Amides composed of unsaturated aliphatic FATTY ACIDS linked with AMINES by an amide bond. They are most prominent in ASTERACEAE; PIPERACEAE; and RUTACEAE; and also found in ARISTOLOCHIACEAE; BRASSICACEAE; CONVOLVULACEAE; EUPHORBIACEAE; MENISPERMACEAE; POACEAE; and SOLANACEAE. They are recognized by their pungent taste and for causing numbing and salivation.
A genus of perennial herbs used topically and internally. It contains echinacoside, GLYCOSIDES; INULIN; isobutyl amides, resin, and SESQUITERPENES.
A plant genus of the family ARISTOLOCHIACEAE. Species of this genus have been used in traditional medicine but they contain aristolochic acid which is associated with nephropathy. These are sometimes called 'snakeroot' but that name is also used with a number of other plants such as POLYGALA; SANICULA; ASARUM; ARISTOLOCHIA; AGERATINA; and others.
The generic name for the group of aliphatic hydrocarbons Cn-H2n+2. They are denoted by the suffix -ane. (Grant & Hackh's Chemical Dictionary, 5th ed)
Hydrocarbons with at least one triple bond in the linear portion, of the general formula Cn-H2n-2.
Organic compounds containing the -CO-NH2 radical. Amides are derived from acids by replacement of -OH by -NH2 or from ammonia by the replacement of H by an acyl group. (From Grant & Hackh's Chemical Dictionary, 5th ed)
Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.

Recent progress in the neurotoxicology of natural drugs associated with dependence or addiction, their endogenous agonists and receptors. (1/960)

Nicotine in tobacco, tetrahydrocannabinol (delta 9-THC) in marijuana and morphine in opium are well known as drugs associated with dependence or addiction. Endogenous active substances that mimic the effects of the natural drugs and their respective receptors have been found in the mammalian central nervous system (CNS). Such active substances and receptors include acetylcholine (ACh) and the nicotinic ACh receptor (nAChR) for nicotine, anandamide and CB1 for delta 9-THC, and endomorphins (1 and 2) and the mu (OP3) opioid receptor for morphine, respectively. Considerable progress has been made in studies on neurotoxicity, in terms of the habituation, dependence and withdrawal phenomena associated with these drugs and with respect to correlations with endogenous active substances and their receptors. In this article we shall review recent findings related to the neurotoxicity of tobacco, marijuana and opium, and their toxic ingredients, nicotine, delta 9-THC and morphine in relation to their respective endogenous agents and receptors in the CNS.  (+info)

Stage-specific excitation of cannabinoid receptor exhibits differential effects on mouse embryonic development. (2/960)

Anandamide (N-arachidonoylethanolamine), an arachidonic acid derivative, is an endogenous ligand for both the brain-type (CB1-R) and spleen-type (CB2-R) cannabinoid receptors. We have previously demonstrated that preimplantation mouse embryos express mRNA for these receptors and that the periimplantation uterus contains the highest level of anandamide yet discovered in a mammalian tissue. We further demonstrated that 2-cell mouse embryos exposed to low levels of anandamide (7 nM) or other known cannabinoid agonists in culture exhibit markedly compromised embryonic development to blastocysts and that this effect is mediated by CB1-R. In contrast, the present study demonstrates that blastocysts exposed in culture to the same low levels of cannabinoid agonists exhibited accelerated trophoblast differentiation with respect to fibronectin-binding activity and trophoblast outgrowth. Again, these effects resulted from activation of embryonic CB1-R. There was a differential concentration-dependent effect of cannabinoids on the trophoblast, with an observed inhibition of differentiation at higher doses. These results provide evidence for the first time that cannabinoid effects are differentially executed depending on the embryonic stage and cannabinoid levels in the environment. Since uterine anandamide levels are lowest at the sites of implantation and highest at the interimplantation sites, the new findings imply that site-specific levels of anandamide and/or other endogenous ligands in the uterus may regulate implantation spatially by promoting trophoblast differentiation at the sites of blastocyst implantation.  (+info)

A role for N-arachidonylethanolamine (anandamide) as the mediator of sensory nerve-dependent Ca2+-induced relaxation. (3/960)

We tested the hypothesis that an endogenous cannabinoid (CB) receptor agonist, such as N-arachidonylethanolamine (anandamide), is the transmitter that mediates perivascular sensory nerve-dependent Ca2+-induced relaxation. Rat mesenteric branch arteries were studied using wire myography; relaxation was determined after inducing contraction with norepinephrine. Cumulative addition of Ca2+ caused dose-dependent relaxation (ED50 = 2.2 +/- 0.09 mM). The relaxation was inhibited by 10 mM TEA and 100 nM iberiotoxin, a blocker of large conductance Ca2+-activated K+ channels, but not by 5 microM glibenclamide, 1 mM 4-aminopyridine, or 30 nM apamin. Ca2+-induced relaxation was also blocked by the selective CB receptor antagonist SR141716A and was enhanced by pretreatment with 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (pefabloc; 30 microM), an inhibitor of anandamide metabolism. Anandamide also caused dose-dependent relaxation (ED50 =.72 +/- 0.3 microM). The relaxation was not inhibited by endothelial denudation, 10 microM indomethacin, or 1 microM miconazole, but was blocked by 3 microM SR141716A, 10 mM TEA, precontraction with 100 mM K+, and 100 nM iberiotoxin, and was enhanced by treatment with 30 microM pefabloc. Mesenteric branch arteries were 200-fold more sensitive to the relaxing action of anandamide than arachidonic acid (ED50 = 160 +/- 7 microM). These data show that: 1) Ca2+ and anandamide cause hyperpolarization-mediated relaxation of mesenteric branch arteries, which is dependent on an iberiotoxin-sensitive Ca2+-activated K+ channel, 2) relaxation induced by both Ca2+ and anandamide is inhibited by CB receptor blockade, and 3) relaxation induced by anandamide is not dependent on its breakdown to arachidonic acid and subsequent metabolism. These findings support the hypothesis that anandamide, or a similar cannabinoid receptor agonist, mediates nerve-dependent Ca2+-induced relaxation in the rat.  (+info)

Inhibition of the production of endothelium-derived hyperpolarizing factor by cannabinoid receptor agonists. (4/960)

1. The endogenous cannabinoid, anandamide, has been reported to induce an 'endothelium-derived hyperpolarizing factor (EDHF)-like' relaxation in vitro. We therefore investigated the effects of cannabinoid CB1 receptor agonists; HU 210, delta9-tetrahydrocannabinol (delta9-THC) and anandamide, and a CB1 antagonist/inverse agonist, SR 141716A, on nitric oxide (NO) and EDHF-mediated relaxation in precontracted rings of porcine coronary, rabbit carotid and mesenteric arteries. 2. In rings of mesenteric artery HU 210 and delta9-THC induced endothelium- and cyclo-oxygenase-independent relaxations which were sensitive to SR 141716A. Anandamide (0.03-30 microM) induced a slowly developing, endothelium-independent relaxation which was abolished by diclofenac and was therefore mediated by cyclo-oxygenase product(s). None of the CB1 agonists tested affected the tone of precontracted rings of rabbit carotid or porcine coronary artery. 3. In endothelium-intact segments, HU 210, delta9-THC and anandamide did not affect NO-mediated responses but under conditions of continuous NO synthase/cyclo-oxygenase blockade, significantly inhibited acetylcholine and bradykinin-induced relaxations which are attributed to the production of EDHF. The effects of HU 210 and delta9-THC were not observed when experiments were performed in the presence of SR 141716A suggesting the involvement of the CB1 receptor. 4. In a patch clamp bioassay of EDHF production, HU 210 decreased the EDHF-mediated hyperpolarization of detector smooth muscle cells when applied to the donor segment but was without effect on the membrane potential of detector cells. The inhibition of EDHF production was unrelated to alterations in Ca2+ -signalling or cytochrome P450 activity. 5. These results suggest that the activation of endothelial CB1 receptors appears to be negatively coupled to the production of EDHF.  (+info)

Fatty-acid amide hydrolase is expressed in the mouse uterus and embryo during the periimplantation period. (5/960)

Arachidonoylethanolamide (anandamide) is an endogenous ligand for cannabinoid receptors. We demonstrated previously that the periimplantation mouse uterus has high levels of anandamide and can synthesize and hydrolyse anandamide. In the present investigation, we examined the expression of the recently identified fatty-acid amide hydrolase (FAAH) gene, which is involved in hydrolyzing anandamide to arachidonic acid and ethanolamine, in the periimplantation mouse embryo and uterus. As previously reported, Northern blot hybridization detected a transcript of approximately 2.5 kilobases of FAAH mRNA in whole uterine poly(A)+ RNA samples. The levels of this mRNA were higher in the liver and brain than in the uterus. In the uterus, higher accumulation of FAAH mRNA occurred on Days 1-4 followed by declines on later days (Days 5-8) of pregnancy. In situ hybridization detected this mRNA primarily in uterine luminal and glandular epithelial cells on Days 1-4 of pregnancy. With the progression of implantation (Days 5-8), accumulation of this mRNA was retained in the luminal and glandular epithelia. In addition, implanting blastocysts showed accumulation of this mRNA. FAAH mRNA accumulation was absent or minimal in the myometrium during this period. Western blotting detected an approximately 60-kDa protein in uterine membrane preparations. In preimplantation embryos, FAAH mRNA was present in one-cell and two-cell embryos but was absent in embryos at the eight-cell/morula stage. However, this mRNA was again detected in Day 4 blastocysts. The presence of FAAH mRNA in one- and two-cell embryos reflects accumulation of maternal message, while its presence in blastocysts reflects embryonic gene activation. Collectively, our present and previous results provide evidence that FAAH is expressed in the mouse uterus and embryo during early pregnancy to modulate local levels of anandamide that could be important for embryo development and implantation.  (+info)

Anandamide stimulates phospholipase D activity in PC12 cells but not in NIH 3T3 fibroblasts. (6/960)

The endogenous cannabinoid arachidonoylethanolamide was previously reported to have no effects on the phospholipase D activity in Chinese hamster ovary cells expressing the human brain-specific cannabinoid receptor, while in mouse peritoneal cells, delta9-tetrahydrocannabinol stimulated this enzyme. In this work, arachidonoylethanolamide (0.1-1 microM) was found to stimulate the phospholipase D-mediated phospholipid hydrolysis in rat adrenal pheochromocytoma PC12 cells, but not in mouse NIH 3T3 fibroblasts. The phospholipase D-activating effects of arachidonoylethanolamide were comparable to those elicited by phorbol ester and nerve growth factor, while arachidonic acid (1 microM) had no effects. The results show that, depending on the cell type, arachidonoylethanolamide can be an activator of the phospholipase D system.  (+info)

Anandamide activates human platelets through a pathway independent of the arachidonate cascade. (7/960)

Anandamide (arachidonoylethanolamide, AnNH) is shown to activate human platelets, a process which was not inhibited by acetylsalicylic acid (aspirin). Unlike AnNH, hydroperoxides generated thereof by lipoxygenase activity, and the congener (13-hydroxy)linoleoylethanolamide, were unable to activate platelets, though they counteracted AnNH-mediated stimulation. On the other hand, palmitoylethanolamide neither activated human platelets nor blocked the AnNH effects. AnNH inactivation by human platelets was afforded by a high-affinity transporter, which was activated by nitric oxide-donors up to 225% of the control. The internalized AnNH could thus be hydrolyzed by a fatty acid amide hydrolase (FAAH), characterized here for the first time.  (+info)

Structural determinants for recognition and translocation by the anandamide transporter. (8/960)

The biological actions of anandamide (arachidonylethanolamide), an endogenous cannabinoid lipid, are terminated by a two-step inactivation process consisting of carrier-mediated uptake and intracellular hydrolysis. Anandamide uptake in neurons and astrocytes is mediated by a high-affinity, Na+-independent transporter that is selectively inhibited by N-(4-hydroxyphenyl)-arachidonamide (AM404). In the present study, we examined the structural determinants governing recognition and translocation of substrates by the anandamide transporter constitutively expressed in a human astrocytoma cell line. Competition experiments with a select group of analogs suggest that substrate recognition by the transporter is favored by a polar nonionizable head group of defined stereochemical configuration containing a hydroxyl moiety at its distal end. The secondary carboxamide group interacts favorably with the transporter, but may be replaced with either a tertiary amide or an ester, suggesting that it may serve as hydrogen acceptor. Thus, 2-arachidonylglycerol, a putative endogenous cannabinoid ester, also may serve as a substrate for the transporter. Substrate recognition requires the presence of at least one cis double bond situated at the middle of the fatty acid carbon chain, indicating a preference for ligands whose hydrophobic tail can adopt a bent U-shaped conformation. On the other hand, uptake experiments with radioactively labeled substrates show that no fewer than four cis nonconjugated double bonds are required for optimal translocation across the cell membrane, suggesting that substrates are transported in a folded hairpin conformation. These results outline the general structural requisites for anandamide transport and may assist in the development of selective inhibitors with potential clinical applications.  (+info)

I'm sorry for any confusion, but "Polyunsaturated Alkamides" is not a widely recognized medical term or concept. It seems to be a combination of two different terms: "polyunsaturated" which relates to fatty acid chemistry, and "alkamides" which are a type of compound found in certain plants.

1. Polyunsaturated: This term refers to fatty acids that have multiple double bonds in their carbon chain. These fatty acids are essential to the human diet and are commonly found in foods like fish, nuts, and seeds. They are often referred to as Omega-3 or Omega-6 fatty acids.

2. Alkamides: These are a type of compound found in some plants, including Echinacea species. They have been studied for their potential biological activities, such as anti-inflammatory and immunomodulatory effects.

Without more context, it's difficult to provide a precise definition or medical interpretation of "Polyunsaturated Alkamides." If you have more information about how these terms are being used together, I'd be happy to try to provide a more specific answer.

Echinacea is a type of herb that is native to North America. It is also known as the purple coneflower and is used in herbal medicine for its alleged ability to boost the immune system and help fight off colds and other infections. The active ingredients in echinacea are thought to be compounds called alkylamides, which may have anti-inflammatory and immune-stimulating effects.

There is some evidence to suggest that echinacea may help reduce the duration and severity of colds when taken at the onset of symptoms, but the overall body of research on its effectiveness is mixed. Some studies have found no significant benefit, while others have reported modest reductions in the length and severity of cold symptoms.

Echinacea is generally considered to be safe when used as directed, but it can cause side effects such as stomach upset, headache, and dizziness in some people. It may also interact with certain medications, so it is important to speak with a healthcare provider before taking echinacea if you are taking any prescription drugs or have any underlying health conditions.

"Aristolochia" is a genus of flowering plants in the family Aristolochiaceae, also known as birthworts. These plants are characterized by their unique, pipe-shaped flowers. Some species of Aristolochia contain aristolochic acids, which have been found to be nephrotoxic and carcinogenic. Because of this, the use of these plants in medicinal preparations is generally discouraged or restricted.

Alkanes are a group of saturated hydrocarbons, which are characterized by the presence of single bonds between carbon atoms in their molecular structure. The general formula for alkanes is CnH2n+2, where n represents the number of carbon atoms in the molecule.

The simplest and shortest alkane is methane (CH4), which contains one carbon atom and four hydrogen atoms. As the number of carbon atoms increases, the length and complexity of the alkane chain also increase. For example, ethane (C2H6) contains two carbon atoms and six hydrogen atoms, while propane (C3H8) contains three carbon atoms and eight hydrogen atoms.

Alkanes are important components of fossil fuels such as natural gas, crude oil, and coal. They are also used as starting materials in the production of various chemicals and materials, including plastics, fertilizers, and pharmaceuticals. In the medical field, alkanes may be used as anesthetics or as solvents for various medical applications.

Alkynes are a type of hydrocarbons that contain at least one carbon-carbon triple bond in their molecular structure. The general chemical formula for alkynes is CnH2n-2, where n represents the number of carbon atoms in the molecule.

The simplest and shortest alkyne is ethyne, also known as acetylene, which has two carbon atoms and four hydrogen atoms (C2H2). Ethyne is a gas at room temperature and pressure, and it is commonly used as a fuel in welding torches.

Alkynes are unsaturated hydrocarbons, meaning that they have the potential to undergo chemical reactions that add atoms or groups of atoms to the molecule. In particular, alkynes can be converted into alkenes (hydrocarbons with a carbon-carbon double bond) through a process called partial reduction, or they can be fully reduced to alkanes (hydrocarbons with only single bonds between carbon atoms) through a process called complete reduction.

Alkynes are important intermediates in the chemical industry and are used to produce a wide range of products, including plastics, resins, fibers, and pharmaceuticals. They can be synthesized from other hydrocarbons through various chemical reactions, such as dehydrogenation, oxidative coupling, or metathesis.

An amide is a functional group or a compound that contains a carbonyl group (a double-bonded carbon atom) and a nitrogen atom. The nitrogen atom is connected to the carbonyl carbon atom by a single bond, and it also has a lone pair of electrons. Amides are commonly found in proteins and peptides, where they form amide bonds (also known as peptide bonds) between individual amino acids.

The general structure of an amide is R-CO-NHR', where R and R' can be alkyl or aryl groups. Amides can be classified into several types based on the nature of R and R' substituents:

* Primary amides: R-CO-NH2
* Secondary amides: R-CO-NHR'
* Tertiary amides: R-CO-NR''R'''

Amides have several important chemical properties. They are generally stable and resistant to hydrolysis under neutral or basic conditions, but they can be hydrolyzed under acidic conditions or with strong bases. Amides also exhibit a characteristic infrared absorption band around 1650 cm-1 due to the carbonyl stretching vibration.

In addition to their prevalence in proteins and peptides, amides are also found in many natural and synthetic compounds, including pharmaceuticals, dyes, and polymers. They have a wide range of applications in chemistry, biology, and materials science.

A plant extract is a preparation containing chemical constituents that have been extracted from a plant using a solvent. The resulting extract may contain a single compound or a mixture of several compounds, depending on the extraction process and the specific plant material used. These extracts are often used in various industries including pharmaceuticals, nutraceuticals, cosmetics, and food and beverage, due to their potential therapeutic or beneficial properties. The composition of plant extracts can vary widely, and it is important to ensure their quality, safety, and efficacy before use in any application.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Polyunsaturated Alkamides * Receptors, Drug / genetics * Receptors, Drug / physiology* * Stem Cells * TRPV Cation Channels ...
Polyunsaturated Alkamides * Pregnancy * Pregnancy Maintenance* * Time Factors Substances * Arachidonic Acids * Endocannabinoids ...
Polyunsaturated Alkamides/metabolism. MESH. Synovial Membrane/pathology. MESH. Dewey Decimal Classification:. 500 Science , 500 ...
Alkenes - Polyunsaturated Alkamides PubMed MeSh Term ©2023 Regents of the University of Colorado , Terms of Use , Powered by ...
Polyunsaturated Alkamides. *Salicylamides. *Sulfonamides. *Thioamides. Below are MeSH descriptors whose meaning is more ...
Polyunsaturated Alkamides. *Salicylamides. *Sulfonamides. *Thioamides. *Neutral Glycosphingolipids. *Ceramides. *Sphingomyelins ...
Polyunsaturated Alkamides. *Salicylamides. *Sulfonamides. *Thioamides. *Benzoates. *Aminobenzoates. *Benzamides. *Benzoic Acid ...
Polyunsaturated Alkamides. Alcamidas Poliinsaturadas. Alcamidas Poliinsaturadas. Thiazolidines. Tiazolidinas. Tiazolidinas. ...
Polyunsaturated Alkamides. Alcamidas Poliinsaturadas. Alcamidas Poliinsaturadas. Thiazolidines. Tiazolidinas. Tiazolidinas. ...
Polyunsaturated Alkamides. Alcamidas Poliinsaturadas. Alcamidas Poliinsaturadas. Thiazolidines. Tiazolidinas. Tiazolidinas. ...
Polyunsaturated Alkamides. Alcamidas Poliinsaturadas. Alcamidas Poliinsaturadas. Thiazolidines. Tiazolidinas. Tiazolidinas. ...
Polyunsaturated Alkamides. Alcamidas Poliinsaturadas. Alcamidas Poliinsaturadas. Thiazolidines. Tiazolidinas. Tiazolidinas. ...
Polyunsaturated Alkamides. Alcamidas Poliinsaturadas. Alcamidas Poliinsaturadas. Thiazolidines. Tiazolidinas. Tiazolidinas. ...
Polyunsaturated Alkamides [D02.455.326.271.690] Polyunsaturated Alkamides * Vinyl Compounds [D02.455.326.271.884] ...
Polyunsaturated Alkamides. Alcamidas Poliinsaturadas. Alcamidas Poliinsaturadas. Thiazolidines. Tiazolidinas. Tiazolidinas. ...
Polyunsaturated Alkamides. Alcamidas Poliinsaturadas. Alcamidas Poliinsaturadas. Thiazolidines. Tiazolidinas. Tiazolidinas. ...
Polyunsaturated Alkamides. Alcamidas Poliinsaturadas. Alcamidas Poliinsaturadas. Thiazolidines. Tiazolidinas. Tiazolidinas. ...
Polyunsaturated Alkamides. Alcamidas Poliinsaturadas. Alcamidas Poliinsaturadas. Thiazolidines. Tiazolidinas. Tiazolidinas. ...
Polyunsaturated Alkamides. Alcamidas Poliinsaturadas. Alcamidas Poliinsaturadas. Thiazolidines. Tiazolidinas. Tiazolidinas. ...
Polyunsaturated Alkamides. *Salicylamides. *Sulfonamides. *Thioamides. *Benzoates. *Aminobenzoates. *Benzamides. *Benzoic Acid ...
Polyunsaturated Alkamides [D02.065.690] Polyunsaturated Alkamides * Salicylamides [D02.065.793] Salicylamides * Labetalol [ ...
Polyunsaturated Alkamides. *Salicylamides. *Sulfonamides. *Thioamides. *Neutral Glycosphingolipids. *Ceramides. *Sphingomyelins ...
Polyunsaturated Alkamides/pharmacology. *Receptor, Cannabinoid, CB1. *Receptor, Cannabinoid, CB2. *Tumor Necrosis Factor-alpha ...
Polyunsaturated Alkamides [D02.065.690] * Salicylamides [D02.065.793] * Sulfonamides [D02.065.884] * Thioamides [D02.065.900] ...
COVID-19 , Curcumin , Alkaloids , Benzodioxoles , Curcumin/pharmacology , Humans , Piperidines , Polyunsaturated Alkamides/ ... Polyunsaturated Alkamides/administration & dosage , Double-Blind Method , Hospitalization , Humans , Iran , Randomized ...
Furthermore, it is rich in n-3 polyunsaturated fatty acids - necessary for regulating both BAT and WAT metabolism and thus, ... Additionally, echinacea is high in alkamides, possibly leading to enhanced antioxidant activity and reduced oxidative stress. ...
Testicular cell membranes are rich in polyunsaturated fatty acids and are vulnerable to oxidative injury (Ma et al. 2018). So, ... alkamides, caffeic acid and polysaccharides ...

No FAQ available that match "polyunsaturated alkamides"