A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS.
The pressure due to the weight of fluid.
Techniques for measuring blood pressure.
Transducers that are activated by pressure changes, e.g., blood pressure.
Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more.
Pressure within the cranial cavity. It is influenced by brain mass, the circulatory system, CSF dynamics, and skull rigidity.
The pressure of the fluids in the eye.
Method in which repeated blood pressure readings are made while the patient undergoes normal daily activities. It allows quantitative analysis of the high blood pressure load over time, can help distinguish between types of HYPERTENSION, and can assess the effectiveness of antihypertensive therapy.
The force per unit area that the air exerts on any surface in contact with it. Primarily used for articles pertaining to air pressure within a closed environment.
The pressure at any point in an atmosphere due solely to the weight of the atmospheric gases above the point concerned.
The blood pressure in the VEINS. It is usually measured to assess the filling PRESSURE to the HEART VENTRICLE.
The blood pressure in the ARTERIES. It is commonly measured with a SPHYGMOMANOMETER on the upper arm which represents the arterial pressure in the BRACHIAL ARTERY.
The pressure within a CARDIAC VENTRICLE. Ventricular pressure waveforms can be measured in the beating heart by catheterization or estimated using imaging techniques (e.g., DOPPLER ECHOCARDIOGRAPHY). The information is useful in evaluating the function of the MYOCARDIUM; CARDIAC VALVES; and PERICARDIUM, particularly with simultaneous measurement of other (e.g., aortic or atrial) pressures.
The number of times the HEART VENTRICLES contract per unit of time, usually per minute.
The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM.
The blood pressure in the central large VEINS of the body. It is distinguished from peripheral venous pressure which occurs in an extremity.
The blood pressure as recorded after wedging a CATHETER in a small PULMONARY ARTERY; believed to reflect the PRESSURE in the pulmonary CAPILLARIES.
Drugs used in the treatment of acute or chronic vascular HYPERTENSION regardless of pharmacological mechanism. Among the antihypertensive agents are DIURETICS; (especially DIURETICS, THIAZIDE); ADRENERGIC BETA-ANTAGONISTS; ADRENERGIC ALPHA-ANTAGONISTS; ANGIOTENSIN-CONVERTING ENZYME INHIBITORS; CALCIUM CHANNEL BLOCKERS; GANGLIONIC BLOCKERS; and VASODILATOR AGENTS.
The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution.
Period of contraction of the HEART, especially of the HEART VENTRICLES.
The force that opposes the flow of BLOOD through a vascular bed. It is equal to the difference in BLOOD PRESSURE across the vascular bed divided by the CARDIAC OUTPUT.
The rhythmical expansion and contraction of an ARTERY produced by waves of pressure caused by the ejection of BLOOD from the left ventricle of the HEART as it contracts.
Post-systolic relaxation of the HEART, especially the HEART VENTRICLES.
Elements of limited time intervals, contributing to particular results or situations.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
Measurement of the pressure or tension of liquids or gases with a manometer.
Manometric pressure of the CEREBROSPINAL FLUID as measured by lumbar, cerebroventricular, or cisternal puncture. Within the cranial cavity it is called INTRACRANIAL PRESSURE.
A method of mechanical ventilation in which pressure is maintained to increase the volume of gas remaining in the lungs at the end of expiration, thus reducing the shunting of blood through the lungs and improving gas exchange.
A technique of respiratory therapy, in either spontaneously breathing or mechanically ventilated patients, in which airway pressure is maintained above atmospheric pressure throughout the respiratory cycle by pressurization of the ventilatory circuit. (On-Line Medical Dictionary [Internet]. Newcastle upon Tyne(UK): The University Dept. of Medical Oncology: The CancerWEB Project; c1997-2003 [cited 2003 Apr 17]. Available from: http://cancerweb.ncl.ac.uk/omd/)
The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat).
The venous pressure measured in the PORTAL VEIN.
The flow of BLOOD through or around an organ or region of the body.
Abnormally low BLOOD PRESSURE that can result in inadequate blood flow to the brain and other vital organs. Common symptom is DIZZINESS but greater negative impacts on the body occur when there is prolonged depravation of oxygen and nutrients.
The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system.
Receptors in the vascular system, particularly the aorta and carotid sinus, which are sensitive to stretch of the vessel walls.
A value equal to the total volume flow divided by the cross-sectional area of the vascular bed.
A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19.
A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke.
External decompression applied to the lower body. It is used to study orthostatic intolerance and the effects of gravitation and acceleration, to produce simulated hemorrhage in physiologic research, to assess cardiovascular function, and to reduce abdominal stress during childbirth.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
A response by the BARORECEPTORS to increased BLOOD PRESSURE. Increased pressure stretches BLOOD VESSELS which activates the baroreceptors in the vessel walls. The net response of the CENTRAL NERVOUS SYSTEM is a reduction of central sympathetic outflow. This reduces blood pressure both by decreasing peripheral VASCULAR RESISTANCE and by lowering CARDIAC OUTPUT. Because the baroreceptors are tonically active, the baroreflex can compensate rapidly for both increases and decreases in blood pressure.
The position or attitude of the body.
Distensibility measure of a chamber such as the lungs (LUNG COMPLIANCE) or bladder. Compliance is expressed as a change in volume per unit change in pressure.
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration (= OXYGEN CONSUMPTION) or cell respiration (= CELL RESPIRATION).
The vessels carrying blood away from the heart.
A form of compensated hydrocephalus characterized clinically by a slowly progressive gait disorder (see GAIT DISORDERS, NEUROLOGIC), progressive intellectual decline, and URINARY INCONTINENCE. Spinal fluid pressure tends to be in the high normal range. This condition may result from processes which interfere with the absorption of CSF including SUBARACHNOID HEMORRHAGE, chronic MENINGITIS, and other conditions. (From Adams et al., Principles of Neurology, 6th ed, pp631-3)
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
The hollow, muscular organ that maintains the circulation of the blood.
The physical or mechanical action of the LUNGS; DIAPHRAGM; RIBS; and CHEST WALL during respiration. It includes airflow, lung volume, neural and reflex controls, mechanoreceptors, breathing patterns, etc.
The continuous measurement of physiological processes, blood pressure, heart rate, renal output, reflexes, respiration, etc., in a patient or experimental animal; includes pharmacologic monitoring, the measurement of administered drugs or their metabolites in the blood, tissues, or urine.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs and stimuli, hormone secretion, sleeping, and feeding.
The main trunk of the systemic arteries.
A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals.
Measurement of ocular tension (INTRAOCULAR PRESSURE) with a tonometer. (Cline, et al., Dictionary of Visual Science, 4th ed)
The HEART and the BLOOD VESSELS by which BLOOD is pumped and circulated through the body.
Instruments for measuring arterial blood pressure consisting of an inflatable cuff, inflating bulb, and a gauge showing the blood pressure. (Stedman, 26th ed)
Precursor of epinephrine that is secreted by the adrenal medulla and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers and of the diffuse projection system in the brain arising from the locus ceruleus. It is also found in plants and is used pharmacologically as a sympathomimetic.
An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment.
Rhythmic, intermittent propagation of a fluid through a BLOOD VESSEL or piping system, in contrast to constant, smooth propagation, which produces laminar flow.
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
Persistent high BLOOD PRESSURE due to KIDNEY DISEASES, such as those involving the renal parenchyma, the renal vasculature, or tumors that secrete RENIN.
A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR).
An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS.
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs.
The volume of air inspired or expired during each normal, quiet respiratory cycle. Common abbreviations are TV or V with subscript T.
The hemodynamic and electrophysiological action of the left HEART VENTRICLE. Its measurement is an important aspect of the clinical evaluation of patients with heart disease to determine the effects of the disease on cardiac performance.
Treatment process involving the injection of fluid into an organ or tissue.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE.
Increased pressure within the cranial vault. This may result from several conditions, including HYDROCEPHALUS; BRAIN EDEMA; intracranial masses; severe systemic HYPERTENSION; PSEUDOTUMOR CEREBRI; and other disorders.
Any method of artificial breathing that employs mechanical or non-mechanical means to force the air into and out of the lungs. Artificial respiration or ventilation is used in individuals who have stopped breathing or have RESPIRATORY INSUFFICIENCY to increase their intake of oxygen (O2) and excretion of carbon dioxide (CO2).
Resistance and recovery from distortion of shape.
The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms.
Sodium chloride used in foods.
Volume of circulating BLOOD. It is the sum of the PLASMA VOLUME and ERYTHROCYTE VOLUME.
Methods of creating machines and devices.
The dilated portion of the common carotid artery at its bifurcation into external and internal carotids. It contains baroreceptors which, when stimulated, cause slowing of the heart, vasodilatation, and a fall in blood pressure.
Pathological conditions involving the CARDIOVASCULAR SYSTEM including the HEART; the BLOOD VESSELS; or the PERICARDIUM.
The relationship between the dose of an administered drug and the response of the organism to the drug.
A state characterized by loss of feeling or sensation. This depression of nerve function is usually the result of pharmacologic action and is induced to allow performance of surgery or other painful procedures.
Measurement of oxygen and carbon dioxide in the blood.
Transmission of the readings of instruments to a remote location by means of wires, radio waves, or other means. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Increased VASCULAR RESISTANCE in the PULMONARY CIRCULATION, usually secondary to HEART DISEASES or LUNG DISEASES.
A method of studying a drug or procedure in which both the subjects and investigators are kept unaware of who is actually getting which specific treatment.
The circulation of the BLOOD through the vessels of the KIDNEY.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Contractile activity of the MYOCARDIUM.
Drugs used to cause constriction of the blood vessels.
Enlargement of the LEFT VENTRICLE of the heart. This increase in ventricular mass is attributed to sustained abnormal pressure or volume loads and is a contributor to cardiovascular morbidity and mortality.
A class of drugs whose main indications are the treatment of hypertension and heart failure. They exert their hemodynamic effect mainly by inhibiting the renin-angiotensin system. They also modulate sympathetic nervous system activity and increase prostaglandin synthesis. They cause mainly vasodilation and mild natriuresis without affecting heart rate and contractility.
Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable.
Drugs used to cause dilation of the blood vessels.
The physiological widening of BLOOD VESSELS by relaxing the underlying VASCULAR SMOOTH MUSCLE.
A diet which contains very little sodium chloride. It is prescribed by some for hypertension and for edematous states. (Dorland, 27th ed)
A ubiquitous sodium salt that is commonly used to season food.
An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent.
Sodium or sodium compounds used in foods or as a food. The most frequently used compounds are sodium chloride or sodium glutamate.
Enlargement of the HEART, usually indicated by a cardiothoracic ratio above 0.50. Heart enlargement may involve the right, the left, or both HEART VENTRICLES or HEART ATRIA. Cardiomegaly is a nonspecific symptom seen in patients with chronic systolic heart failure (HEART FAILURE) or several forms of CARDIOMYOPATHIES.
The circulation of blood through the BLOOD VESSELS of the BRAIN.
A BLOOD PRESSURE regulating system of interacting components that include RENIN; ANGIOTENSINOGEN; ANGIOTENSIN CONVERTING ENZYME; ANGIOTENSIN I; ANGIOTENSIN II; and angiotensinase. Renin, an enzyme produced in the kidney, acts on angiotensinogen, an alpha-2 globulin produced by the liver, forming ANGIOTENSIN I. Angiotensin-converting enzyme, contained in the lung, acts on angiotensin I in the plasma converting it to ANGIOTENSIN II, an extremely powerful vasoconstrictor. Angiotensin II causes contraction of the arteriolar and renal VASCULAR SMOOTH MUSCLE, leading to retention of salt and water in the KIDNEY and increased arterial blood pressure. In addition, angiotensin II stimulates the release of ALDOSTERONE from the ADRENAL CORTEX, which in turn also increases salt and water retention in the kidney. Angiotensin-converting enzyme also breaks down BRADYKININ, a powerful vasodilator and component of the KALLIKREIN-KININ SYSTEM.
The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation.
Sodium excretion by URINATION.
The circulation of blood through the CORONARY VESSELS of the HEART.
Ultrasonic recording of the size, motion, and composition of the heart and surrounding tissues. The standard approach is transthoracic.
The contribution to barometric PRESSURE of gaseous substance in equilibrium with its solid or liquid phase.
Processes and properties of the CARDIOVASCULAR SYSTEM as a whole or of any of its parts.
An indicator of body density as determined by the relationship of BODY WEIGHT to BODY HEIGHT. BMI=weight (kg)/height squared (m2). BMI correlates with body fat (ADIPOSE TISSUE). Their relationship varies with age and gender. For adults, BMI falls into these categories: below 18.5 (underweight); 18.5-24.9 (normal); 25.0-29.9 (overweight); 30.0 and above (obese). (National Center for Health Statistics, Centers for Disease Control and Prevention)
Statistical models in which the value of a parameter for a given value of a factor is assumed to be equal to a + bx, where a and b are constants. The models predict a linear regression.
The movement of the BLOOD as it is pumped through the CARDIOVASCULAR SYSTEM.
The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow.
An ocular disease, occurring in many forms, having as its primary characteristics an unstable or a sustained increase in the intraocular pressure which the eye cannot withstand without damage to its structure or impairment of its function. The consequences of the increased pressure may be manifested in a variety of symptoms, depending upon type and severity, such as excavation of the optic disk, hardness of the eyeball, corneal anesthesia, reduced visual acuity, seeing of colored halos around lights, disturbed dark adaptation, visual field defects, and headaches. (Dictionary of Visual Science, 4th ed)
A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23.
Studies in which the presence or absence of disease or other health-related variables are determined in each member of the study population or in a representative sample at one particular time. This contrasts with LONGITUDINAL STUDIES which are followed over a period of time.
Either of the two principal arteries on both sides of the neck that supply blood to the head and neck; each divides into two branches, the internal carotid artery and the external carotid artery.
Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time.
A condition in which the intraocular pressure is elevated above normal and which may lead to glaucoma.
The continuation of the axillary artery; it branches into the radial and ulnar arteries.
Studies comparing two or more treatments or interventions in which the subjects or patients, upon completion of the course of one treatment, are switched to another. In the case of two treatments, A and B, half the subjects are randomly allocated to receive these in the order A, B and half to receive them in the order B, A. A criticism of this design is that effects of the first treatment may carry over into the period when the second is given. (Last, A Dictionary of Epidemiology, 2d ed)
The posture of an individual lying face up.
The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results.
The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346)
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
These include the muscles of the DIAPHRAGM and the INTERCOSTAL MUSCLES.
The act of constricting.
The ENTERIC NERVOUS SYSTEM; PARASYMPATHETIC NERVOUS SYSTEM; and SYMPATHETIC NERVOUS SYSTEM taken together. Generally speaking, the autonomic nervous system regulates the internal environment during both peaceful activity and physical or emotional stress. Autonomic activity is controlled and integrated by the CENTRAL NERVOUS SYSTEM, especially the HYPOTHALAMUS and the SOLITARY NUCLEUS, which receive information relayed from VISCERAL AFFERENTS.
Procedures in which placement of CARDIAC CATHETERS is performed for therapeutic or diagnostic procedures.
A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP.
The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time.
A procedure involving placement of a tube into the trachea through the mouth or nose in order to provide a patient with oxygen and anesthesia.
The act of BREATHING in.
Studies in which subsets of a defined population are identified. These groups may or may not be exposed to factors hypothesized to influence the probability of the occurrence of a particular disease or other outcome. Cohorts are defined populations which, as a whole, are followed in an attempt to determine distinguishing subgroup characteristics.
A heterogeneous condition in which the heart is unable to pump out sufficient blood to meet the metabolic need of the body. Heart failure can be caused by structural defects, functional abnormalities (VENTRICULAR DYSFUNCTION), or a sudden overload beyond its capacity. Chronic heart failure is more common than acute heart failure which results from sudden insult to cardiac function, such as MYOCARDIAL INFARCTION.
The properties, processes, and behavior of biological systems under the action of mechanical forces.
Forced expiratory effort against a closed GLOTTIS.
The capability of the LUNGS to distend under pressure as measured by pulmonary volume change per unit pressure change. While not a complete description of the pressure-volume properties of the lung, it is nevertheless useful in practice as a measure of the comparative stiffness of the lung. (From Best & Taylor's Physiological Basis of Medical Practice, 12th ed, p562)
A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area.
Body ventilators that assist ventilation by applying intermittent subatmospheric pressure around the thorax, abdomen, or airway and periodically expand the chest wall and inflate the lungs. They are relatively simple to operate and do not require tracheostomy. These devices include the tank ventilators ("iron lung"), Portalung, Pneumowrap, and chest cuirass ("tortoise shell").
A hormone secreted by the ADRENAL CORTEX that regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium.
Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY.
Measurement of intracardiac blood flow using an M-mode and/or two-dimensional (2-D) echocardiogram while simultaneously recording the spectrum of the audible Doppler signal (e.g., velocity, direction, amplitude, intensity, timing) reflected from the moving column of red blood cells.
Relatively complete absence of oxygen in one or more tissues.
A potent and specific inhibitor of PEPTIDYL-DIPEPTIDASE A. It blocks the conversion of ANGIOTENSIN I to ANGIOTENSIN II, a vasoconstrictor and important regulator of arterial blood pressure. Captopril acts to suppress the RENIN-ANGIOTENSIN SYSTEM and inhibits pressure responses to exogenous angiotensin.
Hypertension due to RENAL ARTERY OBSTRUCTION or compression.
Physical activity which is usually regular and done with the intention of improving or maintaining PHYSICAL FITNESS or HEALTH. Contrast with PHYSICAL EXERTION which is concerned largely with the physiologic and metabolic response to energy expenditure.
A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins.
The exchange of OXYGEN and CARBON DIOXIDE between alveolar air and pulmonary capillary blood that occurs across the BLOOD-AIR BARRIER.
Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety.
Plethysmographic determination in which the intensity of light reflected from the skin surface and the red cells below is measured to determine the blood volume of the respective area. There are two types, transmission and reflectance.
A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects.
A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs.
A significant drop in BLOOD PRESSURE after assuming a standing position. Orthostatic hypotension is a finding, and defined as a 20-mm Hg decrease in systolic pressure or a 10-mm Hg decrease in diastolic pressure 3 minutes after the person has risen from supine to standing. Symptoms generally include DIZZINESS, blurred vision, and SYNCOPE.
A thiazide diuretic often considered the prototypical member of this class. It reduces the reabsorption of electrolytes from the renal tubules. This results in increased excretion of water and electrolytes, including sodium, potassium, chloride, and magnesium. It is used in the treatment of several disorders including edema, hypertension, diabetes insipidus, and hypoparathyroidism.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
A disorder characterized by recurrent apneas during sleep despite persistent respiratory efforts. It is due to upper airway obstruction. The respiratory pauses may induce HYPERCAPNIA or HYPOXIA. Cardiac arrhythmias and elevation of systemic and pulmonary arterial pressures may occur. Frequent partial arousals occur throughout sleep, resulting in relative SLEEP DEPRIVATION and daytime tiredness. Associated conditions include OBESITY; ACROMEGALY; MYXEDEMA; micrognathia; MYOTONIC DYSTROPHY; adenotonsilar dystrophy; and NEUROMUSCULAR DISEASES. (From Adams et al., Principles of Neurology, 6th ed, p395)
In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
Use or insertion of a tubular device into a duct, blood vessel, hollow organ, or body cavity for injecting or withdrawing fluids for diagnostic or therapeutic purposes. It differs from INTUBATION in that the tube here is used to restore or maintain patency in obstructions.
The muscular membranous segment between the PHARYNX and the STOMACH in the UPPER GASTROINTESTINAL TRACT.
Physiologically, the opposition to flow of air caused by the forces of friction. As a part of pulmonary function testing, it is the ratio of driving pressure to the rate of air flow.
The volume of water filtered out of plasma through glomerular capillary walls into Bowman's capsules per unit of time. It is considered to be equivalent to INULIN clearance.
Maleness or femaleness as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or effect of a circumstance. It is used with human or animal concepts but should be differentiated from SEX CHARACTERISTICS, anatomical or physiological manifestations of sex, and from SEX DISTRIBUTION, the number of males and females in given circumstances.
RESPIRATORY MUSCLE contraction during INHALATION. The work is accomplished in three phases: LUNG COMPLIANCE work, that required to expand the LUNGS against its elastic forces; tissue resistance work, that required to overcome the viscosity of the lung and chest wall structures; and AIRWAY RESISTANCE work, that required to overcome airway resistance during the movement of air into the lungs. Work of breathing does not refer to expiration, which is entirely a passive process caused by elastic recoil of the lung and chest cage. (Guyton, Textbook of Medical Physiology, 8th ed, p406)
Recording of change in the size of a part as modified by the circulation in it.
Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included.
A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS.
The measurement of an organ in volume, mass, or heaviness.
A method of non-invasive, continuous measurement of MICROCIRCULATION. The technique is based on the values of the DOPPLER EFFECT of low-power laser light scattered randomly by static structures and moving tissue particulates.
The processes whereby the internal environment of an organism tends to remain balanced and stable.
A cardioselective beta-1 adrenergic blocker possessing properties and potency similar to PROPRANOLOL, but without a negative inotropic effect.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
The resection or removal of the nerve to an organ or part. (Dorland, 28th ed)
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
Procedure in which patients are induced into an unconscious state through use of various medications so that they do not feel pain during surgery.
A status with BODY WEIGHT that is grossly above the acceptable or desirable weight, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
Agents that promote the excretion of urine through their effects on kidney function.
Excessive accumulation of extravascular fluid in the lung, an indication of a serious underlying disease or disorder. Pulmonary edema prevents efficient PULMONARY GAS EXCHANGE in the PULMONARY ALVEOLI, and can be life-threatening.
Sense of awareness of self and of the environment.
The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS.
Individuals whose ancestral origins are in the continent of Africa.
The total volume of gas inspired or expired per unit of time, usually measured in liters per minute.
A non-selective inhibitor of nitric oxide synthase. It has been used experimentally to induce hypertension.
Glaucoma in which the angle of the anterior chamber is open and the trabecular meshwork does not encroach on the base of the iris.
The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801)
The direct continuation of the brachial trunk, originating at the bifurcation of the brachial artery opposite the neck of the radius. Its branches may be divided into three groups corresponding to the three regions in which the vessel is situated, the forearm, wrist, and hand.
The circulation of the BLOOD through the MICROVASCULAR NETWORK.
The vascular resistance to the flow of BLOOD through the CAPILLARIES portions of the peripheral vascular bed.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
Measurement of the amount of air that the lungs may contain at various points in the respiratory cycle.
Levels within a diagnostic group which are established by various measurement criteria applied to the seriousness of a patient's disorder.
The distal extremity of the leg in vertebrates, consisting of the tarsus (ANKLE); METATARSUS; phalanges; and the soft tissues surrounding these bones.
The portion of the descending aorta proceeding from the arch of the aorta and extending to the DIAPHRAGM, eventually connecting to the ABDOMINAL AORTA.
An antagonist of ANGIOTENSIN TYPE 1 RECEPTOR with antihypertensive activity due to the reduced pressor effect of ANGIOTENSIN II.
Mechanical devices used to produce or assist pulmonary ventilation.

Effect of intravenous dextran 70 and pneumatic leg compression on incidence of postoperative pulmonary embolism. (1/6480)

The incidence of pulmonary embolism and deep vein thrombosis was measured in 50 matched pairs of patients undergoing common surgical procedures with preoperative and postoperative ventilation-perfusion lung scans and the fibrinogen uptake test. One patient in each pair was treated with intravenous dextran 70 and pneumatic leggings. The incidence of pulmonary embolism among the treated patients was significantly reduced from 24% to 8%, but the incidence of deep vein thrombosis was not significantly reduced (34% to 24%).  (+info)

Acute renal failure caused by nephrotoxins. (2/6480)

Renal micropuncture studies have greatly changed our views on the pathophysiology of acute renal failure caused by nephrotoxins. Formerly, this type of renal insufficiency was attributed to a direct effect of the nephrotoxins on tubule epithelial permeability. According to that theory, glomerular filtration was not greatly diminished, the filtrate formed being absorbed almost quantitatively and nonselectively across damaged tubule epithelium. Studies in a wide variety of rat models have now shown glomerular filtration to be reduced to a level which will inevitably cause renal failure in and of itself. Passive backflow of filtrate across tubular epithelium is either of minor degree or nonexistent even in models where frank tubular necrosis has occurred. This failure of filtration cannot be attributed to tubular obstruction since proximal tubule pressure is distinctly subnormal in most models studied. Instead, filtration failure appears best attributed to intrarenal hemodynamic alterations. While certain facts tend to incriminate the renin-angiotensin system as the cause of the hemodynamic aberrations, others argue to the contrary. The issue is underactive investigation.  (+info)

Chronic compartment syndrome affecting the lower limb: MIBI perfusion imaging as an alternative to pressure monitoring: two case reports. (3/6480)

Intracompartmental pressure monitoring remains the primary method of diagnosing chronic compartment syndrome. MIBI perfusion imaging is widely available and offers a radionuclear imaging technique for diagnosing this condition. Although the results are not identical with those from pressure monitoring, MIBI may offer a useful screening test for this condition.  (+info)

Sperm transport in the human female genital tract and its modulation by oxytocin as assessed by hysterosalpingoscintigraphy, hysterotonography, electrohysterography and Doppler sonography. (4/6480)

The transport function of the uterus and oviducts and its modulation by oxytocin has been examined using hysterosalpingoscintigraphy, recording of intrauterine pressure, electrohysterography and Doppler sonography of the Fallopian tubes. After application to the posterior vaginal fornix, a rapid (within minutes) uptake of the labelled particles into the uterus was observed during the follicular and during the luteal phase of the cycle in all patients. Transport into the oviducts, however, could only be demonstrated during the follicular phase. Transport was directed predominantly into the tube ipsilateral to the ovary bearing the dominant follicle; the contralateral oviduct appeared to be functionally closed. The proportion of patients exhibiting ipsilateral transport did increase concomitant with the increase of the diameter of the dominant follicle. That ipsilateral transport has biological significance is suggested by the observation that the pregnancy rate following spontaneous intercourse or insemination was significantly higher in those women in whom ipsilateral transport could be demonstrated than in those who failed to exhibit lateralization. Oxytocin administration was followed by a dramatic increase in the amount of material transported to the ipsilateral tube, as demonstrated by radionuclide imaging and by Doppler sonography following instillation of ultrasound contrast medium. Continuous recording of intrauterine pressure before and after oxytocin administration did show an increase in basal tonus and amplitude of contractions and a reversal of the pressure gradient from a fundo-cervical to a cervico-fundal direction. These actions of oxytocin were accompanied by an increase in amplitude of potentials recorded by electrohysterography. These data support the view that uterus and Fallopian tubes represent a functional unit that is acting as a peristaltic pump and that the increasing activity of this pump during the follicular phase of the menstrual cycle is reflected by an increased transport into the oviduct ipsilateral to the ovary bearing the dominant follicle. In addition, they strongly suggest a critical role of oxytocin in this process. Failure of this mechanism appears to be a cause of subfertility or infertility, as indicated by the low pregnancy rate following intrauterine insemination or normal intercourse in the presence of patent Fallopian tubes. It may be regarded as a new nosological entity for which we propose the term tubal transport disorder (TTD). Since pregnancy rate of such patients is normal when treated with in-vitro fertilization (IVF), hysterosalpingoscintigraphy seems to be useful for the choice of treatment modalities in patients with patent Fallopian tubes suffering from infertility.  (+info)

Morphology of intraepithelial corpuscular nerve endings in the nasal respiratory mucosa of the dog. (5/6480)

Corpuscular nerve endings in the nasal respiratory mucosa of the dog were investigated by immunohistochemical staining specific for protein gene product 9.5 by light and electron microscopy. In the nasal respiratory mucosa, complex corpuscular endings, which displayed bulbous, laminar and varicose expansions, were distributed on the dorsal elevated part of the nasal septum and on the dorsal nasal concha. The endings were 300-500 microm long and 100-250 microm wide. Some axons gave rise to a single ending while others branched into 2 endings. Cryostat sections revealed that the corpuscular endings were located within the nasal respiratory epithelium. On electron microscopy, immunoreactive nerve terminals that contained organelles, including mitochondria and neurofilaments, were observed within the epithelial layer near the lumen of the nasal cavity. Some terminals contacted the goblet cell. Such terminal regions were covered by the cytoplasmic process of ciliated cells and were never exposed to the lumen of the nasal cavity. These nerve endings are probably activated by pressure changes.  (+info)

Neuronal activity in somatosensory cortex of monkeys using a precision grip. I. Receptive fields and discharge patterns. (6/6480)

Three adolescent Macaca fascicularis monkeys weighing between 3.5 and 4 kg were trained to use a precision grip to grasp a metal tab mounted on a low friction vertical track and to lift and hold it in a 12- to 25-mm position window for 1 s. The surface texture of the metal tab in contact with the fingers and the weight of the object could be varied. The activity of 386 single cells with cutaneous receptive fields contacting the metal tab were recorded in Brodmann's areas 3b, 1, 2, 5, and 7 of the somatosensory cortex. In this first of a series of papers, we describe three types of discharge pattern, the receptive-field properties, and the anatomic distribution of the neurons. The majority of the receptive fields were cutaneous and covered less than one digit, and a chi2 test did not reveal any significant differences in the Brodmann's areas representing the thumb and index finger. Two broad categories of discharge pattern cells were identified. The first category, dynamic cells, showed a brief increase in activity beginning near grip onset, which quickly subsided despite continued pressure applied to the receptive field. Some of the dynamic neurons responded to both skin indentation and release. The second category, static cells, had higher activity during the stationary holding phase of the task. These static neurons demonstrated varying degrees of sensitivity to rates of pressure change on the skin. The percentage of dynamic versus static cells was about equal for areas 3b, 2, 5, and 7. Only area 1 had a higher proportion of dynamic cells (76%). A third category was identified that contained cells with significant pregrip activity and included cortical cells with both dynamic or static discharge patterns. Cells in this category showed activity increases before movement in the absence of receptive-field stimulation, suggesting that, in addition to peripheral cutaneous input, these cells also receive strong excitation from movement-related regions of the brain.  (+info)

Low temperature and pressure stability of picornaviruses: implications for virus uncoating. (7/6480)

The family Picornaviridae includes several viruses of great economic and medical importance. Poliovirus replicates in the human digestive tract, causing disease that may range in severity from a mild infection to a fatal paralysis. The human rhinovirus is the most important etiologic agent of the common cold in adults and children. Foot-and-mouth disease virus (FMDV) causes one of the most economically important diseases in cattle. These viruses have in common a capsid structure composed of 60 copies of four different proteins, VP1 to VP4, and their 3D structures show similar general features. In this study we describe the differences in stability against high pressure and cold denaturation of these viruses. Both poliovirus and rhinovirus are stable to high pressure at room temperature, because pressures up to 2.4 kbar are not enough to promote viral disassembly and inactivation. Within the same pressure range, FMDV particles are dramatically affected by pressure, with a loss of infectivity of more than 4 log units observed. The dissociation of polio and rhino viruses can be observed only under pressure (2.4 kbar) at low temperatures in the presence of subdenaturing concentrations of urea (1-2 M). The pressure and low temperature data reveal clear differences in stability among the three picornaviruses, FMDV being the most sensitive, polio being the most resistant, and rhino having intermediate stability. Whereas rhino and poliovirus differ little in stability (less than 10 kcal/mol at 0 degrees C), the difference in free energy between these two viruses and FMDV was remarkable (more than 200 kcal/mol of particle). These differences are crucial to understanding the different factors that control the assembly and disassembly of the virus particles during their life cycle. The inactivation of these viruses by pressure (combined or not with low temperature) has potential as a method for producing vaccines.  (+info)

Effects of tumour necrosis factor-alpha on left ventricular function in the rat isolated perfused heart: possible mechanisms for a decline in cardiac function. (8/6480)

1. The cardiac depressant actions of TNF were investigated in the isolated perfused rat heart under constant flow (10 ml min(-1)) and constant pressure (70 mmHg) conditions, using a recirculating (50 ml) mode of perfusion. 2. Under constant flow conditions TNF (20 ng ml(-1)) caused an early (< 25 min) decrease in left ventricular developed pressure (LVDP), which was maintained for 90 min (LVDP after 90 min: control vs TNF; 110 +/- 4 vs 82 +/- 10 mmHg, P < 0.01). 3. The depression in cardiac function seen with TNF under constant flow conditions, was blocked by the ceramidase inhibitor N-oleoylethanolamine (NOE), 1 microM, (LVDP after 90 min: TNF vs TNF with NOE; 82 +/- 10 vs 11 +/- 5 mmHg, P < 0.05). 4. In hearts perfused at constant pressure, TNF caused a decrease in coronary flow rate (change in flow 20 min after TNF: control vs TNF; -3.0 +/- 0.9 vs -8.7 +/- 1.2 ml min(-1), P < 0.01). This was paralleled by a negative inotropic effect (change in LVDP 20 min after TNF: control vs TNF; -17 +/- 7 vs -46 +/- 6 mmHg, P < 0.01). The decline in function was more rapid and more severe than that seen under conditions of constant flow. 5. These data indicate that cardiac function can be disrupted by TNF on two levels, firstly via a direct, ceramidase dependant negative inotropic effect, and secondly via an indirect coronary vasoconstriction.  (+info)

There are two types of hypertension:

1. Primary Hypertension: This type of hypertension has no identifiable cause and is also known as essential hypertension. It accounts for about 90% of all cases of hypertension.
2. Secondary Hypertension: This type of hypertension is caused by an underlying medical condition or medication. It accounts for about 10% of all cases of hypertension.

Some common causes of secondary hypertension include:

* Kidney disease
* Adrenal gland disorders
* Hormonal imbalances
* Certain medications
* Sleep apnea
* Cocaine use

There are also several risk factors for hypertension, including:

* Age (the risk increases with age)
* Family history of hypertension
* Obesity
* Lack of exercise
* High sodium intake
* Low potassium intake
* Stress

Hypertension is often asymptomatic, and it can cause damage to the blood vessels and organs over time. Some potential complications of hypertension include:

* Heart disease (e.g., heart attacks, heart failure)
* Stroke
* Kidney disease (e.g., chronic kidney disease, end-stage renal disease)
* Vision loss (e.g., retinopathy)
* Peripheral artery disease

Hypertension is typically diagnosed through blood pressure readings taken over a period of time. Treatment for hypertension may include lifestyle changes (e.g., diet, exercise, stress management), medications, or a combination of both. The goal of treatment is to reduce the risk of complications and improve quality of life.

There are several causes of hypotension, including:

1. Dehydration: Loss of fluids and electrolytes can cause a drop in blood pressure.
2. Blood loss: Losing too much blood can lead to hypotension.
3. Medications: Certain medications, such as diuretics and beta-blockers, can lower blood pressure.
4. Heart conditions: Heart failure, cardiac tamponade, and arrhythmias can all cause hypotension.
5. Endocrine disorders: Hypothyroidism (underactive thyroid) and adrenal insufficiency can cause low blood pressure.
6. Vasodilation: A condition where the blood vessels are dilated, leading to low blood pressure.
7. Sepsis: Severe infection can cause hypotension.

Symptoms of hypotension can include:

1. Dizziness and lightheadedness
2. Fainting or passing out
3. Weakness and fatigue
4. Confusion and disorientation
5. Pale, cool, or clammy skin
6. Fast or weak pulse
7. Shortness of breath
8. Nausea and vomiting

If you suspect that you or someone else is experiencing hypotension, it is important to seek medical attention immediately. Treatment will depend on the underlying cause of the condition, but may include fluids, electrolytes, and medication to raise blood pressure. In severe cases, hospitalization may be necessary.

Symptoms of hydrocephalus, normal pressure can include headaches, nausea and vomiting, double vision, and difficulty with balance and coordination. However, unlike hydrocephalus, elevated pressure, which is caused by an excessive accumulation of CSF, the symptoms of hydrocephalus, normal pressure are usually milder and may not be as severe.

Treatment options for hydrocephalus, normal pressure can include medications to relieve symptoms, such as headaches and nausea, as well as surgery to drain excess CSF or to repair any blockages or abnormalities in the flow of CSF. In some cases, a shunt may be inserted to drain excess CSF into another part of the body, such as the abdomen.

A type of hypertension that is caused by a problem with the kidneys. It can be acute or chronic and may be associated with other conditions such as glomerulonephritis, pyelonephritis, or polycystic kidney disease. Symptoms include proteinuria, hematuria, and elevated blood pressure. Treatment options include diuretics, ACE inhibitors, and angiotensin II receptor blockers.

Note: Renal hypertension is also known as renal artery hypertension.

1) They share similarities with humans: Many animal species share similar biological and physiological characteristics with humans, making them useful for studying human diseases. For example, mice and rats are often used to study diseases such as diabetes, heart disease, and cancer because they have similar metabolic and cardiovascular systems to humans.

2) They can be genetically manipulated: Animal disease models can be genetically engineered to develop specific diseases or to model human genetic disorders. This allows researchers to study the progression of the disease and test potential treatments in a controlled environment.

3) They can be used to test drugs and therapies: Before new drugs or therapies are tested in humans, they are often first tested in animal models of disease. This allows researchers to assess the safety and efficacy of the treatment before moving on to human clinical trials.

4) They can provide insights into disease mechanisms: Studying disease models in animals can provide valuable insights into the underlying mechanisms of a particular disease. This information can then be used to develop new treatments or improve existing ones.

5) Reduces the need for human testing: Using animal disease models reduces the need for human testing, which can be time-consuming, expensive, and ethically challenging. However, it is important to note that animal models are not perfect substitutes for human subjects, and results obtained from animal studies may not always translate to humans.

6) They can be used to study infectious diseases: Animal disease models can be used to study infectious diseases such as HIV, TB, and malaria. These models allow researchers to understand how the disease is transmitted, how it progresses, and how it responds to treatment.

7) They can be used to study complex diseases: Animal disease models can be used to study complex diseases such as cancer, diabetes, and heart disease. These models allow researchers to understand the underlying mechanisms of the disease and test potential treatments.

8) They are cost-effective: Animal disease models are often less expensive than human clinical trials, making them a cost-effective way to conduct research.

9) They can be used to study drug delivery: Animal disease models can be used to study drug delivery and pharmacokinetics, which is important for developing new drugs and drug delivery systems.

10) They can be used to study aging: Animal disease models can be used to study the aging process and age-related diseases such as Alzheimer's and Parkinson's. This allows researchers to understand how aging contributes to disease and develop potential treatments.

Symptoms of intracranial hypertension can include headache, nausea and vomiting, confusion, seizures, and loss of consciousness. Treatment options depend on the underlying cause, but may include medications to reduce pressure, draining excess CSF, or surgery to relieve obstruction.

Intracranial hypertension can be life-threatening if left untreated, as it can lead to permanent brain damage and even death. Therefore, prompt medical attention is essential for proper diagnosis and management of this condition.

Body weight is an important health indicator, as it can affect an individual's risk for certain medical conditions, such as obesity, diabetes, and cardiovascular disease. Maintaining a healthy body weight is essential for overall health and well-being, and there are many ways to do so, including a balanced diet, regular exercise, and other lifestyle changes.

There are several ways to measure body weight, including:

1. Scale: This is the most common method of measuring body weight, and it involves standing on a scale that displays the individual's weight in kg or lb.
2. Body fat calipers: These are used to measure body fat percentage by pinching the skin at specific points on the body.
3. Skinfold measurements: This method involves measuring the thickness of the skin folds at specific points on the body to estimate body fat percentage.
4. Bioelectrical impedance analysis (BIA): This is a non-invasive method that uses electrical impulses to measure body fat percentage.
5. Dual-energy X-ray absorptiometry (DXA): This is a more accurate method of measuring body composition, including bone density and body fat percentage.

It's important to note that body weight can fluctuate throughout the day due to factors such as water retention, so it's best to measure body weight at the same time each day for the most accurate results. Additionally, it's important to use a reliable scale or measuring tool to ensure accurate measurements.

1. Coronary artery disease: The narrowing or blockage of the coronary arteries, which supply blood to the heart.
2. Heart failure: A condition in which the heart is unable to pump enough blood to meet the body's needs.
3. Arrhythmias: Abnormal heart rhythms that can be too fast, too slow, or irregular.
4. Heart valve disease: Problems with the heart valves that control blood flow through the heart.
5. Heart muscle disease (cardiomyopathy): Disease of the heart muscle that can lead to heart failure.
6. Congenital heart disease: Defects in the heart's structure and function that are present at birth.
7. Peripheral artery disease: The narrowing or blockage of blood vessels that supply oxygen and nutrients to the arms, legs, and other organs.
8. Deep vein thrombosis (DVT): A blood clot that forms in a deep vein, usually in the leg.
9. Pulmonary embolism: A blockage in one of the arteries in the lungs, which can be caused by a blood clot or other debris.
10. Stroke: A condition in which there is a lack of oxygen to the brain due to a blockage or rupture of blood vessels.

Example Sentence: The patient was diagnosed with pulmonary hypertension and began treatment with medication to lower her blood pressure and improve her symptoms.

Word class: Noun phrase / medical condition

LVH can lead to a number of complications, including:

1. Heart failure: The enlarged left ventricle can become less efficient at pumping blood throughout the body, leading to heart failure.
2. Arrhythmias: The abnormal electrical activity in the heart can lead to irregular heart rhythms.
3. Sudden cardiac death: In some cases, LVH can increase the risk of sudden cardiac death.
4. Atrial fibrillation: The enlarged left atrium can lead to atrial fibrillation, a common type of arrhythmia.
5. Mitral regurgitation: The enlargement of the left ventricle can cause the mitral valve to become incompetent, leading to mitral regurgitation.
6. Heart valve problems: The enlarged left ventricle can lead to heart valve problems, such as mitral regurgitation or aortic stenosis.
7. Coronary artery disease: LVH can increase the risk of coronary artery disease, which can lead to a heart attack.
8. Pulmonary hypertension: The enlarged left ventricle can lead to pulmonary hypertension, which can further strain the heart and increase the risk of complications.

Evaluation of LVH typically involves a physical examination, medical history, electrocardiogram (ECG), echocardiography, and other diagnostic tests such as stress test or cardiac MRI. Treatment options for LVH depend on the underlying cause and may include medications, lifestyle changes, and in some cases, surgery or other interventions.

Medical Term: Cardiomegaly

Definition: An abnormal enlargement of the heart.

Symptoms: Difficulty breathing, shortness of breath, fatigue, swelling of legs and feet, chest pain, and palpitations.

Causes: Hypertension, cardiac valve disease, myocardial infarction (heart attack), congenital heart defects, and other conditions that affect the heart muscle or cardiovascular system.

Diagnosis: Physical examination, electrocardiogram (ECG), chest x-ray, echocardiography, and other diagnostic tests as necessary.

Treatment: Medications such as diuretics, vasodilators, and beta blockers, lifestyle changes such as exercise and diet modifications, surgery or other interventions in severe cases.

Note: Cardiomegaly is a serious medical condition that requires prompt diagnosis and treatment to prevent complications such as heart failure and death. If you suspect you or someone else may have cardiomegaly, seek medical attention immediately.

There are several different types of glaucoma, including:

* Open-angle glaucoma: This is the most common form of glaucoma, and is caused by slowed drainage of fluid from the eye.
* Closed-angle glaucoma: This type of glaucoma is caused by a blockage in the drainage channels of the eye, leading to a sudden increase in pressure.
* Normal-tension glaucoma: This type of glaucoma is caused by damage to the optic nerve even though the pressure in the eye is within the normal range.
* Congenital glaucoma: This is a rare type of glaucoma that is present at birth, and is caused by a developmental defect in the eye's drainage system.

Symptoms of glaucoma can include:

* Blurred vision
* Loss of peripheral vision
* Eye pain or pressure
* Redness of the eye
* Seeing halos around lights

Glaucoma is typically diagnosed with a combination of visual acuity tests, dilated eye exams, and imaging tests such as ultrasound or MRI. Treatment for glaucoma usually involves medication to reduce pressure in the eye, but may also include surgery to improve drainage or laser therapy to prevent further damage to the optic nerve.

Early detection and treatment of glaucoma is important to prevent vision loss, so it is important to have regular eye exams, especially if you are at risk for the condition. Risk factors for glaucoma include:

* Age (over 60)
* Family history of glaucoma
* Diabetes
* High blood pressure
* African or Hispanic ancestry

Overall, glaucoma is a serious eye condition that can cause vision loss if left untreated. Early detection and treatment are key to preventing vision loss and maintaining good eye health.

=====================================

Ocular hypertension refers to an increase in the pressure within the eye, which can lead to various eye problems if left untreated. It is a common condition that affects millions of people worldwide. In this article, we will provide a comprehensive overview of ocular hypertension, including its definition, causes, symptoms, diagnosis, and treatment options.

What is Ocular Hypertension?
-------------------------

Ocular hypertension is a condition characterized by an increase in the pressure within the eye, which can cause damage to the eye's delicate structures, such as the retina and optic nerve. The normal pressure range for the eye is between 10-21 mmHg, and anything above this range is considered hypertensive.

Causes of Ocular Hypertension
---------------------------

There are several factors that can contribute to the development of ocular hypertension. These include:

* Genetics: People with a family history of glaucoma are more likely to develop ocular hypertension.
* Age: The risk of developing ocular hypertension increases with age, especially after the age of 40.
* Race: African Americans are at a higher risk of developing ocular hypertension than other races.
* Other health conditions: Certain health conditions, such as diabetes and high blood pressure, can increase the risk of developing ocular hypertension.
* Medications: Long-term use of certain medications, such as steroids, can increase eye pressure.

Symptoms of Ocular Hypertension
---------------------------

Ocular hypertension is often asymptomatic, meaning that there are no noticeable symptoms. However, some people may experience the following symptoms:

* Blurred vision
* Eye pain or discomfort
* Redness of the eye
* Seeing halos around lights
* Nausea and vomiting

Diagnosis of Ocular Hypertension
------------------------------

Ocular hypertension can be diagnosed with a comprehensive eye exam. The exam includes:

* Visual acuity test: This test measures how well you can see at different distances.
* Dilated eye exam: This test allows your doctor to examine the inside of your eyes and check for any signs of ocular hypertension.
* Tonometry: This test measures the pressure inside your eyes.
* Ophthalmoscopy: This test allows your doctor to examine the back of your eyes and look for any signs of ocular hypertension.

Treatment of Ocular Hypertension
-----------------------------

There is no cure for ocular hypertension, but there are several treatments that can help manage the condition and prevent vision loss. These include:

* Eye drops: Medicated eye drops can be used to lower eye pressure.
* Oral medications: Oral medications, such as carbonic anhydrase inhibitors, can be used to lower eye pressure.
* Laser surgery: Laser surgery can be used to increase the drainage of fluid from the eye and lower eye pressure.
* Filtering surgery: Filtering surgery can be used to remove the vitreous gel and reduce eye pressure.

Prevention of Ocular Hypertension
-----------------------------

There is no sure way to prevent ocular hypertension, but there are several steps you can take to lower your risk of developing the condition. These include:

* Getting regular eye exams: Regular eye exams can help detect ocular hypertension early, when it is easier to treat.
* Maintaining a healthy weight: Being overweight or obese can increase your risk of developing ocular hypertension.
* Eating a healthy diet: A diet rich in fruits and vegetables can help keep your eyes healthy.
* Exercising regularly: Regular exercise can help improve blood flow and reduce eye pressure.
* Wearing protective eyewear: Wearing protective eyewear, such as sunglasses, can help protect your eyes from UV radiation and reduce your risk of developing ocular hypertension.

Prognosis of Ocular Hypertension
-----------------------------

The prognosis for ocular hypertension is generally good if the condition is detected and treated early. However, if left untreated, ocular hypertension can lead to vision loss and even blindness. It is important to seek medical attention if you experience any symptoms of ocular hypertension, such as blurred vision, eye pain, or seeing flashes of light.

Treatment for ocular hypertension usually involves medication to lower eye pressure. In some cases, laser surgery may be necessary to improve drainage of fluid from the eye. If left untreated, ocular hypertension can lead to more severe complications, such as glaucoma, which can cause permanent vision loss.

Conclusion
----------

Ocular hypertension is a common condition that can increase your risk of developing glaucoma and other eye problems. While there is no cure for ocular hypertension, early detection and treatment can help prevent complications. By understanding the causes, symptoms, diagnosis, and treatment options for ocular hypertension, you can take steps to protect your vision and maintain good eye health.

FAQs
----

1. Can ocular hypertension be cured?
No, there is no cure for ocular hypertension. However, early detection and treatment can help prevent complications.
2. What are the symptoms of ocular hypertension?
Symptoms of ocular hypertension may include blurred vision, eye pain, seeing flashes of light, and blind spots in your peripheral vision.
3. How is ocular hypertension diagnosed?
Ocular hypertension is typically diagnosed with a comprehensive eye exam, including a visual acuity test, dilated eye exam, and tonometry.
4. Can ocular hypertension lead to other eye problems?
Yes, untreated ocular hypertension can increase your risk of developing glaucoma and other eye problems, such as cataracts and optic nerve damage.
5. What are the treatment options for ocular hypertension?
Treatment for ocular hypertension usually involves medication to lower eye pressure, but in some cases, laser surgery may be necessary.
6. Is ocular hypertension inherited?
Yes, ocular hypertension can be inherited, and certain genetic factors can increase your risk of developing the condition.
7. Can ocular hypertension cause blindness?
Yes, if left untreated, ocular hypertension can lead to blindness due to optic nerve damage or glaucoma.
8. How can I reduce my risk of developing ocular hypertension?
You can reduce your risk of developing ocular hypertension by maintaining a healthy lifestyle, including regular exercise, a balanced diet, and not smoking. It is also important to have regular eye exams, especially if you have a family history of the condition.

There are two main types of heart failure:

1. Left-sided heart failure: This occurs when the left ventricle, which is the main pumping chamber of the heart, becomes weakened and is unable to pump blood effectively. This can lead to congestion in the lungs and other organs.
2. Right-sided heart failure: This occurs when the right ventricle, which pumps blood to the lungs, becomes weakened and is unable to pump blood effectively. This can lead to congestion in the body's tissues and organs.

Symptoms of heart failure may include:

* Shortness of breath
* Fatigue
* Swelling in the legs, ankles, and feet
* Swelling in the abdomen
* Weight gain
* Coughing up pink, frothy fluid
* Rapid or irregular heartbeat
* Dizziness or lightheadedness

Treatment for heart failure typically involves a combination of medications and lifestyle changes. Medications may include diuretics to remove excess fluid from the body, ACE inhibitors or beta blockers to reduce blood pressure and improve blood flow, and aldosterone antagonists to reduce the amount of fluid in the body. Lifestyle changes may include a healthy diet, regular exercise, and stress reduction techniques. In severe cases, heart failure may require hospitalization or implantation of a device such as an implantable cardioverter-defibrillator (ICD) or a left ventricular assist device (LVAD).

It is important to note that heart failure is a chronic condition, and it requires ongoing management and monitoring to prevent complications and improve quality of life. With proper treatment and lifestyle changes, many people with heart failure are able to manage their symptoms and lead active lives.

There are different types of anoxia, including:

1. Cerebral anoxia: This occurs when the brain does not receive enough oxygen, leading to cognitive impairment, confusion, and loss of consciousness.
2. Pulmonary anoxia: This occurs when the lungs do not receive enough oxygen, leading to shortness of breath, coughing, and chest pain.
3. Cardiac anoxia: This occurs when the heart does not receive enough oxygen, leading to cardiac arrest and potentially death.
4. Global anoxia: This is a complete lack of oxygen to the entire body, leading to widespread tissue damage and death.

Treatment for anoxia depends on the underlying cause and the severity of the condition. In some cases, hospitalization may be necessary to provide oxygen therapy, pain management, and other supportive care. In severe cases, anoxia can lead to long-term disability or death.

Prevention of anoxia is important, and this includes managing underlying medical conditions such as heart disease, diabetes, and respiratory problems. It also involves avoiding activities that can lead to oxygen deprivation, such as scuba diving or high-altitude climbing, without proper training and equipment.

In summary, anoxia is a serious medical condition that occurs when there is a lack of oxygen in the body or specific tissues or organs. It can cause cell death and tissue damage, leading to serious health complications and even death if left untreated. Early diagnosis and treatment are crucial to prevent long-term disability or death.

Symptoms of renovascular hypertension may include:

* High blood pressure that is resistant to treatment
* Flank pain or back pain
* Hematuria (blood in the urine)
* Proteinuria (excess protein in the urine)
* Decreased kidney function

Diagnosis of renovascular hypertension typically involves imaging tests such as angiography, CT or MRI angiography, or ultrasound to evaluate the renal arteries and identify any blockages or narrowing. Other tests such as arenography, captopril test, or adrenomedullin testing may also be used to support the diagnosis.

Treatment of renovascular hypertension typically involves medications to lower blood pressure, such as beta blockers, ACE inhibitors, or calcium channel blockers. In some cases, surgery may be necessary to restore blood flow to the kidneys. For example, atherosclerosis can be treated with angioplasty or bypass surgery.

It is important to note that renovascular hypertension is a relatively rare cause of hypertension and only accounts for about 5-10% of all cases of hypertension. However, it is an important differential diagnosis for hypertension that is resistant to treatment or has a sudden onset.

There are several possible causes of orthostatic hypotension, including:

1. Deconditioning: This is a common cause of orthostatic hypotension in older adults who have been bedridden or hospitalized for prolonged periods.
2. Medication side effects: Certain medications, such as beta blockers and vasodilators, can cause orthostatic hypotension as a side effect.
3. Heart conditions: Conditions such as heart failure, arrhythmias, and structural heart defects can lead to orthostatic hypotension.
4. Neurological disorders: Certain neurological disorders, such as Parkinson's disease, multiple sclerosis, and stroke, can cause orthostatic hypotension.
5. Vasomotor instability: This is a condition where the blood vessels constrict or dilate rapidly, leading to a drop in blood pressure.
6. Anemia: A low red blood cell count can lead to a decrease in oxygen delivery to the body's tissues, causing orthostatic hypotension.
7. Dehydration: Dehydration can cause a drop in blood volume and lead to orthostatic hypotension.
8. Hypovolemia: This is a condition where there is a low volume of blood in the body, leading to a drop in blood pressure.
9. Sepsis: Sepsis can cause vasodilation and lead to orthostatic hypotension.
10. Other causes: Other causes of orthostatic hypotension include adrenal insufficiency, thyroid disorders, and certain genetic conditions.

Symptoms of orthostatic hypotension may include:

* Dizziness or lightheadedness
* Fainting
* Blurred vision
* Nausea and vomiting
* Headaches
* Fatigue
* Weakness
* Confusion

If you experience any of these symptoms, it is important to seek medical attention as soon as possible. Your healthcare provider can perform a physical examination and order diagnostic tests to determine the underlying cause of your orthostatic hypotension. Treatment will depend on the specific cause, but may include medications to raise blood pressure, fluid replacement, and addressing any underlying conditions.

The main symptoms of OSA are:

1. Loud snoring
2. Pauses in breathing during sleep (apneas)
3. Waking up with a dry mouth or sore throat
4. Morning headaches
5. Difficulty concentrating or feeling tired during the day

OSA is caused by a physical blockage of the airway, usually due to excess tissue in the throat or a large tongue. This can be exacerbated by factors such as being overweight, having a small jaw or narrow airway, or drinking alcohol before bedtime.

If left untreated, OSA can lead to serious complications such as high blood pressure, heart disease, and stroke. Treatment options for OSA include lifestyle changes (such as weight loss and avoiding alcohol), oral appliances (such as a mandibular advancement device), and continuous positive airway pressure (CPAP) therapy. In severe cases, surgery may be necessary to remove excess tissue in the throat or widen the airway.

It is important for individuals who suspect they may have OSA to consult with a healthcare professional for proper diagnosis and treatment. A sleep study can be conducted to determine the severity of the condition and rule out other potential causes of sleep disruptions.

There are several different types of obesity, including:

1. Central obesity: This type of obesity is characterized by excess fat around the waistline, which can increase the risk of health problems such as type 2 diabetes and cardiovascular disease.
2. Peripheral obesity: This type of obesity is characterized by excess fat in the hips, thighs, and arms.
3. Visceral obesity: This type of obesity is characterized by excess fat around the internal organs in the abdominal cavity.
4. Mixed obesity: This type of obesity is characterized by both central and peripheral obesity.

Obesity can be caused by a variety of factors, including genetics, lack of physical activity, poor diet, sleep deprivation, and certain medications. Treatment for obesity typically involves a combination of lifestyle changes, such as increased physical activity and a healthy diet, and in some cases, medication or surgery may be necessary to achieve weight loss.

Preventing obesity is important for overall health and well-being, and can be achieved through a variety of strategies, including:

1. Eating a healthy, balanced diet that is low in added sugars, saturated fats, and refined carbohydrates.
2. Engaging in regular physical activity, such as walking, jogging, or swimming.
3. Getting enough sleep each night.
4. Managing stress levels through relaxation techniques, such as meditation or deep breathing.
5. Avoiding excessive alcohol consumption and quitting smoking.
6. Monitoring weight and body mass index (BMI) on a regular basis to identify any changes or potential health risks.
7. Seeking professional help from a healthcare provider or registered dietitian for personalized guidance on weight management and healthy lifestyle choices.

Symptoms of pulmonary edema may include:

* Shortness of breath (dyspnea)
* Coughing up frothy sputum
* Chest pain or tightness
* Fatigue
* Confusion or disorientation

Pulmonary edema can be diagnosed through physical examination, chest x-rays, electrocardiogram (ECG), and blood tests. Treatment options include oxygen therapy, diuretics, and medications to manage underlying conditions such as heart failure or sepsis. In severe cases, hospitalization may be necessary to provide mechanical ventilation.

Prevention measures for pulmonary edema include managing underlying medical conditions, avoiding exposure to pollutants and allergens, and seeking prompt medical attention if symptoms persist or worsen over time.

In summary, pulmonary edema is a serious condition that can impair lung function and lead to shortness of breath, chest pain, and other respiratory symptoms. Prompt diagnosis and treatment are essential to prevent complications and improve outcomes for patients with this condition.

Open-angle glaucoma can lead to damage to the optic nerve, which can cause vision loss and even blindness if left untreated. It is important for individuals at risk for open-angle glaucoma to receive regular eye exams to monitor their eye pressure and prevent any potential vision loss.

Risk factors for developing open-angle glaucoma include:

* Increasing age
* Family history of glaucoma
* African or Hispanic ancestry
* Previous eye injuries or surgeries
* Long-term use of corticosteroid medications
* Diabetes or other health conditions that can damage blood vessels.

There are several treatment options available for open-angle glaucoma, including:

* Eye drops to reduce eye pressure
* Oral medications to reduce eye pressure
* Laser surgery to improve drainage of fluid from the eye
* Incisional surgery to improve drainage of fluid from the eye.

It is important for individuals with open-angle glaucoma to work closely with their eye care professional to determine the best course of treatment and monitor their condition regularly.

The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the World Health Organization (WHO). In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.

In this article, we will explore the definition and impact of chronic diseases, as well as strategies for managing and living with them. We will also discuss the importance of early detection and prevention, as well as the role of healthcare providers in addressing the needs of individuals with chronic diseases.

What is a Chronic Disease?

A chronic disease is a condition that lasts for an extended period of time, often affecting daily life and activities. Unlike acute diseases, which have a specific beginning and end, chronic diseases are long-term and persistent. Examples of chronic diseases include:

1. Diabetes
2. Heart disease
3. Arthritis
4. Asthma
5. Cancer
6. Chronic obstructive pulmonary disease (COPD)
7. Chronic kidney disease (CKD)
8. Hypertension
9. Osteoporosis
10. Stroke

Impact of Chronic Diseases

The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the WHO. In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.

Chronic diseases can also have a significant impact on an individual's quality of life, limiting their ability to participate in activities they enjoy and affecting their relationships with family and friends. Moreover, the financial burden of chronic diseases can lead to poverty and reduce economic productivity, thus having a broader societal impact.

Addressing Chronic Diseases

Given the significant burden of chronic diseases, it is essential that we address them effectively. This requires a multi-faceted approach that includes:

1. Lifestyle modifications: Encouraging healthy behaviors such as regular physical activity, a balanced diet, and smoking cessation can help prevent and manage chronic diseases.
2. Early detection and diagnosis: Identifying risk factors and detecting diseases early can help prevent or delay their progression.
3. Medication management: Effective medication management is crucial for controlling symptoms and slowing disease progression.
4. Multi-disciplinary care: Collaboration between healthcare providers, patients, and families is essential for managing chronic diseases.
5. Health promotion and disease prevention: Educating individuals about the risks of chronic diseases and promoting healthy behaviors can help prevent their onset.
6. Addressing social determinants of health: Social determinants such as poverty, education, and employment can have a significant impact on health outcomes. Addressing these factors is essential for reducing health disparities and improving overall health.
7. Investing in healthcare infrastructure: Investing in healthcare infrastructure, technology, and research is necessary to improve disease detection, diagnosis, and treatment.
8. Encouraging policy change: Policy changes can help create supportive environments for healthy behaviors and reduce the burden of chronic diseases.
9. Increasing public awareness: Raising public awareness about the risks and consequences of chronic diseases can help individuals make informed decisions about their health.
10. Providing support for caregivers: Chronic diseases can have a significant impact on family members and caregivers, so providing them with support is essential for improving overall health outcomes.

Conclusion

Chronic diseases are a major public health burden that affect millions of people worldwide. Addressing these diseases requires a multi-faceted approach that includes lifestyle changes, addressing social determinants of health, investing in healthcare infrastructure, encouraging policy change, increasing public awareness, and providing support for caregivers. By taking a comprehensive approach to chronic disease prevention and management, we can improve the health and well-being of individuals and communities worldwide.

There are several types of respiratory insufficiency, including:

1. Hypoxemic respiratory failure: This occurs when the lungs do not take in enough oxygen, resulting in low levels of oxygen in the bloodstream.
2. Hypercapnic respiratory failure: This occurs when the lungs are unable to remove enough carbon dioxide from the bloodstream, leading to high levels of carbon dioxide in the bloodstream.
3. Mixed respiratory failure: This occurs when both hypoxemic and hypercapnic respiratory failure occur simultaneously.

Treatment for respiratory insufficiency depends on the underlying cause and may include medications, oxygen therapy, mechanical ventilation, and other supportive care measures. In severe cases, lung transplantation may be necessary. It is important to seek medical attention if symptoms of respiratory insufficiency are present, as early intervention can improve outcomes and prevent complications.

Albuminuria is often associated with conditions such as diabetes, high blood pressure, and kidney disease, as these conditions can damage the kidneys and cause albumin to leak into the urine. It is also a common finding in people with chronic kidney disease (CKD), as the damaged kidneys are unable to filter out the excess protein.

If left untreated, albuminuria can lead to complications such as kidney failure, cardiovascular disease, and an increased risk of death. Treatment options for albuminuria include medications to lower blood pressure and control blood sugar levels, as well as dietary changes and lifestyle modifications. In severe cases, dialysis or kidney transplantation may be necessary.

In summary, albuminuria is the presence of albumin in the urine, which can be an indicator of kidney damage or disease. It is often associated with conditions such as diabetes and high blood pressure, and can lead to complications if left untreated.

1. Obstructive Sleep Apnea (OSA): This is the most common type of sleep apnea, caused by a physical blockage in the throat, such as excess tissue or a large tongue.
2. Central Sleep Apnea (CSA): This type of sleep apnea is caused by a problem in the brain's breathing control center.
3. Mixed Sleep Apnea: This type of sleep apnea is a combination of OSA and CSA.

The symptoms of sleep apnea syndromes can include:

* Loud snoring
* Pauses in breathing during sleep
* Waking up with a dry mouth or sore throat
* Morning headaches
* Difficulty concentrating or feeling tired during the day

If left untreated, sleep apnea syndromes can lead to serious health problems, such as:

* High blood pressure
* Heart disease
* Stroke
* Diabetes
* Depression

Treatment options for sleep apnea syndromes include:

* Lifestyle changes, such as losing weight or quitting smoking
* Oral appliances, such as a mouthpiece to help keep the airway open
* Continuous positive airway pressure (CPAP) therapy, which involves wearing a mask over the nose and/or mouth while sleeping to deliver a constant flow of air
* Bi-level positive airway pressure (BiPAP) therapy, which is similar to CPAP but delivers two different levels of air pressure
* Surgery, such as a tonsillectomy or a procedure to remove excess tissue in the throat.

It's important to seek medical attention if you suspect you have sleep apnea syndromes, as treatment can help improve your quality of life and reduce the risk of serious health problems.

Hypercapnia is a medical condition where there is an excessive amount of carbon dioxide (CO2) in the bloodstream. This can occur due to various reasons such as:

1. Respiratory failure: When the lungs are unable to remove enough CO2 from the body, leading to an accumulation of CO2 in the bloodstream.
2. Lung disease: Certain lung diseases such as chronic obstructive pulmonary disease (COPD) or pneumonia can cause hypercapnia by reducing the ability of the lungs to exchange gases.
3. Medication use: Certain medications, such as anesthetics and sedatives, can slow down breathing and lead to hypercapnia.

The symptoms of hypercapnia can vary depending on the severity of the condition, but may include:

1. Headaches
2. Dizziness
3. Confusion
4. Shortness of breath
5. Fatigue
6. Sleep disturbances

If left untreated, hypercapnia can lead to more severe complications such as:

1. Respiratory acidosis: When the body produces too much acid, leading to a drop in blood pH.
2. Cardiac arrhythmias: Abnormal heart rhythms can occur due to the increased CO2 levels in the bloodstream.
3. Seizures: In severe cases of hypercapnia, seizures can occur due to the changes in brain chemistry caused by the excessive CO2.

Treatment for hypercapnia typically involves addressing the underlying cause and managing symptoms through respiratory support and other therapies as needed. This may include:

1. Oxygen therapy: Administering oxygen through a mask or nasal tubes to help increase oxygen levels in the bloodstream and reduce CO2 levels.
2. Ventilation assistance: Using a machine to assist with breathing, such as a ventilator, to help remove excess CO2 from the lungs.
3. Carbon dioxide removal: Using a device to remove CO2 from the bloodstream, such as a dialysis machine.
4. Medication management: Adjusting medications that may be contributing to hypercapnia, such as anesthetics or sedatives.
5. Respiratory therapy: Providing breathing exercises and other techniques to help improve lung function and reduce symptoms.

It is important to seek medical attention if you suspect you or someone else may have hypercapnia, as early diagnosis and treatment can help prevent complications and improve outcomes.

Coronary disease is often caused by a combination of genetic and lifestyle factors, such as high blood pressure, high cholesterol levels, smoking, obesity, and a lack of physical activity. It can also be triggered by other medical conditions, such as diabetes and kidney disease.

The symptoms of coronary disease can vary depending on the severity of the condition, but may include:

* Chest pain or discomfort (angina)
* Shortness of breath
* Fatigue
* Swelling of the legs and feet
* Pain in the arms and back

Coronary disease is typically diagnosed through a combination of physical examination, medical history, and diagnostic tests such as electrocardiograms (ECGs), stress tests, and cardiac imaging. Treatment for coronary disease may include lifestyle changes, medications to control symptoms, and surgical procedures such as angioplasty or bypass surgery to improve blood flow to the heart.

Preventative measures for coronary disease include:

* Maintaining a healthy diet and exercise routine
* Quitting smoking and limiting alcohol consumption
* Managing high blood pressure, high cholesterol levels, and other underlying medical conditions
* Reducing stress through relaxation techniques or therapy.

Compartment syndrome can occur in any compartment of the body but is most common in the arms and legs. It can be caused by a variety of factors, including:

1. Direct trauma: A sharp blow to the compartment can cause bleeding or swelling within the compartment, leading to increased pressure.
2. Blunt trauma: A blunt force, such as a fall or a car crash, can cause bleeding or swelling within the compartment.
3. Overuse injuries: Repetitive stress or overuse can cause inflammation and swelling within the compartment, leading to increased pressure.
4. Infection: Bacterial or fungal infections can cause swelling and increased pressure within the compartment.
5. Poor circulation: Reduced blood flow to the compartment can lead to decreased oxygen delivery and increased metabolic waste buildup, which can cause pain and swelling.

Symptoms of compartment syndrome may include:

1. Pain: Pain is the most common symptom of compartment syndrome, and it is usually severe and localized to the affected compartment.
2. Swelling: Swelling within the compartment can cause pain and difficulty moving the affected limb.
3. Weakness: As the pressure within the compartment increases, muscle weakness and loss of sensation may occur.
4. Numbness or tingling: Compartment syndrome can cause numbness or tingling sensations in the affected limb.
5. Paresthesia: Burning, shooting, or stabbing pain may be felt in the affected limb.

If left untreated, compartment syndrome can lead to serious complications, including nerve damage, muscle damage, and even loss of the affected limb. Treatment typically involves surgical release of the affected compartment to relieve pressure and restore blood flow.

Type 2 diabetes can be managed through a combination of diet, exercise, and medication. In some cases, lifestyle changes may be enough to control blood sugar levels, while in other cases, medication or insulin therapy may be necessary. Regular monitoring of blood sugar levels and follow-up with a healthcare provider are important for managing the condition and preventing complications.

Common symptoms of type 2 diabetes include:

* Increased thirst and urination
* Fatigue
* Blurred vision
* Cuts or bruises that are slow to heal
* Tingling or numbness in the hands and feet
* Recurring skin, gum, or bladder infections

If left untreated, type 2 diabetes can lead to a range of complications, including:

* Heart disease and stroke
* Kidney damage and failure
* Nerve damage and pain
* Eye damage and blindness
* Foot damage and amputation

The exact cause of type 2 diabetes is not known, but it is believed to be linked to a combination of genetic and lifestyle factors, such as:

* Obesity and excess body weight
* Lack of physical activity
* Poor diet and nutrition
* Age and family history
* Certain ethnicities (e.g., African American, Hispanic/Latino, Native American)
* History of gestational diabetes or delivering a baby over 9 lbs.

There is no cure for type 2 diabetes, but it can be managed and controlled through a combination of lifestyle changes and medication. With proper treatment and self-care, people with type 2 diabetes can lead long, healthy lives.

In adults, RDS is less common than in newborns but can still occur in certain situations. These include:

* Sepsis (a severe infection that can cause inflammation throughout the body)
* Pneumonia or other respiratory infections
* Injury to the lung tissue, such as from a car accident or smoke inhalation
* Burns that cover a large portion of the body
* Certain medications, such as those used to treat cancer or autoimmune disorders.

Symptoms of RDS in adults can include:

* Shortness of breath
* Rapid breathing
* Chest tightness or pain
* Low oxygen levels in the blood
* Blue-tinged skin (cyanosis)
* Confusion or disorientation

Diagnosis of RDS in adults is typically made based on a combination of physical examination, medical history, and diagnostic tests such as chest X-rays or blood gas analysis. Treatment may involve oxygen therapy, mechanical ventilation (a machine that helps the patient breathe), and medications to help increase surfactant production or reduce inflammation in the lungs. In severe cases, a lung transplant may be necessary.

Prevention of RDS in adults includes avoiding exposure to risk factors such as smoking and other pollutants, maintaining good overall health, and seeking prompt medical attention if any respiratory symptoms develop.

In some cases, hyperemia can be a sign of a more serious underlying condition that requires medical attention. For example, if hyperemia is caused by an inflammatory or infectious process, it may lead to tissue damage or organ dysfunction if left untreated.

Hyperemia can occur in various parts of the body, including the skin, muscles, organs, and other tissues. It is often diagnosed through physical examination and imaging tests such as ultrasound, computed tomography (CT), or magnetic resonance imaging (MRI). Treatment for hyperemia depends on its underlying cause, and may include antibiotics, anti-inflammatory medications, or surgery.

In the context of dermatology, hyperemia is often used to describe a condition called erythema, which is characterized by redness and swelling of the skin due to increased blood flow. Erythema can be caused by various factors, such as sun exposure, allergic reactions, or skin infections. Treatment for erythema may include topical medications, oral medications, or other therapies depending on its underlying cause.

There are several potential causes of LVD, including:

1. Coronary artery disease: The buildup of plaque in the coronary arteries can lead to a heart attack, which can damage the left ventricle and impair its ability to function properly.
2. Heart failure: When the heart is unable to pump enough blood to meet the body's needs, it can lead to LVD.
3. Cardiomyopathy: This is a condition where the heart muscle becomes weakened or enlarged, leading to impaired function of the left ventricle.
4. Heart valve disease: Problems with the heart valves can disrupt the normal flow of blood and cause LVD.
5. Hypertension: High blood pressure can cause damage to the heart muscle and lead to LVD.
6. Genetic factors: Some people may be born with genetic mutations that predispose them to developing LVD.
7. Viral infections: Certain viral infections, such as myocarditis, can inflame and damage the heart muscle, leading to LVD.
8. Alcohol or drug abuse: Substance abuse can damage the heart muscle and lead to LVD.
9. Nutritional deficiencies: A diet lacking essential nutrients can lead to damage to the heart muscle and increase the risk of LVD.

Diagnosis of LVD typically involves a physical exam, medical history, and results of diagnostic tests such as electrocardiograms (ECGs), echocardiograms, and stress tests. Treatment options for LVD depend on the underlying cause, but may include medications to improve cardiac function, lifestyle changes, and in severe cases, surgery or other procedures.

Preventing LVD involves taking steps to maintain a healthy heart and reducing risk factors such as high blood pressure, smoking, and obesity. This can be achieved through a balanced diet, regular exercise, stress management, and avoiding substance abuse. Early detection and treatment of underlying conditions that increase the risk of LVD can also help prevent the condition from developing.

Symptoms of hypovolemia may include:

* Decreased blood pressure
* Tachycardia (rapid heart rate)
* Tachypnea (rapid breathing)
* Confusion or disorientation
* Pale, cool, or clammy skin
* Weakness or fatigue

Treatment of hypovolemia typically involves fluid resuscitation, which may involve the administration of intravenous fluids, blood transfusions, or other appropriate interventions to restore blood volume and pressure. In severe cases, hypovolemia can lead to sepsis, organ failure, and death if left untreated.

It is important for medical professionals to quickly identify and treat hypovolemia in order to prevent complications and improve patient outcomes.

Note: This definition is based on the current medical knowledge and may change as new research and discoveries are made.

During ventricular remodeling, the heart muscle becomes thicker and less flexible, leading to a decrease in the heart's ability to fill with blood and pump it out to the body. This can lead to shortness of breath, fatigue, and swelling in the legs and feet.

Ventricular remodeling is a natural response to injury, but it can also be exacerbated by factors such as high blood pressure, diabetes, and obesity. Treatment for ventricular remodeling typically involves medications and lifestyle changes, such as exercise and a healthy diet, to help manage symptoms and slow the progression of the condition. In some cases, surgery or other procedures may be necessary to repair or replace damaged heart tissue.

The process of ventricular remodeling is complex and involves multiple cellular and molecular mechanisms. It is thought to be driven by a variety of factors, including changes in gene expression, inflammation, and the activity of various signaling pathways.

Overall, ventricular remodeling is an important condition that can have significant consequences for patients with heart disease. Understanding its causes and mechanisms is crucial for developing effective treatments and improving outcomes for those affected by this condition.

Proteinuria is usually diagnosed by a urine protein-to-creatinine ratio (P/C ratio) or a 24-hour urine protein collection. The amount and duration of proteinuria can help distinguish between different underlying causes and predict prognosis.

Proteinuria can have significant clinical implications, as it is associated with increased risk of cardiovascular disease, kidney damage, and malnutrition. Treatment of the underlying cause can help reduce or eliminate proteinuria.

Aortic coarctation can be caused by a variety of genetic mutations or can be acquired through other conditions such as infections or autoimmune disorders. It is often diagnosed in infancy or early childhood, and symptoms can include:

* High blood pressure in the arms and low blood pressure in the legs
* Pulse narrowing or absence of a pulse in one or both arms
* Bluish skin color (cyanosis)
* Shortness of breath or fatigue during exercise

If left untreated, aortic coarctation can lead to complications such as heart failure, aneurysms, or cardiac arrhythmias. Treatment options for aortic coarctation include:

* Balloon dilation: A procedure in which a balloon is inserted through a catheter into the narrowed section of the aorta and inflated to widen the passage.
* Surgical repair: An open-heart surgery that involves cutting out the narrowed section of the aorta and sewing it back together with a patch or graft.

It is important for individuals with aortic coarctation to receive regular monitoring and treatment from a cardiologist or cardiac surgeon to prevent complications and manage symptoms. With appropriate treatment, most individuals with aortic coarctation can lead active and healthy lives.

Examples of acute diseases include:

1. Common cold and flu
2. Pneumonia and bronchitis
3. Appendicitis and other abdominal emergencies
4. Heart attacks and strokes
5. Asthma attacks and allergic reactions
6. Skin infections and cellulitis
7. Urinary tract infections
8. Sinusitis and meningitis
9. Gastroenteritis and food poisoning
10. Sprains, strains, and fractures.

Acute diseases can be treated effectively with antibiotics, medications, or other therapies. However, if left untreated, they can lead to chronic conditions or complications that may require long-term care. Therefore, it is important to seek medical attention promptly if symptoms persist or worsen over time.

White coat hypertension is a phenomenon where patients experience elevated blood pressure readings in clinical settings, such as doctors' offices or hospitals, compared to their normal blood pressure readings outside of these settings. This condition is also known as "white coat effect."

The term "white coat" refers to the traditional white lab coats worn by healthcare professionals, and the "hypertension" part of the name indicates that the patients have higher-than-normal blood pressure readings. The "effect" portion of the name suggests that the medical setting itself has some kind of impact on the patient's blood pressure.

Etymology:

The term "white coat hypertension" was coined to describe the phenomenon where patients tend to have higher blood pressure in clinical settings, possibly due to anxiety or other factors related to being in a medical setting. The term has been in use since at least the 1980s and is widely recognized in the medical field.

Explanation:

White coat hypertension is thought to be caused by a combination of factors, including anxiety, stress, and the pressure of being examined and monitored in a medical setting. Some patients may also experience a "fight or flight" response, which can cause their blood pressure to increase. Additionally, the way that blood pressure is measured in clinical settings (e.g., using an inflatable cuff) may not accurately reflect a patient's usual blood pressure.

White coat hypertension can be diagnosed by comparing blood pressure readings taken in a medical setting with those taken outside of the setting, such as at home or in other non-clinical environments. Treatment for white coat hypertension may involve addressing any underlying anxiety or stress issues, using different methods to measure blood pressure, and/or adjusting medication regimens as needed.

In summary, white coat hypertension is a phenomenon where patients experience elevated blood pressure readings in medical settings due to various factors such as anxiety, stress, and the clinical setting itself. The term "white coat" refers to the traditional white lab coats worn by healthcare professionals, while "hypertension" indicates that the patients have higher-than-normal blood pressure readings.

The symptoms of HACE typically develop over a period of hours or days after reaching high altitude and can include:

* Confusion, disorientation, and difficulty concentrating
* Headache, nausea, and vomiting
* Dizziness, giddiness, and loss of balance
* Sleep disturbances, including insomnia and vivid dreams
* Seizures
* Coma

HACE can be diagnosed using a combination of physical examination, laboratory tests, and imaging studies. Treatment typically involves descent to a lower altitude and administration of medications to relieve symptoms and reduce swelling in the brain. In severe cases, HACE may require hospitalization and more intensive treatment, including oxygen therapy and mechanical ventilation.

Prevention is key in avoiding HACE, and it is important to ascend to high altitudes gradually and allow time for acclimatization. Climbers and travelers should also be aware of the warning signs of HACE and seek medical attention immediately if symptoms develop. With prompt and appropriate treatment, most people with HACE can recover fully, but delays in diagnosis and treatment can lead to serious complications and even death.

There are several types of ischemia, including:

1. Myocardial ischemia: Reduced blood flow to the heart muscle, which can lead to chest pain or a heart attack.
2. Cerebral ischemia: Reduced blood flow to the brain, which can lead to stroke or cognitive impairment.
3. Peripheral arterial ischemia: Reduced blood flow to the legs and arms.
4. Renal ischemia: Reduced blood flow to the kidneys.
5. Hepatic ischemia: Reduced blood flow to the liver.

Ischemia can be diagnosed through a variety of tests, including electrocardiograms (ECGs), stress tests, and imaging studies such as CT or MRI scans. Treatment for ischemia depends on the underlying cause and may include medications, lifestyle changes, or surgical interventions.

Note: Portal hypertension is a common complication of liver disease, especially cirrhosis. It is characterized by elevated pressure within the portal vein system, which can lead to splanchnic vasodilation, increased blood flow, and edema in the splanchnic organ.

Symptoms: Symptoms of portal hypertension may include ascites (fluid accumulation in the abdomen), encephalopathy (mental confusion or disorientation), gastrointestinal bleeding, and jaundice (yellowing of the skin and eyes).

Diagnosis: The diagnosis of portal hypertension is based on a combination of clinical findings, laboratory tests, and imaging studies. Laboratory tests may include liver function tests, blood counts, and coagulation studies. Imaging studies may include ultrasonography, computed tomography (CT), or magnetic resonance imaging (MRI).

Treatment: Treatment of portal hypertension depends on the underlying cause and may include medications to control symptoms, such as beta blockers to reduce portal pressure, antibiotics to treat infection, and nonsteroidal anti-inflammatory drugs (NSAIDs) to relieve pain. In severe cases, surgery or shunt procedures may be necessary.

Prognosis: The prognosis for patients with portal hypertension is generally poor, as it is often associated with advanced liver disease. The 5-year survival rate for patients with cirrhosis and portal hypertension is approximately 50%.

A condition in which the kidneys gradually lose their function over time, leading to the accumulation of waste products in the body. Also known as chronic kidney disease (CKD).

Prevalence:

Chronic kidney failure affects approximately 20 million people worldwide and is a major public health concern. In the United States, it is estimated that 1 in 5 adults has CKD, with African Americans being disproportionately affected.

Causes:

The causes of chronic kidney failure are numerous and include:

1. Diabetes: High blood sugar levels can damage the kidneys over time.
2. Hypertension: Uncontrolled high blood pressure can cause damage to the blood vessels in the kidneys.
3. Glomerulonephritis: An inflammation of the glomeruli, the tiny blood vessels in the kidneys that filter waste and excess fluids from the blood.
4. Interstitial nephritis: Inflammation of the tissue between the kidney tubules.
5. Pyelonephritis: Infection of the kidneys, usually caused by bacteria or viruses.
6. Polycystic kidney disease: A genetic disorder that causes cysts to grow on the kidneys.
7. Obesity: Excess weight can increase blood pressure and strain on the kidneys.
8. Family history: A family history of kidney disease increases the risk of developing chronic kidney failure.

Symptoms:

Early stages of chronic kidney failure may not cause any symptoms, but as the disease progresses, symptoms can include:

1. Fatigue: Feeling tired or weak.
2. Swelling: In the legs, ankles, and feet.
3. Nausea and vomiting: Due to the buildup of waste products in the body.
4. Poor appetite: Loss of interest in food.
5. Difficulty concentrating: Cognitive impairment due to the buildup of waste products in the brain.
6. Shortness of breath: Due to fluid buildup in the lungs.
7. Pain: In the back, flank, or abdomen.
8. Urination changes: Decreased urine production, dark-colored urine, or blood in the urine.
9. Heart problems: Chronic kidney failure can increase the risk of heart disease and heart attack.

Diagnosis:

Chronic kidney failure is typically diagnosed based on a combination of physical examination findings, medical history, laboratory tests, and imaging studies. Laboratory tests may include:

1. Blood urea nitrogen (BUN) and creatinine: Waste products in the blood that increase with decreased kidney function.
2. Electrolyte levels: Imbalances in electrolytes such as sodium, potassium, and phosphorus can indicate kidney dysfunction.
3. Kidney function tests: Measurement of glomerular filtration rate (GFR) to determine the level of kidney function.
4. Urinalysis: Examination of urine for protein, blood, or white blood cells.

Imaging studies may include:

1. Ultrasound: To assess the size and shape of the kidneys, detect any blockages, and identify any other abnormalities.
2. Computed tomography (CT) scan: To provide detailed images of the kidneys and detect any obstructions or abscesses.
3. Magnetic resonance imaging (MRI): To evaluate the kidneys and detect any damage or scarring.

Treatment:

Treatment for chronic kidney failure depends on the underlying cause and the severity of the disease. The goals of treatment are to slow progression of the disease, manage symptoms, and improve quality of life. Treatment may include:

1. Medications: To control high blood pressure, lower cholesterol levels, reduce proteinuria, and manage anemia.
2. Diet: A healthy diet that limits protein intake, controls salt and water intake, and emphasizes low-fat dairy products, fruits, and vegetables.
3. Fluid management: Monitoring and control of fluid intake to prevent fluid buildup in the body.
4. Dialysis: A machine that filters waste products from the blood when the kidneys are no longer able to do so.
5. Transplantation: A kidney transplant may be considered for some patients with advanced chronic kidney failure.

Complications:

Chronic kidney failure can lead to several complications, including:

1. Heart disease: High blood pressure and anemia can increase the risk of heart disease.
2. Anemia: A decrease in red blood cells can cause fatigue, weakness, and shortness of breath.
3. Bone disease: A disorder that can lead to bone pain, weakness, and an increased risk of fractures.
4. Electrolyte imbalance: Imbalances of electrolytes such as potassium, phosphorus, and sodium can cause muscle weakness, heart arrhythmias, and other complications.
5. Infections: A decrease in immune function can increase the risk of infections.
6. Nutritional deficiencies: Poor appetite, nausea, and vomiting can lead to malnutrition and nutrient deficiencies.
7. Cardiovascular disease: High blood pressure, anemia, and other complications can increase the risk of cardiovascular disease.
8. Pain: Chronic kidney failure can cause pain, particularly in the back, flank, and abdomen.
9. Sleep disorders: Insomnia, sleep apnea, and restless leg syndrome are common complications.
10. Depression and anxiety: The emotional burden of chronic kidney failure can lead to depression and anxiety.

The symptoms of hemorrhagic shock may include:

* Pale, cool, or clammy skin
* Fast heart rate
* Shallow breathing
* Confusion or loss of consciousness
* Decreased urine output

Treatment of hemorrhagic shock typically involves replacing lost blood volume with IV fluids and/or blood transfusions. In severe cases, medications such as vasopressors may be used to raise blood pressure and improve circulation. Surgical intervention may also be necessary to control the bleeding source.

The goal of treatment is to restore blood flow and oxygenation to vital organs, such as the brain, heart, and kidneys, and to prevent further bleeding and hypovolemia. Early recognition and aggressive treatment of hemorrhagic shock are critical to preventing severe complications and mortality.

1. Stroke: A stroke occurs when the blood supply to the brain is interrupted, either due to a blockage or a rupture of the blood vessels. This can lead to cell death and permanent brain damage.
2. Cerebral vasospasm: Vasospasm is a temporary constriction of the blood vessels in the brain, which can occur after a subarachnoid hemorrhage (bleeding in the space surrounding the brain).
3. Moyamoya disease: This is a rare condition caused by narrowing or blockage of the internal carotid artery and its branches. It can lead to recurrent transient ischemic attacks (TIs) or stroke.
4. Cerebral amyloid angiopathy: This is a condition where abnormal protein deposits accumulate in the blood vessels of the brain, leading to inflammation and bleeding.
5. Cavernous malformations: These are abnormal collections of blood vessels in the brain that can cause seizures, headaches, and other symptoms.
6. Carotid artery disease: Atherosclerosis (hardening) of the carotid arteries can lead to a stroke or TIAs.
7. Vertebrobasilar insufficiency: This is a condition where the blood flow to the brain is reduced due to narrowing or blockage of the vertebral and basilar arteries.
8. Temporal lobe dementia: This is a type of dementia that affects the temporal lobe of the brain, leading to memory loss and other cognitive symptoms.
9. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL): This is a rare genetic disorder that affects the blood vessels in the brain, leading to recurrent stroke-like events.
10. Moyamoya disease: This is a rare condition caused by narrowing or blockage of the internal carotid artery and its branches, leading to decreased blood flow to the brain and increased risk of stroke.

It's important to note that this list is not exhaustive and there may be other causes of stroke and TIAs that are not included here. A proper diagnosis can only be made by a qualified medical professional after conducting a thorough examination and reviewing the individual's medical history.

There are several possible causes of airway obstruction, including:

1. Asthma: Inflammation of the airways can cause them to narrow and become obstructed.
2. Chronic obstructive pulmonary disease (COPD): This is a progressive condition that damages the lungs and can lead to airway obstruction.
3. Bronchitis: Inflammation of the bronchial tubes (the airways that lead to the lungs) can cause them to narrow and become obstructed.
4. Pneumonia: Infection of the lungs can cause inflammation and narrowing of the airways.
5. Tumors: Cancerous tumors in the chest or throat can grow and block the airways.
6. Foreign objects: Objects such as food or toys can become lodged in the airways and cause obstruction.
7. Anaphylaxis: A severe allergic reaction can cause swelling of the airways and obstruct breathing.
8. Other conditions such as sleep apnea, cystic fibrosis, and vocal cord paralysis can also cause airway obstruction.

Symptoms of airway obstruction may include:

1. Difficulty breathing
2. Wheezing or stridor (a high-pitched sound when breathing in)
3. Chest tightness or pain
4. Coughing up mucus or phlegm
5. Shortness of breath
6. Blue lips or fingernail beds (in severe cases)

Treatment of airway obstruction depends on the underlying cause and may include medications such as bronchodilators, inhalers, and steroids, as well as surgery to remove blockages or repair damaged tissue. In severe cases, a tracheostomy (a tube inserted into the windpipe to help with breathing) may be necessary.

1. Ischemic stroke: This is the most common type of stroke, accounting for about 87% of all strokes. It occurs when a blood vessel in the brain becomes blocked, reducing blood flow to the brain.
2. Hemorrhagic stroke: This type of stroke occurs when a blood vessel in the brain ruptures, causing bleeding in the brain. High blood pressure, aneurysms, and blood vessel malformations can all cause hemorrhagic strokes.
3. Transient ischemic attack (TIA): Also known as a "mini-stroke," a TIA is a temporary interruption of blood flow to the brain that lasts for a short period of time, usually less than 24 hours. TIAs are often a warning sign for a future stroke and should be taken seriously.

Stroke can cause a wide range of symptoms depending on the location and severity of the damage to the brain. Some common symptoms include:

* Weakness or numbness in the face, arm, or leg
* Difficulty speaking or understanding speech
* Sudden vision loss or double vision
* Dizziness, loss of balance, or sudden falls
* Severe headache
* Confusion, disorientation, or difficulty with memory

Stroke is a leading cause of long-term disability and can have a significant impact on the quality of life for survivors. However, with prompt medical treatment and rehabilitation, many people are able to recover some or all of their lost functions and lead active lives.

The medical community has made significant progress in understanding stroke and developing effective treatments. Some of the most important advances include:

* Development of clot-busting drugs and mechanical thrombectomy devices to treat ischemic strokes
* Improved imaging techniques, such as CT and MRI scans, to diagnose stroke and determine its cause
* Advances in surgical techniques for hemorrhagic stroke
* Development of new medications to prevent blood clots and reduce the risk of stroke

Despite these advances, stroke remains a significant public health problem. According to the American Heart Association, stroke is the fifth leading cause of death in the United States and the leading cause of long-term disability. In 2017, there were over 795,000 strokes in the United States alone.

There are several risk factors for stroke that can be controlled or modified. These include:

* High blood pressure
* Diabetes mellitus
* High cholesterol levels
* Smoking
* Obesity
* Lack of physical activity
* Poor diet

In addition to these modifiable risk factors, there are also several non-modifiable risk factors for stroke, such as age (stroke risk increases with age), family history of stroke, and previous stroke or transient ischemic attack (TIA).

The medical community has made significant progress in understanding the causes and risk factors for stroke, as well as developing effective treatments and prevention strategies. However, more research is needed to improve outcomes for stroke survivors and reduce the overall burden of this disease.

1. Abdominal obesity (excess fat around the waistline)
2. High blood pressure (hypertension)
3. Elevated fasting glucose (high blood sugar)
4. High serum triglycerides (elevated levels of triglycerides in the blood)
5. Low HDL cholesterol (low levels of "good" cholesterol)

Having three or more of these conditions is considered a diagnosis of metabolic syndrome X. It is estimated that approximately 34% of adults in the United States have this syndrome, and it is more common in women than men. Risk factors for developing metabolic syndrome include obesity, lack of physical activity, poor diet, and a family history of type 2 diabetes or CVD.

The term "metabolic syndrome" was first introduced in the medical literature in the late 1980s, and since then, it has been the subject of extensive research. The exact causes of metabolic syndrome are not yet fully understood, but it is believed to be related to insulin resistance, inflammation, and changes in body fat distribution.

Treatment for metabolic syndrome typically involves lifestyle modifications such as weight loss, regular physical activity, and a healthy diet. Medications such as blood pressure-lowering drugs, cholesterol-lowering drugs, and anti-diabetic medications may also be prescribed if necessary. It is important to note that not everyone with metabolic syndrome will develop type 2 diabetes or CVD, but the risk is increased. Therefore, early detection and treatment are crucial in preventing these complications.

There are several possible causes of dizziness, including:

1. Inner ear problems: The inner ear is responsible for balance and equilibrium. Any disruption in the inner ear can cause dizziness.
2. Benign paroxysmal positional vertigo (BPPV): This is a condition that causes brief episodes of vertigo triggered by changes in head position.
3. Labyrinthitis: This is an inner ear infection that causes dizziness and hearing loss.
4. Vestibular migraine: This is a type of migraine that causes dizziness and other symptoms such as headaches.
5. Meniere's disease: This is a disorder of the inner ear that causes dizziness, tinnitus (ringing in the ears), and hearing loss.
6. Medication side effects: Certain medications can cause dizziness as a side effect.
7. Low blood pressure: A sudden drop in blood pressure can cause dizziness.
8. Anxiety: Anxiety can cause dizziness and other symptoms such as rapid heartbeat and shortness of breath.
9. Heart problems: Certain heart conditions such as arrhythmias or heart failure can cause dizziness.
10. Dehydration: Dehydration can cause dizziness, especially if it is severe.

If you are experiencing dizziness, it is important to seek medical attention to determine the underlying cause and receive appropriate treatment. Your healthcare provider may perform a physical examination, take a detailed medical history, and order diagnostic tests such as a hearing assessment or imaging studies to help identify the cause of your dizziness. Treatment will depend on the underlying cause, but may include medications, vestibular rehabilitation therapy, or lifestyle changes.

Synonyms: RV dysfunction

See also: Left Ventricular Dysfunction, Cardiac Dysfunction, Heart Failure

Note: This term is not a formal medical diagnosis but rather a descriptive term used to indicate the specific location of cardiac dysfunction. A more comprehensive diagnosis would require further evaluation and testing by a healthcare provider.

1. Infection: Bacterial or viral infections can develop after surgery, potentially leading to sepsis or organ failure.
2. Adhesions: Scar tissue can form during the healing process, which can cause bowel obstruction, chronic pain, or other complications.
3. Wound complications: Incisional hernias, wound dehiscence (separation of the wound edges), and wound infections can occur.
4. Respiratory problems: Pneumonia, respiratory failure, and atelectasis (collapsed lung) can develop after surgery, particularly in older adults or those with pre-existing respiratory conditions.
5. Cardiovascular complications: Myocardial infarction (heart attack), cardiac arrhythmias, and cardiac failure can occur after surgery, especially in high-risk patients.
6. Renal (kidney) problems: Acute kidney injury or chronic kidney disease can develop postoperatively, particularly in patients with pre-existing renal impairment.
7. Neurological complications: Stroke, seizures, and neuropraxia (nerve damage) can occur after surgery, especially in patients with pre-existing neurological conditions.
8. Pulmonary embolism: Blood clots can form in the legs or lungs after surgery, potentially causing pulmonary embolism.
9. Anesthesia-related complications: Respiratory and cardiac complications can occur during anesthesia, including respiratory and cardiac arrest.
10. delayed healing: Wound healing may be delayed or impaired after surgery, particularly in patients with pre-existing medical conditions.

It is important for patients to be aware of these potential complications and to discuss any concerns with their surgeon and healthcare team before undergoing surgery.

Some examples of pathologic constrictions include:

1. Stenosis: A narrowing or constriction of a blood vessel or other tubular structure, often caused by the buildup of plaque or scar tissue.
2. Asthma: A condition characterized by inflammation and constriction of the airways, which can make breathing difficult.
3. Esophageal stricture: A narrowing of the esophagus that can cause difficulty swallowing.
4. Gastric ring constriction: A narrowing of the stomach caused by a band of tissue that forms in the upper part of the stomach.
5. Anal fissure: A tear in the lining of the anus that can cause pain and difficulty passing stools.

Pathologic constrictions can be caused by a variety of factors, including inflammation, infection, injury, or genetic disorders. They can be diagnosed through imaging tests such as X-rays, CT scans, or endoscopies, and may require surgical treatment to relieve symptoms and improve function.

Myocardial ischemia can be caused by a variety of factors, including coronary artery disease, high blood pressure, diabetes, and smoking. It can also be triggered by physical exertion or stress.

There are several types of myocardial ischemia, including:

1. Stable angina: This is the most common type of myocardial ischemia, and it is characterized by a predictable pattern of chest pain that occurs during physical activity or emotional stress.
2. Unstable angina: This is a more severe type of myocardial ischemia that can occur without any identifiable trigger, and can be accompanied by other symptoms such as shortness of breath or vomiting.
3. Acute coronary syndrome (ACS): This is a condition that includes both stable angina and unstable angina, and it is characterized by a sudden reduction in blood flow to the heart muscle.
4. Heart attack (myocardial infarction): This is a type of myocardial ischemia that occurs when the blood flow to the heart muscle is completely blocked, resulting in damage or death of the cardiac tissue.

Myocardial ischemia can be diagnosed through a variety of tests, including electrocardiograms (ECGs), stress tests, and imaging studies such as echocardiography or cardiac magnetic resonance imaging (MRI). Treatment options for myocardial ischemia include medications such as nitrates, beta blockers, and calcium channel blockers, as well as lifestyle changes such as quitting smoking, losing weight, and exercising regularly. In severe cases, surgical procedures such as coronary artery bypass grafting or angioplasty may be necessary.

* Heart block: A condition where the electrical signals that control the heart's rhythm are blocked or delayed, leading to a slow heart rate.
* Sinus node dysfunction: A condition where the sinus node, which is responsible for setting the heart's rhythm, is not functioning properly, leading to a slow heart rate.
* Medications: Certain medications, such as beta blockers, can slow down the heart rate.
* Heart failure: In severe cases of heart failure, the heart may become so weak that it cannot pump blood effectively, leading to a slow heart rate.
* Electrolyte imbalance: An imbalance of electrolytes, such as potassium or magnesium, can affect the heart's ability to function properly and cause a slow heart rate.
* Other medical conditions: Certain medical conditions, such as hypothyroidism (an underactive thyroid) or anemia, can cause bradycardia.

Bradycardia can cause symptoms such as:

* Fatigue
* Weakness
* Dizziness or lightheadedness
* Shortness of breath
* Chest pain or discomfort

In some cases, bradycardia may not cause any noticeable symptoms at all.

If you suspect you have bradycardia, it is important to consult with a healthcare professional for proper diagnosis and treatment. They may perform tests such as an electrocardiogram (ECG) or stress test to determine the cause of your slow heart rate and develop an appropriate treatment plan. Treatment options for bradycardia may include:

* Medications: Such as atropine or digoxin, to increase the heart rate.
* Pacemakers: A small device that is implanted in the chest to help regulate the heart's rhythm and increase the heart rate.
* Cardiac resynchronization therapy (CRT): A procedure that involves implanting a device that helps both ventricles of the heart beat together, improving the heart's pumping function.

It is important to note that bradycardia can be a symptom of an underlying condition, so it is important to address the underlying cause in order to effectively treat the bradycardia.

There are several types of apnea that can occur during sleep, including:

1. Obstructive sleep apnea (OSA): This is the most common type of apnea and occurs when the airway is physically blocked by the tongue or other soft tissue in the throat, causing breathing to stop for short periods.
2. Central sleep apnea (CSA): This type of apnea occurs when the brain fails to send the proper signals to the muscles that control breathing, resulting in a pause in breathing.
3. Mixed sleep apnea (MSA): This type of apnea is a combination of OSA and CSA, where both central and obstructive factors contribute to the pauses in breathing.
4. Hypopneic apnea: This type of apnea is characterized by a decrease in breathing, but not a complete stop.
5. Hypercapnic apnea: This type of apnea is caused by an excessive buildup of carbon dioxide in the blood, which can lead to pauses in breathing.

The symptoms of apnea can vary depending on the type and severity of the condition, but may include:

* Pauses in breathing during sleep
* Waking up with a dry mouth or sore throat
* Morning headaches
* Difficulty concentrating or feeling tired during the day
* High blood pressure
* Heart disease

Treatment options for apnea depend on the underlying cause, but may include:

* Lifestyle changes, such as losing weight, avoiding alcohol and sedatives before bedtime, and sleeping on your side
* Oral appliances or devices that advance the position of the lower jaw and tongue
* Continuous positive airway pressure (CPAP) therapy, which involves wearing a mask during sleep to deliver a constant flow of air pressure into the airways
* Bi-level positive airway pressure (BiPAP) therapy, which involves two levels of air pressure: one for inhalation and another for exhalation
* Surgery to remove excess tissue in the throat or correct physical abnormalities that are contributing to the apnea.

There are several types of diabetes mellitus, including:

1. Type 1 DM: This is an autoimmune condition in which the body's immune system attacks and destroys the cells in the pancreas that produce insulin, resulting in a complete deficiency of insulin production. It typically develops in childhood or adolescence, and patients with this condition require lifelong insulin therapy.
2. Type 2 DM: This is the most common form of diabetes, accounting for around 90% of all cases. It is caused by a combination of insulin resistance (where the body's cells do not respond properly to insulin) and impaired insulin secretion. It is often associated with obesity, physical inactivity, and a diet high in sugar and unhealthy fats.
3. Gestational DM: This type of diabetes develops during pregnancy, usually in the second or third trimester. Hormonal changes and insulin resistance can cause blood sugar levels to rise, putting both the mother and baby at risk.
4. LADA (Latent Autoimmune Diabetes in Adults): This is a form of type 1 DM that develops in adults, typically after the age of 30. It shares features with both type 1 and type 2 DM.
5. MODY (Maturity-Onset Diabetes of the Young): This is a rare form of diabetes caused by genetic mutations that affect insulin production. It typically develops in young adulthood and can be managed with lifestyle changes and/or medication.

The symptoms of diabetes mellitus can vary depending on the severity of the condition, but may include:

1. Increased thirst and urination
2. Fatigue
3. Blurred vision
4. Cuts or bruises that are slow to heal
5. Tingling or numbness in hands and feet
6. Recurring skin, gum, or bladder infections
7. Flu-like symptoms such as weakness, dizziness, and stomach pain
8. Dark, velvety skin patches (acanthosis nigricans)
9. Yellowish color of the skin and eyes (jaundice)
10. Delayed healing of cuts and wounds

If left untreated, diabetes mellitus can lead to a range of complications, including:

1. Heart disease and stroke
2. Kidney damage and failure
3. Nerve damage (neuropathy)
4. Eye damage (retinopathy)
5. Foot damage (neuropathic ulcers)
6. Cognitive impairment and dementia
7. Increased risk of infections and other diseases, such as pneumonia, gum disease, and urinary tract infections.

It is important to note that not all individuals with diabetes will experience these complications, and that proper management of the condition can greatly reduce the risk of developing these complications.

Low birth weight is defined as less than 2500 grams (5 pounds 8 ounces) and is associated with a higher risk of health problems, including respiratory distress, infection, and developmental delays. Premature birth is also a risk factor for low birth weight, as premature infants may not have had enough time to grow to a healthy weight before delivery.

On the other hand, high birth weight is associated with an increased risk of macrosomia, a condition in which the baby is significantly larger than average and may require a cesarean section (C-section) or assisted delivery. Macrosomia can also increase the risk of injury to the mother during delivery.

Birth weight can be influenced by various factors during pregnancy, including maternal nutrition, prenatal care, and fetal growth patterns. However, it is important to note that birth weight alone is not a definitive indicator of a baby's health or future development. Other factors, such as the baby's overall physical condition, Apgar score (a measure of the baby's well-being at birth), and postnatal care, are also important indicators of long-term health outcomes.

Aortic valve stenosis can be caused by a variety of factors, including aging, calcium buildup, or congenital heart defects. It is typically diagnosed through echocardiography or cardiac catheterization. Treatment options for aortic valve stenosis include medications to manage symptoms, aortic valve replacement surgery, or transcatheter aortic valve replacement (TAVR), which is a minimally invasive procedure.

In TAVR, a thin tube is inserted through a blood vessel in the leg and guided to the heart, where it delivers a new aortic valve. This can be performed through a small incision in the chest or through a catheter inserted into the femoral artery.

While TAVR has become increasingly popular for treating aortic valve stenosis, it is not suitable for all patients and requires careful evaluation to determine the best course of treatment. It is important to discuss the risks and benefits of TAVR with a healthcare provider to determine the appropriate treatment plan for each individual patient.

There are many different types of ANS diseases, including:

1. Dysautonomia: a general term that refers to dysfunction of the autonomic nervous system.
2. Postural orthostatic tachycardia syndrome (POTS): a condition characterized by rapid heart rate and other symptoms that occur upon standing.
3. Neurocardiogenic syncope: a form of fainting caused by a sudden drop in blood pressure.
4. Multiple system atrophy (MSA): a progressive neurodegenerative disorder that affects the autonomic nervous system and other parts of the brain.
5. Parkinson's disease: a neurodegenerative disorder that can cause autonomic dysfunction, including constipation, urinary incontinence, and erectile dysfunction.
6. Dopamine deficiency: a condition characterized by low levels of the neurotransmitter dopamine, which can affect the ANS and other body systems.
7. Autonomic nervous system disorders associated with autoimmune diseases, such as Guillain-Barré syndrome and lupus.
8. Trauma: physical or emotional trauma can sometimes cause dysfunction of the autonomic nervous system.
9. Infections: certain infections, such as Lyme disease, can affect the autonomic nervous system.
10. Genetic mutations: some genetic mutations can affect the functioning of the autonomic nervous system.

Treatment for ANS diseases depends on the specific condition and its underlying cause. In some cases, medication may be prescribed to regulate heart rate, blood pressure, or other bodily functions. Lifestyle changes, such as regular exercise and stress management techniques, can also be helpful in managing symptoms. In severe cases, surgery may be necessary to correct anatomical abnormalities or repair damaged nerves.

There are several types of hydrocephalus, including:

1. Aqueductal stenosis: This occurs when the aqueduct that connects the third and fourth ventricles becomes narrowed or blocked, leading to an accumulation of CSF in the brain.
2. Choroid plexus papilloma: This is a benign tumor that grows on the surface of the choroid plexus, which is a layer of tissue that produces CSF.
3. Hydrocephalus ex vacuo: This occurs when there is a decrease in the volume of brain tissue due to injury or disease, leading to an accumulation of CSF.
4. Normal pressure hydrocephalus (NPH): This is a type of hydrocephalus that occurs in adults and is characterized by an enlarged ventricle, gait disturbances, and cognitive decline, despite normal pressure levels.
5. Symptomatic hydrocephalus: This type of hydrocephalus is caused by other conditions such as brain tumors, cysts, or injuries.

Symptoms of hydrocephalus can include headache, nausea, vomiting, seizures, and difficulty walking or speaking. Treatment options for hydrocephalus depend on the underlying cause and may include medication, surgery, or a shunt to drain excess CSF. In some cases, hydrocephalus can be managed with lifestyle modifications such as regular exercise and a balanced diet.

Prognosis for hydrocephalus varies depending on the underlying cause and severity of the condition. However, with timely diagnosis and appropriate treatment, many people with hydrocephalus can lead active and fulfilling lives.

Fibrosis can occur in response to a variety of stimuli, including inflammation, infection, injury, or chronic stress. It is a natural healing process that helps to restore tissue function and structure after damage or trauma. However, excessive fibrosis can lead to the loss of tissue function and organ dysfunction.

There are many different types of fibrosis, including:

* Cardiac fibrosis: the accumulation of scar tissue in the heart muscle or walls, leading to decreased heart function and potentially life-threatening complications.
* Pulmonary fibrosis: the accumulation of scar tissue in the lungs, leading to decreased lung function and difficulty breathing.
* Hepatic fibrosis: the accumulation of scar tissue in the liver, leading to decreased liver function and potentially life-threatening complications.
* Neurofibromatosis: a genetic disorder characterized by the growth of benign tumors (neurofibromas) made up of fibrous connective tissue.
* Desmoid tumors: rare, slow-growing tumors that are made up of fibrous connective tissue and can occur in various parts of the body.

Fibrosis can be diagnosed through a variety of methods, including:

* Biopsy: the removal of a small sample of tissue for examination under a microscope.
* Imaging tests: such as X-rays, CT scans, or MRI scans to visualize the accumulation of scar tissue.
* Blood tests: to assess liver function or detect specific proteins or enzymes that are elevated in response to fibrosis.

There is currently no cure for fibrosis, but various treatments can help manage the symptoms and slow the progression of the condition. These may include:

* Medications: such as corticosteroids, immunosuppressants, or chemotherapy to reduce inflammation and slow down the growth of scar tissue.
* Lifestyle modifications: such as quitting smoking, exercising regularly, and maintaining a healthy diet to improve overall health and reduce the progression of fibrosis.
* Surgery: in some cases, surgical removal of the affected tissue or organ may be necessary.

It is important to note that fibrosis can progress over time, leading to further scarring and potentially life-threatening complications. Regular monitoring and follow-up with a healthcare professional are crucial to managing the condition and detecting any changes or progression early on.

In addition to the high blood pressure, people with malignant hypertension may experience other signs and symptoms, such as:

* Seizures or coma
* Vision changes or loss of vision
* Numbness or weakness in the face, arm, or leg
* Confusion or disorientation
* Slurred speech
* Difficulty speaking or swallowing
* Severe headache
* Neck stiffness
* Fever
* Pain in the chest, abdomen, or flank

If left untreated, malignant hypertension can lead to a range of complications and organ damage, including:

* Heart attack or heart failure
* Stroke or cerebral hemorrhage
* Kidney failure or renal impairment
* Seizures or coma
* Vision loss or blindness
* Peripheral artery disease or limb gangrene

Treatment of malignant hypertension typically involves aggressive medication to lower blood pressure and manage symptoms, as well as careful monitoring in a hospital setting. In severe cases, surgery or other interventions may be necessary to treat underlying conditions or repair damaged organs. With prompt and appropriate treatment, the outlook for people with malignant hypertension can improve significantly, but delays in diagnosis and treatment can have serious consequences.

Previous articleWhat is the Meaning of Aphasia? Next article What is the Medical Definition of CVA?

Disease progression can be classified into several types based on the pattern of worsening:

1. Chronic progressive disease: In this type, the disease worsens steadily over time, with a gradual increase in symptoms and decline in function. Examples include rheumatoid arthritis, osteoarthritis, and Parkinson's disease.
2. Acute progressive disease: This type of disease worsens rapidly over a short period, often followed by periods of stability. Examples include sepsis, acute myocardial infarction (heart attack), and stroke.
3. Cyclical disease: In this type, the disease follows a cycle of worsening and improvement, with periodic exacerbations and remissions. Examples include multiple sclerosis, lupus, and rheumatoid arthritis.
4. Recurrent disease: This type is characterized by episodes of worsening followed by periods of recovery. Examples include migraine headaches, asthma, and appendicitis.
5. Catastrophic disease: In this type, the disease progresses rapidly and unpredictably, with a poor prognosis. Examples include cancer, AIDS, and organ failure.

Disease progression can be influenced by various factors, including:

1. Genetics: Some diseases are inherited and may have a predetermined course of progression.
2. Lifestyle: Factors such as smoking, lack of exercise, and poor diet can contribute to disease progression.
3. Environmental factors: Exposure to toxins, allergens, and other environmental stressors can influence disease progression.
4. Medical treatment: The effectiveness of medical treatment can impact disease progression, either by slowing or halting the disease process or by causing unintended side effects.
5. Co-morbidities: The presence of multiple diseases or conditions can interact and affect each other's progression.

Understanding the type and factors influencing disease progression is essential for developing effective treatment plans and improving patient outcomes.

Types of Kidney Diseases:

1. Acute Kidney Injury (AKI): A sudden and reversible loss of kidney function that can be caused by a variety of factors, such as injury, infection, or medication.
2. Chronic Kidney Disease (CKD): A gradual and irreversible loss of kidney function that can lead to end-stage renal disease (ESRD).
3. End-Stage Renal Disease (ESRD): A severe and irreversible form of CKD that requires dialysis or a kidney transplant.
4. Glomerulonephritis: An inflammation of the glomeruli, the tiny blood vessels in the kidneys that filter waste products.
5. Interstitial Nephritis: An inflammation of the tissue between the tubules and blood vessels in the kidneys.
6. Kidney Stone Disease: A condition where small, hard mineral deposits form in the kidneys and can cause pain, bleeding, and other complications.
7. Pyelonephritis: An infection of the kidneys that can cause inflammation, damage to the tissues, and scarring.
8. Renal Cell Carcinoma: A type of cancer that originates in the cells of the kidney.
9. Hemolytic Uremic Syndrome (HUS): A condition where the immune system attacks the platelets and red blood cells, leading to anemia, low platelet count, and damage to the kidneys.

Symptoms of Kidney Diseases:

1. Blood in urine or hematuria
2. Proteinuria (excess protein in urine)
3. Reduced kidney function or renal insufficiency
4. Swelling in the legs, ankles, and feet (edema)
5. Fatigue and weakness
6. Nausea and vomiting
7. Abdominal pain
8. Frequent urination or polyuria
9. Increased thirst and drinking (polydipsia)
10. Weight loss

Diagnosis of Kidney Diseases:

1. Physical examination
2. Medical history
3. Urinalysis (test of urine)
4. Blood tests (e.g., creatinine, urea, electrolytes)
5. Imaging studies (e.g., X-rays, CT scans, ultrasound)
6. Kidney biopsy
7. Other specialized tests (e.g., 24-hour urinary protein collection, kidney function tests)

Treatment of Kidney Diseases:

1. Medications (e.g., diuretics, blood pressure medication, antibiotics)
2. Diet and lifestyle changes (e.g., low salt intake, increased water intake, physical activity)
3. Dialysis (filtering waste products from the blood when the kidneys are not functioning properly)
4. Kidney transplantation ( replacing a diseased kidney with a healthy one)
5. Other specialized treatments (e.g., plasmapheresis, hemodialysis)

Prevention of Kidney Diseases:

1. Maintaining a healthy diet and lifestyle
2. Monitoring blood pressure and blood sugar levels
3. Avoiding harmful substances (e.g., tobacco, excessive alcohol consumption)
4. Managing underlying medical conditions (e.g., diabetes, high blood pressure)
5. Getting regular check-ups and screenings

Early detection and treatment of kidney diseases can help prevent or slow the progression of the disease, reducing the risk of complications and improving quality of life. It is important to be aware of the signs and symptoms of kidney diseases and seek medical attention if they are present.

There are several types of shock, including:

1. Hypovolemic shock: This type of shock occurs when there is a significant loss of blood or fluid from the body, leading to a decrease in blood volume and pressure. It can be caused by injuries, surgery, or internal bleeding.
2. Septic shock: This type of shock occurs when an infection causes inflammation throughout the body, leading to a drop in blood pressure and organ dysfunction.
3. Anaphylactic shock: This type of shock is caused by an allergic reaction and can be life-threatening. Symptoms include difficulty breathing, rapid heartbeat, and a drop in blood pressure.
4. Neurogenic shock: This type of shock occurs when there is damage to the nervous system, leading to a drop in blood pressure and loss of autonomic functions.
5. Adrenal insufficiency: This type of shock occurs when the adrenal glands do not produce enough cortisol and aldosterone hormones, leading to a decrease in blood pressure and metabolism.

Symptoms of shock include:

* Pale, cool, or clammy skin
* Fast or weak pulse
* Shallow breathing
* Confusion or loss of consciousness
* Low blood pressure

Treatment of shock depends on the underlying cause and may include fluids, medications, oxygen therapy, and other supportive measures to maintain blood pressure and organ function. In severe cases, hospitalization in an intensive care unit may be necessary.

Example sentence: The patient had a hemorrhage after the car accident and needed immediate medical attention.

Renal artery obstruction can be caused by a variety of factors, including:

1. Atherosclerosis (hardening of the arteries): This is the most common cause of renal artery obstruction and occurs when plaque builds up in the arteries, leading to narrowing or blockages.
2. Stenosis (narrowing of the arteries): This can be caused by inflammation or scarring of the arteries, which can lead to a decrease in blood flow to the kidneys.
3. Fibromuscular dysplasia: This is a rare condition that causes abnormal growth of muscle tissue in the renal arteries, leading to narrowing or blockages.
4. Embolism (blood clot): A blood clot can break loose and travel to the kidneys, causing a blockage in the renal artery.
5. Renal vein thrombosis: This is a blockage of the veins that drain blood from the kidneys, which can lead to decreased blood flow and oxygenation of the kidneys.

Symptoms of renal artery obstruction may include:

1. High blood pressure
2. Decreased kidney function
3. Swelling in the legs or feet
4. Pain in the flank or back
5. Fatigue
6. Nausea and vomiting
7. Weight loss

Diagnosis of renal artery obstruction is typically made through a combination of physical examination, medical history, and diagnostic tests such as:

1. Ultrasound: This can help identify any blockages or narrowing in the renal arteries.
2. Computed tomography (CT) scan: This can provide detailed images of the renal arteries and any blockages or narrowing.
3. Magnetic resonance angiogram (MRA): This is a non-invasive test that uses magnetic fields and radio waves to create detailed images of the renal arteries.
4. Angiography: This is a minimally invasive test that involves inserting a catheter into the renal artery to visualize any blockages or narrowing.

Treatment for renal artery obstruction depends on the underlying cause and severity of the condition. Some possible treatment options include:

1. Medications: Drugs such as blood thinners, blood pressure medication, and anticoagulants may be prescribed to manage symptoms and slow the progression of the disease.
2. Endovascular therapy: This is a minimally invasive procedure in which a catheter is inserted into the renal artery to open up any blockages or narrowing.
3. Surgery: In some cases, surgery may be necessary to remove any blockages or repair any damage to the renal arteries.
4. Dialysis: This is a procedure in which waste products are removed from the blood when the kidneys are no longer able to do so.
5. Kidney transplantation: In severe cases of renal artery obstruction, a kidney transplant may be necessary.

It is important to note that early detection and treatment of renal artery obstruction can help prevent complications and improve outcomes for patients.

There are several types of tachycardia, including:

1. Sinus tachycardia: This is the most common type and is caused by an increase in the rate of the normal sinus node. It is often seen in response to physical activity or stress.
2. Atrial fibrillation: This is a type of arrhythmia where the heart's upper chambers (atria) contract irregularly and rapidly, leading to a rapid heart rate.
3. Ventricular tachycardia: This is a type of arrhythmia where the heart's lower chambers (ventricles) contract rapidly, often with a rate above 100 bpm.
4. Premature ventricular contractions (PVCs): These are early or extra beats that originate in the ventricles, causing a rapid heart rate.

Tachycardia can cause a range of symptoms, including palpitations, shortness of breath, chest pain, and dizziness. In severe cases, it can lead to cardiac arrhythmias, heart failure, and even death.

Diagnosis of tachycardia typically involves a physical examination, electrocardiogram (ECG), and other tests such as stress tests or echocardiography. Treatment options vary depending on the underlying cause, but may include medications to regulate the heart rate, cardioversion to restore a normal heart rhythm, or in severe cases, implantation of a pacemaker or defibrillator.

The symptoms of RVH can include shortness of breath, fatigue, swelling in the legs and feet, and chest pain. If left untreated, RVH can lead to heart failure and other complications.

RVH is typically diagnosed through a physical examination, medical history, and diagnostic tests such as electrocardiogram (ECG), echocardiogram, and right heart catheterization. Treatment options for RVH depend on the underlying cause of the condition, but may include medications to reduce blood pressure, oxygen therapy, and in severe cases, heart transplantation.

Preventing RVH involves managing underlying conditions such as pulmonary hypertension, managing high blood pressure, and avoiding harmful substances such as tobacco and alcohol. Early detection and treatment of RVH can help prevent complications and improve outcomes for patients with this condition.

There are several types of hypertrophy, including:

1. Muscle hypertrophy: The enlargement of muscle fibers due to increased protein synthesis and cell growth, often seen in individuals who engage in resistance training exercises.
2. Cardiac hypertrophy: The enlargement of the heart due to an increase in cardiac workload, often seen in individuals with high blood pressure or other cardiovascular conditions.
3. Adipose tissue hypertrophy: The excessive growth of fat cells, often seen in individuals who are obese or have insulin resistance.
4. Neurological hypertrophy: The enlargement of neural structures such as brain or spinal cord due to an increase in the number of neurons or glial cells, often seen in individuals with neurodegenerative diseases such as Alzheimer's or Parkinson's.
5. Hepatic hypertrophy: The enlargement of the liver due to an increase in the number of liver cells, often seen in individuals with liver disease or cirrhosis.
6. Renal hypertrophy: The enlargement of the kidneys due to an increase in blood flow and filtration, often seen in individuals with kidney disease or hypertension.
7. Ovarian hypertrophy: The enlargement of the ovaries due to an increase in the number of follicles or hormonal imbalances, often seen in individuals with polycystic ovary syndrome (PCOS).

Hypertrophy can be diagnosed through various medical tests such as imaging studies (e.g., CT scans, MRI), biopsies, and blood tests. Treatment options for hypertrophy depend on the underlying cause and may include medications, lifestyle changes, and surgery.

In conclusion, hypertrophy is a growth or enlargement of cells, tissues, or organs in response to an excessive stimulus. It can occur in various parts of the body, including the brain, liver, kidneys, heart, muscles, and ovaries. Understanding the underlying causes and diagnosis of hypertrophy is crucial for effective treatment and management of related health conditions.

There are different types of myocardial infarctions, including:

1. ST-segment elevation myocardial infarction (STEMI): This is the most severe type of heart attack, where a large area of the heart muscle is damaged. It is characterized by a specific pattern on an electrocardiogram (ECG) called the ST segment.
2. Non-ST-segment elevation myocardial infarction (NSTEMI): This type of heart attack is less severe than STEMI, and the damage to the heart muscle may not be as extensive. It is characterized by a smaller area of damage or a different pattern on an ECG.
3. Incomplete myocardial infarction: This type of heart attack is when there is some damage to the heart muscle but not a complete blockage of blood flow.
4. Collateral circulation myocardial infarction: This type of heart attack occurs when there are existing collateral vessels that bypass the blocked coronary artery, which reduces the amount of damage to the heart muscle.

Symptoms of a myocardial infarction can include chest pain or discomfort, shortness of breath, lightheadedness, and fatigue. These symptoms may be accompanied by anxiety, fear, and a sense of impending doom. In some cases, there may be no noticeable symptoms at all.

Diagnosis of myocardial infarction is typically made based on a combination of physical examination findings, medical history, and diagnostic tests such as an electrocardiogram (ECG), cardiac enzyme tests, and imaging studies like echocardiography or cardiac magnetic resonance imaging.

Treatment of myocardial infarction usually involves medications to relieve pain, reduce the amount of work the heart has to do, and prevent further damage to the heart muscle. These may include aspirin, beta blockers, ACE inhibitors or angiotensin receptor blockers, and statins. In some cases, a procedure such as angioplasty or coronary artery bypass surgery may be necessary to restore blood flow to the affected area.

Prevention of myocardial infarction involves managing risk factors such as high blood pressure, high cholesterol, smoking, diabetes, and obesity. This can include lifestyle changes such as a healthy diet, regular exercise, and stress reduction, as well as medications to control these conditions. Early detection and treatment of heart disease can help prevent myocardial infarction from occurring in the first place.

RDS is a common condition in premature babies, but it can also occur in full-term babies if they have certain medical conditions or are exposed to substances during pregnancy that can affect lung development. Symptoms of RDS include rapid breathing, grunting, and flared nostrils. The condition can be diagnosed through chest X-rays or blood tests.

Treatment for RDS typically involves providing oxygen therapy and other supportive care to help the baby breathe more easily. In severe cases, a ventilator may be used to assist with breathing. Surfactant replacement therapy may also be given to help the baby's lungs function properly. With appropriate treatment, most babies with RDS can recover and go on to lead healthy lives. However, in some cases, the condition can be fatal if left untreated or if there are complications such as infection or bleeding in the lungs.

There are several types of lung diseases that are classified as obstructive, including:

1. Chronic obstructive pulmonary disease (COPD): This is a progressive condition that makes it hard to breathe and can cause long-term disability and even death. COPD is caused by damage to the lungs, usually from smoking or exposure to other forms of pollution.
2. Emphysema: This is a condition where the air sacs in the lungs are damaged and cannot properly expand and contract. This can cause shortness of breath and can lead to respiratory failure.
3. Chronic bronchitis: This is a condition where the airways in the lungs become inflamed and narrowed, making it harder to breathe.
4. Asthma: This is a condition where the airways in the lungs become inflamed and narrowed, causing wheezing, coughing, and shortness of breath.
5. Bronchiectasis: This is a condition where the airways in the lungs become damaged and widened, leading to thickening of the walls of the airways and chronic infection.
6. Pulmonary fibrosis: This is a condition where the lung tissue becomes scarred and stiff, making it harder to breathe.
7. Lung cancer: This is a malignant tumor that can occur in the lungs and can cause breathing difficulties and other symptoms.

These diseases can be caused by a variety of factors, including smoking, exposure to air pollution, genetics, and certain occupations or environments. Treatment for obstructive lung diseases may include medications, such as bronchodilators and corticosteroids, and lifestyle changes, such as quitting smoking and avoiding exposure to pollutants. In severe cases, surgery or lung transplantation may be necessary.

It's important to note that these diseases can have similar symptoms, so it's important to see a doctor if you experience any persistent breathing difficulties or other symptoms. A proper diagnosis and treatment plan can help manage the condition and improve quality of life.

There are many different types of heart diseases, including:

1. Coronary artery disease: The buildup of plaque in the coronary arteries, which supply blood to the heart muscle, leading to chest pain or a heart attack.
2. Heart failure: When the heart is unable to pump enough blood to meet the body's needs, leading to fatigue, shortness of breath, and swelling in the legs.
3. Arrhythmias: Abnormal heart rhythms, such as atrial fibrillation or ventricular tachycardia, which can cause palpitations, dizziness, and shortness of breath.
4. Heart valve disease: Problems with the heart valves, which can lead to blood leaking back into the chambers or not being pumped effectively.
5. Cardiomyopathy: Disease of the heart muscle, which can lead to weakened heart function and heart failure.
6. Heart murmurs: Abnormal sounds heard during a heartbeat, which can be caused by defects in the heart valves or abnormal blood flow.
7. Congenital heart disease: Heart defects present at birth, such as holes in the heart or abnormal blood vessels.
8. Myocardial infarction (heart attack): Damage to the heart muscle due to a lack of oxygen, often caused by a blockage in a coronary artery.
9. Cardiac tamponade: Fluid accumulation around the heart, which can cause compression of the heart and lead to cardiac arrest.
10. Endocarditis: Infection of the inner lining of the heart, which can cause fever, fatigue, and heart valve damage.

Heart diseases can be diagnosed through various tests such as electrocardiogram (ECG), echocardiogram, stress test, and blood tests. Treatment options depend on the specific condition and may include lifestyle changes, medication, surgery, or a combination of these.

There are several types of pre-eclampsia, including:

1. Mild pre-eclampsia: This type is characterized by mild high blood pressure and no damage to organs.
2. Severe pre-eclampsia: This type is characterized by severe high blood pressure and damage to organs such as the liver and kidneys.
3. Eclampsia: This is a more severe form of pre-eclampsia that is characterized by seizures or coma.

Pre-eclampsia can be caused by several factors, including:

1. Poor blood flow to the placenta
2. Immune system problems
3. Hormonal imbalances
4. Genetic mutations
5. Nutritional deficiencies

Pre-eclampsia can be diagnosed through several tests, including:

1. Blood pressure readings
2. Urine tests to check for protein and other substances
3. Ultrasound exams to assess fetal growth and well-being
4. Blood tests to check liver and kidney function

There is no cure for pre-eclampsia, but it can be managed through several strategies, including:

1. Close monitoring of the mother and baby
2. Medications to lower blood pressure and prevent seizures
3. Bed rest or hospitalization
4. Delivery, either vaginal or cesarean

Pre-eclampsia can be a challenging condition to manage, but with proper care and close monitoring, the risk of complications can be reduced. It is essential for pregnant women to receive regular prenatal care and report any symptoms promptly to their healthcare provider. Early detection and management of pre-eclampsia can help ensure a healthy pregnancy outcome for both the mother and the baby.

There are several factors that can contribute to the development of insulin resistance, including:

1. Genetics: Insulin resistance can be inherited, and some people may be more prone to developing the condition based on their genetic makeup.
2. Obesity: Excess body fat, particularly around the abdominal area, can contribute to insulin resistance.
3. Physical inactivity: A sedentary lifestyle can lead to insulin resistance.
4. Poor diet: Consuming a diet high in refined carbohydrates and sugar can contribute to insulin resistance.
5. Other medical conditions: Certain medical conditions, such as polycystic ovary syndrome (PCOS) and Cushing's syndrome, can increase the risk of developing insulin resistance.
6. Medications: Certain medications, such as steroids and some antipsychotic drugs, can increase insulin resistance.
7. Hormonal imbalances: Hormonal changes during pregnancy or menopause can lead to insulin resistance.
8. Sleep apnea: Sleep apnea can contribute to insulin resistance.
9. Chronic stress: Chronic stress can lead to insulin resistance.
10. Aging: Insulin resistance tends to increase with age, particularly after the age of 45.

There are several ways to diagnose insulin resistance, including:

1. Fasting blood sugar test: This test measures the level of glucose in the blood after an overnight fast.
2. Glucose tolerance test: This test measures the body's ability to regulate blood sugar levels after consuming a sugary drink.
3. Insulin sensitivity test: This test measures the body's ability to respond to insulin.
4. Homeostatic model assessment (HOMA): This is a mathematical formula that uses the results of a fasting glucose and insulin test to estimate insulin resistance.
5. Adiponectin test: This test measures the level of adiponectin, a protein produced by fat cells that helps regulate blood sugar levels. Low levels of adiponectin are associated with insulin resistance.

There is no cure for insulin resistance, but it can be managed through lifestyle changes and medication. Lifestyle changes include:

1. Diet: A healthy diet that is low in processed carbohydrates and added sugars can help improve insulin sensitivity.
2. Exercise: Regular physical activity, such as aerobic exercise and strength training, can improve insulin sensitivity.
3. Weight loss: Losing weight, particularly around the abdominal area, can improve insulin sensitivity.
4. Stress management: Strategies to manage stress, such as meditation or yoga, can help improve insulin sensitivity.
5. Sleep: Getting adequate sleep is important for maintaining healthy insulin levels.

Medications that may be used to treat insulin resistance include:

1. Metformin: This is a commonly used medication to treat type 2 diabetes and improve insulin sensitivity.
2. Thiazolidinediones (TZDs): These medications, such as pioglitazone, improve insulin sensitivity by increasing the body's ability to use insulin.
3. Sulfonylureas: These medications stimulate the release of insulin from the pancreas, which can help improve insulin sensitivity.
4. DPP-4 inhibitors: These medications, such as sitagliptin, work by reducing the breakdown of the hormone incretin, which helps to increase insulin secretion and improve insulin sensitivity.
5. GLP-1 receptor agonists: These medications, such as exenatide, mimic the action of the hormone GLP-1 and help to improve insulin sensitivity.

It is important to note that these medications may have side effects, so it is important to discuss the potential benefits and risks with your healthcare provider before starting treatment. Additionally, lifestyle modifications such as diet and exercise can also be effective in improving insulin sensitivity and managing blood sugar levels.

The definition of IAH varies depending on the source, but it generally refers to an intra-abdominal pressure (IAP) of 10 mmHg or higher. The normal IAP is typically around 0-5 mmHg.

There are different types of IAH, including:

* Acute IAH: This occurs suddenly and is usually associated with a specific event such as trauma or surgery.
* Chronic IAH: This develops gradually over time and can be caused by conditions such as cirrhosis, ascites, and chronic inflammation.
* Hyperkinetic IAH: This is characterized by an excessive increase in IAP, usually due to increased intestinal motility or pseudo-obstruction.
* Hypokinetic IAH: This is characterized by a decreased IAP, usually due to paralytic ileus or other conditions that affect intestinal motility.

The diagnosis of IAH is based on clinical evaluation, laboratory tests, and imaging studies such as ultrasound and computed tomography (CT). Treatment depends on the underlying cause and may include fluid management, vasopressors, antibiotics, and surgical intervention.

Previous article: Definition of 'Intra-Abdominal Hypertension' in the medical field. Prev Next article: Definition of 'Intra-Abdominal Hypertension' in the medical field. Next

There are several types of diabetic angiopathies, including:

1. Peripheral artery disease (PAD): This occurs when the blood vessels in the legs and arms become narrowed or blocked, leading to reduced blood flow and oxygen supply to the limbs.
2. Peripheral neuropathy: This is damage to the nerves in the hands and feet, which can cause pain, numbness, and weakness.
3. Retinopathy: This is damage to the blood vessels in the retina, which can lead to vision loss and blindness.
4. Nephropathy: This is damage to the kidneys, which can lead to kidney failure and the need for dialysis.
5. Cardiovascular disease: This includes heart attack, stroke, and other conditions that affect the heart and blood vessels.

The risk of developing diabetic angiopathies increases with the duration of diabetes and the level of blood sugar control. Other factors that can increase the risk include high blood pressure, high cholesterol, smoking, and a family history of diabetes-related complications.

Symptoms of diabetic angiopathies can vary depending on the specific type of complication and the location of the affected blood vessels or nerves. Common symptoms include:

* Pain or discomfort in the arms, legs, hands, or feet
* Numbness or tingling sensations in the hands and feet
* Weakness or fatigue in the limbs
* Difficulty healing wounds or cuts
* Vision changes or blindness
* Kidney problems or failure
* Heart attack or stroke

Diagnosis of diabetic angiopathies typically involves a combination of physical examination, medical history, and diagnostic tests such as ultrasound, MRI, or CT scans. Treatment options vary depending on the specific type of complication and may include:

* Medications to control blood sugar levels, high blood pressure, and high cholesterol
* Lifestyle changes such as a healthy diet and regular exercise
* Surgery to repair or bypass affected blood vessels or nerves
* Dialysis for kidney failure
* In some cases, amputation of the affected limb

Preventing diabetic angiopathies involves managing diabetes effectively through a combination of medication, lifestyle changes, and regular medical check-ups. Early detection and treatment can help prevent or delay the progression of complications.

The normal IOP range for adults is between 10-21 mmHg, and any reading below 6 mmHg is considered hypotensive. Ocular hypotension can be caused by a variety of factors such as medication use, trauma, or certain medical conditions.

Symptoms of ocular hypotension include blurred vision, sensitivity to light, and eye pain. Treatment options may vary depending on the underlying cause but may include medications, laser surgery, or other interventions aimed at increasing IOP. Early diagnosis and management are essential to prevent more severe complications.

There are several potential causes of hyperventilation, including anxiety, panic attacks, and certain medical conditions such as asthma or chronic obstructive pulmonary disease (COPD). Treatment for hyperventilation typically involves slowing down the breathing rate and restoring the body's natural balance of oxygen and carbon dioxide levels.

Some common signs and symptoms of hyperventilation include:

* Rapid breathing
* Deep breathing
* Dizziness or lightheadedness
* Chest pain or tightness
* Shortness of breath
* Confusion or disorientation
* Nausea or vomiting

If you suspect that someone is experiencing hyperventilation, it is important to seek medical attention immediately. Treatment may involve the following:

1. Oxygen therapy: Providing extra oxygen to help restore normal oxygen levels in the body.
2. Breathing exercises: Teaching the individual deep, slow breathing exercises to help regulate their breathing pattern.
3. Relaxation techniques: Encouraging the individual to relax and reduce stress, which can help slow down their breathing rate.
4. Medications: In severe cases, medications such as sedatives or anti-anxiety drugs may be prescribed to help calm the individual and regulate their breathing.
5. Ventilation support: In severe cases of hyperventilation, mechanical ventilation may be necessary to support the individual's breathing.

It is important to seek medical attention if you or someone you know is experiencing symptoms of hyperventilation, as it can lead to more serious complications such as respiratory failure or cardiac arrest if left untreated.

There are several types of diabetic nephropathy, including:

1. Mesangial proliferative glomerulonephritis: This is the most common type of diabetic nephropathy and is characterized by an overgrowth of cells in the mesangium, a part of the glomerulus (the blood-filtering unit of the kidney).
2. Segmental sclerosis: This type of diabetic nephropathy involves the hardening of some parts of the glomeruli, leading to decreased kidney function.
3. Fibrotic glomerulopathy: This is a rare form of diabetic nephropathy that is characterized by the accumulation of fibrotic tissue in the glomeruli.
4. Membranous nephropathy: This type of diabetic nephropathy involves the deposition of immune complexes (antigen-antibody complexes) in the glomeruli, leading to inflammation and damage to the kidneys.
5. Minimal change disease: This is a rare form of diabetic nephropathy that is characterized by minimal changes in the glomeruli, but with significant loss of kidney function.

The symptoms of diabetic nephropathy can be non-specific and may include proteinuria (excess protein in the urine), hematuria (blood in the urine), and decreased kidney function. Diagnosis is typically made through a combination of physical examination, medical history, laboratory tests, and imaging studies such as ultrasound or CT scans.

Treatment for diabetic nephropathy typically involves managing blood sugar levels through lifestyle changes (such as diet and exercise) and medication, as well as controlling high blood pressure and other underlying conditions. In severe cases, dialysis or kidney transplantation may be necessary. Early detection and management of diabetic nephropathy can help slow the progression of the disease and improve outcomes for patients with this condition.

A blockage caused by air bubbles in the bloodstream, which can occur after a sudden change in atmospheric pressure (e.g., during an airplane flight or scuba diving). Air embolism can cause a variety of symptoms, including shortness of breath, chest pain, and stroke. It is a potentially life-threatening condition that requires prompt medical attention.

Note: Air embolism can also occur in the venous system, causing a pulmonary embolism (blockage of an artery in the lungs). This is a more common condition and is discussed separately.

Symptoms of pulmonary atelectasis may include chest pain, coughing up bloody mucus, difficulty breathing, fever, and chills. Treatment typically involves antibiotics for bacterial infections, and in severe cases, mechanical ventilation may be necessary. In some cases, surgery may be required to remove the blockage or repair the damage to the lung.
Pulmonary atelectasis is a serious condition that requires prompt medical attention to prevent complications such as respiratory failure or sepsis. It can be diagnosed through chest X-rays, computed tomography (CT) scans, and pulmonary function tests.

Symptoms of cerebral hemorrhage may include sudden severe headache, confusion, seizures, weakness or numbness in the face or limbs, and loss of consciousness. The condition is diagnosed through a combination of physical examination, imaging tests such as CT or MRI scans, and laboratory tests to determine the cause of the bleeding.

Treatment for cerebral hemorrhage depends on the location and severity of the bleeding, as well as the underlying cause. Medications may be used to control symptoms such as high blood pressure or seizures, while surgery may be necessary to repair the ruptured blood vessel or relieve pressure on the brain. In some cases, the condition may be fatal, and immediate medical attention is essential to prevent long-term damage or death.

Some of the most common complications associated with cerebral hemorrhage include:

1. Rebleeding: There is a risk of rebleeding after the initial hemorrhage, which can lead to further brain damage and increased risk of death.
2. Hydrocephalus: Excess cerebrospinal fluid can accumulate in the brain, leading to increased intracranial pressure and potentially life-threatening complications.
3. Brain edema: Swelling of the brain tissue can occur due to the bleeding, leading to increased intracranial pressure and potentially life-threatening complications.
4. Seizures: Cerebral hemorrhage can cause seizures, which can be a sign of a more severe injury.
5. Cognitive and motor deficits: Depending on the location and severity of the bleeding, cerebral hemorrhage can result in long-term cognitive and motor deficits.
6. Vision loss: Cerebral hemorrhage can cause vision loss or blindness due to damage to the visual cortex.
7. Communication difficulties: Cerebral hemorrhage can cause difficulty with speech and language processing, leading to communication difficulties.
8. Behavioral changes: Depending on the location and severity of the bleeding, cerebral hemorrhage can result in behavioral changes, such as irritability, agitation, or apathy.
9. Infection: Cerebral hemorrhage can increase the risk of infection, particularly if the hemorrhage is caused by a ruptured aneurysm or arteriovenous malformation (AVM).
10. Death: Cerebral hemorrhage can be fatal, particularly if the bleeding is severe or if there are underlying medical conditions that compromise the patient's ability to tolerate the injury.

Measurement:

Cardiac output is typically measured using invasive or non-invasive methods. Invasive methods involve inserting a catheter into the heart to directly measure cardiac output. Non-invasive methods include echocardiography, MRI, and CT scans. These tests can provide an estimate of cardiac output based on the volume of blood being pumped out of the heart and the rate at which it is being pumped.

Causes:

There are several factors that can contribute to low cardiac output. These include:

1. Heart failure: This occurs when the heart is unable to pump enough blood to meet the body's needs, leading to fatigue and shortness of breath.
2. Anemia: A low red blood cell count can reduce the amount of oxygen being delivered to the body's tissues, leading to fatigue and weakness.
3. Medication side effects: Certain medications, such as beta blockers, can slow down the heart rate and reduce cardiac output.
4. Sepsis: A severe infection can lead to inflammation throughout the body, which can affect the heart's ability to pump blood effectively.
5. Myocardial infarction (heart attack): This occurs when the heart muscle is damaged due to a lack of oxygen, leading to reduced cardiac output.

Symptoms:

Low cardiac output can cause a range of symptoms, including:

1. Fatigue and weakness
2. Dizziness and lightheadedness
3. Shortness of breath
4. Pale skin
5. Decreased urine output
6. Confusion and disorientation

Treatment:

The treatment of low cardiac output depends on the underlying cause. Treatment may include:

1. Medications to increase heart rate and contractility
2. Diuretics to reduce fluid buildup in the body
3. Oxygen therapy to increase oxygenation of tissues
4. Mechanical support devices, such as intra-aortic balloon pumps or ventricular assist devices
5. Surgery to repair or replace damaged heart tissue
6. Lifestyle changes, such as a healthy diet and regular exercise, to improve cardiovascular health.

Prevention:

Preventing low cardiac output involves managing any underlying medical conditions, taking medications as directed, and making lifestyle changes to improve cardiovascular health. This may include:

1. Monitoring and controlling blood pressure
2. Managing diabetes and other chronic conditions
3. Avoiding substances that can damage the heart, such as tobacco and excessive alcohol
4. Exercising regularly
5. Eating a healthy diet that is low in saturated fats and cholesterol
6. Maintaining a healthy weight.

Symptoms of PIH can include:

* Headaches
* Blurred vision
* Nausea and vomiting
* Abdominal pain
* Swelling of the hands and feet
* Shortness of breath
* Seizures (in severe cases)

PIH can be diagnosed through blood pressure readings, urine tests, and imaging studies such as ultrasound. Treatment for PIH usually involves bed rest, medication to lower blood pressure, and close monitoring by a healthcare provider. In severe cases, delivery may be necessary.

Preventive measures for PIH include:

* Regular prenatal care to monitor blood pressure and detect any changes early
* Avoiding excessive weight gain during pregnancy
* Eating a healthy diet low in salt and fat
* Getting regular exercise as recommended by a healthcare provider

PIH can be a serious condition for both the mother and the baby. If left untreated, it can lead to complications such as stroke, placental abruption (separation of the placenta from the uterus), and premature birth. In severe cases, it can be life-threatening for both the mother and the baby.

Overall, PIH is a condition that requires close monitoring and careful management to ensure a healthy pregnancy outcome.

1. Heart Disease: High blood sugar levels can damage the blood vessels and increase the risk of heart disease, which includes conditions like heart attacks, strokes, and peripheral artery disease.
2. Kidney Damage: Uncontrolled diabetes can damage the kidneys over time, leading to chronic kidney disease and potentially even kidney failure.
3. Nerve Damage: High blood sugar levels can damage the nerves in the body, causing numbness, tingling, and pain in the hands and feet. This is known as diabetic neuropathy.
4. Eye Problems: Diabetes can cause changes in the blood vessels of the eyes, leading to vision problems and even blindness. This is known as diabetic retinopathy.
5. Infections: People with diabetes are more prone to developing skin infections, urinary tract infections, and other types of infections due to their weakened immune system.
6. Amputations: Poor blood flow and nerve damage can lead to amputations of the feet or legs if left untreated.
7. Cognitive Decline: Diabetes has been linked to an increased risk of cognitive decline and dementia.
8. Sexual Dysfunction: Men with diabetes may experience erectile dysfunction, while women with diabetes may experience decreased sexual desire and vaginal dryness.
9. Gum Disease: People with diabetes are more prone to developing gum disease and other oral health problems due to their increased risk of infection.
10. Flu and Pneumonia: Diabetes can weaken the immune system, making it easier to catch the flu and pneumonia.

It is important for people with diabetes to manage their condition properly to prevent or delay these complications from occurring. This includes monitoring blood sugar levels regularly, taking medication as prescribed by a doctor, and following a healthy diet and exercise plan. Regular check-ups with a healthcare provider can also help identify any potential complications early on and prevent them from becoming more serious.

There are several types of edema, including:

1. Pitting edema: This type of edema occurs when the fluid accumulates in the tissues and leaves a pit or depression when it is pressed. It is commonly seen in the skin of the lower legs and feet.
2. Non-pitting edema: This type of edema does not leave a pit or depression when pressed. It is often seen in the face, hands, and arms.
3. Cytedema: This type of edema is caused by an accumulation of fluid in the tissues of the limbs, particularly in the hands and feet.
4. Edema nervorum: This type of edema affects the nerves and can cause pain, numbness, and tingling in the affected area.
5. Lymphedema: This is a condition where the lymphatic system is unable to properly drain fluid from the body, leading to swelling in the arms or legs.

Edema can be diagnosed through physical examination, medical history, and diagnostic tests such as imaging studies and blood tests. Treatment options for edema depend on the underlying cause, but may include medications, lifestyle changes, and compression garments. In some cases, surgery or other interventions may be necessary to remove excess fluid or tissue.

When the body's CO2 levels are too low, it can cause a range of symptoms including:

1. Dizziness and lightheadedness
2. Headaches
3. Fatigue and weakness
4. Confusion and disorientation
5. Numbness or tingling in the hands and feet
6. Muscle twitching
7. Irritability and anxiety
8. Increased heart rate and blood pressure
9. Sleep disturbances
10. Decreased mental performance and concentration

Hypocapnia can be diagnosed through a series of tests, including blood gas analysis, electroencephalography (EEG), and imaging studies such as computed tomography (CT) or magnetic resonance imaging (MRI). Treatment options vary depending on the underlying cause of hypocapnia, but may include breathing exercises, oxygen therapy, medication, and addressing any underlying conditions.

In severe cases, hypocapnia can lead to seizures, coma, and even death. Therefore, it is important to seek medical attention if symptoms persist or worsen over time.

IPPR is typically defined by the following criteria:

1. Increased lung volume during inspiration: The lung volume increases beyond the normal range for a given inspired volume of air.
2. Activation of accessory muscles: Muscles other than the diaphragm, such as the intercostal and supra- and infra-sternal muscles, are activated to assist with inspiration.
3. Movement of the diaphragm: The diaphragm moves in a manner that is not normal for quiet breathing, such as a more vertical or cephalic movement.
4. Compensatory mechanism: IPPR is thought to be a compensatory mechanism to improve gas exchange, often seen in patients with neuromuscular weakness or paralysis.

IPPR can be diagnosed through a variety of tests, including pulmonary function tests (PFTs), chest radiographs, and magnetic resonance imaging (MRI). Treatment for IPPR will depend on the underlying cause, but may include respiratory therapy, physical therapy, and medications to manage symptoms.

The term "decerebrate" comes from the Latin word "cerebrum," which means brain. In this context, the term refers to a state where the brain is significantly damaged or absent, leading to a loss of consciousness and other cognitive functions.

Some common symptoms of the decerebrate state include:

* Loss of consciousness
* Flaccid paralysis (loss of muscle tone)
* Dilated pupils
* Lack of responsiveness to stimuli
* Poor or absent reflexes
* Inability to speak or communicate

The decerebrate state can be caused by a variety of factors, including:

* Severe head injury
* Stroke or cerebral vasculature disorders
* Brain tumors or cysts
* Infections such as meningitis or encephalitis
* Traumatic brain injury

Treatment for the decerebrate state is typically focused on addressing the underlying cause of the condition. This may involve medications to control seizures, antibiotics for infections, or surgery to relieve pressure on the brain. In some cases, the decerebrate state may be a permanent condition, and individuals may require long-term care and support.

There are several different types of spinal cord injuries that can occur, depending on the location and severity of the damage. These include:

1. Complete spinal cord injuries: In these cases, the spinal cord is completely severed, resulting in a loss of all sensation and function below the level of the injury.
2. Incomplete spinal cord injuries: In these cases, the spinal cord is only partially damaged, resulting in some remaining sensation and function below the level of the injury.
3. Brown-Sequard syndrome: This is a specific type of incomplete spinal cord injury that affects one side of the spinal cord, resulting in weakness or paralysis on one side of the body.
4. Conus medullaris syndrome: This is a type of incomplete spinal cord injury that affects the lower part of the spinal cord, resulting in weakness or paralysis in the legs and bladder dysfunction.

The symptoms of spinal cord injuries can vary depending on the location and severity of the injury. They may include:

* Loss of sensation in the arms, legs, or other parts of the body
* Weakness or paralysis in the arms, legs, or other parts of the body
* Difficulty walking or standing
* Difficulty with bowel and bladder function
* Numbness or tingling sensations
* Pain or pressure in the neck or back

Treatment for spinal cord injuries typically involves a combination of medical and rehabilitative therapies. Medical treatments may include:

* Immobilization of the spine to prevent further injury
* Medications to manage pain and inflammation
* Surgery to relieve compression or stabilize the spine

Rehabilitative therapies may include:

* Physical therapy to improve strength and mobility
* Occupational therapy to learn new ways of performing daily activities
* Speech therapy to improve communication skills
* Psychological counseling to cope with the emotional effects of the injury.

Overall, the prognosis for spinal cord injuries depends on the severity and location of the injury, as well as the age and overall health of the individual. While some individuals may experience significant recovery, others may experience long-term or permanent impairment. It is important to seek medical attention immediately if symptoms of a spinal cord injury are present.

There are several different types of brain injuries that can occur, including:

1. Concussions: A concussion is a type of mild traumatic brain injury that occurs when the brain is jolted or shaken, often due to a blow to the head.
2. Contusions: A contusion is a bruise on the brain that can occur when the brain is struck by an object, such as during a car accident.
3. Coup-contrecoup injuries: This type of injury occurs when the brain is injured as a result of the force of the body striking another object, such as during a fall.
4. Penetrating injuries: A penetrating injury occurs when an object pierces the brain, such as during a gunshot wound or stab injury.
5. Blast injuries: This type of injury occurs when the brain is exposed to a sudden and explosive force, such as during a bombing.

The symptoms of brain injuries can vary depending on the severity of the injury and the location of the damage in the brain. Some common symptoms include:

* Headaches
* Dizziness or loss of balance
* Confusion or disorientation
* Memory loss or difficulty with concentration
* Slurred speech or difficulty with communication
* Vision problems, such as blurred vision or double vision
* Sleep disturbances
* Mood changes, such as irritability or depression
* Personality changes
* Difficulty with coordination and balance

In some cases, brain injuries can be treated with medication, physical therapy, and other forms of rehabilitation. However, in more severe cases, the damage may be permanent and long-lasting. It is important to seek medical attention immediately if symptoms persist or worsen over time.

There are several causes of tricuspid valve insufficiency, including:

1. Congenital heart defects: Tricuspid valve insufficiency can be present at birth due to abnormal development of the tricuspid valve.
2. Rheumatic fever: This is an inflammatory condition that can damage the tricuspid valve and lead to insufficiency.
3. Endocarditis: Bacterial infection of the inner lining of the heart, including the tricuspid valve, can cause damage and lead to insufficiency.
4. Heart failure: As the heart fails, the tricuspid valve may become less effective, leading to insufficiency.
5. Cardiac tumors: Tumors in the heart can put pressure on the tricuspid valve and cause insufficiency.
6. Congenital heart disease: Tricuspid valve insufficiency can be present at birth due to abnormal development of the tricuspid valve.
7. Chronic pulmonary disease: This can lead to increased pressure in the right side of the heart, causing tricuspid valve insufficiency.

Symptoms of tricuspid valve insufficiency may include fatigue, shortness of breath, swelling in the legs and feet, and chest pain. Diagnosis is typically made through echocardiography, electrocardiography, and cardiac catheterization.

Treatment options for tricuspid valve insufficiency depend on the severity of the condition and may include:

1. Medications: Diuretics, ACE inhibitors, and beta blockers may be used to manage symptoms and slow progression of the disease.
2. Surgery: In severe cases, surgical repair or replacement of the tricuspid valve may be necessary.
3. Transcatheter tricuspid valve replacement: This is a minimally invasive procedure in which a new tricuspid valve is inserted through a catheter in the femoral vein and placed in the heart.
4. Watchful waiting: In mild cases, doctors may choose to monitor the condition closely without immediate treatment.

... also spelled gage pressure) is the pressure relative to the ambient pressure. Various units are used to express pressure. Some ... pressure) Partial pressure - Pressure attributed to a component gas in a mixture Pressure measurement - Analysis of force ... Pressure measurement device Sound pressure - Local pressure deviation from the ambient atmospheric pressure, caused by a sound ... Atmospheric pressure - Static pressure exerted by the weight of the atmosphere Blood pressure - Pressure exerted by circulating ...
... (Palv) is the pressure of air inside the lung alveoli. When the glottis is opened and no air is flowing into ... At the end of inspiration, the alveolar pressure returns to atmospheric pressure (zero cmH2O). During exhalation, the opposite ... alveolar pressure is equal to the atmospheric pressure, that is, zero cmH2O. During inhalation, the increased volume of alveoli ... The alveolar pressure rises to about +1 cmH2O. This forces the 500 ml of inspired air out of the lung during the 2-3 seconds of ...
Depending on the affected material, "pressure ridge" may refer to: Pressure ridge (ice), between ice floes Pressure ridge (lava ... "Pressure Ridge: Dragon's Back Pressure Ridge, Carrizo Plain National Monument". OpenTopography: High-Resolution Topography Data ... in a lava flow Pressure ridge (seismic), in a fault zone In a seismic context, a pressure ridge can range in size from a few- ... A pressure ridge can for instance be the result of a deep-set obstruction on the fault plane, which leads to material being ...
Filtered air positive pressure Negative pressure (disambiguation) Negative room pressure Overpressure (CBRN protection) Plenum ... Positive pressure is a pressure within a system that is greater than the environment that surrounds that system. Consequently, ... This is in contrast to a negative pressure room, where air is sucked in. Use is also made of positive pressure to ensure there ... Negative pressure rooms are used to help keep airborne pathogens (eg. aerosolized COVID-19 and active TB) from escaping into ...
... is a technique used in the study of chemical kinetics. It involves making rapid changes to the pressure of an ... Historically, pressure jumps were limited to one direction. Most commonly fast drops in pressure were achieved by using a quick ... If K is the equilibrium constant and P is the pressure then the volume change is given by: Δ V o = − R T ( ∂ ln ⁡ K ∂ P ) T {\ ... Heuer U, Krumova M, Hempel G, Schiewek M, Blume A (2010). "NMR probe for pressure-jump experiments up to 250 bars and 3 ms jump ...
... propagule pressure also increases. Propagule pressure can be defined as the quality, quantity, and frequency of invading ... Propagule pressure (also termed introduction effort) is a composite measure of the number of individuals of a species released ... Propagule pressure, however, was shown to be a key contributor to both invasiveness and invasibility. This study found there ... Once propagule pressure is considered, more suitable measures can be taken to reverse the unwanted effects of nonnative ...
... is sometimes referred to as pitot pressure because the two pressures are numerically equal. The magnitude ... In our airplane example, the stagnation pressure would be atmospheric pressure plus the dynamic pressure. In compressible flow ... is the static pressure So the stagnation pressure is increased over the static pressure, by the amount 1 2 ρ v 2 {\displaystyle ... stagnation pressure is equal to the sum of the free-stream static pressure and the free-stream dynamic pressure. ...
... s that contain fibrous mineral textures are also termed pressure fringes or strain fringes. During deformation, ... A pressure shadow (also called strain shadow) is a term used in metamorphic geology to describe a microstructure in deformed ... Pressure shadows often appear in thin sections as pairs of roughly triangular regions that are elongated parallel to the ...
A back-pressure regulator, back-pressure valve, pressure sustaining valve or pressure sustaining regulator is a control valve ... All modern pressure cookers will have a pressure regulator valve and a pressure relief valve as a safety mechanism to prevent ... If the supply pressure falls, the closing force due to supply pressure is reduced, and downstream pressure will rise slightly ... The inlet pressure gauge will indicate this pressure. The gas then passes through the normally open pressure control valve ...
In structural geology and diagenesis, pressure solution or pressure dissolution is a deformation mechanism that involves the ... Evidence for pressure solution has been described from sedimentary rocks that have only been affected by compaction. The most ... In a tectonic manner, deformed rocks also show evidence of pressure solution including stylolites at a high angle to bedding. ... doi:10.1016/0191-8141(94)00127-L. Fowler, A. C.; Yang X. S. (1999). "Pressure solution and viscous compaction in sedimentary ...
The concept of pressure points is also present in the old school Japanese martial arts; in a 1942 article in the Shin Budo ... Accounts of pressure-point fighting appeared in Chinese Wuxia fiction novels and became known by the name of Dim Mak, or "Death ... Pressure points derive from the supposed meridian points in Traditional Chinese Medicine, Indian Ayurveda and Siddha medicine, ... While it is undisputed that there are sensitive points on the human body where even comparatively weak pressure may induce ...
"Rival Sons - Pressure & Time - Album Review". Rockfreaks.net. Retrieved 25 May 2022. "ITunes - Music - Pressure & Time by Rival ... "Pressure & Time - Rival Sons". AllMusic. Retrieved January 12, 2013. "Rival Sons - Pressure & Time [Album] , Altsounds.com ... Pressure & Time is the second studio album by American rock band Rival Sons. It was released on June 20, 2011, in the UK and ... Pressure & Time (booklet). Rival Sons. Earache. 2011. ERL-CD-5550.{{cite AV media notes}}: CS1 maint: others in cite AV media ( ...
The preconsolidation pressure can help determine the largest overburden pressure that can be exerted on a soil without ... Change in pore water pressure: A change in water table elevation, Artesian pressures, deep pumping or flow into tunnels, and ... soil will consolidate even after high pressures from loading and pore water pressure have been depleted. Environmental changes ... The preconsolidation pressure can be estimated in a number of different ways but not measured directly. It is useful to know ...
... is a British DIY record label, specializing in releasing reggae music. Run by Pete Holdsworth, it is one of the ... A couple of labels are closely associated with PS: Maximum Pressure which specialises in 1980s dancehall; Green Tea, which ... Pressure Sounds at 100". The Vinyl Factory. Retrieved 22 February 2019. Official site Discography at an unofficial On-U Sound ... Pressure Volume 1 - 1995 PS06 - Little Roy - Tafari Earth Uprising - 1996 PS07 - Prince Far I - Cry Tuff Dub Encounter (Chapter ...
... diving is underwater diving exposed to the water pressure at depth, rather than in a pressure-excluding ... Pressures are given in terms of the normal ambient pressure experienced by humans - standard atmospheric pressure at sea level ... The ambient pressure on an object is the pressure of the surrounding medium, such as a gas or liquid, in contact with the ... One bar is 100 kPa or approximately ambient pressure at sea level. Ambient pressure may in other circumstances be measured in ...
... s are typically used where properties are located below the level of the nearest gravity sewer or are located on ... Pressure sewers are also used to collect the discharge from septic tanks and discharge this into the local gravity sewer to ... A pressure sewer provides a method of discharging sewage from properties into a conventional gravity sewer or directly to a ... the small diameter plastic discharge pipe of a pressure system is much more robust and can accommodate substantial movements in ...
The pressure of the gas represents the capillary pressure, and the amount of water ejected from the porous plate is correlated ... Capillary pressure can also be utilized to block fluid flow in a microfluidic device. The capillary pressure in a microchannel ... A positive capillary pressure represents a valve on the fluid flow while a negative pressure represents the fluid being pulled ... Capillary pressure, as seen in petroleum engineering, is often modeled in a laboratory where it is recorded as the pressure ...
Some pressure cookers operate at lower pressures than others. If the recipe is devised for a higher pressure and the pressure ... Pressure fryers are used for deep fat frying under pressure, because ordinary pressure cookers are not suitable for pressure ... A pressure air fryer (not to be confused with a pressure fryer) is a recent combination of a pressure cooker and an air fryer, ... Pressure air fryers have two separate lids, one for pressure cooking, and one for air frying. At standard pressure the boiling ...
7" Single (K 9074) Side A "Pressure Sway" - 3:53 Side B "Pushbike" - 3:40 12" Single (X 14030) Side A1 "Pressure Sway" ( ... "Pressure Sway" is a song recorded by the Australian synthpop band Machinations. It was released in April 1983 as the second and ... Extended Version) - 4:57 Side B1 "Pressure Sway" (Instrumental) - 6:16 Side B2 "Pushbike" - 3:40 Kent, David (1993). Australian ...
Either way peer pressure tends to follow the trends with the current world. Peer pressure is widely recognized as a major ... Peer pressure can also have positive effects when youth are pressured by their peers toward positive behavior, such as ... Peer pressure produces a wide array of negative outcomes. Allen and colleagues showed that susceptibility to peer pressure in ... As he notes, "For that matter, for someone to be pressured into doing something, by peer pressure, everyone else has to want to ...
Low oil pressure indicates worn bearings or a broken oil pump. Some vehicle engines have an oil pressure switch that switches a ... Oil pressure is lowest under hot idling conditions, and the minimum pressure allowed by the manufacturer's tolerances is ... Some vehicles have an oil pressure gauge in the dashboard or instrument cluster. Oil pressure is created by a fluid flow ... Oil pressure is higher when the engine is cold due to the increased viscosity of the oil, and also increases with engine speed ...
... may refer to: P-wave, one of the two main types of elastic body waves, called seismic waves in seismology ... also called compressional or compression waves This disambiguation page lists articles associated with the title Pressure wave ...
... sound pressure, a dynamic pressure) in the local ambient pressure, a static pressure. Sound pressure, denoted p, is defined by ... Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average or equilibrium) atmospheric ... Sound pressure level (SPL) or acoustic pressure level is a logarithmic measure of the effective pressure of a sound relative to ... If the sound pressure p1 is measured at a distance r1 from the centre of the sphere, the sound pressure p2 at another position ...
The Laplace pressure is the pressure difference between the inside and the outside of a curved surface that forms the boundary ... The Laplace pressure is commonly used to determine the pressure difference in spherical shapes such as bubbles or droplets. In ... The extra pressure inside the bubble is given here for three bubble sizes: A 1 mm bubble has negligible extra pressure. Yet ... The Laplace pressure is determined from the Young-Laplace equation given as Δ P ≡ P inside − P outside = γ ( 1 R 1 + 1 R 2 ...
... is an arm of Robertson Bay, 3 nautical miles (6 km) wide, lying between Cape Wood and Birthday Point along the ... This pressure was caused by the adjacent Shipley Glacier descending to the sea ice. Coordinates: 71°25′S 169°20′E / 71.417°S ... The Northern Party experienced great difficulty in sledging across the pressure ice fringing the shore of Robertson Bay. ... 169.333°E / -71.417; 169.333 This article incorporates public domain material from "Pressure Bay". Geographic Names ...
... (ICP) is the pressure exerted by fluids such as cerebrospinal fluid (CSF) inside the skull and on the ... CSF pressure has been shown to be influenced by abrupt changes in intrathoracic pressure during coughing (which is induced by ... The pressure-volume relationship between ICP, volume of CSF, blood, and brain tissue, and cerebral perfusion pressure (CPP) is ... Cerebral perfusion pressure (CPP), the pressure of blood flowing to the brain, is normally fairly constant due to ...
... s can alternatively be called pressure transducers, pressure transmitters, pressure senders, pressure indicators ... Gauge pressure sensor This sensor measures the pressure relative to atmospheric pressure. A tire pressure gauge is an example ... A pressure sensor is a device for pressure measurement of gases or liquids. Pressure is an expression of the force required to ... Some pressure sensors are pressure switches, which turn on or off at a particular pressure. For example, a water pump can be ...
Using diving terms, partial pressure is calculated as: partial pressure = (total absolute pressure) × (volume fraction of gas ... 1 bar of atmospheric pressure + 5 bar of water pressure) and the partial pressures of the main components of air, oxygen 21% by ... The total pressure of an ideal gas mixture is the sum of the partial pressures of the gases in the mixture (Dalton's Law). The ... The symbol for pressure is usually P or p which may use a subscript to identify the pressure, and gas species are also referred ...
In pressure controlled breaths a tidal volume achieved is based on how much volume can be delivered before the pressure control ... Pressure control is used to regulate pressures applied during mechanical ventilation. Air delivered into the patients lungs ( ... Pressure control (PC) is a mode of mechanical ventilation alone and a variable within other modes of mechanical ventilation. ... Pressure control is used in any situation where pulmonary barotrauma may occur such as acute respiratory distress syndrome. ...
"Pressure" is to be understood metaphorically and hints at the analogy between a gas or fluid that under pressure will tend to ... Population pressure, a term summarizing the stress brought about by an excessive population density and its consequences, is ... Similarly, "population pressure" in animal populations in general usually leads to migration activity, and in humans, it may ... When no space for evading the pressure is available, another severe consequence can be the reduction or even extinction of the ...
... to help prevent high blood pressure. Learn more. ... About High Blood Pressureplus icon *High Blood Pressure in Kids ... Know Your Risk for High Blood Pressure. *Prevent and Manage High Blood Pressureplus icon *The Surgeon Generals Call to Action ... By living a healthy lifestyle, you can help keep your blood pressure in a healthy range. Preventing high blood pressure, which ... Your Guide to Lowering Your Blood Pressure With DASH [PDF - 792K]. NIH Pub. No. 06-4082. Bethesda, MD: National Heart, Lung, ...
Increased blood volume means more work for the heart and more pressure on blood vessels. Over time, the extra work and pressure ... 7] Populations with higher salt consumption had higher average blood pressures and greater increases of blood pressures with ... the bottom number of a blood pressure reading) blood pressure, with the DASH diet producing a stronger effect. ... But too much sodium in the diet can lead to high blood pressure, heart disease, and stroke. It can also cause calcium losses, ...
Shop for electronic pressure cookers at Best Buy. Find low everyday prices and buy online for delivery or in-store pick-up. ... Foodi Pressure cooker is great! Able to cook many things in it....The Only Pressure Cooker Youll Ever Need....Foodi Pressure ... Foodi Pressure cooker is great! Able to cook many things in it....The Only Pressure Cooker Youll Ever Need....Foodi Pressure ... "best pressure cooker...I had purchased 3 diferrent pressure cookers and this is for sure the best in the market...Best pressure ...
Considered a classic of British realist cinema today, Horace Ovés first feature film, Pressure, was also the first feature by ...
Bean, V. (1994), NIST pressure calibration service:, , National Institute of Standards and Technology, Gaithersburg, MD, [ ...
Essendon star Dyson Heppell says he doesnt feel pressure for his spot after being subbed out last week ... Heppell not feeling pressure after benching. 9News.com.au UP NEXT. * Inside Victorias elite search and rescue squad. 9News.com ... Essendon star Dyson Heppell says he doesnt feel pressure for his spot after being subbed out last week ... Heppell not feeling pressure after benching. Duration: 01:03 28/03/2023. ...
Conversely, pressure canning allows the pressure to rise to higher temperature to kill bacteria faster. Foods such as beans, ... Finally, the cooling process is completed, and the pressure canners release all of their … well, pressure. Osborne places the ... Campis favorite pressure-canner recipe is one for black-eyed peas. Unless youre eating the legumes fresh, she says, home- ... Under pressure. These home canners preserve foods, funds and friendships. By Lory Gil ...
This recipe appears in our cookbook Martha Stewarts Pressure Cooker (Clarkson Potter). ... the Instant Pot or pressure cooker really comes in handy. We absolutely love the way it produces perfectly tender, fluffy ... Bring to high pressure over medium-high heat; reduce heat to maintain pressure and cook for 15 minutes. Remove from heat, ... Manually set cooker to 15 minutes and let it come to pressure. Once time is complete, turn off, quickly release pressure, then ...
Systolic blood pressure decreased in the prazosin group by a mean of 3.5 mmHg across the 12-week study period but increased in ... Cite this: Blood Pressure Drug May Curb Problem Drinking - Medscape - Sep 07, 2018. ... Prazosin (multiple brands), an alpha-adrenergic blocker used to treat high blood pressure, anxiety, and posttraumatic stress ...
... and alcohol consumption can influence the blood pressure. Chronically elevated blood pressure (medically termed hypertension) ... Fruits, Veggie, Low-Fat Diet Lowers Blood Pressure. DOCTORS VIEW ARCHIVE. Baltimore - It has been demonstrated by previous ... Because blood pressures were lowered by the diet even in patients without hypertension, the authors of the study suggest that ... vegetables combined with low-fat dairy foods and with reduced saturated and total fat significantly lowered the blood pressure ...
Our study shows that given the right blood pressure drug, the patient can lower their blood pressure and as a result can ... Most Swedes develop high blood pressure sooner or later; more than two million Swedes have high blood pressure at the present ... Personalized blood pressure treatment more effective. Uppsala University. Journal. JAMA. Funder. Swedish Research Council, ... Health and medicine/Medical specialties/Hematology/Blood pressure * /Life sciences/Organismal biology/Anatomy/Body fluids/Blood ...
... you may also have issues with your blood pressure. Find out how these two conditions -- and the medications for them -- can ... Blood pressure is a major part of asthma.. You can have high blood pressure with asthma. But it usually isnt because of a ... What to Know: Asthma and Blood Pressure Written by Alexandra Benisek. Medically Reviewed by Carmelita Swiner, MD on November 10 ... Your heart will pump faster to get enough oxygen to the rest of your body, so your blood pressure will go up, as a result. ...
... which keeps the pressure off of domestic emerging market currencies. ...
Teggarts Dad Knows The Pressure Share this:. *Click to share on Twitter (Opens in new window) ...
Foreign powers have stepped up the pressure on both Israel and Hamas to stop hostilities after four days of attacks which have ... International pressure for halt to hostilities grows. Foreign powers have stepped up the pressure on both Israel and Hamas to ... "At the same time, it is important to keep the pressure up on Hamas, not give them a respite, time to regroup and reorganise." ...
... which presents with erythematous swelling at sites of pressure. Patients who have urticaria for more than 6 weeks are given the ... Pressure urticaria is an uncommon form of physical urticaria, a subset of chronic urticaria, ... Pressure urticaria may occur immediately (within minutes) or, more commonly, 4-6 hours after a pressure stimulus. [3, 4] For ... encoded search term (Pressure Urticaria) and Pressure Urticaria What to Read Next on Medscape ...
Make a blood pressure tester thats tough, smart, and mobile. ... Too Much Pressure. Blood pressure, one of your vital signs, is ... An inflatable arm cuff contains an electronic pressure sensor that measures the air pressure inside the cuff. When the cuff is ... blood pressures. This is known as the oscillometric blood pressure method (for details, see makezine.com/go/obpm). Our ... you have high blood pressure, aka hypertension.Blood pressure rises with age. Its also affected by exercise, stress, diet, and ...
Blood pressure lowering after lacunar stroke. *Jessica K. Edwards Nature Reviews Nephrology volume 12, page 126 (2016)Cite this ... The effect of intensive versus usual blood pressure control on kidney function among persons with prior lacunar stroke: a post- ... Edwards, J. Blood pressure lowering after lacunar stroke. Nat Rev Nephrol 12, 126 (2016). https://doi.org/10.1038/nrneph. ... SPS3 randomized trial who experienced a lacunar stroke but maintained kidney function has found that intensive blood pressure ( ...
Pressure is mounting. Increasingly, pressures on the middle class are translating into a sense of anxiety about their economic ... Accueil de lOCDE Prestations et questions socialesLaunch of "Under Pressure: The Squeezed Middle Class" Prestations et ... Our report identifies three main sources of pressure.. First, many middle class households view the socio-economic systems as ... This new report "Under Pressure: The Squeezed Middle Class" contributes to the OECDs Inclusive Growth Agenda, and builds on ...
A pressure washer is the ideal tool to make short work of tough stains. ... Select a washer with a pressure rating of at least 3,000 PSI. Pressure washers come in all sorts of different pressure ratings ... Turn on the pressure washer by activating the switch near the tank. Plug the pressure washer into a nearby outlet, then hold ... Attach the spray arm and a soaping nozzle to the pressure washer. The pressure washer comes with a metal rod that you hold onto ...
Harvard Professor Karin Michels says the chemical BPA found in cans and bottles can increase blood pressure within hours. ... Harvard Professor Karin Michels says the chemical BPA found in cans and bottles can increase blood pressure within hours. ...
Help Steve Rebus raise money to support Blood Pressure UK ... for Blood Pressure UK because Everyone needs to know their ...
Find the best pressure washers for washing cars, removing mold, cleaning patios, concrete & more. Theres no end to the things ... Heres the best pressure washer weve found for less.. FAQs. Q: What is a good PSI for a pressure washer?. A good PSI for a ... The best pressure washers: Reviews & Recommendations. Best electric: Sun Joe Electric High Pressure Washer. ... Does a gas pressure washer better suit your needs?. The best gas pressure washer will bring extra power to the cleaning game. ...
Blood Pressure. Say: blud PREH-shur. When you go to the doctor, a nurse might put a band around part of your arm and pump air ... Your arm might feel a little squished, but dont worry - thats how they check your blood pressure. This test shows how hard ... Blood pressure can be too high or too low, but yours is probably just right! ...
... but theres a connection between anxiety and blood pressure. We explain this connection and what to do about it. ... What is high blood pressure?. High blood pressure, or hypertension, is a chronic condition that occurs when blood pressure ... Can anxiety cause high blood pressure?. Fortunately, anxiety doesnt cause. chronic high blood pressure. However, it can lead ... Can having anxiety affect how you treat your high blood pressure?. Treatment for high blood pressure generally involves making ...
We also extensively tested six pressure canners, landing on two favorites. ... A deep-dive into what a pressure canner is-and what makes a good one. ... While pressure cookers and pressure canners are related, theyre not the same. Both pressure cookers and pressure canners work ... Pressure canning recipes take into account that the food will cook while the canner is coming up to pressure and while pressure ...
... nutrition with high blood pressure news, facts, tips, & other information. Educate yourself about high blood pressure & help ... Have High Blood Pressure? Yes, You Can Still Eat These Pork Products ... How to Implement Cooking Oils in Your Diet to Up Heart Health and Lower Blood Pressure ... Why Do People Taking High Blood Pressure Medication Have to Be Careful in the Sun? ...
Seems that not pressure causes the problem, but moving focus from the guest to another application during IO on the shared ...
Iranian officials ratcheted up pressure Wednesday ahead of a weekend nuclear deadline for European nations to come up with a ...
  • Preventing high blood pressure , which is also called hypertension, can lower your risk for heart disease and stroke . (cdc.gov)
  • The DASH (Dietary Approaches to Stop Hypertension) eating plan is a healthy diet plan with a proven record of helping people lower their blood pressure. (cdc.gov)
  • Chronically elevated blood pressure (medically termed hypertension ) is common in the United States-affecting over 40 million persons. (medicinenet.com)
  • The study found that a diet rich in fruits and vegetables combined with low-fat dairy foods and with reduced saturated and total fat significantly lowered the blood pressure, especially in those patients with hypertension. (medicinenet.com)
  • Because blood pressures were lowered by the diet even in patients without hypertension, the authors of the study suggest that this diet may offer a nutritional approach for the prevention of hypertension. (medicinenet.com)
  • High blood pressure , or hypertension, is a chronic condition that occurs when blood pressure levels are elevated. (healthline.com)
  • Interestingly, anxiety can also cause a type of high blood pressure commonly called white coat hypertension . (healthline.com)
  • High blood pressure , also called hypertension, is when blood puts too much pressure against the walls of your arteries. (medlineplus.gov)
  • During 2011-2012, 75.6% of adults with hypertension were taking medication to lower their blood pressure, and 51.8% had their blood pressure under control. (cdc.gov)
  • High-normal blood pressure (HNBP) has become associated with a 2-3-fold increase in the risk of developing hypertension. (who.int)
  • High-normal blood pressure (HNBP) is a state of elevated blood pressure not reaching the cutoff for diagnosis of hypertension. (who.int)
  • Serum PCBs, especially those congeners with multiple ortho chlorines, seem to be important factors in regulation of blood pressure and hypertension. (cdc.gov)
  • Arterial pressure and hypertension / Arthur C. Guyton. (who.int)
  • Among 394 persons not on anti-hypertensive medication, linear regression analysis demonstrated a significant positive relation between serum PCB level and both systolic and diastolic blood pressure. (cdc.gov)
  • Significant positive associations were also observed between PCB concentrations and systolic and diastolic blood pressure even in normotensive ranges. (cdc.gov)
  • Concerning the diastolic blood pressure measurement, there were statistical differences among all times except between M1xM4 and M2xM3. (bvsalud.org)
  • Percent of defined population with raised blood pressure (systolic blood pressure ≥ 140 OR diastolic blood pressure ≥ 90). (who.int)
  • Our favorite canner for experienced canners, the All American Pressure Canner , is currently out of stock and, according to the company , on backorder until March 2023. (seriouseats.com)
  • After conducting a review on sodium research, the Institute of Medicine concluded that reducing sodium intake lowers blood pressure, but evidence of a decreased risk of cardiovascular diseases (CVD) is inconclusive. (harvard.edu)
  • They had their systolic and diastolic blood pressures measured at four different times: preoperative (M1), post-anesthesia (M2), post-extraction (M3) and at the end, after the suture (M4), with the aid of a digital tensiometer. (bvsalud.org)
  • There were statistically significant differences between systolic blood pressure changes among all times, except between M1 and M4. (bvsalud.org)
  • About 1 in 3 adults have high blood pressure, usually with no symptoms. (medlineplus.gov)
  • About 70% of US adults age 65 or older have high blood pressure and only about half have it under control (less than 140/90 mmHg). (cdc.gov)
  • However, at least 25% of adults, ages 65 or older, with Medicare Part D prescription drug insurance are not taking their blood pressure medicine as directed. (cdc.gov)
  • About 70% of US adults, ages 65 or older, have high blood pressure. (cdc.gov)
  • Nearly 50% of adults ages 65 or older with high blood pressure don't have it under control. (cdc.gov)
  • About 5 million adults, ages 65 or older, with Medicare Part D aren't taking their blood pressure medicine as directed. (cdc.gov)
  • While pressure cookers and pressure canners are related, they're not the same. (seriouseats.com)
  • They trap steam to build pressure inside the pot as it's heated, which, in turn, raises the boiling point of water for faster cooking (in the case of pressure cookers) and more thorough elimination of unwanted microorganisms (in the case of pressure canners). (seriouseats.com)
  • But because pressure canners are used specifically for food-safety reasons when putting up pickles, tomato sauces, and other foods for long-term storage, it's critical that the appropriate amount of heat is applied for the appropriate amount of time. (seriouseats.com)
  • Pressure canners need to be able to maintain constant pressure-and thus the proper heat-to kill the possible pathogens in home-canned foods. (seriouseats.com)
  • Some pressure canners display this information via an analog pressure dial, others use weighted gauges that wiggle, wobble, and emit steam once they've reached the desired pressure, and some have both. (seriouseats.com)
  • While there are a large number of pressure canners available for sale, many are, frankly, a little suspect. (seriouseats.com)
  • I tested six different pressure canners, in a range of prices. (seriouseats.com)
  • Of all the canners I used, the All American Pressure Canner was the one that gave me the most confidence that everything inside the canner was doing what it was supposed to do. (seriouseats.com)
  • Pressure canners are similar to pressure cookers, but with some significant differences. (seriouseats.com)
  • Patients treated with blood pressure-lowering drugs can experience much greater improvements from a change of medication than from doubling the dose of their current medication. (eurekalert.org)
  • Only a fifth of them have managed to bring their blood pressure under control through drug therapy, and some studies suggest that only half of them take their blood pressure medication as intended. (eurekalert.org)
  • Why Do People Taking High Blood Pressure Medication Have to Be Careful in the Sun? (livestrong.com)
  • Should You Avoid Caffeine if You Take High Blood Pressure Medication? (livestrong.com)
  • Can Weight Loss Reduce the Need for Blood Pressure Medication? (medlineplus.gov)
  • Linear regression analysis was used to determine the relationships between blood pressure and serum levels of the various contaminants after adjustment for age, body mass index (BMI), gender, race, smoking and exercise in 394 Anniston residents who were not on anti-hypertensive medication. (cdc.gov)
  • In this study, 280 patients tested four different blood pressure-lowering drugs over the course of a year. (eurekalert.org)
  • Given the great diversity of blood pressure drugs, there is a serious risk that patients will not receive the optimal drug at the first attempt, and that this will result in poor blood pressure lowering and unnecessary side-effects. (eurekalert.org)
  • All these individuals tested four different blood pressure drugs, one after the other, at several different times over a total period of one year. (eurekalert.org)
  • Heterogeneity in blood pressure response to 4 antihypertensive drugs: a randomized clinical trial. (eurekalert.org)
  • Some drugs used to lower high blood pressure can make asthma symptoms flare up. (webmd.com)
  • Calcium Supplements: Do They Interfere with Blood Pressure Drugs? (medlineplus.gov)
  • F32-ART parasites selected from the African F32-Tanzania crudescence rates for endoperoxides, quinolones, and an clonal line by using multiple dose-escalating artemisinin antifolate, including partner drugs of recommended combi- pressure to study the effect of extended artemisinin pres- nation therapies, but remained susceptible to atovaquone. (cdc.gov)
  • This pressure cooker is a must have for those looking to make food. (bestbuy.com)
  • Foodi Pressure cooker is great! (bestbuy.com)
  • The Only Pressure Cooker Youll Ever Need. (bestbuy.com)
  • The pressure cooker that steams and crisps. (bestbuy.com)
  • best pressure cooker . (bestbuy.com)
  • Best pressure cooker I've ever owned. (bestbuy.com)
  • Unlike other pressure cookers I've used in the past this one works well and has a lot more features then any other cooker ! (bestbuy.com)
  • The Smart Cooker includes a built-in scale, automatic pressure release, 300+ built-in cooking presets, and more. (bestbuy.com)
  • For traditionally steamed foods like tamales, the Instant Pot or pressure cooker really comes in handy. (marthastewart.com)
  • This recipe appears in our cookbook "Martha Stewart's Pressure Cooker" (Clarkson Potter). (marthastewart.com)
  • Place a 1-inch rack in 6- to 8-quart pressure cooker and fill with 3 cups water. (marthastewart.com)
  • Manually set cooker to 15 minutes and let it come to pressure. (marthastewart.com)
  • There are plenty of questions in online pressure cooker groups about whether electric cookers can be used to pressure can sauces and soups safely. (seriouseats.com)
  • There are products that claim to be safe for canning that would be suitable as a pressure cooker, but it isn't clear that they can meet the safety standards required of a proper pressure canner. (seriouseats.com)
  • Practice healthy living habits, like being physically active, to help prevent high blood pressure. (cdc.gov)
  • Choose healthy meal and snack options to help you avoid high blood pressure and its complications. (cdc.gov)
  • Having overweight or obesity increases your risk for high blood pressure. (cdc.gov)
  • Not getting enough sleep on a regular basis is linked to an increased risk of heart disease, high blood pressure, and stroke. (cdc.gov)
  • But too much sodium in the diet can lead to high blood pressure, heart disease, and stroke. (harvard.edu)
  • A Chronic Disease Risk Reduction (CDRR) Intake has also been established, based on the evidence of benefit of a reduced sodium intake on the risk of cardiovascular disease and high blood pressure. (harvard.edu)
  • Over time, the extra work and pressure can stiffen blood vessels, leading to high blood pressure, heart attack, and stroke. (harvard.edu)
  • 2] It is clear, however, that high blood pressure is a leading cause of CVD. (harvard.edu)
  • 3] In China, high blood pressure is the leading cause of preventable death, responsible for more than one million deaths a year. (harvard.edu)
  • more than two million Swedes have high blood pressure at the present time. (eurekalert.org)
  • The study's findings challenge the strategy recommended in current treatment guidelines, in which four drug groups are recommended equally warmly for all patients with high blood pressure. (eurekalert.org)
  • You can have high blood pressure with asthma. (webmd.com)
  • It's important to know why medications for high blood pressure and asthma don't always work together. (webmd.com)
  • Angiotensin-converting enzyme (ACE) inhibitors are a common treatment for high blood pressure. (webmd.com)
  • A possible side effect of corticosteroids is high blood pressure. (webmd.com)
  • If you're on corticosteroids for asthma, you should have your doctor check your blood pressure to make sure it's not too high. (webmd.com)
  • If you're taking any of these medicines, and you have asthma and high blood pressure, make sure your doctor knows that you have both conditions. (webmd.com)
  • It blasts out water at hundreds of times the pressure of the air we breathe, helping users to get both high and low surfaces as clean as possible while standing upright. (popsci.com)
  • This is the best gas pressure washer and it comes with five nozzle tips of different sizes, including a plastic soap one, as well as an ergonomic high-pressure gun and 10-inch pneumatic tires that can be maneuvered across a variety of terrains. (popsci.com)
  • This hot water pressure washer will cost you, but it offers optimal cleaning power along with 13-inch pneumatic tires, five easy-to-connect nozzles, and a high-pressure hose that's 50 feet long with a diameter of ⅜ of an inch. (popsci.com)
  • Can Anxiety Cause High Blood Pressure? (healthline.com)
  • Although anxiety isn't linked to chronic high blood pressure, both short-term and chronic anxiety may cause your blood pressure to spike. (healthline.com)
  • In this article, we'll explore the link between anxiety and high blood pressure and treatment options for both. (healthline.com)
  • Fortunately, anxiety doesn't cause chronic high blood pressure. (healthline.com)
  • Although stress and anxiety can cause high blood pressure, it's only temporary, and levels generally return to normal once you've calmed down again. (healthline.com)
  • Chronic high blood pressure can be quite dangerous and can cause significant damage to the body, especially the brain, heart, kidneys, and eyes. (healthline.com)
  • Could your high blood pressure cause your anxiety? (healthline.com)
  • Just like anxiety can cause temporary high blood pressure, high blood pressure can sometimes cause anxiety. (healthline.com)
  • Experiencing these symptoms or any other symptoms of high blood pressure can lead to an increase in anxiety. (healthline.com)
  • In addition, having a chronic condition like high blood pressure can cause depression and anxiety. (healthline.com)
  • What can you do if you have high blood pressure related to your anxiety? (healthline.com)
  • If you have frequent episodes of high blood pressure that are caused by anxiety, treating the underlying anxiety disorder can help bring your blood pressure back down to healthier levels. (healthline.com)
  • Can Ginger Tea Affect High Blood Pressure Medications? (livestrong.com)
  • How Does Starvation Affect High Blood Pressure? (livestrong.com)
  • Can You Eat Pizza If You Have High Blood Pressure? (livestrong.com)
  • Does Eating Mustard Help Lower High Blood Pressure? (livestrong.com)
  • Can You Take Diet Pills With High Blood Pressure? (livestrong.com)
  • Are Antihistamines OK if I Have High Blood Pressure? (livestrong.com)
  • Is Himalayan Sea Salt Good for High Blood Pressure? (livestrong.com)
  • What Are the Benefits of Red Wine for High Blood Pressure? (livestrong.com)
  • What lifestyle changes can help lower high blood pressure? (medlineplus.gov)
  • Sometimes lifestyle changes alone cannot control or lower your high blood pressure. (medlineplus.gov)
  • Diuretics are often used with other high blood pressure medicines, sometimes in one combined pill. (medlineplus.gov)
  • What Is High Blood Pressure Medicine? (medlineplus.gov)
  • No symptoms - People with high blood pressure often don't have symptoms so some may not treat a problem they don't notice. (cdc.gov)
  • Alcohol consumption and high blood pressure]. (bvsalud.org)
  • Nearly 86 million people in the U.S. have high blood pressure. (medlineplus.gov)
  • Blood pressure over 140/90 is traditionally defined as high blood. (medlineplus.gov)
  • Various measurement techniques have been used, including manometry, "homemade" indwelling urinary catheter systems, and commercial intra-abdominal pressure (IAP) monitoring devices. (medscape.com)
  • Bladder pressure measurement should not be used to assess IAP in patients with intraperitoneal adhesions, pelvic fractures, abdominal packs, pelvic hematomas, or neurogenic bladder. (medscape.com)
  • Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. (who.int)
  • Anxiety can cause a wide range of physical symptoms, including an increase in blood pressure levels. (healthline.com)
  • While operating one may seem intimidating, pressure washers are pretty easy to use as long as you take proper safety precautions. (wikihow.com)
  • The best pressure washers will sweep in to clean excess gunk without requiring any manual scrubbing or stooping down to ground level. (popsci.com)
  • Pressure cookers are a great way to cook food quickly. (bestbuy.com)
  • But not all pressure cookers are created equal. (bestbuy.com)
  • Browse the top-ranked list of electronic pressure cookers below along with associated reviews and opinions. (bestbuy.com)
  • I had purchased 3 diferrent pressure cookers and this is for sure the best in the market. (bestbuy.com)
  • I have owned 5 pressure cookers over 40 years. (bestbuy.com)
  • I love pressure cookers ! (bestbuy.com)
  • The popularity of Instant Pot electric pressure cookers has led many home cooks to consider exploring the process of pressure canning. (seriouseats.com)
  • pressure cookers typically do not have these gauges. (seriouseats.com)
  • It's therefore critical that policy makers take action now to relieve these pressures bearing in mind the diversity of the middle class. (oecd.org)
  • This type happens when your blood pressure is typically normal but spikes in a medical setting, such as a doctor's office, due to medical anxiety. (healthline.com)
  • Our study shows that given the right blood pressure drug, the patient can lower their blood pressure and as a result can probably obtain better protection against future cardiovascular diseases more quickly," Sundström says. (eurekalert.org)
  • Sociodemographic data and anthropometric and blood pressure (BP) measurements were obtained, and the 10-year cardiovascular risk score was calculated using World Health Organization CVD risk charts for participants aged ≥ 40 years. (who.int)
  • The impact of alcohol consumption on blood pressure and the risk of cardiovascular pathologies are still largely underestimated by the general population and health professionals. (bvsalud.org)
  • What Is the DASH Diet and How Does It Help Lower Blood Pressure? (livestrong.com)
  • Baltimore - It has been demonstrated by previous studies that obesity , sodium intake, and alcohol consumption can influence the blood pressure . (medicinenet.com)
  • Pressure urticaria may occur immediately (within minutes) or, more commonly, 4-6 hours after a pressure stimulus. (medscape.com)
  • The effect of intensive versus usual blood pressure control on kidney function among persons with prior lacunar stroke: a post-hoc analysis of the SPS3 randomized trial. (nature.com)
  • For many people, making these healthy changes can help keep blood pressure low and protect against heart disease and stroke. (cdc.gov)
  • Smoking raises your blood pressure and puts you at higher risk for heart attack and stroke. (cdc.gov)
  • In rare cases, these medicines can raise your blood pressure. (webmd.com)
  • In that case, your health care provider may prescribe blood pressure medicines. (medlineplus.gov)
  • How do blood pressure medicines work? (medlineplus.gov)
  • Simplify blood pressure treatment (e.g. prescribe 90-day refills and combination medicines and coordinate pill refills for the same date) and prescribe generic medicines. (cdc.gov)
  • The key to using a pressure washer is sweeping the nozzle in a gradual, consistent pattern. (wikihow.com)
  • ACE inhibitors lower your blood pressure after the blood vessels open and relax. (webmd.com)
  • A major disadvantage of the single-channel technique is that increases in IAP may result in elevated detrusor pressure readings. (medscape.com)
  • Encourage the use of home blood pressure monitors and easy-to-use tools (e.g. blood pressure logs and mobile apps) to track and share blood pressure readings. (cdc.gov)
  • Bladder pressure is measured during all phases of a urodynamic study to assess for compliance and detrusor overactivity during filling and bladder outlet obstruction and decreased contractility during voiding. (medscape.com)
  • This study aimed to monitor changes in blood pressure pre-, trans-, and postoperatively and assess whether the differences would be significant. (bvsalud.org)
  • Pressure canning is less time consuming, but the appliance can cost anywhere from $100 to $300. (newsreview.com)
  • At the same time, it is important to keep the pressure up on Hamas, not give them a respite, time to regroup and reorganise. (france24.com)
  • Now that we've offered a brief overview of what the best pressure washer can do, it's time to make some big decisions. (popsci.com)
  • The official said that if Pakistani and Afghan forces applied pressure on their respective sides of the border at the same time, militants could be caught in the middle. (rferl.org)
  • Growing international pressure against shark finning has contributed to the decline, according to a recent report in Time magazine , leading to shifts in attitudes and policies in China, where shark fins are considered a delicacy. (conservation.org)
  • This article presents an experiment that aimed to measure the effect of time pressure on consumers' decision making. (bvsalud.org)
  • Undergraduates (N=96) were assigned to three groups according each level of the independent variable time pressure. (bvsalud.org)
  • The data was also in accordance with the results of Svenson and Benson (1993) since framing effects on decision making tended to disappear with the increase in time pressure. (bvsalud.org)
  • By living a healthy lifestyle, you can help keep your blood pressure in a healthy range. (cdc.gov)
  • Physical activity can help keep you at a healthy weight and lower your blood pressure. (cdc.gov)
  • Blood pressure medicine (along with a healthy diet and exercise) can protect the heart, brain, and kidneys, but only if patients take it and keep their blood pressure controlled. (cdc.gov)
  • Studies have found that women more than men, people older than 50 years, African-Americans, and those with a higher starting blood pressure respond the greatest to reduced sodium intake. (harvard.edu)
  • Implement effective blood pressure treatment protocols in clinical practice. (cdc.gov)
  • Foods such as beans, corn or squash use pressure canning because they don't have enough acid in them to kill off microbes. (newsreview.com)
  • A total of 758 Anniston residents had multiple measurements of blood pressure, provided information on demographic factors, medications, smoking, and exercise and provided blood samples for determination of PCBs and total serum lipids. (cdc.gov)
  • The pressure hose can extend up to 20 feet, and the 35-foot power cord is safe to use with exterior outlets. (popsci.com)
  • When you have less intense episodes, your blood pressure might go up because your lungs won't pull in enough air. (webmd.com)
  • Conversely, pressure canning allows the pressure to rise to higher temperature to kill bacteria faster. (newsreview.com)
  • Increased blood volume means more work for the heart and more pressure on blood vessels. (harvard.edu)
  • This new report " Under Pressure: The Squeezed Middle Class " contributes to the OECD's Inclusive Growth Agenda, and builds on our longstanding work on inequalities, which started with the "Growing Unequal? (oecd.org)
  • A pressure washer is the ideal tool to make short work of tough stains. (wikihow.com)
  • What Is a Pressure Canner and How Does it Work? (seriouseats.com)
  • A new study at Uppsala University investigated whether there is an optimal blood pressure drug for each individual, and therefore a potential for personalised blood pressure treatment. (eurekalert.org)
  • The researchers saw that the effect of the treatment varied widely from individual to individual and that it was clear that certain patients achieved lower blood pressure from one drug than from another. (eurekalert.org)
  • This is further demonstrated in the inconsistent effectiveness of antihistamine treatment in pressure urticaria. (medscape.com)
  • 2] Those who are "salt-sensitive" experience the greatest blood pressure reductions after following a reduced sodium diet. (harvard.edu)
  • Campi's favorite pressure-canner recipe is one for black-eyed peas. (newsreview.com)
  • Pressure urticaria is an uncommon form of physical urticaria, a subset of chronic urticaria, which presents with erythematous swelling at sites of pressure. (medscape.com)
  • [ 1 ] Approximately 37% of patients with chronic spontaneous urticaria also have pressure urticaria. (medscape.com)
  • Providing resources to states and territories to prevent chronic diseases, including resources to track how well people are taking their blood pressure medicine at the state and county level. (cdc.gov)
  • Although the trigger stimulus of pressure is identified, no allergen has been established. (medscape.com)
  • Pressure washer accessories like turbo nozzles, trigger spray guns, lances, and detergent injectors are a few of the easy-to-install attachments that can increase the effectiveness of your machine. (popsci.com)
  • Because of these reasons, they trigger a series of modifications that lead to changes in blood pressure and stress occurrences. (bvsalud.org)
  • However, numerous studies have demonstrated a dose -dependent increase in blood pressure , even at consumption levels close to the consumption guidelines (two drinks i.e. 20g per day). (bvsalud.org)
  • It was clear in our study that certain patients achieved lower blood pressure from one drug than from another. (eurekalert.org)
  • Does Honey Lower Blood Pressure? (livestrong.com)
  • Can Eating Garlic Lower Blood Pressure? (livestrong.com)
  • and leukotrienes have also been found in lesional skin of pressure urticaria patients. (medscape.com)
  • Do not drink too much alcohol, which can raise your blood pressure. (cdc.gov)