A double-stranded polyribonucleotide comprising polyadenylic and polyuridylic acids.
Polydeoxyribonucleotides made up of deoxyadenine nucleotides and thymine nucleotides. Present in DNA preparations isolated from crab species. Synthetic preparations have been used extensively in the study of DNA.
A group of 13 or more deoxyribonucleotides in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties.
A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE.
A group of cytosine ribonucleotides in which the phosphate residues of each cytosine ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
A group of uridine ribonucleotides in which the phosphate residues of each uridine ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
Interferon inducer consisting of a synthetic, mismatched double-stranded RNA. The polymer is made of one strand each of polyinosinic acid and polycytidylic acid.
One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action.
Proteins that bind to the 3' polyadenylated region of MRNA. When complexed with RNA the proteins serve an array of functions such as stabilizing the 3' end of RNA, promoting poly(A) synthesis and stimulating mRNA translation.
A group of guanine ribonucleotides in which the phosphate residues of each guanine ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
A polynucleotide formed from the ADP-RIBOSE moiety of nicotinamide-adenine dinucleotide (NAD) by POLY(ADP-RIBOSE) POLYMERASES.
A group of thymine nucleotides in which the phosphate residues of each thymine nucleotide act as bridges in forming diester linkages between the deoxyribose moieties.
A group of inosine ribonucleotides in which the phosphate residues of each inosine ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Drugs that bind to but do not activate DOPAMINE RECEPTORS, thereby blocking the actions of dopamine or exogenous agonists. Many drugs used in the treatment of psychotic disorders (ANTIPSYCHOTIC AGENTS) are dopamine antagonists, although their therapeutic effects may be due to long-term adjustments of the brain rather than to the acute effects of blocking dopamine receptors. Dopamine antagonists have been used for several other clinical purposes including as ANTIEMETICS, in the treatment of Tourette syndrome, and for hiccup. Dopamine receptor blockade is associated with NEUROLEPTIC MALIGNANT SYNDROME.
A group of 13 or more ribonucleotides in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A deaminated metabolite of LEVODOPA.
A poly(A) binding protein that has a variety of functions such as mRNA stabilization and protection of RNA from nuclease activity. Although poly(A) binding protein I is considered a major cytoplasmic RNA-binding protein it is also found in the CELL NUCLEUS and may be involved in transport of mRNP particles.
Sodium chloride-dependent neurotransmitter symporters located primarily on the PLASMA MEMBRANE of dopaminergic neurons. They remove DOPAMINE from the EXTRACELLULAR SPACE by high affinity reuptake into PRESYNAPTIC TERMINALS and are the target of DOPAMINE UPTAKE INHIBITORS.
Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE.
A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D2-class receptor genes contain INTRONS, and the receptors inhibit ADENYLYL CYCLASES.
An enzyme that catalyzes the synthesis of polyadenylic acid from ATP. May be due to the action of RNA polymerase (EC 2.7.7.6) or polynucleotide adenylyltransferase (EC 2.7.7.19). EC 2.7.7.19.
Drugs that bind to and activate dopamine receptors.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Neurons whose primary neurotransmitter is DOPAMINE.
Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA.
Polynucleotides are long, multiple-unit chains of nucleotides, the monomers that make up DNA and RNA, which carry genetic information and play crucial roles in various biological processes.
A technique for measuring extracellular concentrations of substances in tissues, usually in vivo, by means of a small probe equipped with a semipermeable membrane. Substances may also be introduced into the extracellular space through the membrane.
Any drugs that are used for their effects on dopamine receptors, on the life cycle of dopamine, or on the survival of dopaminergic neurons.
Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells.
Polymers of organic acids and alcohols, with ester linkages--usually polyethylene terephthalate; can be cured into hard plastic, films or tapes, or fibers which can be woven into fabrics, meshes or velours.
A region in the MESENCEPHALON which is dorsomedial to the SUBSTANTIA NIGRA and ventral to the RED NUCLEUS. The mesocortical and mesolimbic dopaminergic systems originate here, including an important projection to the NUCLEUS ACCUMBENS. Overactivity of the cells in this area has been suspected to contribute to the positive symptoms of SCHIZOPHRENIA.
The black substance in the ventral midbrain or the nucleus of cells containing the black substance. These cells produce DOPAMINE, an important neurotransmitter in regulation of the sensorimotor system and mood. The dark colored MELANIN is a by-product of dopamine synthesis.
Drugs that block the transport of DOPAMINE into axon terminals or into storage vesicles within terminals. Most of the ADRENERGIC UPTAKE INHIBITORS also inhibit dopamine uptake.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
The sum of the weight of all the atoms in a molecule.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D1-class receptor genes lack INTRONS, and the receptors stimulate ADENYLYL CYCLASES.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
A fetal blood vessel connecting the pulmonary artery with the descending aorta.
The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems.
The rate dynamics in chemical or physical systems.
Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS).
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
An enzyme that catalyzes the conversion of L-tyrosine, tetrahydrobiopterin, and oxygen to 3,4-dihydroxy-L-phenylalanine, dihydrobiopterin, and water. EC 1.14.16.2.
A powerful central nervous system stimulant and sympathomimetic. Amphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulation of release of monamines, and inhibiting monoamine oxidase. Amphetamine is also a drug of abuse and a psychotomimetic. The l- and the d,l-forms are included here. The l-form has less central nervous system activity but stronger cardiovascular effects. The d-form is DEXTROAMPHETAMINE.
A poly(A) binding protein that is involved in promoting the extension of the poly A tails of MRNA. The protein requires a minimum of ten ADENOSINE nucleotides in order for binding to mRNA. Once bound it works in conjunction with CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR to stimulate the rate of poly A synthesis by POLY A POLYMERASE. Once poly-A tails reach around 250 nucleotides in length poly(A) binding protein II no longer stimulates POLYADENYLATION. Mutations within a GCG repeat region in the gene for poly(A) binding protein II have been shown to cause the disease MUSCULAR DYSTROPHY, OCULOPHARYNGEAL.

Functional analysis of a homopolymeric (dA-dT) element that provides nucleosomal access to yeast and mammalian transcription factors. (1/287)

Eukaryotic organisms ranging from yeast to humans maintain a large amount of genetic information in the highly compact folds of chromatin, which poses a large DNA accessibility barrier to rapid changes in gene expression. The ability of the yeast Candida glabrata to survive copper insult requires rapid transcriptional autoactivation of the AMT1 copper-metalloregulatory transcription factor gene. The kinetics of AMT1 autoactivation is greatly enhanced by homopolymeric (dA-dT) element (A16)-mediated nucleosomal accessibility for Amt1p to a metal response element in this promoter. Analysis of the nucleosomal positional requirements for the A16 element reveal an impaired ability of the A16 element to stimulate AMT1 autoregulation when positioned downstream of the metal response element within the nucleosome, implicating an inherent asymmetry to the nucleosome positioned within the AMT1 promoter. Importantly, we demonstrate that the A16 element functions to enhance nucleosomal access and hormone-stimulated transcriptional activation for the mammalian glucocorticoid receptor, in a rotational phase-dependent manner. These data provide compelling evidence that nucleosomal homopolymeric (dA-dT) elements provide enhanced DNA access to diverse classes of transcription factors and suggest that these elements may function in this manner to elicit rapid transcriptional responses in higher eukaryotic organisms.  (+info)

A Dictyostelium protein binds to distinct oligo(dA) x oligo(dT) DNA sequences in the C-module of the retrotransposable element DRE. (2/287)

The genome of the eukaryotic microbe Dictyostelium discoideum contains some 200 copies of the nonlong-terminal repeat retrotransposon DRE. Among several unique features of this retroelement, DRE is transcribed in both directions leading to the formation of partially overlapping plus strand and minus strand RNAs. The synthesis of minus strand RNAs is controlled by the C-module, a 134-bp DNA sequence located at the 3'-end of DRE. A nuclear protein (CMBF) binds to the C-module via interaction with two almost homopolymeric 24 bp oligo(dA) x oligo(dT) sequences. The DNA-binding drugs distamycin and netropsin, which bind to A x T-rich DNA sequences in the minor groove, competed efficiently for the binding of CMBF to the C-module. The CMBF-encoding gene, cbfA, was isolated and a DNA-binding domain was mapped to a 25-kDa C-terminal region of the protein. A peptide motif involved in the binding of A x T-rich DNA by high mobility group-I proteins ('GRP' box) was identified in the deduced CMBF protein sequence, and exchange of a consensus arginine residue for alanine within the CMBF GRP box abolished the interaction of CMBF with the C-module. The current data support the theory that CMBF binds to the C-module by detecting its long-range DNA conformation and interacting with A x T base pairs in the minor groove of oligo(dA) x oligo(dT) stretches.  (+info)

Nature of conformational changes in poly[d(A-T)-d(A-T)] in the premelting region. (3/287)

The conformation of the synthetic DNA, poly-[d(A-T)-d(A-T)], has been investigated both in the solid state and in dilute aqueous solutions at different temperatures below its melting point. The change of the circular dichroism (CD) spectra of poly[d(A-T)-d(A-T)] solutions with decreasing temperatures from just below the melting point to 0 degrees involves a specific decrease of the intensity of the 262 nm CD band. This conformational change has been assigned to a gradual and partial transition from the B to C form, on the basis of the following results: (i) By the use of infrared dichroism measurements on oriented films we have defined humidity and salt conditions under which B and C forms of poly[d(A-T)-d(A-T](Li+) are stable. In addition, we find that ammonium salts induce the C form of poly[d(A-T)-d(A-T)] even at high relative humidity. (ii) CD studies of the films of the lithium salt of poly[d(A-T)-d(A-T)] under the same conditions have given CD spectra corresponding to the B and C forms of this polynucleotide. In addition, the CD spectrum of the ammonium salt of poly[d(A-T)-d(A-T)] in solution approaches that of the C form in films. (iii) The conformational change of poly[d(A-T)-d(A-T)] as a function of temperature can be entirely explained on the basis of changes in the double-stranded base-paired structure. Our data rule out hydrogen bond breaking and unstacking or "breathing" as an explanation of the premelting changes. Curves of the continuous variation of CD(epsilon at 262 nm) as a function of temperature (from 0 degrees to the melting zone) show similar slopes in the presence of different agents stabilizing the double-stranded structure, such as Mg++, or at different salt concentration (KCl), indicating that the nature of the process is independent of ionic strength. Some specific effects were observed in the influence of certain neutral salts; ammonium induces the C form whereas magnesium favors the B form. CD data give direct evidence that a DNA like poly[d(A-T)-d(A-T)] need not change conformation upon transition from a dilute aqueous solution to a highly hydrated (film/gel) solid state. The change of conformation begins only at a defined partial dehydration.  (+info)

DNA unwinding component of the nonhistone chromatin proteins. (4/287)

A subclass of nonhistone chromatin proteins from rat liver, previously shown to exhibit high affinity for DNA, has been fractionated by single-stranded DNA-agarose affinity chromatography. The protein fraction that bound to DNA-agarose in 0.19 M NaCl-buffer and was eluted with 2 M NaCl-buffer is enriched for a protein component of approximately 20,000 daltons and exhibits preferential binding to denatured DNA. This nonhistone protein fraction specific for single strands binds to DNA in a non-species-specific manner, and causes helix-coil transition of synthetic poly[d(A-T)-d(A-T)] at 25 degrees, as indicated by the increase in absorbance of ultraviolet light at 260 nm. The observed hyperchromicity does not result from any nuclease activity in the protein fraction, because addition of Mg+2 results in partial hypochromic shift, and the protein/DNA complex is retained by nitrocellulose filters.  (+info)

Mechanical stability of single DNA molecules. (5/287)

Using a modified atomic force microscope (AFM), individual double-stranded (ds) DNA molecules attached to an AFM tip and a gold surface were overstretched, and the mechanical stability of the DNA double helix was investigated. In lambda-phage DNA the previously reported B-S transition at 65 piconewtons (pN) is followed by a second conformational transition, during which the DNA double helix melts into two single strands. Unlike the B-S transition, the melting transition exhibits a pronounced force-loading-rate dependence and a marked hysteresis, characteristic of a nonequilibrium conformational transition. The kinetics of force-induced melting of the double helix, its reannealing kinetics, as well as the influence of ionic strength, temperature, and DNA sequence on the mechanical stability of the double helix were investigated. As expected, the DNA double helix is considerably destabilized under low salt buffer conditions (+info)

Screening poly(dA/dT)- cDNAs for gene identification. (6/287)

Many genes expressed in the human genome have not been identified despite intensive efforts. We observed that the presence of long poly(dA/dT) sequences in the 3' end of cDNA templates contributes significantly to this problem, because the hybrids formed randomly between poly(dA) and poly(dT) sequences of unrelated cDNA templates lead to loss of many templates in the normalization/subtraction reactions. The low abundant copies, which account for the majority of the expressed genes, are affected in particular by this phenomenon. We have developed a strategy called screening poly(dA/dT)(-) cDNAs for gene identification to overcome this obstacle. Applying this strategy can significantly enhance the efficiency of genome-wide gene identification and should have an impact on many functional genomic studies in the postgenome era.  (+info)

Interaction of a novel antitumor agent TAS-103 with DNA. (7/287)

Interaction of a novel antitumor agent TAS-103 with DNA has been studied by a variety of methods including thermal melting study, UV-Visible spectroscopy, 1H- and 31P-NMR spectroscopy. Thermal melting study indicated that TAS-103 stabilizes the double stranded form of DNA and the relative binding strength of TAS-103 is equal to that of ethidium bromide (EtBr). UV-Visible spectroscopy demonstrated that titration curves are nearly identical with all DNA oligomers producing a hypochromic and hypsochromic effect. A hypsochromic effect of TAS-103 is differ from typical intercalators such as EtBr and Actinomycin D that exhibit a bathochromic effect. 1H- and 31P-NMR spectroscopy revealed that TAS-103 has mainly two binding modes. Major binding mode is outside binding and minor binding mode is intercalation.  (+info)

Deoxyribonucleic acid of Cancer pagurus. II. Template activity for a DNA-dependent DNA polymerase of eukaryotic cells. (8/287)

The template activity of Cancer pagurus DNA and its two components (poly d(A-T) and main component) in response to a DNA polymerase purified from regenerating rat liver has been studied and compared to the results previously obtained with synthetic templates. In the double-stranded native state, whole crab DNA and the main component were poor templates. Their replication was increased by thermal denaturation and inhibited by actinomycin. Like the synthetic copolymer poly[d(A-T).d(T-A)], native crab poly d(A-T) could be copied and its duplication was not inhibited by actinomycin. The structural difference between native poly d(A-T) Form I, isolated on a density gradient, and partially renatured poly d(A-T) Form II, isolated on hydroxylapatite, resulted in a modification of their template activity. The kinetic studies of [(3)H] dGMP and [(3)H] dAMP incorporation confirmed the importance of single-stranded regions (particulary dC regions) in the initiation of the in vitro duplication.  (+info)

"Poly A-U" is not a standard medical term. However, in biochemistry and genetics, "poly A" and "poly U" refer to repeating sequences of adenine (A) or uracil (U) nucleotides in DNA or RNA molecules, respectively.

"Poly A" is a post-transcriptional modification that occurs in mRNA, where multiple adenine nucleotides are added to the 3' end of the transcript. This process is important for the stability and translation of mRNA in eukaryotic cells.

"Poly U," on the other hand, can be found in some RNA molecules such as in the 3' untranslated region (UTR) of certain mRNAs or in specific types of non-coding RNAs like U-rich small nuclear RNAs (snRNAs).

Therefore, "Poly A-U" may refer to alternating sequences of adenine and uracil nucleotides in a DNA or RNA molecule. However, it is essential to consider the context in which this term is used to provide an accurate interpretation.

"Poly dA-dT" is not a medical term, but rather a molecular biology term that refers to a synthetic double-stranded DNA molecule. It is composed of two complementary strands: one strand consists of repeated adenine (dA) nucleotides, while the other strand consists of repeated thymine (dT) nucleotides. The "poly" prefix indicates that multiple units of these nucleotides are linked together in a chain-like structure.

This type of synthetic DNA molecule is often used as a substrate for various molecular biology techniques, such as in vitro transcription or translation assays, where it serves as a template for the production of RNA or proteins. It can also be used to study the interactions between DNA and proteins, such as transcription factors, that bind specifically to certain nucleotide sequences.

I'm sorry for any confusion, but "Polydeoxyribonucleotides" is not a widely recognized or established medical term. It seems to be a made-up or very obscure term that combines "poly," meaning many, "deoxy," referring to the lack of a hydroxyl group at the 2' carbon position in the ribose sugar, and "ribonucleotides," which are the building blocks of RNA.

If you meant "Polydeoxynucleotides" instead, it would refer to long, synthetic chains of deoxynucleotides, which are the building blocks of DNA. These chains can be used in various biochemical and biological research applications, such as studying enzyme mechanisms or constructing genetic circuits.

"Poly A" is an abbreviation for "poly(A) tail" or "polyadenylation." It refers to the addition of multiple adenine (A) nucleotides to the 3' end of eukaryotic mRNA molecules during the process of transcription. This poly(A) tail plays a crucial role in various aspects of mRNA metabolism, including stability, transport, and translation. The length of the poly(A) tail can vary from around 50 to 250 nucleotides depending on the cell type and developmental stage.

I'm sorry for any confusion, but "Poly C" is not a widely recognized medical term or abbreviation in the field of medicine or biology. It might be a typographical error or a shorthand notation used in a specific context. If you could provide more context or clarify what you mean by "Poly C," I would be happy to help further.

I'm sorry for any confusion, but "Poly U" is not a recognized medical term or abbreviation in the English language. It could potentially refer to Polytechnic University or Hong Kong Polytechnic University, but it does not have a specific medical connotation. If you have more context or information, I'd be happy to help further!

Poly(I):C is a synthetic double-stranded RNA (dsRNA) molecule made up of polycytidylic acid (poly C) and polyinosinic acid (poly I), joined by a 1:1 ratio of their phosphodiester linkages. It is used in research as an immunostimulant, particularly to induce the production of interferons and other cytokines, and to activate immune cells such as natural killer (NK) cells, dendritic cells, and macrophages. Poly(I):C has been studied for its potential use in cancer immunotherapy and as a vaccine adjuvant. It can also induce innate antiviral responses and has been explored as an antiviral agent itself.

Dopamine is a type of neurotransmitter, which is a chemical messenger that transmits signals in the brain and nervous system. It plays several important roles in the body, including:

* Regulation of movement and coordination
* Modulation of mood and motivation
* Control of the reward and pleasure centers of the brain
* Regulation of muscle tone
* Involvement in memory and attention

Dopamine is produced in several areas of the brain, including the substantia nigra and the ventral tegmental area. It is released by neurons (nerve cells) and binds to specific receptors on other neurons, where it can either excite or inhibit their activity.

Abnormalities in dopamine signaling have been implicated in several neurological and psychiatric conditions, including Parkinson's disease, schizophrenia, and addiction.

I'm sorry for any confusion, but "Poly G" does not have a specific medical definition. The term "poly" is a prefix in medicine that means many or multiple, and "G" could potentially refer to a variety of things (such as a genetic locus or a grade), but without more context it's impossible to provide an accurate medical definition for this term.

If you have a specific medical question or concern, I would be happy to try to help you with that. Please provide some additional context or clarify what you mean by "Poly G."

Poly(ADP-ribose) (PAR) is not strictly referred to as "Poly Adenosine Diphosphate Ribose" in the medical or biochemical context, although the term ADP-ribose is a component of it. Poly(ADP-ribose) is a polymer of ADP-ribose units that are synthesized by enzymes called poly(ADP-ribose) polymerases (PARPs).

Poly(ADP-ribosyl)ation, the process of adding PAR polymers to target proteins, plays a crucial role in various cellular processes such as DNA repair, genomic stability, and cell death. In medical research, alterations in PAR metabolism have been implicated in several diseases, including cancer and neurodegenerative disorders. Therefore, understanding the function and regulation of poly(ADP-ribose) is of significant interest in biomedical sciences.

I'm sorry for any confusion, but "Poly T" is not a standard medical term that I am aware of. It is possible that it could be an abbreviation or shorthand used in a specific context, such as a medical report or research study. If you have more information about where this term came from or how it is being used, I may be able to provide a more accurate and helpful response.

However, if "Poly T" is meant to refer to polycythemia vera, which is a type of blood cancer characterized by an overproduction of red blood cells, then here's the definition:

Polycythemia Vera (PV) is a myeloproliferative neoplasm (MPN), a type of blood cancer that affects the bone marrow. In PV, the body produces too many red blood cells, white blood cells, and platelets, leading to an increased risk of blood clots, enlargement of the spleen, and other complications. The exact cause of PV is not known, but it is thought to be related to genetic mutations that affect the regulation of cell growth and division in the bone marrow. Symptoms of PV can include fatigue, headache, dizziness, shortness of breath, and a bluish or reddish tint to the skin. Treatment for PV typically involves medications to reduce the production of blood cells, as well as regular monitoring to manage complications and prevent progression of the disease.

I'm sorry for any confusion, but "Poly I" is not a recognized medical term or abbreviation in the context of human diseases or conditions. It's possible that there might be a typo or misunderstanding in your query. If you intended to ask about a specific medical condition, medication, or concept, please provide the full and correct term so I can give you an accurate and helpful response.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Dopamine antagonists are a class of drugs that block the action of dopamine, a neurotransmitter in the brain associated with various functions including movement, motivation, and emotion. These drugs work by binding to dopamine receptors and preventing dopamine from attaching to them, which can help to reduce the symptoms of certain medical conditions such as schizophrenia, bipolar disorder, and gastroesophageal reflux disease (GERD).

There are several types of dopamine antagonists, including:

1. Typical antipsychotics: These drugs are primarily used to treat psychosis, including schizophrenia and delusional disorders. Examples include haloperidol, chlorpromazine, and fluphenazine.
2. Atypical antipsychotics: These drugs are also used to treat psychosis but have fewer side effects than typical antipsychotics. They may also be used to treat bipolar disorder and depression. Examples include risperidone, olanzapine, and quetiapine.
3. Antiemetics: These drugs are used to treat nausea and vomiting. Examples include metoclopramide and prochlorperazine.
4. Dopamine agonists: While not technically dopamine antagonists, these drugs work by stimulating dopamine receptors and can be used to treat conditions such as Parkinson's disease. However, they can also have the opposite effect and block dopamine receptors in high doses, making them functionally similar to dopamine antagonists.

Common side effects of dopamine antagonists include sedation, weight gain, and movement disorders such as tardive dyskinesia. It's important to use these drugs under the close supervision of a healthcare provider to monitor for side effects and adjust the dosage as needed.

Polyribonucleotides are long, chain-like molecules composed of multiple ribonucleotide monomers. Ribonucleotides themselves consist of a ribose sugar, a phosphate group, and one of the four nitrogenous bases: adenine (A), uracil (U), guanine (G), or cytosine (C). In polyribonucleotides, these ribonucleotide monomers are linked together by ester bonds between the phosphate group of one monomer and the ribose sugar of another.

These molecules play crucial roles in various biological processes, such as encoding genetic information, regulating gene expression, catalyzing chemical reactions, and serving as structural components within cells. Some examples of polyribonucleotides include messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear RNA (snRNA).

In a medical context, polyribonucleotides may be used in therapeutic applications, such as gene therapy or vaccines. For instance, synthetic mRNAs can be designed to encode specific proteins, which can then be introduced into cells to stimulate the production of those proteins for various purposes, including immunization against infectious diseases or cancer treatment.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

3,4-Dihydroxyphenylacetic Acid (3,4-DOPAC) is a major metabolite of dopamine, which is a neurotransmitter in the brain. Dopamine is metabolized by the enzyme monoamine oxidase to form dihydroxyphenylacetaldehyde, which is then further metabolized to 3,4-DOPAC by the enzyme aldehyde dehydrogenase.

3,4-DOPAC is found in the urine and can be used as a marker for dopamine turnover in the brain. Changes in the levels of 3,4-DOPAC have been associated with various neurological disorders such as Parkinson's disease and schizophrenia. Additionally, 3,4-DOPAC has been shown to have antioxidant properties and may play a role in protecting against oxidative stress in the brain.

Dopamine plasma membrane transport proteins, also known as dopamine transporters (DAT), are a type of protein found in the cell membrane that play a crucial role in the regulation of dopamine neurotransmission. They are responsible for the reuptake of dopamine from the synaptic cleft back into the presynaptic neuron, thereby terminating the signal transduction of dopamine and regulating the amount of dopamine available for further release.

Dopamine transporters belong to the family of sodium-dependent neurotransmitter transporters and are encoded by the SLC6A3 gene in humans. Abnormalities in dopamine transporter function have been implicated in several neurological and psychiatric disorders, including Parkinson's disease, attention deficit hyperactivity disorder (ADHD), and substance use disorders.

In summary, dopamine plasma membrane transport proteins are essential for the regulation of dopamine neurotransmission by mediating the reuptake of dopamine from the synaptic cleft back into the presynaptic neuron.

The corpus striatum is a part of the brain that plays a crucial role in movement, learning, and cognition. It consists of two structures called the caudate nucleus and the putamen, which are surrounded by the external and internal segments of the globus pallidus. Together, these structures form the basal ganglia, a group of interconnected neurons that help regulate voluntary movement.

The corpus striatum receives input from various parts of the brain, including the cerebral cortex, thalamus, and other brainstem nuclei. It processes this information and sends output to the globus pallidus and substantia nigra, which then project to the thalamus and back to the cerebral cortex. This feedback loop helps coordinate and fine-tune movements, allowing for smooth and coordinated actions.

Damage to the corpus striatum can result in movement disorders such as Parkinson's disease, Huntington's disease, and dystonia. These conditions are characterized by abnormal involuntary movements, muscle stiffness, and difficulty initiating or controlling voluntary movements.

Dopamine D2 receptor is a type of metabotropic G protein-coupled receptor that binds to the neurotransmitter dopamine. It is one of five subtypes of dopamine receptors (D1-D5) and is encoded by the gene DRD2. The activation of D2 receptors leads to a decrease in the activity of adenylyl cyclase, which results in reduced levels of cAMP and modulation of ion channels.

D2 receptors are widely distributed throughout the central nervous system (CNS) and play important roles in various physiological functions, including motor control, reward processing, emotion regulation, and cognition. They are also involved in several neurological and psychiatric disorders, such as Parkinson's disease, schizophrenia, drug addiction, and Tourette syndrome.

D2 receptors have two main subtypes: D2 short (D2S) and D2 long (D2L). The D2S subtype is primarily located in the presynaptic terminals and functions as an autoreceptor that regulates dopamine release, while the D2L subtype is mainly found in the postsynaptic neurons and modulates intracellular signaling pathways.

Antipsychotic drugs, which are used to treat schizophrenia and other psychiatric disorders, work by blocking D2 receptors. However, excessive blockade of these receptors can lead to side effects such as extrapyramidal symptoms (EPS), tardive dyskinesia, and hyperprolactinemia. Therefore, the development of drugs that selectively target specific subtypes of dopamine receptors is an active area of research in the field of neuropsychopharmacology.

Polynucleotide adenylyltransferase is not a medical term per se, but rather a biological term used to describe an enzyme that catalyzes the addition of adenine residues to the 3'-hydroxyl end of polynucleotides. In other words, these enzymes transfer AMP (adenosine monophosphate) molecules to the ends of DNA or RNA strands, creating a chain of adenine nucleotides.

One of the most well-known examples of this class of enzyme is terminal transferase, which is often used in research settings for various molecular biology techniques such as adding homopolymeric tails to DNA molecules. It's worth noting that while these enzymes have important applications in scientific research, they are not typically associated with medical diagnoses or treatments.

Dopamine agonists are a class of medications that mimic the action of dopamine, a neurotransmitter in the brain that regulates movement, emotion, motivation, and reinforcement of rewarding behaviors. These medications bind to dopamine receptors in the brain and activate them, leading to an increase in dopaminergic activity.

Dopamine agonists are used primarily to treat Parkinson's disease, a neurological disorder characterized by motor symptoms such as tremors, rigidity, bradykinesia (slowness of movement), and postural instability. By increasing dopaminergic activity in the brain, dopamine agonists can help alleviate some of these symptoms.

Examples of dopamine agonists include:

1. Pramipexole (Mirapex)
2. Ropinirole (Requip)
3. Rotigotine (Neupro)
4. Apomorphine (Apokyn)

Dopamine agonists may also be used off-label to treat other conditions, such as restless legs syndrome or certain types of dopamine-responsive dystonia. However, these medications can have significant side effects, including nausea, dizziness, orthostatic hypotension, compulsive behaviors (such as gambling, shopping, or sexual addiction), and hallucinations. Therefore, they should be used with caution and under the close supervision of a healthcare provider.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Dopaminergic neurons are a type of specialized brain cells that produce, synthesize, and release the neurotransmitter dopamine. These neurons play crucial roles in various brain functions, including motivation, reward processing, motor control, and cognition. They are primarily located in several regions of the midbrain, such as the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA).

Dopaminergic neurons have a unique physiology characterized by their ability to generate slow, irregular electrical signals called pacemaker activity. This distinctive firing pattern allows dopamine to be released in a controlled manner, which is essential for proper brain function.

The degeneration and loss of dopaminergic neurons in the SNc are associated with Parkinson's disease, a neurodegenerative disorder characterized by motor impairments such as tremors, rigidity, and bradykinesia (slowness of movement). The reduction in dopamine levels caused by this degeneration leads to an imbalance in the brain's neural circuitry, resulting in the characteristic symptoms of Parkinson's disease.

The nucleus accumbens is a part of the brain that is located in the ventral striatum, which is a key region of the reward circuitry. It is made up of two subregions: the shell and the core. The nucleus accumbens receives inputs from various sources, including the prefrontal cortex, amygdala, and hippocampus, and sends outputs to the ventral pallidum and other areas.

The nucleus accumbens is involved in reward processing, motivation, reinforcement learning, and addiction. It plays a crucial role in the release of the neurotransmitter dopamine, which is associated with pleasure and reinforcement. Dysfunction in the nucleus accumbens has been implicated in various neurological and psychiatric conditions, including substance use disorders, depression, and obsessive-compulsive disorder.

Polynucleotides are long, chain-like molecules composed of repeating units called nucleotides. Each nucleotide contains a sugar molecule (deoxyribose in DNA or ribose in RNA), a phosphate group, and a nitrogenous base (adenine, guanine, cytosine, thymine in DNA or adenine, guanine, uracil, cytosine in RNA). In DNA, the nucleotides are joined together by phosphodiester bonds between the sugar of one nucleotide and the phosphate group of the next, creating a double helix structure. In RNA, the nucleotides are also joined by phosphodiester bonds but form a single strand. Polynucleotides play crucial roles in storing and transmitting genetic information within cells.

Microdialysis is a minimally invasive technique used in clinical and research settings to continuously monitor the concentration of various chemicals, such as neurotransmitters, drugs, or metabolites, in biological fluids (e.g., extracellular fluid of tissues, blood, or cerebrospinal fluid). This method involves inserting a small, flexible catheter with a semipermeable membrane into the region of interest. A physiological solution is continuously perfused through the catheter, allowing molecules to diffuse across the membrane based on their concentration gradient. The dialysate that exits the catheter is then collected and analyzed for target compounds using various analytical techniques (e.g., high-performance liquid chromatography, mass spectrometry).

In summary, microdialysis is a valuable tool for monitoring real-time changes in chemical concentrations within biological systems, enabling better understanding of physiological processes or pharmacokinetic properties of drugs.

Dopamine agents are medications that act on dopamine receptors in the brain. Dopamine is a neurotransmitter, a chemical messenger that transmits signals in the brain and other areas of the body. It plays important roles in many functions, including movement, motivation, emotion, and cognition.

Dopamine agents can be classified into several categories based on their mechanism of action:

1. Dopamine agonists: These medications bind to dopamine receptors and mimic the effects of dopamine. They are used to treat conditions such as Parkinson's disease, restless legs syndrome, and certain types of dopamine-responsive dystonia. Examples include pramipexole, ropinirole, and rotigotine.
2. Dopamine precursors: These medications provide the building blocks for the body to produce dopamine. Levodopa is a commonly used dopamine precursor that is converted to dopamine in the brain. It is often used in combination with carbidopa, which helps to prevent levodopa from being broken down before it reaches the brain.
3. Dopamine antagonists: These medications block the action of dopamine at its receptors. They are used to treat conditions such as schizophrenia and certain types of nausea and vomiting. Examples include haloperidol, risperidone, and metoclopramide.
4. Dopamine reuptake inhibitors: These medications increase the amount of dopamine available in the synapse (the space between two neurons) by preventing its reuptake into the presynaptic neuron. They are used to treat conditions such as attention deficit hyperactivity disorder (ADHD) and depression. Examples include bupropion and nomifensine.
5. Dopamine release inhibitors: These medications prevent the release of dopamine from presynaptic neurons. They are used to treat conditions such as Tourette's syndrome and certain types of chronic pain. Examples include tetrabenazine and deutetrabenazine.

It is important to note that dopamine agents can have significant side effects, including addiction, movement disorders, and psychiatric symptoms. Therefore, they should be used under the close supervision of a healthcare provider.

Dopamine receptors are a type of G protein-coupled receptor that bind to and respond to the neurotransmitter dopamine. There are five subtypes of dopamine receptors (D1-D5), which are classified into two families based on their structure and function: D1-like (D1 and D5) and D2-like (D2, D3, and D4).

Dopamine receptors play a crucial role in various physiological processes, including movement, motivation, reward, cognition, emotion, and neuroendocrine regulation. They are widely distributed throughout the central nervous system, with high concentrations found in the basal ganglia, limbic system, and cortex.

Dysfunction of dopamine receptors has been implicated in several neurological and psychiatric disorders, such as Parkinson's disease, schizophrenia, attention deficit hyperactivity disorder (ADHD), drug addiction, and depression. Therefore, drugs targeting dopamine receptors have been developed for the treatment of these conditions.

I'm sorry for any confusion, but "Polyesters" is not a medical term. It is a term used in materials science and textile industry to describe a type of synthetic fiber made from polymers characterized by the presence of ester groups in their main chain. If you have any questions related to medical terminology or concepts, I'd be happy to help with those instead!

The Ventral Tegmental Area (VTA) is a collection of neurons located in the midbrain that is part of the dopamine system. It is specifically known as the A10 group and is the largest source of dopaminergic neurons in the brain. These neurons project to various regions, including the prefrontal cortex, amygdala, hippocampus, and nucleus accumbens, and are involved in reward, motivation, addiction, and various cognitive functions. The VTA also contains GABAergic and glutamatergic neurons that modulate dopamine release and have various other functions.

The Substantia Nigra is a region in the midbrain that plays a crucial role in movement control and reward processing. It is composed of two parts: the pars compacta and the pars reticulata. The pars compacta contains dopamine-producing neurons, whose loss or degeneration is associated with Parkinson's disease, leading to motor symptoms such as tremors, rigidity, and bradykinesia.

In summary, Substantia Nigra is a brain structure that contains dopamine-producing cells and is involved in movement control and reward processing. Its dysfunction or degeneration can lead to neurological disorders like Parkinson's disease.

Dopamine uptake inhibitors are a class of medications that work by blocking the reuptake of dopamine, a neurotransmitter, into the presynaptic neuron. This results in an increased concentration of dopamine in the synapse, leading to enhanced dopaminergic transmission and activity.

These drugs are used in various medical conditions where dopamine is implicated, such as depression, attention deficit hyperactivity disorder (ADHD), and neurological disorders like Parkinson's disease. They can also be used to treat substance abuse disorders, such as cocaine addiction, by blocking the reuptake of dopamine and reducing the rewarding effects of the drug.

Examples of dopamine uptake inhibitors include:

* Bupropion (Wellbutrin), which is used to treat depression and ADHD
* Methylphenidate (Ritalin, Concerta), which is used to treat ADHD
* Amantadine (Symmetrel), which is used to treat Parkinson's disease and also has antiviral properties.

It's important to note that dopamine uptake inhibitors can have side effects, including increased heart rate, blood pressure, and anxiety. They may also have the potential for abuse and dependence, particularly in individuals with a history of substance abuse. Therefore, these medications should be used under the close supervision of a healthcare provider.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Dopamine D1 receptors are a type of G protein-coupled receptor that bind to the neurotransmitter dopamine. They are classified as D1-like receptors, along with D5 receptors, and are activated by dopamine through a stimulatory G protein (Gs).

D1 receptors are widely expressed in the central nervous system, including the striatum, prefrontal cortex, hippocampus, and amygdala. They play important roles in various physiological functions, such as movement control, motivation, reward processing, working memory, and cognition.

Activation of D1 receptors leads to increased levels of intracellular cyclic adenosine monophosphate (cAMP) and activation of protein kinase A (PKA), which in turn modulate the activity of various downstream signaling pathways. Dysregulation of dopamine D1 receptor function has been implicated in several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, attention deficit hyperactivity disorder (ADHD), and drug addiction.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

The Ductus Arteriosus is a fetal blood vessel that connects the pulmonary trunk (the artery that carries blood from the heart to the lungs) and the aorta (the largest artery in the body, which carries oxygenated blood from the heart to the rest of the body). This vessel allows most of the blood from the right ventricle of the fetal heart to bypass the lungs, as the fetus receives oxygen through the placenta rather than breathing air.

After birth, with the first breaths, the blood oxygen level increases and the pressure in the lungs rises. As a result, the circulation in the newborn's body changes, and the Ductus Arteriosus is no longer needed. Within the first few days or weeks of life, this vessel usually closes spontaneously, turning into a fibrous cord called the Ligamentum Arteriosum.

Persistent Patency of the Ductus Arteriosus (PDA) occurs when the Ductus Arteriosus does not close after birth, which can lead to various complications such as heart failure and pulmonary hypertension. This condition is often seen in premature infants and may require medical intervention or surgical closure of the vessel.

The mesencephalon, also known as the midbrain, is the middle portion of the brainstem that connects the hindbrain (rhombencephalon) and the forebrain (prosencephalon). It plays a crucial role in several important functions including motor control, vision, hearing, and the regulation of consciousness and sleep-wake cycles. The mesencephalon contains several important structures such as the cerebral aqueduct, tectum, tegmentum, cerebral peduncles, and several cranial nerve nuclei (III and IV).

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

In the context of medical definitions, polymers are large molecules composed of repeating subunits called monomers. These long chains of monomers can have various structures and properties, depending on the type of monomer units and how they are linked together. In medicine, polymers are used in a wide range of applications, including drug delivery systems, medical devices, and tissue engineering scaffolds. Some examples of polymers used in medicine include polyethylene, polypropylene, polystyrene, polyvinyl chloride (PVC), and biodegradable polymers such as polylactic acid (PLA) and polycaprolactone (PCL).

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Tyrosine 3-Monooxygenase (also known as Tyrosinase or Tyrosine hydroxylase) is an enzyme that plays a crucial role in the synthesis of catecholamines, which are neurotransmitters and hormones in the body. This enzyme catalyzes the conversion of the amino acid L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by adding a hydroxyl group to the 3rd carbon atom of the tyrosine molecule.

The reaction is as follows:

L-Tyrosine + O2 + pterin (co-factor) -> L-DOPA + pterin (oxidized) + H2O

This enzyme requires molecular oxygen and a co-factor such as tetrahydrobiopterin to carry out the reaction. Tyrosine 3-Monooxygenase is found in various tissues, including the brain and adrenal glands, where it helps regulate the production of catecholamines like dopamine, norepinephrine, and epinephrine. Dysregulation of this enzyme has been implicated in several neurological disorders, such as Parkinson's disease.

Amphetamine is a central nervous system stimulant drug that works by increasing the levels of certain neurotransmitters (chemical messengers) in the brain, such as dopamine and norepinephrine. It is used medically to treat conditions such as attention deficit hyperactivity disorder (ADHD), narcolepsy, and obesity, due to its appetite-suppressing effects.

Amphetamines can be prescribed in various forms, including tablets, capsules, or liquids, and are available under several brand names, such as Adderall, Dexedrine, and Vyvanse. They are also known by their street names, such as speed, uppers, or wake-ups, and can be abused for their euphoric effects and ability to increase alertness, energy, and concentration.

Long-term use of amphetamines can lead to dependence, tolerance, and addiction, as well as serious health consequences, such as cardiovascular problems, mental health disorders, and malnutrition. It is essential to use amphetamines only under the supervision of a healthcare provider and follow their instructions carefully.

... dA).poly(dT)",. abstract = "Physical properties of the DNA duplex, poly(dA).poly(dT) differ considerably from the alternating ... dT).. AB - Physical properties of the DNA duplex, poly(dA).poly(dT) differ considerably from the alternating copolymer poly(dAT ... N2 - Physical properties of the DNA duplex, poly(dA).poly(dT) differ considerably from the alternating copolymer poly(dAT). A ... Physical properties of the DNA duplex, poly(dA).poly(dT) differ considerably from the alternating copolymer poly(dAT). A number ...
Activation of the NLRP1 inflammasome in human keratinocytes by the dsDNA mimetic poly(dA:dT) Tuesday, January 24, 2023 ...
Iyer, V; Struhl, K (June 1995). "Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic ... Struhl, Kevin (1985-12-01). "Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive ... poly(dA:dT) sequences; functionally distinct TATA elements; initiator elements; repression sequences that act upstream of and ... Struhls work on the role of chromatin in transcriptional regulation include initial descriptions of 1) a DNA sequence, poly(dA ...
Poly(dA:dT) MafB regulates NLRP3 inflammasome activation by sustaining p62 expression in ... 2023 Commun Biol. Cui H. et al. ... Poly(I:C) (LMW) / LyoVec™ Length-Dependent Modulation of B Cell Activating Factor Transcripts in Chicke... 2023 Vaccines (Basel ... Poly(I:C) (HMW) / LyoVec™ Length-Dependent Modulation of B Cell Activating Factor Transcripts in Chicke... 2023 Vaccines (Basel ...
Poly(dA:dT) Immune regulator IRF1 contributes to ZBP1-, AIM2-, RIPK1-, and NLRP12-PANopto... 2023 J Biol Chem. Sharma B.R. et ...
Barnes, T. & Korber, P. The active mechanism of nucleosome depletion by poly(dA:dT) tracts in vivo. Int. J. Mol. Sci. 22, 8233 ...
Iyer, V. & Struhl, K. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure ... Proudfoot, N. J. Ending the message: poly(A) signals then and now. Genes Dev. 25, 1770-1782 (2011). ...
... binds preferentially to 6-7 base pair poly(dA)•poly(dT) sites. ...
If possible, carrier DNAs such as poly-dA, poly-dT or poly-dA:dT should be used. Other carrier DNAs such as herring sperm DNA ... Please note that poly-dA may interfere with oligo-dT primers, and, in this case, a different carrier DNA should be used. The ... Diawara A; Drake LJ; Suswillo RR; Kihara J; Bundy DA; Scott ME; Halpenny C; Stothard JR; Prichard RK; ... Purification of total RNA, miRNA, poly A+ mRNA, DNA or protein. DNA. ...
Poly(dA:dT) tracts: major determinants of nucleosome organization. Eran Segal and Jonathan Widom. ...
CPP-3,4-epoxide was reacted with calf thymus DNA, dGp, dAp, dTp, dCp, poly dB-dC, poly dA-dT, and poly dG. Adducts were ... A similar spectra of adducts was exhibited by dGp, poly dG-dC and poly dG. dCp, dTp, and dAp formed one, two, and four adducts ... Adducts derived from either dGp, poly dG-dC, or poly dG comigrated with the DNA adducts in 3 solvent systems indicating that ...
regions reveals link to nucleosome-disfavoring poly(dA:dT) tracts.. Plant Cell,26, 102-120. ... control of next generation sequencing data. PLoS One,7, e30619.. 25. Langmead,B., Trapnell,C., Pop,M. and Salzberg,S.L. (2009) ... Variations in the expression of poly (ADP-ribose) polymerase (PARP) and special AT-rich sequence-binding protein-1 (SATB1) ... ltering of raw data, the high-quality reads were aligned to ... The dataset also contain small number of excep-. tional S/MARs ...
... poly(dA-dT)]2 or [poly(dG-dC)]2., Photochemical & photobiological sciences : Official journal of the European Photochemistry ... and [poly(dA-dT)]. 2. , Photochemical and Photobiological Sciences, 15, (8), 2016, p980-987 Journal Article, 2016 DOI ... Cao Q, Creely CM, Davies ES, Dyer J, Easun TL, Grills DC, McGovern DA, McMaster J, Pitchford J, Smith JA, Sun XZ, Kelly JM, ... J.M. Clear, J.M. Kelly, D.C. Pepper and J.G. Vos, Preparation, reactions and photoreactions of bis(bipyridyl) poly-4- ...
The novel compounds showed strong, micromolar and submicromolar affinities to all examined DNA ds-polynucleotides and poly rA- ... poly rU. The compounds studied showed selectivity towards GC-DNA base pairs over AT-DNA, which included both binding affinity ... poly dAdT-poly dAdT, poly dGdC-poly dGdC, poly dA-poly dT, poly dG-poly dC, poly rA-poly rU and poly rG-poly rC (Sigma) and ... poly dA-poly dT. 6.41. 712. poly dA-dT-poly dA-dT. 6.65. 358. ... Poly dAdT-Poly dAdT. Poly A-Poly U. 4a. 0.1. 0.2. 0.3. ,20 c. ...
Curcumin, nigericin, MSU, PMA, poly(deoxyadenylic-deoxythymidylic) acid [poly(dA:dT)], celecoxib, 3-methyladenine, and glucose ... D) LPS-primed BMDMs were treated with curcumin (40 μM) and then transfected with poly(dA:dT). IL-1β and caspase-1 activation ... D) LPS-primed BMDMs were treated with curcumin (40 μM) and then transfected with poly(dA:dT). IL-1β and caspase-1 activation ... The LPS-primed BMDMs were either infected with S. typhimurium to activate the NLRC4 inflammasome or transfected with poly(dA:dT ...
Shop for Nike Older Unisex Poly Crew Tracksuit - Black/White at littlewoods.com. Order online and spread the cost with a ... SA , SY, LD, CF, NP, HR, GL, OX, GU, PO, SL, HP, LU, AL, SG, CM, SS, RM, DA, ME, CT, TN, RH, BN, TR, PL, TQ, EX, TA, DT, BS, BA ...
Ultrapure LPS from Escherichia coli 0111:B4 and poly(dA·dT)/lyovec were purchased from Invivogen. Salmonella enterica Rabbit ... 2 μg/ml poly(dA·dT) (4 h) and S. enterica sv. typhimurium (m.o.we. = 10 1. ...
... poly(dA:dT) or flagellin for 30 min. c . ELISA of IL-1beta in supernatants from BMDMs silenced of ABHD5, primed with LPS for 8 ... h, and followed by stimulation with ATP, Nig., Alum, poly(dA:dT) or flagellin for 30 min. d . RT-PCR analysis of IL-1beta mRNA ...
... poly (dA-dT) and cardiolipin measured by ELISA. Patients with the highest levels of anti-DNA antibody by the Farr assay did not ... poly dG ̇ poly dC, poly (dA-dT) and cardiolipin measured by ELISA. Patients with the highest levels of anti-DNA antibody by the ...
Get supplier listing of poly and equal product ... Product search for: poly. Categories based on poly: acetal ...
Poly (dl-lactide-co-glycolide) 75:25 (PLGA; average molecular weight, 90,000-126,000 Da; Sigma, St. Louis, MO) and PTFE ... A dial tension gauge (DT-50; Teclock, Okaya, Japan) was used to precisely control the amount of force applied. The noose suture ... Poly (lactide-co-glycolide; PLGA) copolymers have been used for site-specific (local, including the eyes) and systemic long- ... In vitro cumulative release profile of paclitaxel from paclitaxel-poly (dl-lactide-co-glycolide) 75:25 (PLGA)-coated ...
Poly DA-dT * Protein Binding * Rats Identity. PubMed Central ID * 1069988 Digital Object Identifier (DOI) * 10.1073/pnas.73.12. ... and causes helix-coil transition of synthetic poly[d(A-T)-d(A-T)] at 25 degrees, as indicated by the increase in absorbance of ...
SREX:0.04; r:1; SDM_:48.461; DA_:7.938; B_:14; m0:0.322; SRI:4.13; ALPHA_:15; 2B_:28; C_conv:31000; Prod_Type3:ACBB_SR_MM_DT; ... Continental Elite Poly-V Belt 4060355. GRS rpm:12000; D_:52; ra:1; Fw:31.5; da:30; DI_:31.5; r1:0.6; DA_:7.5; Prod_Type3:CRB_SR ... Serpentine Belt-Poly-V Continental Elite 4081265F SPECIFICATIONS. *. Various Continental Poly V Belt types and AMERICAN BEARING ... Continental Elite 4061373F Poly-V/Serpentine Belt .... Continental Elite Poly-V / Serpentine Belts take performance to the next ...
SREX:0.04; r:1; SDM_:48.461; DA_:7.938; B_:14; m0:0.322; SRI:4.13; ALPHA_:15; 2B_:28; C_conv:31000; Prod_Type3:ACBB_SR_MM_DT; ... Continental Elite Poly-V Belt 4060355. GRS rpm:12000; D_:52; ra:1; Fw:31.5; da:30; DI_:31.5; r1:0.6; DA_:7.5; Prod_Type3:CRB_SR ... Continental Elite Poly-V Belt 4060798 SPECIFICATIONS. *. Continental Elite Poly-V Belt 4060798 AMERICAN BEARING MFG.CORP. ... Continental Elite 4061373F Poly-V/Serpentine Belt .... Continental Elite Poly-V / Serpentine Belts take performance to the next ...
... or poly(dA:dT). The effect was relatively specific in that Vpx-associated suppression of soluble IFN-β production, of mRNA ... dA:dT). Lipopolysaccharide (LPS), the synthetic double-stranded RNA poly(I:C), and the synthetic double-stranded DNA, poly(dA: ... Since LPS, poly(I:C), and poly(dA:dT) all elicited type 1 IFN in MDDCs, the ability of each to inhibit HIV-1 transduction was ... MDDCs were treated for 24 h with either LPS, poly(I:C), or poly(dA:dT) and then challenged with VSV G-pseudotyped HIV-1-GFP ...
The base conformation of the poly(dA)[PNA-T8]2 triplex is very similar to that of the conventional poly(dA)[poly(dT)]2 triplex. ... Instead triplex stretches seem to form surrounded by flexible parts of single stranded poly(dA). Upon approaching the ... poly(dA), was studied by flow linear dichroism (LD) and circular dichroism (CD) spectroscopy. Whereas the single stranded DNA, ... The base conformation of the poly(dA)[PNA-T8]2 triplex is very similar to that of the conventional poly(dA)[poly(dT)]2 triplex ...
The activities of the DNA polymerases of calf thymus in synthesizing primed M13 phage DNA and primed poly(dA).(dT)12-18 by ... Incorporation of trifluorothymidine triphosphate in the presence of poly(dA).(dT)16-18 had a pattern similar to that of dTTP, ... dA).(dT)16-18 as a primed template for DNA synthesis. ... of DNA polymerases has been developed based on the use of poly( ...
Is DADT a road where there are no signs?) Remember that polyamory can exist without kink or queerness, but it also is one of ... Poly Orientation Session for Women. What Ive observed is that women come to polyamory with different needs, and so Im ... Route 1: Poly. This is about multiple relationships, but it is seen as kinky because it is distinguished as being ... soulmate-seeking-liars and single dudes are fine with polyamory as long as its defined as either them dating lots of women or ...

No FAQ available that match "poly da dt"

No images available that match "poly da dt"