Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions.
A dense intricate feltwork of interwoven fine glial processes, fibrils, synaptic terminals, axons, and dendrites interspersed among the nerve cells in the gray matter of the central nervous system.
A MARVEL domain-containing protein found in the presynaptic vesicles of NEURONS and NEUROENDOCRINE CELLS. It is commonly used as an immunocytochemical marker for neuroendocrine differentiation.
Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS.
A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations.
'Nerve tissue proteins' are specialized proteins found within the nervous system's biological tissue, including neurofilaments, neuronal cytoskeletal proteins, and neural cell adhesion molecules, which facilitate structural support, intracellular communication, and synaptic connectivity essential for proper neurological function.
The amount of mineral per square centimeter of BONE. This is the definition used in clinical practice. Actual bone density would be expressed in grams per milliliter. It is most frequently measured by X-RAY ABSORPTIOMETRY or TOMOGRAPHY, X RAY COMPUTED. Bone density is an important predictor for OSTEOPOROSIS.
Use of a metal casting, usually with a post in the pulp or root canal, designed to support and retain an artificial crown.
Number of individuals in a population relative to space.
Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues.
Elements of limited time intervals, contributing to particular results or situations.
The number of CELLS of a specific kind, usually measured per unit volume or area of sample.
A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases.
A tooth from which the dental pulp has been removed or is necrotic. (Boucher, Clinical Dental Terminology, 4th ed)
A noninvasive method for assessing BODY COMPOSITION. It is based on the differential absorption of X-RAYS (or GAMMA RAYS) by different tissues such as bone, fat and other soft tissues. The source of (X-ray or gamma-ray) photon beam is generated either from radioisotopes such as GADOLINIUM 153, IODINE 125, or Americanium 241 which emit GAMMA RAYS in the appropriate range; or from an X-ray tube which produces X-RAYS in the desired range. It is primarily used for quantitating BONE MINERAL CONTENT, especially for the diagnosis of OSTEOPOROSIS, and also in measuring BONE MINERALIZATION.
A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues.
Cytoskeleton specialization at the cytoplasmic side of postsynaptic membrane in SYNAPSES. It is involved in neuronal signaling and NEURONAL PLASTICITY and comprised of GLUTAMATE RECEPTORS; scaffolding molecules (e.g., PSD95, PSD93), and other proteins (e.g., CaCMKII).
Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking.
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
Reduction of bone mass without alteration in the composition of bone, leading to fractures. Primary osteoporosis can be of two major types: postmenopausal osteoporosis (OSTEOPOROSIS, POSTMENOPAUSAL) and age-related or senile osteoporosis.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes.
The plan and delineation of dental prostheses in general or a specific dental prosthesis. It does not include DENTURE DESIGN. The framework usually consists of metal.
Protein components on the surface of LIPOPROTEINS. They form a layer surrounding the hydrophobic lipid core. There are several classes of apolipoproteins with each playing a different role in lipid transport and LIPID METABOLISM. These proteins are synthesized mainly in the LIVER and the INTESTINES.
The measurement of the density of a material by measuring the amount of light or radiation passing through (or absorbed by) the material.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Break or rupture of a tooth or tooth root.
Hard, amorphous, brittle, inorganic, usually transparent, polymerous silicate of basic oxides, usually potassium or sodium. It is used in the form of hard sheets, vessels, tubing, fibers, ceramics, beads, etc.
The rate dynamics in chemical or physical systems.
Radiographic examination of the breast.
The constricted portion of the thigh bone between the femur head and the trochanters.
A LDL-receptor related protein involved in clearance of chylomicron remnants and of activated ALPHA-MACROGLOBULINS from plasma.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Fatty acid esters of cholesterol which constitute about two-thirds of the cholesterol in the plasma. The accumulation of cholesterol esters in the arterial intima is a characteristic feature of atherosclerosis.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
Agents that inhibit BONE RESORPTION and/or favor BONE MINERALIZATION and BONE REGENERATION. They are used to heal BONE FRACTURES and to treat METABOLIC BONE DISEASES such as OSTEOPOROSIS.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
The most abundant protein component of HIGH DENSITY LIPOPROTEINS or HDL. This protein serves as an acceptor for CHOLESTEROL released from cells thus promoting efflux of cholesterol to HDL then to the LIVER for excretion from the body (reverse cholesterol transport). It also acts as a cofactor for LECITHIN CHOLESTEROL ACYLTRANSFERASE that forms CHOLESTEROL ESTERS on the HDL particles. Mutations of this gene APOA1 cause HDL deficiency, such as in FAMILIAL ALPHA LIPOPROTEIN DEFICIENCY DISEASE and in some patients with TANGIER DISEASE.
A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principle cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX.
Triglycerides are the most common type of fat in the body, stored in fat cells and used as energy; they are measured in blood tests to assess heart disease risk, with high levels often resulting from dietary habits, obesity, physical inactivity, smoking, and alcohol consumption.
The description and measurement of the various factors that produce physical stress upon dental restorations, prostheses, or appliances, materials associated with them, or the natural oral structures.
Materials used in the production of dental bases, restorations, impressions, prostheses, etc.
Holding a DENTAL PROSTHESIS in place by its design, or by the use of additional devices or adhesives.
VERTEBRAE in the region of the lower BACK below the THORACIC VERTEBRAE and above the SACRAL VERTEBRAE.
Metabolic disorder associated with fractures of the femoral neck, vertebrae, and distal forearm. It occurs commonly in women within 15-20 years after menopause, and is caused by factors associated with menopause including estrogen deficiency.
Metabolic bone diseases are a group of disorders that affect the bones' structure and strength, caused by disturbances in the normal metabolic processes involved in bone formation, resorption, or mineralization, including conditions like osteoporosis, osteomalacia, Paget's disease, and renal osteodystrophy.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Spiny processes on DENDRITES, each of which receives excitatory input from one nerve ending (NERVE ENDINGS). They are commonly found on PURKINJE CELLS and PYRAMIDAL CELLS.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
The longest and largest bone of the skeleton, it is situated between the hip and the knee.
Centrifugation with a centrifuge that develops centrifugal fields of more than 100,000 times gravity. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A treatment modality in endodontics concerned with the therapy of diseases of the dental pulp. For preparatory procedures, ROOT CANAL PREPARATION is available.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)
Characteristics or attributes of the outer boundaries of objects, including molecules.
Established cell cultures that have the potential to propagate indefinitely.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
A pathologic process consisting of the proliferation of blood vessels in abnormal tissues or in abnormal positions.
The minute vessels that connect the arterioles and venules.

Postsynaptic cell type-dependent cholinergic regulation of GABAergic synaptic transmission in rat insular cortex. (1/101)

 (+info)

The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function. (2/101)

 (+info)

Review: disruption of the postsynaptic density in Alzheimer's disease and other neurodegenerative dementias. (3/101)

 (+info)

Structure and composition of the postsynaptic density during development. (4/101)

 (+info)

Endogenous GluR1-containing AMPA receptors translocate to asymmetric synapses in the lateral amygdala during the early phase of fear memory formation: an electron microscopic immunocytochemical study. (5/101)

 (+info)

Expression pattern of membrane-associated guanylate kinases in interneurons of the visual cortex. (6/101)

 (+info)

Tumor necrosis factor-alpha signaling maintains the ability of cortical synapses to express synaptic scaling. (7/101)

 (+info)

BDNF signaling during learning is regionally differentiated within hippocampus. (8/101)

 (+info)

A synapse is a structure in the nervous system that allows for the transmission of signals from one neuron (nerve cell) to another. It is the point where the axon terminal of one neuron meets the dendrite or cell body of another, and it is here that neurotransmitters are released and received. The synapse includes both the presynaptic and postsynaptic elements, as well as the cleft between them.

At the presynaptic side, an action potential travels down the axon and triggers the release of neurotransmitters into the synaptic cleft through exocytosis. These neurotransmitters then bind to receptors on the postsynaptic side, which can either excite or inhibit the receiving neuron. The strength of the signal between two neurons is determined by the number and efficiency of these synapses.

Synapses play a crucial role in the functioning of the nervous system, allowing for the integration and processing of information from various sources. They are also dynamic structures that can undergo changes in response to experience or injury, which has important implications for learning, memory, and recovery from neurological disorders.

Neuropil refers to the complex network of interwoven nerve cell processes (dendrites, axons, and their synaptic connections) in the central nervous system that forms the basis for information processing and transmission. It is the part of the brain or spinal cord where the neuronal cell bodies are not present, and it mainly consists of unmyelinated axons, dendrites, and synapses. Neuropil plays a crucial role in neural communication and is often the site of various neurochemical interactions.

Synaptophysin is a protein found in the presynaptic vesicles of neurons, which are involved in the release of neurotransmitters during synaptic transmission. It is often used as a marker for neuronal differentiation and is widely expressed in neuroendocrine cells and tumors. Synaptophysin plays a role in the regulation of neurotransmitter release and has been implicated in various neurological disorders, including Alzheimer's disease and synaptic dysfunction-related conditions.

Dendrites are the branched projections of a neuron that receive and process signals from other neurons. They are typically short and highly branching, increasing the surface area for receiving incoming signals. Dendrites are covered in small protrusions called dendritic spines, which can form connections with the axon terminals of other neurons through chemical synapses. The structure and function of dendrites play a critical role in the integration and processing of information in the nervous system.

The hippocampus is a complex, curved formation in the brain that resembles a seahorse (hence its name, from the Greek word "hippos" meaning horse and "kampos" meaning sea monster). It's part of the limbic system and plays crucial roles in the formation of memories, particularly long-term ones.

This region is involved in spatial navigation and cognitive maps, allowing us to recognize locations and remember how to get to them. Additionally, it's one of the first areas affected by Alzheimer's disease, which often results in memory loss as an early symptom.

Anatomically, it consists of two main parts: the Ammon's horn (or cornu ammonis) and the dentate gyrus. These structures are made up of distinct types of neurons that contribute to different aspects of learning and memory.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Neuronal plasticity, also known as neuroplasticity or neural plasticity, refers to the ability of the brain and nervous system to change and adapt as a result of experience, learning, injury, or disease. This can involve changes in the structure, organization, and function of neurons (nerve cells) and their connections (synapses) in the central and peripheral nervous systems.

Neuronal plasticity can take many forms, including:

* Synaptic plasticity: Changes in the strength or efficiency of synaptic connections between neurons. This can involve the formation, elimination, or modification of synapses.
* Neural circuit plasticity: Changes in the organization and connectivity of neural circuits, which are networks of interconnected neurons that process information.
* Structural plasticity: Changes in the physical structure of neurons, such as the growth or retraction of dendrites (branches that receive input from other neurons) or axons (projections that transmit signals to other neurons).
* Functional plasticity: Changes in the physiological properties of neurons, such as their excitability, responsiveness, or sensitivity to stimuli.

Neuronal plasticity is a fundamental property of the nervous system and plays a crucial role in many aspects of brain function, including learning, memory, perception, and cognition. It also contributes to the brain's ability to recover from injury or disease, such as stroke or traumatic brain injury.

Nerve tissue proteins are specialized proteins found in the nervous system that provide structural and functional support to nerve cells, also known as neurons. These proteins include:

1. Neurofilaments: These are type IV intermediate filaments that provide structural support to neurons and help maintain their shape and size. They are composed of three subunits - NFL (light), NFM (medium), and NFH (heavy).

2. Neuronal Cytoskeletal Proteins: These include tubulins, actins, and spectrins that provide structural support to the neuronal cytoskeleton and help maintain its integrity.

3. Neurotransmitter Receptors: These are specialized proteins located on the postsynaptic membrane of neurons that bind neurotransmitters released by presynaptic neurons, triggering a response in the target cell.

4. Ion Channels: These are transmembrane proteins that regulate the flow of ions across the neuronal membrane and play a crucial role in generating and transmitting electrical signals in neurons.

5. Signaling Proteins: These include enzymes, receptors, and adaptor proteins that mediate intracellular signaling pathways involved in neuronal development, differentiation, survival, and death.

6. Adhesion Proteins: These are cell surface proteins that mediate cell-cell and cell-matrix interactions, playing a crucial role in the formation and maintenance of neural circuits.

7. Extracellular Matrix Proteins: These include proteoglycans, laminins, and collagens that provide structural support to nerve tissue and regulate neuronal migration, differentiation, and survival.

Bone density refers to the amount of bone mineral content (usually measured in grams) in a given volume of bone (usually measured in cubic centimeters). It is often used as an indicator of bone strength and fracture risk. Bone density is typically measured using dual-energy X-ray absorptiometry (DXA) scans, which provide a T-score that compares the patient's bone density to that of a young adult reference population. A T-score of -1 or above is considered normal, while a T-score between -1 and -2.5 indicates osteopenia (low bone mass), and a T-score below -2.5 indicates osteoporosis (porous bones). Regular exercise, adequate calcium and vitamin D intake, and medication (if necessary) can help maintain or improve bone density and prevent fractures.

The post and core technique is a dental restorative procedure that involves the use of a post made of metal or other materials, which is placed inside the root canal of a severely damaged tooth, to provide support and retention for a dental core. The dental core is then built up using various materials such as composite resin, glass ionomer cement, or amalgam, to restore the missing portion of the tooth structure. This technique is often used as a foundation for a dental crown in cases where there is not enough remaining tooth structure to support the crown on its own. The post and core restoration helps to reinforce the tooth, prevent fractures, and improve the overall functionality and esthetics of the restored tooth.

I'm sorry for any confusion, but "population density" is actually a term used in population geography and epidemiology, rather than medical terminology. It refers to the number of people living in a specific area or region, usually measured as the number of people per square mile or square kilometer.

However, understanding population density can be important in public health and medicine because it can influence various factors related to health outcomes and healthcare delivery, such as:

1. Disease transmission rates: Higher population densities can facilitate the spread of infectious diseases, particularly those that are transmitted through close contact between individuals.
2. Access to healthcare services: Areas with lower population density might have fewer healthcare resources and providers available, making it more challenging for residents to access necessary medical care.
3. Health disparities: Population density can contribute to health inequities, as urban areas often have better access to healthcare, education, and economic opportunities than rural areas, leading to differences in health outcomes between these populations.
4. Environmental factors: Higher population densities might lead to increased pollution, noise, and other environmental hazards that can negatively impact health.

Therefore, while "population density" is not a medical definition per se, it remains an essential concept for understanding various public health and healthcare issues.

Centrifugation, Density Gradient is a medical laboratory technique used to separate and purify different components of a mixture based on their size, density, and shape. This method involves the use of a centrifuge and a density gradient medium, such as sucrose or cesium chloride, to create a stable density gradient within a column or tube.

The sample is carefully layered onto the top of the gradient and then subjected to high-speed centrifugation. During centrifugation, the particles in the sample move through the gradient based on their size, density, and shape, with heavier particles migrating faster and further than lighter ones. This results in the separation of different components of the mixture into distinct bands or zones within the gradient.

This technique is commonly used to purify and concentrate various types of biological materials, such as viruses, organelles, ribosomes, and subcellular fractions, from complex mixtures. It allows for the isolation of pure and intact particles, which can then be collected and analyzed for further study or use in downstream applications.

In summary, Centrifugation, Density Gradient is a medical laboratory technique used to separate and purify different components of a mixture based on their size, density, and shape using a centrifuge and a density gradient medium.

Low-density lipoproteins (LDL), also known as "bad cholesterol," are a type of lipoprotein that carry cholesterol and other fats from the liver to cells throughout the body. High levels of LDL in the blood can lead to the buildup of cholesterol in the walls of the arteries, which can increase the risk of heart disease and stroke.

Lipoproteins are complex particles composed of proteins (apolipoproteins) and lipids (cholesterol, triglycerides, and phospholipids) that are responsible for transporting fat molecules around the body in the bloodstream. LDL is one type of lipoprotein, along with high-density lipoproteins (HDL), very low-density lipoproteins (VLDL), and chylomicrons.

LDL particles are smaller than HDL particles and can easily penetrate the artery walls, leading to the formation of plaques that can narrow or block the arteries. Therefore, maintaining healthy levels of LDL in the blood is essential for preventing cardiovascular disease.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

"Cell count" is a medical term that refers to the process of determining the number of cells present in a given volume or sample of fluid or tissue. This can be done through various laboratory methods, such as counting individual cells under a microscope using a specialized grid called a hemocytometer, or using automated cell counters that use light scattering and electrical impedance techniques to count and classify different types of cells.

Cell counts are used in a variety of medical contexts, including hematology (the study of blood and blood-forming tissues), microbiology (the study of microscopic organisms), and pathology (the study of diseases and their causes). For example, a complete blood count (CBC) is a routine laboratory test that includes a white blood cell (WBC) count, red blood cell (RBC) count, hemoglobin level, hematocrit value, and platelet count. Abnormal cell counts can indicate the presence of various medical conditions, such as infections, anemia, or leukemia.

High-Density Lipoproteins (HDL) are a type of lipoprotein that play a crucial role in the transportation and metabolism of cholesterol in the body. They are often referred to as "good" cholesterol because they help remove excess cholesterol from cells and carry it back to the liver, where it can be broken down and removed from the body. This process is known as reverse cholesterol transport.

HDLs are composed of a lipid core containing cholesteryl esters and triglycerides, surrounded by a shell of phospholipids, free cholesterol, and apolipoproteins, primarily apoA-I. The size and composition of HDL particles can vary, leading to the classification of different subclasses of HDL with varying functions and metabolic fates.

Elevated levels of HDL have been associated with a lower risk of developing cardiovascular diseases, while low HDL levels increase the risk. However, it is essential to consider that HDL function and quality may be more important than just the quantity in determining cardiovascular risk.

A nonvital tooth is one that no longer has a living or viable pulp, which contains the nerves and blood vessels inside the tooth. This condition can occur due to various reasons such as tooth decay that has progressed deeply into the tooth, dental trauma, or previous invasive dental procedures. As a result, the tooth loses its sensitivity to temperature changes and may darken in color. Nonvital teeth typically require root canal treatment to remove the dead pulp tissue, disinfect the canals, and fill them with an inert material to preserve the tooth structure and function.

Photon Absorptiometry is a medical technique used to measure the absorption of photons (light particles) by tissues or materials. In clinical practice, it is often used as a non-invasive method for measuring bone mineral density (BMD). This technique uses a low-energy X-ray beam or gamma ray to penetrate the tissue and then measures the amount of radiation absorbed by the bone. The amount of absorption is related to the density and thickness of the bone, allowing for an assessment of BMD. It can be used to diagnose osteoporosis and monitor treatment response in patients with bone diseases. There are two types of photon absorptiometry: single-photon absorptiometry (SPA) and dual-photon absorptiometry (DPA). SPA uses one energy level, while DPA uses two different energy levels to measure BMD, providing more precise measurements.

VLDL (Very Low-Density Lipoproteins) are a type of lipoprotein that play a crucial role in the transport and metabolism of fat molecules, known as triglycerides, in the body. They are produced by the liver and consist of a core of triglycerides surrounded by a shell of proteins called apolipoproteins, phospholipids, and cholesterol.

VLDL particles are responsible for delivering fat molecules from the liver to peripheral tissues throughout the body, where they can be used as an energy source or stored for later use. During this process, VLDL particles lose triglycerides and acquire more cholesterol, transforming into intermediate-density lipoproteins (IDL) and eventually low-density lipoproteins (LDL), which are also known as "bad" cholesterol.

Elevated levels of VLDL in the blood can contribute to the development of cardiovascular disease due to their association with increased levels of triglycerides and LDL cholesterol, as well as decreased levels of high-density lipoproteins (HDL), which are considered "good" cholesterol.

Post-synaptic density (PSD) is a specialized region within the post-synaptic membrane of chemical synapses in the central nervous system. It is a structurally and functionally complex area that is enriched with various proteins, including neurotransmitter receptors, scaffolding proteins, signaling molecules, and cytoskeletal elements.

PSD plays a crucial role in synaptic transmission, plasticity, and maintenance by anchoring and organizing the post-synaptic components, regulating receptor clustering and trafficking, and mediating intracellular signaling cascades. The size, shape, and protein composition of PSD can change dynamically in response to synaptic activity, contributing to the experience-dependent remodeling of neural circuits during learning, memory, and development.

The morphological and molecular features of PSD have been extensively studied using various techniques, including electron microscopy, biochemical fractionation, immunostaining, and super-resolution imaging. These studies have revealed a highly heterogeneous and dynamic structure that varies across different synapse types, brain regions, and developmental stages.

LDL receptors (Low-Density Lipoprotein Receptors) are cell surface receptors that play a crucial role in the regulation of cholesterol homeostasis within the body. They are responsible for recognizing and binding to LDL particles, also known as "bad cholesterol," which are then internalized by the cell through endocytosis.

Once inside the cell, the LDL particles are broken down, releasing their cholesterol content, which can be used for various cellular processes such as membrane synthesis and hormone production. The LDL receptors themselves are recycled back to the cell surface, allowing for continued uptake of LDL particles.

Mutations in the LDL receptor gene can lead to a condition called familial hypercholesterolemia, which is characterized by high levels of LDL cholesterol in the blood and an increased risk of premature cardiovascular disease.

Cholesterol is a type of lipid (fat) molecule that is an essential component of cell membranes and is also used to make certain hormones and vitamins in the body. It is produced by the liver and is also obtained from animal-derived foods such as meat, dairy products, and eggs.

Cholesterol does not mix with blood, so it is transported through the bloodstream by lipoproteins, which are particles made up of both lipids and proteins. There are two main types of lipoproteins that carry cholesterol: low-density lipoproteins (LDL), also known as "bad" cholesterol, and high-density lipoproteins (HDL), also known as "good" cholesterol.

High levels of LDL cholesterol in the blood can lead to a buildup of cholesterol in the walls of the arteries, increasing the risk of heart disease and stroke. On the other hand, high levels of HDL cholesterol are associated with a lower risk of these conditions because HDL helps remove LDL cholesterol from the bloodstream and transport it back to the liver for disposal.

It is important to maintain healthy levels of cholesterol through a balanced diet, regular exercise, and sometimes medication if necessary. Regular screening is also recommended to monitor cholesterol levels and prevent health complications.

Osteoporosis is a systemic skeletal disease characterized by low bone mass, deterioration of bone tissue, and disruption of bone architecture, leading to increased risk of fractures, particularly in the spine, wrist, and hip. It mainly affects older people, especially postmenopausal women, due to hormonal changes that reduce bone density. Osteoporosis can also be caused by certain medications, medical conditions, or lifestyle factors such as smoking, alcohol abuse, and a lack of calcium and vitamin D in the diet. The diagnosis is often made using bone mineral density testing, and treatment may include medication to slow bone loss, promote bone formation, and prevent fractures.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

Lipoproteins are complex particles composed of multiple proteins and lipids (fats) that play a crucial role in the transport and metabolism of fat molecules in the body. They consist of an outer shell of phospholipids, free cholesterols, and apolipoproteins, enclosing a core of triglycerides and cholesteryl esters.

There are several types of lipoproteins, including:

1. Chylomicrons: These are the largest lipoproteins and are responsible for transporting dietary lipids from the intestines to other parts of the body.
2. Very-low-density lipoproteins (VLDL): Produced by the liver, VLDL particles carry triglycerides to peripheral tissues for energy storage or use.
3. Low-density lipoproteins (LDL): Often referred to as "bad cholesterol," LDL particles transport cholesterol from the liver to cells throughout the body. High levels of LDL in the blood can lead to plaque buildup in artery walls and increase the risk of heart disease.
4. High-density lipoproteins (HDL): Known as "good cholesterol," HDL particles help remove excess cholesterol from cells and transport it back to the liver for excretion or recycling. Higher levels of HDL are associated with a lower risk of heart disease.

Understanding lipoproteins and their roles in the body is essential for assessing cardiovascular health and managing risks related to heart disease and stroke.

A dental prosthesis is a device that replaces missing teeth or parts of teeth and restores their function and appearance. The design of a dental prosthesis refers to the plan and specifications used to create it, including the materials, shape, size, and arrangement of the artificial teeth and any supporting structures.

The design of a dental prosthesis is typically based on a variety of factors, including:

* The number and location of missing teeth
* The condition of the remaining teeth and gums
* The patient's bite and jaw alignment
* The patient's aesthetic preferences
* The patient's ability to chew and speak properly

There are several types of dental prostheses, including:

* Dentures: A removable appliance that replaces all or most of the upper or lower teeth.
* Fixed partial denture (FPD): Also known as a bridge, this is a fixed (non-removable) appliance that replaces one or more missing teeth by attaching artificial teeth to the remaining natural teeth on either side of the gap.
* Removable partial denture (RPD): A removable appliance that replaces some but not all of the upper or lower teeth.
* Implant-supported prosthesis: An artificial tooth or set of teeth that is supported by dental implants, which are surgically placed in the jawbone.

The design of a dental prosthesis must be carefully planned and executed to ensure a good fit, proper function, and natural appearance. It may involve several appointments with a dentist or dental specialist, such as a prosthodontist, to take impressions, make measurements, and try in the finished prosthesis.

Apolipoproteins are a group of proteins that are associated with lipids (fats) in the body and play a crucial role in the metabolism, transportation, and regulation of lipids. They are structural components of lipoprotein particles, which are complexes of lipids and proteins that transport lipids in the bloodstream.

There are several types of apolipoproteins, including ApoA, ApoB, ApoC, ApoD, ApoE, and others. Each type has a specific function in lipid metabolism. For example, ApoA is a major component of high-density lipoprotein (HDL), often referred to as "good cholesterol," and helps remove excess cholesterol from cells and tissues and transport it to the liver for excretion. ApoB, on the other hand, is a major component of low-density lipoprotein (LDL), or "bad cholesterol," and plays a role in the delivery of cholesterol to cells and tissues.

Abnormal levels of apolipoproteins or dysfunctional forms of these proteins have been linked to various diseases, including cardiovascular disease, Alzheimer's disease, and metabolic disorders such as diabetes. Therefore, measuring apolipoprotein levels in the blood can provide valuable information for diagnosing and monitoring these conditions.

Densitometry is a medical technique used to measure the density or degree of opacity of various structures, particularly bones and tissues. It is often used in the diagnosis and monitoring of osteoporosis, a condition characterized by weak and brittle bones. Bone densitometry measures the amount of calcium and other minerals in a segment of bone to determine its strength and density. This information can help doctors assess a patient's risk of fractures and make treatment recommendations. Densitometry is also used in other medical fields, such as mammography, where it is used to measure the density of breast tissue to detect abnormalities and potential signs of cancer.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

A tooth fracture is a dental health condition characterized by a break or crack in the tooth structure. It can occur in different parts of the tooth, including the crown (the visible part), root, or filling. Tooth fractures can result from various factors such as trauma, biting or chewing on hard objects, grinding or clenching teeth, and having large, old amalgam fillings that weaken the tooth structure over time. Depending on the severity and location of the fracture, it may cause pain, sensitivity, or affect the tooth's functionality and appearance. Treatment options for tooth fractures vary from simple bonding to root canal treatment or even extraction in severe cases. Regular dental check-ups are essential for early detection and management of tooth fractures.

I'm sorry for any confusion, but "Glass" is not a medical term. Glass is a non-crystalline amorphous solid that is often transparent and has various uses in everyday life, including medical devices and equipment. If you have any questions related to medical terminology or concepts, please provide them, and I'll be happy to help.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Mammography is defined as a specialized medical imaging technique used to create detailed X-ray images of the breast tissue. It's primarily used as a screening tool to detect early signs of breast cancer in women who have no symptoms or complaints, as well as a diagnostic tool for further evaluation of abnormalities detected by other imaging techniques or during a clinical breast exam.

There are two primary types of mammography: film-screen mammography and digital mammography. Film-screen mammography uses traditional X-ray films to capture the images, while digital mammography utilizes digital detectors to convert X-rays into electronic signals, which are then displayed on a computer screen. Digital mammography offers several advantages over film-screen mammography, including lower radiation doses, improved image quality, and the ability to manipulate and enhance the images for better interpretation.

Mammography plays a crucial role in reducing breast cancer mortality by enabling early detection and treatment of this disease. Regular mammography screenings are recommended for women over a certain age (typically starting at age 40 or 50, depending on individual risk factors) to increase the chances of detecting breast cancer at an early stage when it is most treatable.

The "femur neck" is the narrow, upper part of the femur (thigh bone) where it connects to the pelvis. It is the region through which the femoral head articulates with the acetabulum to form the hip joint. The femur neck is a common site for fractures, especially in older adults with osteoporosis.

Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) is a large transmembrane receptor protein that belongs to the low-density lipoprotein receptor family. It plays a crucial role in various biological processes, including cellular signaling, endocytosis, and intracellular trafficking of ligands. LRP1 is widely expressed in many tissues, particularly in the brain, liver, and vascular endothelial cells.

LRP1 interacts with a diverse array of ligands, such as extracellular matrix proteins, apolipoproteins, proteinases, proteinase inhibitors, and various pathogen-associated molecules. The receptor is involved in the clearance of these ligands from the extracellular space through endocytosis, followed by intracellular degradation or recycling.

In the context of lipid metabolism, LRP1 has been implicated in the cellular uptake and degradation of Apolipoprotein E (ApoE)-containing lipoproteins, which are involved in the reverse transport of cholesterol from peripheral tissues to the liver. Dysregulation of LRP1 function has been linked to several diseases, including atherosclerosis, Alzheimer's disease, and various neurological disorders.

In summary, Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) is a multifunctional transmembrane receptor that plays essential roles in cellular signaling, endocytosis, and intracellular trafficking of various ligands. Its dysfunction has been implicated in several diseases related to lipid metabolism, neurodegeneration, and neurological disorders.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

I'm happy to help! However, I must clarify that "materials testing" is not a medical term per se. It is a term used in various fields, including engineering and materials science, to describe the process of subjecting materials to different tests to evaluate their properties and performance under various conditions.

In the context of medical devices or implants, materials testing may refer to the evaluation of the physical and mechanical properties of materials used in their construction. These tests can include assessments of strength, durability, biocompatibility, and other factors that are critical to ensuring the safety and efficacy of medical devices.

Medical device manufacturers must comply with regulatory standards for materials testing to ensure that their products meet specific requirements for performance, safety, and quality. These standards may vary depending on the type of device, its intended use, and the country or region in which it will be marketed and sold.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Cholesteryl esters are formed when cholesterol, a type of lipid (fat) that is important for the normal functioning of the body, becomes combined with fatty acids through a process called esterification. This results in a compound that is more hydrophobic (water-repelling) than cholesterol itself, which allows it to be stored more efficiently in the body.

Cholesteryl esters are found naturally in foods such as animal fats and oils, and they are also produced by the liver and other cells in the body. They play an important role in the structure and function of cell membranes, and they are also precursors to the synthesis of steroid hormones, bile acids, and vitamin D.

However, high levels of cholesteryl esters in the blood can contribute to the development of atherosclerosis, a condition characterized by the buildup of plaque in the arteries, which can increase the risk of heart disease and stroke. Cholesteryl esters are typically measured as part of a lipid profile, along with other markers such as total cholesterol, HDL cholesterol, and triglycerides.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Bone density conservation agents, also known as anti-resorptive agents or bone-sparing drugs, are a class of medications that help to prevent the loss of bone mass and reduce the risk of fractures. They work by inhibiting the activity of osteoclasts, the cells responsible for breaking down and reabsorbing bone tissue during the natural remodeling process.

Examples of bone density conservation agents include:

1. Bisphosphonates (e.g., alendronate, risedronate, ibandronate, zoledronic acid) - These are the most commonly prescribed class of bone density conservation agents. They bind to hydroxyapatite crystals in bone tissue and inhibit osteoclast activity, thereby reducing bone resorption.
2. Denosumab (Prolia) - This is a monoclonal antibody that targets RANKL (Receptor Activator of Nuclear Factor-κB Ligand), a key signaling molecule involved in osteoclast differentiation and activation. By inhibiting RANKL, denosumab reduces osteoclast activity and bone resorption.
3. Selective estrogen receptor modulators (SERMs) (e.g., raloxifene) - These medications act as estrogen agonists or antagonists in different tissues. In bone tissue, SERMs mimic the bone-preserving effects of estrogen by inhibiting osteoclast activity and reducing bone resorption.
4. Hormone replacement therapy (HRT) - Estrogen hormone replacement therapy has been shown to preserve bone density in postmenopausal women; however, its use is limited due to increased risks of breast cancer, cardiovascular disease, and thromboembolic events.
5. Calcitonin - This hormone, secreted by the thyroid gland, inhibits osteoclast activity and reduces bone resorption. However, it has largely been replaced by other more effective bone density conservation agents.

These medications are often prescribed for individuals at high risk of fractures due to conditions such as osteoporosis or metabolic disorders that affect bone health. It is essential to follow the recommended dosage and administration guidelines to maximize their benefits while minimizing potential side effects. Regular monitoring of bone density, blood calcium levels, and other relevant parameters is also necessary during treatment with these medications.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Apolipoprotein A-I (ApoA-I) is a major protein component of high-density lipoproteins (HDL) in human plasma. It plays a crucial role in the metabolism and transport of lipids, particularly cholesterol, within the body. ApoA-I facilitates the formation of HDL particles, which are involved in the reverse transport of cholesterol from peripheral tissues to the liver for excretion. This process is known as reverse cholesterol transport and helps maintain appropriate cholesterol levels in the body. Low levels of ApoA-I or dysfunctional ApoA-I have been associated with an increased risk of developing cardiovascular diseases.

"Bone" is the hard, dense connective tissue that makes up the skeleton of vertebrate animals. It provides support and protection for the body's internal organs, and serves as a attachment site for muscles, tendons, and ligaments. Bone is composed of cells called osteoblasts and osteoclasts, which are responsible for bone formation and resorption, respectively, and an extracellular matrix made up of collagen fibers and mineral crystals.

Bones can be classified into two main types: compact bone and spongy bone. Compact bone is dense and hard, and makes up the outer layer of all bones and the shafts of long bones. Spongy bone is less dense and contains large spaces, and makes up the ends of long bones and the interior of flat and irregular bones.

The human body has 206 bones in total. They can be further classified into five categories based on their shape: long bones, short bones, flat bones, irregular bones, and sesamoid bones.

Triglycerides are the most common type of fat in the body, and they're found in the food we eat. They're carried in the bloodstream to provide energy to the cells in our body. High levels of triglycerides in the blood can increase the risk of heart disease, especially in combination with other risk factors such as high LDL (bad) cholesterol, low HDL (good) cholesterol, and high blood pressure.

It's important to note that while triglycerides are a type of fat, they should not be confused with cholesterol, which is a waxy substance found in the cells of our body. Both triglycerides and cholesterol are important for maintaining good health, but high levels of either can increase the risk of heart disease.

Triglyceride levels are measured through a blood test called a lipid panel or lipid profile. A normal triglyceride level is less than 150 mg/dL. Borderline-high levels range from 150 to 199 mg/dL, high levels range from 200 to 499 mg/dL, and very high levels are 500 mg/dL or higher.

Elevated triglycerides can be caused by various factors such as obesity, physical inactivity, excessive alcohol consumption, smoking, and certain medical conditions like diabetes, hypothyroidism, and kidney disease. Medications such as beta-blockers, steroids, and diuretics can also raise triglyceride levels.

Lifestyle changes such as losing weight, exercising regularly, eating a healthy diet low in saturated and trans fats, avoiding excessive alcohol consumption, and quitting smoking can help lower triglyceride levels. In some cases, medication may be necessary to reduce triglycerides to recommended levels.

Dental stress analysis is a method used in dentistry to evaluate the amount and distribution of forces that act upon teeth and surrounding structures during biting, chewing, or other functional movements. This analysis helps dental professionals identify areas of excessive stress or strain that may lead to dental problems such as tooth fracture, mobility, or periodontal (gum) disease. By identifying these areas, dentists can develop treatment plans to reduce the risk of dental issues and improve overall oral health.

Dental stress analysis typically involves the use of specialized equipment, such as strain gauges, T-scan occlusal analysis systems, or finite element analysis software, to measure and analyze the forces that act upon teeth during various functional movements. The results of the analysis can help dentists determine the best course of treatment, which may include adjusting the bite, restoring damaged teeth with crowns or fillings, or fabricating custom-made oral appliances to redistribute the forces evenly across the dental arch.

Overall, dental stress analysis is an important tool in modern dentistry that helps dental professionals diagnose and treat dental problems related to occlusal (bite) forces, ensuring optimal oral health and function for their patients.

Dental materials are substances that are used in restorative dentistry, prosthodontics, endodontics, orthodontics, and preventive dentistry to restore or replace missing tooth structure, improve the function and esthetics of teeth, and protect the oral tissues from decay and disease. These materials can be classified into various categories based on their physical and chemical properties, including metals, ceramics, polymers, composites, cements, and alloys.

Some examples of dental materials include:

1. Amalgam: a metal alloy used for dental fillings that contains silver, tin, copper, and mercury. It is strong, durable, and resistant to wear but has been controversial due to concerns about the toxicity of mercury.
2. Composite: a tooth-colored restorative material made of a mixture of glass or ceramic particles and a bonding agent. It is used for fillings, veneers, and other esthetic dental treatments.
3. Glass ionomer cement: a type of cement used for dental restorations that releases fluoride ions and helps prevent tooth decay. It is often used for fillings in children's teeth or as a base under crowns and bridges.
4. Porcelain: a ceramic material used for dental crowns, veneers, and other esthetic restorations. It is strong, durable, and resistant to staining but can be brittle and prone to fracture.
5. Gold alloy: a metal alloy used for dental restorations that contains gold, copper, and other metals. It is highly biocompatible, corrosion-resistant, and malleable but can be expensive and less esthetic than other materials.
6. Acrylic resin: a type of polymer used for dental appliances such as dentures, night guards, and orthodontic retainers. It is lightweight, flexible, and easy to modify but can be less durable than other materials.

The choice of dental material depends on various factors, including the location and extent of the restoration, the patient's oral health status, their esthetic preferences, and their budget. Dental professionals must consider these factors carefully when selecting the appropriate dental material for each individual case.

Dental prosthesis retention refers to the means by which a dental prosthesis, such as a denture, is held in place in the mouth. The retention can be achieved through several methods, including:

1. Suction: This is the most common method of retention for lower dentures, where the shape and fit of the denture base create suction against the gums to hold it in place.
2. Mechanical retention: This involves the use of mechanical components such as clasps or attachments that hook onto remaining natural teeth or dental implants to hold the prosthesis in place.
3. Adhesive retention: Dental adhesives can be used to help secure the denture to the gums, providing additional retention and stability.
4. Implant retention: Dental implants can be used to provide a more secure and stable retention of the dental prosthesis. The implant is surgically placed in the jawbone and acts as an anchor for the prosthesis.

Proper retention of a dental prosthesis is essential for optimal function, comfort, and speech. A well-retained prosthesis can help prevent sore spots, improve chewing efficiency, and enhance overall quality of life.

The lumbar vertebrae are the five largest and strongest vertebrae in the human spine, located in the lower back region. They are responsible for bearing most of the body's weight and providing stability during movement. The lumbar vertebrae have a characteristic shape, with a large body in the front, which serves as the main weight-bearing structure, and a bony ring in the back, formed by the pedicles, laminae, and processes. This ring encloses and protects the spinal cord and nerves. The lumbar vertebrae are numbered L1 to L5, starting from the uppermost one. They allow for flexion, extension, lateral bending, and rotation movements of the trunk.

Postmenopausal osteoporosis is a specific type of osteoporosis that occurs in women after they have gone through menopause. It is defined as a skeletal disorder characterized by compromised bone strength, leading to an increased risk of fractures. In this condition, the decline in estrogen levels that occurs during menopause accelerates bone loss, resulting in a decrease in bone density and quality, which can lead to fragility fractures, particularly in the hips, wrists, and spine.

It's important to note that while postmenopausal osteoporosis is more common in women, men can also develop osteoporosis due to other factors such as aging, lifestyle choices, and medical conditions.

Metabolic bone diseases are a group of conditions that affect the bones and are caused by disorders in the body's metabolism. These disorders can result in changes to the bone structure, density, and strength, leading to an increased risk of fractures and other complications. Some common examples of metabolic bone diseases include:

1. Osteoporosis: a condition characterized by weak and brittle bones that are more likely to break, often as a result of age-related bone loss or hormonal changes.
2. Paget's disease of bone: a chronic disorder that causes abnormal bone growth and deformities, leading to fragile and enlarged bones.
3. Osteomalacia: a condition caused by a lack of vitamin D or problems with the body's ability to absorb it, resulting in weak and soft bones.
4. Hyperparathyroidism: a hormonal disorder that causes too much parathyroid hormone to be produced, leading to bone loss and other complications.
5. Hypoparathyroidism: a hormonal disorder that results in low levels of parathyroid hormone, causing weak and brittle bones.
6. Renal osteodystrophy: a group of bone disorders that occur as a result of chronic kidney disease, including osteomalacia, osteoporosis, and high turnover bone disease.

Treatment for metabolic bone diseases may include medications to improve bone density and strength, dietary changes, exercise, and lifestyle modifications. In some cases, surgery may be necessary to correct bone deformities or fractures.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Dendritic spines are small, specialized protrusions found on the dendrites of neurons, which are cells that transmit information in the nervous system. These structures receive and process signals from other neurons. Dendritic spines have a small head connected to the dendrite by a thin neck, and they vary in shape, size, and number depending on the type of neuron and its function. They are dynamic structures that can change their morphology and strength of connections with other neurons in response to various stimuli, such as learning and memory processes.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

The femur is the medical term for the thigh bone, which is the longest and strongest bone in the human body. It connects the hip bone to the knee joint and plays a crucial role in supporting the weight of the body and allowing movement during activities such as walking, running, and jumping. The femur is composed of a rounded head, a long shaft, and two condyles at the lower end that articulate with the tibia and patella to form the knee joint.

Ultracentrifugation is a medical and laboratory technique used for the separation of particles of different sizes, densities, or shapes from a mixture based on their sedimentation rates. This process involves the use of a specialized piece of equipment called an ultracentrifuge, which can generate very high centrifugal forces, much greater than those produced by a regular centrifuge.

In ultracentrifugation, a sample is placed in a special tube and spun at extremely high speeds, causing the particles within the sample to separate based on their size, shape, and density. The larger or denser particles will sediment faster and accumulate at the bottom of the tube, while smaller or less dense particles will remain suspended in the solution or sediment more slowly.

Ultracentrifugation is a valuable tool in various fields, including biochemistry, molecular biology, and virology. It can be used to purify and concentrate viruses, subcellular organelles, membrane fractions, ribosomes, DNA, and other macromolecules from complex mixtures. The technique can also provide information about the size, shape, and density of these particles, making it a crucial method for characterizing and studying their properties.

Root canal therapy, also known as endodontic treatment, is a dental procedure that involves the removal of infected or damaged pulp tissue from within a tooth's root canal system. The root canal system is a series of narrow channels that run from the center of the tooth (pulp chamber) down to the tip of the tooth roots, containing nerves, blood vessels, and connective tissues.

During the procedure, the dentist or endodontist will gain access to the pulp chamber, carefully clean and shape the root canals using specialized instruments, and then fill and seal them with a rubber-like material called gutta-percha. This helps prevent reinfection and preserves the structural integrity of the tooth. In many cases, a crown or other restoration is placed over the treated tooth to protect it and restore its function and appearance.

Root canal therapy is typically recommended when the pulp tissue becomes inflamed or infected due to deep decay, repeated dental procedures, cracks, or chips in the teeth. The goal of this treatment is to alleviate pain, preserve natural tooth structure, and prevent the need for extraction.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Lipids are a broad group of organic compounds that are insoluble in water but soluble in nonpolar organic solvents. They include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides, and phospholipids. Lipids serve many important functions in the body, including energy storage, acting as structural components of cell membranes, and serving as signaling molecules. High levels of certain lipids, particularly cholesterol and triglycerides, in the blood are associated with an increased risk of cardiovascular disease.

Surface properties in the context of medical science refer to the characteristics and features of the outermost layer or surface of a biological material or structure, such as cells, tissues, organs, or medical devices. These properties can include physical attributes like roughness, smoothness, hydrophobicity or hydrophilicity, and electrical conductivity, as well as chemical properties like charge, reactivity, and composition.

In the field of biomaterials science, understanding surface properties is crucial for designing medical implants, devices, and drug delivery systems that can interact safely and effectively with biological tissues and fluids. Surface modifications, such as coatings or chemical treatments, can be used to alter surface properties and enhance biocompatibility, improve lubricity, reduce fouling, or promote specific cellular responses like adhesion, proliferation, or differentiation.

Similarly, in the field of cell biology, understanding surface properties is essential for studying cell-cell interactions, cell signaling, and cell behavior. Cells can sense and respond to changes in their environment, including variations in surface properties, which can influence cell shape, motility, and function. Therefore, characterizing and manipulating surface properties can provide valuable insights into the mechanisms of cellular processes and offer new strategies for developing therapies and treatments for various diseases.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Pathologic neovascularization is the abnormal growth of new blood vessels in previously avascular tissue or excessive growth within existing vasculature, which occurs as a result of hypoxia, inflammation, or angiogenic stimuli. These newly formed vessels are often disorganized, fragile, and lack proper vessel hierarchy, leading to impaired blood flow and increased vascular permeability. Pathologic neovascularization can be observed in various diseases such as cancer, diabetic retinopathy, age-related macular degeneration, and chronic inflammation. This process contributes to disease progression by promoting tumor growth, metastasis, and edema formation, ultimately leading to tissue damage and organ dysfunction.

Capillaries are the smallest blood vessels in the body, with diameters that range from 5 to 10 micrometers. They form a network of tiny tubes that connect the arterioles (small branches of arteries) and venules (small branches of veins), allowing for the exchange of oxygen, carbon dioxide, nutrients, and waste products between the blood and the surrounding tissues.

Capillaries are composed of a single layer of endothelial cells that surround a hollow lumen through which blood flows. The walls of capillaries are extremely thin, allowing for easy diffusion of molecules between the blood and the surrounding tissue. This is essential for maintaining the health and function of all body tissues.

Capillaries can be classified into three types based on their structure and function: continuous, fenestrated, and sinusoidal. Continuous capillaries have a continuous layer of endothelial cells with tight junctions that restrict the passage of large molecules. Fenestrated capillaries have small pores or "fenestrae" in the endothelial cell walls that allow for the passage of larger molecules, such as proteins and lipids. Sinusoidal capillaries are found in organs with high metabolic activity, such as the liver and spleen, and have large, irregular spaces between the endothelial cells that allow for the exchange of even larger molecules.

Overall, capillaries play a critical role in maintaining the health and function of all body tissues by allowing for the exchange of nutrients, oxygen, and waste products between the blood and surrounding tissues.

Many proteins in the PSD are involved in the regulation of synaptic function. These include postsynaptic density-95 (PSD95) ... Alié Alexandre; Manuel Michaël (February 2010). "The backbone of the post-synaptic density originated in a unicellular ancestor ... The postsynaptic density (PSD) is a protein dense specialization attached to the postsynaptic membrane. PSDs were originally ... Banker G, Churchill L, Cotman CW (November 1974). "Proteins of the Postsynaptic Density". J. Cell Biol. 63 (2 Pt 1): 456-65. ...
Research suggests that the density of receptors on post-synaptic membranes changes, affecting the neuron's excitability in ... This in turn increases post-synaptic excitation by a given pre-synaptic stimulus. This process can be reversed via the activity ... dendritic spine and postsynaptic density. On the molecular level, an increase of the postsynaptic scaffolding proteins PSD-95 ... synaptic augmentation or post-tetanic potentiation. Synaptic fatigue or depression is usually attributed to the depletion of ...
"A model for regulation by SynGAP-alpha1 of binding of synaptic proteins to PDZ-domain 'Slots' in the postsynaptic density". ... is a major constituent of the postsynaptic density, and is regulated by autophosphorylation following activation by synaptic ... Cho, K.-O.; Hunt, C.A.; Kennedy, M.B. (1992). "The rat brain postsynaptic density fraction contains a homolog of the Drosophila ... Kennedy, M.B. (1997). "The postsynaptic density at glutamatergic synapses". Trends Neurosci. 20 (6): 264-268. doi:10.1016/S0166 ...
... is shown to localize at the postsynaptic density on the dendritic spines of excitatory synapses. Cultured neurons of ... Synaptic Ras GTPase-activating protein 1, also known as synaptic Ras-GAP 1 or SYNGAP1, is a protein that in humans is encoded ... Jaffe H, Vinade L, Dosemeci A (August 2004). "Identification of novel phosphorylation sites on postsynaptic density proteins". ... "The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity". The Journal of Neuroscience. ...
... interacts with a post-synaptic density protein, PSD-95". J. Biol. Chem. 276 (12): 9174-81. doi:10.1074/jbc.M009051200. PMID ... interacts with a post-synaptic density protein, PSD-95". J. Biol. Chem. 276 (12): 9174-81. doi:10.1074/jbc.M009051200. PMID ...
It is almost exclusively located in the post synaptic density of neurons, and is involved in anchoring synaptic proteins. Its ... interacts with a post-synaptic density protein, PSD-95". J. Biol. Chem. 276 (12): 9174-81. doi:10.1074/jbc.M009051200. PMID ... "Postsynaptic targeting of alternative postsynaptic density-95 isoforms by distinct mechanisms". J. Neurosci. 22 (15): 6415-25. ... PSD-95 (postsynaptic density protein 95) also known as SAP-90 (synapse-associated protein 90) is a protein that in humans is ...
2001). "Sema4c, a transmembrane semaphorin, interacts with a post-synaptic density protein, PSD-95". J. Biol. Chem. 276 (12): ... A family of PSD-95/SAP90-associated proteins localized at postsynaptic density". J. Biol. Chem. 272 (18): 11943-51. doi:10.1074 ... Kim JH, Liao D, Lau LF, Huganir RL (Apr 1998). "SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family ... Kim JH, Liao D, Lau LF, Huganir RL (1998). "SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family". ...
"Postsynaptic targeting of alternative postsynaptic density-95 isoforms by distinct mechanisms". The Journal of Neuroscience. 22 ... Research has shown there is significant down-regulation of the genes involved in pre-synaptic development and of CASK protein ... "Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and postsynaptic densities ... "Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and postsynaptic densities ...
Like post-synaptic differentiation, pre-synaptic differentiation is thought to be due to a combination of changes in gene ... In the Drosophila NMJ mutations in the Wnt5 receptor Derailed (drl) reduce the number of and density of synaptic active zones. ... Often the binding of pre-synaptic cell-adhesion molecules with their post-synaptic partners triggers specializations that ... The pre-synaptic axon shows an increase in synaptic volume and area, an increase of synaptic vesicles, clustering of vesicles ...
... disrupts the interfaces post synaptic density protein (PSD95) and neuronal nitric oxide synthase (nNOS). PSD95 and ... and protects cultured RAEC against oxidized low density lipoprotein injury. Honokiol significantly increases the prostacyclin ...
Craven SE, El-Husseini AE, Bredt DS (1999). "Synaptic targeting of the postsynaptic density protein PSD-95 mediated by lipid ... Disks large homolog 2 (DLG2) also known as channel-associated protein of synapse-110 (chapsyn-110) or postsynaptic density ... "Localization of postsynaptic density-93 to dendritic microtubules and interaction with microtubule-associated protein 1A". J. ... "Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains ...
SAP97's I3 domain is unique to SAP97 among the MAGUK family, and is known to regulate the post-synaptic localization of SAP97 ... A family of PSD-95/SAP90-associated proteins localized at postsynaptic density". The Journal of Biological Chemistry. 272 (18 ... "Localization of postsynaptic density-93 to dendritic microtubules and interaction with microtubule-associated protein 1A". The ... Osterweil E, Wells DG, Mooseker MS (Jan 2005). "A role for myosin VI in postsynaptic structure and glutamate receptor ...
DAP-1 is known to be highly enriched in synaptosomal preparations of the brain, and present in the post-synaptic density. This ... a postsynaptic density protein at excitatory synapses that interacts directly with postsynaptic density-95/synapse-associated ... facilitating the assembly of the post-synaptic density of neurons. Dlgap1 has five 14-amino-acid repeats and three Pro-rich ... A family of PSD-95/SAP90-associated proteins localized at postsynaptic density". J. Biol. Chem. 272 (18): 11943-51. doi:10.1074 ...
Paired pulse facilitation Postsynaptic density Missler M, Südhof TC, Biederer T (2012). "Synaptic cell adhesion". Cold Spring ... The Ribbon synapse active zone is separated into two regions, the archiform density and the ribbon. The archiform density is ... The binding of neurotransmitters to the postsynaptic receptors then induces a change in the postsynaptic neuron. The process of ... Proteins within the CAZ tether synaptic vesicles to the presynaptic membrane and mediate synaptic vesicle fusion, thereby ...
... and do not contain a prominent postsynaptic density. Symmetric synapses are typically inhibitory. The synaptic cleft-also ... Immediately behind the postsynaptic membrane is an elaborate complex of interlinked proteins called the postsynaptic density ( ... In any case, this is the key step by which the synaptic process affects the behavior of the postsynaptic cell. Due to thermal ... Homosynaptic plasticity can also be postsynaptic in nature. It can result in either an increase or decrease in synaptic ...
... is concentrated in postsynaptic structures and constitutes a major part of the postsynaptic density. EVH1 domain ... The long form Homer1c plays a role in synaptic plasticity and the stabilization of synaptic changes during long-term ... April 2009). "The postsynaptic density proteins Homer and Shank form a polymeric network structure". Cell. 137 (1): 159-171. ... July 1999). "Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins". Neuron. 23 (3 ...
... a postsynaptic density protein at excitatory synapses that interacts directly with postsynaptic density-95/synapse-associated ... As with many other synaptic genes, including its binding partner Shank2, DLGAP2 has been shown to be associated with Autism. ... The product of this gene is one of the membrane-associated guanylate kinases localized at postsynaptic density in neuronal ... A family of PSD-95/SAP90-associated proteins localized at postsynaptic density". J. Biol. Chem. 272 (18): 11943-51. doi:10.1074 ...
DAP-4 is a membrane-associated guanylate kinase found at the postsynaptic density in neuronal cells. It is a signaling molecule ... Chen HJ, Rojas-Soto M, Oguni A, Kennedy MB (1998). "A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM ... A family of PSD-95/SAP90-associated proteins localized at postsynaptic density". J Biol Chem. 272 (18): 11943-51. doi:10.1074/ ... 2003). "Exocyst complex subunit sec8 binds to postsynaptic density protein-95 (PSD-95): a novel interaction regulated by cypin ...
Post-synaptic density protein 95 (PSD-95) is a synaptic protein found only in the brain. Drosophila disc large tumor suppressor ... post synaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), and zonula occludens-1 protein (zo-1). ... Cho KO, Hunt CA, Kennedy MB (November 1992). "The rat brain postsynaptic density fraction contains a homolog of the Drosophila ... The protein Whirlin (WHRN) localizes in the post-synaptic neurons of hair cells that transform mechanical movement into action ...
"Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95". Science. 269 (5231): 1737-40. ... an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and ...
"Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95". Science. 269 (5231): 1737-1740 ... Dong, H; O'Brien, R; Fung, E; Lanahan, A; Worley, P; Hunganir, R (1997). "GRIP: A synaptic PDZ domain-containing protein that ... Similar to NMDA receptors, it was discovered that AMPA receptors localize in the synaptic terminal of neurons in the central ... Ehlers, M. D.; Mammen, A. L.; Lau, L.; Huganir, R. L. (1996). "Synaptic targeting of glutamate receptors". Current Opinion in ...
"Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95". Science. 269 (5231): 1737-40. ... an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and ...
... mammalian LIN-7 homologs enriched at brain synapses in association with the postsynaptic density-95/NMDA receptor postsynaptic ... "Two forms of synaptic plasticity with distinct dependence on age, experience, and NMDA receptor subtype in rat visual cortex". ... "Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95". Science. 269 (5231): 1737-40. ... "Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95". Science. 269 (5231): 1737-40. ...
"Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95". Science. 269 (5231): 1737-1740 ... an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and ... transient global ischemia on the interaction of Src and Fyn with the N-methyl-D-aspartate receptor and postsynaptic densities: ...
"Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95". Science. 269 (5231): 1737-40. ... Studies in the knockout mouse deficient in this subunit suggest that this gene may be involved in the development of synaptic ... "Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A". Nature. 393 (6683): 377-81. Bibcode: ...
"Kainate receptor activation induces mixed lineage kinase-mediated cellular signaling cascades via post-synaptic density protein ...
Roche KW, Ly CD, Petralia RS, Wang YX, McGee AW, Bredt DS, Wenthold RJ (May 1999). "Postsynaptic density-93 interacts with the ... The main functions of GluD2 in synaptic plasticity are carried out by its intracellular C-terminus. This is regulated by D- ... "Differential regulation of synaptic plasticity and cerebellar motor learning by the C-terminal PDZ-binding motif of GluRdelta2 ... synaptic plasticity, and motor coordination. GluD2 induces synaptogenesis through interaction of its N-terminal domain with ...
Roche KW, Ly CD, Petralia RS, Wang YX, McGee AW, Bredt DS, Wenthold RJ (May 1999). "Postsynaptic density-93 interacts with the ... Most of these channels mediate fast excitatory synaptic transmission in the central nervous system. GluD1 is expressed in the ... central nervous system and is important in synaptic plasticity. Several genetic epidemiology studies have shown a strong ...
However, dendritic filopodia can take on spine-like morphologies even without post-synaptic density proteins, pointing to actin ... Drebrin-dependent actin clustering in dendritic filopodia governs synaptic targeting of postsynaptic density-95 and dendritic ... Therefore, dendritic filopodia may be used by post-synaptic cells to detect passing axons. After contact between dendritic ... Selection of synaptic partners may be dependent on detected synaptic activity in the vicinity of the filopodium. Localized ...
"The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the beta PIX guanine ... "The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the beta PIX guanine ... Lim S, Sala C, Yoon J, Park S, Kuroda S, Sheng M, Kim E (2001). "Sharpin, a novel postsynaptic density protein that directly ... a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin". Neuron. 23 ...
  • The structure and composition of the PSD have been the focus of numerous molecular studies of synaptic plasticity, a cellular model of learning and memory. (wikipedia.org)
  • During synaptic plasticity, the total size of the PSD is increasing along with an increase in synaptic size and strength after inducing long-term potentiation at single synapses. (wikipedia.org)
  • This protein network plays a critical role in the regulation of glutamate receptor function and thus in synaptic plasticity. (uandes.cl)
  • At synapses, the DLG4 protein interacts with other proteins to regulate a process called synaptic plasticity, which allows synapses to change and adapt over time in response to experiences. (medlineplus.gov)
  • Synaptic plasticity is critical for learning and memory. (medlineplus.gov)
  • Most of the variants impair the normal function of the DLG4 protein by decreasing its ability to interact with the other proteins involved in synaptic plasticity or decreasing its ability to help synapses send signals. (medlineplus.gov)
  • As a result, synaptic plasticity and other synaptic functions are impaired. (medlineplus.gov)
  • 35 For ASD and SCZ, the same pathways and networks appear to be affected, which are converging to excitatory synapses, possibly affecting synaptic plasticity. (nature.com)
  • Juvenile HFD abolished both hippocampal synaptic plasticity, assessed through in vivo long-term potentiation (LTP) in CA1, and long-term hippocampal-dependent memory, using object location memory (OLM). (nature.com)
  • The aim of our study was to identify molecular changes produced by prenatal exposure to WIN 55,212-2 that might contribute to late disruption in synaptic plasticity and cognition. (researchgate.net)
  • We study how synaptic transmission contributes to the timing of information processing: from vesicular release and transmitter clearance to the plasticity between cerebellar elements. (uab.edu)
  • By recording and imaging Purkinje cells and Bergmann glia, we study how transporters can influence the strength of synaptic signals and regulate the signal transduction pathways underlying cerebellar long-lasting plasticity. (uab.edu)
  • The alpha isoform is responsible for synaptic plasticity and participates in memory through its phosphorylation of synaptic proteins. (elifesciences.org)
  • In addition, glutamate released into the synaptic cleft is cleared via transporters found on the postsynaptic Purkinje cells. (uab.edu)
  • A breakthrough for the identification of the proteome of the presynaptic active zone was the successful employment of antibodies directed against a cytosolic epitope of membrane integral synaptic vesicle proteins for the immunopurification of synaptic vesicles docked to the presynaptic plasma membrane. (mdpi.com)
  • The association of huntingtin with the cytoplasmic surface of a variety of organelles, including transport vesicles, synaptic vesicles, microtubules, and mitochondria, raises the possibility of the occurrence of normal cellular interactions that might be relevant to neurodegeneration. (medscape.com)
  • The post synaptic density is a region that lies adjacent to the cytoplasmic face of the postsynaptic membrane at excitatory synapse. (yeastrc.org)
  • The brain 's response to space irradiation involves novel excitatory synapse and postsynaptic remodeling . (bvsalud.org)
  • For the most part, synaptic interactions between dopamine and glutamate signaling pathways take part in the postsynaptic density, a specialized ultrastructure localized under the membrane of glutamatergic excitatory synapses. (univpm.it)
  • Excitatory synaptic transmission in the brain is predominantly mediated by the neurotransmitter glutamate, while inhibitory transmission is mediated mainly by the neurotransmitter gamma-amino butyric acid (GABA). (frontiersin.org)
  • The postsynaptic compartment of excitatory synapses is characterized by an electron-dense region, referred to as the postsynaptic density (PSD), attributable to the high density of neurotransmitter receptors and associated molecules at these sites. (frontiersin.org)
  • Recent genetic data on schizophrenia (SCZ) have suggested that proteins of the postsynaptic density of excitatory synapses have a role in its etiology. (nature.com)
  • The SHANK protein family is composed of three multidomain scaffolding proteins residing at the postsynaptic density of excitatory glutamatergic synapses. (nature.com)
  • Immunoelectron microscopy revealed excitatory synaptic connections between regenerating host axons and graft-derived neurons at C1 as well as between graft axons and DCN neurons in the brainstem. (jneurosci.org)
  • When in dendrites and spines, βAR 248 was frequently concentrated along plasma membranes and at post-synaptic densities of asymmetric (excitatory) synapses. (frontiersin.org)
  • These excitatory synapses are isolated from one another by Bergmann glia membranes that express a high density of glutamate transporters. (uab.edu)
  • All neurons in our brain are wired via a micron-sized connection unit called synapse, and each synapse contains a layer of densely-packed, protein rich compartment called postsynaptic density (PSD), which is responsible for brain signal processing and transmission. (neurosciencenews.com)
  • Importantly, the HKUST team also found that defects of SynGAP or PSD-95 identified in autism patients alter the "oil-like" droplets formation of the complex and change the synaptic signaling activity of neurons. (neurosciencenews.com)
  • The images show a single slice from a 3D dataset of cultured hippocampal neurons expressing PSD95-APEX2 to stain post-synaptic densities (arrows). (zeiss.com)
  • In this manner the neurons strike a "balance" that allows for neurons to become activated and convey discrete synaptic signals, while preventing excessive excitation. (frontiersin.org)
  • These studies demonstrate the need to modulate both extrinsic environment and intrinsic capacity of injured neurons to regenerate but underscore the difficulties of regaining functional connectivity even when synaptic structure is restored. (jneurosci.org)
  • We prepared neocortical slices from juvenile mice that were receiving eNRG1 subchronically and recorded inhibitory synaptic activity from layer V pyramidal neurons. (nih.gov)
  • Cortical GABAergic neurons cultured with eNRG1 exhibited a significant increase in surface GluA1 immunoreactivity at putative synaptic sites on their dendrites. (nih.gov)
  • Neurons that receive neurotransmitter signals are called postsynaptic neurons. (msdmanuals.com)
  • In such cases, the dendrites (a neuron's receiving branches) on the postsynaptic neurons release neurotransmitters that affect receptors on the presynaptic neurons. (msdmanuals.com)
  • ion channels directly connect the cytoplasm of the presynaptic and postsynaptic neurons. (msdmanuals.com)
  • We used single neuron recordings and controlled whisker deflections to examine responses of thalamocortical neurons to sensory stimulation in rat survivors of 9 min of asphyxial cardiac arrest incurred on post-natal day 17. (cdc.gov)
  • Hundreds of proteins have been identified in the postsynaptic density, including glutamate receptors, scaffold proteins, and many signaling molecules. (wikipedia.org)
  • In the postsynaptic membrane, scaffolding proteins bring together glutamate receptors with multiple regulatory proteins involved in signal transduction. (uandes.cl)
  • Thus, through postsynaptic network modulation, these drugs may induce dopamine-glutamate synaptic remodeling, which is at the basis of their long-term physiologic effects. (univpm.it)
  • In this review, we will discuss the role of postsynaptic proteins in dopamine-glutamate signals integration, as well as the peculiar impact of different psychotropic drugs used in clinical practice on postsynaptic remodeling, thereby trying to point out the possible future molecular targets of 'synapse-based' psychiatric therapeutic strategies. (univpm.it)
  • Treating the synapse in major psychiatric disorders: The role of postsynaptic density network in dopamine-glutamate interplay and psychopharmacologic drugs molecular actions / Tomasetti, C. (univpm.it)
  • This results in a very high glutamate concentration in the synapse that can saturate postsynaptic receptors and ensure excitation of the postsynaptic neuron. (uab.edu)
  • By combining these methods, we aim to better understand how glutamate transporters shape synaptic signals and their physiological roles in normal and pathological states. (uab.edu)
  • The PSD has been proposed to concentrate and organize neurotransmitter receptors in the synaptic cleft. (wikipedia.org)
  • Neurotransmitters diffuse across the synaptic cleft and bind briefly to specific receptors on the adjoining neuron or effector cell. (msdmanuals.com)
  • Membrane fusion generates an opening through which the molecules are expelled into the synaptic cleft via exocytosis. (msdmanuals.com)
  • These include postsynaptic density-95 (PSD95) neuroligin (a cellular adhesion molecule) NMDA receptors, AMPA receptors calcium/calmodulin-dependent protein kinase II actin As protein detection technologies have increased in sensitivity, such as with improvements in mass spectrometry techniques, more numerous proteins have been attributed to the PSD. (wikipedia.org)
  • These results allow us to propose a model in which phosphorylation of NMDA receptors can contribute to a long-lasting and self-maintained change in synaptic function. (uandes.cl)
  • Moreover, transductional pathways belonging to different receptors may be functionally interconnected through postsynaptic density molecules. (univpm.it)
  • Neuronal excitation is also influenced by the amounts of neurotransmitter receptors and signaling molecules retained at particular synaptic sites. (frontiersin.org)
  • Recent studies revealed a key role for PSD- 95, a scaffolding molecule enriched at glutamatergic synapses, in modulation of clustering of several neurotransmitter receptors, adhesion molecules, ion channels, cytoskeletal elements and signaling molecules at postsynaptic sites. (frontiersin.org)
  • By numerous specific protein-protein interactions, SHANKs are either directly or indirectly linked to other structural proteins, cell adhesion molecules, receptors, ion channels and to actin-interacting proteins at the postsynaptic density. (nature.com)
  • A postsynaptic density, consisting of concentrated neurotransmitter receptors, forms in direct apposition to the active zone. (rupress.org)
  • Patients with TS have increased density of the presynaptic dopamine transporter and an increased density of postsynaptic D2 dopamine receptors, suggesting increased uptake and release of dopamine. (medscape.com)
  • The increased density of the dopamine receptors have led some investigators to propose a supersensitivity to dopamine within the striatum, prefrontal cortex, and motor region, leading to the phenotype of tics and other behaviors associated with TS. (medscape.com)
  • At chemical synapses, the presynaptic neuron forms a specialized membrane domain, termed the active zone, which contains the molecular machinery required for calcium-dependent synaptic vesicle fusion and recycling. (rupress.org)
  • Combining immunopurification and subsequent analytical mass spectrometry, hundreds of proteins, including synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery, proteins involved in intracellular and extracellular signaling and a large variety of adhesion molecules, were identified. (mdpi.com)
  • The postsynaptic density (PSD) is a protein dense specialization attached to the postsynaptic membrane. (wikipedia.org)
  • PSDs were originally identified by electron microscopy as an electron-dense region at the membrane of a postsynaptic neuron. (wikipedia.org)
  • It forms a disc that consists of a range of proteins with different functions, some of which contact the cytoplasmic domains of ion channels in the postsynaptic membrane. (yeastrc.org)
  • Mechanistically, β-Spectrin is required for the localization of α-Spectrin and Ankyrin to the postsynaptic membrane. (rupress.org)
  • Subcellular Location: Cell membrane, postsynaptic cell membrane, postsynaptic density. (thermofisher.com)
  • Although inhibitory postsynaptic sites lack PSDs, they also consist of complex protein matrices. (frontiersin.org)
  • Preservation of inhibitory synaptic terminals was accompanied by significant improvement in the motor as well as in the nociceptive recovery. (hindawi.com)
  • The most significant categories were glutamatergic synapse and postsynaptic density . (bvsalud.org)
  • In this review we will highlight mechanisms that control targeting of PSD-95 at the synapse, and discuss how this molecule influences the retention and clustering of diverse synaptic proteins to regulate synaptic structure and strength. (frontiersin.org)
  • The postsynaptic protein Shank3 (SH3 and multiple ankyrin repeat domains) is of particular interest, as the loss of a single allele of the SHANK3 gene is sufficient to cause profound cognitive symptoms in children. (jneurosci.org)
  • The method can be used for automated detection of chemical/post- translational modifications, quality control of experiments and labelling approaches, and to control the modification settings of protein identification tools. (lu.se)
  • Posttranslational Modifications Regulate the Postsynaptic Localization of PSD-95. (medlineplus.gov)
  • To understand better the cellular mechanisms of NE's contributions to fear learning, we examined the anatomical organization of NE terminals and βARs in the LA. In this study, we employed immunoelectron microscopy to determine whether terminals immunoreactive for dopamine beta-hydroxylase (DβH), the synthetic enzyme for NE, form synaptic junctions in the LA and if so, examine these synapses and identify the post-synaptic targets on NE terminals. (frontiersin.org)
  • Identification of proteins in the postsynaptic density fraction by mass spectrometry" (PDF). (wikipedia.org)
  • Many proteins in the PSD are involved in the regulation of synaptic function. (wikipedia.org)
  • We aim to study how the mechanisms of synaptic transmission and the regulation of vesicular fusion affect Purkinje cell integration and firing properties. (uab.edu)
  • The regulation of synaptic timing by vesiclular release may be a generalized mechanism for refining temporal signaling throughout the nervous system. (uab.edu)
  • Some researchers hypothesize that genetic predispositions combined with environmental stressors (eg, virus exposure or birth trauma) result in brain deposition of amyloid and disruption of synaptic transmissions, possibly involving interleukin-1 (IL-1) or beta-endorphins. (medscape.com)
  • Furthermore, we now know that central nervous system (CNS) myelin thickness and density is influenced by experience, i.e. myelin is negatively influenced by deprivation 10 , 11 and increased by neuronal activity and novelty 12 , 13 . (biorxiv.org)
  • Coaptation preserved synaptic covering on lesioned motoneurons and led to neuronal survival. (hindawi.com)
  • Con respecto a los modelos animales en TEA, muchos estudios se centran en la expresión génica, la migración y maduración neuronal cortical y los déficits de la red neuronal, pero muy pocos son los estudios que relacionen directamente la comunicación oral animal y la expresión génica en áreas corticales del lenguaje. (bvsalud.org)
  • Our findings provide a morphological basis for understanding ways in which NE may modulate transmission by acting via synaptic or non-synaptic mechanisms in the LA. (frontiersin.org)
  • By combining these approaches, our goal is to understand how synaptic mechanisms refine temporal signaling. (uab.edu)
  • Here, we describe the developmental effects of excessive peripheral NRG1 signals on synaptic activity and AMPA receptor expression of GABAergic interneurons in postnatal rodent neocortex. (nih.gov)
  • These results indicate that NRG1 circulating in the periphery influences postnatal development of synaptic AMPA receptor expression in cortical GABAergic interneurons and may play a role in conditions characterized by GABA-associated neuropathologic processes. (nih.gov)
  • Remarkably, these effects are not associated with changes in the expression of GABAergic and glutamatergic synaptic components, but with a reduction of parvalbumin (PV) neuron density and PV mRNA levels. (biorxiv.org)
  • This activity is dependent on the rules that each neuron uses to integrate synaptic inputs. (uab.edu)
  • Several studies have demonstrated that psychopharmacologic drugs may differentially affect the expression and function of postsynaptic genes and proteins, depending upon the peculiar receptor profile of each compound. (univpm.it)
  • The hippocampus is a late maturing structure and undergoes dramatic changes during cortical developments at post-weaning (adolescence in humans). (nature.com)
  • Most studies support the hypothesis that TS is an inherited developmental disorder of synaptic neurotransmission. (medscape.com)
  • After a lesion, the density of cells containing tenascin-R transcripts increased significantly in the inferior olivary nucleus and in the white matter of the cerebellar cortex. (researchgate.net)
  • Current estimates are greater than several hundred proteins are found at PSDs among brain regions and during different states of development and synaptic activity. (wikipedia.org)
  • This gives rise to an elaborate postsynaptic structure known as the postsynaptic density (PSD). (uandes.cl)
  • Our research focuses on the details of fast synaptic transmission. (uab.edu)
  • Knowledge of the temporal properties of synaptic transmission is required to understand synaptic integration. (uab.edu)
  • The goal is to assign acquired spectra to known peptide sequences and potential co- and post-translational modifica- tions. (lu.se)
  • GluR1, GluRA) was upregulated in the postsynaptic density/cytoskeletal fraction prepared from eNRG1-treated mouse neocortices. (nih.gov)
  • The structure of postsynaptic densities isolated from dog cerebral cortex: II. (wikipedia.org)
  • In this study, we document a role for the postsynaptic Spectrin skeleton in this process. (rupress.org)
  • The RESID database [9] lists co- and post-translational modifications. (lu.se)

No images available that match "post synaptic density"