Promoter Regions, Genetic: DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Polyhydramnios: A condition of abnormally high AMNIOTIC FLUID volume, such as greater than 2,000 ml in the LAST TRIMESTER and usually diagnosed by ultrasonographic criteria (AMNIOTIC FLUID INDEX). It is associated with maternal DIABETES MELLITUS; MULTIPLE PREGNANCY; CHROMOSOMAL DISORDERS; and congenital abnormalities.Transcription, Genetic: The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.DNA-Binding Proteins: Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.Gene Expression Regulation: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.Binding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.DNA Methylation: Addition of methyl groups to DNA. DNA methyltransferases (DNA methylases) perform this reaction using S-ADENOSYLMETHIONINE as the methyl group donor.Genes, Reporter: Genes whose expression is easily detectable and therefore used to study promoter activity at many positions in a target genome. In recombinant DNA technology, these genes may be attached to a promoter region of interest.Transcription Factors: Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.Sp1 Transcription Factor: Promoter-specific RNA polymerase II transcription factor that binds to the GC box, one of the upstream promoter elements, in mammalian cells. The binding of Sp1 is necessary for the initiation of transcription in the promoters of a variety of cellular and viral GENES.Gene Expression Regulation, Bacterial: Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.Jejunal Neoplasms: Tumors or cancer in the JEJUNUM region of the small intestine (INTESTINE, SMALL).Cloning, Molecular: The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.Transcriptional Activation: Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes.Transcription Initiation Site: The first nucleotide of a transcribed DNA sequence where RNA polymerase (DNA-DIRECTED RNA POLYMERASE) begins synthesizing the RNA transcript.Plasmids: Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.Regulatory Sequences, Nucleic Acid: Nucleic acid sequences involved in regulating the expression of genes.Transfection: The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.Electrophoretic Mobility Shift Assay: An electrophoretic technique for assaying the binding of one compound to another. Typically one compound is labeled to follow its mobility during electrophoresis. If the labeled compound is bound by the other compound, then the mobility of the labeled compound through the electrophoretic medium will be retarded.DNA: A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).Operon: In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION.Cell Line: Established cell cultures that have the potential to propagate indefinitely.DNA Footprinting: A method for determining the sequence specificity of DNA-binding proteins. DNA footprinting utilizes a DNA damaging agent (either a chemical reagent or a nuclease) which cleaves DNA at every base pair. DNA cleavage is inhibited where the ligand binds to DNA. (from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)Response Elements: Nucleotide sequences, usually upstream, which are recognized by specific regulatory transcription factors, thereby causing gene response to various regulatory agents. These elements may be found in both promoter and enhancer regions.Protein Binding: The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.Luciferases: Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates.Chloramphenicol O-Acetyltransferase: An enzyme that catalyzes the acetylation of chloramphenicol to yield chloramphenicol 3-acetate. Since chloramphenicol 3-acetate does not bind to bacterial ribosomes and is not an inhibitor of peptidyltransferase, the enzyme is responsible for the naturally occurring chloramphenicol resistance in bacteria. The enzyme, for which variants are known, is found in both gram-negative and gram-positive bacteria. EC 2.3.1.28.Bacterial Proteins: Proteins found in any species of bacterium.Repressor Proteins: Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Literature Based Discovery: A process that searches for hidden and important connections among information embedded in published literature.CpG Islands: Areas of increased density of the dinucleotide sequence cytosine--phosphate diester--guanine. They form stretches of DNA several hundred to several thousand base pairs long. In humans there are about 45,000 CpG islands, mostly found at the 5' ends of genes. They are unmethylated except for those on the inactive X chromosome and some associated with imprinted genes.Nuclear Proteins: Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.Sequence Homology, Nucleic Acid: The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Restriction Mapping: Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA.5' Flanking Region: The region of DNA which borders the 5' end of a transcription unit and where a variety of regulatory sequences are located.Trans-Activators: Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.Chromatin Immunoprecipitation: A technique for identifying specific DNA sequences that are bound, in vivo, to proteins of interest. It involves formaldehyde fixation of CHROMATIN to crosslink the DNA-BINDING PROTEINS to the DNA. After shearing the DNA into small fragments, specific DNA-protein complexes are isolated by immunoprecipitation with protein-specific ANTIBODIES. Then, the DNA isolated from the complex can be identified by PCR amplification and sequencing.Deoxyribonuclease I: An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA.DNA Primers: Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.Enhancer Elements, Genetic: Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter.Genes, Bacterial: The functional hereditary units of BACTERIA.Gene Expression Regulation, Enzymologic: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.Exons: The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA.Sequence Analysis, DNA: A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.Sequence Deletion: Deletion of sequences of nucleic acids from the genetic material of an individual.Consensus Sequence: A theoretical representative nucleotide or amino acid sequence in which each nucleotide or amino acid is the one which occurs most frequently at that site in the different sequences which occur in nature. The phrase also refers to an actual sequence which approximates the theoretical consensus. A known CONSERVED SEQUENCE set is represented by a consensus sequence. Commonly observed supersecondary protein structures (AMINO ACID MOTIFS) are often formed by conserved sequences.HeLa Cells: The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.Polymerase Chain Reaction: In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.Gene Expression: The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.Genes: A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms.Introns: Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes.Tumor Cells, Cultured: Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.Recombinant Fusion Proteins: Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.Genes, Regulator: Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions.DNA, Bacterial: Deoxyribonucleic acid that makes up the genetic material of bacteria.Pharmacological Phenomena: Interactions that occur between a living organism and chemicals that affect normal or abnormal biochemical function.Polymorphism, Genetic: The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level.Albinism: General term for a number of inherited defects of amino acid metabolism in which there is a deficiency or absence of pigment in the eyes, skin, or hair.Cell Line, Tumor: A cell line derived from cultured tumor cells.Gene Silencing: Interruption or suppression of the expression of a gene at transcriptional or translational levels.Cells, Cultured: Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.beta-Galactosidase: A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1.Comprehension: The act or fact of grasping the meaning, nature, or importance of; understanding. (American Heritage Dictionary, 4th ed) Includes understanding by a patient or research subject of information disclosed orally or in writing.Chromatin: The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell.Genotype: The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.Epigenesis, Genetic: A genetic process by which the adult organism is realized via mechanisms that lead to the restriction in the possible fates of cells, eventually leading to their differentiated state. Mechanisms involved cause heritable changes to cells without changes to DNA sequence such as DNA METHYLATION; HISTONE modification; DNA REPLICATION TIMING; NUCLEOSOME positioning; and heterochromatization which result in selective gene expression or repression.DNA Mutational Analysis: Biochemical identification of mutational changes in a nucleotide sequence.Gene Expression Regulation, Neoplastic: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue.Alleles: Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.Gene Expression Regulation, Viral: Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses.Lac Operon: The genetic unit consisting of three structural genes, an operator and a regulatory gene. The regulatory gene controls the synthesis of the three structural genes: BETA-GALACTOSIDASE and beta-galactoside permease (involved with the metabolism of lactose), and beta-thiogalactoside acetyltransferase.Azacitidine: A pyrimidine analogue that inhibits DNA methyltransferase, impairing DNA methylation. It is also an antimetabolite of cytidine, incorporated primarily into RNA. Azacytidine has been used as an antineoplastic agent.Mutagenesis, Site-Directed: Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.Sp3 Transcription Factor: A specificity protein transcription factor that regulates expression of a variety of genes including VASCULAR ENDOTHELIAL GROWTH FACTOR and CYCLIN-DEPENDENT KINASE INHIBITOR P27.Artificial Gene Fusion: The in vitro fusion of GENES by RECOMBINANT DNA techniques to analyze protein behavior or GENE EXPRESSION REGULATION, or to merge protein functions for specific medical or industrial uses.Models, Genetic: Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.Polymorphism, Single Nucleotide: A single nucleotide variation in a genetic sequence that occurs at appreciable frequency in the population.Genetic Vectors: DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition.5' Untranslated Regions: The sequence at the 5' end of the messenger RNA that does not code for product. This sequence contains the ribosome binding site and other transcription and translation regulating sequences.Single-Strand Specific DNA and RNA Endonucleases: Enzymes that catalyze the endonucleolytic cleavage of single-stranded regions of DNA or RNA molecules while leaving the double-stranded regions intact. They are particularly useful in the laboratory for producing "blunt-ended" DNA molecules from DNA with single-stranded ends and for sensitive GENETIC TECHNIQUES such as NUCLEASE PROTECTION ASSAYS that involve the detection of single-stranded DNA and RNA.Sequence Alignment: The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.Chromosome Mapping: Any method used for determining the location of and relative distances between genes on a chromosome.Gene Deletion: A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.Conserved Sequence: A sequence of amino acids in a polypeptide or of nucleotides in DNA or RNA that is similar across multiple species. A known set of conserved sequences is represented by a CONSENSUS SEQUENCE. AMINO ACID MOTIFS are often composed of conserved sequences.Cell Nucleus: Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)Sigma Factor: A protein which is a subunit of RNA polymerase. It effects initiation of specific RNA chains from DNA.Groin: The external junctural region between the lower part of the abdomen and the thigh.Acetylation: Formation of an acetyl derivative. (Stedman, 25th ed)Down-Regulation: A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.Oligodeoxyribonucleotides: A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties.Repetitive Sequences, Nucleic Acid: Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES).Methylation: Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed)Blotting, Northern: Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.CCAAT-Enhancer-Binding Proteins: A class of proteins that were originally identified by their ability to bind the DNA sequence CCAAT. The typical CCAAT-enhancer binding protein forms dimers and consists of an activation domain, a DNA-binding basic region, and a leucine-rich dimerization domain (LEUCINE ZIPPERS). CCAAT-BINDING FACTOR is structurally distinct type of CCAAT-enhancer binding protein consisting of a trimer of three different subunits.Homeodomain Proteins: Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL).Genomic Library: A form of GENE LIBRARY containing the complete DNA sequences present in the genome of a given organism. It contrasts with a cDNA library which contains only sequences utilized in protein coding (lacking introns).DNA, Complementary: Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.Transgenes: Genes that are introduced into an organism using GENE TRANSFER TECHNIQUES.Duane Retraction Syndrome: A syndrome characterized by marked limitation of abduction of the eye, variable limitation of adduction and retraction of the globe, and narrowing of the palpebral fissure on attempted adduction. The condition is caused by aberrant innervation of the lateral rectus by fibers of the OCULOMOTOR NERVE.Carrier Proteins: Transport proteins that carry specific substances in the blood or across cell membranes.Gene Expression Regulation, Plant: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants.Signal Transduction: The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.Up-Regulation: A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.Gene Expression Regulation, Developmental: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.Gene Frequency: The proportion of one particular in the total of all ALLELES for one genetic locus in a breeding POPULATION.Genetic Predisposition to Disease: A latent susceptibility to disease at the genetic level, which may be activated under certain conditions.RNA Polymerase II: A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6.Gene Expression Regulation, Fungal: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi.Nucleotide Mapping: Two-dimensional separation and analysis of nucleotides.Umbelliferones: 7-Hydroxycoumarins. Substances present in many plants, especially umbelliferae. Umbelliferones are used in sunscreen preparations and may be mutagenic. Their derivatives are used in liver therapy, as reagents, plant growth factors, sunscreens, insecticides, parasiticides, choleretics, spasmolytics, etc.Plants, Genetically Modified: PLANTS, or their progeny, whose GENOME has been altered by GENETIC ENGINEERING.Haplotypes: The genetic constitution of individuals with respect to one member of a pair of allelic genes, or sets of genes that are closely linked and tend to be inherited together such as those of the MAJOR HISTOCOMPATIBILITY COMPLEX.Transcription Factor AP-1: A multiprotein complex composed of the products of c-jun and c-fos proto-oncogenes. These proteins must dimerize in order to bind to the AP-1 recognition site, also known as the TPA-responsive element (TRE). AP-1 controls both basal and inducible transcription of several genes.Egg White: The white of an egg, especially a chicken's egg, used in cooking. It contains albumin. (Random House Unabridged Dictionary, 2d ed)Blotting, Western: Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.Cyclic AMP Response Element-Binding Protein: A protein that has been shown to function as a calcium-regulated transcription factor as well as a substrate for depolarization-activated CALCIUM-CALMODULIN-DEPENDENT PROTEIN KINASES. This protein functions to integrate both calcium and cAMP signals.Blotting, Southern: A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.CCAAT-Binding Factor: A heterotrimeric DNA-binding protein that binds to CCAAT motifs in the promoters of eukaryotic genes. It is composed of three subunits: A, B and C.Oligonucleotide Probes: Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin.Escherichia coli Proteins: Proteins obtained from ESCHERICHIA COLI.Gene Expression Profiling: The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.Nucleic Acid Conformation: The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape.Sequence Homology, Amino Acid: The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.GlucuronidaseDNA Restriction Enzymes: Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1.Regulon: In eukaryotes, a genetic unit consisting of a noncontiguous group of genes under the control of a single regulator gene. In bacteria, regulons are global regulatory systems involved in the interplay of pleiotropic regulatory domains and consist of several OPERONS.Phenotype: The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.Cell Differentiation: Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.DNA, Recombinant: Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected.3T3 Cells: Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION.Green Fluorescent Proteins: Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH.NF-kappa B: Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA.Nucleosomes: The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4.YY1 Transcription Factor: A ubiquitously expressed zinc finger-containing protein that acts both as a repressor and activator of transcription. It interacts with key regulatory proteins such as TATA-BINDING PROTEIN; TFIIB; and ADENOVIRUS E1A PROTEINS.Mutagenesis, Insertional: Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation.Oligonucleotides: Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed)Saccharomyces cerevisiae: A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.Mutagenesis: Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS.Regulatory Elements, Transcriptional: Nucleotide sequences of a gene that are involved in the regulation of GENETIC TRANSCRIPTION.Northwestern United States: The geographic area of the northwestern region of the United States. The states usually included in this region are Idaho, Montana, Oregon, Washington, and Wyoming.Bacillus subtilis: A species of gram-positive bacteria that is a common soil and water saprophyte.Immediate-Early Proteins: Proteins that are coded by immediate-early genes, in the absence of de novo protein synthesis. The term was originally used exclusively for viral regulatory proteins that were synthesized just after viral integration into the host cell. It is also used to describe cellular proteins which are synthesized immediately after the resting cell is stimulated by extracellular signals.Proto-Oncogene Proteins: Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity.Proto-Oncogene Proteins c-jun: Cellular DNA-binding proteins encoded by the c-jun genes (GENES, JUN). They are involved in growth-related transcriptional control. There appear to be three distinct functions: dimerization (with c-fos), DNA-binding, and transcriptional activation. Oncogenic transformation can take place by constitutive expression of c-jun.Chromosome Deletion: Actual loss of portion of a chromosome.Transcription Factor AP-2: A family of DNA binding proteins that regulate expression of a variety of GENES during CELL DIFFERENTIATION and APOPTOSIS. Family members contain a highly conserved carboxy-terminal basic HELIX-TURN-HELIX MOTIF involved in dimerization and sequence-specific DNA binding.Sulfites: Inorganic salts of sulfurous acid.Zinc Fingers: Motifs in DNA- and RNA-binding proteins whose amino acids are folded into a single structural unit around a zinc atom. In the classic zinc finger, one zinc atom is bound to two cysteines and two histidines. In between the cysteines and histidines are 12 residues which form a DNA binding fingertip. By variations in the composition of the sequences in the fingertip and the number and spacing of tandem repeats of the motif, zinc fingers can form a large number of different sequence specific binding sites.Histone Deacetylases: Deacetylases that remove N-acetyl groups from amino side chains of the amino acids of HISTONES. The enzyme family can be divided into at least three structurally-defined subclasses. Class I and class II deacetylases utilize a zinc-dependent mechanism. The sirtuin histone deacetylases belong to class III and are NAD-dependent enzymes.DNA Modification Methylases: Enzymes that are part of the restriction-modification systems. They are responsible for producing a species-characteristic methylation pattern, on either adenine or cytosine residues, in a specific short base sequence in the host cell's own DNA. This methylated sequence will occur many times in the host-cell DNA and remain intact for the lifetime of the cell. Any DNA from another species which gains entry into a living cell and lacks the characteristic methylation pattern will be recognized by the restriction endonucleases of similar specificity and destroyed by cleavage. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms.Open Reading Frames: A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR).Methacholine Compounds: A group of compounds that are derivatives of beta-methylacetylcholine (methacholine).RNA: A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)Hydroxamic Acids: A class of weak acids with the general formula R-CONHOH.Operator Regions, Genetic: The regulatory elements of an OPERON to which activators or repressors bind thereby effecting the transcription of GENES in the operon.DNA Transposable Elements: Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom.Genes, Viral: The functional hereditary units of VIRUSES.Oligonucleotide Array Sequence Analysis: Hybridization of a nucleic acid sample to a very large set of OLIGONUCLEOTIDE PROBES, which have been attached individually in columns and rows to a solid support, to determine a BASE SEQUENCE, or to detect variations in a gene sequence, GENE EXPRESSION, or for GENE MAPPING.Plant Proteins: Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which VEGETABLE PROTEINS is available.Liver: A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.Cysticercus: The larval form of various tapeworms of the genus Taenia.DNA, Viral: Deoxyribonucleic acid that makes up the genetic material of viruses.Membrane Proteins: Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.Genes, Plant: The functional hereditary units of PLANTS.Tumor Suppressor Proteins: Proteins that are normally involved in holding cellular growth in check. Deficiencies or abnormalities in these proteins may lead to unregulated cell growth and tumor development.RNA, Small Interfering: Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.Neoplasm Proteins: Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm.Viral Proteins: Proteins found in any species of virus.Transformation, Genetic: Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome.Kruppel-Like Transcription Factors: A family of zinc finger transcription factors that share homology with Kruppel protein, Drosophila. They contain a highly conserved seven amino acid spacer sequence in between their ZINC FINGER MOTIFS.Acetyltransferases: Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1.Genetic Variation: Genotypic differences observed among individuals in a population.Potassium Permanganate: Permanganic acid (HMnO4), potassium salt. A highly oxidative, water-soluble compound with purple crystals, and a sweet taste. (From McGraw-Hill Dictionary of Scientific and Technical Information, 4th ed)Proto-Oncogene Proteins c-ets: A family of transcription factors that share a unique DNA-binding domain. The name derives from viral oncogene-derived protein oncogene protein v-ets of the AVIAN ERYTHROBLASTOSIS VIRUS.Octamer Transcription Factor-1: A ubiquitously expressed octamer transcription factor that regulates GENETIC TRANSCRIPTION of SMALL NUCLEAR RNA; IMMUNOGLOBULIN GENES; and HISTONE H2B genes.Hepatocyte Nuclear Factor 4: A subfamily of nuclear receptors that regulate GENETIC TRANSCRIPTION of a diverse group of GENES involved in the synthesis of BLOOD COAGULATION FACTORS; and in GLUCOSE; CHOLESTEROL; and FATTY ACIDS metabolism.Genetic Complementation Test: A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell.Genes, Fungal: The functional hereditary units of FUNGI.Saccharomyces cerevisiae Proteins: Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.Mice, Inbred C57BLDinucleoside Phosphates: A group of compounds which consist of a nucleotide molecule to which an additional nucleoside is attached through the phosphate molecule(s). The nucleotide can contain any number of phosphates.Species Specificity: The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.Proto-Oncogene Protein c-ets-1: An ets proto-oncogene expressed primarily in adult LYMPHOID TISSUE; BRAIN; and VASCULAR ENDOTHELIAL CELLS.Arabidopsis: A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development.Globins: A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure.Y-Box-Binding Protein 1: Y-box-binding protein 1 was originally identified as a DNA-binding protein that interacts with Y-box PROMOTER REGIONS of MHC CLASS II GENES. It is a highly conserved transcription factor that regulates expression of a wide variety of GENES.Tetradecanoylphorbol Acetate: A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA.Basic Helix-Loop-Helix Leucine Zipper Transcription Factors: A family of transcription factors that contain regions rich in basic residues, LEUCINE ZIPPER domains, and HELIX-LOOP-HELIX MOTIFS.TATA-Box Binding Protein: A general transcription factor that plays a major role in the activation of eukaryotic genes transcribed by RNA POLYMERASES. It binds specifically to the TATA BOX promoter element, which lies close to the position of transcription initiation in RNA transcribed by RNA POLYMERASE II. Although considered a principal component of TRANSCRIPTION FACTOR TFIID it also takes part in general transcription factor complexes involved in RNA POLYMERASE I and RNA POLYMERASE III transcription.Hepatocyte Nuclear Factor 1: A transcription factor that regulates the expression of a large set of hepatic proteins including SERUM ALBUMIN; beta-fibrinogen; and ALPHA 1-ANTITRYPSIN. It is composed of hetero- or homo-dimers of HEPATOCYTE NUCLEAR FACTOR 1-ALPHA and HEPATOCYTE NUCLEAR FACTOR 1-BETA.DNA (Cytosine-5-)-Methyltransferase: An enzyme that catalyzes the transfer of a methyl group from S-ADENOSYLMETHIONINE to the 5-position of CYTOSINE residues in DNA.Nucleotide Motifs: Commonly observed BASE SEQUENCE or nucleotide structural components which can be represented by a CONSENSUS SEQUENCE or a SEQUENCE LOGO.Case-Control Studies: Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.Cyclic AMP Receptor Protein: A transcriptional regulator in prokaryotes which, when activated by binding cyclic AMP, acts at several promoters. Cyclic AMP receptor protein was originally identified as a catabolite gene activator protein. It was subsequently shown to regulate several functions unrelated to catabolism, and to be both a negative and a positive regulator of transcription. Cell surface cyclic AMP receptors are not included (CYCLIC AMP RECEPTORS), nor are the eukaryotic cytoplasmic cyclic AMP receptor proteins, which are the regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASES.Serotonin Plasma Membrane Transport Proteins: Sodium chloride-dependent neurotransmitter symporters located primarily on the PLASMA MEMBRANE of serotonergic neurons. They are different than SEROTONIN RECEPTORS, which signal cellular responses to SEROTONIN. They remove SEROTONIN from the EXTRACELLULAR SPACE by high affinity reuptake into PRESYNAPTIC TERMINALS. Regulates signal amplitude and duration at serotonergic synapses and is the site of action of the SEROTONIN UPTAKE INHIBITORS.DNA, Neoplasm: DNA present in neoplastic tissue.Proteins: Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.

Transcriptional repression by the Drosophila giant protein: cis element positioning provides an alternative means of interpreting an effector gradient. (1/58449)

Early developmental patterning of the Drosophila embryo is driven by the activities of a diverse set of maternally and zygotically derived transcription factors, including repressors encoded by gap genes such as Kruppel, knirps, giant and the mesoderm-specific snail. The mechanism of repression by gap transcription factors is not well understood at a molecular level. Initial characterization of these transcription factors suggests that they act as short-range repressors, interfering with the activity of enhancer or promoter elements 50 to 100 bp away. To better understand the molecular mechanism of short-range repression, we have investigated the properties of the Giant gap protein. We tested the ability of endogenous Giant to repress when bound close to the transcriptional initiation site and found that Giant effectively represses a heterologous promoter when binding sites are located at -55 bp with respect to the start of transcription. Consistent with its role as a short-range repressor, as the binding sites are moved to more distal locations, repression is diminished. Rather than exhibiting a sharp 'step-function' drop-off in activity, however, repression is progressively restricted to areas of highest Giant concentration. Less than a two-fold difference in Giant protein concentration is sufficient to determine a change in transcriptional status of a target gene. This effect demonstrates that Giant protein gradients can be differentially interpreted by target promoters, depending on the exact location of the Giant binding sites within the gene. Thus, in addition to binding site affinity and number, cis element positioning within a promoter can affect the response of a gene to a repressor gradient. We also demonstrate that a chimeric Gal4-Giant protein lacking the basic/zipper domain can specifically repress reporter genes, suggesting that the Giant effector domain is an autonomous repression domain.  (+info)

Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts. (2/58449)

BACKGROUND: Coiled bodies are nuclear organelles that are highly enriched in small nuclear ribonucleoproteins (snRNPs) and certain basal transcription factors. Surprisingly, coiled bodies not only contain mature U snRNPs but also associate with specific chromosomal loci, including gene clusters that encode U snRNAs and histone messenger RNAs. The mechanism(s) by which coiled bodies associate with these genes is completely unknown. RESULTS: Using stable cell lines, we show that artificial tandem arrays of human U1 and U2 snRNA genes colocalize with coiled bodies and that the frequency of the colocalization depends directly on the transcriptional activity of the array. Association of the genes with coiled bodies was abolished when the artificial U2 arrays contained promoter mutations that prevent transcription or when RNA polymerase II transcription was globally inhibited by alpha-amanitin. Remarkably, the association was also abolished when the U2 snRNA coding regions were replaced by heterologous sequences. CONCLUSIONS: The requirement for the U2 snRNA coding region indicates that association of snRNA genes with coiled bodies is mediated by the nascent U2 RNA itself, not by DNA or DNA-bound proteins. Our data provide the first evidence that association of genes with a nuclear organelle can be directed by an RNA and suggest an autogenous feedback regulation model.  (+info)

Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. (3/58449)

The telomerase reverse transcriptase component (TERT) is not expressed in most primary somatic human cells and tissues, but is upregulated in the majority of immortalized cell lines and tumors. Here, we identify the c-Myc transcription factor as a direct mediator of telomerase activation in primary human fibroblasts through its ability to specifically induce TERT gene expression. Through the use of a hormone inducible form of c-Myc (c-Myc-ER), we demonstrate that Myc-induced activation of the hTERT promoter requires an evolutionarily conserved E-box and that c-Myc-ER-induced accumulation of hTERT mRNA takes place in the absence of de novo protein synthesis. These findings demonstrate that the TERT gene is a direct transcriptional target of c-Myc. Since telomerase activation frequently correlates with immortalization and telomerase functions to stabilize telomers in cycling cells, we tested whether Myc-induced activation of TERT gene expression represents an important mechanism through which c-Myc acts to immortalize cells. Employing the rat embryo fibroblast cooperation assay, we show that TERT is unable to substitute for c-Myc in the transformation of primary rodent fibroblasts, suggesting that the transforming activities of Myc extend beyond its ability to activate TERT gene expression and hence telomerase activity.  (+info)

Detailed methylation analysis of the glutathione S-transferase pi (GSTP1) gene in prostate cancer. (4/58449)

Glutathione-S-Transferases (GSTs) comprise a family of isoenzymes that provide protection to mammalian cells against electrophilic metabolites of carcinogens and reactive oxygen species. Previous studies have shown that the CpG-rich promoter region of the pi-class gene GSTP1 is methylated at single restriction sites in the majority of prostate cancers. In order to understand the nature of abnormal methylation of the GSTP1 gene in prostate cancer we undertook a detailed analysis of methylation at 131 CpG sites spanning the promoter and body of the gene. Our results show that DNA methylation is not confined to specific CpG sites in the promoter region of the GSTP1 gene but is extensive throughout the CpG island in prostate cancer cells. Furthermore we found that both alleles are abnormally methylated in this region. In normal prostate tissue, the entire CpG island was unmethylated, but extensive methylation was found outside the island in the body of the gene. Loss of GSTP1 expression correlated with DNA methylation of the CpG island in both prostate cancer cell lines and cancer tissues whereas methylation outside the CpG island in normal prostate tissue appeared to have no effect on gene expression.  (+info)

B-MYB transactivates its own promoter through SP1-binding sites. (5/58449)

B-MYB is an ubiquitous protein required for mammalian cell growth. In this report we show that B-MYB transactivates its own promoter through a 120 bp segment proximal to the transcription start site. The B-MYB-responsive element does not contain myb-binding sites and gel-shift analysis shows that SP1, but not B-MYB, protein contained in SAOS2 cell extracts binds to the 120 bp B-myb promoter fragment. B-MYB-dependent transactivation is cooperatively increased in the presence of SP1, but not SP3 overexpression. When the SP1 elements of the B-myb promoter are transferred in front of a heterologous promoter, an increased response to B-MYB results. In contrast, c-MYB, the prototype member of the Myb family, is not able to activate the luciferase construct containing the SP1 elements. With the use of an SP1-GAL4 fusion protein, we have determined that the cooperative activation occurs through the domain A of SP1. These observations suggest that B-MYB functions as a coactivator of SP1, and that diverse combinations of myb and SP1 sites may dictate the responsiveness of myb-target genes to the various members of the myb family.  (+info)

Differential stability of the DNA-activated protein kinase catalytic subunit mRNA in human glioma cells. (6/58449)

DNA-dependent protein kinase (DNA-PK) functions in double-strand break repair and immunoglobulin [V(D)J] recombination. We previously established a radiation-sensitive human cell line, M059J, derived from a malignant glioma, which lacks the catalytic subunit (DNA-PKcs) of the DNA-PK multiprotein complex. Although previous Northern blot analysis failed to detect the DNA-PKcs transcript in these cells, we show here through quantitative studies that the transcript is present, albeit at greatly reduced (approximately 20x) levels. Sequencing revealed no genetic alteration in either the promoter region, the kinase domain, or the 3' untranslated region of the DNA-PKcs gene to account for the reduced transcript levels. Nuclear run-on transcription assays indicated that the rate of DNA-PKcs transcription in M059J and DNA-PKcs proficient cell lines was similar, but the stability of the DNA-PKcs message in the M059J cell line was drastically (approximately 20x) reduced. Furthermore, M059J cells lack an alternately spliced DNA-PKcs transcript that accounts for a minor (5-20%) proportion of the DNA-PKcs message in all other cell lines tested. Thus, alterations in DNA-PKcs mRNA stability and/or the lack of the alternate mRNA may result in the loss of DNA-PKcs activity. This finding has important implications as DNA-PKcs activity is essential to cells repairing damage induced by radiation or radiomimetric agents.  (+info)

Id helix-loop-helix proteins inhibit nucleoprotein complex formation by the TCF ETS-domain transcription factors. (7/58449)

The Id subfamily of helix-loop-helix (HLH) proteins plays a fundamental role in the regulation of cellular proliferation and differentiation. Id proteins are thought to inhibit differentiation mainly through interaction with other HLH proteins and by blocking their DNA-binding activity. Members of the ternary complex factor (TCF) subfamily of ETS-domain proteins have key functions in regulating immediate-early gene expression in response to mitogenic stimulation. TCFs form DNA-bound complexes with the serum response factor (SRF) and are direct targets of MAP kinase (MAPK) signal transduction cascades. In this study we demonstrate functional interactions between Id proteins and TCFs. Ids bind to the ETS DNA-binding domain and disrupt the formation of DNA-bound complexes between TCFs and SRF on the c-fos serum response element (SRE). Inhibition occurs by disrupting protein-DNA interactions with the TCF component of this complex. In vivo, the Id proteins cause down-regulation of the transcriptional activity mediated by the TCFs and thereby block MAPK signalling to SREs. Therefore, our results demonstrate a novel facet of Id function in the coordination of mitogenic signalling and cell cycle entry.  (+info)

Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro. (8/58449)

Previous work has shown that heat shock factor (HSF) plays a central role in remodeling the chromatin structure of the yeast HSP82 promoter via constitutive interactions with its high-affinity binding site, heat shock element 1 (HSE1). The HSF-HSE1 interaction is also critical for stimulating both basal (noninduced) and induced transcription. By contrast, the function of the adjacent, inducibly occupied HSE2 and -3 is unknown. In this study, we examined the consequences of mutations in HSE1, HSE2, and HSE3 on HSF binding and transactivation. We provide evidence that in vivo, HSF binds to these three sites cooperatively. This cooperativity is seen both before and after heat shock, is required for full inducibility, and can be recapitulated in vitro on both linear and supercoiled templates. Quantitative in vitro footprinting reveals that occupancy of HSE2 and -3 by Saccharomyces cerevisiae HSF (ScHSF) is enhanced approximately 100-fold through cooperative interactions with the HSF-HSE1 complex. HSE1 point mutants, whose basal transcription is virtually abolished, are functionally compensated by cooperative interactions with HSE2 and -3 following heat shock, resulting in robust inducibility. Using a competition binding assay, we show that the affinity of recombinant HSF for the full-length HSP82 promoter is reduced nearly an order of magnitude by a single-point mutation within HSE1, paralleling the effect of these mutations on noninduced transcript levels. We propose that the remodeled chromatin phenotype previously shown for HSE1 point mutants (and lost in HSE1 deletion mutants) stems from the retention of productive, cooperative interactions between HSF and its target binding sites.  (+info)

  • Computational analyses showed a predicted TSS, a TATA-box and several TFBSs within the 1.5 kb region upstream the ATG start signal. (biomedcentral.com)
  • 1998) of word frequencies in upstream regions of several co-regulated clusters [some of which were based on whole cell ex- pression data for the diauxic shift (DeRisi et al. (techylib.com)
  • Another problem relates to cell-cycle dependence of these promoters that may cause high cell to cell variation in the amount of recombinant protein expressed. (biomedcentral.com)
  • However, these strong promoters can also trigger the undesired silencing phenomenon due to methylation of the promoter region and part of histones [ 7 ] or otherwise induce stress responses leading to incorrect protein folding or even apoptosis. (biomedcentral.com)
  • Deletion analysis of p73alpha revealed that the transactivation domain of p73 was not involved in this activity and the C-terminal region of p73alpha which is a specific structure of this variant was essential, suggesting that this phenomenon occurs independent of the transactivation activity of p73alpha and that the C-terminal extension of p73alpha may affect the basal level of transcription. (nih.gov)
  • Upon a shift to 33°C, a two to three-fold increase of basal productivity (already higher than SV40 promoter) is achieved. (biomedcentral.com)
  • Here we show that when transiently overexpressed, p73alpha but not p73beta activated several minimal promoters without the p53BCS, while p73gamma and p73epsilon activated them to a much lesser extent than p73alpha, and p53 suppressed the promoters without p53BCS as reported previously. (nih.gov)
  • Human Genome Epidemiology:A Scientific Foundation for Using Genetic Information To Improve Health and Prevent Disease. (epa.gov)
  • They performed whole-exome sequencing, which examines the protein-coding regions of the genome, on an unprecedented 316 tumors. (nih.gov)
  • The whole genome sequence database in the public domain (www.ensembl.org) provides an opportunity to look for the genetic architecture of this gene. (thefreelibrary.com)
  • Using a starter line selected for detailed analysis, the efficiency of tagging over a 50-kb region in the genome was examined. (plantphysiol.org)
  • These results indicate the impact of this OXTR genetic variant on individual differences in social affective neural processing. (scirp.org)
  • Deletion analysis of p73alpha revealed that the transactivation domain of p73 was not involved in this activity and the C-terminal region of p73alpha which is a specific structure of this variant was essential, suggesting that this phenomenon occurs independent of the transactivation activity of p73alpha and that the C-terminal extension of p73alpha may affect the basal level of transcription. (nih.gov)
  • A, was found in one VSD patient, but in none of controls, which significantly inhibited the transcriptional activities of TBX20 gene promoter, suggesting that the variant may contribute to the VSD etiology. (cdc.gov)
  • Conclusion We report the second promoter variant stably inducing a hereditary CEM. (bmj.com)
  • This relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro-injection, macro-injection or micro-encapsulation. (wikipedia.org)
  • To circumvent this problem, a 0.7-kb fragment of the S segment was fused to Gn, and a hybrid CAG promoter/enhancer in conjunction with (or without) the WPRE (Woodchuck hepatitis virus post-transcriptional regulatory element) was used to improve the expression of fusion protein GnS0.7 in the adenoviral expression system. (curehunter.com)
  • The results showed that the recombinant adenovirus with the CAG promoter/enhancer (rAd-GnS0.7-pCAG) expressed approximately 2.1-fold more GnS0.7 than the unmodified recombinant adenovirus containing GnS0.7 (rAd-GnS0.7-pShuttle). (curehunter.com)
  • These results demonstrate that the CAG promoter/enhancer improved significantly the expression of the chimeric gene GnS0.7 in the adenovirus expression system. (curehunter.com)
  • SNF2 chromatin-remodeling ATPases play an important role in ensuring proper development in higher eukaryotes by controlling accessibility of cis-regulatory DNA regions to transcription factors and to the transcriptional machinery. (mendeley.com)
  • The histone protein family member X (H2AFX) is important in maintaining chromatin structure and genetic stability. (duke.edu)
  • Using chromatin conformation capture, we confirmed that the region containing rs1690789 contacts the TGFB2 promoter in fibroblasts, and CRISPR/Cas-9 targeted deletion of a ~ 100 bp region containing rs1690789 resulted in decreased TGFB2 expression in primary human lung fibroblasts. (elifesciences.org)
  • deletion) within the promoter region of the GATA gene were identified in 5 VSD patients, but in none of controls. (cdc.gov)
  • deletion) were increased significantly compared with the wild-type GATA4 gene promoter. (cdc.gov)
  • Deletion of one or two (GGA)(4) motifs destabilizes this secondary structure and increases c-myb promoter activity, indicating that the G-quadruplexes formed in the c-myb GGA repeat region may act as a negative regulator of the c-myb promoter. (biomedsearch.com)
  • Complete deletion of the c-myb GGA repeat region abolishes c-myb promoter activity, indicating dual roles of the c-myb GGA repeat element as both a transcriptional repressor and an activator. (biomedsearch.com)
  • derived from a portion of the promoter of the C8ORF46 gene and three downstream putative regulatory elements from the RIKEN cDNA 3110035E14 (C8ORF46) gene) upstream of a frt-flanked beta-galactosidase (lacZ) gene, an SV40 early polyA signal, and a human HPRT complementary sequence (containing exon1, intron1, exon2, and part of intron2). (jax.org)
  • Abstract -Genetic approaches have succeeded in defining the molecular basis of an increasing array of heart diseases, such as hypertrophic cardiomyopathy and the long-QT syndromes, associated with serious arrhythmias. (ahajournals.org)
  • The −35 regions of each promoter are marked, and the upstream endpoints of promoter fusions with lacZ are identified by a "Δ. (asm.org)
  • DNA fragments with promoters, in this case Pm sequence −98 to +10, are cloned between the EcoRI and BamHI sites in pIA12 to generate the Pm-lacZ fusions. (nih.gov)
  • The chromosomal regions flanking the T-DNA were cloned by plasmid rescue. (deepdyve.com)
  • It preferentially targets transcribed chromosomal regions and centromere cores. (nature.com)
  • One of the approaches based on next-generation sequencing (NGS) is targeted enrichment of genomic DNA (TEDNA-seq) sequencing, which allows the identification of a directly selected genomic region by using hybridization probes during DNA library preparation. (springer.com)
  • A 757 bp DNA fragment, originating from the rescued plasmid and covering the genomic region immediately upstream from the right-border sequence of the T-DNA, was used as a probe to isolate the corresponding chromosomal region from a wild-type hybrid aspen genomic library. (deepdyve.com)
  • This locus was later mapped to a genomic region that spans approximately 380 kb 12 . (nature.com)
  • Forward genetic approaches have proven effective for identifying loci with gametophytic functions [ 1 , 2 , 3 , 4 , 5 ]. (mdpi.com)
  • Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. (nih.gov)
  • Using genetic and molecular analyses we have identified WUSCHEL (WUS) as a biologically important target of the SNF2-class ATPase SPLAYED (SYD) in the shoot apical meristem of Arabidopsis. (mendeley.com)
  • Subtelomeric regions are highly recombinogenic in the male meiocytes of Arabidopsis but show low recombination rates in the female meiocytes. (weizmann.ac.il)
  • To extend our understanding of chloroplast protein import and the role played by the import machinery component Tic40, we performed a genetic screen for suppressors of chlorotic tic40 knockout mutant Arabidopsis thaliana plants. (plantcell.org)
  • The morbidity and mortality of CHD patients are significantly higher than normal population even after surgical correction of cardiac defects, which is likely caused by genetic defects. (cdc.gov)
  • Digestion products of the 836 bp fragment in the 5'UTR region of growth hormone receptor gene with enzyme AluI, loaded on 8% acrilamid gel. (intechopen.com)
  • What are the different mechanisms that generate genetic diversity within a bacterial species? (brainscape.com)
  • Meiotic recombination impacts the evolution of organisms by generating a new genetic diversity through the shuffling of alleles via crossover (reciprocal exchange of large chromosomal segments) or gene conversion (Non-reciprocal exchange of small chromosomal segments). (weizmann.ac.il)
  • This review presents comprehensive and updated information about the diversity of genetic factors in the inflammatory, degradative, homeostatic, and structural systems involved in the IVDD. (frontiersin.org)