin lambda gene, thereby establishing the functional importance of PU.1-Pip complexes in B cell gene expression. Comparative analysis of the wild-type dimer with a series of mutant dimers distinguished a gene regulated by PU.1 and Pip from one regulated by PU.1 alone. This strategy should prove generally useful in analyzing the function of interacting transcription factors in vivo, and for identifying novel genes regulated by such complexes.  (+info)

Engineering a chimeric pyrroloquinoline quinone glucose dehydrogenase: improvement of EDTA tolerance, thermal stability and substrate specificity. (2/4007)

An engineered Escherichia coli PQQ glucose dehydrogenase (PQQGDH) with improved enzymatic characteristics was constructed by substituting and combining the gene-encoding protein regions responsible for EDTA tolerance, thermal stability and substrate specificity. The protein region responsible for complete EDTA tolerance in Acinetobacter calcoaceticus, which is recognized as the indicator of high stability in co-factor binding, was elucidated. The region is located between 32 and 59% from the N-terminus of A. calcoaceticus PQQGDH(A27 region) and also corresponds to the same position from 32 to 59% from the N-terminus in E. coli PQQGDH, though E. coli PQQGDH is EDTA sensitive. We previously reported that the C-terminal 3% region of A. calcoaceticus (A3 region) played an important role in the increase of thermal stability, and that His775Asn substitution in E. coli PQQGDH resulted in an increase in the substrate specificity of E. coli PQQGDH towards glucose. Based on these findings, chimeric and/or mutated PQQGDHs, E97A3 H775N, E32A27E41 H782N, E32A27E38A3 and E32A27E38A3 H782N were constructed to investigate the compatibility of two protein regions and one amino acid substitution. His775 substitution to Asn corresponded to His782 substitution to Asn (H782N) in chimeric enzymes harbouring the A27 region. Since all the chimeric PQQGDHs harbouring the A27 region were EDTA tolerant, the A27 region was found to be compatible with the other region and substituted amino acid responsible for the improvement of enzymatic properties. The contribution of the A3 region to thermal stability complemented the decrease in the thermal stability due to the His775 or His782 substitution to Asn. E32A27E38A3 H782N, which harbours all the above mentioned three regions, showed improved EDTA tolerance, thermal stability and substrate specificity. These results suggested a strategy for the construction of a semi-artificial enzyme by substituting and combining the gene-encoding protein regions responsible for the improvement of enzyme characteristics. The characteristics of constructed chimeric PQQGDH are discussed based on the predicted model, beta-propeller structure.  (+info)

Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5'-GNN-3' DNA target sequences. (3/4007)

We have taken a comprehensive approach to the generation of novel DNA binding zinc finger domains of defined specificity. Herein we describe the generation and characterization of a family of zinc finger domains developed for the recognition of each of the 16 possible 3-bp DNA binding sites having the sequence 5'-GNN-3'. Phage display libraries of zinc finger proteins were created and selected under conditions that favor enrichment of sequence-specific proteins. Zinc finger domains recognizing a number of sequences required refinement by site-directed mutagenesis that was guided by both phage selection data and structural information. In many cases, residues not expected to make base-specific contacts had effects on specificity. A number of these domains demonstrate exquisite specificity and discriminate between sequences that differ by a single base with >100-fold loss in affinity. We conclude that the three helical positions -1, 3, and 6 of a zinc finger domain are insufficient to allow for the fine specificity of the DNA binding domain to be predicted. These domains are functionally modular and may be recombined with one another to create polydactyl proteins capable of binding 18-bp sequences with subnanomolar affinity. The family of zinc finger domains described here is sufficient for the construction of 17 million novel proteins that bind the 5'-(GNN)6-3' family of DNA sequences. These materials and methods should allow for the rapid construction of novel gene switches and provide the basis for a universal system for gene control.  (+info)

Re-design of Rhodobacter sphaeroides dimethyl sulfoxide reductase. Enhancement of adenosine N1-oxide reductase activity. (4/4007)

The periplasmic DMSO reductase from Rhodobacter sphaeroides f. sp. denitrificans has been expressed in Escherichia coli BL21(DE3) cells in its mature form and with the R. sphaeroides or E. coli N-terminal signal sequence. Whereas the R. sphaeroides signal sequence prevents formation of active enzyme, addition of a 6x His-tag at the N terminus of the mature peptide maximizes production of active enzyme and allows for affinity purification. The recombinant protein contains 1.7-1.9 guanines and greater than 0.7 molybdenum atoms per molecule and has a DMSO reductase activity of 3.4-3.7 units/nmol molybdenum, compared with 3.7 units/nmol molybdenum for enzyme purified from R. sphaeroides. The recombinant enzyme differs from the native enzyme in its color and spectrum but is indistinguishable from the native protein after redox cycling with reduced methyl viologen and Me2SO. Substitution of Cys for the molybdenum-ligating Ser-147 produced a protein with DMSO reductase activity of 1.4-1.5 units/nmol molybdenum. The mutant protein differs from wild type in its color and absorption spectrum in both the oxidized and reduced states. This substitution leads to losses of 61-99% of activity toward five substrates, but the adenosine N1-oxide reductase activity increases by over 400%.  (+info)

CD86 (B7-2) can function to drive MHC-restricted antigen-specific CTL responses in vivo. (5/4007)

Activation of T cells requires both TCR-specific ligation by direct contact with peptide Ag-MHC complexes and coligation of the B7 family of ligands through CD28/CTLA-4 on the T cell surface. We recently reported that coadministration of CD86 cDNA along with DNA encoding HIV-1 Ags i.m. dramatically increased Ag-specific CTL responses. We investigated whether the bone marrow-derived professional APCs or muscle cells were responsible for the enhancement of CTL responses following CD86 coadministration. Accordingly, we analyzed CTL induction in bone marrow chimeras. These chimeras are capable of generating functional viral-specific CTLs against vaccinia virus and therefore represent a useful model system to study APC/T cell function in vivo. In vaccinated chimeras, we observed that only CD86 + Ag + MHC class I results in 1) detectable CTLs following in vitro restimulation, 2) detectable direct CTLs, 3) enhanced IFN-gamma production in an Ag-specific manner, and 4) dramatic tissue invasion of T cells. These results support that CD86 plays a central role in CTL induction in vivo, enabling non-bone marrow-derived cells to prime CTLs, a property previously associated solely with bone marrow-derived APCs.  (+info)

Elimination of the immunogenicity of therapeutic antibodies. (6/4007)

The immunogenicity of therapeutic Abs limits their long-term use. The processes of complementarity-determining region grafting, resurfacing, and hyperchimerization diminish mAb immunogenicity by reducing the number of foreign residues. However, this does not prevent anti-idiotypic and anti-allotypic responses following repeated administration of cell-binding Abs. Classical studies have demonstrated that monomeric human IgG is profoundly tolerogenic in a number of species. If cell-binding Abs could be converted into monomeric non-cell-binding tolerogens, then it should be possible to pretolerize patients to the therapeutic cell-binding form. We demonstrate that non-cell-binding minimal mutants of the anti-CD52 Ab CAMPATH-1H lose immunogenicity and can tolerize to the "wild-type" Ab in CD52-expressing transgenic mice. This finding could have utility in the long-term administration of therapeutic proteins to humans.  (+info)

Combinatorial protein engineering by incremental truncation. (7/4007)

We have developed a combinatorial approach, using incremental truncation libraries of overlapping N- and C-terminal gene fragments, that examines all possible bisection points within a given region of an enzyme that will allow the conversion of a monomeric enzyme into its functional heterodimer. This general method for enzyme bisection will have broad applications in the engineering of new catalytic functions through domain swapping and chemical synthesis of modified peptide fragments and in the study of enzyme evolution and protein folding. We have tested this methodology on Escherichia coli glycinamide ribonucleotide formyltransferase (PurN) and, by genetic selection, identified PurN heterodimers capable of glycinamide ribonucleotide transformylation. Two were chosen for physical characterization and were found to be comparable to the wild-type PurN monomer in terms of stability to denaturation, activity, and binding of substrate and cofactor. Sequence analysis of 18 randomly chosen, active PurN heterodimers revealed that the breakpoints primarily clustered in loops near the surface of the enzyme, that the breaks could result in the deletion of highly conserved residues and, most surprisingly, that the active site could be bisected.  (+info)

Rational design of a scytalone dehydratase-like enzyme using a structurally homologous protein scaffold. (8/4007)

The generation of enzymes to catalyze specific reactions is one of the more challenging problems facing protein engineers. Structural similarities between the enzyme scytalone dehydratase with nuclear transport factor 2 (NTF2) suggested the potential for NTF2 to be re-engineered into a scytalone dehydratase-like enzyme. We introduced four key catalytic residues into NTF2 to create a scytalone dehydratase-like active site. A C-terminal helix found in scytalone dehydratase but absent in NTF2 also was added. Mutant NTF2 proteins were tested for catalytic activity by using a spectroscopic assay. One of the engineered enzymes exhibited catalytic activity with minimal kcat and Km values of 0.125 min-1 and 800 microM, respectively. This level of catalytic activity represents minimally a 150-fold improvement in activity over the background rate for substrate dehydration and a dramatic step forward from the catalytically inert parent NTF2. This work represents one of the few examples of converting a protein scaffold into an enzyme, outside those arising from the induction of catalytic activity into antibodies.  (+info)

Protein engineering is a branch of molecular biology that involves the modification of proteins to achieve desired changes in their structure and function. This can be accomplished through various techniques, including site-directed mutagenesis, gene shuffling, directed evolution, and rational design. The goal of protein engineering may be to improve the stability, activity, specificity, or other properties of a protein for therapeutic, diagnostic, industrial, or research purposes. It is an interdisciplinary field that combines knowledge from genetics, biochemistry, structural biology, and computational modeling.

Tissue engineering is a branch of biomedical engineering that combines the principles of engineering, materials science, and biological sciences to develop functional substitutes for damaged or diseased tissues and organs. It involves the creation of living, three-dimensional structures that can restore, maintain, or improve tissue function. This is typically accomplished through the use of cells, scaffolds (biodegradable matrices), and biologically active molecules. The goal of tissue engineering is to develop biological substitutes that can ultimately restore normal function and structure in damaged tissues or organs.

Genetic engineering, also known as genetic modification, is a scientific process where the DNA or genetic material of an organism is manipulated to bring about a change in its characteristics. This is typically done by inserting specific genes into the organism's genome using various molecular biology techniques. These new genes may come from the same species (cisgenesis) or a different species (transgenesis). The goal is to produce a desired trait, such as resistance to pests, improved nutritional content, or increased productivity. It's widely used in research, medicine, and agriculture. However, it's important to note that the use of genetically engineered organisms can raise ethical, environmental, and health concerns.

DNA shuffling, also known as homologous recombination or genetic recombination, is a process that occurs naturally in nature and involves the exchange of genetic material between two similar or identical strands of DNA. This process can also be performed artificially in a laboratory setting to create new combinations of genes or to improve existing ones through a technique called molecular breeding or directed evolution.

In DNA shuffling, the DNA molecules are cut into smaller pieces using enzymes called restriction endonucleases. The resulting fragments are then mixed together and allowed to reassemble randomly through the action of enzymes such as ligase, which seals the broken ends of the DNA strands together. This process can result in the creation of new combinations of genes that did not exist before, or the improvement of existing ones through the selection of advantageous mutations.

DNA shuffling is a powerful tool in biotechnology and has been used to create new enzymes with improved properties, such as increased stability, specificity, and activity. It has also been used to develop new vaccines, diagnostic tests, and other medical applications.

Metabolic engineering is a branch of biotechnology that involves the modification and manipulation of metabolic pathways in organisms to enhance their production of specific metabolites or to alter their flow of energy and carbon. This field combines principles from genetics, molecular biology, biochemistry, and chemical engineering to design and construct novel metabolic pathways or modify existing ones with the goal of optimizing the production of valuable compounds or improving the properties of organisms for various applications.

Examples of metabolic engineering include the modification of microorganisms to produce biofuels, pharmaceuticals, or industrial chemicals; the enhancement of crop yields and nutritional value in agriculture; and the development of novel bioremediation strategies for environmental pollution control. The ultimate goal of metabolic engineering is to create organisms that can efficiently and sustainably produce valuable products while minimizing waste and reducing the impact on the environment.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Directed molecular evolution is a laboratory technique used to generate proteins or other molecules with desired properties through an iterative process that mimics natural evolution. This process typically involves the following steps:

1. Generation of a diverse library of variants: A population of molecules is created, usually by introducing random mutations into a parent sequence using techniques such as error-prone PCR or DNA shuffling. The resulting library contains a large number of different sequences, each with potentially unique properties.
2. Screening or selection for desired activity: The library is subjected to a screening or selection process that identifies molecules with the desired activity or property. This could involve an in vitro assay, high-throughput screening, or directed cell sorting.
3. Amplification and reiteration: Molecules that exhibit the desired activity are amplified, either by PCR or through cell growth, and then used as templates for another round of mutagenesis and selection. This process is repeated until the desired level of optimization is achieved.

Directed molecular evolution has been successfully applied to a wide range of molecules, including enzymes, antibodies, and aptamers, enabling the development of improved catalysts, biosensors, and therapeutics.

Subtilisin is not strictly a medical term, but rather a term used in biochemistry and microbiology. It refers to a group of proteolytic enzymes (proteases) that are produced by certain bacteria, particularly Bacillus subtilis. These enzymes have the ability to break down other proteins into smaller peptides or individual amino acids by cleaving specific peptide bonds.

In a medical context, subtilisin might be mentioned in relation to its use in various commercial products such as detergents and contact lens cleaning solutions, where it helps to break down protein-based stains or deposits. Additionally, subtilisins have been explored for their potential applications in therapeutics, including the treatment of certain diseases caused by protein misfolding or aggregation, like cystic fibrosis and Alzheimer's disease.

However, it is important to note that direct medical definitions of 'subtilisin' are limited, as it primarily functions within the realms of biochemistry and microbiology.

Biomedical engineering is a field that combines engineering principles and design concepts with medical and biological sciences to develop solutions to healthcare challenges. It involves the application of engineering methods to analyze, understand, and solve problems in biology and medicine, with the goal of improving human health and well-being. Biomedical engineers may work on a wide range of projects, including developing new medical devices, designing artificial organs, creating diagnostic tools, simulating biological systems, and optimizing healthcare delivery systems. They often collaborate with other professionals such as doctors, nurses, and scientists to develop innovative solutions that meet the needs of patients and healthcare providers.

Protein folding is the process by which a protein molecule naturally folds into its three-dimensional structure, following the synthesis of its amino acid chain. This complex process is determined by the sequence and properties of the amino acids, as well as various environmental factors such as temperature, pH, and the presence of molecular chaperones. The final folded conformation of a protein is crucial for its proper function, as it enables the formation of specific interactions between different parts of the molecule, which in turn define its biological activity. Protein misfolding can lead to various diseases, including neurodegenerative disorders such as Alzheimer's and Parkinson's disease.

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

An intein is a type of mobile genetic element that can be found within the proteins of various organisms, including bacteria, archaea, and eukaryotes. Inteins are intervening sequences of amino acids that are capable of self-excising from their host protein through a process called protein splicing.

Protein splicing involves the cleavage of the intein from the flanking sequences (known as exteins) and the formation of a peptide bond between the two exteins, resulting in a mature, functional protein. Inteins can also ligate themselves to form circular proteins or can be transferred horizontally between different organisms through various mechanisms.

Inteins have been identified as potential targets for drug development due to their essential role in the survival and virulence of certain pathogenic bacteria. Additionally, the protein splicing mechanism of inteins has been harnessed for various biotechnological applications, such as the production of recombinant proteins and the development of biosensors.

Protein stability refers to the ability of a protein to maintain its native structure and function under various physiological conditions. It is determined by the balance between forces that promote a stable conformation, such as intramolecular interactions (hydrogen bonds, van der Waals forces, and hydrophobic effects), and those that destabilize it, such as thermal motion, chemical denaturation, and environmental factors like pH and salt concentration. A protein with high stability is more resistant to changes in its structure and function, even under harsh conditions, while a protein with low stability is more prone to unfolding or aggregation, which can lead to loss of function or disease states, such as protein misfolding diseases.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Enzyme stability refers to the ability of an enzyme to maintain its structure and function under various environmental conditions, such as temperature, pH, and the presence of denaturants or inhibitors. A stable enzyme retains its activity and conformation over time and across a range of conditions, making it more suitable for industrial and therapeutic applications.

Enzymes can be stabilized through various methods, including chemical modification, immobilization, and protein engineering. Understanding the factors that affect enzyme stability is crucial for optimizing their use in biotechnology, medicine, and research.

Biotechnology is defined in the medical field as a branch of technology that utilizes biological processes, organisms, or systems to create products that are technologically useful. This can include various methods and techniques such as genetic engineering, cell culture, fermentation, and others. The goal of biotechnology is to harness the power of biology to produce drugs, vaccines, diagnostic tests, biofuels, and other industrial products, as well as to advance our understanding of living systems for medical and scientific research.

The use of biotechnology has led to significant advances in medicine, including the development of new treatments for genetic diseases, improved methods for diagnosing illnesses, and the creation of vaccines to prevent infectious diseases. However, it also raises ethical and societal concerns related to issues such as genetic modification of organisms, cloning, and biosecurity.

Secondary protein structure refers to the local spatial arrangement of amino acid chains in a protein, typically described as regular repeating patterns held together by hydrogen bonds. The two most common types of secondary structures are the alpha-helix (α-helix) and the beta-pleated sheet (β-sheet). In an α-helix, the polypeptide chain twists around itself in a helical shape, with each backbone atom forming a hydrogen bond with the fourth amino acid residue along the chain. This forms a rigid rod-like structure that is resistant to bending or twisting forces. In β-sheets, adjacent segments of the polypeptide chain run parallel or antiparallel to each other and are connected by hydrogen bonds, forming a pleated sheet-like arrangement. These secondary structures provide the foundation for the formation of tertiary and quaternary protein structures, which determine the overall three-dimensional shape and function of the protein.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Tissue scaffolds, also known as bioactive scaffolds or synthetic extracellular matrices, refer to three-dimensional structures that serve as templates for the growth and organization of cells in tissue engineering and regenerative medicine. These scaffolds are designed to mimic the natural extracellular matrix (ECM) found in biological tissues, providing a supportive environment for cell attachment, proliferation, differentiation, and migration.

Tissue scaffolds can be made from various materials, including naturally derived biopolymers (e.g., collagen, alginate, chitosan, hyaluronic acid), synthetic polymers (e.g., polycaprolactone, polylactic acid, poly(lactic-co-glycolic acid)), or a combination of both. The choice of material depends on the specific application and desired properties, such as biocompatibility, biodegradability, mechanical strength, and porosity.

The primary functions of tissue scaffolds include:

1. Cell attachment: Providing surfaces for cells to adhere, spread, and form stable focal adhesions.
2. Mechanical support: Offering a structural framework that maintains the desired shape and mechanical properties of the engineered tissue.
3. Nutrient diffusion: Ensuring adequate transport of nutrients, oxygen, and waste products throughout the scaffold to support cell survival and function.
4. Guided tissue growth: Directing the organization and differentiation of cells through spatial cues and biochemical signals.
5. Biodegradation: Gradually degrading at a rate that matches tissue regeneration, allowing for the replacement of the scaffold with native ECM produced by the cells.

Tissue scaffolds have been used in various applications, such as wound healing, bone and cartilage repair, cardiovascular tissue engineering, and neural tissue regeneration. The design and fabrication of tissue scaffolds are critical aspects of tissue engineering, aiming to create functional substitutes for damaged or diseased tissues and organs.

Synthetic biology is not a medical term per se, but rather it falls under the broader field of biology and bioengineering. Synthetic biology is an interdisciplinary field that combines principles from biology, engineering, chemistry, physics, and computer science to design and construct new biological parts, devices, and systems that do not exist in nature or re-design existing natural biological systems for useful purposes.

In simpler terms, synthetic biology involves the creation of artificial biological components such as genes, proteins, and cells, or the modification of existing ones to perform specific functions. These engineered biological systems can be used for a wide range of applications, including medical research, diagnostics, therapeutics, and environmental remediation.

Examples of synthetic biology in medicine include the development of synthetic gene circuits that can detect and respond to disease-causing agents or the creation of artificial cells that can produce therapeutic proteins or drugs. However, it's important to note that while synthetic biology holds great promise for improving human health, it also raises ethical, safety, and regulatory concerns that need to be carefully considered and addressed.

Protein splicing is a post-translational modification process that involves the excision of an intervening polypeptide segment, called an intein, from a protein precursor and the ligation of the flanking sequences, called exteins. This reaction results in the formation of a mature, functional protein product. Protein splicing is mediated by a set of conserved amino acid residues within the intein and can occur autocatalytically or in conjunction with other cellular factors. It plays an important role in the regulation and diversification of protein functions in various organisms, including bacteria, archaea, and eukaryotes.

Mutagenesis is the process by which the genetic material (DNA or RNA) of an organism is changed in a way that can alter its phenotype, or observable traits. These changes, known as mutations, can be caused by various factors such as chemicals, radiation, or viruses. Some mutations may have no effect on the organism, while others can cause harm, including diseases and cancer. Mutagenesis is a crucial area of study in genetics and molecular biology, with implications for understanding evolution, genetic disorders, and the development of new medical treatments.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

A peptide library is a collection of a large number of peptides, which are short chains of amino acids. Each peptide in the library is typically composed of a defined length and sequence, and may contain a variety of different amino acids. Peptide libraries can be synthesized using automated techniques and are often used in scientific research to identify potential ligands (molecules that bind to specific targets) or to study the interactions between peptides and other molecules.

In a peptide library, each peptide is usually attached to a solid support, such as a resin bead, and the entire library can be created using split-and-pool synthesis techniques. This allows for the rapid and efficient synthesis of a large number of unique peptides, which can then be screened for specific activities or properties.

Peptide libraries are used in various fields such as drug discovery, proteomics, and molecular biology to identify potential therapeutic targets, understand protein-protein interactions, and develop new diagnostic tools.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

X-ray crystallography is a technique used in structural biology to determine the three-dimensional arrangement of atoms in a crystal lattice. In this method, a beam of X-rays is directed at a crystal and diffracts, or spreads out, into a pattern of spots called reflections. The intensity and angle of each reflection are measured and used to create an electron density map, which reveals the position and type of atoms in the crystal. This information can be used to determine the molecular structure of a compound, including its shape, size, and chemical bonds. X-ray crystallography is a powerful tool for understanding the structure and function of biological macromolecules such as proteins and nucleic acids.

An amino acid substitution is a type of mutation in which one amino acid in a protein is replaced by another. This occurs when there is a change in the DNA sequence that codes for a particular amino acid in a protein. The genetic code is redundant, meaning that most amino acids are encoded by more than one codon (a sequence of three nucleotides). As a result, a single base pair change in the DNA sequence may not necessarily lead to an amino acid substitution. However, if a change does occur, it can have a variety of effects on the protein's structure and function, depending on the nature of the substituted amino acids. Some substitutions may be harmless, while others may alter the protein's activity or stability, leading to disease.

Biophysical processes refer to the physical mechanisms and phenomena that occur within living organisms and their constituent parts, such as cells, tissues, and organs. These processes are governed by the principles of physics and chemistry and play a critical role in maintaining life and enabling biological functions. Examples of biophysical processes include:

1. Diffusion: The passive movement of molecules from an area of high concentration to an area of low concentration, which enables the exchange of gases, nutrients, and waste products between cells and their environment.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration. This process is critical for maintaining cell volume and hydration.
3. Electrochemical gradients: The distribution of ions and charged particles across a membrane, which generates an electrical potential that can drive the movement of molecules and ions across the membrane. This process plays a crucial role in nerve impulse transmission and muscle contraction.
4. Enzyme kinetics: The study of how enzymes catalyze chemical reactions within cells, including the rate of reaction, substrate affinity, and inhibition or activation by other molecules.
5. Cell signaling: The communication between cells through the release and detection of signaling molecules, which can trigger a variety of responses, such as cell division, differentiation, or apoptosis.
6. Mechanical forces: The physical forces exerted by cells and tissues, such as tension, compression, and shear stress, which play a critical role in development, maintenance, and repair of biological structures.
7. Thermodynamics: The study of energy flow and transformation within living systems, including the conversion of chemical energy into mechanical work, heat, or electrical signals.

Understanding biophysical processes is essential for gaining insights into the fundamental mechanisms that underlie life and disease, as well as for developing new diagnostic tools and therapies.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

A mutant protein is a protein that has undergone a genetic mutation, resulting in an altered amino acid sequence and potentially changed structure and function. These changes can occur due to various reasons such as errors during DNA replication, exposure to mutagenic substances, or inherited genetic disorders. The alterations in the protein's structure and function may have no significant effects, lead to benign phenotypic variations, or cause diseases, depending on the type and location of the mutation. Some well-known examples of diseases caused by mutant proteins include cystic fibrosis, sickle cell anemia, and certain types of cancer.

Biocompatible materials are non-toxic and non-reacting substances that can be used in medical devices, tissue engineering, and drug delivery systems without causing harm or adverse reactions to living tissues or organs. These materials are designed to mimic the properties of natural tissues and are able to integrate with biological systems without being rejected by the body's immune system.

Biocompatible materials can be made from a variety of substances, including metals, ceramics, polymers, and composites. The specific properties of these materials, such as their mechanical strength, flexibility, and biodegradability, are carefully selected to meet the requirements of their intended medical application.

Examples of biocompatible materials include titanium used in dental implants and joint replacements, polyethylene used in artificial hips, and hydrogels used in contact lenses and drug delivery systems. The use of biocompatible materials has revolutionized modern medicine by enabling the development of advanced medical technologies that can improve patient outcomes and quality of life.

Bacteriophage M13 is a type of bacterial virus that infects and replicates within the bacterium Escherichia coli (E. coli). It is a filamentous phage, meaning it has a long, thin, and flexible structure. The M13 phage specifically infects only the F pili of E. coli bacteria, which are hair-like appendages found on the surface of certain strains of E. coli.

Once inside the host cell, the M13 phage uses the bacterial machinery to produce new viral particles, or progeny phages, without killing the host cell. The phage genome is made up of a single-stranded circular DNA molecule that encodes for about 10 genes. These genes are involved in various functions such as replication, packaging, and assembly of the phage particles.

Bacteriophage M13 is widely used in molecular biology research due to its ability to efficiently incorporate foreign DNA sequences into its genome. This property has been exploited for a variety of applications, including DNA sequencing, gene cloning, and protein expression. The M13 phage can display foreign peptides or proteins on the surface of its coat protein, making it useful for screening antibodies or identifying ligands in phage display technology.

Phosphoribosylglycinamide formyltransferase (PGTF) is an enzyme involved in the biosynthesis of purine nucleotides, which are essential components of DNA and RNA. The systematic medical definition of PGTF is:

"An enzyme that catalyzes the transfer of a formyl group from 10-formyltetrahydrofolate to the amino group of phosphoribosylglycinamide, forming N-formylphosphoribosylglycinamide and tetrahydrofolate as byproducts. This reaction is the fourth step in the de novo synthesis pathway of purine nucleotides."

PGTF's gene name is GART (Glycinamide Ribonucleotide Transformylase), and it is located on human chromosome 10q24.32-q25.1. Mutations in the GART gene can lead to a rare autosomal recessive disorder called Lesch-Nyhan syndrome, which is characterized by hyperuricemia, neurological symptoms, and self-mutilating behavior.

Cell surface display techniques refer to a group of molecular biology methods that involve the presentation of recombinant proteins or peptides on the outer surface of a cell, typically a bacterial or yeast cell. This is achieved by fusing the protein or peptide of interest to a cell surface anchor protein, which helps tether the fusion protein to the cell membrane.

The displayed protein can then be used for various applications such as antigen presentation for vaccine development, enzyme immobilization, bioremediation, and biosensing. The most commonly used cell surface anchor proteins include ice nucleation protein (INP) in Gram-negative bacteria, autotransporter proteins in Gram-negative bacteria, and the alpha-agglutinin protein in yeast.

Cell surface display techniques offer several advantages, including high expression levels, ease of genetic manipulation, and the ability to screen large libraries of displayed proteins for specific functions or interactions. However, they also have some limitations, such as potential interference from the anchor protein with the function of the displayed protein and the difficulty of recovering the displayed protein from the cell surface.

I'm sorry for any confusion, but "thermodynamics" is not a term that has a specific medical definition. It is a branch of physics that deals with the relationships between heat and other forms of energy. However, the principles of thermodynamics can be applied to biological systems, including those in the human body, such as in the study of metabolism or muscle function. But in a medical context, "thermodynamics" would not be a term used independently as a diagnosis, treatment, or any medical condition.

Tyrosine-tRNA ligase is an enzyme that plays a crucial role in protein synthesis, specifically in the process of translating the genetic code from messenger RNA (mRNA) into proteins. More formally known as tyrosyl-tRNA synthetase, this enzyme is responsible for charging tRNA molecules with their specific amino acids. In this case, it catalyzes the attachment of the amino acid tyrosine to its corresponding transfer RNA (tRNA) molecule. This enzymatic reaction involves the activation of tyrosine with ATP to form an aminoacyl-AMP intermediate, followed by the transfer of the tyrosyl group from the intermediate to the 3' end of its appropriate tRNA. The resulting tyrosine-tRNA complex is then used in the translation process to incorporate tyrosine into the growing polypeptide chain during protein synthesis.

Bioengineering, also known as biological engineering, is defined as the application of principles and methods from engineering to study, modify, and control biological systems, often with the goal of creating new technologies or improving existing ones. This field combines knowledge and expertise from various disciplines, including biology, chemistry, physics, mathematics, and computer science, to solve complex problems related to health, medicine, agriculture, and the environment.

Bioengineers may work on a wide range of projects, such as developing new medical devices or therapies, designing synthetic biological systems for industrial applications, creating biosensors for environmental monitoring, or engineering tissues and organs for transplantation. They use a variety of tools and techniques, including genetic engineering, biomaterials, computational modeling, and nanotechnology, to design and build novel biological systems that can perform specific functions or solve practical problems.

Bioengineering has the potential to transform many areas of science and technology, with significant implications for human health, sustainability, and innovation. As such, it is an exciting and rapidly growing field that offers many opportunities for interdisciplinary collaboration and discovery.

Protein denaturation is a process in which the native structure of a protein is altered, leading to loss of its biological activity. This can be caused by various factors such as changes in temperature, pH, or exposure to chemicals or radiation. The three-dimensional shape of a protein is crucial for its function, and denaturation causes the protein to lose this shape, resulting in impaired or complete loss of function. Denaturation is often irreversible and can lead to the aggregation of proteins, which can have negative effects on cellular function and can contribute to diseases such as Alzheimer's and Parkinson's.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Alpha-amylases are a type of enzyme that breaks down complex carbohydrates, such as starch and glycogen, into simpler sugars like maltose, maltotriose, and glucose. These enzymes catalyze the hydrolysis of alpha-1,4 glycosidic bonds in these complex carbohydrates, making them more easily digestible.

Alpha-amylases are produced by various organisms, including humans, animals, plants, and microorganisms such as bacteria and fungi. In humans, alpha-amylases are primarily produced by the salivary glands and pancreas, and they play an essential role in the digestion of dietary carbohydrates.

Deficiency or malfunction of alpha-amylases can lead to various medical conditions, such as diabetes, kidney disease, and genetic disorders like congenital sucrase-isomaltase deficiency. On the other hand, excessive production of alpha-amylases can contribute to dental caries and other oral health issues.

Synthetic genes are artificially created DNA (deoxyribonucleic acid) molecules that do not exist in nature. They are designed and constructed through genetic engineering techniques to encode specific functionalities or properties that do not occur in the original organism's genome. These synthetic genes can be used for various purposes, such as introducing new traits into organisms, producing novel enzymes or proteins, or developing new biotechnological applications.

The creation of synthetic genes involves designing and synthesizing DNA sequences that code for desired proteins or regulatory elements. This is achieved through chemical synthesis methods or using automated DNA synthesizers that can produce short DNA fragments, which are then assembled into longer sequences to form the complete synthetic gene. Once created, these synthetic genes can be introduced into living cells through various techniques like transfection or transformation, enabling the expression of the desired protein or functional trait.

Cell engineering is a branch of biotechnology that involves the manipulation and modification of cells to achieve desired functions or characteristics. This can be accomplished through various techniques, including genetic engineering, gene editing, cell culturing, and tissue engineering. The goal of cell engineering may be to develop new therapies for diseases, create cells or tissues that can replace damaged ones in the body, or to better understand how cells function.

In genetic engineering, genes are introduced into cells using vectors such as plasmids or viruses. These genes can encode for specific proteins or enzymes that can help the cell perform a particular function, such as producing a therapeutic protein or breaking down a toxic substance. Gene editing techniques, such as CRISPR-Cas9, allow for precise editing of an organism's genome, enabling the correction of genetic mutations or the introduction of new traits.

Cell culturing involves growing cells in controlled conditions outside of the body, allowing researchers to study their behavior and properties. Tissue engineering combines cell engineering with materials science to create functional tissues or organs that can be used for transplantation or other medical applications.

Overall, cell engineering has the potential to revolutionize medicine by enabling the development of personalized therapies, regenerative medicine, and new treatments for a wide range of diseases and conditions.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Hydroxymethyl and Formyl Transferases are a class of enzymes that catalyze the transfer of hydroxymethyl or formyl groups from one molecule to another. These enzymes play important roles in various metabolic pathways, including the synthesis and modification of nucleotides, amino acids, and other biomolecules.

One example of a Hydroxymethyl Transferase is DNA methyltransferase (DNMT), which catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM) to the 5-carbon of cytosine residues in DNA, forming 5-methylcytosine. This enzyme can also function as a Hydroxymethyl Transferase by catalyzing the transfer of a hydroxymethyl group from SAM to cytosine residues, forming 5-hydroxymethylcytosine.

Formyl Transferases are another class of enzymes that catalyze the transfer of formyl groups from one molecule to another. One example is formyltransferase domain containing protein 1 (FTCD1), which catalyzes the transfer of a formyl group from 10-formyltetrahydrofolate to methionine, forming N5-formiminotetrahydrofolate and methionine semialdehyde.

These enzymes are essential for maintaining proper cellular function and are involved in various physiological processes, including gene regulation, DNA repair, and metabolism. Dysregulation of these enzymes has been implicated in several diseases, including cancer, neurological disorders, and cardiovascular disease.

Enzymes are complex proteins that act as catalysts to speed up chemical reactions in the body. They help to lower activation energy required for reactions to occur, thereby enabling the reaction to happen faster and at lower temperatures. Enzymes work by binding to specific molecules, called substrates, and converting them into different molecules, called products. This process is known as catalysis.

Enzymes are highly specific and will only catalyze one particular reaction with a specific substrate. The shape of the enzyme's active site, where the substrate binds, determines this specificity. Enzymes can be regulated by various factors such as temperature, pH, and the presence of inhibitors or activators. They play a crucial role in many biological processes, including digestion, metabolism, and DNA replication.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Circular dichroism (CD) is a technique used in physics and chemistry to study the structure of molecules, particularly large biological molecules such as proteins and nucleic acids. It measures the difference in absorption of left-handed and right-handed circularly polarized light by a sample. This difference in absorption can provide information about the three-dimensional structure of the molecule, including its chirality or "handedness."

In more technical terms, CD is a form of spectroscopy that measures the differential absorption of left and right circularly polarized light as a function of wavelength. The CD signal is measured in units of millidegrees (mdeg) and can be positive or negative, depending on the type of chromophore and its orientation within the molecule.

CD spectra can provide valuable information about the secondary and tertiary structure of proteins, as well as the conformation of nucleic acids. For example, alpha-helical proteins typically exhibit a strong positive band near 190 nm and two negative bands at around 208 nm and 222 nm, while beta-sheet proteins show a strong positive band near 195 nm and two negative bands at around 217 nm and 175 nm.

CD spectroscopy is a powerful tool for studying the structural changes that occur in biological molecules under different conditions, such as temperature, pH, or the presence of ligands or other molecules. It can also be used to monitor the folding and unfolding of proteins, as well as the binding of drugs or other small molecules to their targets.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Chemical engineering is a branch of engineering that deals with the design, construction, and operation of plants and machinery for the large-scale production or processing of chemicals, fuels, foods, pharmaceuticals, and biologicals, as well as the development of new materials and technologies. It involves the application of principles of chemistry, physics, mathematics, biology, and economics to optimize chemical processes that convert raw materials into valuable products. Chemical engineers are also involved in developing and improving environmental protection methods, such as pollution control and waste management. They work in a variety of industries, including pharmaceuticals, energy, food processing, and environmental protection.

'Bacillus' is a genus of rod-shaped, gram-positive bacteria that are commonly found in soil, water, and the gastrointestinal tracts of animals. Many species of Bacillus are capable of forming endospores, which are highly resistant to heat, radiation, and chemicals, allowing them to survive for long periods in harsh environments. The most well-known species of Bacillus is B. anthracis, which causes anthrax in animals and humans. Other species of Bacillus have industrial or agricultural importance, such as B. subtilis, which is used in the production of enzymes and antibiotics.

Biosensing techniques refer to the methods and technologies used to detect and measure biological molecules or processes, typically through the use of a physical device or sensor. These techniques often involve the conversion of a biological response into an electrical signal that can be measured and analyzed. Examples of biosensing techniques include electrochemical biosensors, optical biosensors, and piezoelectric biosensors.

Electrochemical biosensors measure the electrical current or potential generated by a biochemical reaction at an electrode surface. This type of biosensor typically consists of a biological recognition element, such as an enzyme or antibody, that is immobilized on the electrode surface and interacts with the target analyte to produce an electrical signal.

Optical biosensors measure changes in light intensity or wavelength that occur when a biochemical reaction takes place. This type of biosensor can be based on various optical principles, such as absorbance, fluorescence, or surface plasmon resonance (SPR).

Piezoelectric biosensors measure changes in mass or frequency that occur when a biomolecule binds to the surface of a piezoelectric crystal. This type of biosensor is based on the principle that piezoelectric materials generate an electrical charge when subjected to mechanical stress, and this charge can be used to detect changes in mass or frequency that are proportional to the amount of biomolecule bound to the surface.

Biosensing techniques have a wide range of applications in fields such as medicine, environmental monitoring, food safety, and biodefense. They can be used to detect and measure a variety of biological molecules, including proteins, nucleic acids, hormones, and small molecules, as well as to monitor biological processes such as cell growth or metabolism.

Triose-phosphate isomerase (TPI) is a crucial enzyme in the glycolytic pathway, which is a metabolic process that converts glucose into pyruvate, producing ATP and NADH as energy currency for the cell. TPI specifically catalyzes the reversible interconversion of the triose phosphates dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P). This interconversion is a vital step in maintaining the balance of metabolites in the glycolytic pathway.

The reaction catalyzed by TPI is as follows:

Dihydroxyacetone phosphate ↔ Glyceraldehyde 3-phosphate

Deficiency or mutations in the gene encoding triose-phosphate isomerase can lead to a severe autosomal recessive disorder known as Triose Phosphate Isomerase Deficiency (TID). This condition is characterized by chronic hemolytic anemia, neuromuscular symptoms, and shortened lifespan.

Titrimetry is a type of analytical technique used in chemistry and medicine to determine the concentration of a substance (analyte) in a solution. It involves a controlled addition of a reagent, called a titrant, with a known concentration and volume, into the analyte solution until the reaction between them is complete. This point is commonly determined by a change in the physical or chemical properties of the solution, such as a color change, which is indicated by a visual endpoint or an electrical endpoint using a pH or redox electrode.

The volume of titrant added is then used to calculate the concentration of the analyte using the stoichiometry of the reaction and the concentration of the titrant. Titrimetry is widely used in medical laboratories for various applications, such as determining the amount of active ingredients in pharmaceuticals, measuring the strength of acid or base solutions, and assessing the hardness of water.

"Drug design" is the process of creating and developing a new medication or therapeutic agent to treat or prevent a specific disease or condition. It involves identifying potential targets within the body, such as proteins or enzymes that are involved in the disease process, and then designing small molecules or biologics that can interact with these targets to produce a desired effect.

The drug design process typically involves several stages, including:

1. Target identification: Researchers identify a specific molecular target that is involved in the disease process.
2. Lead identification: Using computational methods and high-throughput screening techniques, researchers identify small molecules or biologics that can interact with the target.
3. Lead optimization: Researchers modify the chemical structure of the lead compound to improve its ability to interact with the target, as well as its safety and pharmacokinetic properties.
4. Preclinical testing: The optimized lead compound is tested in vitro (in a test tube or petri dish) and in vivo (in animals) to evaluate its safety and efficacy.
5. Clinical trials: If the preclinical testing is successful, the drug moves on to clinical trials in humans to further evaluate its safety and efficacy.

The ultimate goal of drug design is to create a new medication that is safe, effective, and can be used to improve the lives of patients with a specific disease or condition.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

A "gene library" is not a recognized term in medical genetics or molecular biology. However, the closest concept that might be referred to by this term is a "genomic library," which is a collection of DNA clones that represent the entire genetic material of an organism. These libraries are used for various research purposes, such as identifying and studying specific genes or gene functions.

Crystallization is a process in which a substance transitions from a liquid or dissolved state to a solid state, forming a crystal lattice. In the medical context, crystallization can refer to the formation of crystals within the body, which can occur under certain conditions such as changes in pH, temperature, or concentration of solutes. These crystals can deposit in various tissues and organs, leading to the formation of crystal-induced diseases or disorders.

For example, in patients with gout, uric acid crystals can accumulate in joints, causing inflammation, pain, and swelling. Similarly, in nephrolithiasis (kidney stones), minerals in the urine can crystallize and form stones that can obstruct the urinary tract. Crystallization can also occur in other medical contexts, such as in the formation of dental calculus or plaque, and in the development of cataracts in the eye.

"Geobacillus stearothermophilus" is a species of gram-positive, rod-shaped bacteria that is thermophilic, meaning it thrives at relatively high temperatures. It is commonly found in soil and hot springs, and can also be found in other environments such as compost piles, oil fields, and even in some food products.

The bacterium is known for its ability to form endospores that are highly resistant to heat, radiation, and chemicals, making it a useful organism for sterility testing and bioprotection applications. It has an optimum growth temperature of around 60-70°C (140-158°F) and can survive at temperatures up to 80°C (176°F).

In the medical field, "Geobacillus stearothermophilus" is not typically associated with human disease or infection. However, there have been rare cases of infections reported in immunocompromised individuals who have come into contact with contaminated medical devices or materials.

A chemical model is a simplified representation or description of a chemical system, based on the laws of chemistry and physics. It is used to explain and predict the behavior of chemicals and chemical reactions. Chemical models can take many forms, including mathematical equations, diagrams, and computer simulations. They are often used in research, education, and industry to understand complex chemical processes and develop new products and technologies.

For example, a chemical model might be used to describe the way that atoms and molecules interact in a particular reaction, or to predict the properties of a new material. Chemical models can also be used to study the behavior of chemicals at the molecular level, such as how they bind to each other or how they are affected by changes in temperature or pressure.

It is important to note that chemical models are simplifications of reality and may not always accurately represent every aspect of a chemical system. They should be used with caution and validated against experimental data whenever possible.

Cysteine is a semi-essential amino acid, which means that it can be produced by the human body under normal circumstances, but may need to be obtained from external sources in certain conditions such as illness or stress. Its chemical formula is HO2CCH(NH2)CH2SH, and it contains a sulfhydryl group (-SH), which allows it to act as a powerful antioxidant and participate in various cellular processes.

Cysteine plays important roles in protein structure and function, detoxification, and the synthesis of other molecules such as glutathione, taurine, and coenzyme A. It is also involved in wound healing, immune response, and the maintenance of healthy skin, hair, and nails.

Cysteine can be found in a variety of foods, including meat, poultry, fish, dairy products, eggs, legumes, nuts, seeds, and some grains. It is also available as a dietary supplement and can be used in the treatment of various medical conditions such as liver disease, bronchitis, and heavy metal toxicity. However, excessive intake of cysteine may have adverse effects on health, including gastrointestinal disturbances, nausea, vomiting, and headaches.

A computer simulation is a process that involves creating a model of a real-world system or phenomenon on a computer and then using that model to run experiments and make predictions about how the system will behave under different conditions. In the medical field, computer simulations are used for a variety of purposes, including:

1. Training and education: Computer simulations can be used to create realistic virtual environments where medical students and professionals can practice their skills and learn new procedures without risk to actual patients. For example, surgeons may use simulation software to practice complex surgical techniques before performing them on real patients.
2. Research and development: Computer simulations can help medical researchers study the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone. By creating detailed models of cells, tissues, organs, or even entire organisms, researchers can use simulation software to explore how these systems function and how they respond to different stimuli.
3. Drug discovery and development: Computer simulations are an essential tool in modern drug discovery and development. By modeling the behavior of drugs at a molecular level, researchers can predict how they will interact with their targets in the body and identify potential side effects or toxicities. This information can help guide the design of new drugs and reduce the need for expensive and time-consuming clinical trials.
4. Personalized medicine: Computer simulations can be used to create personalized models of individual patients based on their unique genetic, physiological, and environmental characteristics. These models can then be used to predict how a patient will respond to different treatments and identify the most effective therapy for their specific condition.

Overall, computer simulations are a powerful tool in modern medicine, enabling researchers and clinicians to study complex systems and make predictions about how they will behave under a wide range of conditions. By providing insights into the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone, computer simulations are helping to advance our understanding of human health and disease.

A catalytic domain is a portion or region within a protein that contains the active site, where the chemical reactions necessary for the protein's function are carried out. This domain is responsible for the catalysis of biological reactions, hence the name "catalytic domain." The catalytic domain is often composed of specific amino acid residues that come together to form the active site, creating a unique three-dimensional structure that enables the protein to perform its specific function.

In enzymes, for example, the catalytic domain contains the residues that bind and convert substrates into products through chemical reactions. In receptors, the catalytic domain may be involved in signal transduction or other regulatory functions. Understanding the structure and function of catalytic domains is crucial to understanding the mechanisms of protein function and can provide valuable insights for drug design and therapeutic interventions.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Disulfides are a type of organic compound that contains a sulfur-sulfur bond. In the context of biochemistry and medicine, disulfide bonds are often found in proteins, where they play a crucial role in maintaining their three-dimensional structure and function. These bonds form when two sulfhydryl groups (-SH) on cysteine residues within a protein molecule react with each other, releasing a molecule of water and creating a disulfide bond (-S-S-) between the two cysteines. Disulfide bonds can be reduced back to sulfhydryl groups by various reducing agents, which is an important process in many biological reactions. The formation and reduction of disulfide bonds are critical for the proper folding, stability, and activity of many proteins, including those involved in various physiological processes and diseases.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Nuclear Magnetic Resonance (NMR) Biomolecular is a research technique that uses magnetic fields and radio waves to study the structure and dynamics of biological molecules, such as proteins and nucleic acids. This technique measures the magnetic properties of atomic nuclei within these molecules, specifically their spin, which can be influenced by the application of an external magnetic field.

When a sample is placed in a strong magnetic field, the nuclei absorb and emit electromagnetic radiation at specific frequencies, known as resonance frequencies, which are determined by the molecular structure and environment of the nuclei. By analyzing these resonance frequencies and their interactions, researchers can obtain detailed information about the three-dimensional structure, dynamics, and interactions of biomolecules.

NMR spectroscopy is a non-destructive technique that allows for the study of biological molecules in solution, which makes it an important tool for understanding the function and behavior of these molecules in their natural environment. Additionally, NMR can be used to study the effects of drugs, ligands, and other small molecules on biomolecular structure and dynamics, making it a valuable tool in drug discovery and development.

Bioartificial organs are hybrid structures that combine living cells, tissues, or biological materials with non-living synthetic materials to replicate the functions of a natural organ. These constructs are designed to mimic the complex architecture and functionality of native organs, providing a viable alternative to traditional organ transplantation.

The bioartificial organ typically consists of three main components:

1. Scaffold: A porous, biocompatible synthetic material that provides structural support and a framework for cell attachment, growth, and organization. The scaffold can be made from various materials such as polymers, ceramics, or composites, and its design considers factors like mechanical strength, degradation rate, and biocompatibility.
2. Cells: Living cells are seeded onto the scaffold, where they proliferate, differentiate, and synthesize extracellular matrix (ECM) proteins to form functional tissue. The choice of cell type depends on the specific organ being replicated; for example, hepatocytes for a liver or cardiomyocytes for a heart.
3. Vascularization: To ensure adequate nutrient and waste exchange, bioartificial organs require an efficient vascular network. This can be achieved through various methods such as co-culturing endothelial cells with the primary cell type, using bioprinting techniques to create patterned vasculature, or incorporating microfluidic channels within the scaffold.

The development of bioartificial organs holds great promise for addressing the current shortage of donor organs and providing personalized treatment options for patients with organ failure. However, several challenges must be overcome before these constructs can be widely adopted in clinical settings, including optimizing vascularization, maintaining long-term functionality, and ensuring biocompatibility and safety.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Muramidase, also known as lysozyme, is an enzyme that hydrolyzes the glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine in peptidoglycan, a polymer found in bacterial cell walls. This enzymatic activity plays a crucial role in the innate immune system by contributing to the destruction of invading bacteria. Muramidase is widely distributed in various tissues and bodily fluids, such as tears, saliva, and milk, and is also found in several types of white blood cells, including neutrophils and monocytes.

Subtilisins are a group of serine proteases that are produced by certain bacteria, including Bacillus subtilis. They are named after the bacterium and the Latin word "subtilis," which means delicate or finely made. Subtilisins are alkaline proteases, meaning they work best in slightly basic conditions.

Subtilisins have a broad specificity for cleaving peptide bonds and can hydrolyze a wide range of protein substrates. They are widely used in industry for various applications such as detergents, food processing, leather treatment, and biotechnology due to their ability to function at high temperatures and in the presence of denaturing agents.

In medicine, subtilisins have been studied for their potential use in therapeutic applications, including as anti-inflammatory agents and in wound healing. However, more research is needed to fully understand their mechanisms of action and potential benefits.

A protein database is a type of biological database that contains information about proteins and their structures, functions, sequences, and interactions with other molecules. These databases can include experimentally determined data, such as protein sequences derived from DNA sequencing or mass spectrometry, as well as predicted data based on computational methods.

Some examples of protein databases include:

1. UniProtKB: a comprehensive protein database that provides information about protein sequences, functions, and structures, as well as literature references and links to other resources.
2. PDB (Protein Data Bank): a database of three-dimensional protein structures determined by experimental methods such as X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy.
3. BLAST (Basic Local Alignment Search Tool): a web-based tool that allows users to compare a query protein sequence against a protein database to identify similar sequences and potential functional relationships.
4. InterPro: a database of protein families, domains, and functional sites that provides information about protein function based on sequence analysis and other data.
5. STRING (Search Tool for the Retrieval of Interacting Genes/Proteins): a database of known and predicted protein-protein interactions, including physical and functional associations.

Protein databases are essential tools in proteomics research, enabling researchers to study protein function, evolution, and interaction networks on a large scale.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Hydrophobic interactions: These are the interactions that occur between non-polar molecules or groups of atoms in an aqueous environment, leading to their association or aggregation. The term "hydrophobic" means "water-fearing" and describes the tendency of non-polar substances to repel water. When non-polar molecules or groups are placed in water, they tend to clump together to minimize contact with the polar water molecules. These interactions are primarily driven by the entropy increase of the system as a whole, rather than energy minimization. Hydrophobic interactions play crucial roles in various biological processes, such as protein folding, membrane formation, and molecular self-assembly.

Hydrophilic interactions: These are the interactions that occur between polar molecules or groups of atoms and water molecules. The term "hydrophilic" means "water-loving" and describes the attraction of polar substances to water. When polar molecules or groups are placed in water, they can form hydrogen bonds with the surrounding water molecules, which helps solvate them. Hydrophilic interactions contribute to the stability and functionality of various biological systems, such as protein structure, ion transport across membranes, and enzyme catalysis.

Computational biology is a branch of biology that uses mathematical and computational methods to study biological data, models, and processes. It involves the development and application of algorithms, statistical models, and computational approaches to analyze and interpret large-scale molecular and phenotypic data from genomics, transcriptomics, proteomics, metabolomics, and other high-throughput technologies. The goal is to gain insights into biological systems and processes, develop predictive models, and inform experimental design and hypothesis testing in the life sciences. Computational biology encompasses a wide range of disciplines, including bioinformatics, systems biology, computational genomics, network biology, and mathematical modeling of biological systems.

Hydrogels are defined in the medical and biomedical fields as cross-linked, hydrophilic polymer networks that have the ability to swell and retain a significant amount of water or biological fluids while maintaining their structure. They can be synthesized from natural, synthetic, or hybrid polymers.

Hydrogels are known for their biocompatibility, high water content, and soft consistency, which resemble natural tissues, making them suitable for various medical applications such as contact lenses, drug delivery systems, tissue engineering, wound dressing, and biosensors. The physical and chemical properties of hydrogels can be tailored to specific uses by adjusting the polymer composition, cross-linking density, and network structure.

An algorithm is not a medical term, but rather a concept from computer science and mathematics. In the context of medicine, algorithms are often used to describe step-by-step procedures for diagnosing or managing medical conditions. These procedures typically involve a series of rules or decision points that help healthcare professionals make informed decisions about patient care.

For example, an algorithm for diagnosing a particular type of heart disease might involve taking a patient's medical history, performing a physical exam, ordering certain diagnostic tests, and interpreting the results in a specific way. By following this algorithm, healthcare professionals can ensure that they are using a consistent and evidence-based approach to making a diagnosis.

Algorithms can also be used to guide treatment decisions. For instance, an algorithm for managing diabetes might involve setting target blood sugar levels, recommending certain medications or lifestyle changes based on the patient's individual needs, and monitoring the patient's response to treatment over time.

Overall, algorithms are valuable tools in medicine because they help standardize clinical decision-making and ensure that patients receive high-quality care based on the latest scientific evidence.

Mixed Function Oxygenases (MFOs) are a type of enzyme that catalyze the addition of one atom each from molecular oxygen (O2) to a substrate, while reducing the other oxygen atom to water. These enzymes play a crucial role in the metabolism of various endogenous and exogenous compounds, including drugs, carcinogens, and environmental pollutants.

MFOs are primarily located in the endoplasmic reticulum of cells and consist of two subunits: a flavoprotein component that contains FAD or FMN as a cofactor, and an iron-containing heme protein. The most well-known example of MFO is cytochrome P450, which is involved in the oxidation of xenobiotics and endogenous compounds such as steroids, fatty acids, and vitamins.

MFOs can catalyze a variety of reactions, including hydroxylation, epoxidation, dealkylation, and deamination, among others. These reactions often lead to the activation or detoxification of xenobiotics, making MFOs an important component of the body's defense system against foreign substances. However, in some cases, these reactions can also produce reactive intermediates that may cause toxicity or contribute to the development of diseases such as cancer.

Quaternary protein structure refers to the arrangement and interaction of multiple folded protein molecules in a multi-subunit complex. These subunits can be identical or different forms of the same protein or distinctly different proteins that associate to form a functional complex. The quaternary structure is held together by non-covalent interactions, such as hydrogen bonds, ionic bonds, and van der Waals forces. Understanding quaternary structure is crucial for comprehending the function, regulation, and assembly of many protein complexes involved in various cellular processes.

A ligand, in the context of biochemistry and medicine, is a molecule that binds to a specific site on a protein or a larger biomolecule, such as an enzyme or a receptor. This binding interaction can modify the function or activity of the target protein, either activating it or inhibiting it. Ligands can be small molecules, like hormones or neurotransmitters, or larger structures, like antibodies. The study of ligand-protein interactions is crucial for understanding cellular processes and developing drugs, as many therapeutic compounds function by binding to specific targets within the body.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

In the context of medical terminology, "porosity" is not a term that is frequently used to describe human tissues or organs. However, in dermatology and cosmetics, porosity refers to the ability of the skin to absorb and retain moisture or topical treatments.

A skin with high porosity has larger pores and can absorb more products, while a skin with low porosity has smaller pores and may have difficulty absorbing products. It is important to note that this definition of porosity is not a medical one but is instead used in the beauty industry.

A genetic vector is a vehicle, often a plasmid or a virus, that is used to introduce foreign DNA into a host cell as part of genetic engineering or gene therapy techniques. The vector contains the desired gene or genes, along with regulatory elements such as promoters and enhancers, which are needed for the expression of the gene in the target cells.

The choice of vector depends on several factors, including the size of the DNA to be inserted, the type of cell to be targeted, and the efficiency of uptake and expression required. Commonly used vectors include plasmids, adenoviruses, retroviruses, and lentiviruses.

Plasmids are small circular DNA molecules that can replicate independently in bacteria. They are often used as cloning vectors to amplify and manipulate DNA fragments. Adenoviruses are double-stranded DNA viruses that infect a wide range of host cells, including human cells. They are commonly used as gene therapy vectors because they can efficiently transfer genes into both dividing and non-dividing cells.

Retroviruses and lentiviruses are RNA viruses that integrate their genetic material into the host cell's genome. This allows for stable expression of the transgene over time. Lentiviruses, a subclass of retroviruses, have the advantage of being able to infect non-dividing cells, making them useful for gene therapy applications in post-mitotic tissues such as neurons and muscle cells.

Overall, genetic vectors play a crucial role in modern molecular biology and medicine, enabling researchers to study gene function, develop new therapies, and modify organisms for various purposes.

Protein sequence analysis is the systematic examination and interpretation of the amino acid sequence of a protein to understand its structure, function, evolutionary relationships, and other biological properties. It involves various computational methods and tools to analyze the primary structure of proteins, which is the linear arrangement of amino acids along the polypeptide chain.

Protein sequence analysis can provide insights into several aspects, such as:

1. Identification of functional domains, motifs, or sites within a protein that may be responsible for its specific biochemical activities.
2. Comparison of homologous sequences from different organisms to infer evolutionary relationships and determine the degree of similarity or divergence among them.
3. Prediction of secondary and tertiary structures based on patterns of amino acid composition, hydrophobicity, and charge distribution.
4. Detection of post-translational modifications that may influence protein function, localization, or stability.
5. Identification of protease cleavage sites, signal peptides, or other sequence features that play a role in protein processing and targeting.

Some common techniques used in protein sequence analysis include:

1. Multiple Sequence Alignment (MSA): A method to align multiple protein sequences to identify conserved regions, gaps, and variations.
2. BLAST (Basic Local Alignment Search Tool): A widely-used tool for comparing a query protein sequence against a database of known sequences to find similarities and infer function or evolutionary relationships.
3. Hidden Markov Models (HMMs): Statistical models used to describe the probability distribution of amino acid sequences in protein families, allowing for more sensitive detection of remote homologs.
4. Protein structure prediction: Methods that use various computational approaches to predict the three-dimensional structure of a protein based on its amino acid sequence.
5. Phylogenetic analysis: The construction and interpretation of evolutionary trees (phylogenies) based on aligned protein sequences, which can provide insights into the historical relationships among organisms or proteins.

I am not aware of a widely accepted medical definition for the term "software," as it is more commonly used in the context of computer science and technology. Software refers to programs, data, and instructions that are used by computers to perform various tasks. It does not have direct relevance to medical fields such as anatomy, physiology, or clinical practice. If you have any questions related to medicine or healthcare, I would be happy to try to help with those instead!

I'm sorry for any confusion, but static electricity is not a term that has a specific medical definition. Static electricity is an electrical charge that builds up on the surface of objects. This occurs when there is an imbalance of electric charges within or on the surface of a material. It can be caused by certain conditions, such as friction, which can build up an electric charge.

While not a medical term, static electricity can have various effects in different settings, including medical ones. For instance, it can cause issues with electronic equipment used in healthcare settings. Additionally, some people may experience a shock or spark when they touch a conductive object that has been charged with static electricity. However, these occurrences are not typically considered medical conditions or issues.

Regenerative medicine is a branch of medicine that deals with the repair or replacement of damaged or diseased cells, tissues, and organs using various strategies, including the use of stem cells, tissue engineering, gene therapy, and biomaterials. The goal of regenerative medicine is to restore normal function and structure to tissues and organs, thereby improving the patient's quality of life and potentially curing diseases that were previously considered incurable.

Regenerative medicine has shown promise in a variety of clinical applications, such as the treatment of degenerative diseases like osteoarthritis, spinal cord injuries, heart disease, diabetes, and liver failure. It also holds great potential for use in regenerative therapies for wound healing, tissue reconstruction, and cosmetic surgery.

The field of regenerative medicine is rapidly evolving, with new discoveries and advances being made regularly. As our understanding of the underlying biological mechanisms that drive tissue repair and regeneration continues to grow, so too will the potential clinical applications of this exciting and promising field.

I'm happy to help! However, I must clarify that "materials testing" is not a medical term per se. It is a term used in various fields, including engineering and materials science, to describe the process of subjecting materials to different tests to evaluate their properties and performance under various conditions.

In the context of medical devices or implants, materials testing may refer to the evaluation of the physical and mechanical properties of materials used in their construction. These tests can include assessments of strength, durability, biocompatibility, and other factors that are critical to ensuring the safety and efficacy of medical devices.

Medical device manufacturers must comply with regulatory standards for materials testing to ensure that their products meet specific requirements for performance, safety, and quality. These standards may vary depending on the type of device, its intended use, and the country or region in which it will be marketed and sold.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

A bioreactor is a device or system that supports and controls the conditions necessary for biological organisms, cells, or tissues to grow and perform their specific functions. It provides a controlled environment with appropriate temperature, pH, nutrients, and other factors required for the desired biological process to occur. Bioreactors are widely used in various fields such as biotechnology, pharmaceuticals, agriculture, and environmental science for applications like production of therapeutic proteins, vaccines, biofuels, enzymes, and wastewater treatment.

A point mutation is a type of genetic mutation where a single nucleotide base (A, T, C, or G) in DNA is altered, deleted, or substituted with another nucleotide. Point mutations can have various effects on the organism, depending on the location of the mutation and whether it affects the function of any genes. Some point mutations may not have any noticeable effect, while others might lead to changes in the amino acids that make up proteins, potentially causing diseases or altering traits. Point mutations can occur spontaneously due to errors during DNA replication or be inherited from parents.

Solubility is a fundamental concept in pharmaceutical sciences and medicine, which refers to the maximum amount of a substance (solute) that can be dissolved in a given quantity of solvent (usually water) at a specific temperature and pressure. Solubility is typically expressed as mass of solute per volume or mass of solvent (e.g., grams per liter, milligrams per milliliter). The process of dissolving a solute in a solvent results in a homogeneous solution where the solute particles are dispersed uniformly throughout the solvent.

Understanding the solubility of drugs is crucial for their formulation, administration, and therapeutic effectiveness. Drugs with low solubility may not dissolve sufficiently to produce the desired pharmacological effect, while those with high solubility might lead to rapid absorption and short duration of action. Therefore, optimizing drug solubility through various techniques like particle size reduction, salt formation, or solubilization is an essential aspect of drug development and delivery.

I'm sorry for any confusion, but "Polyesters" is not a medical term. It is a term used in materials science and textile industry to describe a type of synthetic fiber made from polymers characterized by the presence of ester groups in their main chain. If you have any questions related to medical terminology or concepts, I'd be happy to help with those instead!

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

"Plant proteins" refer to the proteins that are derived from plant sources. These can include proteins from legumes such as beans, lentils, and peas, as well as proteins from grains like wheat, rice, and corn. Other sources of plant proteins include nuts, seeds, and vegetables.

Plant proteins are made up of individual amino acids, which are the building blocks of protein. While animal-based proteins typically contain all of the essential amino acids that the body needs to function properly, many plant-based proteins may be lacking in one or more of these essential amino acids. However, by consuming a variety of plant-based foods throughout the day, it is possible to get all of the essential amino acids that the body needs from plant sources alone.

Plant proteins are often lower in calories and saturated fat than animal proteins, making them a popular choice for those following a vegetarian or vegan diet, as well as those looking to maintain a healthy weight or reduce their risk of chronic diseases such as heart disease and cancer. Additionally, plant proteins have been shown to have a number of health benefits, including improving gut health, reducing inflammation, and supporting muscle growth and repair.

A User-Computer Interface (also known as Human-Computer Interaction) refers to the point at which a person (user) interacts with a computer system. This can include both hardware and software components, such as keyboards, mice, touchscreens, and graphical user interfaces (GUIs). The design of the user-computer interface is crucial in determining the usability and accessibility of a computer system for the user. A well-designed interface should be intuitive, efficient, and easy to use, minimizing the cognitive load on the user and allowing them to effectively accomplish their tasks.

Alanine is an alpha-amino acid that is used in the biosynthesis of proteins. The molecular formula for alanine is C3H7NO2. It is a non-essential amino acid, which means that it can be produced by the human body through the conversion of other nutrients, such as pyruvate, and does not need to be obtained directly from the diet.

Alanine is classified as an aliphatic amino acid because it contains a simple carbon side chain. It is also a non-polar amino acid, which means that it is hydrophobic and tends to repel water. Alanine plays a role in the metabolism of glucose and helps to regulate blood sugar levels. It is also involved in the transfer of nitrogen between tissues and helps to maintain the balance of nitrogen in the body.

In addition to its role as a building block of proteins, alanine is also used as a neurotransmitter in the brain and has been shown to have a calming effect on the nervous system. It is found in many foods, including meats, poultry, fish, eggs, dairy products, and legumes.

Glycoside hydrolases are a class of enzymes that catalyze the hydrolysis of glycosidic bonds found in various substrates such as polysaccharides, oligosaccharides, and glycoproteins. These enzymes break down complex carbohydrates into simpler sugars by cleaving the glycosidic linkages that connect monosaccharide units.

Glycoside hydrolases are classified based on their mechanism of action and the type of glycosidic bond they hydrolyze. The classification system is maintained by the International Union of Biochemistry and Molecular Biology (IUBMB). Each enzyme in this class is assigned a unique Enzyme Commission (EC) number, which reflects its specificity towards the substrate and the type of reaction it catalyzes.

These enzymes have various applications in different industries, including food processing, biofuel production, pulp and paper manufacturing, and biomedical research. In medicine, glycoside hydrolases are used to diagnose and monitor certain medical conditions, such as carbohydrate-deficient glycoprotein syndrome, a rare inherited disorder affecting the structure of glycoproteins.

Biomimetic materials are synthetic or natural substances that mimic the chemical, physical, and biological properties of living systems or tissues. These materials are designed to interact with cells, tissues, and organs in ways that resemble the body's own structures and processes. They can be used in a variety of medical applications, including tissue engineering, drug delivery, and medical devices.

Biomimetic materials may be composed of polymers, ceramics, metals, or composites, and they can be designed to have specific properties such as mechanical strength, biocompatibility, and degradability. They may also incorporate bioactive molecules, such as growth factors or drugs, to promote healing or prevent infection.

The goal of using biomimetic materials is to create medical solutions that are more effective, safer, and more compatible with the body than traditional synthetic materials. By mimicking the body's own structures and processes, these materials can help to reduce inflammation, promote tissue regeneration, and improve overall patient outcomes.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

"Saccharomyces cerevisiae" is not typically considered a medical term, but it is a scientific name used in the field of microbiology. It refers to a species of yeast that is commonly used in various industrial processes, such as baking and brewing. It's also widely used in scientific research due to its genetic tractability and eukaryotic cellular organization.

However, it does have some relevance to medical fields like medicine and nutrition. For example, certain strains of S. cerevisiae are used as probiotics, which can provide health benefits when consumed. They may help support gut health, enhance the immune system, and even assist in the digestion of certain nutrients.

In summary, "Saccharomyces cerevisiae" is a species of yeast with various industrial and potential medical applications.

Dimerization is a process in which two molecules, usually proteins or similar structures, bind together to form a larger complex. This can occur through various mechanisms, such as the formation of disulfide bonds, hydrogen bonding, or other non-covalent interactions. Dimerization can play important roles in cell signaling, enzyme function, and the regulation of gene expression.

In the context of medical research and therapy, dimerization is often studied in relation to specific proteins that are involved in diseases such as cancer. For example, some drugs have been developed to target and inhibit the dimerization of certain proteins, with the goal of disrupting their function and slowing or stopping the progression of the disease.

Hydrogen bonding is not a medical term per se, but it is a fundamental concept in chemistry and biology that is relevant to the field of medicine. Here's a general definition:

Hydrogen bonding is a type of attractive force between molecules or within a molecule, which occurs when a hydrogen atom is bonded to a highly electronegative atom (like nitrogen, oxygen, or fluorine) and is then attracted to another electronegative atom. This attraction results in the formation of a partially covalent bond known as a "hydrogen bond."

In biological systems, hydrogen bonding plays a crucial role in the structure and function of many biomolecules, such as DNA, proteins, and carbohydrates. For example, the double helix structure of DNA is stabilized by hydrogen bonds between complementary base pairs (adenine-thymine and guanine-cytosine). Similarly, the three-dimensional structure of proteins is maintained by a network of hydrogen bonds that help to determine their function.

In medical contexts, hydrogen bonding can be relevant in understanding drug-receptor interactions, where hydrogen bonds between a drug molecule and its target protein can enhance the binding affinity and specificity of the interaction, leading to more effective therapeutic outcomes.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

Nanofibers are defined in the medical field as fibrous structures with extremely small diameters, typically measuring between 100 nanometers to 1 micrometer. They can be made from various materials such as polymers, ceramics, or composites and have a high surface area-to-volume ratio, which makes them useful in a variety of biomedical applications. These include tissue engineering, drug delivery, wound healing, and filtration. Nanofibers can be produced using different techniques such as electrospinning, self-assembly, and phase separation.

Glycine is a simple amino acid that plays a crucial role in the body. According to the medical definition, glycine is an essential component for the synthesis of proteins, peptides, and other biologically important compounds. It is also involved in various metabolic processes, such as the production of creatine, which supports muscle function, and the regulation of neurotransmitters, affecting nerve impulse transmission and brain function. Glycine can be found as a free form in the body and is also present in many dietary proteins.

Ribonucleases (RNases) are a group of enzymes that catalyze the degradation of ribonucleic acid (RNA) molecules by hydrolyzing the phosphodiester bonds. These enzymes play crucial roles in various biological processes, such as RNA processing, turnover, and quality control. They can be classified into several types based on their specificities, mechanisms, and cellular localizations.

Some common classes of ribonucleases include:

1. Endoribonucleases: These enzymes cleave RNA internally, at specific sequences or structural motifs. Examples include RNase A, which targets single-stranded RNA; RNase III, which cuts double-stranded RNA at specific stem-loop structures; and RNase T1, which recognizes and cuts unpaired guanosine residues in RNA molecules.
2. Exoribonucleases: These enzymes remove nucleotides from the ends of RNA molecules. They can be further divided into 5'-3' exoribonucleases, which degrade RNA starting from the 5' end, and 3'-5' exoribonucleases, which start at the 3' end. Examples include Xrn1, a 5'-3' exoribonuclease involved in mRNA decay; and Dis3/RRP6, a 3'-5' exoribonuclease that participates in ribosomal RNA processing and degradation.
3. Specific ribonucleases: These enzymes target specific RNA molecules or regions with high precision. For example, RNase P is responsible for cleaving the 5' leader sequence of precursor tRNAs (pre-tRNAs) during their maturation; and RNase MRP is involved in the processing of ribosomal RNA and mitochondrial RNA molecules.

Dysregulation or mutations in ribonucleases have been implicated in various human diseases, such as neurological disorders, cancer, and viral infections. Therefore, understanding their functions and mechanisms is crucial for developing novel therapeutic strategies.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

'Escherichia coli (E. coli) proteins' refer to the various types of proteins that are produced and expressed by the bacterium Escherichia coli. These proteins play a critical role in the growth, development, and survival of the organism. They are involved in various cellular processes such as metabolism, DNA replication, transcription, translation, repair, and regulation.

E. coli is a gram-negative, facultative anaerobe that is commonly found in the intestines of warm-blooded organisms. It is widely used as a model organism in scientific research due to its well-studied genetics, rapid growth, and ability to be easily manipulated in the laboratory. As a result, many E. coli proteins have been identified, characterized, and studied in great detail.

Some examples of E. coli proteins include enzymes involved in carbohydrate metabolism such as lactase, sucrase, and maltose; proteins involved in DNA replication such as the polymerases, single-stranded binding proteins, and helicases; proteins involved in transcription such as RNA polymerase and sigma factors; proteins involved in translation such as ribosomal proteins, tRNAs, and aminoacyl-tRNA synthetases; and regulatory proteins such as global regulators, two-component systems, and transcription factors.

Understanding the structure, function, and regulation of E. coli proteins is essential for understanding the basic biology of this important organism, as well as for developing new strategies for combating bacterial infections and improving industrial processes involving bacteria.

Guided Tissue Regeneration (GTR) is a surgical procedure used in periodontics and implant dentistry that aims to regenerate lost periodontal tissues, such as the alveolar bone, cementum, and periodontal ligament, which have been destroyed due to periodontal disease or trauma. The goal of GTR is to restore the architectural and functional relationship between the teeth and their supporting structures.

The procedure involves placing a barrier membrane between the tooth root and the surrounding soft tissues, creating a protected space that allows the periodontal tissues to regenerate. The membrane acts as a physical barrier, preventing the rapid growth of epithelial cells and fibroblasts from the soft tissue into the defect area, while allowing the slower-growing cells derived from the periodontal ligament and bone to repopulate the space.

There are two main types of membranes used in GTR: resorbable and non-resorbable. Resorbable membranes are made of materials that degrade over time, eliminating the need for a second surgical procedure to remove them. Non-resorbable membranes, on the other hand, must be removed after a period of healing.

GTR has been shown to be effective in treating intrabony defects, furcation involvements, and ridge augmentations, among other applications. However, the success of GTR depends on various factors, including the patient's overall health, the size and location of the defect, and the surgeon's skill and experience.

Amino acid motifs are recurring patterns or sequences of amino acids in a protein molecule. These motifs can be identified through various sequence analysis techniques and often have functional or structural significance. They can be as short as two amino acids in length, but typically contain at least three to five residues.

Some common examples of amino acid motifs include:

1. Active site motifs: These are specific sequences of amino acids that form the active site of an enzyme and participate in catalyzing chemical reactions. For example, the catalytic triad in serine proteases consists of three residues (serine, histidine, and aspartate) that work together to hydrolyze peptide bonds.
2. Signal peptide motifs: These are sequences of amino acids that target proteins for secretion or localization to specific organelles within the cell. For example, a typical signal peptide consists of a positively charged n-region, a hydrophobic h-region, and a polar c-region that directs the protein to the endoplasmic reticulum membrane for translocation.
3. Zinc finger motifs: These are structural domains that contain conserved sequences of amino acids that bind zinc ions and play important roles in DNA recognition and regulation of gene expression.
4. Transmembrane motifs: These are sequences of hydrophobic amino acids that span the lipid bilayer of cell membranes and anchor transmembrane proteins in place.
5. Phosphorylation sites: These are specific serine, threonine, or tyrosine residues that can be phosphorylated by protein kinases to regulate protein function.

Understanding amino acid motifs is important for predicting protein structure and function, as well as for identifying potential drug targets in disease-associated proteins.

Bone regeneration is the biological process of new bone formation that occurs after an injury or removal of a portion of bone. This complex process involves several stages, including inflammation, migration and proliferation of cells, matrix deposition, and mineralization, leading to the restoration of the bone's structure and function.

The main cells involved in bone regeneration are osteoblasts, which produce new bone matrix, and osteoclasts, which resorb damaged or old bone tissue. The process is tightly regulated by various growth factors, hormones, and signaling molecules that promote the recruitment, differentiation, and activity of these cells.

Bone regeneration can occur naturally in response to injury or surgical intervention, such as fracture repair or dental implant placement. However, in some cases, bone regeneration may be impaired due to factors such as age, disease, or trauma, leading to delayed healing or non-union of the bone. In these situations, various strategies and techniques, including the use of bone grafts, scaffolds, and growth factors, can be employed to enhance and support the bone regeneration process.

In the context of medical definitions, polymers are large molecules composed of repeating subunits called monomers. These long chains of monomers can have various structures and properties, depending on the type of monomer units and how they are linked together. In medicine, polymers are used in a wide range of applications, including drug delivery systems, medical devices, and tissue engineering scaffolds. Some examples of polymers used in medicine include polyethylene, polypropylene, polystyrene, polyvinyl chloride (PVC), and biodegradable polymers such as polylactic acid (PLA) and polycaprolactone (PCL).

Cell culture is a technique used in scientific research to grow and maintain cells from plants, animals, or humans in a controlled environment outside of their original organism. This environment typically consists of a sterile container called a cell culture flask or plate, and a nutrient-rich liquid medium that provides the necessary components for the cells' growth and survival, such as amino acids, vitamins, minerals, and hormones.

There are several different types of cell culture techniques used in research, including:

1. Adherent cell culture: In this technique, cells are grown on a flat surface, such as the bottom of a tissue culture dish or flask. The cells attach to the surface and spread out, forming a monolayer that can be observed and manipulated under a microscope.
2. Suspension cell culture: In suspension culture, cells are grown in liquid medium without any attachment to a solid surface. These cells remain suspended in the medium and can be agitated or mixed to ensure even distribution of nutrients.
3. Organoid culture: Organoids are three-dimensional structures that resemble miniature organs and are grown from stem cells or other progenitor cells. They can be used to study organ development, disease processes, and drug responses.
4. Co-culture: In co-culture, two or more different types of cells are grown together in the same culture dish or flask. This technique is used to study cell-cell interactions and communication.
5. Conditioned medium culture: In this technique, cells are grown in a medium that has been conditioned by previous cultures of other cells. The conditioned medium contains factors secreted by the previous cells that can influence the growth and behavior of the new cells.

Cell culture techniques are widely used in biomedical research to study cellular processes, develop drugs, test toxicity, and investigate disease mechanisms. However, it is important to note that cell cultures may not always accurately represent the behavior of cells in a living organism, and results from cell culture experiments should be validated using other methods.

Molecular conformation, also known as spatial arrangement or configuration, refers to the specific three-dimensional shape and orientation of atoms that make up a molecule. It describes the precise manner in which bonds between atoms are arranged around a molecular framework, taking into account factors such as bond lengths, bond angles, and torsional angles.

Conformational isomers, or conformers, are different spatial arrangements of the same molecule that can interconvert without breaking chemical bonds. These isomers may have varying energies, stability, and reactivity, which can significantly impact a molecule's biological activity and function. Understanding molecular conformation is crucial in fields such as drug design, where small changes in conformation can lead to substantial differences in how a drug interacts with its target.

Molecular evolution is the process of change in the DNA sequence or protein structure over time, driven by mechanisms such as mutation, genetic drift, gene flow, and natural selection. It refers to the evolutionary study of changes in DNA, RNA, and proteins, and how these changes accumulate and lead to new species and diversity of life. Molecular evolution can be used to understand the history and relationships among different organisms, as well as the functional consequences of genetic changes.

Histidine is an essential amino acid, meaning it cannot be synthesized by the human body and must be obtained through dietary sources. Its chemical formula is C6H9N3O2. Histidine plays a crucial role in several physiological processes, including:

1. Protein synthesis: As an essential amino acid, histidine is required for the production of proteins, which are vital components of various tissues and organs in the body.

2. Hemoglobin synthesis: Histidine is a key component of hemoglobin, the protein in red blood cells responsible for carrying oxygen throughout the body. The imidazole side chain of histidine acts as a proton acceptor/donor, facilitating the release and uptake of oxygen by hemoglobin.

3. Acid-base balance: Histidine is involved in maintaining acid-base homeostasis through its role in the biosynthesis of histamine, which is a critical mediator of inflammatory responses and allergies. The decarboxylation of histidine results in the formation of histamine, which can increase vascular permeability and modulate immune responses.

4. Metal ion binding: Histidine has a high affinity for metal ions such as zinc, copper, and iron. This property allows histidine to participate in various enzymatic reactions and maintain the structural integrity of proteins.

5. Antioxidant defense: Histidine-containing dipeptides, like carnosine and anserine, have been shown to exhibit antioxidant properties by scavenging reactive oxygen species (ROS) and chelating metal ions. These compounds may contribute to the protection of proteins and DNA from oxidative damage.

Dietary sources of histidine include meat, poultry, fish, dairy products, and wheat germ. Histidine deficiency is rare but can lead to growth retardation, anemia, and impaired immune function.

Decanoates are a type of esterified form of certain drugs or medications, particularly in the case of testosterone. The decanoate ester is attached to the testosterone molecule to create a longer-acting formulation. Testosterone decanoate is a slow-release form of testosterone that is used as a replacement therapy for individuals who have low levels of natural testosterone. It is administered through intramuscular injection and has a duration of action of approximately 2-3 weeks.

Other medications may also be available in decanoate ester form, but testosterone decanoate is one of the most commonly used. As with any medication or treatment plan, it's important to consult with a healthcare provider to determine the best course of action based on individual needs and medical history.

A hydrogel is a biomaterial that is composed of a three-dimensional network of crosslinked polymers, which are able to absorb and retain a significant amount of water or biological fluids while maintaining their structure. Hydrogels are similar to natural tissues in their water content, making them suitable for various medical applications such as contact lenses, wound dressings, drug delivery systems, tissue engineering, and regenerative medicine.

Hydrogels can be synthesized from a variety of materials, including synthetic polymers like polyethylene glycol (PEG) or natural polymers like collagen, hyaluronic acid, or chitosan. The properties of hydrogels, such as their mechanical strength, degradation rate, and biocompatibility, can be tailored to specific applications by adjusting the type and degree of crosslinking, the molecular weight of the polymers, and the addition of functional groups or drugs.

Hydrogels have shown great potential in medical research and clinical practice due to their ability to mimic the natural environment of cells and tissues, provide sustained drug release, and promote tissue regeneration.

Biomimetics, also known as biomimicry, is the process of mimicking or taking inspiration from nature and biological systems to design materials, structures, or processes that solve human problems. It involves studying the models, systems, and elements of nature and then applying the knowledge gained to create new technologies and solutions.

In a medical context, biomimetics can be used to develop new therapies, medical devices, and diagnostic tools. For example, researchers might look to the structure of a spider's web to design a better surgical mesh or take inspiration from the way a gecko sticks to surfaces to create a new type of adhesive bandage.

Biomimetics is an interdisciplinary field that draws on knowledge from biology, chemistry, physics, engineering, and materials science. It has the potential to lead to innovative solutions in healthcare, sustainability, energy, transportation, and other areas.

Hydrolysis is a chemical process, not a medical one. However, it is relevant to medicine and biology.

Hydrolysis is the breakdown of a chemical compound due to its reaction with water, often resulting in the formation of two or more simpler compounds. In the context of physiology and medicine, hydrolysis is a crucial process in various biological reactions, such as the digestion of food molecules like proteins, carbohydrates, and fats. Enzymes called hydrolases catalyze these hydrolysis reactions to speed up the breakdown process in the body.

Biofuels are defined as fuels derived from organic materials such as plants, algae, and animal waste. These fuels can be produced through various processes, including fermentation, esterification, and transesterification. The most common types of biofuels include biodiesel, ethanol, and biogas.

Biodiesel is a type of fuel that is produced from vegetable oils or animal fats through a process called transesterification. It can be used in diesel engines with little or no modification and can significantly reduce greenhouse gas emissions compared to traditional fossil fuels.

Ethanol is a type of alcohol that is produced through the fermentation of sugars found in crops such as corn, sugarcane, and switchgrass. It is typically blended with gasoline to create a fuel known as E85, which contains 85% ethanol and 15% gasoline.

Biogas is a type of fuel that is produced through the anaerobic digestion of organic materials such as food waste, sewage sludge, and agricultural waste. It is composed primarily of methane and carbon dioxide and can be used to generate electricity or heat.

Overall, biofuels offer a renewable and more sustainable alternative to traditional fossil fuels, helping to reduce greenhouse gas emissions and decrease dependence on non-renewable resources.

Antibodies are proteins produced by the immune system in response to the presence of a foreign substance, such as a bacterium or virus. They are capable of identifying and binding to specific antigens (foreign substances) on the surface of these invaders, marking them for destruction by other immune cells. Antibodies are also known as immunoglobulins and come in several different types, including IgA, IgD, IgE, IgG, and IgM, each with a unique function in the immune response. They are composed of four polypeptide chains, two heavy chains and two light chains, that are held together by disulfide bonds. The variable regions of the heavy and light chains form the antigen-binding site, which is specific to a particular antigen.

... protein engineering) Structural biology Synthetic biology "Protein engineering - Latest research and news , Nature". www.nature ... Protein engineering is the process of developing useful or valuable proteins through the design and production of unnatural ... Computation-aided design has also been used to engineer complex properties of a highly ordered nano-protein assembly. A protein ... Directed evolution will likely not be replaced as the method of choice for protein engineering, although computational protein ...
... stability and activity of proteins and engineering of antibodies. Centre for Protein Engineering was established in 1990 as one ... of how proteins relate to each other and how their structures and functions evolved. The MRC Centre for Protein Engineering ... The MRC Centre for Protein Engineering (or CPE) was a pioneering research unit in Cambridge, England, with a main focus on the ... It was formed around the research of two prominent scientists who invented protein engineering, Sir Alan Fersht and Sir Greg ...
... is a publication of Oxford University Press. Created in 1986, the Journal covers topics ... Protein Engineering Design & Selection is indexed in Biological Abstracts, BIOSIS Previews, Biotechnology and Bioengineering ... 2019 Journal Citation Reports (2020). "InCites Journal Citation Reports for Protein Engineering Design & Selection". Retrieved ... "Protein Engineering, Design & Selection: About the Journal". Retrieved 24 July 2020. ...
"Gene library synthesis by structure-based combinatorial protein engineering". Protein Engineering. Methods in Enzymology. Vol. ... Enzymology Expanded genetic code Gene synthesis Genome Nucleic acid analogues Protein design Protein engineering Protein ... Structure-based combinatorial protein engineering (SCOPE) is a synthetic biology technique for creating gene libraries ( ... "Structure-based combinatorial protein engineering (SCOPE)". Journal of Molecular Biology. 321 (4): 677-91. doi:10.1016/S0022- ...
Protein Engineering. 11 (9): 739-47. doi:10.1093/protein/11.9.739. PMID 9796821. Wang S, Ma J, Peng J, Xu J (March 2013). " ... and protein-protein interaction. Protein function is a broad term: the roles of proteins range from catalysis of biochemical ... Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D (July 1999). "Detecting protein function and protein-protein ... Gene prediction Protein-protein interaction prediction Protein structure prediction Structural genomics Functional genomics ...
"Similarity of phylogenetic trees as indicator of protein-protein interaction". Protein Engineering. 9 (14): 609-614. doi: ... Interactome Protein-protein interaction Protein function prediction Protein structure prediction Protein structure prediction ... The field of protein-protein interaction prediction is closely related to the field of protein-protein docking, which attempts ... "Detecting protein function and protein-protein interactions from genome sequences." Science (285), 751-753 Pazos, F.; Valencia ...
Taylor WR, Hatrick K (March 1994). "Compensating changes in protein multiple sequence alignments". Protein Engineering. 7 (3): ... Biology portal Protein design Protein function prediction Protein-protein interaction prediction Gene prediction Protein ... This same cutoff is still used by the Protein Information Resource (PIR). A protein family comprises proteins with the same ... and have thus only been carried out for tiny proteins. To predict protein structure de novo for larger proteins will require ...
Protein Engineering. 7 (2): 271-80. PMID 8170930. Malik A (June 2016). "Protein fusion tags for efficient expression and ... The fusion protein binds to amylose columns while all other proteins flow through. The MBP-protein fusion can be purified by ... In these systems, the protein of interest is often expressed as a MBP-fusion protein, preventing aggregation of the protein of ... N-Terminal Fusion of Target Protein to Maltose-Binding Protein at Michigan Technological University maltose-binding+protein at ...
Have We Seen All Structures Corresponding to Short Protein Fragments in the Protein Data Bank? An Update. Protein Engineering. ... De novo protein structure prediction Homology modeling Protein design Protein structure prediction Protein structure prediction ... Protein Sci. 12, 2001-2014. Kolodny, R., Koehl, P., Guibas, L., and Levitt, M. (2005). Small Libraries of Protein Fragments ... Protein Science. 17, 1925-1934. DiMaio, F., Shavlik, J., Phillips, G. A probabilistic approach to protein backbone tracing in ...
Protein Engineering. 7 (2): 195-203. doi:10.1093/protein/7.2.195. PMID 8170923. Kolakowski LF (1994). "GCRDb: a G-protein- ... Cyclic AMP-dependent protein kinases (protein kinase A) are activated by the signal chain coming from the G protein (that was ... G proteins are subsequently inactivated by GTPase activating proteins, known as RGS proteins. GPCRs include one or more ... The G protein-coupled receptor kinases (GRKs) are protein kinases that phosphorylate only active GPCRs. G-protein-coupled ...
Taylor WR (March 1999). "Protein structural domain identification". Protein Engineering. 12 (3): 203-16. doi:10.1093/protein/ ... of protein domains Protein Protein structure Protein structure prediction Protein structure prediction software Protein ... Protein Engineering. 6 (3): 233-45. doi:10.1093/protein/6.3.233. PMID 8506258. Savageau MA (March 1986). "Proteins of ... Protein Engineering. 15 (11): 871-9. doi:10.1093/protein/15.11.871. PMID 12538906. "Protein Domains, Domain Assignment, ...
Protein Engineering. 6 (3): 279-88. doi:10.1093/protein/6.3.279. PMID 8506262. Uliel S, Fliess A, Amir A, Unger R (November ... Regardless of which protein comes first, this fusion protein may show similar function. Thus, if a fusion between two proteins ... Find insertion sites for other proteins. Inserting one protein as a domain into another protein can be useful. For instance, ... Jung J, Lee B (September 2001). "Circularly permuted proteins in the protein structure database". Protein Science. 10 (9): 1881 ...
Pierce, NA; Winfree, E (October 2002). "Protein design is NP-hard". Protein Engineering. 15 (10): 779-82. doi:10.1093/protein/ ... Protein-protein interactions can be designed using protein design algorithms because the principles that rule protein stability ... infection involve protein-protein interactions. Thus, to treat such diseases, it is desirable to design protein or protein-like ... which makes globular proteins more attractive for protein design than the other types of proteins. Most successful protein ...
Protein Engineering, Design & Selection. 24 (3): 255-60. doi:10.1093/protein/gzq094. PMID 21062758. Xue Y, Ren J, Gao X, Jin C ... Zinc finger protein 226 is a protein that in humans is encoded by the ZNF226 gene. The zinc finger protein 226 is also known as ... The FUS protein was another one found with a binding site on a predicted stem loop. The gene encodes for a protein which ... The RBMX protein is a homolog of the RBMY protein involved in sperm production. It is also known to promote transcription of a ...
Protein Engineering, Design & Selection. 17 (6): 527-36. doi:10.1093/protein/gzh062. PMID 15314210. King, Brian R; Guda, ... Protein Engineering, Design & Selection. 17 (4): 349-56. doi:10.1093/protein/gzh037. PMID 15115854. Bendtsen JD, Kiemer L, ... Protein Engineering, Design and Selection. 15 (9): 745-752. doi:10.1093/protein/15.9.745. ISSN 1741-0134. PMID 12456873. ... Yu CS, Chen YC, Lu CH, Hwang JK (August 2006). "Prediction of protein subcellular localization". Proteins. 64 (3): 643-51. doi: ...
Protein Engineering, Design & Selection. 17 (6): 527-536. doi:10.1093/protein/gzh062. PMID 15314210. Orchard S, Ammari M, ... Proline-rich protein 30 (PRR30 or C2orf53) is a protein in humans that is encoded for by the PRR30 gene. PRR30 is a member in ... Unstructured proteins like PRR30 are highly variable in function. Other Proline-Rich Proteins have been shown to have an ... IntAct predicts that PRR30 interacts with Human Testis Protein 37 or TEX37, Cystiene Rich Tail Protein 1 (CYSRT1), and Keratin ...
Protein Engineering Design and Selection. 14 (11): 897-901. doi:10.1093/protein/14.11.897. PMID 11742109. v t e (Protein pages ... "Four-helix bundle topology re-engineered: monomeric Rop protein variants with different loop arrangements". ... The Rop protein's structure has been solved to high resolution. Due to its small size and known structure, Rop has been used in ... Rop protein from Proteopedia del Solar G, Espinosa M (August 2000). "Plasmid copy number control: an ever-growing story". ...
Protein Engineering Design and Selection. 21 (11): 639-644. doi:10.1093/protein/gzn039. PMC 2569006. PMID 18753194. Gouw, Marc ... Small integral membrane protein 14, also known as SMIM14 or C4orf34, is a protein encoded on chromosome 4 of the human genome ... "small integral membrane protein 14 [Homo sapiens] - Protein - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2020-04-30. Brendel, V.; ... The predicted molecular weight (Mw) of the SMIM14 protein is 10710.34 Da. The SMIM14 protein carries no electrical charge at a ...
Protein Engineering Design and Selection. 29 (8): 285-289. doi:10.1093/protein/gzw019. ISSN 1741-0126. PMID 27284085. De Baets ... Computational methods that use protein sequence and/ or protein structure to predict protein aggregation. The table below, ... prediction and engineering of protein solubility". Nucleic Acids Research. 47 (W1): W300-W307. doi:10.1093/nar/gkz321. ISSN ... "How do thermophilic proteins resist aggregation?". Proteins: Structure, Function, and Bioinformatics. 80 (4): 1003-1015. doi: ...
Mateu, M. G. (2016). "Assembly, engineering and applications of virus-based protein nanoparticles". Protein-based Engineered ... Though, smaller protein attachments are generally tolerated by protein NPs. A significant limitation to direct attachment via ... Protein nanotechnology is a burgeoning field of research that integrates the diverse physicochemical properties of proteins ... Due to the abundance of proteins necessary for proper bodily function, the body has developed processes to update proteins into ...
"7.344 Antibiotics, Toxins, and Protein Engineering, Spring 2007". MIT OpenCourseWare. Swaney SM, Aoki H, Ganoza MC, Shinabarger ... Protein biosynthesis, Protein synthesis inhibitor antibiotics, Protein synthesis inhibitors). ... protein synthesis inhibitors work at different stages of bacterial mRNA translation into proteins, like initiation, elongation ... A protein synthesis inhibitor is a compound that stops or slows the growth or proliferation of cells by disrupting the ...
"Engineering trimeric fibrous proteins based on bacteriophage T4 adhesins". Protein Eng. 11 (4): 329-32. doi:10.1093/protein/ ... These kind of protein can be distinguished from globular protein by its low solubility in water. Such proteins serve protective ... A fibrous protein forms long protein filaments, which are shaped like rods or wires. Fibrous proteins are structural or storage ... A fibrous protein occurs as an aggregate due to hydrophobic side chains that protrude from the molecule. A fibrous protein's ...
Protein Engineering. 4 (7): 801-4. doi:10.1093/protein/4.7.801. PMID 1798702. Maxam AM, Gilbert W (1980). Sequencing end- ... the enzyme is in solution with a smaller amount of proteins than there are in another portion of the cell. The proteins' heat ... When multiple copies of a polypeptide encoded by a gene form an aggregate, this protein structure is referred to as a multimer ... This characteristic of the enzyme is uncommon to many other proteins. The precise structure and function of the isozyme in E. ...
Protein Engineering. 14 (7): 513-9. doi:10.1093/protein/14.7.513. PMID 11522926. Anderson NL, Polanski M, Pieper R, Gatlin T, ... "A human protein-protein interaction network: a resource for annotating the proteome". Cell. 122 (6): 957-68. doi:10.1016/j.cell ... "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173-8. Bibcode:2005Natur. ... as a prothrombotic gene in a protein C-deficient kindred and population-based case-control sample". Thrombosis and Haemostasis ...
Protein Engineering. 11 (10): 833-40. doi:10.1093/protein/11.10.833. PMID 9862200. Lopes-Marques M, Ruivo R, Fonseca E, ... Humans have a pseudogene for chymosin that does not generate a protein, found on chromosome 1. Humans have other proteins to ... With the development of genetic engineering, it became possible to extract rennet-producing genes from animal stomach and ... Protein pages needing a picture, Genes on human chromosome 1, EC 3.4.23). ...
... protein engineering; drug delivery; molecular biology; structural biology; cell biology; glycobiology; molecular imaging and in ... Research in the Davis laboratory has been funded by the Engineering and Physical Sciences Research Council, the Biotechnology ... These have enabled associated mechanistic details of protein and sugar biology to be elucidated and exploited for ... exploring protein chemistry and biocatalysis. In 1998 he returned to the United Kingdom to take up a lectureship at Durham ...
Applications: Protein engineering Enzyme engineering Protein design Expanded genetic code Xenobiology Mutagenesis: Random ... As a protein engineering tool, DE has been most successful in three areas: Improving protein stability for biotechnological use ... Directed evolution (DE) is a method used in protein engineering that mimics the process of natural selection to steer proteins ... Protein Engineering. 12 (1): 47-53. doi:10.1093/protein/12.1.47. PMID 10065710. Favor AH, Llanos CD, Youngblut MD, Bardales JA ...
Protein Engineering. 1 (4): 295-300. doi:10.1093/protein/1.4.295. PMID 3508280. Nanoarchitecture: Xiao S, Liu F, Rosen AE, ... Nucleic acid structures are less versatile than proteins in their function because of proteins' increased ability to fold into ... This property is absent in other materials used in nanotechnology, including proteins, for which protein design is very ... A non-covalent hosting scheme using Dervan polyamides on a DX array was used to arrange streptavidin proteins in a specific ...
Protein Engineering. 1 (4): 295-300. doi:10.1093/protein/1.4.295. ISSN 0269-2139. PMID 3508280. Link Rothemund, Paul W. K.; ... NMR of Proteins and Nucleic Acids., New York, Brisbane,Chicester, Toronto, Singapore: J. Wiley & Sons. 1986., 292 pages. Hallin ... In eukaryotes this is carried by spool-like proteins named histones, around which DNA winds. It is the further compaction of ... The proton exchange rates in DNA and attached proteins may vary from picosecond to nanosecond, minutes or years, depending on ...
Protein Engineering. 6 (2): 149-156. doi:10.1093/protein/6.2.149. PMID 8386360. Liaw CW, Grigoriadis DE, Lovenberg TW, De Souza ... Wang HL, Morales M (July 2008). "Corticotropin-releasing factor binding protein within the ventral tegmental area is expressed ... Seasholtz AF, Valverde RA, Denver RJ (October 2002). "Corticotropin-releasing hormone-binding protein: biochemistry and ... March 1995). "Ligand requirements of the human corticotropin-releasing factor-binding protein". Endocrinology. 136 (3): 1097- ...
... protein engineering) Structural biology Synthetic biology "Protein engineering - Latest research and news , Nature". www.nature ... Protein engineering is the process of developing useful or valuable proteins through the design and production of unnatural ... Computation-aided design has also been used to engineer complex properties of a highly ordered nano-protein assembly. A protein ... Directed evolution will likely not be replaced as the method of choice for protein engineering, although computational protein ...
Syllabus for Protein Engineering. The syllabus is valid from Autumn 2020. ... isolate proteins by biochemical methods. *plan and carry out activity measurements of isolated proteins and characterise their ... analyse and compare the amino acid sequence and structure of proteins, and relate this information to the function of proteins ... review factors significant for protein folding processes and stability. *explain how proteins can be used for different ...
Government-led initiatives focusing on enhancing protein engineering capabilities are anticipated to drive rapid market growth ... Government-led initiatives focusing on enhancing protein engineering capabilities are anticipated to drive rapid market growth ... Protein Engineering Protein Modification Protein Therapeutics Biologics Biotechnology Pharmaceuticals Protein Function Protein ... Protein engineering refers to the process in which a researcher transforms a protein sequence through insertion, substitution, ...
"Engineering a Genetically Encoded Magnetic Protein Crystal". Nano Letters. If scientists could give living cells magnetic ... Now, researchers reporting in ACS Nano Letters have engineered genetically encoded protein crystals that can generate magnetic ... These magnetic protein crystals, isolated from cells, were stained with a blue dye that binds to iron. ... To drastically increase the amount of iron that a protein assembly can store, Bianxiao Cui and colleagues wanted to combine the ...
... and discoveries of protein engineers and scientists, the impact their work is having on the field, and where the industry is ... Senior Director of Protein Engineering at Eli Lilly and Company, hosts a panel at PEGS 2023 to discuss strategies to engineer ... The Chain explores the lives, careers, research, and discoveries of protein engineers and scientists, the impact their work is ... The Chain explores the lives, careers, research, and discoveries of protein engineers and scientists, the impact their work is ...
... of CRISPR systems to facilitate the editing of genomes has created great excitement and inspired new ideas in engineering ... Obtain engineering microbial strain at a speed never reach before. *Learn about Inscriptas Onyx microbial benchtop digital ... 6th International Conference on Microbiome Engineering December 8. -. 10, 2023. International House at UC Berkeley, Berkeley, ... 6th International Conference on Microbiome Engineering December 8. -. 10, 2023. International House at UC Berkeley, Berkeley, ...
By reducing costs and time for protein engineering, and by working in a simple system that requires no knowledge of ... biologists and non-biologists alike will be able to conduct relevant biological engineering research and rapidly test protein ... researchers will be able to conduct expression of hundreds of relevant protein variants from a single reference protein. The ... Therefore, enough protein can be generated for detailed biochemical characterization and activity assays. The proposed platform ...
Rational protein engineering in action: the first crystal structure of a phenylalanine tRNA synthetase from Staphylococcus ... PheRS from Staphylococcus haemolyticus- rational protein engineering and inhibitor studies. *PDB DOI: https://doi.org/10.2210/ ... we have executed a rational surface mutagenesis strategy that has yielded crystals of this 2300-amino acid multidomain protein ...
Although tremendous progress has been made, protein engineering remains laborious, expensive and truly complicated. Here is how ... Proteins are building blocks of all living matter. ... Protein engineering is complex. We want to engineer proteins to ... Hacking in silico protein engineering with Machine Learning and AI, explained. Proteins are building blocks of all living ... Although great advancements in laboratory and industrial-scale protein production have been made, protein engineering and all ...
A fluorescence-based assay is used to screen cyclic peptides for their activity in preventing protein misfolding, an event that ... Protein misfolding and aggregation are common pathological features of several human diseases, including Alzheimers disease ... an integrated and generalizable bacterial system for the facile discovery of chemical rescuers of disease-associated protein ... are biosynthesized in Escherichia coli cells and simultaneously screened for their ability to rescue pathogenic protein ...
Scientists engineer proteins that caused obese animals to lose weight and lower cholesterol Ă—. ... Researchers have created engineered proteins that lowered body weight, bloodstream insulin, and cholesterol levels in obese ... in those who got the engineered proteins, while levels more than doubled in the untreated mice. Insulin levels and total ... The natural version of the GDF15 protein breaks down quickly in the blood. To be an effective weight-loss aid, it would need ...
Northwestern Engineering researchers have developed a quick, cell-free system to create biosynthetic pathways to build and ... Northwestern Engineering researchers have developed a quick, cell-free system to create biosynthetic pathways to build and ... Northwestern Engineering researchers have developed a quick, cell-free system to create biosynthetic pathways to build and ... Engineering News. Research. New Method Accelerates Development of Protein Therapeutics. Cell-free system allows researchers to ...
Workshop I: Membrane Protein Science and Engineering. Part of the Long Program Cells and Materials: At the Interface between ... Characterization of protein-protein interactions in a versatile system of model membranes. ... Polymers and Proteins at Membranes far from Equilibrium Audio (MP3 File, Podcast Ready) ... The nature of membrane protein assembly and applications in structure prediction Audio (MP3 File, Podcast Ready) ...
Expertise in protein chemistry with demonstrated skills, experience and publications. *Requires a Ph.D degree in Biochemistry, ... Post-Doctoral Research Scientist (Protein Engineering Group) .breadcrumbs { border-radius: 4px; font-size: .85em; position: ... Candidate should be well versed in recombinant protein expression, purification and characterization. ... purification and biochemical and biophysical characterization of recombinant proteins. ...
Due to their large surface area and ability to interact with proteins and peptides, graphene oxides offer valuable ... This review critically focuses on opportunities to employ protein-graphene oxide structures either as nanocomposites or as ... effects of carbonaceous nanostructures on protein conformation and structural stability for applications in tissue engineering ... The field of tissue engineering is constantly evolving as it aims to develop bioengineered and functional tissues and organs ...
Medical student engineers protein to dissolve blood clots. How the brain keeps extra calories from becoming extra pounds ... A protein inhibitor called alpha 2-antiplasmin in blood stops the clot-busting effects of plasmin. Unfortunately, the quick ... To achieve his goal, Turner engineered a new form of plasmin. Turners discovery has implications for treatment of strokes and ...
Therefore, this engineered protein adsorption approach allows for the facile preparation of tunable, quantifiable, and ... Therefore, this engineered protein adsorption approach allows for the facile preparation of tunable, quantifiable, and ... A nanoscale modular design strategy was employed to synthesize six engineered, recombinant proteins intended to mimic aspects ... A nanoscale modular design strategy was employed to synthesize six engineered, recombinant proteins intended to mimic aspects ...
Before joining Food Engineering, he served as a senior technical editor for Omega Engineering Inc. Labs also worked in wireless ... Food Process Engineering and Technology, 3E Combining scientific depth with practical usefulness, this book serves as a tool ... The Agency also recognizes there is a need to update the guidelines to include food products that are plant-based proteins ... Canadian government launches comment period for simulated protein products guidelines. Public consultation period opened on ...
CitationLopez-Laguna, H. [et al.]. Endosomal escape of protein nanoparticles engineered through humanized histidine-rich ... Poly-histidine peptides such as H6 (HHHHHH) are used in protein biotechnologies as purification tags, pro- tein-assembling ... We were particularly interested in exploring how protein purification, self-assembling and endosomal escape perform in proteins ... combinant proteins. However, the clinical applicability of H6- tagged proteins is restricted by the potential immunogenicity of ...
Orthogonal dual-modification of proteins for the engineering of multivalent protein scaffolds ... Orthogonal dual-modification of proteins for the engineering of multivalent protein scaffolds. * Michaela MĂ¼hlberg. ‡,1,2 , ... With this approach, we aimed to engineer an artificial lectin-binding protein via chemical installation of several galactose ... Although a protein mixture of two proteins, bearing either nine or ten Aha residues which could potentially react with butynyl ...
One of our central themes concerns photophysical studies of phototransformable fluorescent proteins (PTFPs). PTFPs are ... More and more, we realize the important link between PTFPs protein dynamics and PTFPs photophysical behavior, so that NMR, ... Many groups worldwide study and develop fluorescent proteins to create ever more performing markers or sensors. We contribute ... One of our central themes concerns photophysical studies of phototransformable fluorescent proteins (PTFPs). PTFPs are ...
Protein prenylation catalyzed by protein farnesyltransferase (FTase) and protein geranylgeranyltransferase (GGTase) is ... Structure-Guided Development of Antifungal Protein Farnesyltransferase Inhibitors and DNA Polymerase Engineering ... Additionally, we report two protein engineering studies. The first addresses stability and overexpression of the telomerase ... Here we engineered the catalytic core complex and the RNA binding domain, and evaluated the capability of using these materials ...
Here the authors report a protein-engineering framework based on InDel mutagenesis and fragment transplantation resulting in ... Protein dynamics are often invoked in explanations of enzyme catalysis, but their design has proven elusive. Here we track the ... Synthetic biology-guided engineering of Pseudomonas putida for biofluorination * Decoding the molecular principles of enzyme ... Screening for both activities reveals InDel mutations localized in three distinct regions that lead to altered protein dynamics ...
protein engineering; drug delivery; computational structural biology; protein-protein interactions; gene therapy. ... My Ph.D. projects centered on using computational structural biology tools to develop protein engineering methods for targeted ... A melatonin indicator was then created by integrating the repurposed receptor with a fluorescent protein. This engineering ... Ding, Xiaozhe (2023) Computation-Aided Protein Engineering for Targeted Therapeutic Delivery. Dissertation (Ph.D.), California ...
The Transient Protein Expression Market report is a compilation of first-hand information, qualitative and quantitative ... Transient Protein Expression Market: Popularity of next-generation genetic engineering technologies has created fresh pathways ... Transient Protein Expression Market: Key players. Some of the key players present in global Transient Protein Expression Market ... Transient Protein Expression Market: Segmentation. Based on by product type, Transient Protein Expression Market is segmented ...
Seed: Sequence-Defined Disordered Protein Polymers for Engineered Assembly of Biomolecular Condensates and Granular Materials. ... Additionally, our team has developed surface active agents built from protein blocks that localize to condensate interfaces and ... D. Composite condensates with surface active skins. E. Modular block strategy for protein surfactants. F. Control of ... Using coarse-grain simulations (1) and biochemical reconstitution, our team identified intrinsically disordered proteins that ...
"Protein Engineering", Innovation, Dual Use, and Security: Managing the Risks of Emerging Biological and Chemical Technologies, ...
Keywords: antibody engineering, protein engineering, bladder cancer, urothelial carcinoma, ADC, immunotherapy, immuno-oncology ... Antibody and protein technologies came a long way in recent years and new engineering approaches were applied to generate ... Treating Bladder Cancer: Engineering of Current and Next Generation Antibody-, Fusion Protein-, mRNA-, Cell- and Viral-Based ... Treating Bladder Cancer: Engineering of Current and Next Generation Antibody-, Fusion Protein-, mRNA-, Cell- and Viral-Based ...
First Researcher Engineer in Protein Production. First Researcher Engineer in Protein Production. The University of Gothenburg ... The position as first research engineer has a specific focus towards service and protein production within the framework of the ... Validated experience in protein expression and isotope labelling of proteins in prokaryotic or eukaryotic expression systems. ... Practical experience in cell-free protein synthesis, e.g. preparation of cellular extract, setup of protein synthesis in batch ...
  • Develop and implement methods for expression, purification and biochemical and biophysical characterization of recombinant proteins. (zymoresearch.com)
  • Candidate should be well versed in recombinant protein expression, purification and characterization. (zymoresearch.com)
  • A nanoscale modular design strategy was employed to synthesize six engineered, recombinant proteins intended to mimic aspects of the extracellular matrix proteins fibronectin, laminin, and elastin as well as the cell-cell adhesive protein neural cell adhesion molecule. (frontiersin.org)
  • The proteins are synthesized using recombinant, genetic engineering techniques, allowing for the creation of biocompatible polymers with nanoscale precision that impart highly specific protein functionalities. (frontiersin.org)
  • We make use of a highly flexible multi-step cloning strategy in order to allow for the rapid synthesis of new recombinant proteins that can introduce many different biofunctionalities. (frontiersin.org)
  • Seeking a more targeted vW disease treatment without the disadvantages associated with blood-derived products, investigators engineered a cell line that expresses the vWF gene to create a consistent, highly active recombinant vWF (rvWF). (technologynetworks.com)
  • We offer our equipment and provide expertise in terms of preparation of expression vectors, production of recombinant proteins and their purification, as well as evaluation of quality of protein preparations intended for functional and structural research. (ichb.pl)
  • Since the first recombinant protein-based therapy was approved over 40 years ago, protein engineering has transformed the world of healthcare, with biologics now representing the fastest-growing sector of the pharmaceutical industry. (evonetix.com)
  • Recombinant proteins. (bvsalud.org)
  • In this work, we present a novel approach to fabricate such coatings, which specifically involves the use of surface-adsorbed, nanoscale-designed protein polymers to prepare reproducible, customized surfaces. (frontiersin.org)
  • By reducing costs and time for protein engineering, and by working in a simple system that requires no knowledge of bioinformatics, cloning, cell culturing, and biochemical characterization, biologists and non-biologists alike will be able to conduct relevant biological engineering research and rapidly test protein design hypotheses. (sbir.gov)
  • This STTR Phase I project proposes to develop a high-throughput and computationally assisted platform to rapidly collect biochemical data on a diverse set of proteins. (sbir.gov)
  • Therefore, enough protein can be generated for detailed biochemical characterization and activity assays. (sbir.gov)
  • Using coarse-grain simulations (1) and biochemical reconstitution, our team identified intrinsically disordered proteins that do not mix with the Laf-1 RGG polypeptide and instead form distinct mesoscale condensate materials. (upenn.edu)
  • Axl proteins stand like bristles on the surface of cancer cells, poised to receive biochemical signals from Gas6 proteins. (futurism.com)
  • Sensitive quantitative detection of disease-related proteins is critical to many areas of modern biochemical and biomedical research. (cdc.gov)
  • In this month's episode of The Chain, Greg M. Thurber, associate professor of chemical engineering and biomedical engineering at the University of Michigan, sits with moderator Nimish Gera, vice president of biologics at Mythic Therapeutics, to talk about the development of antibody drug conjugates (ADCs). (apple.com)
  • Milan Mrksich , the Henry Wade Rogers Professor of Biomedical Engineering, Chemistry, and Cell and Molecular Biology at Northwestern's McCormick School of Engineering, is a co-author on the paper. (northwestern.edu)
  • In their recent paper, Ashutosh Chilkoti, the chair of Duke Biomedical Engineering, and Felipe Garcia Quiroz, a Ph.D. graduate of the Chilkoti Lab who is a postdoctoral fellow at Rockefeller University, demonstrate that they can precisely tune the stability of IDP-based materials by controlling how quickly IDPs associate and dissociate in response to environmental cues. (duke.edu)
  • Thomas Laurell is Professor in Medical and Chemical microsensors and heads the division of Nanobiotechnology at the Department of Biomedical Engineering, Lund University. (lu.se)
  • Researchers previously believed that proteins needed to fold into a specific fixed shape in order to function, but in the last two decades, engineers seeking to create novel materials for biomedical applications have turned their attention to intrinsically disordered proteins, called IDPs, which dynamically shift among a wide array of structures. (duke.edu)
  • By Protein Type, the monoclonal antibody segment accounted for the largest revenue share. (globenewswire.com)
  • The researchers used this process to develop a protein vaccine candidate modified with a sugar structure that could trigger the immune system, as well as a therapeutic antibody fragment with a sugar that can stabilize proteins as they circulate in the body. (northwestern.edu)
  • Antibody and protein technologies came a long way in recent years and new engineering approaches were applied to generate innovative therapeutic entities with novel mechanisms of action. (tu-darmstadt.de)
  • Besides, it has wide usage in the enzyme and antibody engineering. (emergenresearch.com)
  • Furthermore, an explanation for the observed restricted germline gene usage in certain antibody responses against protein epitopes is provided. (lu.se)
  • Genetically engineered antibody MIMETIC PROTEINS, derived from ANKYRIN PROTEINS. (bvsalud.org)
  • In terms of revenue, Rational Protein Design dominated the market with a share of 53.2% in 2019. (emergenresearch.com)
  • Glycosylation - the attachment of sugars to proteins - plays a critical role in both cellular function and in the development of therapeutics, like vaccines. (northwestern.edu)
  • Weston Kightlinger, a PhD student in the Jewett lab, developed a new approach to build, test, and assess sets of enzymes that can modularly build sugars for protein therapeutics. (northwestern.edu)
  • Future works will use other pathways developed in this paper to create glycosylated protein vaccines and therapeutics that can target certain areas within the body. (northwestern.edu)
  • The increasing R & D for protein engineering to generate more efficient, enhanced, and cost-effective therapeutics is most likely to fuel the industry's demand. (emergenresearch.com)
  • At Diffuse Bio we're building generative AI for protein therapeutics. (greenhouse.io)
  • Our goal is to build AI systems that can design protein therapeutics for the most challenging and high-value targets. (greenhouse.io)
  • So whether you're a synthetic biologist developing living therapeutics, a metabolic engineer enhancing biofuel production, or an enzymologist designing biocatalysts for bioplastics, give us a shout! (basecamp-research.com)
  • Unnatural Amino Acid Engineering for Intracellular Delivery of Protein Therapeutics. (bvsalud.org)
  • In this system, large combinatorial libraries of macrocyclic molecules are biosynthesized in Escherichia coli cells and simultaneously screened for their ability to rescue pathogenic protein misfolding and aggregation using a flow cytometric assay. (nature.com)
  • My Ph.D. projects centered on using computational structural biology tools to develop protein engineering methods for targeted therapeutic delivery, emphasizing delivering molecules to the brain. (caltech.edu)
  • As many discussed molecules exhibit unique mechanisms of action based on innovative protein engineering, they reflect the next generation of cancer drugs. (tu-darmstadt.de)
  • Scientists have combined two molecules that occur naturally in blood to engineer a molecular complex that uses solar energy to split water into hydrogen and oxygen, says research published today in the Journal of the American Chemical Society. (greenenergyinvestors.com)
  • Combining a small protein with artificial molecules, they created a tiny enzyme that reduces carbon dioxide to carbon monoxide with light. (chemistryworld.com)
  • The Stanford approach is grounded on the fact that all biological processes are driven by the interaction of proteins, the molecules that fit together in lock-and-key fashion to perform all the tasks required for living things to function. (futurism.com)
  • Class III MHC molecules include several proteins with other immune functions, such as cytokines, heat shock proteins, and parts of complement system. (medscape.com)
  • Furthermore, it can be difficult to express complex proteins due to toxicity or purification difficulty, requiring labor-intensive diagnosis of expression and purification conditions. (sbir.gov)
  • Poly-histidine peptides such as H6 (HHHHHH) are used in protein biotechnologies as purification tags, pro- tein-assembling agents and endosomal-escape entities. (upc.edu)
  • We were particularly interested in exploring how protein purification, self-assembling and endosomal escape perform in proteins containing the variant histidine-rich tags. (upc.edu)
  • In this project, engineering and prototyping of cytochrome P450 enzymes, important industrial and pharmaceutical catalysts, will be demonstrated with an end-Phase II goal to prototype 1,000 diverse cytochrome P450 enzymes from design to characterization in less than a week. (sbir.gov)
  • Frequently, researchers are aiming at improving catalytic performance of protein enzymes, or adding completely new types of chemical activities to known proteins. (kdnuggets.com)
  • Jewett's lab has developed cell-free systems that create enzymes needed to create certain proteins, but up until now, these processes could not create glycosylated products without the need to reengineer living cells. (northwestern.edu)
  • Besides, the increasing utilization of protein engineering for the generation of enzymes in the agrochemical industry is most likely to propel the future growth of the market. (emergenresearch.com)
  • The Hybrid approach accounts for 29.5% of the total share and is expected to register the highest CAGR over the forecast period due to its increasing utilization in enhancing enzymes and redox proteins. (emergenresearch.com)
  • Bacterial microcompartments are a class of proteinaceous organelles comprising a characteristic protein shell enclosing a set of enzymes. (northwestern.edu)
  • We have experience and equipment enabling physicochemical characteristics of interactions between proteins and other macromolecules. (ichb.pl)
  • Functional proteins are the most versatile macromolecules. (sciopen.com)
  • The proposed platform allows characterization of hundreds of protein sequences at significant cost and time savings by providing a combined ex vivo computational, expression, and assay system. (sbir.gov)
  • In the last 70 years tremendous progress has been made in their isolation, production, characterization, and finally engineering. (kdnuggets.com)
  • Characterization of protein-protein interactions in a versatile system of model membranes. (ucla.edu)
  • Knowledge and practical experience in biophysical characterization and/or quality control of proteins. (scilifelab.se)
  • Alongside advances in AI and machine learning, exploring optimized and novel proteins requires iterative design and function characterization to ensure that proteins have the desired properties. (evonetix.com)
  • Due to their large surface area and ability to interact with proteins and peptides, graphene oxides offer valuable physiochemical and biological features for biomedical applications and have been successfully employed for optimizing scaffold architectures for a wide range of organs, from the skin to cardiac tissue. (mdpi.com)
  • The pleiotropic properties of such peptides make them appealing to design protein-based smart materials or nanoparticles for imaging or drug delivery to be produced in form of re- combinant proteins. (upc.edu)
  • In this study, we have explored several humanized histidine-rich peptides in tumor-targeted modular proteins, which can specifically bind and be internalized by the target cells through the tumoral marker CXCR4. (upc.edu)
  • However, its major drawback is that detailed structural knowledge of a protein is often unavailable, and, even when available, it can be very difficult to predict the effects of various mutations since structural information most often provide a static picture of a protein structure. (wikipedia.org)
  • Without structural information about a protein, sequence analysis is often useful in elucidating information about the protein. (wikipedia.org)
  • However, even with the relatively sparse (compared to a number of possible combinations of all protein amino acids in lengthy polypeptide chains) protein databases, Machine Learning can help to unravel complex, non-linear relationships between protein sequences and their structural variability and dynamics. (kdnuggets.com)
  • Structural disorder is a very peculiar property of many known and characterised proteins. (kdnuggets.com)
  • This review critically focuses on opportunities to employ protein-graphene oxide structures either as nanocomposites or as biocomplexes and highlights the effects of carbonaceous nanostructures on protein conformation and structural stability for applications in tissue engineering and regenerative medicine. (mdpi.com)
  • Recently, in collaboration with the teams of J.B Sibarita and M. Sainlos ( IINS, Bordeaux ), we started an ANR-funded project aiming at further improving the photostability of PCFPs, by combining structural studies with high-content-screening single-molecule imaging approaches to achieve efficient semi-rational engineering. (ibs.fr)
  • First, utilizing computational structural biology techniques, I investigate the molecular mechanism that enables engineered adeno-associated viral (AAV) capsids to cross the blood-brain barrier (BBB). (caltech.edu)
  • New York, May 23, 2023 (GLOBE NEWSWIRE) -- The Protein Engineering Market size is projected to surpass around USD 9,329 Million by 2032, and it is poised to reach a CAGR of 13.6% from 2023 to 2032. (globenewswire.com)
  • By Technology, the rational protein design segment has dominated the market, and it is growing at the highest CAGR over the forecast period 2023 to 2032. (globenewswire.com)
  • In this special episode of The Chain, G. Jonah Rainey, Senior Director of Protein Engineering at Eli Lilly and Company, hosts a panel at PEGS 2023 to discuss strategies to engineer parameters for solid tumor-targeting T-cell-engagers. (apple.com)
  • Therefore, we have executed a rational surface mutagenesis strategy that has yielded crystals of this 2300-amino acid multidomain protein, diffracting to 2A or better. (rcsb.org)
  • However, since there are 20 standard protein amino acids, a complete mutagenesis of 100-residue long polypeptide would yield 20 100 mutant combinations, should you decide to explore all possible combinations of typical protein amino acids. (kdnuggets.com)
  • Here the authors report a protein-engineering framework based on InDel mutagenesis and fragment transplantation resulting in greater catalysis and longer glow-type bioluminescence of the ancestral luciferase. (muni.cz)
  • The success of our approach suggests that a strategy comprising (i) constructing a stable and evolvable template, (ii) mapping functional regions by backbone mutagenesis, and (iii) transplantation of dynamic features, can lead to functionally innovative proteins. (muni.cz)
  • Protein design is conducted through both rational methods such as site-directed mutagenesis and de novo design, as well as directed evolution - which involves random mutagenesis and screening of variants for desired traits. (evonetix.com)
  • While the sequence-conformation space that needs to be searched is large, the most challenging requirement for computational protein design is a fast, yet accurate, energy function that can distinguish optimal sequences from similar suboptimal ones. (wikipedia.org)
  • Multiple sequence alignment utilizes data bases such as PREFAB, SABMARK, OXBENCH, IRMBASE, and BALIBASE in order to cross reference target protein sequences with known sequences. (wikipedia.org)
  • Protein engineering refers to the process in which a researcher transforms a protein sequence through insertion, substitution, or deletion of nucleotides in the encoding gene, aiming to obtain a modified protein that is more appropriate for a particular application or purpose than an unmodified protein. (globenewswire.com)
  • This allows rapid access to biological data, and on-demand protein sequence prototyping. (sbir.gov)
  • However, a logical consequence of replacing a major part of a protein with a completely new amino acid sequence will likely be new fold, hence new functionality. (kdnuggets.com)
  • It has been attributed to specific patterns in protein sequence , and it has an immediate consequence for protein stability , susceptibility to enzymatic digestion inside living cells, protein-protein interactions and in turn a decisive role in many debilitating human pathologies . (kdnuggets.com)
  • 1 Sequence dependent phase separation of protein-polynucleotide mixtures elucidated using molecular simulations. (upenn.edu)
  • 2 Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. (upenn.edu)
  • Our team has been behind breakthroughs in AI protein design for the past 6 years, including the first experimental validation of AI-generated proteins and diffusion models for protein structure and sequence. (greenhouse.io)
  • However, lack of understanding of relationships between sequence, structure and function hampers elegant protein design. (basecamp-research.com)
  • However, more recent developments to build tools that can develop entirely new proteins, not present in nature provide a huge opportunity to explore sequence space and find solutions to biomedical, industrial and agricultural problems that evolution has not been required to solve. (evonetix.com)
  • Optimizing Cell-Free Protein Synthesis for Antimicrobial Protein Production. (bvsalud.org)
  • Now, researchers reporting in ACS' Nano Letters have engineered genetically encoded protein crystals that can generate magnetic forces many times stronger than those already reported. (acs.org)
  • The researchers wondered if they could line the hollow interiors of the crystals with ferritin proteins to store larger amounts of iron that would generate substantial magnetic forces. (acs.org)
  • To make the new crystals, the researchers fused genes encoding ferritin and Inkabox-PAK4cat and expressed the new protein in human cells in a petri dish. (acs.org)
  • Using this platform, researchers will be able to conduct expression of hundreds of relevant protein variants from a single reference protein. (sbir.gov)
  • Researchers have created engineered proteins that lowered body weight, bloodstream insulin, and cholesterol levels in obese mice, rats, and primates. (latimes.com)
  • In mice who got a bioengineered version of the GDF15 protein, the researchers observed even more remarkable changes. (latimes.com)
  • The results suggest that the GDF15 engineered by researchers had the power to turn off the kind of reward-driven eating (think doughnuts, milkshakes or bacon cheeseburgers) that drives many of us to become obese, or to regain lost weight. (latimes.com)
  • The Amgen researchers accomplished this by fusing the protein with other agents that would not break down so quickly. (latimes.com)
  • Northwestern Engineering researchers have now developed a quick, cell-free system to build and study these pathways. (northwestern.edu)
  • Combining scientific depth with practical usefulness, this book serves as a tool for graduate students as well as practicing food engineers, technologists and researchers looking for the latest information on transformation and preservation processes as well as process control and plant hygiene topics. (foodengineeringmag.com)
  • Researchers from China have engineered an enzyme to incorporate artificial components, creating miniature photosynthetic machinery that reduces carbon dioxide. (chemistryworld.com)
  • Then, the researchers introduced a cysteine mutation in the protein. (chemistryworld.com)
  • This discovery shines a light on previously unexplored behaviors of disordered proteins and allows researchers to create novel materials for applications in drug delivery, tissue engineering, regenerative medicine and biotechnology. (duke.edu)
  • A team of Stanford researchers has developed a protein therapy that disrupts the process that causes cancer cells to break away from original tumor sites, travel through the blood stream and start aggressive new growths elsewhere in the body. (futurism.com)
  • In collaboration with Professor Amato Giaccia, who heads the Radiation Biology Program in Stanford's Cancer Center, the researchers gave intravenous treatments of this bioengineered decoy protein to mice with aggressive breast and ovarian cancers. (futurism.com)
  • Protein crystallography captures the interaction of two proteins in a solid form, allowing researchers to take X-ray-like images of how the atoms in each protein bind together. (futurism.com)
  • This review focuses on the engineering of biologics, particularly therapeutic antibodies and their application in preclinical development and clinical trials, as well as approved monoclonal antibodies for the treatment of bladder cancer. (tu-darmstadt.de)
  • Hijacking pathogenic membrane proteins to engineer cellular entry: A molecular biophysics approach Invasive pathogenic bacteria feature many cellular niches and life cycles, for which they have developed functions that are potentially attractive in biotechnology and therapeutic delivery applications. (umich.edu)
  • Thus, many strategies have been developed to improve the stability, efficacy, bioavailability, and productivity of therapeutic proteins for clinical applications. (sciopen.com)
  • In this review, we summarize the recent progress in the fabrication and application of therapeutic proteins. (sciopen.com)
  • Finally, a summary and perspective for the future development of therapeutic proteins are presented. (sciopen.com)
  • Protein drugs are a critically important therapeutic modality due to the sophisticated binding recognition, catalytic properties, and disease relevance of proteins. (bvsalud.org)
  • I develop a pipeline to model the vast and dynamic complex between engineered AAV capsids and their BBB receptors. (caltech.edu)
  • Opacity-associated (Opa) proteins of Neisseria gonorrhoeae and N. meningitides are eight-stranded outer membrane proteins that bind to different host receptors, triggering engulfment of the bacterium. (umich.edu)
  • Protein engineering involves a variety of techniques to design and functionally test engineered protein variants. (evonetix.com)
  • The new area of magnetogenetics seeks to use genetically encoded proteins that are sensitive to magnetic fields to study and manipulate cells. (acs.org)
  • Third, I show an example to engineer a genetically encoded transmitter indicator (GETI), which may eventually be a cargo delivered to the brain. (caltech.edu)
  • The Swedish NMR Centre is part of PPS, with a focus on NMR-optimized cell-free protein synthesis. (scilifelab.se)
  • Practical experience in cell-free protein synthesis, e.g. preparation of cellular extract, setup of protein synthesis in batch or continuous exchange modes of expression. (scilifelab.se)
  • Cell-free protein synthesis provides a flexible platform for the production of difficult-to-express proteins, because maintaining cell viability is unnecessary. (bvsalud.org)
  • Characterize protein and enzyme stability and activity. (zymoresearch.com)
  • Protein dynamics are often invoked in explanations of enzyme catalysis, but their design has proven elusive. (muni.cz)
  • The field of tissue engineering is constantly evolving as it aims to develop bioengineered and functional tissues and organs for repair or replacement. (mdpi.com)
  • Our approach relies on the selective introduction of two different functional moieties in a protein by mutually orthogonal copper-catalyzed azide-alkyne cycloaddition (CuAAC) and oxime ligation. (beilstein-journals.org)
  • To engineer proteins at scale will require new gene synthesis technology to enable rapid, iterative testing of protein variants - a key bottleneck in current processes. (evonetix.com)
  • A major bottleneck in the testing of protein variants rests in the capacity for production of gene-length DNA. (evonetix.com)
  • As confirmation that ligand density in these engineered systems impacts neuronal cell behavior, we demonstrate that increasing the density of fibronectin-derived RGD ligands on coated surfaces while maintaining uniform protein surface coverage results in enhanced neurite extension of PC-12 cells. (frontiersin.org)
  • More and more, we realize the important link between PTFPs protein dynamics and PTFPs photophysical behavior, so that NMR , which can address the dynamical behavior of proteins with great detail, is also becoming a central tool for our investigations. (ibs.fr)
  • Protein engineering is the process of developing useful or valuable proteins through the design and production of unnatural polypeptides, often by altering amino acid sequences found in nature. (wikipedia.org)
  • It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles. (wikipedia.org)
  • There are two general strategies for protein engineering: rational protein design and directed evolution. (wikipedia.org)
  • In rational protein design, a scientist uses detailed knowledge of the structure and function of a protein to make desired changes. (wikipedia.org)
  • This is an exciting new method that accelerates the design and engineering of potential medicines and vaccines using glycosylation," said Michael Jewett , the Charles Deering McCormick Professor of Teaching Excellence, professor of chemical and biological engineering, and director of Northwestern's Center for Synthetic Biology , who led the research. (northwestern.edu)
  • Labs ran his own consulting business and contributed feature articles to Electronic Design , Control , Control Design , Industrial Networking and Food Engineering magazines. (foodengineeringmag.com)
  • This fact demonstrates that the His-mediated, proton sponge-based endosomal escape saturates at moderate amounts of internalized protein, a fact that might be critical for the design of protein materials for cytosolic molecular delivery. (upc.edu)
  • Harnessing insights from our map of the global proteome, we're learning the fundamental design principles of proteins to bid farewell to trial and error and replace it with efficient and informed protein engineering. (basecamp-research.com)
  • Progress in machine learning and other AI-based tools has given scientists access to a suite of tools to enable rapid, sophisticated protein design. (evonetix.com)
  • Whereas AI tools have become relatively fast at developing new protein variants, testing these variants presents a key bottleneck that needs to be addressed to fully reap the benefits that come from advancements in AI-assisted protein design. (evonetix.com)
  • Synthetic biology involves applying the principles of engineering and chemical design to biological systems and includes two closely-related capabilities both of which may have wide utility in commerce and medicine. (cdc.gov)
  • Protein Engineering Design and Selection 2007 Mar;20(3):133-41. (lu.se)
  • Glycosylation is important in the development of protein medicines, which include everything from anti-cancer drugs like Herceptin to flu and tetanus vaccines. (northwestern.edu)
  • In addition to the use of chemical labeling methods to study structure and function of proteins in vitro and in vivo, chemoselective conjugation techniques are also used to functionalize artificial protein scaffolds, such as viral capsids [5-7] . (beilstein-journals.org)
  • Here we engineered the catalytic core complex and the RNA binding domain, and evaluated the capability of using these materials for inhibitor development. (duke.edu)
  • Unique spatial arrangement of polypeptide chains yields 3D molecular structures, which define protein function and interactions with other biomolecules. (kdnuggets.com)
  • Screening for both activities reveals InDel mutations localized in three distinct regions that lead to altered protein dynamics (based on crystallographic B-factors, hydrogen exchange, and molecular dynamics simulations). (muni.cz)
  • Professors Tsuchida and Komatsu from Waseda University, Japan, in collaboration with Imperial College London, synthesised a large molecular complex from albumin, a protein molecule that is found at high levels in blood serum, and porphyrin, a molecule which is used to carry oxygen around the body and gives blood its deep red colour. (greenenergyinvestors.com)
  • Respiratory sensitizers, such as natural proteins or low-molecular-weight reactive chemicals acting as haptens, may induce occupational asthma through immunoglob- ulin E (IgE)-dependent mechanisms. (cdc.gov)
  • Of the approximately 400 known causes of occupational asthma, most are high-molecular- weight protein sensitizers, whereas fewer than 30 are low-molecular-weight agents or reactive chemicals. (cdc.gov)
  • Therefore, this engineered protein adsorption approach allows for the facile preparation of tunable, quantifiable, and reproducible surfaces for in vitro studies of cell-ligand interactions and for potential application as coatings on neural implants. (frontiersin.org)
  • A particular focus is development of new proteomics techniques to investigate protein interactions between host and pathogen and to investigate systemic proteome changes during sepsis. (lu.se)
  • One of the remarkable things about this work is the binding affinity of the decoy protein,' said Lemke, a noted authority on Axl and Gas6 who was not part of the Stanford experiments. (futurism.com)
  • However, IL18 induces a negative feedback loop with IL18 binding protein (IL18BP), a picomolar-affinity natural inhibitor. (bmj.com)
  • They offer advantages over antibodies because of their highly specific target PROTEIN BINDING with high affinity and specificity. (bvsalud.org)
  • In just a few months, Kightlinger used the system to construct 37 pathways, creating 23 unique sugar structures, 18 of which have never been synthesized on proteins. (northwestern.edu)
  • with the albumin molecule itself being modified by genetic engineering to enhance the efficiency of the process. (greenenergyinvestors.com)
  • Genetic engineering of hsp70 copy number is sufficient to affect thermotolerance at some (but not all) life stages. (csuohio.edu)
  • They can be obtained by extraction from natural sources or by genetic engineering technologies. (sciopen.com)
  • Thoughtfully execute deep learning experiments to improve performance of models or develop new functionality (e.g. loop engineering, structure prediction of protein-protein complexes). (greenhouse.io)
  • The Chain explores the lives, careers, research, and discoveries of protein engineers and scientists, the impact their work is having on the field, and where the industry is headed. (apple.com)
  • Scientists from the biotechnology company Amgen Inc. report they have identified and improved upon a naturally occurring protein that brought about significant changes in obese mice and monkeys, including weight loss and rapid improvements on measures of metabolic and heart health. (latimes.com)
  • By engineering proteins with improved properties, scientists can develop more effective drugs with fewer side effects, as well as optimizing for stability and pharmacokinetics. (evonetix.com)
  • The current standard for expressing panels of proteins involves extensive bioinformatics, cloning, in vivo expression, and assays. (sbir.gov)
  • In particular, we developed 2 IA assays, in which the engineered antigens were used either as capture (F1 format) or detector (F2 format), resulting in slight difference in sensitivity and specificity. (cdc.gov)
  • Physical adsorption isotherms were experimentally determined for these engineered proteins, allowing for direct calculation of the available ligand density present on coated surfaces. (frontiersin.org)
  • These mammalian cells naturally produce glycosylated proteins, but are slow-growing and can be difficult to engineer, limiting the number and diversity of glycosylation structures that can be built and tested. (northwestern.edu)
  • Observe the expression of protein candidates in thousands of single mammalian cells on your microscope to select the very best performing protein in only a few days. (cellsorter-scientific.com)
  • Although less established than medical and agricultural applications for protein engineering, biosynthesis of materials including fuels, plastics and chemicals represents an area of significant growth that is driven by demand for new approaches to materials synthesis that prevent pollution, conserve resources and reduce CO2 emissions. (evonetix.com)
  • These operations are made possible by recent advances in DNA synthesis and DNA sequencing, providing standardized DNA "parts," modular protein assemblies, and engineering models. (cdc.gov)
  • The growth of the market is due to the increasing utilization of bioinformatics software and platforms for the analysis of proteins. (emergenresearch.com)
  • In the future, more detailed knowledge of protein structure and function, and advances in high-throughput screening, may greatly expand the abilities of protein engineering. (wikipedia.org)
  • I repurposed an antibiotic-sensing repressor protein to bind a neurotransmitter, melatonin, using machine-learning-guided directed evolution. (caltech.edu)
  • In a CT26 syngeneic mouse model, treatment with engineered mIL18-Fc fusions led to impressive tumor growth inhibition in a dose- and potency-dependent manner, significantly outperforming wild-type mIL18-Fc. (bmj.com)
  • While the enzyme's 2.6% quantum efficiency is not as high as natural photosystem proteins, it beats most synthetic photocatalytic systems. (chemistryworld.com)
  • The authors achieved this synthetic cellular export system by fusing an aggregate-binding protein to a daughter-cell-targeting factor such that when the daughter cell is pinched off, the mother cell is free of protein aggregates. (akademiliv.se)
  • The global protein engineering market size accounted for USD 2,691 Million in 2022. (globenewswire.com)
  • To date, most tools have been used to optimize existing protein structures to achieve desired properties such as improved stability or specificity, for example by accelerating directed evolution by learning from the properties of characterized sequences. (evonetix.com)
  • The development of CRISPR systems to facilitate the editing of genomes has created great excitement and inspired new ideas in engineering biology. (aiche.org)
  • The chemical modification of proteins has been developed to a core discipline in chemical biology with diverse applications in all areas of the life sciences, including pharmacology, biophysics, biotechnology and cell biology [1-4] . (beilstein-journals.org)
  • While technological advancement in areas such as AI and our growing understanding of biological systems have greatly increased our ability to engineer proteins, scaling up of these techniques is required for engineering biology to truly reach its potential. (evonetix.com)
  • However, the clinical applicability of H6- tagged proteins is restricted by the potential immunogenicity of these segments. (upc.edu)
  • This review will shed light on the engineering strategies applied to develop these next generation treatments and provides deeper insights into their preclinical profiles, clinical stages, and ongoing trials. (tu-darmstadt.de)
  • Nevertheless, fundamental aspects of BMP application such as the control of protein release throughout the process of bone repair are yet to be fully understood, with clinical guidelines for usage of the protein remaining uncertain. (bvsalud.org)
  • It is accepted that complete understanding of protein functions and activity requires knowledge of structures and dynamics. (kdnuggets.com)
  • Sugar structures allow these proteins to remain stable while enabling them to perform tasks, like attack a cancer cell or retrain the immune system. (northwestern.edu)
  • Proteins function by folding into 3-D shapes that interact with different biomolecular structures. (duke.edu)
  • Unlike well-folded proteins, conventional IDPs have a hard time shielding different parts of their structures from each other," Quiroz said. (duke.edu)
  • The biggest value of Machine Learning methods in prediction of biophysical properties of proteins is their ability to " equate " loosely related protein features to measurable experimental data. (kdnuggets.com)
  • Protein misfolding and aggregation are common pathological features of several human diseases, including Alzheimer's disease and type 2 diabetes. (nature.com)
  • Many neurodegenerative diseases like Alzheimer's, Parkinson's or Huntington's disease are associated with the aggregation of misfolded proteins but whether or not these aggregates contribute to these diseases is not clear. (akademiliv.se)
  • A melatonin indicator was then created by integrating the repurposed receptor with a fluorescent protein. (caltech.edu)
  • First, Wang's team added an artificial light-capturing unit - a benzophenone-alanine dye - into a natural fluorescent protein. (chemistryworld.com)
  • Moreover, I have intentionally left out a fundamentally important fact - mutations may significantly affect protein dynamics, and thus its function). (kdnuggets.com)
  • This group of genes code for proteins found on the surfaces of cells that help the immune system recognize foreign substances. (medscape.com)
  • Modification of existing genes in living animal and human cells is enabled by engineered nucleases such as meganucleases, zinc finger nucleases, transcription activator-like effector-based nucleases, and the CRISPR-Cas system. (cdc.gov)
  • A protein inhibitor called alpha 2-antiplasmin in blood stops the clot-busting effects of plasmin. (harvard.edu)
  • The methods developed as part of this platform also will allow greater access to biological engineering for K-12 and undergraduate students, requiring little capital or prior biological experience. (sbir.gov)
  • The broader impact/commercial potential of this Small Business Technology Transfer (STTR) project will be the development of a platform technology for high-throughput protein expression. (sbir.gov)
  • Further, we identified a single pore-lining residue mutation that confers the same phenotype as substitution of the full EutM protein, indicating that small molecule diffusion through the shell is the cause of growth enhancement. (northwestern.edu)
  • This study highlights the use of two strategies to engineer microcompartments to control metabolite transport: altering the existing shell protein pore via mutation of the pore-lining residues, and generating chimeras using shell proteins with the desired pores. (northwestern.edu)
  • Lectures and computer-based exercises covering biotechnological methods and the structure and function of proteins. (uu.se)
  • The lectures will cover the current status of cell-based protein production systems and the theoretical aspects of the methodology. (lu.se)
  • Irimpan Mathews, a protein crystallography expert at the SLAC National Accelerator Laboratory, joined the research effort to help the team better understand the binding mechanism between the Axl decoy and Gas6. (futurism.com)
  • The market is growing positively due to the rising utilization of protein drugs over non-protein ones. (globenewswire.com)
  • We found that the ethanolamine utilization (Eut) protein EutM properly incorporates into the 1,2-propanediol utilization (Pdu) microcompartment, altering native metabolite accumulation and the resulting growth on 1,2-propanediol as the sole carbon source. (northwestern.edu)
  • This alignment can show which amino acids are conserved between species and are important for the function of the protein. (wikipedia.org)
  • Protein structure, function and dynamics predictions through Machine Learning methodology are not an exception. (kdnuggets.com)
  • We're on a mission to map the entire global proteome to derive the most in-depth understanding of how proteins function. (basecamp-research.com)