Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation.
The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS.
The number of PLATELETS per unit volume in a sample of venous BLOOD.
The process whereby PLATELETS adhere to something other than platelets, e.g., COLLAGEN; BASEMENT MEMBRANE; MICROFIBRILS; or other "foreign" surfaces.
Surface glycoproteins on platelets which have a key role in hemostasis and thrombosis such as platelet adhesion and aggregation. Many of these are receptors.
A CXC chemokine that is found in the alpha granules of PLATELETS. The protein has a molecular size of 7800 kDa and can occur as a monomer, a dimer or a tetramer depending upon its concentration in solution. Platelet factor 4 has a high affinity for HEPARIN and is often found complexed with GLYCOPROTEINS such as PROTEIN C.
The transfer of blood platelets from a donor to a recipient or reinfusion to the donor.
A phospholipid derivative formed by PLATELETS; BASOPHILS; NEUTROPHILS; MONOCYTES; and MACROPHAGES. It is a potent platelet aggregating agent and inducer of systemic anaphylactic symptoms, including HYPOTENSION; THROMBOCYTOPENIA; NEUTROPENIA; and BRONCHOCONSTRICTION.
Laboratory examination used to monitor and evaluate platelet function in a patient's blood.
Platelet membrane glycoprotein complex important for platelet adhesion and aggregation. It is an integrin complex containing INTEGRIN ALPHAIIB and INTEGRIN BETA3 which recognizes the arginine-glycine-aspartic acid (RGD) sequence present on several adhesive proteins. As such, it is a receptor for FIBRINOGEN; VON WILLEBRAND FACTOR; FIBRONECTIN; VITRONECTIN; and THROMBOSPONDINS. A deficiency of GPIIb-IIIa results in GLANZMANN THROMBASTHENIA.
Platelet membrane glycoprotein complex essential for normal platelet adhesion and clot formation at sites of vascular injury. It is composed of three polypeptides, GPIb alpha, GPIb beta, and GPIX. Glycoprotein Ib functions as a receptor for von Willebrand factor and for thrombin. Congenital deficiency of the GPIb-IX complex results in Bernard-Soulier syndrome. The platelet glycoprotein GPV associates with GPIb-IX and is also absent in Bernard-Soulier syndrome.
An enzyme formed from PROTHROMBIN that converts FIBRINOGEN to FIBRIN.
Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position.
Human alloantigens expressed only on platelets, specifically on platelet membrane glycoproteins. These platelet-specific antigens are immunogenic and can result in pathological reactions to transfusion therapy.
A subnormal level of BLOOD PLATELETS.
Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products.
Cell adhesion molecule and CD antigen that mediates the adhesion of neutrophils and monocytes to activated platelets and endothelial cells.
Very large BONE MARROW CELLS which release mature BLOOD PLATELETS.
Duration of blood flow after skin puncture. This test is used as a measure of capillary and platelet function.
A high-molecular-weight plasma protein, produced by endothelial cells and megakaryocytes, that is part of the factor VIII/von Willebrand factor complex. The von Willebrand factor has receptors for collagen, platelets, and ristocetin activity as well as the immunologically distinct antigenic determinants. It functions in adhesion of platelets to collagen and hemostatic plug formation. The prolonged bleeding time in VON WILLEBRAND DISEASES is due to the deficiency of this factor.
Formation and development of a thrombus or blood clot in the blood vessel.
Platelet membrane glycoprotein IIb is an integrin alpha subunit that heterodimerizes with INTEGRIN BETA3 to form PLATELET GLYCOPROTEIN GPIIB-IIIA COMPLEX. It is synthesized as a single polypeptide chain which is then postranslationally cleaved and processed into two disulfide-linked subunits of approximately 18 and 110 kDa in size.
A phospholipid from the platelet membrane that contributes to the blood clotting cascade by forming a phospholipid-protein complex (THROMBOPLASTIN) which serves as a cofactor with FACTOR VIIA to activate FACTOR X in the extrinsic pathway of BLOOD COAGULATION.
An unstable intermediate between the prostaglandin endoperoxides and thromboxane B2. The compound has a bicyclic oxaneoxetane structure. It is a potent inducer of platelet aggregation and causes vasoconstriction. It is the principal component of rabbit aorta contracting substance (RCS).
The prototypical analgesic used in the treatment of mild to moderate pain. It has anti-inflammatory and antipyretic properties and acts as an inhibitor of cyclooxygenase which results in the inhibition of the biosynthesis of prostaglandins. Aspirin also inhibits platelet aggregation and is used in the prevention of arterial and venous thrombosis. (From Martindale, The Extra Pharmacopoeia, 30th ed, p5)
A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH).
A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator.
The process which spontaneously arrests the flow of BLOOD from vessels carrying blood under pressure. It is accomplished by contraction of the vessels, adhesion and aggregation of formed blood elements (eg. ERYTHROCYTE AGGREGATION), and the process of BLOOD COAGULATION.
The process of the interaction of BLOOD COAGULATION FACTORS that results in an insoluble FIBRIN clot.
A subclass of purinergic P2Y receptors that have a preference for ADP binding and are coupled to GTP-BINDING PROTEIN ALPHA SUBUNIT, GI. The P2Y12 purinergic receptors are found in PLATELETS where they play an important role regulating PLATELET ACTIVATION.
Disorder characterized by a decrease or lack of platelet dense bodies in which the releasable pool of adenine nucleotides and 5HT are normally stored.
An antibiotic mixture of two components, A and B, obtained from Nocardia lurida (or the same substance produced by any other means). It is no longer used clinically because of its toxicity. It causes platelet agglutination and blood coagulation and is used to assay those functions in vitro.
A congenital bleeding disorder with prolonged bleeding time, absence of aggregation of platelets in response to most agents, especially ADP, and impaired or absent clot retraction. Platelet membranes are deficient in or have a defect in the glycoprotein IIb-IIIa complex (PLATELET GLYCOPROTEIN GPIIB-IIIA COMPLEX).
The process of generating thrombocytes (BLOOD PLATELETS) from the pluripotent HEMATOPOIETIC STEM CELLS in the BONE MARROW via the MEGAKARYOCYTES. The humoral factor with thrombopoiesis-stimulating activity is designated THROMBOPOIETIN.
Any form of purpura in which the PLATELET COUNT is decreased. Many forms are thought to be caused by immunological mechanisms.
Condensed areas of cellular material that may be bounded by a membrane.
Venoms from snakes of the subfamily Crotalinae or pit vipers, found mostly in the Americas. They include the rattlesnake, cottonmouth, fer-de-lance, bushmaster, and American copperhead. Their venoms contain nontoxic proteins, cardio-, hemo-, cyto-, and neurotoxins, and many enzymes, especially phospholipases A. Many of the toxins have been characterized.
Increased numbers of platelets in the peripheral blood. (Dorland, 27th ed)
A humoral factor that stimulates the production of thrombocytes (BLOOD PLATELETS). Thrombopoietin stimulates the proliferation of bone marrow MEGAKARYOCYTES and their release of blood platelets. The process is called THROMBOPOIESIS.
Physiologically active compounds found in many organs of the body. They are formed in vivo from the prostaglandin endoperoxides and cause platelet aggregation, contraction of arteries, and other biological effects. Thromboxanes are important mediators of the actions of polyunsaturated fatty acids transformed by cyclooxygenase.
Endogenous substances, usually proteins, that are involved in the blood coagulation process.
A preparation consisting of PLATELETS concentrated in a limited volume of PLASMA. This is used in various surgical tissue regeneration procedures where the GROWTH FACTORS in the platelets enhance wound healing and regeneration.
Synthetic compounds that are analogs of the naturally occurring prostaglandin endoperoxides and that mimic their pharmacologic and physiologic activities. They are usually more stable than the naturally occurring compounds.
A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY).
Antibodies produced by a single clone of cells.
The process by which blood or its components are kept viable outside of the organism from which they are derived (i.e., kept from decay by means of a chemical agent, cooling, or a fluid substitute that mimics the natural state within the organism).
The number of LEUKOCYTES and ERYTHROCYTES per unit volume in a sample of venous BLOOD. A complete blood count (CBC) also includes measurement of the HEMOGLOBIN; HEMATOCRIT; and ERYTHROCYTE INDICES.
A familial coagulation disorder characterized by a prolonged bleeding time, unusually large platelets, and impaired prothrombin consumption.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins.
A family of proteinase-activated receptors that are specific for THROMBIN. They are found primarily on PLATELETS and on ENDOTHELIAL CELLS. Activation of thrombin receptors occurs through the proteolytic action of THROMBIN, which cleaves the N-terminal peptide from the receptor to reveal a new N-terminal peptide that is a cryptic ligand for the receptor. The receptors signal through HETEROTRIMERIC GTP-BINDING PROTEINS. Small synthetic peptides that contain the unmasked N-terminal peptide sequence can also activate the receptor in the absence of proteolytic activity.
The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS.
The preparation of platelet concentrates with the return of red cells and platelet-poor plasma to the donor.
A calcium-activated enzyme that catalyzes the hydrolysis of ATP to yield AMP and orthophosphate. It can also act on ADP and other nucleoside triphosphates and diphosphates. EC 3.6.1.5.
Univalent antigen-binding fragments composed of one entire IMMUNOGLOBULIN LIGHT CHAIN and the amino terminal end of one of the IMMUNOGLOBULIN HEAVY CHAINS from the hinge region, linked to each other by disulfide bonds. Fab contains the IMMUNOGLOBULIN VARIABLE REGIONS, which are part of the antigen-binding site, and the first IMMUNOGLOBULIN CONSTANT REGIONS. This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN.
A stable prostaglandin endoperoxide analog which serves as a thromboxane mimetic. Its actions include mimicking the hydro-osmotic effect of VASOPRESSIN and activation of TYPE C PHOSPHOLIPASES. (From J Pharmacol Exp Ther 1983;224(1): 108-117; Biochem J 1984;222(1):103-110)
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
A metallic element, atomic number 49, atomic weight 114.82, symbol In. It is named from its blue line in the spectrum. (From Dorland, 28th ed)
Collagen receptors are cell surface receptors that modulate signal transduction between cells and the EXTRACELLULAR MATRIX. They are found in many cell types and are involved in the maintenance and regulation of cell shape and behavior, including PLATELET ACTIVATION and aggregation, through many different signaling pathways and differences in their affinities for collagen isoforms. Collagen receptors include discoidin domain receptors, INTEGRINS, and glycoprotein VI.
Arachidonic acids are polyunsaturated fatty acids, specifically a type of omega-6 fatty acid, that are essential for human nutrition and play crucial roles in various biological processes, including inflammation, immunity, and cell signaling. They serve as precursors to eicosanoids, which are hormone-like substances that mediate a wide range of physiological responses.
The rate dynamics in chemical or physical systems.
Cell surface proteins that bind THROMBOXANES with high affinity and trigger intracellular changes influencing the behavior of cells. Some thromboxane receptors act via the inositol phosphate and diacylglycerol second messenger systems.
The deformation and flow behavior of BLOOD and its elements i.e., PLASMA; ERYTHROCYTES; WHITE BLOOD CELLS; and BLOOD PLATELETS.
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.
Thrombocytopenia occurring in the absence of toxic exposure or a disease associated with decreased platelets. It is mediated by immune mechanisms, in most cases IMMUNOGLOBULIN G autoantibodies which attach to platelets and subsequently undergo destruction by macrophages. The disease is seen in acute (affecting children) and chronic (adult) forms.
Elements of limited time intervals, contributing to particular results or situations.
An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes.
A family of related, adhesive glycoproteins which are synthesized, secreted, and incorporated into the extracellular matrix of a variety of cells, including alpha granules of platelets following thrombin activation and endothelial cells. They interact with a number of BLOOD COAGULATION FACTORS and anticoagulant factors. Five distinct forms have been identified, thrombospondin 1, -2, -3, -4, and cartilage oligomeric matrix protein (COMP). They are involved in cell adhesion, platelet aggregation, cell proliferation, angiogenesis, tumor metastasis, VASCULAR SMOOTH MUSCLE growth, and tissue repair.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
A rare, inherited platelet disorder characterized by a selective deficiency in the number and contents of platelet alpha-granules. It is associated with THROMBOCYTOPENIA, enlarged platelets, and prolonged bleeding time.
Bleeding or escape of blood from a vessel.
Hemorrhagic and thrombotic disorders that occur as a consequence of abnormalities in blood coagulation due to a variety of factors such as COAGULATION PROTEIN DISORDERS; BLOOD PLATELET DISORDERS; BLOOD PROTEIN DISORDERS or nutritional conditions.
A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts.
Laboratory tests for evaluating the individual's clotting mechanism.
A protein derived from FIBRINOGEN in the presence of THROMBIN, which forms part of the blood clot.
An antiseptic with mild fungistatic, bacteriostatic, anthelmintic, and amebicidal action. It is also used as a reagent and metal chelator, as a carrier for radio-indium for diagnostic purposes, and its halogenated derivatives are used in addition as topical anti-infective agents and oral antiamebics.
A measure of the size of PLATELETS.
White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES).
Group of hemorrhagic disorders in which the VON WILLEBRAND FACTOR is either quantitatively or qualitatively abnormal. They are usually inherited as an autosomal dominant trait though rare kindreds are autosomal recessive. Symptoms vary depending on severity and disease type but may include prolonged bleeding time, deficiency of factor VIII, and impaired platelet adhesion.
The relationship between the dose of an administered drug and the response of the organism to the drug.
An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems.
Adherence of cells to surfaces or to other cells.
Peptides composed of between two and twelve amino acids.
A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive.
Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components.
An integrin alpha subunit that primarily combines with INTEGRIN BETA1 to form the INTEGRIN ALPHA2BETA1 heterodimer. It contains a domain which has homology to collagen-binding domains found in von Willebrand factor.
A uricosuric drug that is used to reduce the serum urate levels in gout therapy. It lacks anti-inflammatory, analgesic, and diuretic properties.
Single-chain polypeptides of about 65 amino acids (7 kDa) from LEECHES that have a neutral hydrophobic N terminus, an acidic hydrophilic C terminus, and a compact, hydrophobic core region. Recombinant hirudins lack tyr-63 sulfation and are referred to as 'desulfato-hirudins'. They form a stable non-covalent complex with ALPHA-THROMBIN, thereby abolishing its ability to cleave FIBRINOGEN.
A deficiency or absence of FIBRINOGEN in the blood.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
Cell surface receptors that are specific for THROMBOPOIETIN. They signal through interaction with JANUS KINASES such as JANUS KINASE 2.
A subclass of purinergic P2Y receptors that have a preference for ATP and ADP. The activated P2Y1 receptor signals through the G-PROTEIN-coupled activation of PHOSPHOLIPASE C and mobilization of intracellular CALCIUM.
An integrin found on fibroblasts, platelets, endothelial and epithelial cells, and lymphocytes where it functions as a receptor for COLLAGEN and LAMININ. Although originally referred to as the collagen receptor, it is one of several receptors for collagen. Ligand binding to integrin alpha2beta1 triggers a cascade of intracellular signaling, including activation of p38 MAP kinase.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Spontaneous or near spontaneous bleeding caused by a defect in clotting mechanisms (BLOOD COAGULATION DISORDERS) or another abnormality causing a structural flaw in the blood vessels (HEMOSTATIC DISORDERS).
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
Use of a thrombelastograph, which provides a continuous graphic record of the physical shape of a clot during fibrin formation and subsequent lysis.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
A thrombin receptor subtype that couples to HETEROTRIMERIC GTP-BINDING PROTEINS resulting in the activation of a variety of signaling mechanisms including decreased intracellular CYCLIC AMP, increased TYPE C PHOSPHOLIPASES and increased PHOSPHOLIPASE A2.
A subclass of eicosanoid receptors that have specificity for THROMBOXANE A2 and PROSTAGLANDIN H2.
Immunoelectrophoresis in which a second electrophoretic transport is performed on the initially separated antigen fragments into an antibody-containing medium in a direction perpendicular to the first electrophoresis.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
The sum of the weight of all the atoms in a molecule.
Blood-coagulation factor VIII. Antihemophilic factor that is part of the factor VIII/von Willebrand factor complex. Factor VIII is produced in the liver and acts in the intrinsic pathway of blood coagulation. It serves as a cofactor in factor X activation and this action is markedly enhanced by small amounts of thrombin.
Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes.
Proteins prepared by recombinant DNA technology.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.
A group of physiologically active prostaglandin endoperoxides. They are precursors in the biosynthesis of prostaglandins and thromboxanes. The most frequently encountered member of this group is the prostaglandin H2.
The residual portion of BLOOD that is left after removal of BLOOD CELLS by CENTRIFUGATION without prior BLOOD COAGULATION.
A lipoxygenase metabolite of ARACHIDONIC ACID. It is a highly selective ligand used to label mu-opioid receptors in both membranes and tissue sections. The 12-S-HETE analog has been reported to augment tumor cell metastatic potential through activation of protein kinase C. (J Pharmacol Exp Ther 1995; 274(3):1545-51; J Natl Cancer Inst 1994; 86(15):1145-51)
The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm.
Adenine nucleotides are molecules that consist of an adenine base attached to a ribose sugar and one, two, or three phosphate groups, including adenosine monophosphate (AMP), adenosine diphosphate (ADP), and adenosine triphosphate (ATP), which play crucial roles in energy transfer and signaling processes within cells.
Constituent composed of protein and phospholipid that is widely distributed in many tissues. It serves as a cofactor with factor VIIa to activate factor X in the extrinsic pathway of blood coagulation.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Cell adhesion molecules present on virtually all monocytes, platelets, and granulocytes. CD31 is highly expressed on endothelial cells and concentrated at the junctions between them.
Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY.
A dual specificity phosphatase subtype that plays a role in intracellular signal transduction by inactivating MITOGEN-ACTIVATED PROTEIN KINASES. It has specificity for EXTRACELLULAR SIGNAL-REGULATED MAP KINASES and is primarily localized to the CELL NUCLEUS.
A family of transmembrane glycoproteins (MEMBRANE GLYCOPROTEINS) consisting of noncovalent heterodimers. They interact with a wide variety of ligands including EXTRACELLULAR MATRIX PROTEINS; COMPLEMENT, and other cells, while their intracellular domains interact with the CYTOSKELETON. The integrins consist of at least three identified families: the cytoadhesin receptors(RECEPTORS, CYTOADHESIN), the leukocyte adhesion receptors (RECEPTORS, LEUKOCYTE ADHESION), and the VERY LATE ANTIGEN RECEPTORS. Each family contains a common beta-subunit (INTEGRIN BETA CHAINS) combined with one or more distinct alpha-subunits (INTEGRIN ALPHA CHAINS). These receptors participate in cell-matrix and cell-cell adhesion in many physiologically important processes, including embryological development; HEMOSTASIS; THROMBOSIS; WOUND HEALING; immune and nonimmune defense mechanisms; and oncogenic transformation.
Blood clot formation in any part of the CAROTID ARTERIES. This may produce CAROTID STENOSIS or occlusion of the vessel, leading to TRANSIENT ISCHEMIC ATTACK; CEREBRAL INFARCTION; or AMAUROSIS FUGAX.
An enzyme found predominantly in platelet microsomes. It catalyzes the conversion of PGG(2) and PGH(2) (prostaglandin endoperoxides) to thromboxane A2. EC 5.3.99.5.
An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.
Cell surface receptors that bind prostaglandins with high affinity and trigger intracellular changes which influence the behavior of cells. Prostaglandin receptor subtypes have been tentatively named according to their relative affinities for the endogenous prostaglandins. They include those which prefer prostaglandin D2 (DP receptors), prostaglandin E2 (EP1, EP2, and EP3 receptors), prostaglandin F2-alpha (FP receptors), and prostacyclin (IP receptors).
Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids.
Agents that prevent clotting.
A layer of epithelium that lines the heart, blood vessels (ENDOTHELIUM, VASCULAR), lymph vessels (ENDOTHELIUM, LYMPHATIC), and the serous cavities of the body.
The introduction of whole blood or blood component directly into the blood stream. (Dorland, 27th ed)
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
Antibodies from an individual that react with ISOANTIGENS of another individual of the same species.
Fibrinolysin or agents that convert plasminogen to FIBRINOLYSIN.
A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin.
Two small peptide chains removed from the N-terminal segment of the alpha chains of fibrinogen by the action of thrombin during the blood coagulation process. Each peptide chain contains 18 amino acid residues. In vivo, fibrinopeptide A is used as a marker to determine the rate of conversion of fibrinogen to fibrin by thrombin.
A non-steroidal anti-inflammatory agent (NSAID) that inhibits the enzyme cyclooxygenase necessary for the formation of prostaglandins and other autacoids. It also inhibits the motility of polymorphonuclear leukocytes.
A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of five named species: PAPIO URSINUS (chacma baboon), PAPIO CYNOCEPHALUS (yellow baboon), PAPIO PAPIO (western baboon), PAPIO ANUBIS (or olive baboon), and PAPIO HAMADRYAS (hamadryas baboon). Members of the Papio genus inhabit open woodland, savannahs, grassland, and rocky hill country. Some authors consider MANDRILLUS a subgenus of Papio.
Cysteine proteinase found in many tissues. Hydrolyzes a variety of endogenous proteins including NEUROPEPTIDES; CYTOSKELETAL PROTEINS; proteins from SMOOTH MUSCLE; CARDIAC MUSCLE; liver; platelets; and erythrocytes. Two subclasses having high and low calcium sensitivity are known. Removes Z-discs and M-lines from myofibrils. Activates phosphorylase kinase and cyclic nucleotide-independent protein kinase. This enzyme was formerly listed as EC 3.4.22.4.
A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Compounds that bind to and block the stimulation of PURINERGIC P2 RECEPTORS.
A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
The natural enzymatic dissolution of FIBRIN.
Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell.
Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups.
A class of cell surface receptors for PURINES that prefer ATP or ADP over ADENOSINE. P2 purinergic receptors are widespread in the periphery and in the central and peripheral nervous system.
Leukocyte differentiation antigens and major platelet membrane glycoproteins present on MONOCYTES; ENDOTHELIAL CELLS; PLATELETS; and mammary EPITHELIAL CELLS. They play major roles in CELL ADHESION; SIGNAL TRANSDUCTION; and regulation of angiogenesis. CD36 is a receptor for THROMBOSPONDINS and can act as a scavenger receptor that recognizes and transports oxidized LIPOPROTEINS and FATTY ACIDS.
A condition in newborns caused by immunity of the mother to PLATELET ALLOANTIGENS on the fetal platelets. The PLATELETS, coated with maternal ANTIBODIES, are destroyed and removed by the fetal MONONUCLEAR PHAGOCYTE SYSTEM. Affected infants may have INTRACRANIAL HEMORRHAGES.
Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system.
The quantity of volume or surface area of CELLS.
The transfer of blood components such as erythrocytes, leukocytes, platelets, and plasma from a donor to a recipient or back to the donor. This process differs from the procedures undertaken in PLASMAPHERESIS and types of CYTAPHERESIS; (PLATELETPHERESIS and LEUKAPHERESIS) where, following the removal of plasma or the specific cell components, the remainder is transfused back to the donor.
An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH.
DITERPENES with three LACTONES and a unique tert-butyl group, which are found in GINKGO plants along with BILOBALIDES.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
Hydrazines are organic compounds containing the functional group R-NH-NH2, where R represents an organic group, and are used in pharmaceuticals, agrochemicals, and rocket fuels, but can be highly toxic and carcinogenic with potential for environmental damage.
The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements.
Surgical procedure involving either partial or entire removal of the spleen.
Ubiquitously-expressed tetraspanin proteins that are found in late ENDOSOMES and LYSOSOMES and have been implicated in intracellular transport of proteins.
Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed)
Isotopes that exhibit radioactivity and undergo radioactive decay. (From Grant & Hackh's Chemical Dictionary, 5th ed & McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells.
Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis.
An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters.
Clotting time of PLASMA recalcified in the presence of excess TISSUE THROMBOPLASTIN. Factors measured are FIBRINOGEN; PROTHROMBIN; FACTOR V; FACTOR VII; and FACTOR X. It is used for monitoring anticoagulant therapy with COUMARINS.
Precursors in the biosynthesis of prostaglandins and thromboxanes from arachidonic acid. They are physiologically active compounds, having effect on vascular and airway smooth muscles, platelet aggregation, etc.
A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes.
Agents that cause clotting.
A disorder characterized by procoagulant substances entering the general circulation causing a systemic thrombotic process. The activation of the clotting mechanism may arise from any of a number of disorders. A majority of the patients manifest skin lesions, sometimes leading to PURPURA FULMINANS.
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
Specific molecular sites on the surface of various cells, including B-lymphocytes and macrophages, that combine with IMMUNOGLOBULIN Gs. Three subclasses exist: Fc gamma RI (the CD64 antigen, a low affinity receptor), Fc gamma RII (the CD32 antigen, a high affinity receptor), and Fc gamma RIII (the CD16 antigen, a low affinity receptor).
A plasma protein that is the inactive precursor of thrombin. It is converted to thrombin by a prothrombin activator complex consisting of factor Xa, factor V, phospholipid, and calcium ions. Deficiency of prothrombin leads to hypoprothrombinemia.
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
The volume of packed RED BLOOD CELLS in a blood specimen. The volume is measured by centrifugation in a tube with graduated markings, or with automated blood cell counters. It is an indicator of erythrocyte status in disease. For example, ANEMIA shows a low value; POLYCYTHEMIA, a high value.
Unstable isotopes of chromium that decay or disintegrate emitting radiation. Cr atoms with atomic weights of 46-49, 51, 55, and 56 are radioactive chromium isotopes.
The study of the deformation and flow of matter, usually liquids or fluids, and of the plastic flow of solids. The concept covers consistency, dilatancy, liquefaction, resistance to flow, shearing, thixotrophy, and VISCOSITY.
Serum proteins with an electrophoretic mobility that falls between ALPHA-GLOBULINS and GAMMA-GLOBULINS.
A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP.
Venoms from SNAKES of the viperid family. They tend to be less toxic than elapid or hydrophid venoms and act mainly on the vascular system, interfering with coagulation and capillary membrane integrity and are highly cytotoxic. They contain large amounts of several enzymes, other factors, and some toxins.
An eicosanoid, derived from the cyclooxygenase pathway of arachidonic acid metabolism. It is a stable and synthetic analog of EPOPROSTENOL, but with a longer half-life than the parent compound. Its actions are similar to prostacyclin. Iloprost produces vasodilation and inhibits platelet aggregation.
A clinical syndrome characterized by repeated spontaneous hemorrhages and a remarkable increase in the number of circulating platelets.
The parent cells that give rise to cells in the MEGAKARYOCYTE lineage, and ultimately BLOOD PLATELETS.
Compounds or agents that combine with cyclooxygenase (PROSTAGLANDIN-ENDOPEROXIDE SYNTHASES) and thereby prevent its substrate-enzyme combination with arachidonic acid and the formation of eicosanoids, prostaglandins, and thromboxanes.
Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to a serine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and serine and 2 moles of fatty acids.
Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY).
Coagulant substances inhibiting the anticoagulant action of heparin.
Coagulation of blood in any of the CORONARY VESSELS. The presence of a blood clot (THROMBUS) often leads to MYOCARDIAL INFARCTION.
The time required for the appearance of FIBRIN strands following the mixing of PLASMA with phospholipid platelet substitute (e.g., crude cephalins, soybean phosphatides). It is a test of the intrinsic pathway (factors VIII, IX, XI, and XII) and the common pathway (fibrinogen, prothrombin, factors V and X) of BLOOD COAGULATION. It is used as a screening test and to monitor HEPARIN therapy.
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
Phospholipases that hydrolyze the acyl group attached to the 2-position of PHOSPHOGLYCERIDES.
The phenomenon by which dissociated cells intermixed in vitro tend to group themselves with cells of their own type.
A class of enzymes that catalyze the hydrolysis of phosphoglycerides or glycerophosphatidates. EC 3.1.-.
An enzyme that catalyzes the oxidation of arachidonic acid to yield 12-hydroperoxyarachidonate (12-HPETE) which is itself rapidly converted by a peroxidase to 12-hydroxy-5,8,10,14-eicosatetraenoate (12-HETE). The 12-hydroperoxides are preferentially formed in PLATELETS.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Phosphoproteins are proteins that have been post-translationally modified with the addition of a phosphate group, usually on serine, threonine or tyrosine residues, which can play a role in their regulation, function, interaction with other molecules, and localization within the cell.
Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components.
Unstable isotopes of indium that decay or disintegrate emitting radiation. In atoms with atomic weights 106-112, 113m, 114, and 116-124 are radioactive indium isotopes.

Association of the inflammatory state in active juvenile rheumatoid arthritis with hypo-high-density lipoproteinemia and reduced lipoprotein-associated platelet-activating factor acetylhydrolase activity. (1/1985)

OBJECTIVE: To investigate the relationship between the quantitative and qualitative abnormalities of apolipoprotein B (Apo B)- and Apo A-I-containing lipoproteins and between lipoprotein-associated platelet-activating factor acetylhydrolase (PAF-AH) activity in patients with juvenile rheumatoid arthritis (JRA) as a function of the inflammatory state. METHODS: Twenty-six JRA patients and 22 age- and sex-matched control subjects with normal lipid levels participated in the study. Fourteen patients had active disease, and 12 had inactive disease. Plasma lipoproteins were fractionated by gradient ultracentrifugation into 9 subfractions, and their chemical composition and mass were determined. The PAF-AH activity associated with lipoprotein subfractions and the activity in plasma were also measured. RESULTS: Patients with active JRA had significantly lower plasma total cholesterol and high-density lipoprotein (HDL) cholesterol levels as compared with controls, due to the decrease in the mass of both the HDL2 and HDL3 subfractions. Patients with active JRA also had higher plasma triglyceride levels, mainly due to the higher triglyceride content of the very low-density lipoprotein plus the intermediate-density lipoprotein subfraction. The plasma PAF-AH activity in patients with active JRA was lower than that in controls, mainly due to the decrease in PAF-AH activity associated with the intermediate and dense low-density lipoprotein subclasses. The lipid abnormalities and the reduction in plasma PAF-AH activity were significantly correlated with plasma C-reactive protein levels and were not observed in patients with inactive JRA. CONCLUSION: This is the first study to show that patients with active JRA exhibit low levels of HDL2 and HDL3 and are deficient in plasma PAF-AH activity. These alterations suggest that active JRA is associated with partial loss of the antiinflammatory activity of plasma Apo B- and Apo A-I-containing lipoproteins.  (+info)

Interleukin-12 is synthesized by mesangial cells and stimulates platelet-activating factor synthesis, cytoskeletal reorganization, and cell shape change. (2/1985)

Preliminary studies indicate the involvement of interleukin (IL)-12 in experimental renal pathology. In the present study, we evaluated whether cultured glomerular mesangial cells are able to produce IL-12 and whether IL-12 may regulate some of their functions, including the cytoskeletal reorganization, the change in cell shape, and the production of platelet-activating factor (PAF). The results obtained indicate that pro-inflammatory stimuli, such as tumor necrosis factor-alpha and bacterial polysaccharides, induce the expression of IL-12 mRNA and the synthesis of the protein by cultured mesangial cells. Moreover, cultured mesangial cells were shown to bind IL-12 and to express the human low-affinity IL-12 beta1-chain receptor. When challenged with IL-12, mesangial cells produced PAF in a dose- and time-dependent manner and superoxide anions. No production of tumor necrosis factor-alpha and IL-8 was observed. Moreover, we demonstrate that IL-12 induced a delayed and sustained shape change of mesangial cells that reached its maximum between 90 and 120 minutes of incubation. The changes in cell shape occurred concomitantly with cytoskeletal rearrangements and may be consistent with cell contraction. As IL-12-dependent shape change of mesangial cells was concomitant with the synthesis of PAF, which is known to promote mesangial cell contraction, we investigated the role of PAF using two chemically different PAF receptor antagonists. Both antagonists inhibited almost completely the cell shape change induced by IL-12, whereas they were ineffective on angiotensin-II-induced cell shape change. In conclusion, our results suggest that mesangial cells can either produce IL-12 or be stimulated by this cytokine to synthesize PAF and to undergo shape changes compatible with cell contraction.  (+info)

Glutamate receptor signaling interplay modulates stress-sensitive mitogen-activated protein kinases and neuronal cell death. (3/1985)

Glutamate receptors modulate multiple signaling pathways, several of which involve mitogen-activated protein (MAP) kinases, with subsequent physiological or pathological consequences. Here we report that stimulation of the N-methyl-D-aspartate (NMDA) receptor, using platelet-activating factor (PAF) as a messenger, activates MAP kinases, including c-Jun NH2-terminal kinase, p38, and extracellular signal-regulated kinase, in primary cultures of hippocampal neurons. Activation of the metabotropic glutamate receptor (mGluR) blocks this NMDA-signaling through PAF and MAP kinases, and the resultant cell death. Recombinant PAF-acetylhydrolase degrades PAF generated by NMDA-receptor activation; the hetrazepine BN50730 (an intracellular PAF receptor antagonist) also inhibits both NMDA-stimulated MAP kinases and neuronal cell death. The finding that the NMDA receptor-PAF-MAP kinase signaling pathway is attenuated by mGluR activation highlights the exquisite interplay between glutamate receptors in the decision making process between neuronal survival and death.  (+info)

Substrate specificity of lysophospholipase D which produces bioactive lysophosphatidic acids in rat plasma. (4/1985)

Previously we reported that lysophospholipase D in rat plasma hydrolyzes endogenous unsaturated lysophosphatidylcholines (LPCs) preferentially to saturated LPCs to lysophosphatidic acids with growth factor-like and hormone-like activities. In this study, we examined the possibility that association of LPCs with different proteins in rat plasma has an effect on the preference of lysophospholipase D for unsaturated LPCs. Large portions of various LPCs were found to be recovered in the lipoprotein-poor bottom fraction. Furthermore, the percentages of LPCs associated with albumin isolated from rat plasma were shown not to be consistent with their percentage conversions to lysophosphatidic acids by lysophospholipase D on incubation of rat plasma at 37 degrees C. These results indicate that distinct distributions of LPCs in the plasma protein fractions are not critical factors for the substrate specificity of lysophospholipase D. Experiments with Nagase analbuminemic rats suggested that albumin-LPC complexes are not necessarily required for the hydrolysis by lysophospholipase D; lipoprotein-associate LPCs appeared to be good substrates for the phospholipase. We found that both saturated and unsaturated LPCs are present mainly as 1-acyl isomers in rat plasma. This result indicates that the preference of lysophospholipase D for unsaturated LPCs is not attributable to a difference in position of the acyl group attached to the glycerol backbone of LPC. In addition, lysophospholipase D was also found to attack choline phospholipids with a long chain group and a short chain alkyl group, although their percentage hydrolyses were low. Taken altogether, these results suggest that lysophospholipase D shows higher affinities for free forms of unsaturated acyl type LPCs equilibrated with albumin-bound and lipoprotein-associated forms, than for free forms of saturated acyl type LPCs and analogs of platelet-activating factor.  (+info)

In-vitro fertilization and culture of mouse embryos in vitro significantly retards the onset of insulin-like growth factor-II expression from the zygotic genome. (5/1985)

In this study, the effect of in-vitro fertilization (IVF) and culture of mouse embryos in vitro on the normal expression of insulin-like growth factor-II (IFG-II) ligand and receptor was examined. The expression of IGF-II increased in a linear fashion at least up to the 8-cell stage of development. IGF-II expression in embryos collected fresh from the reproductive tract was significantly (P < 0.001) greater than in embryos fertilized in the reproductive tract and cultured in vitro (in-situ fertilized: ISF), and its expression was further reduced (P < 0.001) in IVF embryos at all development stages tested. The expression of IGF-II was significantly (P < 0.001) lower when embryos were cultured individually in 100 microl drops compared with culture in groups of 10 in 10 microl drops of medium. The addition of platelet activating factor to culture medium partially overcame this density-dependent decline of expression. Culture of ISF and IVF zygotes also caused the onset of new IGF-II mRNA transcription from the zygotic genome to be significantly (P < 0.001) retarded, until at least the 8-cell stage of development. This effect was greater (P < 0.05) for IVF than for ISF embryos. Neither IVF nor culture had any obvious effect on IFG-II/mannose-6-phosphate receptor (IGF-IIr) mRNA expression.  (+info)

PAF binding to a single receptor in corneal epithelium plasma membrane. (6/1985)

PURPOSE: To study the binding characteristics and the expression of platelet-activating factor receptors (PAF-R) in corneal epithelium to elucidate the site of action of PAF. METHODS: Binding of [3H]PAF was investigated in subcellular fractions of the epithelia of bovine corneas and in membranes from cultured rabbit corneal epithelial cells. Dose-response inhibition curves of [3H]PAF-specific binding were generated using increasing concentrations of several PAF-R antagonists. RNA from rabbit corneal epithelial cells was probed for PAF-R expression by reverse transcription-polymerase chain reaction (RT-PCR) with specifically designed degenerated primers. RESULTS: Scatchard analysis showed a high-affinity binding site in bovine and rabbit corneal epithelium. The dissociation constant (Kd) and the maximum binding sites (Bmax) in a bovine membrane preparation and similar rabbit fraction were 0.77+/-0.03 nM and 180+/-21 femtomoles/mg protein and 4.3 nM and 1.3 picomoles/mg protein, respectively. Specific PAF-binding sites were found in bovine preparations enriched in plasma membranes with a Kd = 69.6 pM and Bmax = 80 femtomoles/mg protein; no specific binding was found in nuclei or microsomal fractions. RT-PCR of rabbit corneal epithelium generated a single product of the predicted size (478 bp). The deduced amino acid sequence of the purified PCR product was 87% homologous to human PAF-R. The hetrazepines BN 50727 and BN 50730 and the PAF structural analogues CV 3988 and CV 6209 competitively inhibited [3H]PAF binding to corneal epithelium with similar potency. WEB 2086 BS was two orders of magnitude less active in antagonizing PAF binding. CONCLUSIONS: Corneal epithelium contains a single population of receptors localized in the plasma membrane. PAF antagonists exert their actions by blocking this PAF-R. The partial sequence deduced in rabbit corneal PAF-R show a higher homology to the human PAF-R.  (+info)

Endogenous platelet-activating factor is critically involved in effector functions of eosinophils stimulated with IL-5 or IgG. (7/1985)

Eosinophil activation and subsequent release of inflammatory mediators are implicated in the pathophysiology of allergic diseases. Eosinophils are activated by various classes of secretagogues, such as cytokines (e.g., IL-5), lipid mediators (e.g., platelet-activating factor (PAF)), and Ig (e.g., immobilized IgG). However, do these agonists act directly on eosinophils or indirectly through the generation of intermediate active metabolites? We now report that endogenous PAF produced by activated eosinophils plays a critical role in eosinophil functions. Human eosinophils produced superoxide when stimulated with immobilized IgG, soluble IL-5, or PAF. Pretreating eosinophils with pertussis toxin abolished their responses to these stimuli, suggesting involvement of a metabolite(s) that acts on G proteins. Indeed, PAF was detected in supernatants from eosinophils stimulated with IgG or IL-5. Furthermore, structurally distinct PAF antagonists, including CV6209, hexanolamine PAF, and Y-24180 (israpafant), inhibited IgG- or IL-5-induced superoxide production and degranulation. Previous reports indicated that exogenous PAF stimulates eosinophil eicosanoid production through formation of lipid bodies. We found in this study that IgG or IL-5 also induces lipid body formation and subsequent leukotriene C4 production mediated by endogenous PAF. Finally, inhibition of cytosolic phospholipase A2, one of the key enzymes involved in PAF synthesis, attenuated both PAF production and effector functions of eosinophils. These findings suggest that endogenous PAF plays important roles in eosinophil functional responses to various exogenous stimuli, such as cytokines and Igs. Therefore, inhibition of PAF synthesis or action may be beneficial for the treatment of eosinophilic inflammation.  (+info)

Mepyramine inhibits platelet activating factor-induced rabbit platelet aggregation: role of intracellular histamine. (8/1985)

AIM: To study the possible role of intracellular histamine (HA) in platelet activating factor (PAF)-induced platelet activation. METHODS: Washed rabbit platelet suspension was used to test the inhibitory effect of mepyramine (Mep, an H1 receptor antagonist) on PAF-induced platelet aggregation. The thromboxane B2 (TXB2) generation was measured by radioimmunoassay and the intracellular calcium ([Ca2+]i) concentration was determined by the specific fluorescence indicator Fura-2. RESULTS: Mep > 100 mumol.L-1 generated a concentration-dependent inhibition on PAF-induced aggregation, with an IC50 value of 162 (95% confidence limits: 114-232 mumol.L-1). Cimetidine, an H2 receptor antagonist, even up to 400 mumol.L-1 had no effect on it. Exogenous HA (10 mumol.L-1) and H1 receptor agonist, 2-thiazolylethylamine had no energetic effect. alpha-Fluoromethylhistidine, an inhibitor of histidine decarboxylase, did not inhibit platelet responses. However, in platelets permeabilized with saponin (8-10 mg.L-1), exogenous HA attenuated the inhibitory effect of Mep to about 50% at a concentration of 50 mumol.L-1. Preincubation of platelets with Mep (100 or 200 mumol.L-1) resulted in an inhibition on TXB2 generation and [Ca2+]i elevation induced by PAF. CONCLUSION: Platelets activated by PAF is associated with an intracellular HA synthesis and release via a common pathway of TXB2 generation and the rise of [Ca2+]i.  (+info)

Blood platelets, also known as thrombocytes, are small, colorless cell fragments in our blood that play an essential role in normal blood clotting. They are formed in the bone marrow from large cells called megakaryocytes and circulate in the blood in an inactive state until they are needed to help stop bleeding. When a blood vessel is damaged, platelets become activated and change shape, releasing chemicals that attract more platelets to the site of injury. These activated platelets then stick together to form a plug, or clot, that seals the wound and prevents further blood loss. In addition to their role in clotting, platelets also help to promote healing by releasing growth factors that stimulate the growth of new tissue.

Platelet aggregation is the clumping together of platelets (thrombocytes) in the blood, which is an essential step in the process of hemostasis (the stopping of bleeding) after injury to a blood vessel. When the inner lining of a blood vessel is damaged, exposure of subendothelial collagen and tissue factor triggers platelet activation. Activated platelets change shape, become sticky, and release the contents of their granules, which include ADP (adenosine diphosphate).

ADP then acts as a chemical mediator to attract and bind additional platelets to the site of injury, leading to platelet aggregation. This forms a plug that seals the damaged vessel and prevents further blood loss. Platelet aggregation is also a crucial component in the formation of blood clots (thrombosis) within blood vessels, which can have pathological consequences such as heart attacks and strokes if they obstruct blood flow to vital organs.

A platelet count is a laboratory test that measures the number of platelets, also known as thrombocytes, in a sample of blood. Platelets are small, colorless cell fragments that circulate in the blood and play a crucial role in blood clotting. They help to stop bleeding by sticking together to form a plug at the site of an injured blood vessel.

A normal platelet count ranges from 150,000 to 450,000 platelets per microliter (µL) of blood. A lower than normal platelet count is called thrombocytopenia, while a higher than normal platelet count is known as thrombocytosis.

Abnormal platelet counts can be a sign of various medical conditions, including bleeding disorders, infections, certain medications, and some types of cancer. It is important to consult with a healthcare provider if you have any concerns about your platelet count or if you experience symptoms such as easy bruising, prolonged bleeding, or excessive menstrual flow.

Platelet adhesiveness refers to the ability of platelets, which are small blood cells that help your body form clots to prevent excessive bleeding, to stick to other cells or surfaces. This process is crucial in hemostasis, the process of stopping bleeding after injury to a blood vessel.

When the endothelium (the lining of blood vessels) is damaged, subendothelial structures are exposed, which can trigger platelet adhesion. Platelets then change shape and release chemical signals that cause other platelets to clump together, forming a platelet plug. This plug helps to seal the damaged vessel and prevent further bleeding.

Platelet adhesiveness is influenced by several factors, including the presence of von Willebrand factor (vWF), a protein in the blood that helps platelets bind to damaged vessels, and the expression of glycoprotein receptors on the surface of platelets. Abnormalities in platelet adhesiveness can lead to bleeding disorders or thrombotic conditions.

Platelet membrane glycoproteins are specialized proteins found on the surface of platelets, which are small blood cells responsible for clotting. These glycoproteins play crucial roles in various processes related to hemostasis and thrombosis, including platelet adhesion, activation, and aggregation.

There are several key platelet membrane glycoproteins, such as:

1. Glycoprotein (GP) Ia/IIa (also known as integrin α2β1): This glycoprotein mediates the binding of platelets to collagen fibers in the extracellular matrix, facilitating platelet adhesion and activation.
2. GP IIb/IIIa (also known as integrin αIIbβ3): This is the most abundant glycoprotein on the platelet surface and functions as a receptor for fibrinogen, von Willebrand factor, and other adhesive proteins. Upon activation, GP IIb/IIIa undergoes conformational changes that enable it to bind these ligands, leading to platelet aggregation and clot formation.
3. GPIb-IX-V: This glycoprotein complex is involved in the initial tethering and adhesion of platelets to von Willebrand factor (vWF) in damaged blood vessels. It consists of four subunits: GPIbα, GPIbβ, GPIX, and GPV.
4. GPVI: This glycoprotein is essential for platelet activation upon contact with collagen. It associates with the Fc receptor γ-chain (FcRγ) to form a signaling complex that triggers intracellular signaling pathways, leading to platelet activation and aggregation.

Abnormalities in these platelet membrane glycoproteins can lead to bleeding disorders or thrombotic conditions. For example, mutations in GPIIb/IIIa can result in Glanzmann's thrombasthenia, a severe bleeding disorder characterized by impaired platelet aggregation. On the other hand, increased expression or activation of these glycoproteins may contribute to the development of arterial thrombosis and cardiovascular diseases.

Platelet Factor 4 (PF4), also known as CXCL4, is a chemokine that is primarily secreted by activated platelets and involved in hemostasis and inflammation. It is a small protein with a molecular weight of approximately 8 kDa and is stored in the alpha granules of resting platelets. Upon activation, platelets release PF4 into the bloodstream, where it plays a role in attracting immune cells to sites of injury or infection.

PF4 can bind to various negatively charged molecules, including heparin, DNA, and RNA, which can lead to the formation of immune complexes. In some cases, these immune complexes can trigger an abnormal immune response, resulting in conditions such as heparin-induced thrombocytopenia (HIT) or vaccine-induced immune thrombotic thrombocytopenia (VITT).

In summary, Platelet Factor 4 is a chemokine released by activated platelets that plays a role in hemostasis and inflammation but can also contribute to the development of certain immune-related disorders.

A platelet transfusion is the process of medically administering platelets, which are small blood cells that help your body form clots to stop bleeding. Platelet transfusions are often given to patients with low platelet counts or dysfunctional platelets due to various reasons such as chemotherapy, bone marrow transplantation, disseminated intravascular coagulation (DIC), and other medical conditions leading to increased consumption or destruction of platelets. This procedure helps to prevent or treat bleeding complications in these patients. It's important to note that platelet transfusions should be given under the supervision of a healthcare professional, taking into account the patient's clinical condition, platelet count, and potential risks associated with transfusion reactions.

Platelet-activating factor (PAF) is a potent phospholipid mediator that plays a significant role in various inflammatory and immune responses. It is a powerful lipid signaling molecule released mainly by activated platelets, neutrophils, monocytes, endothelial cells, and other cell types during inflammation or injury.

PAF has a molecular structure consisting of an alkyl chain linked to a glycerol moiety, a phosphate group, and an sn-2 acetyl group. This unique structure allows PAF to bind to its specific G protein-coupled receptor (PAF-R) on the surface of target cells, triggering various intracellular signaling cascades that result in cell activation, degranulation, and aggregation.

The primary functions of PAF include:

1. Platelet activation and aggregation: PAF stimulates platelets to aggregate, release their granules, and activate the coagulation cascade, which can lead to thrombus formation.
2. Neutrophil and monocyte activation: PAF activates these immune cells, leading to increased adhesion, degranulation, and production of reactive oxygen species (ROS) and pro-inflammatory cytokines.
3. Vasodilation and increased vascular permeability: PAF can cause vasodilation by acting on endothelial cells, leading to an increase in blood flow and facilitating the extravasation of immune cells into inflamed tissues.
4. Bronchoconstriction: In the respiratory system, PAF can induce bronchoconstriction and recruitment of inflammatory cells, contributing to asthma symptoms.
5. Neurotransmission modulation: PAF has been implicated in neuroinflammation and may play a role in neuronal excitability, synaptic plasticity, and cognitive functions.

Dysregulated PAF signaling has been associated with several pathological conditions, including atherosclerosis, sepsis, acute respiratory distress syndrome (ARDS), ischemia-reperfusion injury, and neuroinflammatory disorders. Therefore, targeting the PAF pathway may provide therapeutic benefits in these diseases.

Platelet function tests are laboratory tests that measure how well platelets, which are small blood cells responsible for clotting, function in preventing or stopping bleeding. These tests are often used to investigate the cause of abnormal bleeding or bruising, or to monitor the effectiveness of antiplatelet therapy in patients with certain medical conditions such as heart disease or stroke.

There are several types of platelet function tests available, including:

1. Platelet count: This test measures the number of platelets present in a sample of blood. A low platelet count can increase the risk of bleeding.
2. Bleeding time: This test measures how long it takes for a small cut to stop bleeding. It is used less frequently than other tests due to its invasiveness and variability.
3. Platelet aggregation tests: These tests measure how well platelets clump together (aggregate) in response to various agents that promote platelet activation, such as adenosine diphosphate (ADP), collagen, or epinephrine.
4. Platelet function analyzer (PFA): This test measures the time it takes for a blood sample to clot under shear stress, simulating the conditions in an injured blood vessel. The PFA can provide information about the overall platelet function and the effectiveness of antiplatelet therapy.
5. Thromboelastography (TEG) or rotational thromboelastometry (ROTEM): These tests measure the kinetics of clot formation, strength, and dissolution in whole blood samples. They provide information about both platelet function and coagulation factors.

These tests can help healthcare providers diagnose bleeding disorders, assess the risk of bleeding during surgery or other invasive procedures, monitor antiplatelet therapy, and guide treatment decisions for patients with abnormal platelet function.

The platelet glycoprotein GPIIb-IIIa complex, also known as integrin αIIbβ3 or CD41/CD61, is a heterodimeric transmembrane receptor found on the surface of platelets and megakaryocytes. It plays a crucial role in platelet aggregation and thrombus formation during hemostasis and pathological conditions such as arterial thrombosis.

The GPIIb-IIIa complex is composed of two non-covalently associated subunits, GPIIb (αIIb or CD41) and IIIa (β3 or CD61). Upon platelet activation by various agonists like ADP, thrombin, or collagen, the GPIIb-IIIa complex undergoes a conformational change that allows it to bind fibrinogen, von Willebrand factor, and other adhesive proteins. This binding event leads to platelet aggregation and the formation of a hemostatic plug or pathological thrombus.

Inhibition of the GPIIb-IIIa complex has been a target for antiplatelet therapy in the prevention and treatment of arterial thrombosis, such as myocardial infarction and stroke. Several pharmacological agents, including monoclonal antibodies and small molecule antagonists, have been developed to block this complex and reduce platelet aggregation.

The platelet glycoprotein GPIb-IX complex is a crucial receptor on the surface of platelets that plays a vital role in hemostasis and thrombosis. It is a heterotetrameric transmembrane protein complex composed of two disulfide-linked glycoprotein subunits, GPIbα, GPIbβ, GPV (Glycoprotein V), and GPIX (Glycoprotein IX).

The GPIb-IX complex is responsible for the initial interaction between platelets and von Willebrand factor (vWF) in the circulation. When blood vessels are damaged, exposed collagen recruits vWF to the site of injury, where it binds to the GPIbα subunit of the GPIb-IX complex, leading to platelet adhesion and activation. This interaction is critical for primary hemostasis, which helps prevent excessive blood loss from injured vessels.

Genetic mutations or deficiencies in the genes encoding these glycoproteins can lead to bleeding disorders such as Bernard-Soulier syndrome, a rare autosomal recessive disorder characterized by thrombocytopenia and large platelets with impaired vWF binding and platelet adhesion.

Thrombin is a serine protease enzyme that plays a crucial role in the coagulation cascade, which is a complex series of biochemical reactions that leads to the formation of a blood clot (thrombus) to prevent excessive bleeding during an injury. Thrombin is formed from its precursor protein, prothrombin, through a process called activation, which involves cleavage by another enzyme called factor Xa.

Once activated, thrombin converts fibrinogen, a soluble plasma protein, into fibrin, an insoluble protein that forms the structural framework of a blood clot. Thrombin also activates other components of the coagulation cascade, such as factor XIII, which crosslinks and stabilizes the fibrin network, and platelets, which contribute to the formation and growth of the clot.

Thrombin has several regulatory mechanisms that control its activity, including feedback inhibition by antithrombin III, a plasma protein that inactivates thrombin and other serine proteases, and tissue factor pathway inhibitor (TFPI), which inhibits the activation of factor Xa, thereby preventing further thrombin formation.

Overall, thrombin is an essential enzyme in hemostasis, the process that maintains the balance between bleeding and clotting in the body. However, excessive or uncontrolled thrombin activity can lead to pathological conditions such as thrombosis, atherosclerosis, and disseminated intravascular coagulation (DIC).

Adenosine diphosphate (ADP) is a chemical compound that plays a crucial role in energy transfer within cells. It is a nucleotide, which consists of a adenosine molecule (a sugar molecule called ribose attached to a nitrogenous base called adenine) and two phosphate groups.

In the cell, ADP functions as an intermediate in the conversion of energy from one form to another. When a high-energy phosphate bond in ADP is broken, energy is released and ADP is converted to adenosine triphosphate (ATP), which serves as the main energy currency of the cell. Conversely, when ATP donates a phosphate group to another molecule, it is converted back to ADP, releasing energy for the cell to use.

ADP also plays a role in blood clotting and other physiological processes. In the coagulation cascade, ADP released from damaged red blood cells can help activate platelets and initiate the formation of a blood clot.

Human platelet antigens (HPAs) are a group of cell surface proteins found on platelets and megakaryocytes, which are the precursor cells that produce platelets. These antigens can stimulate an immune response when they are recognized as foreign by the body's immune system, leading to the production of antibodies against them.

HPAs are classified into several different systems based on their genetic inheritance and immunological properties. The most well-known HPA systems are HPA-1, HPA-2, HPA-3, HPA-4, and HPA-5. Each system consists of a pair of alleles, one inherited from each parent, that code for different variants of the antigen.

HPAs can play a role in the development of certain bleeding disorders, such as neonatal alloimmune thrombocytopenia (NAIT) and post-transfusion purpura (PTP). NAIT occurs when a pregnant woman develops antibodies against her fetus's HPAs, leading to low platelet counts and bleeding in the newborn. PTP can occur after a transfusion of blood products containing HPAs that are not compatible with the recipient's HPAs, leading to an immune response and destruction of the transfused platelets.

It is important for healthcare providers to consider HPA compatibility when performing platelet transfusions or managing pregnant women at risk of developing antibodies against HPAs.

Thrombocytopenia is a medical condition characterized by an abnormally low platelet count (thrombocytes) in the blood. Platelets are small cell fragments that play a crucial role in blood clotting, helping to stop bleeding when a blood vessel is damaged. A healthy adult typically has a platelet count between 150,000 and 450,000 platelets per microliter of blood. Thrombocytopenia is usually diagnosed when the platelet count falls below 150,000 platelets/µL.

Thrombocytopenia can be classified into three main categories based on its underlying cause:

1. Immune thrombocytopenia (ITP): An autoimmune disorder where the immune system mistakenly attacks and destroys its own platelets, leading to a decreased platelet count. ITP can be further divided into primary or secondary forms, depending on whether it occurs alone or as a result of another medical condition or medication.
2. Decreased production: Thrombocytopenia can occur when there is insufficient production of platelets in the bone marrow due to various causes, such as viral infections, chemotherapy, radiation therapy, leukemia, aplastic anemia, or vitamin B12 or folate deficiency.
3. Increased destruction or consumption: Thrombocytopenia can also result from increased platelet destruction or consumption due to conditions like disseminated intravascular coagulation (DIC), thrombotic thrombocytopenic purpura (TTP), hemolytic uremic syndrome (HUS), or severe bacterial infections.

Symptoms of thrombocytopenia may include easy bruising, prolonged bleeding from cuts, spontaneous nosebleeds, bleeding gums, blood in urine or stools, and skin rashes like petechiae (small red or purple spots) or purpura (larger patches). The severity of symptoms can vary depending on the degree of thrombocytopenia and the presence of any underlying conditions. Treatment for thrombocytopenia depends on the cause and may include medications, transfusions, or addressing the underlying condition.

Fibrinogen is a soluble protein present in plasma, synthesized by the liver. It plays an essential role in blood coagulation. When an injury occurs, fibrinogen gets converted into insoluble fibrin by the action of thrombin, forming a fibrin clot that helps to stop bleeding from the injured site. Therefore, fibrinogen is crucial for hemostasis, which is the process of stopping bleeding and starting the healing process after an injury.

P-Selectin is a type of cell adhesion molecule, specifically a member of the selectin family, that is involved in the inflammatory response. It is primarily expressed on the surface of activated platelets and endothelial cells. P-Selectin plays a crucial role in the initial interaction between leukocytes (white blood cells) and the vascular endothelium, which is an essential step in the recruitment of leukocytes to sites of inflammation or injury. This process helps to mediate the rolling and adhesion of leukocytes to the endothelial surface, facilitating their extravasation into the surrounding tissue. P-Selectin's function is regulated by its interaction with specific ligands on the surface of leukocytes, such as PSGL-1 (P-Selectin Glycoprotein Ligand-1).

Megakaryocytes are large, specialized bone marrow cells that are responsible for the production and release of platelets (also known as thrombocytes) into the bloodstream. Platelets play an essential role in blood clotting and hemostasis, helping to prevent excessive bleeding during injuries or trauma.

Megakaryocytes have a unique structure with multilobed nuclei and abundant cytoplasm rich in organelles called alpha-granules and dense granules, which store various proteins, growth factors, and enzymes necessary for platelet function. As megakaryocytes mature, they extend long cytoplasmic processes called proplatelets into the bone marrow sinuses, where these extensions fragment into individual platelets that are released into circulation.

Abnormalities in megakaryocyte number, size, or function can lead to various hematological disorders, such as thrombocytopenia (low platelet count), thrombocytosis (high platelet count), and certain types of leukemia.

Bleeding time is a medical test that measures the time it takes for a small blood vessel to stop bleeding after being cut. It's used to evaluate platelet function and the effectiveness of blood clotting. The most common method used to measure bleeding time is the Ivy method, which involves making a standardized incision on the forearm and measuring the time it takes for the bleeding to stop. A normal bleeding time ranges from 2 to 9 minutes, but this can vary depending on the specific method used. Prolonged bleeding time may indicate an impairment in platelet function or clotting factor deficiency.

Von Willebrand factor (vWF) is a large multimeric glycoprotein that plays a crucial role in hemostasis, the process which leads to the cessation of bleeding and the formation of a blood clot. It was named after Erik Adolf von Willebrand, a Finnish physician who first described the disorder associated with its deficiency, known as von Willebrand disease (vWD).

The primary functions of vWF include:

1. Platelet adhesion and aggregation: vWF mediates the initial attachment of platelets to damaged blood vessel walls by binding to exposed collagen fibers and then interacting with glycoprotein Ib (GPIb) receptors on the surface of platelets, facilitating platelet adhesion. Subsequently, vWF also promotes platelet-platelet interactions (aggregation) through its interaction with platelet glycoprotein IIb/IIIa (GPIIb/IIIa) receptors under high shear stress conditions found in areas of turbulent blood flow, such as arterioles and the capillary bed.

2. Transport and stabilization of coagulation factor VIII: vWF serves as a carrier protein for coagulation factor VIII (FVIII), protecting it from proteolytic degradation and maintaining its stability in circulation. This interaction between vWF and FVIII is essential for the proper functioning of the coagulation cascade, particularly in the context of vWD, where impaired FVIII function can lead to bleeding disorders.

3. Wound healing: vWF contributes to wound healing by promoting platelet adhesion and aggregation at the site of injury, which facilitates the formation of a provisional fibrin-based clot that serves as a scaffold for tissue repair and regeneration.

In summary, von Willebrand factor is a vital hemostatic protein involved in platelet adhesion, aggregation, coagulation factor VIII stabilization, and wound healing. Deficiencies or dysfunctions in vWF can lead to bleeding disorders such as von Willebrand disease.

Thrombosis is the formation of a blood clot (thrombus) inside a blood vessel, obstructing the flow of blood through the circulatory system. When a clot forms in an artery, it can cut off the supply of oxygen and nutrients to the tissues served by that artery, leading to damage or tissue death. If a thrombus forms in the heart, it can cause a heart attack. If a thrombus breaks off and travels through the bloodstream, it can lodge in a smaller vessel, causing blockage and potentially leading to damage in the organ that the vessel supplies. This is known as an embolism.

Thrombosis can occur due to various factors such as injury to the blood vessel wall, abnormalities in blood flow, or changes in the composition of the blood. Certain medical conditions, medications, and lifestyle factors can increase the risk of thrombosis. Treatment typically involves anticoagulant or thrombolytic therapy to dissolve or prevent further growth of the clot, as well as addressing any underlying causes.

Glycoprotein IIb (also known as integrin αIIbβ3 or CD41/CD61) is a type of protein found on the surface of platelets, which are small cell fragments involved in blood clotting. This glycoprotein plays a crucial role in the final pathway of platelet activation and aggregation, which ultimately leads to the formation of a clot to stop bleeding.

More specifically, Glycoprotein IIb is responsible for binding fibrinogen, von Willebrand factor, and other adhesive proteins in the blood, allowing platelets to bind together and form a clot. Mutations or defects in this glycoprotein can lead to bleeding disorders such as Glanzmann thrombasthenia, which is characterized by abnormal platelet function and excessive bleeding.

Platelet Factor 3 (PF3) is not a separate protein entity but rather refers to the complex formed when platelets are activated and expose their inner membrane, specifically a phospholipid-rich granule called the granule membrane particle, to the outside. This complex of platelet membrane with coagulation factors then serves as a catalytic surface for the acceleration of thrombin formation in the coagulation cascade.

In other words, PF3 is a part of the activated platelet's surface that plays an important role in blood clotting by promoting the conversion of prothrombin to thrombin and the subsequent fibrin formation, which helps to strengthen the clot.

Thromboxane A2 (TXA2) is a potent prostanoid, a type of lipid compound derived from arachidonic acid. It is primarily produced and released by platelets upon activation during the process of hemostasis (the body's response to stop bleeding). TXA2 acts as a powerful vasoconstrictor, causing blood vessels to narrow, which helps limit blood loss at the site of injury. Additionally, it promotes platelet aggregation, contributing to the formation of a stable clot and preventing further bleeding. However, uncontrolled or excessive production of TXA2 can lead to thrombotic events such as heart attacks and strokes. Its effects are balanced by prostacyclin (PGI2), which is produced by endothelial cells and has opposing actions, acting as a vasodilator and inhibiting platelet aggregation. The balance between TXA2 and PGI2 helps maintain vascular homeostasis.

Aspirin is the common name for acetylsalicylic acid, which is a medication used to relieve pain, reduce inflammation, and lower fever. It works by inhibiting the activity of an enzyme called cyclooxygenase (COX), which is involved in the production of prostaglandins, hormone-like substances that cause inflammation and pain. Aspirin also has an antiplatelet effect, which means it can help prevent blood clots from forming. This makes it useful for preventing heart attacks and strokes.

Aspirin is available over-the-counter in various forms, including tablets, capsules, and chewable tablets. It is also available in prescription strengths for certain medical conditions. As with any medication, aspirin should be taken as directed by a healthcare provider, and its use should be avoided in children and teenagers with viral infections due to the risk of Reye's syndrome, a rare but serious condition that can affect the liver and brain.

Collagen is the most abundant protein in the human body, and it is a major component of connective tissues such as tendons, ligaments, skin, and bones. Collagen provides structure and strength to these tissues and helps them to withstand stretching and tension. It is made up of long chains of amino acids, primarily glycine, proline, and hydroxyproline, which are arranged in a triple helix structure. There are at least 16 different types of collagen found in the body, each with slightly different structures and functions. Collagen is important for maintaining the integrity and health of tissues throughout the body, and it has been studied for its potential therapeutic uses in various medical conditions.

Serotonin, also known as 5-hydroxytryptamine (5-HT), is a monoamine neurotransmitter that is found primarily in the gastrointestinal (GI) tract, blood platelets, and the central nervous system (CNS) of humans and other animals. It is produced by the conversion of the amino acid tryptophan to 5-hydroxytryptophan (5-HTP), and then to serotonin.

In the CNS, serotonin plays a role in regulating mood, appetite, sleep, memory, learning, and behavior, among other functions. It also acts as a vasoconstrictor, helping to regulate blood flow and blood pressure. In the GI tract, it is involved in peristalsis, the contraction and relaxation of muscles that moves food through the digestive system.

Serotonin is synthesized and stored in serotonergic neurons, which are nerve cells that use serotonin as their primary neurotransmitter. These neurons are found throughout the brain and spinal cord, and they communicate with other neurons by releasing serotonin into the synapse, the small gap between two neurons.

Abnormal levels of serotonin have been linked to a variety of disorders, including depression, anxiety, schizophrenia, and migraines. Medications that affect serotonin levels, such as selective serotonin reuptake inhibitors (SSRIs), are commonly used to treat these conditions.

Hemostasis is the physiological process that occurs to stop bleeding (bleeding control) when a blood vessel is damaged. This involves the interaction of platelets, vasoconstriction, and blood clotting factors leading to the formation of a clot. The ultimate goal of hemostasis is to maintain the integrity of the vascular system while preventing excessive blood loss.

Blood coagulation, also known as blood clotting, is a complex process that occurs in the body to prevent excessive bleeding when a blood vessel is damaged. This process involves several different proteins and chemical reactions that ultimately lead to the formation of a clot.

The coagulation cascade is initiated when blood comes into contact with tissue factor, which is exposed after damage to the blood vessel wall. This triggers a series of enzymatic reactions that activate clotting factors, leading to the formation of a fibrin clot. Fibrin is a protein that forms a mesh-like structure that traps platelets and red blood cells to form a stable clot.

Once the bleeding has stopped, the coagulation process is regulated and inhibited to prevent excessive clotting. The fibrinolytic system degrades the clot over time, allowing for the restoration of normal blood flow.

Abnormalities in the blood coagulation process can lead to bleeding disorders or thrombotic disorders such as deep vein thrombosis and pulmonary embolism.

Purinergic P2Y12 receptors are a type of G protein-coupled receptor that bind to and are activated by adenosine diphosphate (ADP). These receptors play an important role in regulating platelet activation and aggregation, which is crucial for the normal hemostatic response to vascular injury.

The P2Y12 receptor is a key component of the platelet signaling pathway that leads to the activation of integrin αIIbβ3, which mediates platelet aggregation. Inhibition of the P2Y12 receptor with drugs such as clopidogrel or ticagrelor is a standard treatment for preventing thrombosis in patients at risk of arterial occlusion, such as those with acute coronary syndrome or following percutaneous coronary intervention.

P2Y12 receptors are also expressed on other cell types, including immune cells and neurons, where they play roles in inflammation, neurotransmission, and other physiological processes.

Platelet Storage Pool Deficiency (PSPD) is a group of bleeding disorders characterized by a decrease in the number or function of secretory granules (storage pools) in platelets, which are small blood cells that play a crucial role in clotting. These granules contain various substances such as ADP (adenosine diphosphate), ATP (adenosine triphosphate), calcium ions, and serotonin, which are released during platelet activation to help promote clot formation.

In PSPD, the quantitative or qualitative deficiency of these granules leads to impaired platelet function and increased bleeding tendency. The condition can be inherited or acquired, and it is often classified based on the type of granule affected: dense granules (delta granules) or alpha granules.

Delta granule deficiency, also known as Dense Granule Deficiency (DGD), results in decreased levels of ADP, ATP, and calcium ions, while alpha granule deficiency leads to reduced levels of von Willebrand factor, fibrinogen, and other clotting factors.

Symptoms of PSPD can vary from mild to severe and may include easy bruising, prolonged bleeding after injury or surgery, nosebleeds, and gum bleeding. The diagnosis typically involves platelet function tests, electron microscopy, and genetic testing. Treatment options depend on the severity of the condition and may include desmopressin (DDAVP), platelet transfusions, or other medications to manage bleeding symptoms.

Ristocetin is not a medical condition but a type of antibiotic used to treat infections caused by certain Gram-positive bacteria that are resistant to other antibiotics. Ristocetin is an glycopeptide antibiotic, which works by binding to the bacterial cell wall and inhibiting its synthesis, leading to bacterial death. It is not commonly used due to its potential to cause blood disorders, such as thrombocytopenia (low platelet count) and platelet aggregation.

In medical literature, ristocetin is also known for its use in the laboratory setting as a reagent for the platelet function test, called the ristocetin-induced platelet aggregation (RIPA) assay. This test is used to evaluate the ability of platelets to aggregate and form clots in response to ristocetin, which can help diagnose certain bleeding disorders such as Bernard-Soulier syndrome and von Willebrand disease.

Thrombasthenia is a rare bleeding disorder that is inherited and caused by a deficiency or dysfunction of the platelet glycoprotein IIb/IIIa complex. This complex plays a crucial role in platelet aggregation, which is necessary for blood clotting. When it's defective or absent, platelets are unable to aggregate properly, leading to prolonged bleeding times and symptoms such as easy bruising, nosebleeds, and excessive bleeding following injury or surgery. There are two main types of thrombasthenia: Glanzmann's thrombasthenia and pseudo-thrombasthenia.

Thrombopoiesis is the process of formation and development of thrombocytes or platelets, which are small, colorless cell fragments in our blood that play an essential role in clotting. Thrombopoiesis occurs inside the bone marrow, where stem cells differentiate into megakaryoblasts, then progressively develop into promegakaryocytes and megakaryocytes. These megakaryocytes subsequently undergo a process called cytoplasmic fragmentation to produce platelets.

The regulation of thrombopoiesis is primarily controlled by the hormone thrombopoietin (TPO), which is produced mainly in the liver and binds to the thrombopoietin receptor (c-Mpl) on megakaryocytes and their precursors. This binding stimulates the proliferation, differentiation, and maturation of megakaryocytes, leading to an increase in platelet production.

Abnormalities in thrombopoiesis can result in conditions such as thrombocytopenia (low platelet count) or thrombocytosis (high platelet count), which may be associated with bleeding disorders or increased risk of thrombosis, respectively.

Thrombocytopenic purpura (TTP) is a rare blood disorder characterized by the abnormal breakdown of platelets, leading to a low platelet count (thrombocytopenia). Platelets are small blood cells that help your body form clots to stop bleeding. A low platelet count can cause purple spots on the skin (purpura) and easy or excessive bruising or bleeding.

TTP is caused by the formation of blood clots in small blood vessels throughout the body, which can lead to serious complications such as damage to the heart, brain, and kidneys if left untreated. The condition can be acute (sudden onset) or chronic (long-term).

TTP is often caused by an autoimmune response where the body's immune system produces antibodies that attack and destroy a protein called ADAMTS13, which is necessary for breaking down large von Willebrand factor proteins in the blood. Without enough ADAMTS13, these proteins can form clots and deplete platelets, leading to thrombocytopenia and purpura.

Treatment typically involves plasma exchange therapy to replace the missing or nonfunctional ADAMTS13 protein and suppress the immune system's production of antibodies. Corticosteroids, immunosuppressive drugs, and rituximab may also be used in treatment.

Cytoplasmic granules are small, membrane-bound organelles or inclusions found within the cytoplasm of cells. They contain various substances such as proteins, lipids, carbohydrates, and genetic material. Cytoplasmic granules have diverse functions depending on their specific composition and cellular location. Some examples include:

1. Secretory granules: These are found in secretory cells and store hormones, neurotransmitters, or enzymes before they are released by exocytosis.
2. Lysosomes: These are membrane-bound organelles that contain hydrolytic enzymes for intracellular digestion of waste materials, foreign substances, and damaged organelles.
3. Melanosomes: Found in melanocytes, these granules produce and store the pigment melanin, which is responsible for skin, hair, and eye color.
4. Weibel-Palade bodies: These are found in endothelial cells and store von Willebrand factor and P-selectin, which play roles in hemostasis and inflammation.
5. Peroxisomes: These are single-membrane organelles that contain enzymes for various metabolic processes, such as β-oxidation of fatty acids and detoxification of harmful substances.
6. Lipid bodies (also called lipid droplets): These are cytoplasmic granules that store neutral lipids, such as triglycerides and cholesteryl esters. They play a role in energy metabolism and intracellular signaling.
7. Glycogen granules: These are cytoplasmic inclusions that store glycogen, a polysaccharide used for energy storage in animals.
8. Protein bodies: Found in plants, these granules store excess proteins and help regulate protein homeostasis within the cell.
9. Electron-dense granules: These are found in certain immune cells, such as mast cells and basophils, and release mediators like histamine during an allergic response.
10. Granules of unknown composition or function may also be present in various cell types.

Crotalid venoms are the toxic secretions produced by the members of the Crotalinae subfamily, also known as pit vipers. This group includes rattlesnakes, cottonmouths (or water moccasins), and copperheads, which are native to the Americas, as well as Old World vipers found in Asia and Europe, such as gaboon vipers and saw-scaled vipers.

Crotalid venoms are complex mixtures of various bioactive molecules, including enzymes, proteins, peptides, and other low molecular weight components. They typically contain a variety of pharmacologically active components, such as hemotoxic and neurotoxic agents, which can cause extensive local tissue damage, coagulopathy, cardiovascular dysfunction, and neuromuscular disorders in the victim.

The composition of crotalid venoms can vary significantly between different species and even among individual specimens within the same species. This variability is influenced by factors such as geographic location, age, sex, diet, and environmental conditions. As a result, the clinical manifestations of crotalid envenomation can be highly variable, ranging from mild local reactions to severe systemic effects that may require intensive medical treatment and supportive care.

Crotalid venoms have been the subject of extensive research in recent years due to their potential therapeutic applications. For example, certain components of crotalid venoms have shown promise as drugs for treating various medical conditions, such as cardiovascular diseases, pain, and inflammation. However, further studies are needed to fully understand the mechanisms of action of these venom components and to develop safe and effective therapies based on them.

Thrombocytosis is a medical condition characterized by an abnormally high platelet count (also known as thrombocytes) in the blood. Platelets are small cell fragments that play a crucial role in blood clotting. A normal platelet count ranges from 150,000 to 450,000 platelets per microliter of blood. Thrombocytosis is typically defined as a platelet count exceeding 450,000-500,000 platelets/µL.

Thrombocytosis can be classified into two types: reactive (or secondary) thrombocytosis and primary (or essential) thrombocytosis. Reactive thrombocytosis is more common and occurs as a response to an underlying condition, such as infection, inflammation, surgery, or certain types of cancer. Primary thrombocytosis, on the other hand, is caused by intrinsic abnormalities in the bone marrow cells responsible for platelet production (megakaryocytes), and it is often associated with myeloproliferative neoplasms like essential thrombocythemia.

While mild thrombocytosis may not cause any symptoms, higher platelet counts can increase the risk of blood clots (thrombosis) and bleeding disorders due to excessive platelet aggregation. Symptoms of thrombocytosis may include headaches, dizziness, visual disturbances, or chest pain if a blood clot forms in the brain or heart. Bleeding symptoms can manifest as easy bruising, nosebleeds, or gastrointestinal bleeding.

Treatment for thrombocytosis depends on the underlying cause and the severity of the condition. In cases of reactive thrombocytosis, treating the underlying disorder often resolves the high platelet count. For primary thrombocytosis, medications like aspirin or cytoreductive therapy (such as hydroxyurea) may be used to reduce the risk of blood clots and control platelet production. Regular monitoring of platelet counts is essential for managing this condition and preventing potential complications.

Thrombopoietin (TPO) is a glycoprotein hormone that plays a crucial role in the regulation of platelet production, also known as thrombopoiesis. It is primarily produced by the liver and to some extent by megakaryocytes, which are the cells responsible for producing platelets.

TPO binds to its receptor, c-Mpl, on the surface of megakaryocytes and their precursor cells, stimulating their proliferation, differentiation, and maturation into platelets. By regulating the number of platelets in circulation, TPO helps maintain hemostasis, the process that prevents excessive bleeding after injury.

In addition to its role in thrombopoiesis, TPO has been shown to have potential effects on other cell types, including hematopoietic stem cells and certain immune cells. However, its primary function remains the regulation of platelet production.

Thromboxanes are a type of lipid compound that is derived from arachidonic acid, a type of fatty acid found in the cell membranes of many organisms. They are synthesized in the body through the action of an enzyme called cyclooxygenase (COX).

Thromboxanes are primarily produced by platelets, a type of blood cell that plays a key role in clotting. Once formed, thromboxanes act as powerful vasoconstrictors, causing blood vessels to narrow and blood flow to decrease. They also promote the aggregation of platelets, which can lead to the formation of blood clots.

Thromboxanes are involved in many physiological processes, including hemostasis (the process by which bleeding is stopped) and inflammation. However, excessive production of thromboxanes has been implicated in a number of pathological conditions, such as heart attacks, strokes, and pulmonary hypertension.

There are several different types of thromboxanes, including thromboxane A2 (TXA2) and thromboxane B2 (TXB2). TXA2 is the most biologically active form and has a very short half-life, while TXB2 is a more stable metabolite that can be measured in the blood to assess thromboxane production.

Blood coagulation factors, also known as clotting factors, are a group of proteins that play a crucial role in the blood coagulation process. They are essential for maintaining hemostasis, which is the body's ability to stop bleeding after injury.

There are 13 known blood coagulation factors, and they are designated by Roman numerals I through XIII. These factors are produced in the liver and are normally present in an inactive form in the blood. When there is an injury to a blood vessel, the coagulation process is initiated, leading to the activation of these factors in a specific order.

The coagulation cascade involves two pathways: the intrinsic and extrinsic pathways. The intrinsic pathway is activated when there is damage to the blood vessel itself, while the extrinsic pathway is activated by tissue factor released from damaged tissues. Both pathways converge at the common pathway, leading to the formation of a fibrin clot.

Blood coagulation factors work together in a complex series of reactions that involve activation, binding, and proteolysis. When one factor is activated, it activates the next factor in the cascade, and so on. This process continues until a stable fibrin clot is formed.

Deficiencies or abnormalities in blood coagulation factors can lead to bleeding disorders such as hemophilia or thrombosis. Hemophilia is a genetic disorder that affects one or more of the coagulation factors, leading to excessive bleeding and difficulty forming clots. Thrombosis, on the other hand, occurs when there is an abnormal formation of blood clots in the blood vessels, which can lead to serious complications such as stroke or pulmonary embolism.

Platelet-Rich Plasma (PRP) is a portion of the plasma fraction of autologous blood that has a platelet concentration above baseline. It is often used in the medical field for its growth factor content, which can help to stimulate healing and tissue regeneration in various types of injuries and degenerative conditions. The preparation process involves drawing a patient's own blood, centrifuging it to separate the platelets and plasma from the red and white blood cells, and then extracting the platelet-rich portion of the plasma. This concentrated solution is then injected back into the site of injury or damage to promote healing.

Prostaglandin endoperoxides are naturally occurring lipid compounds that play important roles as mediators in the body's inflammatory and physiological responses. They are intermediate products in the conversion of arachidonic acid to prostaglandins and thromboxanes, which are synthesized by the action of enzymes called cyclooxygenases (COX-1 and COX-2).

Synthetic prostaglandin endoperoxides, on the other hand, are chemically synthesized versions of these compounds. They are used in medical research and therapeutic applications to mimic or inhibit the effects of naturally occurring prostaglandin endoperoxides. These synthetic compounds can be used to study the mechanisms of prostaglandin action, develop new drugs, or as stand-in agents for the natural compounds in experimental settings.

It's important to note that while synthetic prostaglandin endoperoxides can serve as useful tools in research and medicine, they also carry potential risks and side effects, much like their naturally occurring counterparts. Therefore, their use should be carefully monitored and regulated to ensure safety and efficacy.

Epoprostenol is a medication that belongs to a class of drugs called prostaglandins. It is a synthetic analog of a natural substance in the body called prostacyclin, which widens blood vessels and has anti-platelet effects. Epoprostenol is used to treat pulmonary arterial hypertension (PAH), a condition characterized by high blood pressure in the arteries that supply blood to the lungs.

Epoprostenol works by relaxing the smooth muscle in the walls of the pulmonary arteries, which reduces the resistance to blood flow and lowers the pressure within these vessels. This helps improve symptoms such as shortness of breath, fatigue, and chest pain, and can also prolong survival in people with PAH.

Epoprostenol is administered continuously through a small pump that delivers the medication directly into the bloodstream. It is a potent vasodilator, which means it can cause a sudden drop in blood pressure if not given carefully. Therefore, it is usually started in a hospital setting under close medical supervision.

Common side effects of epoprostenol include headache, flushing, jaw pain, nausea, vomiting, diarrhea, and muscle or joint pain. More serious side effects can include bleeding, infection at the site of the catheter, and an allergic reaction to the medication.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

Blood preservation refers to the process of keeping blood viable and functional outside of the body for transfusion purposes. This is typically achieved through the addition of various chemical additives, such as anticoagulants and nutrients, to a storage solution in which the blood is contained. The preserved blood is then refrigerated or frozen until it is needed for transfusion.

The goal of blood preservation is to maintain the structural integrity and functional capacity of the red blood cells, white blood cells, and platelets, as well as the coagulation factors, in order to ensure that the transfused blood is safe and effective. Different storage conditions and additives are used for the preservation of different components of blood, depending on their specific requirements.

It's important to note that while blood preservation extends the shelf life of donated blood, it does not last indefinitely. The length of time that blood can be stored depends on several factors, including the type of blood component and the storage conditions. Regular testing is performed to ensure that the preserved blood remains safe and effective for transfusion.

A "Blood Cell Count" is a medical laboratory test that measures the number of red blood cells (RBCs), white blood cells (WBCs), and platelets in a sample of blood. This test is often used as a part of a routine check-up or to help diagnose various medical conditions, such as anemia, infection, inflammation, and many others.

The RBC count measures the number of oxygen-carrying cells in the blood, while the WBC count measures the number of immune cells that help fight infections. The platelet count measures the number of cells involved in clotting. Abnormal results in any of these counts may indicate an underlying medical condition and further testing may be required for diagnosis and treatment.

Bernard-Soulier Syndrome is a rare autosomal recessive bleeding disorder characterized by a deficiency or dysfunction of the glycoprotein Ib-IX-V complex, which is a crucial component of platelet function. This complex plays a role in the initial adhesion of platelets to the damaged endothelium at the site of blood vessel injury.

The deficiency or dysfunction of this complex leads to abnormalities in platelet aggregation and results in prolonged bleeding times, increased bruising, and excessive blood loss during menstruation, surgery, or trauma. Additionally, individuals with Bernard-Soulier Syndrome often have giant platelets and a decreased platelet count (thrombocytopenia).

The syndrome is named after Jean J. Bernard and Jean-Pierre Soulier, who first described the disorder in 1948. It has an estimated prevalence of about 1 in one million individuals worldwide.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Blood proteins, also known as serum proteins, are a group of complex molecules present in the blood that are essential for various physiological functions. These proteins include albumin, globulins (alpha, beta, and gamma), and fibrinogen. They play crucial roles in maintaining oncotic pressure, transporting hormones, enzymes, vitamins, and minerals, providing immune defense, and contributing to blood clotting.

Albumin is the most abundant protein in the blood, accounting for about 60% of the total protein mass. It functions as a transporter of various substances, such as hormones, fatty acids, and drugs, and helps maintain oncotic pressure, which is essential for fluid balance between the blood vessels and surrounding tissues.

Globulins are divided into three main categories: alpha, beta, and gamma globulins. Alpha and beta globulins consist of transport proteins like lipoproteins, hormone-binding proteins, and enzymes. Gamma globulins, also known as immunoglobulins or antibodies, are essential for the immune system's defense against pathogens.

Fibrinogen is a protein involved in blood clotting. When an injury occurs, fibrinogen is converted into fibrin, which forms a mesh to trap platelets and form a clot, preventing excessive bleeding.

Abnormal levels of these proteins can indicate various medical conditions, such as liver or kidney disease, malnutrition, infections, inflammation, or autoimmune disorders. Blood protein levels are typically measured through laboratory tests like serum protein electrophoresis (SPE) and immunoelectrophoresis (IEP).

Thrombin receptors are a type of G protein-coupled receptor (GPCR) that play a crucial role in hemostasis and thrombosis. They are activated by the protease thrombin, which is generated during the coagulation cascade. There are two main types of thrombin receptors: protease-activated receptor 1 (PAR-1) and PAR-4.

PAR-1 is expressed on various cell types including platelets, endothelial cells, and smooth muscle cells, while PAR-4 is primarily expressed on platelets. Activation of these receptors triggers a variety of intracellular signaling pathways that lead to diverse cellular responses such as platelet activation, aggregation, and secretion; vasoconstriction; and inflammation.

Dysregulation of thrombin receptor signaling has been implicated in several pathological conditions, including arterial and venous thrombosis, atherosclerosis, and cancer. Therefore, thrombin receptors are considered important therapeutic targets for the treatment of these disorders.

Epinephrine, also known as adrenaline, is a hormone and a neurotransmitter that is produced in the body. It is released by the adrenal glands in response to stress or excitement, and it prepares the body for the "fight or flight" response. Epinephrine works by binding to specific receptors in the body, which causes a variety of physiological effects, including increased heart rate and blood pressure, improved muscle strength and alertness, and narrowing of the blood vessels in the skin and intestines. It is also used as a medication to treat various medical conditions, such as anaphylaxis (a severe allergic reaction), cardiac arrest, and low blood pressure.

Plateletpheresis is a medical procedure that involves the collection of platelets from a donor's blood through a process called apheresis. In this process, whole blood is withdrawn from the donor, and the platelets are separated from other blood components using a specialized machine. The separated platelets are then collected in a sterile bag, while the remaining blood components (red blood cells, white blood cells, and plasma) are returned to the donor's body.

Plateletpheresis is often used to collect platelets for transfusion purposes, particularly for patients who require large volumes of platelets due to conditions such as leukemia, aplastic anemia, or other forms of cancer. It is also used in the treatment of thrombocytopenia, a condition characterized by abnormally low levels of platelets in the blood.

The procedure typically takes between one to two hours and requires the use of a specialized machine and trained medical staff. Donors may experience mild side effects such as fatigue, bruising, or discomfort at the site where the needle was inserted, but serious complications are rare.

Apyrase is an enzyme that catalyzes the hydrolysis of nucleoside triphosphates (like ATP or GTP) to nucleoside diphosphates (like ADP or GDP), releasing inorganic phosphate in the process. It can also hydrolyze nucleoside diphosphates to nucleoside monophosphates, releasing inorganic pyrophosphate.

This enzyme is widely distributed in nature and has been found in various organisms, including bacteria, plants, and animals. In humans, apyrases are present in different tissues, such as the brain, platelets, and red blood cells. They play essential roles in several biological processes, including signal transduction, metabolism regulation, and inflammatory response modulation.

There are two major classes of apyrases: type I (also known as nucleoside diphosphate kinase) and type II (also known as NTPDase). Type II apyrases have higher substrate specificity for nucleoside triphosphates, while type I apyrases can hydrolyze both nucleoside tri- and diphosphates.

In the medical field, apyrases are sometimes used in research to study platelet function or neurotransmission, as they can help regulate purinergic signaling by controlling extracellular levels of ATP and ADP. Additionally, some studies suggest that apyrase activity might be involved in certain pathological conditions, such as atherosclerosis, thrombosis, and neurological disorders.

Immunoglobulin (Ig) Fab fragments are the antigen-binding portions of an antibody that result from the digestion of the whole antibody molecule by enzymes such as papain. An antibody, also known as an immunoglobulin, is a Y-shaped protein produced by the immune system to identify and neutralize foreign substances like bacteria, viruses, or toxins. The antibody has two identical antigen-binding sites, located at the tips of the two shorter arms, which can bind specifically to a target antigen.

Fab fragments are formed when an antibody is cleaved by papain, resulting in two Fab fragments and one Fc fragment. Each Fab fragment contains one antigen-binding site, composed of a variable region (Fv) and a constant region (C). The Fv region is responsible for the specificity and affinity of the antigen binding, while the C region contributes to the effector functions of the antibody.

Fab fragments are often used in various medical applications, such as immunodiagnostics and targeted therapies, due to their ability to bind specifically to target antigens without triggering an immune response or other effector functions associated with the Fc region.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Indium is not a medical term, but it is a chemical element with the symbol In and atomic number 49. It is a soft, silvery-white, post-transition metal that is rarely found in its pure form in nature. It is primarily used in the production of electronics, such as flat panel displays, and in nuclear medicine as a radiation source for medical imaging.

In nuclear medicine, indium-111 is used in the labeling of white blood cells to diagnose and locate abscesses, inflammation, and infection. The indium-111 labeled white blood cells are injected into the patient's body, and then a gamma camera is used to track their movement and identify areas of infection or inflammation.

Therefore, while indium itself is not a medical term, it does have important medical applications in diagnostic imaging.

Collagen receptors are a type of cell surface receptor that bind to collagen molecules, which are the most abundant proteins in the extracellular matrix (ECM) of connective tissues. These receptors play important roles in various biological processes, including cell adhesion, migration, differentiation, and survival.

Collagen receptors can be classified into two major groups: integrins and discoidin domain receptors (DDRs). Integrins are heterodimeric transmembrane proteins that consist of an alpha and a beta subunit. They bind to collagens via their arginine-glycine-aspartic acid (RGD) motif, which is located in the triple-helical domain of collagen molecules. Integrins mediate cell-collagen interactions by clustering and forming focal adhesions, which are large protein complexes that connect the ECM to the cytoskeleton.

DDRs are receptor tyrosine kinases (RTKs) that contain a discoidin domain in their extracellular region, which is responsible for collagen binding. DDRs bind to collagens via their non-RGD motifs and induce intracellular signaling pathways that regulate cell behavior.

Abnormalities in collagen receptor function have been implicated in various diseases, including fibrosis, cancer, and inflammation. Therefore, understanding the structure and function of collagen receptors is crucial for developing novel therapeutic strategies to treat these conditions.

Arachidonic acids are a type of polyunsaturated fatty acid that is primarily found in the phospholipids of cell membranes. They contain 20 carbon atoms and four double bonds (20:4n-6), with the first double bond located at the sixth carbon atom from the methyl end.

Arachidonic acids are derived from linoleic acid, an essential fatty acid that cannot be synthesized by the human body and must be obtained through dietary sources such as meat, fish, and eggs. Once ingested, linoleic acid is converted to arachidonic acid in a series of enzymatic reactions.

Arachidonic acids play an important role in various physiological processes, including inflammation, immune response, and cell signaling. They serve as precursors for the synthesis of eicosanoids, which are signaling molecules that include prostaglandins, thromboxanes, and leukotrienes. These eicosanoids have diverse biological activities, such as modulating blood flow, platelet aggregation, and pain perception, among others.

However, excessive production of arachidonic acid-derived eicosanoids has been implicated in various pathological conditions, including inflammation, atherosclerosis, and cancer. Therefore, the regulation of arachidonic acid metabolism is an important area of research for the development of new therapeutic strategies.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Thromboxane receptors are a type of G protein-coupled receptor that binds thromboxane A2 (TXA2), a powerful inflammatory mediator and vasoconstrictor synthesized in the body from arachidonic acid. These receptors play a crucial role in various physiological processes, including platelet aggregation, smooth muscle contraction, and modulation of immune responses.

There are two main types of thromboxane receptors: TPα and TPβ. The TPα receptor is primarily found on platelets and vascular smooth muscle cells, while the TPβ receptor is expressed in various tissues such as the kidney, lung, and brain. Activation of these receptors by thromboxane A2 leads to a variety of cellular responses, including platelet activation and aggregation, vasoconstriction, and inflammation.

Abnormalities in thromboxane receptor function have been implicated in several pathological conditions, such as cardiovascular diseases, asthma, and cancer. Therefore, thromboxane receptors are an important target for the development of therapeutic agents to treat these disorders.

Hemorheology is the study of the flow properties of blood and its components, including red blood cells, white blood cells, platelets, and plasma. Specifically, it examines how these components interact with each other and with the walls of blood vessels to affect the flow characteristics of blood under different conditions. Hemorheological factors can influence blood viscosity, which is a major determinant of peripheral vascular resistance and cardiac workload. Abnormalities in hemorheology have been implicated in various diseases such as atherosclerosis, hypertension, diabetes, and sickle cell disease.

Flow cytometry is a medical and research technique used to measure physical and chemical characteristics of cells or particles, one cell at a time, as they flow in a fluid stream through a beam of light. The properties measured include:

* Cell size (light scatter)
* Cell internal complexity (granularity, also light scatter)
* Presence or absence of specific proteins or other molecules on the cell surface or inside the cell (using fluorescent antibodies or other fluorescent probes)

The technique is widely used in cell counting, cell sorting, protein engineering, biomarker discovery and monitoring disease progression, particularly in hematology, immunology, and cancer research.

Idiopathic Thrombocytopenic Purpura (ITP) is a medical condition characterized by a low platelet count (thrombocytopenia) in the blood without an identifiable cause. Platelets are small blood cells that help your body form clots to stop bleeding. When you don't have enough platelets, you may bleed excessively or spontaneously, causing purpura, which refers to purple-colored spots on the skin that result from bleeding under the skin.

In ITP, the immune system mistakenly attacks and destroys platelets, leading to their decreased levels in the blood. This condition can occur at any age but is more common in children following a viral infection, and in adults after the age of 30-40 years. Symptoms may include easy or excessive bruising, prolonged bleeding from cuts, spontaneous bleeding from the gums or nose, blood blisters, and small red or purple spots on the skin (petechiae).

Depending on the severity of thrombocytopenia and the presence of bleeding symptoms, ITP treatment may include observation, corticosteroids, intravenous immunoglobulin (IVIG), or other medications that modify the immune system's response. In severe cases or when other treatments are ineffective, surgical removal of the spleen (splenectomy) might be considered.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Arachidonic acid is a type of polyunsaturated fatty acid that is found naturally in the body and in certain foods. It is an essential fatty acid, meaning that it cannot be produced by the human body and must be obtained through the diet. Arachidonic acid is a key component of cell membranes and plays a role in various physiological processes, including inflammation and blood clotting.

In the body, arachidonic acid is released from cell membranes in response to various stimuli, such as injury or infection. Once released, it can be converted into a variety of bioactive compounds, including prostaglandins, thromboxanes, and leukotrienes, which mediate various physiological responses, including inflammation, pain, fever, and blood clotting.

Arachidonic acid is found in high concentrations in animal products such as meat, poultry, fish, and eggs, as well as in some plant sources such as certain nuts and seeds. It is also available as a dietary supplement. However, it is important to note that excessive intake of arachidonic acid can contribute to the development of inflammation and other health problems, so it is recommended to consume this fatty acid in moderation as part of a balanced diet.

Thrombospondins (TSPs) are a family of multifunctional glycoproteins that are involved in various biological processes, including cell adhesion, migration, proliferation, differentiation, and angiogenesis. They were initially identified as calcium-binding proteins that are secreted by platelets during blood clotting (thrombosis), hence the name thrombospondin.

There are five members in the TSP family, designated as TSP-1 to TSP-5, and they share a common structure consisting of several domains, including an N-terminal domain, a series of type 1 repeats, a type 2 (von Willebrand factor C) repeat, a type 3 repeat, and a C-terminal domain.

TSP-1 and TSP-2 are secreted proteins that have been extensively studied for their roles in the regulation of angiogenesis, the process of new blood vessel formation. They bind to various extracellular matrix components, growth factors, and cell surface receptors, and can either promote or inhibit angiogenesis depending on the context.

TSP-3 to TSP-5 are expressed in a variety of tissues and play roles in cell adhesion, migration, and differentiation. They have been implicated in various pathological conditions, including cancer, fibrosis, and neurodegenerative diseases.

Overall, thrombospondins are important regulators of extracellular matrix dynamics and cell-matrix interactions, and their dysregulation has been associated with a variety of diseases.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Gray Platelet Syndrome (GPS) is a rare inherited platelet disorder, characterized by the presence of large, gray-blue or purple staining platelets in blood smears due to the absence or decreased amount of alpha granules, which are normally present in platelets. This condition was first described in 1971.

The main features of GPS include:

1. Thrombocytopenia (low platelet count) - Platelet counts can range from normal to very low levels.
2. Bleeding tendency - Patients with GPS usually have a bleeding diathesis, which varies in severity from mild to severe. The bleeding tendency is due to the impaired function of platelets caused by the absence of alpha granules.
3. Bone abnormalities - GPS can also be associated with bone abnormalities such as osteopenia (low bone density) and/or skeletal dysplasia (abnormal bone growth).
4. Neurological symptoms - Some patients may develop neurological symptoms, including ataxia (lack of muscle coordination), hearing loss, and intellectual disability.

GPS is caused by mutations in the NBEAL2 gene, which encodes a protein involved in the transport and secretion of alpha granules in megakaryocytes, the precursor cells of platelets. The disorder is inherited in an autosomal recessive manner, meaning that affected individuals have inherited two defective copies of the gene, one from each parent.

Diagnosis of GPS typically involves a combination of clinical evaluation, blood tests (including complete blood count and peripheral blood smear), and genetic testing to confirm the presence of pathogenic NBEAL2 mutations. Management of GPS primarily focuses on addressing bleeding symptoms through platelet transfusions, antifibrinolytic agents, or other hemostatic therapies as needed.

Hemorrhage is defined in the medical context as an excessive loss of blood from the circulatory system, which can occur due to various reasons such as injury, surgery, or underlying health conditions that affect blood clotting or the integrity of blood vessels. The bleeding may be internal, external, visible, or concealed, and it can vary in severity from minor to life-threatening, depending on the location and extent of the bleeding. Hemorrhage is a serious medical emergency that requires immediate attention and treatment to prevent further blood loss, organ damage, and potential death.

Blood coagulation disorders, also known as bleeding disorders or clotting disorders, refer to a group of medical conditions that affect the body's ability to form blood clots properly. Normally, when a blood vessel is injured, the body's coagulation system works to form a clot to stop the bleeding and promote healing.

In blood coagulation disorders, there can be either an increased tendency to bleed due to problems with the formation of clots (hemorrhagic disorder), or an increased tendency for clots to form inappropriately even without injury, leading to blockages in the blood vessels (thrombotic disorder).

Examples of hemorrhagic disorders include:

1. Hemophilia - a genetic disorder that affects the ability to form clots due to deficiencies in clotting factors VIII or IX.
2. Von Willebrand disease - another genetic disorder caused by a deficiency or abnormality of the von Willebrand factor, which helps platelets stick together to form a clot.
3. Liver diseases - can lead to decreased production of coagulation factors, increasing the risk of bleeding.
4. Disseminated intravascular coagulation (DIC) - a serious condition where clotting and bleeding occur simultaneously due to widespread activation of the coagulation system.

Examples of thrombotic disorders include:

1. Factor V Leiden mutation - a genetic disorder that increases the risk of inappropriate blood clot formation.
2. Antithrombin III deficiency - a genetic disorder that impairs the body's ability to break down clots, increasing the risk of thrombosis.
3. Protein C or S deficiencies - genetic disorders that lead to an increased risk of thrombosis due to impaired regulation of the coagulation system.
4. Antiphospholipid syndrome (APS) - an autoimmune disorder where the body produces antibodies against its own clotting factors, increasing the risk of thrombosis.

Treatment for blood coagulation disorders depends on the specific diagnosis and may include medications to manage bleeding or prevent clots, as well as lifestyle changes and monitoring to reduce the risk of complications.

Heparin is defined as a highly sulfated glycosaminoglycan (a type of polysaccharide) that is widely present in many tissues, but is most commonly derived from the mucosal tissues of mammalian lungs or intestinal mucosa. It is an anticoagulant that acts as an inhibitor of several enzymes involved in the blood coagulation cascade, primarily by activating antithrombin III which then neutralizes thrombin and other clotting factors.

Heparin is used medically to prevent and treat thromboembolic disorders such as deep vein thrombosis, pulmonary embolism, and certain types of heart attacks. It can also be used during hemodialysis, cardiac bypass surgery, and other medical procedures to prevent the formation of blood clots.

It's important to note that while heparin is a powerful anticoagulant, it does not have any fibrinolytic activity, meaning it cannot dissolve existing blood clots. Instead, it prevents new clots from forming and stops existing clots from growing larger.

Blood coagulation tests, also known as coagulation studies or clotting tests, are a series of medical tests used to evaluate the blood's ability to clot. These tests measure the functioning of various clotting factors and regulatory proteins involved in the coagulation cascade, which is a complex process that leads to the formation of a blood clot to prevent excessive bleeding.

The most commonly performed coagulation tests include:

1. Prothrombin Time (PT): Measures the time it takes for a sample of plasma to clot after the addition of calcium and tissue factor, which activates the extrinsic pathway of coagulation. The PT is reported in seconds and can be converted to an International Normalized Ratio (INR) to monitor anticoagulant therapy.
2. Activated Partial Thromboplastin Time (aPTT): Measures the time it takes for a sample of plasma to clot after the addition of calcium, phospholipid, and a contact activator, which activates the intrinsic pathway of coagulation. The aPTT is reported in seconds and is used to monitor heparin therapy.
3. Thrombin Time (TT): Measures the time it takes for a sample of plasma to clot after the addition of thrombin, which directly converts fibrinogen to fibrin. The TT is reported in seconds and can be used to detect the presence of fibrin degradation products or abnormalities in fibrinogen function.
4. Fibrinogen Level: Measures the amount of fibrinogen, a protein involved in clot formation, present in the blood. The level is reported in grams per liter (g/L) and can be used to assess bleeding risk or the effectiveness of fibrinogen replacement therapy.
5. D-dimer Level: Measures the amount of D-dimer, a protein fragment produced during the breakdown of a blood clot, present in the blood. The level is reported in micrograms per milliliter (µg/mL) and can be used to diagnose or exclude venous thromboembolism (VTE), such as deep vein thrombosis (DVT) or pulmonary embolism (PE).

These tests are important for the diagnosis, management, and monitoring of various bleeding and clotting disorders. They can help identify the underlying cause of abnormal bleeding or clotting, guide appropriate treatment decisions, and monitor the effectiveness of therapy. It is essential to interpret these test results in conjunction with a patient's clinical presentation and medical history.

Fibrin is defined as a protein that is formed from fibrinogen during the clotting of blood. It plays an essential role in the formation of blood clots, also known as a clotting or coagulation cascade. When an injury occurs and bleeding starts, fibrin threads form a net-like structure that entraps platelets and red blood cells to create a stable clot, preventing further loss of blood.

The process of forming fibrin from fibrinogen is initiated by thrombin, another protein involved in the coagulation cascade. Thrombin cleaves fibrinogen into fibrin monomers, which then polymerize to form long strands of fibrin. These strands cross-link with each other through a process catalyzed by factor XIIIa, forming a stable clot that protects the wound and promotes healing.

It is important to note that abnormalities in fibrin formation or breakdown can lead to bleeding disorders or thrombotic conditions, respectively. Proper regulation of fibrin production and degradation is crucial for maintaining healthy hemostasis and preventing excessive clotting or bleeding.

I'm sorry for any confusion, but "Oxyquinoline" does not have a specific medical definition as it is not a widely recognized medical term or a medication used in human healthcare. Oxyquinoline is an organic compound that contains a quinoline ring substituted with an alcohol group (hydroxyl) at position 8. It has been used in the past as a disinfectant and antiseptic, but it's not common in modern medical practice.

If you have any questions about medical terminology or concepts, please provide more context so I can offer a more accurate and helpful response.

Mean Platelet Volume (MPV) is a measurement of the average size of platelets, also known as thrombocytes, in a sample of blood. It is often reported as part of a complete blood count (CBC) test. The normal range for MPV varies slightly among laboratories, but it's generally between 7.5 and 11.5 femtoliters (fL).

An increased MPV may indicate the presence of larger, younger platelets, which could suggest an increased rate of platelet production in the bone marrow. This can be seen in conditions such as certain types of anemia, bone marrow disorders, and some inflammatory diseases. A decreased MPV may indicate smaller, older platelets, which could suggest a decreased rate of platelet production or an increased rate of platelet destruction.

It's important to note that while MPV can provide additional information about the size and age of platelets, it should not be used as a standalone test for diagnosing medical conditions. It is typically interpreted in conjunction with other laboratory results and clinical findings.

Leukocytes, also known as white blood cells (WBCs), are a crucial component of the human immune system. They are responsible for protecting the body against infections and foreign substances. Leukocytes are produced in the bone marrow and circulate throughout the body in the bloodstream and lymphatic system.

There are several types of leukocytes, including:

1. Neutrophils - These are the most abundant type of leukocyte and are primarily responsible for fighting bacterial infections. They contain enzymes that can destroy bacteria.
2. Lymphocytes - These are responsible for producing antibodies and destroying virus-infected cells, as well as cancer cells. There are two main types of lymphocytes: B-lymphocytes and T-lymphocytes.
3. Monocytes - These are the largest type of leukocyte and help to break down and remove dead or damaged tissues, as well as microorganisms.
4. Eosinophils - These play a role in fighting parasitic infections and are also involved in allergic reactions and inflammation.
5. Basophils - These release histamine and other chemicals that cause inflammation in response to allergens or irritants.

An abnormal increase or decrease in the number of leukocytes can indicate an underlying medical condition, such as an infection, inflammation, or a blood disorder.

Von Willebrand disease (vWD) is a genetic bleeding disorder caused by deficiency or dysfunction of the von Willebrand factor (VWF), a protein involved in blood clotting. The VWF plays a crucial role in the formation of a stable platelet plug during the process of hemostasis, which helps to stop bleeding.

There are three main types of vWD:

1. Type 1: This is the most common form, characterized by a partial quantitative deficiency of functional VWF. Bleeding symptoms are usually mild.
2. Type 2: In this type, there is a qualitative defect in the VWF protein leading to various subtypes (2A, 2B, 2M, and 2N) with different bleeding patterns. Symptoms can range from mild to severe.
3. Type 3: This is the most severe form of vWD, characterized by a near or complete absence of functional VWF and Factor VIII. Affected individuals have a high risk of spontaneous and severe bleeding episodes.

The clinical manifestations of vWD include easy bruising, prolonged nosebleeds (epistaxis), heavy menstrual periods in women, and excessive bleeding after dental procedures, surgeries, or trauma. The diagnosis is made based on laboratory tests that assess VWF antigen levels, VWF activity, and Factor VIII coagulant activity. Treatment options include desmopressin (DDAVP) to stimulate the release of VWF from endothelial cells, recombinant VWF, or plasma-derived VWF concentrates, and antifibrinolytic agents like tranexamic acid to reduce bleeding.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Calcimycin is a ionophore compound that is produced by the bacterium Streptomyces chartreusensis. It is also known as Calcineurin A inhibitor because it can bind to and inhibit the activity of calcineurin, a protein phosphatase. In medical research, calcimycin is often used to study calcium signaling in cells.
It has been also used in laboratory studies for its antiproliferative and pro-apoptotic effects on certain types of cancer cells. However, it is not approved for use as a drug in humans.

Cell adhesion refers to the binding of cells to extracellular matrices or to other cells, a process that is fundamental to the development, function, and maintenance of multicellular organisms. Cell adhesion is mediated by various cell surface receptors, such as integrins, cadherins, and immunoglobulin-like cell adhesion molecules (Ig-CAMs), which interact with specific ligands in the extracellular environment. These interactions lead to the formation of specialized junctions, such as tight junctions, adherens junctions, and desmosomes, that help to maintain tissue architecture and regulate various cellular processes, including proliferation, differentiation, migration, and survival. Disruptions in cell adhesion can contribute to a variety of diseases, including cancer, inflammation, and degenerative disorders.

Oligopeptides are defined in medicine and biochemistry as short chains of amino acids, typically containing fewer than 20 amino acid residues. These small peptides are important components in various biological processes, such as serving as signaling molecules, enzyme inhibitors, or structural elements in some proteins. They can be found naturally in foods and may also be synthesized for use in medical research and therapeutic applications.

Edetic acid, also known as ethylenediaminetetraacetic acid (EDTA), is not a medical term per se, but a chemical compound with various applications in medicine. EDTA is a synthetic amino acid that acts as a chelating agent, which means it can bind to metallic ions and form stable complexes.

In medicine, EDTA is primarily used in the treatment of heavy metal poisoning, such as lead or mercury toxicity. It works by binding to the toxic metal ions in the body, forming a stable compound that can be excreted through urine. This helps reduce the levels of harmful metals in the body and alleviate their toxic effects.

EDTA is also used in some diagnostic tests, such as the determination of calcium levels in blood. Additionally, it has been explored as a potential therapy for conditions like atherosclerosis and Alzheimer's disease, although its efficacy in these areas remains controversial and unproven.

It is important to note that EDTA should only be administered under medical supervision due to its potential side effects and the need for careful monitoring of its use.

The endothelium is a thin layer of simple squamous epithelial cells that lines the interior surface of blood vessels, lymphatic vessels, and heart chambers. The vascular endothelium, specifically, refers to the endothelial cells that line the blood vessels. These cells play a crucial role in maintaining vascular homeostasis by regulating vasomotor tone, coagulation, platelet activation, inflammation, and permeability of the vessel wall. They also contribute to the growth and repair of the vascular system and are involved in various pathological processes such as atherosclerosis, hypertension, and diabetes.

Integrin alpha2, also known as CD49b or ITGA2, is a type I transmembrane glycoprotein that forms a heterodimer with integrin beta1 to create the collagen receptor very late antigen-2 (VLA-2) or α2β1 integrin. This integrin plays crucial roles in various cellular processes such as adhesion, migration, and signaling during embryonic development, hemostasis, and tissue repair. It specifically binds to collagen types I, II, and IV, contributing to the regulation of cell-matrix interactions in several tissues, including bone, cartilage, and vascular systems. Integrin alpha2 also participates in immune responses by mediating lymphocyte adhesion and activation.

Sulfinpyrazone is a medication that belongs to the class of drugs known as uricosurics. It works by increasing the amount of uric acid that is removed from the body through urine, which helps to lower the levels of uric acid in the blood. This makes it useful for the treatment of conditions such as gout and kidney stones that are caused by high levels of uric acid.

In addition to its uricosuric effects, sulfinpyrazone also has antiplatelet properties, which means that it can help to prevent blood clots from forming. This makes it useful for the prevention of heart attacks and strokes in people who are at risk.

Sulfinpyrazone is available by prescription and is typically taken by mouth in the form of tablets. It may be used alone or in combination with other medications, depending on the individual patient's needs and medical condition. As with any medication, sulfinpyrazone should be used under the supervision of a healthcare provider, and patients should follow their provider's instructions carefully to ensure safe and effective use.

Hirudin is not a medical term itself, but it is a specific substance with medical relevance. Hirudin is a naturally occurring anticoagulant that is found in the saliva of certain species of leeches (such as Hirudo medicinalis). This compound works by inhibiting the activity of thrombin, a key enzyme in the coagulation cascade, which ultimately results in preventing blood clot formation.

Medically, hirudin has been used in some research and therapeutic settings for its anticoagulant properties. For instance, recombinant hirudin (also known as lepirudin) is available for clinical use as an injectable anticoagulant to treat or prevent blood clots in specific medical conditions, such as heparin-induced thrombocytopenia (HIT).

In summary, Hirudins are a group of anticoagulant substances, primarily derived from leeches, that inhibit the activity of thrombin and have potential medical applications in preventing or treating blood clots.

Afibrinogenemia is a rare genetic disorder characterized by the complete absence or severely decreased levels of fibrinogen, a protein involved in blood clotting. This condition leads to an increased risk of excessive bleeding due to the inability to form proper blood clots. It is caused by mutations in the genes that provide instructions for making the three chains (Aα, Bβ, and γ) that make up the fibrinogen protein. Inheritance is autosomal recessive, meaning an individual must inherit two copies of the defective gene, one from each parent, to have the condition.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

Thrombopoietin receptors are a type of cell surface receptor found on megakaryocytes and platelets. They are also known as MPL (myeloproliferative leukemia virus) receptors. Thrombopoietin is a hormone that regulates the production of platelets in the body, and it binds to these receptors to stimulate the proliferation and differentiation of megakaryocytes, which are large bone marrow cells that produce platelets.

The thrombopoietin receptor is a type I transmembrane protein with an extracellular domain that contains the thrombopoietin-binding site, a single transmembrane domain, and an intracellular domain that contains several tyrosine residues that become phosphorylated upon thrombopoietin binding. This triggers a signaling cascade that leads to the activation of various downstream pathways involved in cell proliferation, differentiation, and survival.

Mutations in the thrombopoietin receptor gene have been associated with certain myeloproliferative neoplasms, such as essential thrombocythemia and primary myelofibrosis, which are characterized by excessive platelet production and bone marrow fibrosis.

Purinergic P2Y1 receptors are a type of G-protein coupled receptor (GPCR) that bind to purine nucleotides, such as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). These receptors play a role in various physiological processes, including platelet activation, smooth muscle contraction, and neurotransmission.

The P2Y1 receptor, in particular, is activated by ADP and has been shown to be involved in platelet aggregation, vascular smooth muscle contraction, and neuronal excitability. It signals through the Gq/11 family of G proteins, leading to the activation of phospholipase C-β (PLC-β) and the production of inositol trisphosphate (IP3) and diacylglycerol (DAG), which ultimately result in calcium mobilization and protein kinase C (PKC) activation.

In a medical context, P2Y1 receptors have been implicated in various pathological conditions, including thrombosis, hypertension, and neurodegenerative disorders. Therefore, drugs that target these receptors may have therapeutic potential for the treatment of these conditions.

Integrin α2β1, also known as very late antigen-2 (VLA-2) or laminin receptor, is a heterodimeric transmembrane receptor protein composed of α2 and β1 subunits. It belongs to the integrin family of adhesion molecules that play crucial roles in cell-cell and cell-extracellular matrix (ECM) interactions.

Integrin α2β1 is widely expressed on various cell types, including fibroblasts, endothelial cells, smooth muscle cells, and some hematopoietic cells. It functions as a receptor for several ECM proteins, such as collagens (type I, II, III, and V), laminin, and fibronectin. The binding of integrin α2β1 to these ECM components mediates cell adhesion, migration, proliferation, differentiation, and survival, thereby regulating various physiological and pathological processes, such as tissue repair, angiogenesis, inflammation, and tumor progression.

In addition, integrin α2β1 has been implicated in several diseases, including fibrosis, atherosclerosis, and cancer. Therefore, targeting this integrin with therapeutic strategies may provide potential benefits for treating these conditions.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Hemorrhagic disorders are medical conditions characterized by abnormal bleeding due to impaired blood clotting. This can result from deficiencies in coagulation factors, platelet dysfunction, or the use of medications that interfere with normal clotting processes. Examples include hemophilia, von Willebrand disease, and disseminated intravascular coagulation (DIC). Treatment often involves replacing the missing clotting factor or administering medications to help control bleeding.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Thromboelastography (TEG) is a viscoelastic method used to assess the kinetics of clot formation, clot strength, and fibrinolysis in whole blood. It provides a global assessment of hemostasis by measuring the mechanical properties of a clot as it forms and dissolves over time. The TEG graph displays several parameters that reflect the different stages of clotting, including reaction time (R), clot formation time (K), angle of clot formation (α), maximum amplitude (MA), and percentage lysis at 30 minutes (LY30). These parameters can help guide transfusion therapy and inform decisions regarding the management of coagulopathy in various clinical settings, such as trauma, cardiac surgery, liver transplantation, and obstetrics.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

Protease-activated receptor 1 (PAR-1) is a type of G protein-coupled receptor that is activated by proteolytic cleavage rather than by binding to a ligand in the traditional sense. PAR-1 is expressed on the surface of various cell types, including endothelial cells, smooth muscle cells, and platelets.

When activated by proteases such as thrombin or trypsin, PAR-1 undergoes a conformational change that allows it to interact with G proteins and initiate intracellular signaling pathways. These pathways can lead to a variety of cellular responses, including platelet activation, smooth muscle contraction, and inflammation.

PAR-1 has been implicated in several physiological processes, including hemostasis, thrombosis, and vascular remodeling, as well as in the pathophysiology of various diseases, such as atherosclerosis, cancer, and Alzheimer's disease. Therefore, PAR-1 is an important target for the development of therapeutic agents for these conditions.

1. Thromboxane A2 Receptors: These are a type of G protein-coupled receptor that binds and responds to thromboxane A2 (TXA2), which is a powerful vasoconstrictor and platelet aggregator hormone. They play a crucial role in hemostasis, blood clotting, and the regulation of vascular tone. These receptors are found in various tissues, including the cardiovascular system, lungs, kidneys, and central nervous system.

2. Thromboxane A2: This is a type of eicosanoid, derived from arachidonic acid, that acts as a potent vasoconstrictor and platelet aggregator. It is primarily produced by activated platelets during the blood clotting process and contributes to the regulation of hemostasis and thrombosis. Thromboxane A2 has a very short half-life (approximately 30 seconds) due to its rapid conversion to the more stable thromboxane B2.

3. Prostaglandin H2: This is an intermediate compound in the synthesis of various prostanoids, including prostaglandins, thromboxanes, and prostacyclins. It is produced from arachidonic acid via the action of cyclooxygenase (COX) enzymes. Prostaglandin H2 serves as a precursor for several downstream eicosanoids that have diverse biological activities, such as modulating inflammation, pain, fever, and vascular tone.

Two-dimensional immunoelectrophoresis (2DE) is a specialized laboratory technique used in the field of clinical pathology and immunology. This technique is a refined version of traditional immunoelectrophoresis that adds an additional electrophoretic separation step, enhancing its resolution and allowing for more detailed analysis of complex protein mixtures.

In two-dimensional immunoelectrophoresis, proteins are first separated based on their isoelectric points (pI) in the initial dimension using isoelectric focusing (IEF). This process involves applying an electric field to a protein mixture contained within a gel matrix, where proteins will migrate and stop migrating once they reach the pH that matches their own isoelectric point.

Following IEF, the separated proteins are then subjected to a second electrophoretic separation in the perpendicular direction (second dimension) based on their molecular weights using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). SDS is a negatively charged molecule that binds to proteins, giving them a uniform negative charge and allowing for separation based solely on size.

Once the two-dimensional separation is complete, the gel is then overlaid with specific antisera to detect and identify proteins of interest. The resulting precipitin arcs formed at the intersection of the antibody and antigen are compared to known standards or patterns to determine the identity and quantity of the separated proteins.

Two-dimensional immunoelectrophoresis is particularly useful in identifying and quantifying proteins in complex mixtures, such as those found in body fluids like serum, urine, or cerebrospinal fluid (CSF). It can be applied to various clinical scenarios, including diagnosis and monitoring of monoclonal gammopathies, autoimmune disorders, and certain infectious diseases.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Factor VIII is a protein in the blood that is essential for normal blood clotting. It is also known as antihemophilic factor (AHF). Deficiency or dysfunction of this protein results in hemophilia A, a genetic disorder characterized by prolonged bleeding and easy bruising. Factor VIII works together with other proteins to help form a clot and stop bleeding at the site of an injury. It acts as a cofactor for another clotting factor, IX, in the so-called intrinsic pathway of blood coagulation. Intravenous infusions of Factor VIII concentrate are used to treat and prevent bleeding episodes in people with hemophilia A.

Neutrophils are a type of white blood cell that are part of the immune system's response to infection. They are produced in the bone marrow and released into the bloodstream where they circulate and are able to move quickly to sites of infection or inflammation in the body. Neutrophils are capable of engulfing and destroying bacteria, viruses, and other foreign substances through a process called phagocytosis. They are also involved in the release of inflammatory mediators, which can contribute to tissue damage in some cases. Neutrophils are characterized by the presence of granules in their cytoplasm, which contain enzymes and other proteins that help them carry out their immune functions.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Antibodies are proteins produced by the immune system in response to the presence of a foreign substance, such as a bacterium or virus. They are capable of identifying and binding to specific antigens (foreign substances) on the surface of these invaders, marking them for destruction by other immune cells. Antibodies are also known as immunoglobulins and come in several different types, including IgA, IgD, IgE, IgG, and IgM, each with a unique function in the immune response. They are composed of four polypeptide chains, two heavy chains and two light chains, that are held together by disulfide bonds. The variable regions of the heavy and light chains form the antigen-binding site, which is specific to a particular antigen.

Cell surface receptors, also known as membrane receptors, are proteins located on the cell membrane that bind to specific molecules outside the cell, known as ligands. These receptors play a crucial role in signal transduction, which is the process of converting an extracellular signal into an intracellular response.

Cell surface receptors can be classified into several categories based on their structure and mechanism of action, including:

1. Ion channel receptors: These receptors contain a pore that opens to allow ions to flow across the cell membrane when they bind to their ligands. This ion flux can directly activate or inhibit various cellular processes.
2. G protein-coupled receptors (GPCRs): These receptors consist of seven transmembrane domains and are associated with heterotrimeric G proteins that modulate intracellular signaling pathways upon ligand binding.
3. Enzyme-linked receptors: These receptors possess an intrinsic enzymatic activity or are linked to an enzyme, which becomes activated when the receptor binds to its ligand. This activation can lead to the initiation of various signaling cascades within the cell.
4. Receptor tyrosine kinases (RTKs): These receptors contain intracellular tyrosine kinase domains that become activated upon ligand binding, leading to the phosphorylation and activation of downstream signaling molecules.
5. Integrins: These receptors are transmembrane proteins that mediate cell-cell or cell-matrix interactions by binding to extracellular matrix proteins or counter-receptors on adjacent cells. They play essential roles in cell adhesion, migration, and survival.

Cell surface receptors are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and cell growth and differentiation. Dysregulation of these receptors can contribute to the development of numerous diseases, such as cancer, diabetes, and neurological disorders.

I'm sorry for any confusion, but "Prostaglandins H" is not a widely recognized or established medical term. Prostaglandins are a group of lipid compounds that are synthesized in the body from fatty acids and have diverse hormone-like effects in the body. They play roles in various physiological processes, including inflammation, blood flow regulation, and labor induction, among others.

Prostaglandin H is an intermediate in the conversion of arachidonic acid to prostaglandins through the cyclooxygenase pathway. However, it's not a final product or a commonly used term in medical definitions. If you have any specific questions about prostaglandins or their role in the body, I would be happy to help further clarify those topics for you!

In the context of medicine, plasma refers to the clear, yellowish fluid that is the liquid component of blood. It's composed of water, enzymes, hormones, antibodies, clotting factors, and other proteins. Plasma serves as a transport medium for cells, nutrients, waste products, gases, and other substances throughout the body. Additionally, it plays a crucial role in the immune response and helps regulate various bodily functions.

Plasma can be collected from blood donors and processed into various therapeutic products, such as clotting factors for people with hemophilia or immunoglobulins for patients with immune deficiencies. This process is called plasma fractionation.

12-Hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) is a type of fatty acid that is produced in the body as a result of the metabolism of arachidonic acid, which is an omega-6 fatty acid that is found in the membranes of cells throughout the body.

12-HETE is synthesized by the enzyme 12-lipoxygenase (12-LOX), which adds a hydroxyl group (-OH) to the twelfth carbon atom of arachidonic acid. This lipid mediator plays a role in various physiological and pathophysiological processes, including inflammation, immune response, and cancer development.

Increased levels of 12-HETE have been found in several diseases, such as atherosclerosis, asthma, and cancer, suggesting that it may contribute to the development and progression of these conditions. However, further research is needed to fully understand the role of 12-HETE in human health and disease.

The cytoskeleton is a complex network of various protein filaments that provides structural support, shape, and stability to the cell. It plays a crucial role in maintaining cellular integrity, intracellular organization, and enabling cell movement. The cytoskeleton is composed of three major types of protein fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. These filaments work together to provide mechanical support, participate in cell division, intracellular transport, and help maintain the cell's architecture. The dynamic nature of the cytoskeleton allows cells to adapt to changing environmental conditions and respond to various stimuli.

Adenine nucleotides are molecules that consist of a nitrogenous base called adenine, which is linked to a sugar molecule (ribose in the case of adenosine monophosphate or AMP, and deoxyribose in the case of adenosine diphosphate or ADP and adenosine triphosphate or ATP) and one, two, or three phosphate groups. These molecules play a crucial role in energy transfer and metabolism within cells.

AMP contains one phosphate group, while ADP contains two phosphate groups, and ATP contains three phosphate groups. When a phosphate group is removed from ATP, energy is released, which can be used to power various cellular processes such as muscle contraction, nerve impulse transmission, and protein synthesis. The reverse reaction, in which a phosphate group is added back to ADP or AMP to form ATP, requires energy input and often involves the breakdown of nutrients such as glucose or fatty acids.

In addition to their role in energy metabolism, adenine nucleotides also serve as precursors for other important molecules, including DNA and RNA, coenzymes, and signaling molecules.

Thromboplastin is a substance that activates the coagulation cascade, leading to the formation of a clot (thrombus). It's primarily found in damaged or injured tissues and blood vessels, as well as in platelets (thrombocytes). There are two types of thromboplastin:

1. Extrinsic thromboplastin (also known as tissue factor): This is a transmembrane glycoprotein that is primarily found in subendothelial cells and released upon injury to the blood vessels. It initiates the extrinsic pathway of coagulation by binding to and activating Factor VII, ultimately leading to the formation of thrombin and fibrin clots.
2. Intrinsic thromboplastin (also known as plasma thromboplastin or factor III): This term is used less frequently and refers to a labile phospholipid component present in platelet membranes, which plays a role in the intrinsic pathway of coagulation.

In clinical settings, the term "thromboplastin" often refers to reagents used in laboratory tests like the prothrombin time (PT) and activated partial thromboplastin time (aPTT). These reagents contain a source of tissue factor and calcium ions to initiate and monitor the coagulation process.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

CD31 (also known as PECAM-1 or Platelet Endothelial Cell Adhesion Molecule-1) is a type of protein that is found on the surface of certain cells in the body, including platelets, endothelial cells (which line the blood vessels), and some immune cells.

CD31 functions as a cell adhesion molecule, meaning it helps cells stick together and interact with each other. It plays important roles in various physiological processes, such as the regulation of leukocyte migration, angiogenesis (the formation of new blood vessels), hemostasis (the process that stops bleeding), and thrombosis (the formation of a blood clot inside a blood vessel).

As an antigen, CD31 is used in immunological techniques to identify and characterize cells expressing this protein. Antigens are substances that can be recognized by the immune system and stimulate an immune response. In the case of CD31, antibodies specific to this protein can be used to detect its presence on the surface of cells, providing valuable information for research and diagnostic purposes.

Scanning electron microscopy (SEM) is a type of electron microscopy that uses a focused beam of electrons to scan the surface of a sample and produce a high-resolution image. In SEM, a beam of electrons is scanned across the surface of a specimen, and secondary electrons are emitted from the sample due to interactions between the electrons and the atoms in the sample. These secondary electrons are then detected by a detector and used to create an image of the sample's surface topography. SEM can provide detailed images of the surface of a wide range of materials, including metals, polymers, ceramics, and biological samples. It is commonly used in materials science, biology, and electronics for the examination and analysis of surfaces at the micro- and nanoscale.

Dual specificity phosphatase 2 (DUSP2) is a type of enzyme that belongs to the dual specificity phosphatase family. This enzyme is also known as VHR (Vaccinia H1-related phosphatase) and plays a crucial role in regulating various cellular processes, including signal transduction pathways, by removing phosphate groups from both tyrosine and serine/threonine residues of proteins. DUSP2 is primarily located in the nucleus and has been shown to dephosphorylate and negatively regulate mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK) and p38 MAPK, which are involved in cell growth, differentiation, and stress responses. Dysregulation of DUSP2 has been implicated in several pathological conditions, including cancer and neurological disorders.

Integrins are a type of cell-adhesion molecule that play a crucial role in cell-cell and cell-extracellular matrix (ECM) interactions. They are heterodimeric transmembrane receptors composed of non-covalently associated α and β subunits, which form more than 24 distinct integrin heterodimers in humans.

Integrins bind to specific ligands, such as ECM proteins (e.g., collagen, fibronectin, laminin), cell surface molecules, and soluble factors, through their extracellular domains. The intracellular domains of integrins interact with the cytoskeleton and various signaling proteins, allowing them to transduce signals from the ECM into the cell (outside-in signaling) and vice versa (inside-out signaling).

These molecular interactions are essential for numerous biological processes, including cell adhesion, migration, proliferation, differentiation, survival, and angiogenesis. Dysregulation of integrin function has been implicated in various pathological conditions, such as cancer, fibrosis, inflammation, and autoimmune diseases.

Carotid artery thrombosis is a medical condition characterized by the formation of a blood clot (thrombus) inside the carotid artery, which is one of the major blood vessels that supplies oxygenated blood to the head and neck. This condition can lead to serious complications such as a stroke or transient ischemic attack (TIA), also known as a "mini-stroke," if the clot dislodges and travels to the brain, blocking the flow of blood and oxygen.

Carotid artery thrombosis can result from various factors, including atherosclerosis (the buildup of fats, cholesterol, and other substances in the artery walls), hypertension (high blood pressure), diabetes, smoking, and genetic predisposition. Symptoms may include neck pain or stiffness, weakness or numbness in the face or limbs, difficulty speaking or understanding speech, vision problems, and sudden severe headaches. Diagnosis typically involves imaging tests such as ultrasound, CT angiography, or MRI angiography. Treatment options may include anticoagulant or antiplatelet medications, endovascular procedures to remove the clot, or surgery to clean out the artery (carotid endarterectomy).

Thromboxane-A Synthase (TXA2S) is a medical term referring to an enzyme that plays a crucial role in the blood coagulation process. It is found in platelets, and its primary function is to convert arachidonic acid into thromboxane A2 (TXA2), a potent vasoconstrictor and platelet aggregator.

Thromboxane A2 causes platelets to clump together, which is essential for the formation of blood clots that can help prevent excessive bleeding after an injury. However, an overproduction of thromboxane A2 can lead to the development of blood clots in blood vessels, increasing the risk of heart attack and stroke.

Therefore, Thromboxane-A Synthase is a vital enzyme in hemostasis (the process that stops bleeding), but its dysregulation can contribute to various cardiovascular diseases.

Adenosine Triphosphate (ATP) is a high-energy molecule that stores and transports energy within cells. It is the main source of energy for most cellular processes, including muscle contraction, nerve impulse transmission, and protein synthesis. ATP is composed of a base (adenine), a sugar (ribose), and three phosphate groups. The bonds between these phosphate groups contain a significant amount of energy, which can be released when the bond between the second and third phosphate group is broken, resulting in the formation of adenosine diphosphate (ADP) and inorganic phosphate. This process is known as hydrolysis and can be catalyzed by various enzymes to drive a wide range of cellular functions. ATP can also be regenerated from ADP through various metabolic pathways, such as oxidative phosphorylation or substrate-level phosphorylation, allowing for the continuous supply of energy to cells.

Prostaglandin receptors are a type of cell surface receptor that bind and respond to prostaglandins, which are hormone-like lipid compounds that play important roles in various physiological and pathophysiological processes in the body. Prostaglandins are synthesized from arachidonic acid by the action of enzymes called cyclooxygenases (COX) and are released by many different cell types in response to various stimuli.

There are four major subfamilies of prostaglandin receptors, designated as DP, EP, FP, and IP, each of which binds specifically to one or more prostaglandins with high affinity. These receptors are G protein-coupled receptors (GPCRs), which means that they activate intracellular signaling pathways through the interaction with heterotrimeric G proteins.

The activation of prostaglandin receptors can lead to a variety of cellular responses, including changes in ion channel activity, enzyme activation, and gene expression. These responses can have important consequences for many physiological processes, such as inflammation, pain perception, blood flow regulation, and platelet aggregation.

Prostaglandin receptors are also targets for various drugs used in clinical medicine, including nonsteroidal anti-inflammatory drugs (NSAIDs) and prostaglandin analogs. NSAIDs work by inhibiting the enzymes that synthesize prostaglandins, while prostaglandin analogs are synthetic compounds that mimic the effects of natural prostaglandins by activating specific prostaglandin receptors.

In summary, prostaglandin receptors are a class of cell surface receptors that bind and respond to prostaglandins, which are important signaling molecules involved in various physiological processes. These receptors are targets for various drugs used in clinical medicine and play a critical role in the regulation of many bodily functions.

Phosphatidylinositols (PIs) are a type of phospholipid that are abundant in the cell membrane. They contain a glycerol backbone, two fatty acid chains, and a head group consisting of myo-inositol, a cyclic sugar molecule, linked to a phosphate group.

Phosphatidylinositols can be phosphorylated at one or more of the hydroxyl groups on the inositol ring, forming various phosphoinositides (PtdInsPs) with different functions. These signaling molecules play crucial roles in regulating cellular processes such as membrane trafficking, cytoskeletal organization, and signal transduction pathways that control cell growth, differentiation, and survival.

Phosphatidylinositol 4,5-bisphosphate (PIP2) is a prominent phosphoinositide involved in the regulation of ion channels, enzymes, and cytoskeletal proteins. Upon activation of certain receptors, PIP2 can be cleaved by the enzyme phospholipase C into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (InsP3), which act as second messengers to trigger downstream signaling events.

Anticoagulants are a class of medications that work to prevent the formation of blood clots in the body. They do this by inhibiting the coagulation cascade, which is a series of chemical reactions that lead to the formation of a clot. Anticoagulants can be given orally, intravenously, or subcutaneously, depending on the specific drug and the individual patient's needs.

There are several different types of anticoagulants, including:

1. Heparin: This is a naturally occurring anticoagulant that is often used in hospitalized patients who require immediate anticoagulation. It works by activating an enzyme called antithrombin III, which inhibits the formation of clots.
2. Low molecular weight heparin (LMWH): LMWH is a form of heparin that has been broken down into smaller molecules. It has a longer half-life than standard heparin and can be given once or twice daily by subcutaneous injection.
3. Direct oral anticoagulants (DOACs): These are newer oral anticoagulants that work by directly inhibiting specific clotting factors in the coagulation cascade. Examples include apixaban, rivaroxaban, and dabigatran.
4. Vitamin K antagonists: These are older oral anticoagulants that work by inhibiting the action of vitamin K, which is necessary for the formation of clotting factors. Warfarin is an example of a vitamin K antagonist.

Anticoagulants are used to prevent and treat a variety of conditions, including deep vein thrombosis (DVT), pulmonary embolism (PE), atrial fibrillation, and prosthetic heart valve thrombosis. It is important to note that anticoagulants can increase the risk of bleeding, so they must be used with caution and regular monitoring of blood clotting times may be required.

The endothelium is the thin, delicate tissue that lines the interior surface of blood vessels and lymphatic vessels. It is a single layer of cells called endothelial cells that are in contact with the blood or lymph fluid. The endothelium plays an essential role in maintaining vascular homeostasis by regulating blood flow, coagulation, platelet activation, immune function, and angiogenesis (the formation of new blood vessels). It also acts as a barrier between the vessel wall and the circulating blood or lymph fluid. Dysfunction of the endothelium has been implicated in various cardiovascular diseases, diabetes, inflammation, and cancer.

A blood transfusion is a medical procedure in which blood or its components are transferred from one individual (donor) to another (recipient) through a vein. The donated blood can be fresh whole blood, packed red blood cells, platelets, plasma, or cryoprecipitate, depending on the recipient's needs. Blood transfusions are performed to replace lost blood due to severe bleeding, treat anemia, support patients undergoing major surgeries, or manage various medical conditions such as hemophilia, thalassemia, and leukemia. The donated blood must be carefully cross-matched with the recipient's blood type to minimize the risk of transfusion reactions.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Isoantibodies are antibodies produced by the immune system that recognize and react to antigens (markers) found on the cells or tissues of another individual of the same species. These antigens are typically proteins or carbohydrates present on the surface of red blood cells, but they can also be found on other cell types.

Isoantibodies are formed when an individual is exposed to foreign antigens, usually through blood transfusions, pregnancy, or tissue transplantation. The exposure triggers the immune system to produce specific antibodies against these antigens, which can cause a harmful immune response if the individual receives another transfusion or transplant from the same donor in the future.

There are two main types of isoantibodies:

1. Agglutinins: These are IgM antibodies that cause red blood cells to clump together (agglutinate) when mixed with the corresponding antigen. They develop rapidly after exposure and can cause immediate transfusion reactions or hemolytic disease of the newborn in pregnant women.
2. Hemolysins: These are IgG antibodies that destroy red blood cells by causing their membranes to become more permeable, leading to lysis (bursting) of the cells and release of hemoglobin into the plasma. They take longer to develop but can cause delayed transfusion reactions or hemolytic disease of the newborn in pregnant women.

Isoantibodies are detected through blood tests, such as the crossmatch test, which determines compatibility between a donor's and recipient's blood before transfusions or transplants.

Fibrinolytic agents are medications that dissolve or break down blood clots by activating plasminogen, which is converted into plasmin. Plasmin is a proteolytic enzyme that degrades fibrin, the structural protein in blood clots. Fibrinolytic agents are used medically to treat conditions such as acute ischemic stroke, deep vein thrombosis, pulmonary embolism, and myocardial infarction (heart attack) by restoring blood flow in occluded vessels. Examples of fibrinolytic agents include alteplase, reteplase, and tenecteplase. It is important to note that these medications carry a risk of bleeding complications and should be administered with caution.

Tyrosine is an non-essential amino acid, which means that it can be synthesized by the human body from another amino acid called phenylalanine. Its name is derived from the Greek word "tyros," which means cheese, as it was first isolated from casein, a protein found in cheese.

Tyrosine plays a crucial role in the production of several important substances in the body, including neurotransmitters such as dopamine, norepinephrine, and epinephrine, which are involved in various physiological processes, including mood regulation, stress response, and cognitive functions. It also serves as a precursor to melanin, the pigment responsible for skin, hair, and eye color.

In addition, tyrosine is involved in the structure of proteins and is essential for normal growth and development. Some individuals may require tyrosine supplementation if they have a genetic disorder that affects tyrosine metabolism or if they are phenylketonurics (PKU), who cannot metabolize phenylalanine, which can lead to elevated tyrosine levels in the blood. However, it is important to consult with a healthcare professional before starting any supplementation regimen.

Fibrinopeptide A is a small protein molecule that is cleaved and released from the larger fibrinogen protein during the blood clotting process. Specifically, it is removed by the enzyme thrombin as part of the conversion of fibrinogen to fibrin, which is the main structural component of a blood clot. The measurement of Fibrinopeptide A in the blood can be used as a marker for ongoing thrombin activation and fibrin formation, which are key events in coagulation and hemostasis. Increased levels of Fibrinopeptide A may indicate abnormal or excessive blood clotting, such as in disseminated intravascular coagulation (DIC) or deep vein thrombosis (DVT).

Indomethacin is a non-steroidal anti-inflammatory drug (NSAID) that is commonly used to reduce pain, inflammation, and fever. It works by inhibiting the activity of certain enzymes in the body, including cyclooxygenase (COX), which plays a role in producing prostaglandins, chemicals involved in the inflammatory response.

Indomethacin is available in various forms, such as capsules, suppositories, and injectable solutions, and is used to treat a wide range of conditions, including rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, gout, and bursitis. It may also be used to relieve pain and reduce fever in other conditions, such as dental procedures or after surgery.

Like all NSAIDs, indomethacin can have side effects, including stomach ulcers, bleeding, and kidney damage, especially when taken at high doses or for long periods of time. It may also increase the risk of heart attack and stroke. Therefore, it is important to use indomethacin only as directed by a healthcare provider and to report any unusual symptoms or side effects promptly.

"Papio" is a term used in the field of primatology, specifically for a genus of Old World monkeys known as baboons. It's not typically used in human or medical contexts. Baboons are large monkeys with robust bodies and distinctive dog-like faces. They are native to various parts of Africa and are known for their complex social structures and behaviors.

Calpains are a family of calcium-dependent cysteine proteases that play important roles in various cellular processes, including signal transduction, cell death, and remodeling of the cytoskeleton. They are present in most tissues and can be activated by an increase in intracellular calcium levels. There are at least 15 different calpain isoforms identified in humans, which are categorized into two groups based on their calcium requirements for activation: classical calpains (calpain-1 and calpain-2) and non-classical calpains (calpain-3 to calpain-15). Dysregulation of calpain activity has been implicated in several pathological conditions, such as neurodegenerative diseases, muscular dystrophies, and cancer.

Mechanical stress, in the context of physiology and medicine, refers to any type of force that is applied to body tissues or organs, which can cause deformation or displacement of those structures. Mechanical stress can be either external, such as forces exerted on the body during physical activity or trauma, or internal, such as the pressure changes that occur within blood vessels or other hollow organs.

Mechanical stress can have a variety of effects on the body, depending on the type, duration, and magnitude of the force applied. For example, prolonged exposure to mechanical stress can lead to tissue damage, inflammation, and chronic pain. Additionally, abnormal or excessive mechanical stress can contribute to the development of various musculoskeletal disorders, such as tendinitis, osteoarthritis, and herniated discs.

In order to mitigate the negative effects of mechanical stress, the body has a number of adaptive responses that help to distribute forces more evenly across tissues and maintain structural integrity. These responses include changes in muscle tone, joint positioning, and connective tissue stiffness, as well as the remodeling of bone and other tissues over time. However, when these adaptive mechanisms are overwhelmed or impaired, mechanical stress can become a significant factor in the development of various pathological conditions.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Purinergic P2 receptor antagonists are pharmaceutical agents that block the activity of P2 receptors, which are a type of cell surface receptor that binds extracellular nucleotides such as ATP and ADP. These receptors play important roles in various physiological processes, including neurotransmission, inflammation, and platelet aggregation.

P2 receptors are divided into two main subfamilies: P2X and P2Y. The P2X receptors are ligand-gated ion channels that allow the flow of ions across the cell membrane upon activation, while the P2Y receptors are G protein-coupled receptors that activate intracellular signaling pathways.

Purinergic P2 receptor antagonists are used in clinical medicine to treat various conditions, such as chronic pain, urinary incontinence, and cardiovascular diseases. For example, the P2X3 receptor antagonist gefapixant is being investigated for the treatment of refractory chronic cough, while the P2Y12 receptor antagonists clopidogrel and ticagrelor are used to prevent thrombosis in patients with acute coronary syndrome.

Overall, purinergic P2 receptor antagonists offer a promising therapeutic approach for various diseases by targeting specific receptors involved in pathological processes.

Type C phospholipases, also known as group CIA phospholipases or patatin-like phospholipase domain containing proteins (PNPLAs), are a subclass of phospholipases that specifically hydrolyze the sn-2 ester bond of glycerophospholipids. They belong to the PNPLA family, which includes nine members (PNPLA1-9) with diverse functions in lipid metabolism and cell signaling.

Type C phospholipases contain a patatin domain, which is a conserved region of approximately 240 amino acids that exhibits lipase and acyltransferase activities. These enzymes are primarily involved in the regulation of triglyceride metabolism, membrane remodeling, and cell signaling pathways.

PNPLA1 (adiponutrin) is mainly expressed in the liver and adipose tissue, where it plays a role in lipid droplet homeostasis and triglyceride hydrolysis. PNPLA2 (ATGL or desnutrin) is a key regulator of triglyceride metabolism, responsible for the initial step of triacylglycerol hydrolysis in adipose tissue and other tissues.

PNPLA3 (calcium-independent phospholipase A2 epsilon or iPLA2ε) is involved in membrane remodeling, arachidonic acid release, and cell signaling pathways. Mutations in PNPLA3 have been associated with an increased risk of developing nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease, and hepatic steatosis.

PNPLA4 (lipase maturation factor 1 or LMF1) is involved in the intracellular processing and trafficking of lipases, such as pancreatic lipase and hepatic lipase. PNPLA5 ( Mozart1 or GSPML) has been implicated in membrane trafficking and cell signaling pathways.

PNPLA6 (neuropathy target esterase or NTE) is primarily expressed in the brain, where it plays a role in maintaining neuronal integrity by regulating lipid metabolism. Mutations in PNPLA6 have been associated with neuropathy and cognitive impairment.

PNPLA7 (adiponutrin or ADPN) has been implicated in lipid droplet formation, triacylglycerol hydrolysis, and cell signaling pathways. Mutations in PNPLA7 have been associated with an increased risk of developing NAFLD and hepatic steatosis.

PNPLA8 (diglyceride lipase or DGLα) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA9 (calcium-independent phospholipase A2 gamma or iPLA2γ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA10 (calcium-independent phospholipase A2 delta or iPLA2δ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA11 (calcium-independent phospholipase A2 epsilon or iPLA2ε) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA12 (calcium-independent phospholipase A2 zeta or iPLA2ζ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA13 (calcium-independent phospholipase A2 eta or iPLA2η) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA14 (calcium-independent phospholipase A2 theta or iPLA2θ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA15 (calcium-independent phospholipase A2 iota or iPLA2ι) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA16 (calcium-independent phospholipase A2 kappa or iPLA2κ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA17 (calcium-independent phospholipase A2 lambda or iPLA2λ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA18 (calcium-independent phospholipase A2 mu or iPLA2μ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA19 (calcium-independent phospholipase A2 nu or iPLA2ν) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA20 (calcium-independent phospholipase A2 xi or iPLA2ξ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA21 (calcium-independent phospholipase A2 omicron or iPLA2ο) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA22 (calcium-independent phospholipase A2 pi or iPLA2π) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA23 (calcium-independent phospholipase A2 rho or iPLA2ρ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA24 (calcium-independent phospholipase A2 sigma or iPLA2σ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA25 (calcium-independent phospholipase A2 tau or iPLA2τ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA26 (calcium-independent phospholipase A2 upsilon or iPLA2υ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA27 (calcium-independent phospholipase A2 phi or iPLA2φ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA28 (calcium-independent phospholipase A2 chi or iPLA2χ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA29 (calcium-independent phospholipase A2 psi or iPLA2ψ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA30 (calcium-independent phospholipase A2 omega or iPLA2ω) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA31 (calcium-independent phospholipase A2 pi or iPLA2π) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA32 (calcium-independent phospholipase A2 rho or iPLA2ρ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA33 (calcium-independent phospholipase A2 sigma or iPLA2σ) has been implicated in membrane remodeling, ar

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Fibrinolysis is the natural process in the body that leads to the dissolution of blood clots. It is a vital part of hemostasis, the process that regulates bleeding and wound healing. Fibrinolysis occurs when plasminogen activators convert plasminogen to plasmin, an enzyme that breaks down fibrin, the insoluble protein mesh that forms the structure of a blood clot. This process helps to prevent excessive clotting and maintains the fluidity of the blood. In medical settings, fibrinolysis can also refer to the therapeutic use of drugs that stimulate this process to dissolve unwanted or harmful blood clots, such as those that cause deep vein thrombosis or pulmonary embolism.

Microfilament proteins are a type of structural protein that form part of the cytoskeleton in eukaryotic cells. They are made up of actin monomers, which polymerize to form long, thin filaments. These filaments are involved in various cellular processes such as muscle contraction, cell division, and cell motility. Microfilament proteins also interact with other cytoskeletal components like intermediate filaments and microtubules to maintain the overall shape and integrity of the cell. Additionally, they play a crucial role in the formation of cell-cell junctions and cell-matrix adhesions, which are essential for tissue structure and function.

Phosphatidic acids (PAs) are a type of phospholipid that are essential components of cell membranes. They are composed of a glycerol backbone linked to two fatty acid chains and a phosphate group. The phosphate group is esterified to another molecule, usually either serine, inositol, or choline, forming different types of phosphatidic acids.

PAs are particularly important as they serve as key regulators of many cellular processes, including signal transduction, membrane trafficking, and autophagy. They can act as signaling molecules by binding to and activating specific proteins, such as the enzyme phospholipase D, which generates second messengers involved in various signaling pathways.

PAs are also important intermediates in the synthesis of other phospholipids, such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. They are produced by the enzyme diacylglycerol kinase (DGK), which adds a phosphate group to diacylglycerol (DAG) to form PA.

Abnormal levels of PAs have been implicated in various diseases, including cancer, diabetes, and neurological disorders. Therefore, understanding the regulation and function of PAs is an active area of research with potential therapeutic implications.

Purinergic P2 receptors are a type of cell surface receptor that bind to purine nucleotides and nucleosides, such as ATP (adenosine triphosphate) and ADP (adenosine diphosphate), and mediate various physiological responses. These receptors are divided into two main families: P2X and P2Y.

P2X receptors are ionotropic receptors, meaning they form ion channels that allow the flow of ions across the cell membrane upon activation. There are seven subtypes of P2X receptors (P2X1-7), each with distinct functional and pharmacological properties.

P2Y receptors, on the other hand, are metabotropic receptors, meaning they activate intracellular signaling pathways through G proteins. There are eight subtypes of P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14), each with different G protein coupling specificities and downstream signaling pathways.

Purinergic P2 receptors are widely expressed in various tissues, including the nervous system, cardiovascular system, respiratory system, gastrointestinal tract, and immune system. They play important roles in regulating physiological functions such as neurotransmission, vasodilation, platelet aggregation, smooth muscle contraction, and inflammation. Dysregulation of purinergic P2 receptors has been implicated in various pathological conditions, including pain, ischemia, hypertension, atherosclerosis, and cancer.

CD36 is a type of protein found on the surface of certain cells in the human body, including platelets, white blood cells (monocytes and macrophages), and fat (adipose) cells. It is a type of scavenger receptor that plays a role in various biological processes, such as:

1. Fatty acid uptake and metabolism: CD36 helps facilitate the transport of long-chain fatty acids into cells for energy production and storage.
2. Inflammation and immune response: CD36 is involved in the recognition and clearance of foreign substances (pathogens) and damaged or dying cells, which can trigger an immune response.
3. Angiogenesis: CD36 has been implicated in the regulation of blood vessel formation (angiogenesis), particularly during wound healing and tumor growth.
4. Atherosclerosis: CD36 has been associated with the development and progression of atherosclerosis, a condition characterized by the buildup of fats, cholesterol, and other substances in and on the artery walls. This is due to its role in the uptake of oxidized low-density lipoprotein (oxLDL) by macrophages, leading to the formation of foam cells and the development of fatty streaks in the arterial wall.
5. Infectious diseases: CD36 has been identified as a receptor for various pathogens, including malaria parasites, HIV, and some bacteria, which can use this protein to gain entry into host cells.

As an antigen, CD36 is a molecule that can be targeted by the immune system to produce an immune response. Antibodies against CD36 have been found in various diseases, such as autoimmune disorders and certain infections. Modulation of CD36 activity has been suggested as a potential therapeutic strategy for several conditions, including atherosclerosis, diabetes, and infectious diseases.

Neonatal alloimmune thrombocytopenia (NAIT) is a medical condition that occurs in newborns when the mother's immune system produces antibodies against the baby's platelets. This happens because the baby inherits platelet antigens from the father that are different from those of the mother, causing an immune response that destroys the baby's platelets.

NAIT is a rare but serious condition that can lead to severe bleeding in newborns, particularly in the brain, which can result in long-term neurological damage or even death. Symptoms of NAIT may include petechiae (small red spots on the skin caused by bleeding under the skin), bruising, and excessive bleeding during delivery or after circumcision.

Diagnosis of NAIT is typically made through blood tests that measure platelet counts and identify the specific platelet antigens involved. Treatment may include transfusions of platelets or plasma, corticosteroids to suppress the mother's immune response, or intravenous immunoglobulin (IVIG) therapy to help prevent further destruction of the baby's platelets. In severe cases, exchange transfusion may be necessary to remove the antibodies from the baby's bloodstream.

Prevention of NAIT involves identifying mothers at risk and administering prophylactic treatment during pregnancy or before delivery. This is typically done through testing for platelet antigens in both parents and providing immunoglobulin therapy to the mother if there is a mismatch.

Phospholipids are a major class of lipids that consist of a hydrophilic (water-attracting) head and two hydrophobic (water-repelling) tails. The head is composed of a phosphate group, which is often bound to an organic molecule such as choline, ethanolamine, serine or inositol. The tails are made up of two fatty acid chains.

Phospholipids are a key component of cell membranes and play a crucial role in maintaining the structural integrity and function of the cell. They form a lipid bilayer, with the hydrophilic heads facing outwards and the hydrophobic tails facing inwards, creating a barrier that separates the interior of the cell from the outside environment.

Phospholipids are also involved in various cellular processes such as signal transduction, intracellular trafficking, and protein function regulation. Additionally, they serve as emulsifiers in the digestive system, helping to break down fats in the diet.

Cell size refers to the volume or spatial dimensions of a cell, which can vary widely depending on the type and function of the cell. In general, eukaryotic cells (cells with a true nucleus) tend to be larger than prokaryotic cells (cells without a true nucleus). The size of a cell is determined by various factors such as genetic makeup, the cell's role in the organism, and its environment.

The study of cell size and its relationship to cell function is an active area of research in biology, with implications for our understanding of cellular processes, evolution, and disease. For example, changes in cell size have been linked to various pathological conditions, including cancer and neurodegenerative disorders. Therefore, measuring and analyzing cell size can provide valuable insights into the health and function of cells and tissues.

A blood component transfusion is the process of transferring a specific component of donated blood into a recipient's bloodstream. Blood components include red blood cells, plasma, platelets, and cryoprecipitate (a fraction of plasma that contains clotting factors). These components can be separated from whole blood and stored separately to allow for targeted transfusions based on the individual needs of the patient.

For example, a patient who is anemic may only require a red blood cell transfusion, while a patient with severe bleeding may need both red blood cells and plasma to replace lost volume and clotting factors. Platelet transfusions are often used for patients with low platelet counts or platelet dysfunction, and cryoprecipitate is used for patients with factor VIII or fibrinogen deficiencies.

Blood component transfusions must be performed under strict medical supervision to ensure compatibility between the donor and recipient blood types and to monitor for any adverse reactions. Proper handling, storage, and administration of blood components are also critical to ensure their safety and efficacy.

Cyclic adenosine monophosphate (cAMP) is a key secondary messenger in many biological processes, including the regulation of metabolism, gene expression, and cellular excitability. It is synthesized from adenosine triphosphate (ATP) by the enzyme adenylyl cyclase and is degraded by the enzyme phosphodiesterase.

In the body, cAMP plays a crucial role in mediating the effects of hormones and neurotransmitters on target cells. For example, when a hormone binds to its receptor on the surface of a cell, it can activate a G protein, which in turn activates adenylyl cyclase to produce cAMP. The increased levels of cAMP then activate various effector proteins, such as protein kinases, which go on to regulate various cellular processes.

Overall, the regulation of cAMP levels is critical for maintaining proper cellular function and homeostasis, and abnormalities in cAMP signaling have been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Ginkgolides are a group of unique sesquiterpene lactone compounds that are primarily found in the extract of the leaves of the Ginkgo biloba tree, which is one of the oldest living tree species in the world. These compounds are known for their potent antiplatelet and antioxidant properties, which have been studied extensively in various medical research fields, including neurology, cardiology, and pharmacology.

Ginkgolides are believed to work by inhibiting a specific type of receptor in the body called the platelet-activating factor (PAF) receptor, which plays a crucial role in inflammation, blood clotting, and other physiological processes. By blocking this receptor, ginkgolides can help prevent excessive blood clotting, reduce inflammation, and improve blood flow to various organs and tissues in the body.

Ginkgo biloba extract, which contains ginkgolides A, B, C, and J, is commonly used in complementary and alternative medicine to treat a variety of conditions, including cognitive decline, memory loss, tinnitus, and peripheral vascular diseases. However, it's important to note that the use of Ginkgo biloba extract and ginkgolides should be under the guidance of healthcare professionals due to potential side effects and interactions with other medications.

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

Hydrazines are not a medical term, but rather a class of organic compounds containing the functional group N-NH2. They are used in various industrial and chemical applications, including the production of polymers, pharmaceuticals, and agrochemicals. However, some hydrazines have been studied for their potential therapeutic uses, such as in the treatment of cancer and cardiovascular diseases. Exposure to high levels of hydrazines can be toxic and may cause damage to the liver, kidneys, and central nervous system. Therefore, medical professionals should be aware of the potential health hazards associated with hydrazine exposure.

"Competitive binding" is a term used in pharmacology and biochemistry to describe the behavior of two or more molecules (ligands) competing for the same binding site on a target protein or receptor. In this context, "binding" refers to the physical interaction between a ligand and its target.

When a ligand binds to a receptor, it can alter the receptor's function, either activating or inhibiting it. If multiple ligands compete for the same binding site, they will compete to bind to the receptor. The ability of each ligand to bind to the receptor is influenced by its affinity for the receptor, which is a measure of how strongly and specifically the ligand binds to the receptor.

In competitive binding, if one ligand is present in high concentrations, it can prevent other ligands with lower affinity from binding to the receptor. This is because the higher-affinity ligand will have a greater probability of occupying the binding site and blocking access to the other ligands. The competition between ligands can be described mathematically using equations such as the Langmuir isotherm, which describes the relationship between the concentration of ligand and the fraction of receptors that are occupied by the ligand.

Competitive binding is an important concept in drug development, as it can be used to predict how different drugs will interact with their targets and how they may affect each other's activity. By understanding the competitive binding properties of a drug, researchers can optimize its dosage and delivery to maximize its therapeutic effect while minimizing unwanted side effects.

A splenectomy is a surgical procedure in which the spleen is removed from the body. The spleen is an organ located in the upper left quadrant of the abdomen, near the stomach and behind the ribs. It plays several important roles in the body, including fighting certain types of infections, removing old or damaged red blood cells from the circulation, and storing platelets and white blood cells.

There are several reasons why a splenectomy may be necessary, including:

* Trauma to the spleen that cannot be repaired
* Certain types of cancer, such as Hodgkin's lymphoma or non-Hodgkin's lymphoma
* Sickle cell disease, which can cause the spleen to enlarge and become damaged
* A ruptured spleen, which can be life-threatening if not treated promptly
* Certain blood disorders, such as idiopathic thrombocytopenic purpura (ITP) or hemolytic anemia

A splenectomy is typically performed under general anesthesia and may be done using open surgery or laparoscopically. After the spleen is removed, the incision(s) are closed with sutures or staples. Recovery time varies depending on the individual and the type of surgery performed, but most people are able to return to their normal activities within a few weeks.

It's important to note that following a splenectomy, individuals may be at increased risk for certain types of infections, so it's recommended that they receive vaccinations to help protect against these infections. They should also seek medical attention promptly if they develop fever, chills, or other signs of infection.

CD63 is a type of protein found on the surface of certain cells, including platelets and some immune cells. It is also known as granulophysin and is a member of the tetraspanin family of proteins. CD63 is often used as a marker for activated immune cells, particularly those involved in the immune response to viruses and other pathogens.

In the context of antigens, CD63 may be referred to as a target antigen, which is a molecule on the surface of a cell that can be recognized by the immune system. In this case, CD63 may be targeted by antibodies produced by the immune system in response to an infection or other stimulus.

It's important to note that while CD63 is often used as a marker for activated immune cells, it is not itself an antigen in the sense of being a foreign molecule that can elicit an immune response. Rather, it is a protein that can be targeted by the immune system in certain contexts.

Cyclic guanosine monophosphate (cGMP) is a important second messenger molecule that plays a crucial role in various biological processes within the human body. It is synthesized from guanosine triphosphate (GTP) by the enzyme guanylyl cyclase.

Cyclic GMP is involved in regulating diverse physiological functions, such as smooth muscle relaxation, cardiovascular function, and neurotransmission. It also plays a role in modulating immune responses and cellular growth and differentiation.

In the medical field, changes in cGMP levels or dysregulation of cGMP-dependent pathways have been implicated in various disease states, including pulmonary hypertension, heart failure, erectile dysfunction, and glaucoma. Therefore, pharmacological agents that target cGMP signaling are being developed as potential therapeutic options for these conditions.

Radioisotopes, also known as radioactive isotopes or radionuclides, are variants of chemical elements that have unstable nuclei and emit radiation in the form of alpha particles, beta particles, gamma rays, or conversion electrons. These isotopes are formed when an element's nucleus undergoes natural or artificial radioactive decay.

Radioisotopes can be produced through various processes, including nuclear fission, nuclear fusion, and particle bombardment in a cyclotron or other types of particle accelerators. They have a wide range of applications in medicine, industry, agriculture, research, and energy production. In the medical field, radioisotopes are used for diagnostic imaging, radiation therapy, and in the labeling of molecules for research purposes.

It is important to note that handling and using radioisotopes requires proper training, safety measures, and regulatory compliance due to their ionizing radiation properties, which can pose potential health risks if not handled correctly.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

A leukocyte count, also known as a white blood cell (WBC) count, is a laboratory test that measures the number of leukocytes in a sample of blood. Leukocytes are a vital part of the body's immune system and help fight infection and inflammation. A high or low leukocyte count may indicate an underlying medical condition, such as an infection, inflammation, or a bone marrow disorder. The normal range for a leukocyte count in adults is typically between 4,500 and 11,000 cells per microliter (mcL) of blood. However, the normal range can vary slightly depending on the laboratory and the individual's age and sex.

Cell adhesion molecules (CAMs) are a type of protein found on the surface of cells that mediate the attachment or adhesion of cells to either other cells or to the extracellular matrix (ECM), which is the network of proteins and carbohydrates that provides structural and biochemical support to surrounding cells.

CAMs play crucial roles in various biological processes, including tissue development, differentiation, repair, and maintenance of tissue architecture and function. They are also involved in cell signaling, migration, and regulation of the immune response.

There are several types of CAMs, classified based on their structure and function, such as immunoglobulin-like CAMs (IgCAMs), cadherins, integrins, and selectins. Dysregulation of CAMs has been implicated in various diseases, including cancer, inflammation, and neurological disorders.

Protein Kinase C (PKC) is a family of serine-threonine kinases that play crucial roles in various cellular signaling pathways. These enzymes are activated by second messengers such as diacylglycerol (DAG) and calcium ions (Ca2+), which result from the activation of cell surface receptors like G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs).

Once activated, PKC proteins phosphorylate downstream target proteins, thereby modulating their activities. This regulation is involved in numerous cellular processes, including cell growth, differentiation, apoptosis, and membrane trafficking. There are at least 10 isoforms of PKC, classified into three subfamilies based on their second messenger requirements and structural features: conventional (cPKC; α, βI, βII, and γ), novel (nPKC; δ, ε, η, and θ), and atypical (aPKC; ζ and ι/λ). Dysregulation of PKC signaling has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

Prothrombin time (PT) is a medical laboratory test that measures the time it takes for blood to clot. It's often used to evaluate the functioning of the extrinsic and common pathways of the coagulation system, which is responsible for blood clotting. Specifically, PT measures how long it takes for prothrombin (a protein produced by the liver) to be converted into thrombin, an enzyme that converts fibrinogen into fibrin and helps form a clot.

Prolonged PT may indicate a bleeding disorder or a deficiency in coagulation factors, such as vitamin K deficiency or the use of anticoagulant medications like warfarin. It's important to note that PT is often reported with an international normalized ratio (INR), which allows for standardization and comparison of results across different laboratories and reagent types.

Prostaglandin endoperoxides are short-lived, biologically active lipid compounds derived from the metabolism of arachidonic acid, an omega-6 fatty acid. They are intermediate products in the conversion of arachidonic acid to various prostaglandins and thromboxanes, which are crucial regulators of numerous physiological processes, including inflammation, blood clotting, and vascular constriction or dilation.

The two major prostaglandin endoperoxides are PGG2 (prostaglandin G2) and PGH2 (prostaglandin H2). They are synthesized from arachidonic acid by the action of an enzyme called cyclooxygenase (COX), which has two isoforms: COX-1 and COX-2. These endoperoxides can then be further metabolized into various prostaglandins and thromboxanes by specific synthases.

Prostaglandin endoperoxides are highly reactive and unstable, with a half-life of only a few seconds to minutes. Due to their instability, they cannot accumulate in tissues and must be rapidly converted into more stable downstream products for biological activity. Despite their short lifespan, prostaglandin endoperoxides play essential roles in mediating various physiological responses and are also implicated in several pathological conditions, such as pain, fever, and inflammation.

Prostaglandins are naturally occurring, lipid-derived hormones that play various important roles in the human body. They are produced in nearly every tissue in response to injury or infection, and they have diverse effects depending on the site of release and the type of prostaglandin. Some of their functions include:

1. Regulation of inflammation: Prostaglandins contribute to the inflammatory response by increasing vasodilation, promoting fluid accumulation, and sensitizing pain receptors, which can lead to symptoms such as redness, heat, swelling, and pain.
2. Modulation of gastrointestinal functions: Prostaglandins protect the stomach lining from acid secretion and promote mucus production, maintaining the integrity of the gastric mucosa. They also regulate intestinal motility and secretion.
3. Control of renal function: Prostaglandins help regulate blood flow to the kidneys, maintain sodium balance, and control renin release, which affects blood pressure and fluid balance.
4. Regulation of smooth muscle contraction: Prostaglandins can cause both relaxation and contraction of smooth muscles in various tissues, such as the uterus, bronchioles, and vascular system.
5. Modulation of platelet aggregation: Some prostaglandins inhibit platelet aggregation, preventing blood clots from forming too quickly or becoming too large.
6. Reproductive system regulation: Prostaglandins are involved in the menstrual cycle, ovulation, and labor induction by promoting uterine contractions.
7. Neurotransmission: Prostaglandins can modulate neurotransmitter release and neuronal excitability, affecting pain perception, mood, and cognition.

Prostaglandins exert their effects through specific G protein-coupled receptors (GPCRs) found on the surface of target cells. There are several distinct types of prostaglandins (PGs), including PGD2, PGE2, PGF2α, PGI2 (prostacyclin), and thromboxane A2 (TXA2). Each type has unique functions and acts through specific receptors. Prostaglandins are synthesized from arachidonic acid, a polyunsaturated fatty acid derived from membrane phospholipids, by the action of cyclooxygenase (COX) enzymes. Nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin and ibuprofen, inhibit COX activity, reducing prostaglandin synthesis and providing analgesic, anti-inflammatory, and antipyretic effects.

Coagulants are substances that promote the process of coagulation or clotting. They are often used in medical settings to help control bleeding and promote healing. Coagulants work by encouraging the formation of a clot, which helps to stop the flow of blood from a wound or cut.

There are several different types of coagulants that may be used in medical treatments. Some coagulants are naturally occurring substances, such as vitamin K, which is essential for the production of certain clotting factors in the body. Other coagulants may be synthetic or semi-synthetic compounds, such as recombinant activated factor VII (rFVIIa), which is used to treat bleeding disorders and prevent excessive bleeding during surgery.

Coagulants are often administered through injection or infusion, but they can also be applied topically to wounds or cuts. In some cases, coagulants may be used in combination with other treatments, such as compression or cauterization, to help control bleeding and promote healing.

It is important to note that while coagulants can be helpful in controlling bleeding and promoting healing, they can also increase the risk of blood clots and other complications. As a result, they should only be used under the guidance and supervision of a qualified healthcare professional.

Disseminated Intravascular Coagulation (DIC) is a complex medical condition characterized by the abnormal activation of the coagulation cascade, leading to the formation of blood clots in small blood vessels throughout the body. This process can result in the consumption of clotting factors and platelets, which can then lead to bleeding complications. DIC can be caused by a variety of underlying conditions, including sepsis, trauma, cancer, and obstetric emergencies.

The term "disseminated" refers to the widespread nature of the clotting activation, while "intravascular" indicates that the clotting is occurring within the blood vessels. The condition can manifest as both bleeding and clotting complications, which can make it challenging to diagnose and manage.

The diagnosis of DIC typically involves laboratory tests that evaluate coagulation factors, platelet count, fibrin degradation products, and other markers of coagulation activation. Treatment is focused on addressing the underlying cause of the condition while also managing any bleeding or clotting complications that may arise.

Erythrocytes, also known as red blood cells (RBCs), are the most common type of blood cell in circulating blood in mammals. They are responsible for transporting oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs.

Erythrocytes are formed in the bone marrow and have a biconcave shape, which allows them to fold and bend easily as they pass through narrow blood vessels. They do not have a nucleus or mitochondria, which makes them more flexible but also limits their ability to reproduce or repair themselves.

In humans, erythrocytes are typically disc-shaped and measure about 7 micrometers in diameter. They contain the protein hemoglobin, which binds to oxygen and gives blood its red color. The lifespan of an erythrocyte is approximately 120 days, after which it is broken down in the liver and spleen.

Abnormalities in erythrocyte count or function can lead to various medical conditions, such as anemia, polycythemia, and sickle cell disease.

IgG receptors, also known as Fcγ receptors (Fc gamma receptors), are specialized protein molecules found on the surface of various immune cells, such as neutrophils, monocytes, macrophages, and some lymphocytes. These receptors recognize and bind to the Fc region of IgG antibodies, one of the five classes of immunoglobulins in the human body.

IgG receptors play a crucial role in immune responses by mediating different effector functions, including:

1. Antibody-dependent cellular cytotoxicity (ADCC): IgG receptors on natural killer (NK) cells and other immune cells bind to IgG antibodies coated on the surface of virus-infected or cancer cells, leading to their destruction.
2. Phagocytosis: When IgG antibodies tag pathogens or foreign particles, phagocytes like neutrophils and macrophages recognize and bind to these immune complexes via IgG receptors, facilitating the engulfment and removal of the targeted particles.
3. Antigen presentation: IgG receptors on antigen-presenting cells (APCs) can internalize immune complexes, process the antigens, and present them to T cells, thereby initiating adaptive immune responses.
4. Inflammatory response regulation: IgG receptors can modulate inflammation by activating or inhibiting downstream signaling pathways in immune cells, depending on the specific type of Fcγ receptor and its activation state.

There are several types of IgG receptors (FcγRI, FcγRII, FcγRIII, and FcγRIV) with varying affinities for different subclasses of IgG antibodies (IgG1, IgG2, IgG3, and IgG4). The distinct functions and expression patterns of these receptors contribute to the complexity and fine-tuning of immune responses in the human body.

Prothrombin is a protein present in blood plasma, and it's also known as coagulation factor II. It plays a crucial role in the coagulation cascade, which is a complex series of reactions that leads to the formation of a blood clot.

When an injury occurs, the coagulation cascade is initiated to prevent excessive blood loss. Prothrombin is converted into its active form, thrombin, by another factor called factor Xa in the presence of calcium ions, phospholipids, and factor Va. Thrombin then catalyzes the conversion of fibrinogen into fibrin, forming a stable clot.

Prothrombin levels can be measured through a blood test, which is often used to diagnose or monitor conditions related to bleeding or coagulation disorders, such as liver disease or vitamin K deficiency.

CD (cluster of differentiation) antigens are cell-surface proteins that are expressed on leukocytes (white blood cells) and can be used to identify and distinguish different subsets of these cells. They are important markers in the field of immunology and hematology, and are commonly used to diagnose and monitor various diseases, including cancer, autoimmune disorders, and infectious diseases.

CD antigens are designated by numbers, such as CD4, CD8, CD19, etc., which refer to specific proteins found on the surface of different types of leukocytes. For example, CD4 is a protein found on the surface of helper T cells, while CD8 is found on cytotoxic T cells.

CD antigens can be used as targets for immunotherapy, such as monoclonal antibody therapy, in which antibodies are designed to bind to specific CD antigens and trigger an immune response against cancer cells or infected cells. They can also be used as markers to monitor the effectiveness of treatments and to detect minimal residual disease (MRD) after treatment.

It's important to note that not all CD antigens are exclusive to leukocytes, some can be found on other cell types as well, and their expression can vary depending on the activation state or differentiation stage of the cells.

Hematocrit is a medical term that refers to the percentage of total blood volume that is made up of red blood cells. It is typically measured as part of a complete blood count (CBC) test. A high hematocrit may indicate conditions such as dehydration, polycythemia, or living at high altitudes, while a low hematocrit may be a sign of anemia, bleeding, or overhydration. It is important to note that hematocrit values can vary depending on factors such as age, gender, and pregnancy status.

Chromium radioisotopes are unstable isotopes or variants of the chemical element chromium that emit radiation as they decay into more stable forms. These isotopes have an excess of energy and particles, making them unstable and capable of emitting ionizing radiation in the form of gamma rays or subatomic particles such as alpha or beta particles.

Chromium has several radioisotopes, including chromium-50, chromium-51, and chromium-53, among others. Chromium-51 is one of the most commonly used radioisotopes in medical applications, particularly in diagnostic procedures such as red blood cell labeling and imaging studies.

It's important to note that handling and using radioisotopes require proper training and safety measures due to their potential radiation hazards.

Rheology is not a term that is specific to medicine, but rather it is a term used in the field of physics to describe the flow and deformation of matter. It specifically refers to the study of how materials flow or deform under various stresses or strains. This concept can be applied to various medical fields such as studying the flow properties of blood (hematology), understanding the movement of tissues and organs during surgical procedures, or analyzing the mechanical behavior of biological materials like bones and cartilages.

Beta-globulins are a group of proteins found in the beta region of a serum protein electrophoresis, which is a laboratory test used to separate and identify different types of proteins in the blood. This group includes several important proteins such as:

1. Beta-lipoproteins: These are responsible for transporting fat molecules, including cholesterol, throughout the body.
2. Transferrin: A protein that binds and transports iron in the blood.
3. Complement components: These proteins play a crucial role in the immune system's response to infection and inflammation.
4. Beta-2 microglobulin: A protein involved in the functioning of the immune system, elevated levels of which can be found in various conditions such as kidney disease and autoimmune disorders.
5. Hemopexin: A protein that binds and transports heme (a component of hemoglobin) in the blood.

It is important to note that any significant increase or decrease in beta-globulins can indicate an underlying medical condition, such as liver disease, kidney disease, or an autoimmune disorder. Therefore, abnormal results should be further evaluated by a healthcare professional for proper diagnosis and treatment.

Nitric oxide (NO) is a molecule made up of one nitrogen atom and one oxygen atom. In the body, it is a crucial signaling molecule involved in various physiological processes such as vasodilation, immune response, neurotransmission, and inhibition of platelet aggregation. It is produced naturally by the enzyme nitric oxide synthase (NOS) from the amino acid L-arginine. Inhaled nitric oxide is used medically to treat pulmonary hypertension in newborns and adults, as it helps to relax and widen blood vessels, improving oxygenation and blood flow.

"Viper venoms" refer to the toxic secretions produced by members of the Viperidae family of snakes, which include pit vipers (such as rattlesnakes, copperheads, and cottonmouths) and true vipers (like adders, vipers, and gaboon vipers). These venoms are complex mixtures of proteins, enzymes, and other bioactive molecules that can cause a wide range of symptoms in prey or predators, including local tissue damage, pain, swelling, bleeding, and potentially life-threatening systemic effects such as coagulopathy, cardiovascular shock, and respiratory failure.

The composition of viper venoms varies widely between different species and even among individuals within the same species. However, many viper venoms contain a variety of enzymes (such as phospholipases A2, metalloproteinases, and serine proteases) that can cause tissue damage and disrupt vital physiological processes in the victim. Additionally, some viper venoms contain neurotoxins that can affect the nervous system and cause paralysis or other neurological symptoms.

Understanding the composition and mechanisms of action of viper venoms is important for developing effective treatments for venomous snakebites, as well as for gaining insights into the evolution and ecology of these fascinating and diverse creatures.

Iloprost is a synthetic analogue of prostacyclin, a naturally occurring substance in the body. It is a medication that belongs to a class of drugs called vasodilators, which work by relaxing and widening blood vessels. Iloprost is used to treat pulmonary arterial hypertension (PAH), a condition characterized by high blood pressure in the arteries that supply blood to the lungs. By dilating these blood vessels, iloprost helps reduce the workload on the heart and improve symptoms associated with PAH such as shortness of breath, fatigue, and dizziness.

Iloprost is administered through inhalation using a nebulizer, typically several times a day. It may also be used to prevent or treat episodes of digital ischemia, a condition that causes reduced blood flow to the fingers and toes, leading to pain and tissue damage.

It's important to note that while iloprost can help manage symptoms of PAH and digital ischemia, it does not cure these conditions. Close monitoring by a healthcare provider is necessary to ensure safe and effective use of this medication.

Essential thrombocythemia (ET) is a myeloproliferative neoplasm (MPN), a type of blood cancer characterized by the overproduction of platelets (thrombocytosis) in the bone marrow. In ET, there is an excessive proliferation of megakaryocytes, the precursor cells that produce platelets. This leads to increased platelet counts in the peripheral blood, which can increase the risk of blood clots (thrombosis) and bleeding episodes (hemorrhage).

The term "essential" is used to indicate that the cause of this condition is not known or idiopathic. ET is primarily a disease of older adults, but it can also occur in younger individuals. The diagnosis of essential thrombocythemia requires careful evaluation and exclusion of secondary causes of thrombocytosis, such as reactive conditions, inflammation, or other myeloproliferative neoplasms.

The clinical presentation of ET can vary widely among patients. Some individuals may be asymptomatic and discovered only during routine blood tests, while others may experience symptoms related to thrombosis or bleeding. Common symptoms include headaches, visual disturbances, dizziness, weakness, numbness, or tingling in the extremities, if there are complications due to blood clots in the brain or other parts of the body. Excessive bruising, nosebleeds, or blood in the stool can indicate bleeding complications.

Treatment for essential thrombocythemia is aimed at reducing the risk of thrombosis and managing symptoms. Hydroxyurea is a commonly used medication to lower platelet counts, while aspirin may be prescribed to decrease the risk of blood clots. In some cases, interferon-alpha or ruxolitinib might be considered as treatment options. Regular follow-up with a hematologist and monitoring of blood counts are essential for managing this condition and detecting potential complications early.

Megakaryocyte progenitor cells are a type of hematopoietic (blood-forming) stem or progenitor cell that give rise to megakaryocytes, which are large cells found in the bone marrow. Megakaryocytes are responsible for producing platelets, also known as thrombocytes, which are small cell fragments that play a crucial role in blood clotting and hemostasis.

Megakaryocyte progenitor cells are characterized by their ability to differentiate into megakaryocytes and express specific surface markers, such as CD34, CD41, and CD61. They can be found in the bone marrow and peripheral blood and can be expanded and differentiated in vitro for therapeutic purposes, such as in platelet production for transfusion therapy.

Abnormalities in megakaryocyte progenitor cells can lead to various hematological disorders, including thrombocytopenia (low platelet count) and myeloproliferative neoplasms (abnormal blood cell growth). Therefore, understanding the biology and regulation of megakaryocyte progenitor cells is essential for developing new diagnostic and therapeutic strategies for these conditions.

Cyclooxygenase (COX) inhibitors are a class of drugs that work by blocking the activity of cyclooxygenase enzymes, which are involved in the production of prostaglandins. Prostaglandins are hormone-like substances that play a role in inflammation, pain, and fever.

There are two main types of COX enzymes: COX-1 and COX-2. COX-1 is produced continuously in various tissues throughout the body and helps maintain the normal function of the stomach and kidneys, among other things. COX-2, on the other hand, is produced in response to inflammation and is involved in the production of prostaglandins that contribute to pain, fever, and inflammation.

COX inhibitors can be non-selective, meaning they block both COX-1 and COX-2, or selective, meaning they primarily block COX-2. Non-selective COX inhibitors include drugs such as aspirin, ibuprofen, and naproxen, while selective COX inhibitors are often referred to as coxibs and include celecoxib (Celebrex) and rofecoxib (Vioxx).

COX inhibitors are commonly used to treat pain, inflammation, and fever. However, long-term use of non-selective COX inhibitors can increase the risk of gastrointestinal side effects such as ulcers and bleeding, while selective COX inhibitors may be associated with an increased risk of cardiovascular events such as heart attack and stroke. It is important to talk to a healthcare provider about the potential risks and benefits of COX inhibitors before using them.

Phosphatidylserines are a type of phospholipids that are essential components of the cell membrane, particularly in the brain. They play a crucial role in maintaining the fluidity and permeability of the cell membrane, and are involved in various cellular processes such as signal transduction, protein anchorage, and apoptosis (programmed cell death). Phosphatidylserines contain a polar head group made up of serine amino acids and two non-polar fatty acid tails. They are abundant in the inner layer of the cell membrane but can be externalized to the outer layer during apoptosis, where they serve as signals for recognition and removal of dying cells by the immune system. Phosphatidylserines have been studied for their potential benefits in various medical conditions, including cognitive decline, Alzheimer's disease, and depression.

Phospholipases A are a group of enzymes that hydrolyze phospholipids into fatty acids and lysophospholipids by cleaving the ester bond at the sn-1 or sn-2 position of the glycerol backbone. There are three main types of Phospholipases A:

* Phospholipase A1 (PLA1): This enzyme specifically hydrolyzes the ester bond at the sn-1 position, releasing a free fatty acid and a lysophospholipid.
* Phospholipase A2 (PLA2): This enzyme specifically hydrolyzes the ester bond at the sn-2 position, releasing a free fatty acid (often arachidonic acid, which is a precursor for eicosanoids) and a lysophospholipid.
* Phospholipase A/B (PLA/B): This enzyme has both PLA1 and PLA2 activity and can hydrolyze the ester bond at either the sn-1 or sn-2 position.

Phospholipases A play important roles in various biological processes, including cell signaling, membrane remodeling, and host defense. They are also involved in several diseases, such as atherosclerosis, neurodegenerative disorders, and cancer.

Hematopoiesis is the process of forming and developing blood cells. It occurs in the bone marrow and includes the production of red blood cells (erythropoiesis), white blood cells (leukopoiesis), and platelets (thrombopoiesis). This process is regulated by various growth factors, hormones, and cytokines. Hematopoiesis begins early in fetal development and continues throughout a person's life. Disorders of hematopoiesis can result in conditions such as anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis.

Heparin antagonists, also known as heparin neutralizers or reversal agents, are medications used to reverse the anticoagulant effects of heparin, a type of blood thinner. Heparin works by activating antithrombin III, which inactivates clotting factors IIa and Xa. Heparin antagonists, such as protamine sulfate, work by binding to heparin, forming a stable complex that is unable to bind to and activate antithrombin III, thereby neutralizing its anticoagulant effect.

Protamine sulfate is the most commonly used heparin antagonist. It is a highly basic protein derived from fish sperm that can neutralize the anticoagulant effects of heparin by forming a stable complex with it. The dose of protamine required to reverse the effects of heparin depends on the amount and type of heparin administered, as well as the timing of administration.

It is important to note that while heparin antagonists can reverse the anticoagulant effects of heparin, they do not reverse the underlying coagulation disorder or prevent further clot formation. Therefore, additional treatments may be necessary to manage the underlying condition and prevent recurrent thrombosis.

Coronary thrombosis is a medical condition that refers to the formation of a blood clot (thrombus) inside a coronary artery, which supplies oxygenated blood to the heart muscle. The development of a thrombus can partially or completely obstruct blood flow, leading to insufficient oxygen supply to the heart muscle. This can cause chest pain (angina) or a heart attack (myocardial infarction), depending on the severity and duration of the blockage.

Coronary thrombosis often results from the rupture of an atherosclerotic plaque, a buildup of cholesterol, fat, calcium, and other substances in the inner lining (endothelium) of the coronary artery. The ruptured plaque exposes the underlying tissue to the bloodstream, triggering the coagulation cascade and resulting in the formation of a thrombus.

Immediate medical attention is crucial for managing coronary thrombosis, as timely treatment can help restore blood flow, prevent further damage to the heart muscle, and reduce the risk of complications such as heart failure or life-threatening arrhythmias. Treatment options may include medications, such as antiplatelet agents, anticoagulants, and thrombolytic drugs, or interventional procedures like angioplasty and stenting to open the blocked artery. In some cases, surgical intervention, such as coronary artery bypass grafting (CABG), may be necessary.

Partial Thromboplastin Time (PTT) is a medical laboratory test that measures the time it takes for blood to clot. It's more specifically a measure of the intrinsic and common pathways of the coagulation cascade, which are the series of chemical reactions that lead to the formation of a clot.

The test involves adding a partial thromboplastin reagent (an activator of the intrinsic pathway) and calcium to plasma, and then measuring the time it takes for a fibrin clot to form. This is compared to a control sample, and the ratio of the two times is calculated.

The PTT test is often used to help diagnose bleeding disorders or abnormal blood clotting, such as hemophilia or disseminated intravascular coagulation (DIC). It can also be used to monitor the effectiveness of anticoagulant therapy, such as heparin. Prolonged PTT results may indicate a bleeding disorder or an increased risk of bleeding, while shortened PTT results may indicate a hypercoagulable state and an increased risk of thrombosis.

Immunoglobulin G (IgG) is a type of antibody, which is a protective protein produced by the immune system in response to foreign substances like bacteria or viruses. IgG is the most abundant type of antibody in human blood, making up about 75-80% of all antibodies. It is found in all body fluids and plays a crucial role in fighting infections caused by bacteria, viruses, and toxins.

IgG has several important functions:

1. Neutralization: IgG can bind to the surface of bacteria or viruses, preventing them from attaching to and infecting human cells.
2. Opsonization: IgG coats the surface of pathogens, making them more recognizable and easier for immune cells like neutrophils and macrophages to phagocytose (engulf and destroy) them.
3. Complement activation: IgG can activate the complement system, a group of proteins that work together to help eliminate pathogens from the body. Activation of the complement system leads to the formation of the membrane attack complex, which creates holes in the cell membranes of bacteria, leading to their lysis (destruction).
4. Antibody-dependent cellular cytotoxicity (ADCC): IgG can bind to immune cells like natural killer (NK) cells and trigger them to release substances that cause target cells (such as virus-infected or cancerous cells) to undergo apoptosis (programmed cell death).
5. Immune complex formation: IgG can form immune complexes with antigens, which can then be removed from the body through various mechanisms, such as phagocytosis by immune cells or excretion in urine.

IgG is a critical component of adaptive immunity and provides long-lasting protection against reinfection with many pathogens. It has four subclasses (IgG1, IgG2, IgG3, and IgG4) that differ in their structure, function, and distribution in the body.

Phospholipase A2 (PLA2) is a type of enzyme that catalyzes the hydrolysis of the sn-2 ester bond in glycerophospholipids, releasing free fatty acids, such as arachidonic acid, and lysophospholipids. These products are important precursors for the biosynthesis of various signaling molecules, including eicosanoids, platelet-activating factor (PAF), and lipoxins, which play crucial roles in inflammation, immunity, and other cellular processes.

Phospholipases A2 are classified into several groups based on their structure, mechanism of action, and cellular localization. The secreted PLA2s (sPLA2s) are found in extracellular fluids and are characterized by a low molecular weight, while the calcium-dependent cytosolic PLA2s (cPLA2s) are larger proteins that reside within cells.

Abnormal regulation or activity of Phospholipase A2 has been implicated in various pathological conditions, such as inflammation, neurodegenerative diseases, and cancer. Therefore, understanding the biology and function of these enzymes is essential for developing novel therapeutic strategies to target these disorders.

Cell aggregation is the process by which individual cells come together and adhere to each other to form a group or cluster. This phenomenon can occur naturally during embryonic development, tissue repair, and wound healing, as well as in the formation of multicellular organisms such as slime molds. In some cases, cell aggregation may also be induced in the laboratory setting through the use of various techniques, including the use of cell culture surfaces that promote cell-to-cell adhesion or the addition of factors that stimulate the expression of adhesion molecules on the cell surface.

Cell aggregation can be influenced by a variety of factors, including the type and properties of the cells involved, as well as environmental conditions such as pH, temperature, and nutrient availability. The ability of cells to aggregate is often mediated by the presence of adhesion molecules on the cell surface, such as cadherins, integrins, and immunoglobulin-like cell adhesion molecules (Ig-CAMs). These molecules interact with each other and with extracellular matrix components to promote cell-to-cell adhesion and maintain the stability of the aggregate.

In some contexts, abnormal or excessive cell aggregation can contribute to the development of diseases such as cancer, fibrosis, and inflammatory disorders. For example, the aggregation of cancer cells can facilitate their invasion and metastasis, while the accumulation of fibrotic cells in tissues can lead to organ dysfunction and failure. Understanding the mechanisms that regulate cell aggregation is therefore an important area of research with potential implications for the development of new therapies and treatments for a variety of diseases.

Phospholipases are a group of enzymes that catalyze the hydrolysis of phospholipids, which are major components of cell membranes. Phospholipases cleave specific ester bonds in phospholipids, releasing free fatty acids and other lipophilic molecules. Based on the site of action, phospholipases are classified into four types:

1. Phospholipase A1 (PLA1): This enzyme hydrolyzes the ester bond at the sn-1 position of a glycerophospholipid, releasing a free fatty acid and a lysophospholipid.
2. Phospholipase A2 (PLA2): PLA2 cleaves the ester bond at the sn-2 position of a glycerophospholipid, releasing a free fatty acid (often arachidonic acid) and a lysophospholipid. Arachidonic acid is a precursor for eicosanoids, which are signaling molecules involved in inflammation and other physiological processes.
3. Phospholipase C (PLC): PLC hydrolyzes the phosphodiester bond in the headgroup of a glycerophospholipid, releasing diacylglycerol (DAG) and a soluble head group, such as inositol trisphosphate (IP3). DAG acts as a secondary messenger in intracellular signaling pathways, while IP3 mediates the release of calcium ions from intracellular stores.
4. Phospholipase D (PLD): PLD cleaves the phosphoester bond between the headgroup and the glycerol moiety of a glycerophospholipid, releasing phosphatidic acid (PA) and a free head group. PA is an important signaling molecule involved in various cellular processes, including membrane trafficking, cytoskeletal reorganization, and cell survival.

Phospholipases have diverse roles in normal physiology and pathophysiological conditions, such as inflammation, immunity, and neurotransmission. Dysregulation of phospholipase activity can contribute to the development of various diseases, including cancer, cardiovascular disease, and neurological disorders.

Arachidonate 12-lipoxygenase (also known as ALOX12 or 12S-lipoxygenase) is an enzyme that catalyzes the conversion of arachidonic acid to 12(S)-hydroperoxyeicosatetraenoic acid (12(S)-HPETE). This reaction is part of the lipoxygenase pathway, which contributes to the biosynthesis of eicosanoids, a group of signaling molecules that play important roles in inflammation and immune response.

The enzyme's function includes introducing molecular oxygen into arachidonic acid at position 12, creating a hydroperoxide group. The product, 12(S)-HPETE, can be further metabolized to various eicosanoids, such as 12-hydroxyeicosatetraenoic acid (12-HETE) and lipoxin A4, which have diverse biological activities in the body.

Arachidonate 12-lipoxygenase is expressed in various tissues, including the vascular endothelium, platelets, and immune cells like monocytes and macrophages. Its activity can contribute to the development of certain diseases, such as atherosclerosis, cancer, and inflammatory disorders. Therefore, inhibiting this enzyme has been considered as a potential therapeutic strategy for treating these conditions.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Phosphoproteins are proteins that have been post-translationally modified by the addition of a phosphate group (-PO3H2) onto specific amino acid residues, most commonly serine, threonine, or tyrosine. This process is known as phosphorylation and is mediated by enzymes called kinases. Phosphoproteins play crucial roles in various cellular processes such as signal transduction, cell cycle regulation, metabolism, and gene expression. The addition or removal of a phosphate group can activate or inhibit the function of a protein, thereby serving as a switch to control its activity. Phosphoproteins can be detected and quantified using techniques such as Western blotting, mass spectrometry, and immunofluorescence.

Cytosol refers to the liquid portion of the cytoplasm found within a eukaryotic cell, excluding the organelles and structures suspended in it. It is the site of various metabolic activities and contains a variety of ions, small molecules, and enzymes. The cytosol is where many biochemical reactions take place, including glycolysis, protein synthesis, and the regulation of cellular pH. It is also where some organelles, such as ribosomes and vesicles, are located. In contrast to the cytosol, the term "cytoplasm" refers to the entire contents of a cell, including both the cytosol and the organelles suspended within it.

Indium radioisotopes refer to specific types of radioactive indium atoms, which are unstable and emit radiation as they decay. Indium is a chemical element with the symbol In and atomic number 49. Its radioisotopes are often used in medical imaging and therapy due to their unique properties.

For instance, one commonly used indium radioisotope is Indium-111 (^111In), which has a half-life of approximately 2.8 days. It emits gamma rays, making it useful for diagnostic imaging techniques such as single-photon emission computed tomography (SPECT). In clinical applications, indium-111 is often attached to specific molecules or antibodies that target particular cells or tissues in the body, allowing medical professionals to monitor biological processes and identify diseases like cancer.

Another example is Indium-113m (^113mIn), which has a half-life of about 99 minutes. It emits low-energy gamma rays and is used as a source for in vivo counting, typically in the form of indium chloride (InCl3) solution. This radioisotope can be used to measure blood flow, ventilation, and other physiological parameters.

It's important to note that handling and using radioisotopes require proper training and safety measures due to their ionizing radiation properties.

Membrane glycoproteins are proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. They are integral components of biological membranes, spanning the lipid bilayer and playing crucial roles in various cellular processes.

The glycosylation of these proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus during protein folding and trafficking. The attached glycans can vary in structure, length, and composition, which contributes to the diversity of membrane glycoproteins.

Membrane glycoproteins can be classified into two main types based on their orientation within the lipid bilayer:

1. Type I (N-linked): These glycoproteins have a single transmembrane domain and an extracellular N-terminus, where the oligosaccharides are predominantly attached via asparagine residues (Asn-X-Ser/Thr sequon).
2. Type II (C-linked): These glycoproteins possess two transmembrane domains and an intracellular C-terminus, with the oligosaccharides linked to tryptophan residues via a mannose moiety.

Membrane glycoproteins are involved in various cellular functions, such as:

* Cell adhesion and recognition
* Receptor-mediated signal transduction
* Enzymatic catalysis
* Transport of molecules across membranes
* Cell-cell communication
* Immunological responses

Some examples of membrane glycoproteins include cell surface receptors (e.g., growth factor receptors, cytokine receptors), adhesion molecules (e.g., integrins, cadherins), and transporters (e.g., ion channels, ABC transporters).

I apologize, but I am not able to provide a medical definition for "Egtazic Acid" because it is not a term that is recognized in the field of medicine or pharmacology. It is possible that you may have meant "Egтарic Acid," which also does not have a specific medical meaning, or "Ethylene Glycol Tetraacetic Acid (EGTA)," which is a chemical compound used in research and medicine for its ability to bind calcium ions. If you have any other questions, I would be happy to try to help answer them.

Blood component removal, also known as blood component therapy or apheresis, is a medical procedure that involves separating and removing specific components of the blood, such as red blood cells, white blood cells, platelets, or plasma, while returning the remaining components back to the donor or patient. This process can be used for therapeutic purposes, such as in the treatment of certain diseases and conditions, or for donation, such as in the collection of blood products for transfusion. The specific method and equipment used to perform blood component removal may vary depending on the intended application and the particular component being removed.

I'm sorry for any confusion, but "Prostaglandins D" is not a recognized or established term in the field of medicine or physiology. Prostaglandins are a group of lipid compounds that are synthesized in the body from fatty acids and have diverse hormone-like effects in the body. They are classified into several types based on their chemical structure and biological activity, including Prostaglandin D (PGD), but referring to "Prostaglandins D" as a single entity is not standard.

Prostaglandin D (PGD) itself is a type of prostaglandin that is rapidly converted to other compounds in the body and has been studied for its potential role in various physiological processes, such as inflammation, fever, and blood flow regulation. However, it's important to note that specific medical definitions or clinical uses related to "Prostaglandins D" are not well-established.

If you have any further questions or need more information about a specific aspect of prostaglandins or their role in the body, I would be happy to help!

Prostaglandin E (PGE) is a type of prostaglandin, which is a group of lipid compounds that are synthesized in the body from fatty acids and have diverse hormone-like effects. Prostaglandins are not actually hormones, but are similar to them in that they act as chemical messengers that have specific effects on certain cells.

Prostaglandin E is one of the most abundant prostaglandins in the body and has a variety of physiological functions. It is involved in the regulation of inflammation, pain perception, fever, and smooth muscle contraction. Prostaglandin E also plays a role in the regulation of blood flow, platelet aggregation, and gastric acid secretion.

Prostaglandin E is synthesized from arachidonic acid, which is released from cell membranes by the action of enzymes called phospholipases. Once formed, prostaglandin E binds to specific receptors on the surface of cells, leading to a variety of intracellular signaling events that ultimately result in changes in cell behavior.

Prostaglandin E is used medically in the treatment of several conditions, including dysmenorrhea (painful menstruation), postpartum hemorrhage, and patent ductus arteriosus (a congenital heart defect). It is also used as a diagnostic tool in the evaluation of kidney function.

Actin is a type of protein that forms part of the contractile apparatus in muscle cells, and is also found in various other cell types. It is a globular protein that polymerizes to form long filaments, which are important for many cellular processes such as cell division, cell motility, and the maintenance of cell shape. In muscle cells, actin filaments interact with another type of protein called myosin to enable muscle contraction. Actins can be further divided into different subtypes, including alpha-actin, beta-actin, and gamma-actin, which have distinct functions and expression patterns in the body.

Protein-Tyrosine Kinases (PTKs) are a type of enzyme that plays a crucial role in various cellular functions, including signal transduction, cell growth, differentiation, and metabolism. They catalyze the transfer of a phosphate group from ATP to the tyrosine residues of proteins, thereby modifying their activity, localization, or interaction with other molecules.

PTKs can be divided into two main categories: receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases (NRTKs). RTKs are transmembrane proteins that become activated upon binding to specific ligands, such as growth factors or hormones. NRTKs, on the other hand, are intracellular enzymes that can be activated by various signals, including receptor-mediated signaling and intracellular messengers.

Dysregulation of PTK activity has been implicated in several diseases, such as cancer, diabetes, and inflammatory disorders. Therefore, PTKs are important targets for drug development and therapy.

Reference values, also known as reference ranges or reference intervals, are the set of values that are considered normal or typical for a particular population or group of people. These values are often used in laboratory tests to help interpret test results and determine whether a patient's value falls within the expected range.

The process of establishing reference values typically involves measuring a particular biomarker or parameter in a large, healthy population and then calculating the mean and standard deviation of the measurements. Based on these statistics, a range is established that includes a certain percentage of the population (often 95%) and excludes extreme outliers.

It's important to note that reference values can vary depending on factors such as age, sex, race, and other demographic characteristics. Therefore, it's essential to use reference values that are specific to the relevant population when interpreting laboratory test results. Additionally, reference values may change over time due to advances in measurement technology or changes in the population being studied.

Thiophenes are organic compounds that contain a heterocyclic ring made up of four carbon atoms and one sulfur atom. The structure of thiophene is similar to benzene, with the benzene ring being replaced by a thiophene ring. Thiophenes are aromatic compounds, which means they have a stable, planar ring structure and delocalized electrons.

Thiophenes can be found in various natural sources such as coal tar, crude oil, and some foods like onions and garlic. They also occur in certain medications, dyes, and pesticides. Some thiophene derivatives have been synthesized and studied for their potential therapeutic uses, including anti-inflammatory, antiviral, and antitumor activities.

In the medical field, thiophenes are used in some pharmaceuticals as building blocks to create drugs with various therapeutic effects. For example, tipepidine, a cough suppressant, contains a thiophene ring. Additionally, some anesthetics and antipsychotic medications also contain thiophene moieties.

It is important to note that while thiophenes themselves are not typically considered medical terms, they play a role in the chemistry of various pharmaceuticals and other medical-related compounds.

Factor XI, also known as plasma thromboplastin antecedent (PTA) or antihemophilic factor C, is a protein involved in blood coagulation. It is one of the factors in the intrinsic pathway of coagulation, which is activated when blood comes into contact with negatively charged surfaces, such as damaged blood vessels.

When Factor XI is activated (usually by thrombin or activated Factor XII), it activates more Factor XI and also activates Factor IX, leading to the formation of a complex that converts Factor X to its active form, Factor Xa. This ultimately leads to the formation of a fibrin clot and helps to stop bleeding.

Deficiencies in Factor XI can lead to an increased risk of bleeding, although the severity of the bleeding disorder can vary widely among individuals with Factor XI deficiency. Treatment for Factor XI deficiency typically involves replacement therapy with fresh frozen plasma or recombinant Factor XI concentrate.

Secretory vesicles are membrane-bound organelles found within cells that store and transport secretory proteins and other molecules to the plasma membrane for exocytosis. Exocytosis is the process by which these molecules are released from the cell, allowing them to perform various functions, such as communication with other cells or participation in biochemical reactions. Secretory vesicles can be found in a variety of cell types, including endocrine cells, exocrine cells, and neurons. The proteins and molecules contained within secretory vesicles are synthesized in the rough endoplasmic reticulum and then transported to the Golgi apparatus, where they are processed, modified, and packaged into the vesicles for subsequent release.

CD40 ligand (CD40L or CD154) is a type II transmembrane protein and a member of the tumor necrosis factor (TNF) superfamily. It is primarily expressed on activated CD4+ T cells, but can also be found on other immune cells such as activated B cells, macrophages, and dendritic cells.

CD40 ligand binds to its receptor, CD40, which is mainly expressed on the surface of antigen-presenting cells (APCs) such as B cells, dendritic cells, and macrophages. The interaction between CD40L and CD40 plays a crucial role in the activation and regulation of the immune response.

CD40L-CD40 signaling is essential for T cell-dependent B cell activation, antibody production, and class switching. It also contributes to the activation and maturation of dendritic cells, promoting their ability to stimulate T cell responses. Dysregulation of CD40L-CD40 signaling has been implicated in various autoimmune diseases, transplant rejection, and cancer.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Factor V, also known as proaccelerin or labile factor, is a protein involved in the coagulation cascade, which is a series of chemical reactions that leads to the formation of a blood clot. Factor V acts as a cofactor for the activation of Factor X to Factor Xa, which is a critical step in the coagulation cascade.

When blood vessels are damaged, the coagulation cascade is initiated to prevent excessive bleeding. During this process, Factor V is activated by thrombin, another protein involved in coagulation, and then forms a complex with activated Factor X and calcium ions on the surface of platelets or other cells. This complex converts prothrombin to thrombin, which then converts fibrinogen to fibrin to form a stable clot.

Deficiency or dysfunction of Factor V can lead to bleeding disorders such as hemophilia B or factor V deficiency, while mutations in the gene encoding Factor V can increase the risk of thrombosis, as seen in the Factor V Leiden mutation.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Monocytes are a type of white blood cell that are part of the immune system. They are large cells with a round or oval shape and a nucleus that is typically indented or horseshoe-shaped. Monocytes are produced in the bone marrow and then circulate in the bloodstream, where they can differentiate into other types of immune cells such as macrophages and dendritic cells.

Monocytes play an important role in the body's defense against infection and tissue damage. They are able to engulf and digest foreign particles, microorganisms, and dead or damaged cells, which helps to clear them from the body. Monocytes also produce cytokines, which are signaling molecules that help to coordinate the immune response.

Elevated levels of monocytes in the bloodstream can be a sign of an ongoing infection, inflammation, or other medical conditions such as cancer or autoimmune disorders.

Phospholipase C gamma (PLCγ) is an enzyme that plays a crucial role in intracellular signaling transduction pathways, particularly in the context of growth factor receptor-mediated signals and immune cell activation. It is a member of the phospholipase C family, which hydrolyzes phospholipids into secondary messengers to mediate various cellular responses.

PLCγ has two isoforms, PLCγ1 and PLCγ2, encoded by separate genes. These isoforms share structural similarities but have distinct expression patterns and functions. PLCγ1 is widely expressed in various tissues, while PLCγ2 is primarily found in hematopoietic cells.

PLCγ is activated through tyrosine phosphorylation by receptor tyrosine kinases (RTKs) or non-receptor tyrosine kinases such as Src and Syk family kinases. Once activated, PLCγ hydrolyzes the membrane phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2), into two secondary messengers: inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates the release of calcium ions from intracellular stores, while DAG activates protein kinase C (PKC), leading to a cascade of downstream signaling events that regulate cell proliferation, differentiation, survival, and migration.

In summary, Phospholipase C gamma (PLCγ) is an enzyme involved in intracellular signaling pathways by generating secondary messengers IP3 and DAG upon activation through tyrosine phosphorylation, ultimately regulating various cellular responses.

6-Ketoprostaglandin F1 alpha, also known as prostaglandin H1A, is a stable metabolite of prostaglandin F2alpha (PGF2alpha). It is a type of eicosanoid, which is a signaling molecule made by the enzymatic or non-enzymatic oxidation of arachidonic acid or other polyunsaturated fatty acids. Prostaglandins are a subclass of eicosanoids and have diverse hormone-like effects in various tissues, including smooth muscle contraction, vasodilation, and modulation of inflammation.

6-Ketoprostaglandin F1 alpha is formed by the oxidation of PGF2alpha by 15-hydroxyprostaglandin dehydrogenase (15-PGDH), an enzyme that metabolizes prostaglandins and thromboxanes. It has been used as a biomarker for the measurement of PGF2alpha production in research settings, but it does not have any known physiological activity.

Blood cells are the formed elements in the blood, including red blood cells (erythrocytes), white blood cells (leukocytes), and platelets (thrombocytes). These cells are produced in the bone marrow and play crucial roles in the body's functions. Red blood cells are responsible for carrying oxygen to tissues and carbon dioxide away from them, while white blood cells are part of the immune system and help defend against infection and disease. Platelets are cell fragments that are essential for normal blood clotting.

Monoamine oxidase (MAO) is an enzyme found on the outer membrane of mitochondria in cells throughout the body, but primarily in the gastrointestinal tract, liver, and central nervous system. It plays a crucial role in the metabolism of neurotransmitters and dietary amines by catalyzing the oxidative deamination of monoamines. This enzyme exists in two forms: MAO-A and MAO-B, each with distinct substrate preferences and tissue distributions.

MAO-A preferentially metabolizes serotonin, norepinephrine, and dopamine, while MAO-B is mainly responsible for breaking down phenethylamines and benzylamines, as well as dopamine in some cases. Inhibition of these enzymes can lead to increased neurotransmitter levels in the synaptic cleft, which has implications for various psychiatric and neurological conditions, such as depression and Parkinson's disease. However, MAO inhibitors must be used with caution due to their potential to cause serious adverse effects, including hypertensive crises, when combined with certain foods or medications containing dietary amines or sympathomimetic agents.

Cell communication, also known as cell signaling, is the process by which cells exchange and transmit signals between each other and their environment. This complex system allows cells to coordinate their functions and maintain tissue homeostasis. Cell communication can occur through various mechanisms including:

1. Autocrine signaling: When a cell releases a signal that binds to receptors on the same cell, leading to changes in its behavior or function.
2. Paracrine signaling: When a cell releases a signal that binds to receptors on nearby cells, influencing their behavior or function.
3. Endocrine signaling: When a cell releases a hormone into the bloodstream, which then travels to distant target cells and binds to specific receptors, triggering a response.
4. Synaptic signaling: In neurons, communication occurs through the release of neurotransmitters that cross the synapse and bind to receptors on the postsynaptic cell, transmitting electrical or chemical signals.
5. Contact-dependent signaling: When cells physically interact with each other, allowing for the direct exchange of signals and information.

Cell communication is essential for various physiological processes such as growth, development, differentiation, metabolism, immune response, and tissue repair. Dysregulation in cell communication can contribute to diseases, including cancer, diabetes, and neurological disorders.

The umbilical veins are blood vessels in the umbilical cord that carry oxygenated and nutrient-rich blood from the mother to the developing fetus during pregnancy. There are typically two umbilical veins, one of which usually degenerates and becomes obliterated, leaving a single functional vein. This remaining vein is known as the larger umbilical vein or the venous duct. It enters the fetal abdomen through the umbilicus and passes through the liver, where it branches off to form the portal sinus. Ultimately, the blood from the umbilical vein mixes with the blood from the inferior vena cava and is pumped to the heart through the right atrium.

It's important to note that after birth, the umbilical veins are no longer needed and undergo involution, becoming the ligamentum teres in the adult.

Dipyridamole is a medication that belongs to a class of drugs called antiplatelet agents. It works by preventing platelets in your blood from sticking together to form clots. Dipyridamole is often used in combination with aspirin to prevent stroke and other complications in people who have had a heart valve replacement or a type of irregular heartbeat called atrial fibrillation.

Dipyridamole can also be used as a stress agent in myocardial perfusion imaging studies, which are tests used to evaluate blood flow to the heart. When used for this purpose, dipyridamole is given intravenously and works by dilating the blood vessels in the heart, allowing more blood to flow through them and making it easier to detect areas of reduced blood flow.

The most common side effects of dipyridamole include headache, dizziness, and gastrointestinal symptoms such as diarrhea, nausea, and vomiting. In rare cases, dipyridamole can cause more serious side effects, such as allergic reactions, abnormal heart rhythms, or low blood pressure. It is important to take dipyridamole exactly as directed by your healthcare provider and to report any unusual symptoms or side effects promptly.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

A syndrome, in medical terms, is a set of symptoms that collectively indicate or characterize a disease, disorder, or underlying pathological process. It's essentially a collection of signs and/or symptoms that frequently occur together and can suggest a particular cause or condition, even though the exact physiological mechanisms might not be fully understood.

For example, Down syndrome is characterized by specific physical features, cognitive delays, and other developmental issues resulting from an extra copy of chromosome 21. Similarly, metabolic syndromes like diabetes mellitus type 2 involve a group of risk factors such as obesity, high blood pressure, high blood sugar, and abnormal cholesterol or triglyceride levels that collectively increase the risk of heart disease, stroke, and diabetes.

It's important to note that a syndrome is not a specific diagnosis; rather, it's a pattern of symptoms that can help guide further diagnostic evaluation and management.

Antithrombin III is a protein that inhibits the formation of blood clots (thrombi) in the body. It does this by inactivating several enzymes involved in coagulation, including thrombin and factor Xa. Antithrombin III is produced naturally by the liver and is also available as a medication for the prevention and treatment of thromboembolic disorders, such as deep vein thrombosis and pulmonary embolism. It works by binding to and neutralizing excess clotting factors in the bloodstream, thereby reducing the risk of clot formation.

Factor X is a protein that is essential for blood clotting, also known as coagulation. It is an enzyme that plays a crucial role in the coagulation cascade, which is a series of chemical reactions that lead to the formation of a blood clot. Factor X is activated by one of two pathways: the intrinsic pathway, which is initiated by damage to the blood vessels, or the extrinsic pathway, which is triggered by the release of tissue factor from damaged cells. Once activated, Factor X converts prothrombin to thrombin, which then converts fibrinogen to fibrin to form a stable clot.

Inherited deficiencies in Factor X can lead to bleeding disorders, while increased levels of Factor X have been associated with an increased risk of thrombosis or blood clots. Therefore, maintaining appropriate levels of Factor X is important for the proper balance between bleeding and clotting in the body.

Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors that are activated by proteolytic cleavage of their extracellular N-terminal domain. This process exposes a new tethered ligand domain that binds to the receptor and activates it.

There are four known PARs (PAR-1, PAR-2, PAR-3, and PAR-4) that play important roles in various physiological and pathophysiological processes, including inflammation, hemostasis, wound healing, and cancer. Proteinases such as thrombin, trypsin, and matrix metalloproteinases can activate PARs, leading to the activation of downstream signaling pathways that regulate cellular responses such as proliferation, migration, and gene expression.

Proteinase-activated receptors have been identified as important drug targets for various diseases, including thrombosis, inflammation, and cancer. Inhibitors or antagonists of PARs have shown promise in preclinical and clinical studies for the treatment of these conditions.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Erythrocyte count, also known as red blood cell (RBC) count, is a laboratory test that measures the number of red blood cells in a sample of blood. Red blood cells are important because they carry oxygen from the lungs to the rest of the body. A low erythrocyte count may indicate anemia, while a high count may be a sign of certain medical conditions such as polycythemia. The normal range for erythrocyte count varies depending on a person's age, sex, and other factors.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Cytochalasin D is a toxin produced by certain fungi that inhibits the polymerization and elongation of actin filaments, which are crucial components of the cytoskeleton in cells. This results in the disruption of various cellular processes such as cell division, motility, and shape maintenance. It is often used in research to study actin dynamics and cellular structure.

A binding site on an antibody refers to the specific region on the surface of the antibody molecule that can recognize and bind to a specific antigen. Antibodies are proteins produced by the immune system in response to the presence of foreign substances called antigens. They have two main functions: to neutralize the harmful effects of antigens and to help eliminate them from the body.

The binding site of an antibody is located at the tips of its Y-shaped structure, formed by the variable regions of the heavy and light chains of the antibody molecule. These regions contain unique amino acid sequences that determine the specificity of the antibody for a particular antigen. The binding site can recognize and bind to a specific epitope or region on the antigen, forming an antigen-antibody complex.

The binding between the antibody and antigen is highly specific and depends on non-covalent interactions such as hydrogen bonds, van der Waals forces, and electrostatic attractions. This interaction plays a crucial role in the immune response, as it allows the immune system to recognize and eliminate pathogens and other foreign substances from the body.

Affinity chromatography is a type of chromatography technique used in biochemistry and molecular biology to separate and purify proteins based on their biological characteristics, such as their ability to bind specifically to certain ligands or molecules. This method utilizes a stationary phase that is coated with a specific ligand (e.g., an antibody, antigen, receptor, or enzyme) that selectively interacts with the target protein in a sample.

The process typically involves the following steps:

1. Preparation of the affinity chromatography column: The stationary phase, usually a solid matrix such as agarose beads or magnetic beads, is modified by covalently attaching the ligand to its surface.
2. Application of the sample: The protein mixture is applied to the top of the affinity chromatography column, allowing it to flow through the stationary phase under gravity or pressure.
3. Binding and washing: As the sample flows through the column, the target protein selectively binds to the ligand on the stationary phase, while other proteins and impurities pass through. The column is then washed with a suitable buffer to remove any unbound proteins and contaminants.
4. Elution of the bound protein: The target protein can be eluted from the column using various methods, such as changing the pH, ionic strength, or polarity of the buffer, or by introducing a competitive ligand that displaces the bound protein.
5. Collection and analysis: The eluted protein fraction is collected and analyzed for purity and identity, often through techniques like SDS-PAGE or mass spectrometry.

Affinity chromatography is a powerful tool in biochemistry and molecular biology due to its high selectivity and specificity, enabling the efficient isolation of target proteins from complex mixtures. However, it requires careful consideration of the binding affinity between the ligand and the protein, as well as optimization of the elution conditions to minimize potential damage or denaturation of the purified protein.

Cathepsin G is a serine protease, which is a type of enzyme that breaks down other proteins. It is produced and released by neutrophils, a type of white blood cell that plays an important role in the body's immune response to infection. Cathepsin G helps to digest and kill microorganisms that have invaded the body. It can also contribute to tissue damage and inflammation in certain diseases, such as rheumatoid arthritis and cystic fibrosis.

Prostaglandin-Endoperoxide Synthases (PTGS), also known as Cyclooxygenases (COX), are a group of enzymes that catalyze the conversion of arachidonic acid into prostaglandin G2 and H2, which are further metabolized to produce various prostaglandins and thromboxanes. These lipid mediators play crucial roles in several physiological processes such as inflammation, pain, fever, and blood clotting. There are two major isoforms of PTGS: PTGS-1 (COX-1) and PTGS-2 (COX-2). While COX-1 is constitutively expressed in most tissues and involved in homeostatic functions, COX-2 is usually induced during inflammation and tissue injury. Nonsteroidal anti-inflammatory drugs (NSAIDs) exert their therapeutic effects by inhibiting these enzymes, thereby reducing the production of prostaglandins and thromboxanes.

Fibrinolysin is defined as a proteolytic enzyme that dissolves or breaks down fibrin, a protein involved in the clotting of blood. This enzyme is produced by certain cells, such as endothelial cells that line the interior surface of blood vessels, and is an important component of the body's natural mechanism for preventing excessive blood clotting and maintaining blood flow.

Fibrinolysin works by cleaving specific bonds in the fibrin molecule, converting it into soluble degradation products that can be safely removed from the body. This process is known as fibrinolysis, and it helps to maintain the balance between clotting and bleeding in the body.

In medical contexts, fibrinolysin may be used as a therapeutic agent to dissolve blood clots that have formed in the blood vessels, such as those that can occur in deep vein thrombosis or pulmonary embolism. It is often administered in combination with other medications that help to enhance its activity and specificity for fibrin.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

Phosphatidylinositol phosphates (PIPs) are a family of lipid molecules that play crucial roles as secondary messengers in intracellular signaling pathways. They are formed by the phosphorylation of the hydroxyl group on the inositol ring of phosphatidylinositol (PI), a fundamental component of cell membranes.

There are seven main types of PIPs, classified based on the number and position of phosphate groups attached to the inositol ring:

1. Phosphatidylinositol 4-monophosphate (PI4P) - one phosphate group at the 4th position
2. Phosphatidylinositol 5-monophosphate (PI5P) - one phosphate group at the 5th position
3. Phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) - two phosphate groups at the 3rd and 4th positions
4. Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) - two phosphate groups at the 3rd and 5th positions
5. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] - two phosphate groups at the 4th and 5th positions
6. Phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] - three phosphate groups at the 3rd, 4th, and 5th positions
7. Phosphatidylinositol 3-phosphate (PI3P) - one phosphate group at the 3rd position

These PIPs are involved in various cellular processes such as membrane trafficking, cytoskeleton organization, cell survival, and metabolism. Dysregulation of PIP metabolism has been implicated in several diseases, including cancer, diabetes, and neurological disorders.

Endothelial cells are the type of cells that line the inner surface of blood vessels, lymphatic vessels, and heart chambers. They play a crucial role in maintaining vascular homeostasis by controlling vasomotor tone, coagulation, platelet activation, and inflammation. Endothelial cells also regulate the transport of molecules between the blood and surrounding tissues, and contribute to the maintenance of the structural integrity of the vasculature. They are flat, elongated cells with a unique morphology that allows them to form a continuous, nonthrombogenic lining inside the vessels. Endothelial cells can be isolated from various tissues and cultured in vitro for research purposes.

S-Nitrosoglutathione (GSNO) is defined as a type of nitrosothiol, which is a class of compounds containing a nitroso (−NO) group attached to a sulfur atom. Specifically, GSNO is the result of the attachment of a nitric oxide (NO) molecule to the sulfur atom of the tripeptide glutathione (GSH). This compound has been the subject of extensive research due to its potential role in the regulation of various biological processes, including cell signaling, vasodilation, and neurotransmission, among others. It is also known to have antioxidant properties and to play a role in the immune response. However, it should be noted that abnormal levels of GSNO have been associated with various pathological conditions, such as cancer, neurodegenerative diseases, and cardiovascular disorders.

Cell degranulation is the process by which cells, particularly immune cells like mast cells and basophils, release granules containing inflammatory mediators in response to various stimuli. These mediators include histamine, leukotrienes, prostaglandins, and other chemicals that play a role in allergic reactions, inflammation, and immune responses. The activation of cell surface receptors triggers a signaling cascade that leads to the exocytosis of these granules, resulting in degranulation. This process is important for the immune system's response to foreign invaders and for the development of allergic reactions.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Bone marrow is the spongy tissue found inside certain bones in the body, such as the hips, thighs, and vertebrae. It is responsible for producing blood-forming cells, including red blood cells, white blood cells, and platelets. There are two types of bone marrow: red marrow, which is involved in blood cell production, and yellow marrow, which contains fatty tissue.

Red bone marrow contains hematopoietic stem cells, which can differentiate into various types of blood cells. These stem cells continuously divide and mature to produce new blood cells that are released into the circulation. Red blood cells carry oxygen throughout the body, white blood cells help fight infections, and platelets play a crucial role in blood clotting.

Bone marrow also serves as a site for immune cell development and maturation. It contains various types of immune cells, such as lymphocytes, macrophages, and dendritic cells, which help protect the body against infections and diseases.

Abnormalities in bone marrow function can lead to several medical conditions, including anemia, leukopenia, thrombocytopenia, and various types of cancer, such as leukemia and multiple myeloma. Bone marrow aspiration and biopsy are common diagnostic procedures used to evaluate bone marrow health and function.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

Cyclooxygenase-1 (COX-1) is a type of enzyme belonging to the cyclooxygenase family, which is responsible for the production of prostaglandins, thromboxanes, and prostacyclins. These are important signaling molecules that play a role in various physiological processes such as inflammation, pain perception, blood clotting, and gastric acid secretion.

COX-1 is constitutively expressed in most tissues, including the stomach, kidneys, and platelets, where it performs housekeeping functions. For example, in the stomach, COX-1 produces prostaglandins that protect the stomach lining from acid and digestive enzymes. In the kidneys, COX-1 helps regulate blood flow and sodium balance. In platelets, COX-1 produces thromboxane A2, which promotes blood clotting.

COX-1 is a target of nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, ibuprofen, and naproxen. These medications work by inhibiting the activity of COX enzymes, reducing the production of prostaglandins and thromboxanes, and thereby alleviating pain, inflammation, and fever. However, long-term use of NSAIDs can lead to side effects such as stomach ulcers and bleeding due to the inhibition of COX-1 in the stomach lining.

Diacylglycerols (also known as diglycerides) are a type of glyceride, which is a compound that consists of glycerol and one or more fatty acids. Diacylglycerols contain two fatty acid chains bonded to a glycerol molecule through ester linkages. They are important intermediates in the metabolism of lipids and can be found in many types of food, including vegetable oils and dairy products. In the body, diacylglycerols can serve as a source of energy and can also play roles in cell signaling processes.

Polyethylene glycols (PEGs) are a family of synthetic, water-soluble polymers with a wide range of molecular weights. They are commonly used in the medical field as excipients in pharmaceutical formulations due to their ability to improve drug solubility, stability, and bioavailability. PEGs can also be used as laxatives to treat constipation or as bowel cleansing agents prior to colonoscopy examinations. Additionally, some PEG-conjugated drugs have been developed for use in targeted cancer therapies.

In a medical context, PEGs are often referred to by their average molecular weight, such as PEG 300, PEG 400, PEG 1500, and so on. Higher molecular weight PEGs tend to be more viscous and have longer-lasting effects in the body.

It's worth noting that while PEGs are generally considered safe for use in medical applications, some people may experience allergic reactions or hypersensitivity to these compounds. Prolonged exposure to high molecular weight PEGs has also been linked to potential adverse effects, such as decreased fertility and developmental toxicity in animal studies. However, more research is needed to fully understand the long-term safety of PEGs in humans.

Factor V, also known as proaccelerin or labile factor, is a protein involved in the coagulation cascade, which is a series of chemical reactions that leads to the formation of a blood clot. Factor V acts as a cofactor for the conversion of prothrombin to thrombin, which is a critical step in the coagulation process.

Inherited deficiencies or abnormalities in Factor V can lead to bleeding disorders. For example, Factor V Leiden is a genetic mutation that causes an increased risk of blood clots, while Factor V deficiency can cause a bleeding disorder.

It's worth noting that "Factor Va" is not a standard medical term. Factor V becomes activated and turns into Factor Va during the coagulation cascade. Therefore, it is possible that you are looking for the definition of "Factor Va" in the context of its role as an activated form of Factor V in the coagulation process.

C-type lectins are a family of proteins that contain one or more carbohydrate recognition domains (CRDs) with a characteristic pattern of conserved sequence motifs. These proteins are capable of binding to specific carbohydrate structures in a calcium-dependent manner, making them important in various biological processes such as cell adhesion, immune recognition, and initiation of inflammatory responses.

C-type lectins can be further classified into several subfamilies based on their structure and function, including selectins, collectins, and immunoglobulin-like receptors. They play a crucial role in the immune system by recognizing and binding to carbohydrate structures on the surface of pathogens, facilitating their clearance by phagocytic cells. Additionally, C-type lectins are involved in various physiological processes such as cell development, tissue repair, and cancer progression.

It is important to note that some C-type lectins can also bind to self-antigens and contribute to autoimmune diseases. Therefore, understanding the structure and function of these proteins has important implications for developing new therapeutic strategies for various diseases.

Drug synergism is a pharmacological concept that refers to the interaction between two or more drugs, where the combined effect of the drugs is greater than the sum of their individual effects. This means that when these drugs are administered together, they produce an enhanced therapeutic response compared to when they are given separately.

Drug synergism can occur through various mechanisms, such as:

1. Pharmacodynamic synergism - When two or more drugs interact with the same target site in the body and enhance each other's effects.
2. Pharmacokinetic synergism - When one drug affects the metabolism, absorption, distribution, or excretion of another drug, leading to an increased concentration of the second drug in the body and enhanced therapeutic effect.
3. Physiochemical synergism - When two drugs interact physically, such as when one drug enhances the solubility or permeability of another drug, leading to improved absorption and bioavailability.

It is important to note that while drug synergism can result in enhanced therapeutic effects, it can also increase the risk of adverse reactions and toxicity. Therefore, healthcare providers must carefully consider the potential benefits and risks when prescribing combinations of drugs with known or potential synergistic effects.

Factor Xa is a serine protease that plays a crucial role in the coagulation cascade, which is a series of reactions that lead to the formation of a blood clot. It is one of the activated forms of Factor X, a pro-protein that is converted to Factor Xa through the action of other enzymes in the coagulation cascade.

Factor Xa functions as a key component of the prothrombinase complex, which also includes calcium ions, phospholipids, and activated Factor V (also known as Activated Protein C or APC). This complex is responsible for converting prothrombin to thrombin, which then converts fibrinogen to fibrin, forming a stable clot.

Inhibitors of Factor Xa are used as anticoagulants in the prevention and treatment of thromboembolic disorders such as deep vein thrombosis and pulmonary embolism. These drugs work by selectively inhibiting Factor Xa, thereby preventing the formation of the prothrombinase complex and reducing the risk of clot formation.

Macromolecular substances, also known as macromolecules, are large, complex molecules made up of repeating subunits called monomers. These substances are formed through polymerization, a process in which many small molecules combine to form a larger one. Macromolecular substances can be naturally occurring, such as proteins, DNA, and carbohydrates, or synthetic, such as plastics and synthetic fibers.

In the context of medicine, macromolecular substances are often used in the development of drugs and medical devices. For example, some drugs are designed to bind to specific macromolecules in the body, such as proteins or DNA, in order to alter their function and produce a therapeutic effect. Additionally, macromolecular substances may be used in the creation of medical implants, such as artificial joints and heart valves, due to their strength and durability.

It is important for healthcare professionals to have an understanding of macromolecular substances and how they function in the body, as this knowledge can inform the development and use of medical treatments.

Fibrin(ogen) degradation products (FDPs) are a group of proteins that result from the breakdown of fibrinogen and fibrin, which are key components of blood clots. This process occurs during the normal physiological process of fibrinolysis, where clots are dissolved to maintain blood flow.

FDPs can be measured in the blood as a marker for the activation of the coagulation and fibrinolytic systems. Elevated levels of FDPs may indicate the presence of a disorder that causes abnormal clotting or bleeding, such as disseminated intravascular coagulation (DIC), deep vein thrombosis (DVT), pulmonary embolism (PE), or certain types of cancer.

It is important to note that FDPs are not specific to any particular disorder and their measurement should be interpreted in conjunction with other clinical and laboratory findings.

Rap GTP-binding proteins, also known as Ras-associated binding (Rab) proteins, are a large family of small GTPases that play crucial roles in regulating intracellular vesicle trafficking and membrane transport. These proteins function as molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state. In the active state, Rab proteins interact with various effector molecules to mediate specific steps in vesicle budding, transport, tethering, and fusion.

Rab proteins are involved in several cellular processes, including exocytosis, endocytosis, phagocytosis, autophagy, and Golgi apparatus function. Each Rab protein has a specific subcellular localization and is responsible for regulating distinct steps in membrane trafficking pathways. Dysregulation of Rab GTPases has been implicated in various human diseases, including cancer, neurodegenerative disorders, and infectious diseases.

In summary, Rap GTP-binding proteins are a family of small GTPases that regulate intracellular vesicle trafficking and membrane transport by functioning as molecular switches in specific steps of these processes.

Alkaloids are a type of naturally occurring organic compounds that contain mostly basic nitrogen atoms. They are often found in plants, and are known for their complex ring structures and diverse pharmacological activities. Many alkaloids have been used in medicine for their analgesic, anti-inflammatory, and therapeutic properties. Examples of alkaloids include morphine, quinine, nicotine, and caffeine.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

Octoxynol is a type of surfactant, which is a compound that lowers the surface tension between two substances, such as oil and water. It is a synthetic chemical that is composed of repeating units of octylphenoxy polyethoxy ethanol.

Octoxynol is commonly used in medical applications as a spermicide, as it is able to disrupt the membrane of sperm cells and prevent them from fertilizing an egg. It is found in some contraceptive creams, gels, and films, and is also used as an ingredient in some personal care products such as shampoos and toothpastes.

In addition to its use as a spermicide, octoxynol has been studied for its potential antimicrobial properties, and has been shown to have activity against certain viruses, bacteria, and fungi. However, its use as an antimicrobial agent is not widely established.

It's important to note that octoxynol can cause irritation and allergic reactions in some people, and should be used with caution. Additionally, there is some concern about the potential for octoxynol to have harmful effects on the environment, as it has been shown to be toxic to aquatic organisms at high concentrations.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Hydroxyquinolines are a group of synthetic antimicrobial agents that contain a hydroxyl group (-OH) attached to a quinoline ring. They have been used in the treatment of various bacterial, fungal, and parasitic infections. Some common examples of hydroxyquinolines include chloroquine, hydroxychloroquine, and quinacrine. These agents work by inhibiting the growth and multiplication of microorganisms, although their exact mechanisms of action may vary. Chloroquine and hydroxychloroquine, for example, are known to interfere with the replication of the malaria parasite within red blood cells, while quinacrine has been used to treat certain types of protozoal infections.

It is important to note that the use of hydroxyquinolines is associated with a number of potential side effects and risks, including gastrointestinal disturbances, visual disturbances, and cardiac toxicity. As such, they should only be used under the close supervision of a healthcare professional.

Tetradecanoylphorbol acetate (TPA) is defined as a pharmacological agent that is a derivative of the phorbol ester family. It is a potent tumor promoter and activator of protein kinase C (PKC), a group of enzymes that play a role in various cellular processes such as signal transduction, proliferation, and differentiation. TPA has been widely used in research to study PKC-mediated signaling pathways and its role in cancer development and progression. It is also used in topical treatments for skin conditions such as psoriasis.

CHO cells, or Chinese Hamster Ovary cells, are a type of immortalized cell line that are commonly used in scientific research and biotechnology. They were originally derived from the ovaries of a female Chinese hamster (Cricetulus griseus) in the 1950s.

CHO cells have several characteristics that make them useful for laboratory experiments. They can grow and divide indefinitely under appropriate conditions, which allows researchers to culture large quantities of them for study. Additionally, CHO cells are capable of expressing high levels of recombinant proteins, making them a popular choice for the production of therapeutic drugs, vaccines, and other biologics.

In particular, CHO cells have become a workhorse in the field of biotherapeutics, with many approved monoclonal antibody-based therapies being produced using these cells. The ability to genetically modify CHO cells through various methods has further expanded their utility in research and industrial applications.

It is important to note that while CHO cells are widely used in scientific research, they may not always accurately represent human cell behavior or respond to drugs and other compounds in the same way as human cells do. Therefore, results obtained using CHO cells should be validated in more relevant systems when possible.

Hydroxyeicosatetraenoic acids (HETEs) are a type of metabolite produced by the oxidation of arachidonic acid, a polyunsaturated fatty acid that is found in the membranes of cells in the human body. This oxidation process is catalyzed by enzymes called lipoxygenases (LOXs) and cytochrome P450 monooxygenases (CYP450).

HETEs are biologically active compounds that play a role in various physiological and pathophysiological processes, including inflammation, immune response, and cancer. They can act as signaling molecules, modulating the activity of various cell types, such as leukocytes, endothelial cells, and smooth muscle cells.

There are several different types of HETEs, depending on the position of the hydroxyl group (-OH) attached to the arachidonic acid molecule. For example, 5-HETE, 12-HETE, and 15-HETE are produced by 5-LOX, 12-LOX, and 15-LOX, respectively, while CYP450 can produce 20-HETE.

It's worth noting that HETEs have been implicated in various diseases, such as atherosclerosis, hypertension, and cancer, making them potential targets for therapeutic intervention. However, further research is needed to fully understand their roles and develop effective treatments.

In the context of medical definitions, "suspensions" typically refers to a preparation in which solid particles are suspended in a liquid medium. This is commonly used for medications that are administered orally, where the solid particles disperse upon shaking and settle back down when left undisturbed. The solid particles can be made up of various substances such as drugs, nutrients, or other active ingredients, while the liquid medium is often water, oil, or alcohol-based.

It's important to note that "suspensions" in a medical context should not be confused with the term as it relates to pharmacology or physiology, where it may refer to the temporary stopping of a bodily function or the removal of something from a solution through settling or filtration.

Factor XIII, also known as fibrin stabilizing factor, is a protein involved in the clotting process of blood. It is a transglutaminase enzyme that cross-links fibrin molecules to form a stable clot. Factor XIII becomes activated during the coagulation cascade, and its activity helps strengthen the clot and protect it from premature degradation by proteolytic enzymes. A deficiency in Factor XIII can lead to a bleeding disorder characterized by prolonged bleeding after injury or surgery.

I'm sorry for any confusion, but "Talin" is not a medical term that I am aware of. Talin is actually a protein involved in cell-matrix and cell-cell adhesion, acting as a crucial component in connecting the intracellular cytoskeleton to the extracellular matrix. It might be used in scientific or biology research contexts, but it's not a term typically found in medical textbooks or patient-related medical definitions. If you have any questions about medical conditions or terms, I would be happy to help with those!

Adenosine monophosphate (AMP) is a nucleotide that is the monophosphate ester of adenosine, consisting of the nitrogenous base adenine attached to the 1' carbon atom of ribose via a β-N9-glycosidic bond, which in turn is esterified to a phosphate group. It is an important molecule in biological systems as it plays a key role in cellular energy transfer and storage, serving as a precursor to other nucleotides such as ADP and ATP. AMP is also involved in various signaling pathways and can act as a neurotransmitter in the central nervous system.

Hematologic tests, also known as hematology tests, are a group of diagnostic exams that evaluate the health and function of different components of blood, such as red and white blood cells, platelets, and clotting factors. These tests can detect various disorders, including anemia, infection, bleeding problems, and several types of cancer. Common hematologic tests include complete blood count (CBC), coagulation studies, peripheral smear examination, and erythrocyte sedimentation rate (ESR). The specific test or combination of tests ordered will depend on the patient's symptoms, medical history, and physical examination findings.

Chymotrypsin is a proteolytic enzyme, specifically a serine protease, that is produced in the pancreas and secreted into the small intestine as an inactive precursor called chymotrypsinogen. Once activated, chymotrypsin helps to digest proteins in food by breaking down specific peptide bonds in protein molecules. Its activity is based on the recognition of large hydrophobic side chains in amino acids like phenylalanine, tryptophan, and tyrosine. Chymotrypsin plays a crucial role in maintaining normal digestion and absorption processes in the human body.

CD9 is a type of protein found on the surface of certain cells in the human body. It is part of a group of proteins known as tetraspanins, which are involved in various cellular processes such as cell adhesion, motility, and activation. CD9 has been found to be expressed on the surface of immune cells, including T cells, B cells, and platelets.

As an antigen, CD9 is a molecule that can stimulate an immune response when it is recognized by the immune system as foreign or different from normal self-tissue. However, CD9 is not typically considered a foreign substance, so it does not usually elicit an immune response in healthy individuals.

In some cases, CD9 may be targeted by autoantibodies in certain medical conditions such as autoimmune diseases. For example, anti-CD9 antibodies have been found in patients with systemic lupus erythematosus (SLE) and other autoimmune disorders. These autoantibodies can contribute to the development of tissue damage and inflammation in these conditions.

It's worth noting that while CD9 is an important protein involved in various cellular functions, its role as an antigen is not well-studied or well-understood, particularly in the context of autoimmune diseases.

The double-blind method is a study design commonly used in research, including clinical trials, to minimize bias and ensure the objectivity of results. In this approach, both the participants and the researchers are unaware of which group the participants are assigned to, whether it be the experimental group or the control group. This means that neither the participants nor the researchers know who is receiving a particular treatment or placebo, thus reducing the potential for bias in the evaluation of outcomes. The assignment of participants to groups is typically done by a third party not involved in the study, and the codes are only revealed after all data have been collected and analyzed.

Lysophospholipids are a type of glycerophospholipid, which is a major component of cell membranes. They are characterized by having only one fatty acid chain attached to the glycerol backbone, as opposed to two in regular phospholipids. This results in a more polar and charged molecule, which can play important roles in cell signaling and regulation.

Lysophospholipids can be derived from the breakdown of regular phospholipids through the action of enzymes such as phospholipase A1 or A2. They can also be synthesized de novo in the cell. Some lysophospholipids, such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P), have been found to act as signaling molecules that bind to specific G protein-coupled receptors and regulate various cellular processes, including proliferation, survival, and migration.

Abnormal levels of lysophospholipids have been implicated in several diseases, such as cancer, inflammation, and neurological disorders. Therefore, understanding the biology of lysophospholipids has important implications for developing new therapeutic strategies.

Thionucleotides are chemical compounds that are analogs of nucleotides, which are the building blocks of DNA and RNA. In thionucleotides, one or more of the oxygen atoms in the nucleotide's chemical structure is replaced by a sulfur atom. This modification can affect the way the thionucleotide interacts with other molecules, including enzymes that work with nucleotides and nucleic acids.

Thionucleotides are sometimes used in research to study the biochemistry of nucleic acids and their interactions with other molecules. They can also be used as inhibitors of certain enzymes, such as reverse transcriptase, which is an important target for HIV/AIDS therapy. However, thionucleotides are not normally found in natural biological systems and are not themselves components of DNA or RNA.

An antigen-antibody complex is a type of immune complex that forms when an antibody binds to a specific antigen. An antigen is any substance that triggers an immune response, while an antibody is a protein produced by the immune system to neutralize or destroy foreign substances like antigens.

When an antibody binds to an antigen, it forms a complex that can be either soluble or insoluble. Soluble complexes are formed when the antigen is small and can move freely through the bloodstream. Insoluble complexes, on the other hand, are formed when the antigen is too large to move freely, such as when it is part of a bacterium or virus.

The formation of antigen-antibody complexes plays an important role in the immune response. Once formed, these complexes can be recognized and cleared by other components of the immune system, such as phagocytes, which help to prevent further damage to the body. However, in some cases, the formation of large numbers of antigen-antibody complexes can lead to inflammation and tissue damage, contributing to the development of certain autoimmune diseases.

Thrombin time (TT) is a medical laboratory test that measures the time it takes for a clot to form after thrombin, an enzyme that converts fibrinogen to fibrin in the final step of the coagulation cascade, is added to a plasma sample. This test is used to evaluate the efficiency of the conversion of fibrinogen to fibrin and can be used to detect the presence of abnormalities in the coagulation system, such as the presence of heparin or dysfibrinogenemia. Increased thrombin time may indicate the presence of a systemic anticoagulant or a deficiency in fibrinogen.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

Blood viscosity is a measure of the thickness or flow resistance of blood. It is defined as the ratio of shear stress to shear rate within the flowing blood, which reflects the internal friction or resistance to flow. Blood viscosity is primarily determined by the concentration and size of red blood cells (hematocrit), plasma proteins, and other blood constituents. An increase in any of these components can raise blood viscosity, leading to impaired blood flow, reduced oxygen delivery to tissues, and potential cardiovascular complications if not managed appropriately.

Wiskott-Aldrich Syndrome (WAS) is a rare X-linked recessive primary immunodeficiency disorder characterized by the triad of microthrombocytopenia, eczema, and recurrent infections. It is caused by mutations in the WAS gene, which encodes the Wiskott-Aldrich syndrome protein (WASp), a key regulator of actin cytoskeleton reorganization in hematopoietic cells.

The clinical features of WAS include:

1. Microthrombocytopenia: This is characterized by small platelet size and low platelet count, leading to an increased risk of bleeding.
2. Eczema: This is a chronic inflammatory skin disorder that can cause itching, redness, and scaly patches on the skin.
3. Recurrent infections: Patients with WAS are susceptible to bacterial, viral, and fungal infections due to impaired immune function.

Other clinical manifestations of WAS may include autoimmune disorders, lymphoma, and inflammatory bowel disease. The severity of the disease can vary widely among patients, ranging from mild to severe. Treatment options for WAS include hematopoietic stem cell transplantation (HSCT), gene therapy, and supportive care measures such as antibiotics, immunoglobulin replacement therapy, and platelet transfusions.

Hematology is a branch of medicine that deals with the study of blood, its physiology, and pathophysiology. It involves the diagnosis, treatment, and prevention of diseases related to the blood and blood-forming organs such as the bone marrow, spleen, and lymphatic system. This includes disorders of red and white blood cells, platelets, hemoglobin, blood vessels, and coagulation (blood clotting). Some common hematological diseases include anemia, leukemia, lymphoma, sickle cell disease, and bleeding disorders like hemophilia.

Cell separation is a process used to separate and isolate specific cell types from a heterogeneous mixture of cells. This can be accomplished through various physical or biological methods, depending on the characteristics of the cells of interest. Some common techniques for cell separation include:

1. Density gradient centrifugation: In this method, a sample containing a mixture of cells is layered onto a density gradient medium and then centrifuged. The cells are separated based on their size, density, and sedimentation rate, with denser cells settling closer to the bottom of the tube and less dense cells remaining near the top.

2. Magnetic-activated cell sorting (MACS): This technique uses magnetic beads coated with antibodies that bind to specific cell surface markers. The labeled cells are then passed through a column placed in a magnetic field, which retains the magnetically labeled cells while allowing unlabeled cells to flow through.

3. Fluorescence-activated cell sorting (FACS): In this method, cells are stained with fluorochrome-conjugated antibodies that recognize specific cell surface or intracellular markers. The stained cells are then passed through a laser beam, which excites the fluorophores and allows for the detection and sorting of individual cells based on their fluorescence profile.

4. Filtration: This simple method relies on the physical size differences between cells to separate them. Cells can be passed through filters with pore sizes that allow smaller cells to pass through while retaining larger cells.

5. Enzymatic digestion: In some cases, cells can be separated by enzymatically dissociating tissues into single-cell suspensions and then using various separation techniques to isolate specific cell types.

These methods are widely used in research and clinical settings for applications such as isolating immune cells, stem cells, or tumor cells from biological samples.

GTP-binding proteins, also known as G proteins, are a family of molecular switches present in many organisms, including humans. They play a crucial role in signal transduction pathways, particularly those involved in cellular responses to external stimuli such as hormones, neurotransmitters, and sensory signals like light and odorants.

G proteins are composed of three subunits: α, β, and γ. The α-subunit binds GTP (guanosine triphosphate) and acts as the active component of the complex. When a G protein-coupled receptor (GPCR) is activated by an external signal, it triggers a conformational change in the associated G protein, allowing the α-subunit to exchange GDP (guanosine diphosphate) for GTP. This activation leads to dissociation of the G protein complex into the GTP-bound α-subunit and the βγ-subunit pair. Both the α-GTP and βγ subunits can then interact with downstream effectors, such as enzymes or ion channels, to propagate and amplify the signal within the cell.

The intrinsic GTPase activity of the α-subunit eventually hydrolyzes the bound GTP to GDP, which leads to re-association of the α and βγ subunits and termination of the signal. This cycle of activation and inactivation makes G proteins versatile signaling elements that can respond quickly and precisely to changing environmental conditions.

Defects in G protein-mediated signaling pathways have been implicated in various diseases, including cancer, neurological disorders, and cardiovascular diseases. Therefore, understanding the function and regulation of GTP-binding proteins is essential for developing targeted therapeutic strategies.

Filamins are a group of proteins that play a crucial role in the structure and function of the cytoskeleton, which is the internal framework of cells. They belong to a family of proteins known as "cytoskeletal cross-linking proteins." There are three main types of filamins (A, B, and C) in humans, encoded by different genes but sharing similar structures and functions.

Filamins have several domains that allow them to interact with various cellular components, including actin filaments, membrane receptors, signaling molecules, and other structural proteins. One of their primary roles is to connect actin filaments to each other and to other cellular structures, providing stability and organization to the cytoskeleton. This helps maintain cell shape, facilitate cell movement, and enable proper intracellular transport.

Additionally, filamins are involved in various signaling pathways and can regulate cellular processes such as gene expression, cell proliferation, differentiation, and survival. Dysregulation of filamin function has been implicated in several diseases, including cancer, cardiovascular disorders, neurological conditions, and musculoskeletal disorders.

Adenylate cyclase is an enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP). It plays a crucial role in various cellular processes, including signal transduction and metabolism. Adenylate cyclase is activated by hormones and neurotransmitters that bind to G-protein-coupled receptors on the cell membrane, leading to the production of cAMP, which then acts as a second messenger to regulate various intracellular responses. There are several isoforms of adenylate cyclase, each with distinct regulatory properties and subcellular localization.

Fibronectin is a high molecular weight glycoprotein that is found in many tissues and body fluids, including plasma, connective tissue, and the extracellular matrix. It is composed of two similar subunits that are held together by disulfide bonds. Fibronectin plays an important role in cell adhesion, migration, and differentiation by binding to various cell surface receptors, such as integrins, and other extracellular matrix components, such as collagen and heparan sulfate proteoglycans.

Fibronectin has several isoforms that are produced by alternative splicing of a single gene transcript. These isoforms differ in their biological activities and can be found in different tissues and developmental stages. Fibronectin is involved in various physiological processes, such as wound healing, tissue repair, and embryonic development, and has been implicated in several pathological conditions, including fibrosis, tumor metastasis, and thrombosis.

Antithrombins are substances that prevent the formation or promote the dissolution of blood clots (thrombi). They include:

1. Anticoagulants: These are medications that reduce the ability of the blood to clot. Examples include heparin, warfarin, and direct oral anticoagulants (DOACs) such as apixaban, rivaroxaban, and dabigatran.
2. Thrombolytic agents: These are medications that break down existing blood clots. Examples include alteplase, reteplase, and tenecteplase.
3. Fibrinolytics: These are a type of thrombolytic agent that specifically target fibrin, a protein involved in the formation of blood clots.
4. Natural anticoagulants: These are substances produced by the body to regulate blood clotting. Examples include antithrombin III, protein C, and protein S.

Antithrombins are used in the prevention and treatment of various thromboembolic disorders, such as deep vein thrombosis (DVT), pulmonary embolism (PE), stroke, and myocardial infarction (heart attack). It is important to note that while antithrombins can help prevent or dissolve blood clots, they also increase the risk of bleeding, so their use must be carefully monitored.

"Noxae" is a term derived from Latin, which means "causes of damage or injury." In medical contexts, it is used to refer to harmful agents or factors that can cause harm, damage, or disease in an organism or a biological system. These harmful agents can include physical, chemical, or biological factors such as radiation, toxins, infectious microorganisms, and mechanical injuries.

Gelsolin is a protein that plays a role in the regulation of actin, which is a major component of the cytoskeleton in cells. The gelsolin protein can bind to and sever actin filaments, as well as cap their plus ends, preventing further growth. This regulation of actin dynamics is important for various cellular processes, including cell motility, wound healing, and the immune response.

There are two forms of gelsolin in humans: plasma gelsolin, which is found in blood plasma, and cytoplasmic gelsolin, which is found in the cytoplasm of cells. Plasma gelsolin has been shown to have anti-inflammatory properties and may play a role in protecting against sepsis and other inflammatory conditions.

Mutations in the gene that encodes gelsolin can lead to various genetic disorders, including familial amyloidosis, Finnish type (FAF), which is characterized by progressive nerve damage and muscle weakness.

Inositol phosphates are a family of molecules that consist of an inositol ring, which is a six-carbon heterocyclic compound, linked to one or more phosphate groups. These molecules play important roles as intracellular signaling intermediates and are involved in various cellular processes such as cell growth, differentiation, and metabolism.

Inositol hexakisphosphate (IP6), also known as phytic acid, is a form of inositol phosphate that is found in plant-based foods. IP6 has the ability to bind to minerals such as calcium, magnesium, and iron, which can reduce their bioavailability in the body.

Inositol phosphates have been implicated in several diseases, including cancer, diabetes, and neurodegenerative disorders. For example, altered levels of certain inositol phosphates have been observed in cancer cells, suggesting that they may play a role in tumor growth and progression. Additionally, mutations in enzymes involved in the metabolism of inositol phosphates have been associated with several genetic diseases.

HELLP syndrome is a serious complication in pregnancy, characterized by Hemolysis (the breakdown of red blood cells), Elevated Liver enzymes, and Low Platelet count. It is often considered a variant of severe preeclampsia or eclampsia, although it can also occur without these conditions.

The symptoms of HELLP syndrome include headache, nausea and vomiting, upper right abdominal pain, and visual disturbances. It can lead to serious complications for both the mother and the baby, such as liver failure, placental abruption, disseminated intravascular coagulation (DIC), and even death if not promptly diagnosed and treated.

The exact cause of HELLP syndrome is not known, but it is thought to be related to problems with the blood vessels that supply the placenta. Treatment typically involves delivering the baby as soon as possible, even if the baby is premature. Women who have had HELLP syndrome are at increased risk for complications in future pregnancies.

Antibody specificity refers to the ability of an antibody to bind to a specific epitope or antigenic determinant on an antigen. Each antibody has a unique structure that allows it to recognize and bind to a specific region of an antigen, typically a small portion of the antigen's surface made up of amino acids or sugar residues. This highly specific binding is mediated by the variable regions of the antibody's heavy and light chains, which form a pocket that recognizes and binds to the epitope.

The specificity of an antibody is determined by its unique complementarity-determining regions (CDRs), which are loops of amino acids located in the variable domains of both the heavy and light chains. The CDRs form a binding site that recognizes and interacts with the epitope on the antigen. The precise fit between the antibody's binding site and the epitope is critical for specificity, as even small changes in the structure of either can prevent binding.

Antibody specificity is important in immune responses because it allows the immune system to distinguish between self and non-self antigens. This helps to prevent autoimmune reactions where the immune system attacks the body's own cells and tissues. Antibody specificity also plays a crucial role in diagnostic tests, such as ELISA assays, where antibodies are used to detect the presence of specific antigens in biological samples.

Thrombotic thrombocytopenic purpura (TTP) is a rare but serious blood disorder. It's characterized by the formation of small blood clots throughout the body, which can lead to serious complications such as low platelet count (thrombocytopenia), hemolytic anemia, neurological symptoms, and kidney damage.

The term "purpura" refers to the purple-colored spots on the skin that result from bleeding under the skin. In TTP, these spots are caused by the rupture of red blood cells that have been damaged by the abnormal clotting process.

TTP is often caused by a deficiency or inhibitor of ADAMTS13, a protein in the blood that helps to regulate the formation of blood clots. This deficiency or inhibitor can lead to the formation of large clots called microthrombi, which can block small blood vessels throughout the body and cause tissue damage.

TTP is a medical emergency that requires prompt treatment with plasma exchange therapy, which involves removing and replacing the patient's plasma to restore normal levels of ADAMTS13 and prevent further clotting. Other treatments may include corticosteroids, immunosuppressive drugs, and rituximab.

Annexin A5 is a protein that belongs to the annexin family, which are calcium-dependent phospholipid-binding proteins. Annexin A5 has high affinity for phosphatidylserine, a type of phospholipid that is usually located on the inner leaflet of the plasma membrane in healthy cells. However, when cells undergo apoptosis (programmed cell death), phosphatidylserine is exposed on the outer leaflet of the plasma membrane.

Annexin A5 can bind to exposed phosphatidylserine on the surface of apoptotic cells and is commonly used as a marker for detecting apoptosis in various experimental settings, including flow cytometry, immunohistochemistry, and imaging techniques. Annexin A5-based assays are widely used in research and clinical settings to study the mechanisms of apoptosis and to develop diagnostic tools for various diseases, such as cancer, neurodegenerative disorders, and cardiovascular diseases.

The complement system is a group of proteins found in the blood and on the surface of cells that when activated, work together to help eliminate pathogens such as bacteria, viruses, and fungi from the body. The proteins are normally inactive in the bloodstream. When they encounter an invading microorganism or foreign substance, a series of reactions take place leading to the activation of the complement system. Activation results in the production of effector molecules that can punch holes in the cell membranes of pathogens, recruit and activate immune cells, and help remove debris and dead cells from the body.

There are three main pathways that can lead to complement activation: the classical pathway, the lectin pathway, and the alternative pathway. Each pathway involves a series of proteins that work together in a cascade-like manner to amplify the response and generate effector molecules. The three main effector molecules produced by the complement system are C3b, C4b, and C5b. These molecules can bind to the surface of pathogens, marking them for destruction by other immune cells.

Complement proteins also play a role in the regulation of the immune response. They help to prevent excessive activation of the complement system, which could damage host tissues. Dysregulation of the complement system has been implicated in a number of diseases, including autoimmune disorders and inflammatory conditions.

In summary, Complement System Proteins are a group of proteins that play a crucial role in the immune response by helping to eliminate pathogens and regulate the immune response. They can be activated through three different pathways, leading to the production of effector molecules that mark pathogens for destruction. Dysregulation of the complement system has been linked to various diseases.

Cell survival refers to the ability of a cell to continue living and functioning normally, despite being exposed to potentially harmful conditions or treatments. This can include exposure to toxins, radiation, chemotherapeutic drugs, or other stressors that can damage cells or interfere with their normal processes.

In scientific research, measures of cell survival are often used to evaluate the effectiveness of various therapies or treatments. For example, researchers may expose cells to a particular drug or treatment and then measure the percentage of cells that survive to assess its potential therapeutic value. Similarly, in toxicology studies, measures of cell survival can help to determine the safety of various chemicals or substances.

It's important to note that cell survival is not the same as cell proliferation, which refers to the ability of cells to divide and multiply. While some treatments may promote cell survival, they may also inhibit cell proliferation, making them useful for treating diseases such as cancer. Conversely, other treatments may be designed to specifically target and kill cancer cells, even if it means sacrificing some healthy cells in the process.

Isoenzymes, also known as isoforms, are multiple forms of an enzyme that catalyze the same chemical reaction but differ in their amino acid sequence, structure, and/or kinetic properties. They are encoded by different genes or alternative splicing of the same gene. Isoenzymes can be found in various tissues and organs, and they play a crucial role in biological processes such as metabolism, detoxification, and cell signaling. Measurement of isoenzyme levels in body fluids (such as blood) can provide valuable diagnostic information for certain medical conditions, including tissue damage, inflammation, and various diseases.

Solubility is a fundamental concept in pharmaceutical sciences and medicine, which refers to the maximum amount of a substance (solute) that can be dissolved in a given quantity of solvent (usually water) at a specific temperature and pressure. Solubility is typically expressed as mass of solute per volume or mass of solvent (e.g., grams per liter, milligrams per milliliter). The process of dissolving a solute in a solvent results in a homogeneous solution where the solute particles are dispersed uniformly throughout the solvent.

Understanding the solubility of drugs is crucial for their formulation, administration, and therapeutic effectiveness. Drugs with low solubility may not dissolve sufficiently to produce the desired pharmacological effect, while those with high solubility might lead to rapid absorption and short duration of action. Therefore, optimizing drug solubility through various techniques like particle size reduction, salt formation, or solubilization is an essential aspect of drug development and delivery.

Purinergic P2X receptors are a type of ligand-gated ion channel that are activated by the binding of extracellular ATP (adenosine triphosphate) and other purinergic agonists. These receptors play important roles in various physiological processes, including neurotransmission, pain perception, and immune response.

P2X receptors are composed of three subunits that form a functional ion channel. There are seven different subunits (P2X1-7) that can assemble to form homo- or heterotrimeric receptor complexes with distinct functional properties.

Upon activation by ATP, P2X receptors undergo conformational changes that allow for the flow of cations, such as calcium (Ca^2+^), sodium (Na^+^), and potassium (K^+^) ions, across the cell membrane. This ion flux can lead to a variety of downstream signaling events, including the activation of second messenger systems and changes in gene expression.

Purinergic P2X receptors have been implicated in a number of pathological conditions, including chronic pain, inflammation, and neurodegenerative diseases. As such, they are an active area of research for the development of novel therapeutic strategies.

Pipicolic acid is not a term that refers to a specific medical condition or disease. Instead, it is a metabolite that is involved in the body's metabolic processes.

Pipicolic acid is a type of organic compound called a cyclic amino acid, which is derived from the amino acid lysine. It is produced in the liver and is excreted in urine. Pipicolic acid has been found to have various functions in the body, including regulating the metabolism of lipids and bile acids.

Abnormal levels of pipicolic acid in the body may be associated with certain medical conditions, such as liver disease or genetic disorders that affect amino acid metabolism. However, pipicolic acid is not typically used as a diagnostic marker for these conditions.

In summary, pipicolic acid is a cyclic amino acid produced in the liver and involved in various metabolic processes in the body. Abnormal levels of pipicolic acid may be associated with certain medical conditions but are not typically used as diagnostic markers.

Adenosine is a purine nucleoside that is composed of a sugar (ribose) and the base adenine. It plays several important roles in the body, including serving as a precursor for the synthesis of other molecules such as ATP, NAD+, and RNA.

In the medical context, adenosine is perhaps best known for its use as a pharmaceutical agent to treat certain cardiac arrhythmias. When administered intravenously, it can help restore normal sinus rhythm in patients with paroxysmal supraventricular tachycardia (PSVT) by slowing conduction through the atrioventricular node and interrupting the reentry circuit responsible for the arrhythmia.

Adenosine can also be used as a diagnostic tool to help differentiate between narrow-complex tachycardias of supraventricular origin and those that originate from below the ventricles (such as ventricular tachycardia). This is because adenosine will typically terminate PSVT but not affect the rhythm of VT.

It's worth noting that adenosine has a very short half-life, lasting only a few seconds in the bloodstream. This means that its effects are rapidly reversible and generally well-tolerated, although some patients may experience transient symptoms such as flushing, chest pain, or shortness of breath.

Pseudopodia are temporary projections or extensions of the cytoplasm in certain types of cells, such as white blood cells (leukocytes) and some amoebas. They are used for locomotion and engulfing particles or other cells through a process called phagocytosis.

In simpler terms, pseudopodia are like "false feet" that some cells use to move around and interact with their environment. The term comes from the Greek words "pseudes," meaning false, and "podos," meaning foot.

Platelet-Derived Growth Factor (PDGF) is a dimeric protein with potent mitogenic and chemotactic properties that plays an essential role in wound healing, blood vessel growth, and cellular proliferation and differentiation. It is released from platelets during the process of blood clotting and binds to specific receptors on the surface of target cells, including fibroblasts, smooth muscle cells, and glial cells. PDGF exists in several isoforms, which are generated by alternative splicing of a single gene, and have been implicated in various physiological and pathological processes, such as tissue repair, atherosclerosis, and tumor growth.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

SRC-family kinases (SFKs) are a group of non-receptor tyrosine kinases that play important roles in various cellular processes, including cell proliferation, differentiation, survival, and migration. They are named after the founding member, SRC, which was first identified as an oncogene in Rous sarcoma virus.

SFKs share a common structure, consisting of an N-terminal unique domain, a SH3 domain, a SH2 domain, a catalytic kinase domain, and a C-terminal regulatory tail with a negative regulatory tyrosine residue (Y527 in human SRC). In their inactive state, SFKs are maintained in a closed conformation through intramolecular interactions between the SH3 domain, SH2 domain, and the phosphorylated C-terminal tyrosine.

Upon activation by various signals, such as growth factors, cytokines, or integrin engagement, SFKs are activated through a series of events that involve dephosphorylation of the regulatory tyrosine residue, recruitment to membrane receptors via their SH2 and SH3 domains, and trans-autophosphorylation of the activation loop in the kinase domain.

Once activated, SFKs can phosphorylate a wide range of downstream substrates, including other protein kinases, adaptor proteins, and cytoskeletal components, thereby regulating various signaling pathways that control cell behavior. Dysregulation of SFK activity has been implicated in various diseases, including cancer, inflammation, and neurological disorders.

Prostaglandin H2 (PGH2) is not a medical condition, but rather a chemical compound that acts as a precursor in the synthesis of other prostaglandins and thromboxanes. It is produced from arachidonic acid by the action of the enzyme cyclooxygenase (COX). PGH2 is then converted into various downstream prostanoids, such as PGD2, PGE2, PGF2α, PGI2 (prostacyclin), and TXA2 (thromboxane A2), by specific synthases. These prostanoids have diverse biological activities, including regulation of inflammation, pain, fever, blood flow, and platelet aggregation.

Perfusion, in medical terms, refers to the process of circulating blood through the body's organs and tissues to deliver oxygen and nutrients and remove waste products. It is a measure of the delivery of adequate blood flow to specific areas or tissues in the body. Perfusion can be assessed using various methods, including imaging techniques like computed tomography (CT) scans, magnetic resonance imaging (MRI), and perfusion scintigraphy.

Perfusion is critical for maintaining proper organ function and overall health. When perfusion is impaired or inadequate, it can lead to tissue hypoxia, acidosis, and cell death, which can result in organ dysfunction or failure. Conditions that can affect perfusion include cardiovascular disease, shock, trauma, and certain surgical procedures.

Thromboembolism is a medical condition that refers to the obstruction of a blood vessel by a thrombus (blood clot) that has formed elsewhere in the body and then been transported by the bloodstream to a narrower vessel, where it becomes lodged. This process can occur in various parts of the body, leading to different types of thromboembolisms:

1. Deep Vein Thrombosis (DVT): A thrombus forms in the deep veins, usually in the legs or pelvis, and then breaks off and travels to the lungs, causing a pulmonary embolism.
2. Pulmonary Embolism (PE): A thrombus formed elsewhere, often in the deep veins of the legs, dislodges and travels to the lungs, blocking one or more pulmonary arteries. This can lead to shortness of breath, chest pain, and potentially life-threatening complications if not treated promptly.
3. Cerebral Embolism: A thrombus formed in another part of the body, such as the heart or carotid artery, dislodges and travels to the brain, causing a stroke or transient ischemic attack (TIA).
4. Arterial Thromboembolism: A thrombus forms in an artery and breaks off, traveling to another part of the body and blocking blood flow to an organ or tissue, leading to potential damage or loss of function. Examples include mesenteric ischemia (intestinal damage due to blocked blood flow) and retinal artery occlusion (vision loss due to blocked blood flow in the eye).

Prevention, early detection, and appropriate treatment are crucial for managing thromboembolism and reducing the risk of severe complications.

Gel chromatography is a type of liquid chromatography that separates molecules based on their size or molecular weight. It uses a stationary phase that consists of a gel matrix made up of cross-linked polymers, such as dextran, agarose, or polyacrylamide. The gel matrix contains pores of various sizes, which allow smaller molecules to penetrate deeper into the matrix while larger molecules are excluded.

In gel chromatography, a mixture of molecules is loaded onto the top of the gel column and eluted with a solvent that moves down the column by gravity or pressure. As the sample components move down the column, they interact with the gel matrix and get separated based on their size. Smaller molecules can enter the pores of the gel and take longer to elute, while larger molecules are excluded from the pores and elute more quickly.

Gel chromatography is commonly used to separate and purify proteins, nucleic acids, and other biomolecules based on their size and molecular weight. It is also used in the analysis of polymers, colloids, and other materials with a wide range of applications in chemistry, biology, and medicine.

Citrates are the salts or esters of citric acid, a weak organic acid that is naturally found in many fruits and vegetables. In a medical context, citrates are often used as a buffering agent in intravenous fluids to help maintain the pH balance of blood and other bodily fluids. They are also used in various medical tests and treatments, such as in urine alkalinization and as an anticoagulant in kidney dialysis solutions. Additionally, citrate is a component of some dietary supplements and medications.

'Agkistrodon' is a genus of venomous snakes commonly known as pit vipers, found predominantly in North America and parts of Asia. This genus includes several species, among them the copperhead (A. contortrix), cottonmouth or water moccasin (A. piscivorus), and the cantil (A. bilineatus). These snakes are characterized by their triangular heads, heat-sensing pits between the eyes and nostrils, and elliptical pupils. They deliver venom through hollow fangs and can cause significant harm to humans if they bite.

It is important to note that 'Agkistrodon' species are often misidentified due to their similarities with other pit vipers. Accurate identification of a snakebite victim is crucial for proper medical treatment, so seeking professional help from herpetologists or medical professionals is highly recommended in such situations.

Piperazines are a class of heterocyclic organic compounds that contain a seven-membered ring with two nitrogen atoms at positions 1 and 4. They have the molecular formula N-NRR' where R and R' can be alkyl or aryl groups. Piperazines have a wide range of uses in pharmaceuticals, agrochemicals, and as building blocks in organic synthesis.

In a medical context, piperazines are used in the manufacture of various drugs, including some antipsychotics, antidepressants, antihistamines, and anti-worm medications. For example, the antipsychotic drug trifluoperazine and the antidepressant drug nefazodone both contain a piperazine ring in their chemical structure.

However, it's important to note that some piperazines are also used as recreational drugs due to their stimulant and euphoric effects. These include compounds such as BZP (benzylpiperazine) and TFMPP (trifluoromethylphenylpiperazine), which have been linked to serious health risks, including addiction, seizures, and death. Therefore, the use of these substances should be avoided.

Myocardial infarction (MI), also known as a heart attack, is a medical condition characterized by the death of a segment of heart muscle (myocardium) due to the interruption of its blood supply. This interruption is most commonly caused by the blockage of a coronary artery by a blood clot formed on the top of an atherosclerotic plaque, which is a buildup of cholesterol and other substances in the inner lining of the artery.

The lack of oxygen and nutrients supply to the heart muscle tissue results in damage or death of the cardiac cells, causing the affected area to become necrotic. The extent and severity of the MI depend on the size of the affected area, the duration of the occlusion, and the presence of collateral circulation.

Symptoms of a myocardial infarction may include chest pain or discomfort, shortness of breath, nausea, lightheadedness, and sweating. Immediate medical attention is necessary to restore blood flow to the affected area and prevent further damage to the heart muscle. Treatment options for MI include medications, such as thrombolytics, antiplatelet agents, and pain relievers, as well as procedures such as percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG).

Adrenergic receptors are a type of G protein-coupled receptor that bind and respond to catecholamines, such as epinephrine (adrenaline) and norepinephrine (noradrenaline). Alpha adrenergic receptors (α-ARs) are a subtype of adrenergic receptors that are classified into two main categories: α1-ARs and α2-ARs.

The activation of α1-ARs leads to the activation of phospholipase C, which results in an increase in intracellular calcium levels and the activation of various signaling pathways that mediate diverse physiological responses such as vasoconstriction, smooth muscle contraction, and cell proliferation.

On the other hand, α2-ARs are primarily located on presynaptic nerve terminals where they function to inhibit the release of neurotransmitters, including norepinephrine. The activation of α2-ARs also leads to the inhibition of adenylyl cyclase and a decrease in intracellular cAMP levels, which can mediate various physiological responses such as sedation, analgesia, and hypotension.

Overall, α-ARs play important roles in regulating various physiological functions, including cardiovascular function, mood, and cognition, and are also involved in the pathophysiology of several diseases, such as hypertension, heart failure, and neurodegenerative disorders.

Isoantigens are antigens that are present on the cells or tissues of one individual of a species, but are absent or different in another individual of the same species. They are also known as "alloantigens." Isoantigens are most commonly found on the surface of red blood cells and other tissues, and they can stimulate an immune response when transplanted into a different individual. This is because the recipient's immune system recognizes the isoantigens as foreign and mounts a defense against them. Isoantigens are important in the field of transplantation medicine, as they must be carefully matched between donor and recipient to reduce the risk of rejection.

Aurintricarboxylic acid (ATA) is a polyphenolic compound with antioxidant and anti-inflammatory properties. Its chemical formula is C14H8O8. It is known to inhibit several enzymes, including lipoxygenases, cyclooxygenases, and phospholipases, and has been studied for its potential therapeutic effects in various diseases such as cancer, neurodegenerative disorders, and cardiovascular diseases. However, more research is needed to fully understand its mechanisms of action and clinical applications.

Immunoblotting, also known as western blotting, is a laboratory technique used in molecular biology and immunogenetics to detect and quantify specific proteins in a complex mixture. This technique combines the electrophoretic separation of proteins by gel electrophoresis with their detection using antibodies that recognize specific epitopes (protein fragments) on the target protein.

The process involves several steps: first, the protein sample is separated based on size through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Next, the separated proteins are transferred onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric field. The membrane is then blocked with a blocking agent to prevent non-specific binding of antibodies.

After blocking, the membrane is incubated with a primary antibody that specifically recognizes the target protein. Following this, the membrane is washed to remove unbound primary antibodies and then incubated with a secondary antibody conjugated to an enzyme such as horseradish peroxidase (HRP) or alkaline phosphatase (AP). The enzyme catalyzes a colorimetric or chemiluminescent reaction that allows for the detection of the target protein.

Immunoblotting is widely used in research and clinical settings to study protein expression, post-translational modifications, protein-protein interactions, and disease biomarkers. It provides high specificity and sensitivity, making it a valuable tool for identifying and quantifying proteins in various biological samples.

Prostanoic acids are a type of fatty acid that are produced naturally in the body as part of the prostaglandin metabolic pathway. They are derived from arachidonic acid, a type of omega-6 fatty acid, and are involved in various physiological processes such as inflammation, blood flow regulation, and platelet aggregation. Prostanoic acids include compounds such as prostaglandin E2 (PGE2), prostaglandin F2α (PGF2α), prostacyclin (PGI2), and thromboxane A2 (TXA2). These compounds act as signaling molecules, binding to specific receptors on the surface of cells and triggering a variety of cellular responses. They are synthesized and released by cells in response to various stimuli, such as injury or infection, and play important roles in the body's response to these stressors.

Autoantibodies are defined as antibodies that are produced by the immune system and target the body's own cells, tissues, or organs. These antibodies mistakenly identify certain proteins or molecules in the body as foreign invaders and attack them, leading to an autoimmune response. Autoantibodies can be found in various autoimmune diseases such as rheumatoid arthritis, lupus, and thyroiditis. The presence of autoantibodies can also be used as a diagnostic marker for certain conditions.

An acute disease is a medical condition that has a rapid onset, develops quickly, and tends to be short in duration. Acute diseases can range from minor illnesses such as a common cold or flu, to more severe conditions such as pneumonia, meningitis, or a heart attack. These types of diseases often have clear symptoms that are easy to identify, and they may require immediate medical attention or treatment.

Acute diseases are typically caused by an external agent or factor, such as a bacterial or viral infection, a toxin, or an injury. They can also be the result of a sudden worsening of an existing chronic condition. In general, acute diseases are distinct from chronic diseases, which are long-term medical conditions that develop slowly over time and may require ongoing management and treatment.

Examples of acute diseases include:

* Acute bronchitis: a sudden inflammation of the airways in the lungs, often caused by a viral infection.
* Appendicitis: an inflammation of the appendix that can cause severe pain and requires surgical removal.
* Gastroenteritis: an inflammation of the stomach and intestines, often caused by a viral or bacterial infection.
* Migraine headaches: intense headaches that can last for hours or days, and are often accompanied by nausea, vomiting, and sensitivity to light and sound.
* Myocardial infarction (heart attack): a sudden blockage of blood flow to the heart muscle, often caused by a buildup of plaque in the coronary arteries.
* Pneumonia: an infection of the lungs that can cause coughing, chest pain, and difficulty breathing.
* Sinusitis: an inflammation of the sinuses, often caused by a viral or bacterial infection.

It's important to note that while some acute diseases may resolve on their own with rest and supportive care, others may require medical intervention or treatment to prevent complications and promote recovery. If you are experiencing symptoms of an acute disease, it is always best to seek medical attention to ensure proper diagnosis and treatment.

Blood vessels are the part of the circulatory system that transport blood throughout the body. They form a network of tubes that carry blood to and from the heart, lungs, and other organs. The main types of blood vessels are arteries, veins, and capillaries. Arteries carry oxygenated blood away from the heart to the rest of the body, while veins return deoxygenated blood back to the heart. Capillaries connect arteries and veins and facilitate the exchange of oxygen, nutrients, and waste materials between the blood and the body's tissues.

Cytoadhesins are a type of receptor found on the surface of cells, particularly in the immune system and in certain pathogenic organisms. They are involved in the adhesion of cells to each other or to the extracellular matrix, which is crucial for various biological processes such as inflammation, immune response, and the invasion of host tissues by pathogens.

In the context of receptors, cytoadhesins refer to a specific group of proteins that mediate cell-cell or cell-matrix interactions through the recognition and binding of specific ligands. These receptors are often involved in the adhesion of immune cells to other cells or to the extracellular matrix, which is important for their migration, activation, and effector functions.

Examples of cytoadhesin receptors include selectins, integrins, and immunoglobulin superfamily members such as ICAM-1 and VCAM-1. Selectins are involved in the initial tethering and rolling of leukocytes on endothelial cells, while integrins mediate firm adhesion and subsequent transmigration of leukocytes into inflamed tissues. ICAM-1 and VCAM-1 are important ligands for integrins and play a crucial role in the recruitment of immune cells to sites of infection or injury.

In pathogenic organisms such as bacteria and parasites, cytoadhesin receptors are often involved in the adhesion and invasion of host tissues. For example, the malaria parasite Plasmodium falciparum expresses a family of cytoadhesins called PfEMP1 on the surface of infected red blood cells, which mediate their adhesion to endothelial cells in various organs, leading to the severe complications of malaria such as cerebral malaria and placental malaria.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Lysophosphatidylcholines (LPCs) are a type of glycerophospholipids, which are major components of cell membranes. They are formed by the hydrolysis of phosphatidylcholines, another type of glycerophospholipids, catalyzed by the enzyme phospholipase A2. LPCs contain a single fatty acid chain attached to a glycerol backbone and a choline headgroup.

In medical terms, LPCs have been implicated in various physiological and pathological processes, such as cell signaling, membrane remodeling, and inflammation. Elevated levels of LPCs have been found in several diseases, including cardiovascular disease, neurodegenerative disorders, and cancer. They can also serve as biomarkers for the diagnosis and prognosis of these conditions.

A ligand, in the context of biochemistry and medicine, is a molecule that binds to a specific site on a protein or a larger biomolecule, such as an enzyme or a receptor. This binding interaction can modify the function or activity of the target protein, either activating it or inhibiting it. Ligands can be small molecules, like hormones or neurotransmitters, or larger structures, like antibodies. The study of ligand-protein interactions is crucial for understanding cellular processes and developing drugs, as many therapeutic compounds function by binding to specific targets within the body.

Combination drug therapy is a treatment approach that involves the use of multiple medications with different mechanisms of action to achieve better therapeutic outcomes. This approach is often used in the management of complex medical conditions such as cancer, HIV/AIDS, and cardiovascular diseases. The goal of combination drug therapy is to improve efficacy, reduce the risk of drug resistance, decrease the likelihood of adverse effects, and enhance the overall quality of life for patients.

In combining drugs, healthcare providers aim to target various pathways involved in the disease process, which may help to:

1. Increase the effectiveness of treatment by attacking the disease from multiple angles.
2. Decrease the dosage of individual medications, reducing the risk and severity of side effects.
3. Slow down or prevent the development of drug resistance, a common problem in chronic diseases like HIV/AIDS and cancer.
4. Improve patient compliance by simplifying dosing schedules and reducing pill burden.

Examples of combination drug therapy include:

1. Antiretroviral therapy (ART) for HIV treatment, which typically involves three or more drugs from different classes to suppress viral replication and prevent the development of drug resistance.
2. Chemotherapy regimens for cancer treatment, where multiple cytotoxic agents are used to target various stages of the cell cycle and reduce the likelihood of tumor cells developing resistance.
3. Cardiovascular disease management, which may involve combining medications such as angiotensin-converting enzyme (ACE) inhibitors, beta-blockers, diuretics, and statins to control blood pressure, heart rate, fluid balance, and cholesterol levels.
4. Treatment of tuberculosis, which often involves a combination of several antibiotics to target different aspects of the bacterial life cycle and prevent the development of drug-resistant strains.

When prescribing combination drug therapy, healthcare providers must carefully consider factors such as potential drug interactions, dosing schedules, adverse effects, and contraindications to ensure safe and effective treatment. Regular monitoring of patients is essential to assess treatment response, manage side effects, and adjust the treatment plan as needed.

Leukotriene A4 (LTA4) is a lipid mediator derived from arachidonic acid, which is released from membrane phospholipids by the action of phospholipase A2. LTA4 is synthesized in the cell through the 5-lipoxygenase pathway and serves as an intermediate in the production of other leukotrienes (LB4, LTC4, LTD4, LTE4) that are involved in inflammation, bronchoconstriction, increased vascular permeability, and recruitment of leukocytes.

Leukotriene A4 is an unstable compound with a short half-life, which can be converted to Leukotriene B4 (LTB4) by the enzyme LTA4 hydrolase or to Leukotriene C4 (LTC4) by the addition of glutathione through the action of LTC4 synthase. These leukotrienes play a significant role in the pathophysiology of asthma, allergies, and other inflammatory diseases.

The Macrophage-1 Antigen (also known as Macrophage Antigen-1 or CD14) is a glycoprotein found on the surface of various cells, including monocytes, macrophages, and some dendritic cells. It functions as a receptor for complexes formed by lipopolysaccharides (LPS) and LPS-binding protein (LBP), which are involved in the immune response to gram-negative bacteria. CD14 plays a crucial role in activating immune cells and initiating the release of proinflammatory cytokines upon recognizing bacterial components.

In summary, Macrophage-1 Antigen is a cell surface receptor that contributes to the recognition and response against gram-negative bacteria by interacting with LPS-LBP complexes.

I'm sorry for any confusion, but "Glass" is not a medical term. Glass is a non-crystalline amorphous solid that is often transparent and has various uses in everyday life, including medical devices and equipment. If you have any questions related to medical terminology or concepts, please provide them, and I'll be happy to help.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Extracorporeal circulation (ECC) is a term used in medicine to describe the process of temporarily taking over the functions of the heart and lungs by using a machine. This allows the surgeon to perform certain types of surgery, such as open-heart surgery, on a still and bloodless operating field.

During ECC, the patient's blood is circulated outside the body through a pump and oxygenator. The pump helps to maintain blood flow and pressure, while the oxygenator adds oxygen to the blood and removes carbon dioxide. This allows the surgeon to stop the heart and arrest its motion, making it easier to perform delicate procedures on the heart and surrounding structures.

Extracorporeal circulation is a complex and high-risk procedure that requires careful monitoring and management by a team of healthcare professionals. It carries risks such as bleeding, infection, and injury to blood vessels or organs. However, when performed correctly, it can be a life-saving measure for patients undergoing certain types of surgery.

I'm sorry for any confusion, but "Polyethylene Terephthalates" is not a medical term. It is a type of polymer used in the manufacturing of various products, such as plastic bottles and textile fibers. Medically, you might encounter the abbreviation "PET" or "PET scan," which stands for "Positron Emission Tomography." A PET scan is a type of medical imaging that provides detailed pictures of the body's interior. If you have any medical terms you would like defined, I'd be happy to help!

Factor V deficiency is a rare bleeding disorder that is caused by a mutation in the gene that produces coagulation factor V, a protein involved in the clotting process. This condition can lead to excessive bleeding following injury or surgery, and may also cause menorrhagia (heavy menstrual periods) in women.

Factor V deficiency is inherited in an autosomal recessive manner, meaning that an individual must inherit two copies of the mutated gene (one from each parent) in order to develop the condition. People who inherit only one copy of the mutated gene are carriers and may have a milder form of the disorder or no symptoms at all.

Treatment for factor V deficiency typically involves replacement therapy with fresh frozen plasma or clotting factor concentrates, which can help to reduce bleeding episodes and prevent complications. In some cases, medications such as desmopressin or antifibrinolytics may also be used to manage the condition.

Cell shape refers to the physical form or configuration of a cell, which is determined by the cytoskeleton (the internal framework of the cell) and the extracellular matrix (the external environment surrounding the cell). The shape of a cell can vary widely depending on its type and function. For example, some cells are spherical, such as red blood cells, while others are elongated or irregularly shaped. Changes in cell shape can be indicative of various physiological or pathological processes, including development, differentiation, migration, and disease.

Hermanski-Pudlak Syndrome (HPS) is a rare genetic disorder characterized by the triad of albinism, bleeding disorders, and lysosomal storage disease. It is caused by mutations in any one of several genes involved in biogenesis of lysosome-related organelles (LROs), such as melanosomes in melanocytes, platelet dense granules, and lung lamellar bodies.

The albinism in HPS results from abnormal melanosome biogenesis, leading to decreased pigmentation in the skin, hair, and eyes. The bleeding disorder is due to defective platelet dense granules, which are necessary for normal clotting function. This can result in prolonged bleeding times and easy bruising.

The lysosomal storage disease component of HPS is characterized by the accumulation of ceroid lipofuscin within LROs, leading to progressive damage to affected tissues. The most common form of HPS (HPS-1) also involves pulmonary fibrosis, which can lead to respiratory failure and death in the third or fourth decade of life.

There are currently seven known subtypes of HPS, each caused by mutations in different genes involved in LRO biogenesis. The clinical features and severity of HPS can vary widely between subtypes and even within families with the same genetic mutation.

An epitope is a specific region on the surface of an antigen (a molecule that can trigger an immune response) that is recognized by an antibody, B-cell receptor, or T-cell receptor. It is also commonly referred to as an antigenic determinant. Epitopes are typically composed of linear amino acid sequences or conformational structures made up of discontinuous amino acids in the antigen. They play a crucial role in the immune system's ability to differentiate between self and non-self molecules, leading to the targeted destruction of foreign substances like viruses and bacteria. Understanding epitopes is essential for developing vaccines, diagnostic tests, and immunotherapies.

Ploidy is a term used in genetics to describe the number of sets of chromosomes in a cell or an organism. The ploidy level can have important implications for genetic inheritance and expression, as well as for evolutionary processes such as speciation and hybridization.

In most animals, including humans, the normal ploidy level is diploid, meaning that each cell contains two sets of chromosomes - one set inherited from each parent. However, there are also many examples of polyploidy, in which an organism has more than two sets of chromosomes.

Polyploidy can arise through various mechanisms, such as genome duplication or hybridization between different species. In some cases, polyploidy may confer evolutionary advantages, such as increased genetic diversity and adaptability to new environments. However, it can also lead to reproductive isolation and the formation of new species.

In plants, polyploidy is relatively common and has played a significant role in their evolution and diversification. Many crop plants are polyploids, including wheat, cotton, and tobacco. In some cases, artificial induction of polyploidy has been used to create new varieties with desirable traits for agriculture and horticulture.

Overall, ploidy is an important concept in genetics and evolution, with implications for a wide range of biological processes and phenomena.

Methysergide is a medication that belongs to a class of drugs called ergot alkaloids. It is primarily used for the prophylaxis (prevention) of migraine headaches. Methysergide works by narrowing blood vessels around the brain, which is thought to help prevent migraines.

The medical definition of Methysergide is:
A semisynthetic ergot alkaloid derivative used in the prophylaxis of migraine and cluster headaches. It has both agonist and antagonist properties at serotonin receptors, and its therapeutic effects are thought to be related to its ability to block the binding of serotonin to its receptors. However, methysergide can have serious side effects, including fibrotic reactions in various organs, such as the heart, lungs, and kidneys, so it is usually used only for short periods of time and under close medical supervision.

Whole Blood Coagulation Time (WBCT) is not a standard term used in medical literature. However, I believe you may be referring to "bleeding time" or "coagulation time" which are tests used to evaluate the function of the blood's clotting system.

Bleeding time is a measure of how long it takes for bleeding to stop after a small cut is made in the skin. It helps assess the function of the platelets and the smaller blood vessels.

Coagulation time, on the other hand, measures the time it takes for a larger clot to form in whole blood. This test is not commonly used in clinical practice.

It's important to note that these tests have largely been replaced by more specific coagulation tests, such as prothrombin time (PT) and activated partial thromboplastin time (aPTT), which provide more detailed information about the different components of the clotting system.

Inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. It is characterized by the following signs: rubor (redness), tumor (swelling), calor (heat), dolor (pain), and functio laesa (loss of function). The process involves the activation of the immune system, recruitment of white blood cells, and release of inflammatory mediators, which contribute to the elimination of the injurious stimuli and initiation of the healing process. However, uncontrolled or chronic inflammation can also lead to tissue damage and diseases.

Contractile proteins are a type of protein found in muscle cells that are responsible for the ability of the muscle to contract and generate force. The two main types of contractile proteins are actin and myosin, which are arranged in sarcomeres, the functional units of muscle fibers. When stimulated by a nerve impulse, actin and myosin filaments slide past each other, causing the muscle to shorten and generate force. This process is known as excitation-contraction coupling. Other proteins, such as tropomyosin and troponin, regulate the interaction between actin and myosin and control muscle contraction.

I must clarify that the term "Guinea Pigs" is not typically used in medical definitions. However, in colloquial or informal language, it may refer to people who are used as the first to try out a new medical treatment or drug. This is known as being a "test subject" or "in a clinical trial."

In the field of scientific research, particularly in studies involving animals, guinea pigs are small rodents that are often used as experimental subjects due to their size, cost-effectiveness, and ease of handling. They are not actually pigs from Guinea, despite their name's origins being unclear. However, they do not exactly fit the description of being used in human medical experiments.

GTP-binding protein alpha subunits, Gi-Go, are a type of heterotrimeric G proteins that play a crucial role in signal transduction pathways associated with many hormones and neurotransmitters. These G proteins are composed of three subunits: alpha, beta, and gamma. The "Gi-Go" specifically refers to the alpha subunit of these G proteins, which can exist in two isoforms, Gi and Go.

When a G protein-coupled receptor (GPCR) is activated by an agonist, it undergoes a conformational change that allows it to act as a guanine nucleotide exchange factor (GEF). The GEF activity of the GPCR promotes the exchange of GDP for GTP on the alpha subunit of the heterotrimeric G protein. Once GTP is bound, the alpha subunit dissociates from the beta-gamma dimer and can then interact with downstream effectors to modulate various cellular responses.

The Gi-Go alpha subunits are inhibitory in nature, meaning that they typically inhibit the activity of adenylyl cyclase, an enzyme responsible for converting ATP to cAMP. This reduction in cAMP levels can have downstream effects on various cellular processes, such as gene transcription, ion channel regulation, and metabolic pathways.

In summary, GTP-binding protein alpha subunits, Gi-Go, are heterotrimeric G proteins that play an essential role in signal transduction pathways by modulating adenylyl cyclase activity upon GPCR activation, ultimately influencing various cellular responses through cAMP regulation.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Bone marrow cells are the types of cells found within the bone marrow, which is the spongy tissue inside certain bones in the body. The main function of bone marrow is to produce blood cells. There are two types of bone marrow: red and yellow. Red bone marrow is where most blood cell production takes place, while yellow bone marrow serves as a fat storage site.

The three main types of bone marrow cells are:

1. Hematopoietic stem cells (HSCs): These are immature cells that can differentiate into any type of blood cell, including red blood cells, white blood cells, and platelets. They have the ability to self-renew, meaning they can divide and create more hematopoietic stem cells.
2. Red blood cell progenitors: These are immature cells that will develop into mature red blood cells, also known as erythrocytes. Red blood cells carry oxygen from the lungs to the body's tissues and carbon dioxide back to the lungs.
3. Myeloid and lymphoid white blood cell progenitors: These are immature cells that will develop into various types of white blood cells, which play a crucial role in the body's immune system by fighting infections and diseases. Myeloid progenitors give rise to granulocytes (neutrophils, eosinophils, and basophils), monocytes, and megakaryocytes (which eventually become platelets). Lymphoid progenitors differentiate into B cells, T cells, and natural killer (NK) cells.

Bone marrow cells are essential for maintaining a healthy blood cell count and immune system function. Abnormalities in bone marrow cells can lead to various medical conditions, such as anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis, depending on the specific type of blood cell affected. Additionally, bone marrow cells are often used in transplantation procedures to treat patients with certain types of cancer, such as leukemia and lymphoma, or other hematologic disorders.

Purpura is a medical term that refers to the appearance of purple-colored spots on the skin or mucous membranes, caused by bleeding underneath the skin due to various factors such as blood clotting disorders, vasculitis (inflammation of the blood vessels), severe thrombocytopenia (low platelet count), or use of certain medications. These spots can vary in size and shape, ranging from small pinpoint hemorrhages (petechiae) to larger, irregularly shaped patches (ecchymoses). The bleeding is usually not caused by trauma or injury to the area. It's important to consult a healthcare professional if you notice any unexplained purpuric spots on your skin or mucous membranes, as they can indicate an underlying medical condition that requires further evaluation and treatment.

Quinacrine is a medication that belongs to the class of drugs called antimalarials. It is primarily used in the treatment and prevention of malaria caused by Plasmodium falciparum and P. vivax parasites. Quinacrine works by inhibiting the growth of the malarial parasites in the red blood cells.

In addition to its antimalarial properties, quinacrine has been used off-label for various other medical conditions, including the treatment of rheumatoid arthritis and discoid lupus erythematosus (DLE), a type of skin lupus. However, its use in these conditions is not approved by regulatory authorities such as the US Food and Drug Administration (FDA) due to limited evidence and potential side effects.

Quinacrine has several known side effects, including gastrointestinal disturbances, skin rashes, headache, dizziness, and potential neuropsychiatric symptoms like depression, anxiety, or confusion. Long-term use of quinacrine may also lead to yellowing of the skin and eyes (known as quinacrine jaundice) and other eye-related issues. It is essential to consult a healthcare professional before starting quinacrine or any other medication for appropriate dosage, duration, and potential side effects.

Iodine radioisotopes are radioactive isotopes of the element iodine, which decays and emits radiation in the form of gamma rays. Some commonly used iodine radioisotopes include I-123, I-125, I-131. These radioisotopes have various medical applications such as in diagnostic imaging, therapy for thyroid disorders, and cancer treatment.

For example, I-131 is commonly used to treat hyperthyroidism and differentiated thyroid cancer due to its ability to destroy thyroid tissue. On the other hand, I-123 is often used in nuclear medicine scans of the thyroid gland because it emits gamma rays that can be detected by a gamma camera, allowing for detailed images of the gland's structure and function.

It is important to note that handling and administering radioisotopes require specialized training and safety precautions due to their radiation-emitting properties.

Immunosorbent techniques are a group of laboratory methods used in immunology and clinical chemistry to isolate or detect specific proteins, antibodies, or antigens from a complex mixture. These techniques utilize the specific binding properties of antibodies or antigens to capture and concentrate target molecules.

The most common immunosorbent technique is the Enzyme-Linked Immunosorbent Assay (ELISA), which involves coating a solid surface with a capture antibody, allowing the sample to bind, washing away unbound material, and then detecting bound antigens or antibodies using an enzyme-conjugated detection reagent. The enzyme catalyzes a colorimetric reaction that can be measured and quantified, providing a sensitive and specific assay for the target molecule.

Other immunosorbent techniques include Radioimmunoassay (RIA), Immunofluorescence Assay (IFA), and Lateral Flow Immunoassay (LFIA). These methods have wide-ranging applications in research, diagnostics, and drug development.

Theophylline is a medication that belongs to a class of drugs called methylxanthines. It is used in the management of respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and other conditions that cause narrowing of the airways in the lungs.

Theophylline works by relaxing the smooth muscle around the airways, which helps to open them up and make breathing easier. It also acts as a bronchodilator, increasing the flow of air into and out of the lungs. Additionally, theophylline has anti-inflammatory effects that can help reduce swelling in the airways and relieve symptoms such as coughing, wheezing, and shortness of breath.

Theophylline is available in various forms, including tablets, capsules, and liquid solutions. It is important to take this medication exactly as prescribed by a healthcare provider, as the dosage may vary depending on individual factors such as age, weight, and liver function. Regular monitoring of blood levels of theophylline is also necessary to ensure safe and effective use of the medication.

Lipoxygenase is an enzyme that catalyzes the dioxygenation of polyunsaturated fatty acids containing a cis,cis-1,4-pentadiene structure, forming hydroperoxides. This reaction is important in the biosynthesis of leukotrienes and lipoxins, which are involved in various inflammatory responses and immune functions. There are several isoforms of lipoxygenase found in different tissues and organisms, including arachidonate 5-lipoxygenase, arachidonate 12-lipoxygenase, and arachidonate 15-lipoxygenase.

'Immune sera' refers to the serum fraction of blood that contains antibodies produced in response to an antigenic stimulus, such as a vaccine or an infection. These antibodies are proteins known as immunoglobulins, which are secreted by B cells (a type of white blood cell) and can recognize and bind to specific antigens. Immune sera can be collected from an immunized individual and used as a source of passive immunity to protect against infection or disease. It is often used in research and diagnostic settings to identify or measure the presence of specific antigens or antibodies.

Benzamidines are a group of organic compounds that contain a benzene ring linked to an amidine functional group. They are commonly used as antimicrobial agents, particularly in the treatment of various gram-negative bacterial infections. Benzamidines work by inhibiting the enzyme bacterial dehydrogenases, which are essential for the bacteria's survival.

Some examples of benzamidine derivatives include:

* Tempanamine hydrochloride (Tembaglanil): used to treat urinary tract infections caused by susceptible strains of Escherichia coli and Klebsiella pneumoniae.
* Chlorhexidine: a broad-spectrum antimicrobial agent used as a disinfectant and preservative in various medical and dental applications.
* Prothiobenzamide: an anti-inflammatory and analgesic drug used to treat gout and rheumatoid arthritis.

It is important to note that benzamidines have a narrow therapeutic index, which means that the difference between an effective dose and a toxic dose is small. Therefore, they should be used with caution and under the supervision of a healthcare professional.

Hydrolysis is a chemical process, not a medical one. However, it is relevant to medicine and biology.

Hydrolysis is the breakdown of a chemical compound due to its reaction with water, often resulting in the formation of two or more simpler compounds. In the context of physiology and medicine, hydrolysis is a crucial process in various biological reactions, such as the digestion of food molecules like proteins, carbohydrates, and fats. Enzymes called hydrolases catalyze these hydrolysis reactions to speed up the breakdown process in the body.

Enzyme precursors are typically referred to as zymogens or proenzymes. These are inactive forms of enzymes that can be activated under specific conditions. When the need for the enzyme's function arises, the proenzyme is converted into its active form through a process called proteolysis, where it is cleaved by another enzyme. This mechanism helps control and regulate the activation of certain enzymes in the body, preventing unwanted or premature reactions. A well-known example of an enzyme precursor is trypsinogen, which is converted into its active form, trypsin, in the digestive system.

Kininogens are a group of proteins found in the blood plasma that play a crucial role in the inflammatory response and blood coagulation. They are precursors to bradykinin, a potent vasodilator and inflammatory mediator. There are two types of kininogens: high molecular weight kininogen (HMWK) and low molecular weight kininogen (LMWK). HMWK is involved in the intrinsic pathway of blood coagulation, while LMWK is responsible for the release of bradykinin. Both kininogens are important targets in the regulation of inflammation and hemostasis.

Centrifugation is a laboratory technique that involves the use of a machine called a centrifuge to separate mixtures based on their differing densities or sizes. The mixture is placed in a rotor and spun at high speeds, causing the denser components to move away from the center of rotation and the less dense components to remain nearer the center. This separation allows for the recovery and analysis of specific particles, such as cells, viruses, or subcellular organelles, from complex mixtures.

The force exerted on the mixture during centrifugation is described in terms of relative centrifugal force (RCF) or g-force, which represents the number of times greater the acceleration due to centrifugation is than the acceleration due to gravity. The RCF is determined by the speed of rotation (revolutions per minute, or RPM), the radius of rotation, and the duration of centrifugation.

Centrifugation has numerous applications in various fields, including clinical laboratories, biochemistry, molecular biology, and virology. It is a fundamental technique for isolating and concentrating particles from solutions, enabling further analysis and characterization.

Fura-2 is not a medical term per se, but a chemical compound used in scientific research, particularly in the field of physiology and cell biology. Fura-2 is a calcium indicator dye that is commonly used to measure intracellular calcium concentrations in living cells. It works by binding to calcium ions (Ca²+) in the cytoplasm of cells, which causes a change in its fluorescence emission spectrum.

When excited with ultraviolet light at specific wavelengths, Fura-2 exhibits different fluorescence intensities depending on the concentration of calcium ions it has bound to. By measuring these changes in fluorescence intensity, researchers can quantify intracellular calcium levels and study how they change in response to various stimuli or experimental conditions.

While Fura-2 is not a medical term itself, understanding its function and use is essential for researchers working in the fields of physiology, pharmacology, neuroscience, and other biomedical disciplines.

G-protein-coupled receptors (GPCRs) are a family of membrane receptors that play an essential role in cellular signaling and communication. These receptors possess seven transmembrane domains, forming a structure that spans the lipid bilayer of the cell membrane. They are called "G-protein-coupled" because they interact with heterotrimeric G proteins upon activation, which in turn modulate various downstream signaling pathways.

When an extracellular ligand binds to a GPCR, it causes a conformational change in the receptor's structure, leading to the exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP) on the associated G protein's α subunit. This exchange triggers the dissociation of the G protein into its α and βγ subunits, which then interact with various effector proteins to elicit cellular responses.

There are four main families of GPCRs, classified based on their sequence similarities and downstream signaling pathways:

1. Gq-coupled receptors: These receptors activate phospholipase C (PLC), which leads to the production of inositol trisphosphate (IP3) and diacylglycerol (DAG). IP3 induces calcium release from intracellular stores, while DAG activates protein kinase C (PKC).
2. Gs-coupled receptors: These receptors activate adenylyl cyclase, which increases the production of cyclic adenosine monophosphate (cAMP) and subsequently activates protein kinase A (PKA).
3. Gi/o-coupled receptors: These receptors inhibit adenylyl cyclase, reducing cAMP levels and modulating PKA activity. Additionally, they can activate ion channels or regulate other signaling pathways through the βγ subunits.
4. G12/13-coupled receptors: These receptors primarily activate RhoGEFs, which in turn activate RhoA and modulate cytoskeletal organization and cellular motility.

GPCRs are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and sensory perception. Dysregulation of GPCR function has been implicated in numerous diseases, making them attractive targets for drug development.

Intracellular signaling peptides and proteins are molecules that play a crucial role in transmitting signals within cells, which ultimately lead to changes in cell behavior or function. These signals can originate from outside the cell (extracellular) or within the cell itself. Intracellular signaling molecules include various types of peptides and proteins, such as:

1. G-protein coupled receptors (GPCRs): These are seven-transmembrane domain receptors that bind to extracellular signaling molecules like hormones, neurotransmitters, or chemokines. Upon activation, they initiate a cascade of intracellular signals through G proteins and secondary messengers.
2. Receptor tyrosine kinases (RTKs): These are transmembrane receptors that bind to growth factors, cytokines, or hormones. Activation of RTKs leads to autophosphorylation of specific tyrosine residues, creating binding sites for intracellular signaling proteins such as adapter proteins, phosphatases, and enzymes like Ras, PI3K, and Src family kinases.
3. Second messenger systems: Intracellular second messengers are small molecules that amplify and propagate signals within the cell. Examples include cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), diacylglycerol (DAG), inositol triphosphate (IP3), calcium ions (Ca2+), and nitric oxide (NO). These second messengers activate or inhibit various downstream effectors, leading to changes in cellular responses.
4. Signal transduction cascades: Intracellular signaling proteins often form complex networks of interacting molecules that relay signals from the plasma membrane to the nucleus. These cascades involve kinases (protein kinases A, B, C, etc.), phosphatases, and adapter proteins, which ultimately regulate gene expression, cell cycle progression, metabolism, and other cellular processes.
5. Ubiquitination and proteasome degradation: Intracellular signaling pathways can also control protein stability by modulating ubiquitin-proteasome degradation. E3 ubiquitin ligases recognize specific substrates and conjugate them with ubiquitin molecules, targeting them for proteasomal degradation. This process regulates the abundance of key signaling proteins and contributes to signal termination or amplification.

In summary, intracellular signaling pathways involve a complex network of interacting proteins that relay signals from the plasma membrane to various cellular compartments, ultimately regulating gene expression, metabolism, and other cellular processes. Dysregulation of these pathways can contribute to disease development and progression, making them attractive targets for therapeutic intervention.

Blood specimen collection is the process of obtaining a sample of blood from a patient for laboratory testing and analysis. This procedure is performed by trained healthcare professionals, such as nurses or phlebotomists, using sterile equipment to minimize the risk of infection and ensure accurate test results. The collected blood sample may be used to diagnose and monitor various medical conditions, assess overall health and organ function, and check for the presence of drugs, alcohol, or other substances. Proper handling, storage, and transportation of the specimen are crucial to maintain its integrity and prevent contamination.

L-Lactate Dehydrogenase (LDH) is an enzyme found in various tissues within the body, including the heart, liver, kidneys, muscles, and brain. It plays a crucial role in the process of energy production, particularly during anaerobic conditions when oxygen levels are low.

In the presence of the coenzyme NADH, LDH catalyzes the conversion of pyruvate to lactate, generating NAD+ as a byproduct. Conversely, in the presence of NAD+, LDH can convert lactate back to pyruvate using NADH. This reversible reaction is essential for maintaining the balance between lactate and pyruvate levels within cells.

Elevated blood levels of LDH may indicate tissue damage or injury, as this enzyme can be released into the circulation following cellular breakdown. As a result, LDH is often used as a nonspecific biomarker for various medical conditions, such as myocardial infarction (heart attack), liver disease, muscle damage, and certain types of cancer. However, it's important to note that an isolated increase in LDH does not necessarily pinpoint the exact location or cause of tissue damage, and further diagnostic tests are usually required for confirmation.

Coronary balloon angioplasty is a minimally invasive medical procedure used to widen narrowed or obstructed coronary arteries (the blood vessels that supply oxygen-rich blood to the heart muscle) and improve blood flow to the heart. This procedure is typically performed in conjunction with the insertion of a stent, a small mesh tube that helps keep the artery open.

During coronary balloon angioplasty, a thin, flexible catheter with a deflated balloon at its tip is inserted into a blood vessel, usually through a small incision in the groin or arm. The catheter is then guided to the narrowed or obstructed section of the coronary artery. Once in position, the balloon is inflated to compress the plaque against the artery wall and widen the lumen (the inner space) of the artery. This helps restore blood flow to the heart muscle.

The procedure is typically performed under local anesthesia and conscious sedation to minimize discomfort. Coronary balloon angioplasty is a relatively safe and effective treatment for many people with coronary artery disease, although complications such as bleeding, infection, or re-narrowing of the artery (restenosis) can occur in some cases.

A blood donor is a person who voluntarily gives their own blood or blood components to be used for the benefit of another person in need. The blood donation process involves collecting the donor's blood, testing it for infectious diseases, and then storing it until it is needed by a patient. There are several types of blood donations, including:

1. Whole blood donation: This is the most common type of blood donation, where a donor gives one unit (about 450-500 milliliters) of whole blood. The blood is then separated into its components (red cells, plasma, and platelets) for transfusion to patients with different needs.
2. Double red cell donation: In this type of donation, the donor's blood is collected using a special machine that separates two units of red cells from the whole blood. The remaining plasma and platelets are returned to the donor during the donation process. This type of donation can be done every 112 days.
3. Platelet donation: A donor's blood is collected using a special machine that separates platelets from the whole blood. The red cells and plasma are then returned to the donor during the donation process. This type of donation can be done every seven days, up to 24 times a year.
4. Plasma donation: A donor's blood is collected using a special machine that separates plasma from the whole blood. The red cells and platelets are then returned to the donor during the donation process. This type of donation can be done every 28 days, up to 13 times a year.

Blood donors must meet certain eligibility criteria, such as being in good health, aged between 18 and 65 (in some countries, the upper age limit may vary), and weighing over 50 kg (110 lbs). Donors are also required to answer medical questionnaires and undergo a mini-physical examination before each donation. The frequency of blood donations varies depending on the type of donation and the donor's health status.

Thrombospondin-1 (TSP-1) is a multifunctional glycoprotein that is involved in various biological processes, including cell adhesion, migration, proliferation, differentiation, and angiogenesis. It is primarily produced by platelets, endothelial cells, and smooth muscle cells. TSP-1 is a large molecule composed of several domains, including an N-terminal domain that binds to calcium, a region that interacts with various extracellular matrix proteins, and a C-terminal domain that mediates its interaction with cell surface receptors.

TSP-1 plays a critical role in the regulation of coagulation and thrombosis by interacting with components of the coagulation cascade and promoting platelet aggregation. It also has anti-angiogenic properties, as it can inhibit the proliferation and migration of endothelial cells and induce their apoptosis. TSP-1 has been implicated in several pathological conditions, including atherosclerosis, tumor growth and metastasis, and fibrosis.

Fibrinogen receptors are specialized proteins found on the surface of certain cells, particularly platelets and some types of immune cells. These receptors bind to fibrinogen, a protein involved in blood clotting, under specific conditions such as injury or inflammation. The binding of fibrinogen to its receptors plays a crucial role in the process of platelet activation, aggregation, and clot formation, which are essential for hemostasis (the stoppage of bleeding) after injury. Disorders affecting fibrinogen receptor function can lead to abnormal bleeding or clotting tendencies.

Platelet Activating Factor) Platelet+Activating+Factor at the U.S. National Library of Medicine Medical Subject Headings (MeSH ... cytoplasmic platelet-activating factor acetylhydrolase 2, and platelet-activating factor acetylhydrolase 1b. Cations are one ... Platelet-activating factor receptor Platelet-derived growth factor Zimmerman GA, McIntyre TM, Prescott SM, Stafforini DM (May ... an enzyme that catabolizes platelet-activating factor. It is an important mediator of bronchoconstriction. It causes platelets ...
In enzymology, a platelet-activating factor acetyltransferase (EC 2.3.1.149) is an enzyme that catalyzes the chemical reaction ... "A novel CoA-independent transacetylase produces the ethanolamine plasmalogen and acyl analogs of platelet-activating factor ( ...
The platelet-activating factor receptor (PAF-R) is a G-protein coupled receptor which binds platelet-activating factor. It is ... "Entrez Gene: PTAFR platelet-activating factor receptor". Correa-Costa M (Apr 2014). "Activation of platelet-activating factor ... Valone FH (1984). "Isolation of a platelet membrane protein which binds the platelet-activating factor 1-0-hexadecyl-2-acetyl- ... 1995). "Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor". Nature. 377 ( ...
Kingsnorth AN (1996). "Platelet-activating factor". Scandinavian Journal of Gastroenterology. Supplement. 219: 28-31. doi: ... January 2001). "Double blind, randomised, placebo controlled study of a platelet activating factor antagonist, lexipafant, in ... Platelet-Activating Factor and Related Lipid Mediators 2. Advances in Experimental Medicine and Biology. Vol. 416. pp. 365-370 ... is a drug which acts as a potent and selective inhibitor of the phospholipid mediator platelet-activating factor (PAF). It was ...
Platelet-activating factor (PAF) is an ether lipid which has an acetyl group instead of an acyl chain at the second position ( ... Ether lipids can also act directly in cell signaling, as the platelet-activating factor is an ether lipid signaling molecule ... Demopoulos CA, Pinckard RN, Hanahan DJ (October 1979). "Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl ...
Platelet-activating factor acetylhydrolase 2, cytoplasmic is an enzyme that in humans is encoded by the PAFAH2 gene. It is one ... "Entrez Gene: PAFAH2 platelet-activating factor acetylhydrolase 2, 40kDa". Stafforini DM, McIntyre TM, Zimmerman GA, Prescott SM ... This gene encodes platelet-activating factor acetylhydrolase isoform 2, a single-subunit intracellular enzyme that catalyzes ... Min JH, Wilder C, Aoki J, Arai H, Inoue K, Paul L, Gelb MH (Apr 2001). "Platelet-activating factor acetylhydrolases: broad ...
"Functional and Structural Features of Plasma Platelet-Activating Factor Acetylhydrolase". Platelet-Activating Factor and ... Platelet-activating factor acetylhydrolase IB subunit alpha is an enzyme that in humans is encoded by the PAFAH1B1 gene. The ... "Entrez Gene: PAFAH1B1 platelet-activating factor acetylhydrolase, isoform Ib, alpha subunit 45kDa". Kardon JR, Vale RD (Dec ... platelet-activating factor PAFAH1B2 PAFAH1B3 GRCh38: Ensembl release 89: ENSG00000007168 - Ensembl, May 2017 GRCm38: Ensembl ...
PAF-AH inactivates platelet-activating factor, a phospholipid that plays a role in the inflammation seen in sepsis. The enzyme ... Pafase is the recombinant form of platelet-activating factor acetylhydrolase (PAF-AH, also known as lipoprotein-associated ... Stafforini DM, McIntyre TM, Carter ME, Prescott SM (March 25, 1987). "Human Plasma Platelet-activating Factor Acetylhydrolase ... April 6, 1995). "Anti-inflammatory properties of a platelet-activating factor acetylhydrolase". Nature. 374 (6522): 549-53. ...
"The human leukocyte platelet-activating factor receptor. cDNA cloning, cell surface expression, and construction of a novel ...
Kato K, Clark GD, Bazan NG, Zorumski CF (January 1994). "Platelet-activating factor as a potential retrograde messenger in CA1 ... Kato K, Zorumski CF (September 1996). "Platelet-activating factor as a potential retrograde messenger". Journal of Lipid ... platelet-activating factor, arachidonic acid, and nitric oxide. Nitric oxide has received a great deal of attention in the past ... In this regard, the chloroplast or mitochondria act as a sensor for internal external stimuli which activate a signaling ...
... is part of the platelet-activating factor; the phospholipid phosphatidylcholine and sphingomyelin, the only ...
Platelet-Activating Factor and Related Lipid Mediators 2. Advances in Experimental Medicine and Biology. Vol. 416. pp. 321-6. ... Phosphoinositide-3-kinase (PI3K) activates an important cell survival signaling pathway, and constitutive activation is seen in ... and mitogen-activated protein kinase (MAPK) at high concentrations Wortmannin has also been reported to inhibit members of the ...
... platelet-activating factor, to stimulate and otherwise activate eosinophils. ALOX5 contributes to non-allergic NSAID ... Rossi AG, O'Flaherty JT (1991). "Bioactions of 5-hydroxyicosatetraenoate and its interaction with platelet-activating factor". ... Platelet-Activating Factor and Related Lipid Mediators 2. Advances in Experimental Medicine and Biology. Vol. 416. pp. 327-331 ... This chemotactic factor stimulation concurrently causes the activation of mitogen-activated protein kinases (MAPK) which in ...
Farooque SP, Arm JP, Lee TH (2008). "Lipid Mediators: Leukotrienes, Prostanoids, Lipoxins, and Platelet-Activating Factor". In ... Several synthetic compounds bind to, but do not activate, TP and thereby inhibit its activation by activating ligands. These ... activating cell signal pathways, and/or platelet functional responses not only to TP agonists but also to agents that stimulate ... "G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets". Proc. Natl. Acad. Sci ...
September 1998). "A mutation in plasma platelet-activating factor acetylhydrolase (Val279Phe) is a genetic risk factor for ... T missense in exon 9 of the plasma platelet-activating factor acetylhydrolase gene as an independent risk factor for coronary ... "A mutation in plasma platelet-activating factor acetylhydrolase (Val279-->Phe) is a genetic risk factor for stroke". Stroke. 28 ... Lp-PLA2 is platelet-activating factor (PAF) acetylhydrolase (EC 3.1.1.47), a secreted enzyme that catalyzes the degradation of ...
"Leukocyte-dependent histamine release from rabbit platelets. The role of IgE, basophils, and a platelet-activating factor". ... Platelet-activating factor was discovered by Benveniste in the early 1970s. PAF was the first phospholipid known to have ... In 1979, he published a well-known paper on the structure of platelet-activating factor and its relationship with histamine. He ... Benveniste, J. (1974-06-07). "Platelet-activating factor, a new mediator of anaphylaxis and immune complex deposition from ...
Richardson RM, Marjoram RJ, Barr AJ, Snyderman R (2001). "RGS4 inhibits platelet-activating factor receptor phosphorylation and ... Berman DM, Wilkie TM, Gilman AG (1996). "GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha ... Regulator of G protein signalling (RGS) family members are regulatory molecules that act as GTPase activating proteins (GAPs) ... Thaminy S, Auerbach D, Arnoldo A, Stagljar I (2003). "Identification of novel ErbB3-interacting factors using the split- ...
Bioactive molecules extracted from its bark and roots have been reported to inhibit platelet-activating factor receptor binding ... and Goniothalamus uvaroides King on Platelet-Activating Factor Receptor Binding". Phytotherapy Research. 26 (5): 687-691. doi: ... "Antiplatelet Aggregation and Platelet Activating Factor (PAF) Receptor Antagonistic Activities of the Essential Oils of Five ... in tests with rabbit platelets. King, George (1893). "Anonaceae of British India". Annals of the Royal Botanic Garden, Calcutta ...
Hexadecyl platelet-activating factor has profound effects on the lung, and hexadecyl glyceryl ether participates in the ... Haroldsen, P. E.; Voelkel, N. F.; Henson, J. E.; Henson, P. M.; Murphy, R. C. (1987). "Metabolism of platelet-activating factor ...
The interactions of 5-oxo-ETE with these mediators of allergy (e.g. platelet-activating factor, interleukin 5) in eosinophils ... 5-Oxo-ETE and another potential mediator of human allergic reactions, platelet-activating factor, act in synergy to stimulate ... and production of mediators such as various arachidonic acid metabolites and platelet-activating factor in human eosinophils, ... "Bioactions of 5-hydroxyicosatetraenoate and its interaction with platelet-activating factor". Lipids. 26 (12): 1184-8. doi: ...
cPLA2 may also release the lysophospholipid that becomes platelet-activating factor. Next, the free fatty acid is oxygenated ... or pathogens such as chemotactic factors, cytokines, growth factors, and even certain eicosanoids. The activated cells then ... Prostanoids also activate the PPARγ members of the steroid/thyroid family of nuclear hormone receptors, and directly influence ... COX, the lipoxygenases, and the phospholipases are tightly controlled-there are at least eight proteins activated to coordinate ...
"Platelet-activating factor acetylhydrolase expression and activity suggest a link between neuronal migration and platelet- ... Platelet-activating factor acetylhydrolase IB subunit beta is an enzyme that in humans is encoded by the PAFAH1B2 gene. ... "Entrez Gene: PAFAH1B2 platelet-activating factor acetylhydrolase, isoform Ib, beta subunit 30kDa". Sweeney KJ, Clark GD, ... "The beta and gamma subunits of the human platelet-activating factor acetyl hydrolase isoform Ib (PAFAH1B2 and PAFAH1B3) map to ...
Mast cell granules contain histamine, heparin, platelet-activating factor, and other substances. Disseminated mastocytosis is ... Mullins M, Dernell W, Withrow S, Ehrhart E, Thamm D, Lana S (2006). "Evaluation of prognostic factors associated with outcome ...
Sapir T, Elbaum M, Reiner O (December 1997). "Reduction of microtubule catastrophe events by LIS1, platelet-activating factor ... Sapir T, Elbaum M, Reiner O (December 1997). "Reduction of microtubule catastrophe events by LIS1, platelet-activating factor ... Faruki S, Geahlen RL, Asai DJ (July 2000). "Syk-dependent phosphorylation of microtubules in activated B-lymphocytes". Journal ... Culturing of pheochromocytoma cells with Nerve Growth Factor (NGF) induced differentiation and the development of neuronal ...
... on platelet activating factor". Planta Med. 58 (4): 306-10. doi:10.1055/s-2006-961472. PMID 1438589. v t e (All articles with ...
Platelet-activating factor acetylhydrolase IB subunit gamma is an enzyme that in humans is encoded by the PAFAH1B3 gene. ... "Entrez Gene: PAFAH1B3 platelet-activating factor acetylhydrolase, isoform Ib, gamma subunit 29kDa". Sweeney KJ, Clark GD, ... Adachi H, Tsujimoto M, Hattori M, Arai H, Inoue K (Sep 1995). "cDNA cloning of human cytosolic platelet-activating factor ... "The beta and gamma subunits of the human platelet-activating factor acetyl hydrolase isoform Ib (PAFAH1B2 and PAFAH1B3) map to ...
The hydrolysis reaction also produces lysophospholipids that are converted into platelet-activating factor. The enzyme is ... 1993). "cPLA2 is phosphorylated and activated by MAP kinase". Cell. 72 (2): 269-78. doi:10.1016/0092-8674(93)90666-E. PMID ... 1998). "Identification of the phosphorylation sites of cytosolic phospholipase A2 in agonist-stimulated human platelets and ... activated by increased intracellular Ca2+ levels and phosphorylation, resulting in its translocation from the cytosol and ...
Snyder F, Lee TC, Blank ML (1992). "The role of transacylases in the metabolism of arachidonate and platelet activating factor ...
... platelet-activating factor, and leukotrienes); peptide hormones (e.g., calcitonin, C5a anaphylatoxin, follicle-stimulating ... This activates cAMP, which in turn activates several kinases, allowing for a cellular response, such as transcription. GPCRs ... However, protease-activated receptors are activated by cleavage of part of their extracellular domain. The transduction of the ... The effects of Ca2+ are also remarkable: it cooperates with DAG in activating PKC and can activate the CaM kinase pathway, in ...
Kato M, Imoto K, Miyake H, Oda T, Miyaji S, Nakamura M (August 2004). "Apafant, a potent platelet-activating factor antagonist ... Casals-Stenzel J (December 1991). "Thieno-triazolo-1,4-diazepines as antagonists of platelet-activating factor: present status ... is a drug which acts as a potent and selective inhibitor of the phospholipid mediator platelet-activating factor (PAF). It was ... pharmacokinetics and safety profile of the new platelet-activating factor antagonist apafant in man". Arzneimittel-Forschung. ...
Platelet Activating Factor) Platelet+Activating+Factor at the U.S. National Library of Medicine Medical Subject Headings (MeSH ... cytoplasmic platelet-activating factor acetylhydrolase 2, and platelet-activating factor acetylhydrolase 1b. Cations are one ... Platelet-activating factor receptor Platelet-derived growth factor Zimmerman GA, McIntyre TM, Prescott SM, Stafforini DM (May ... an enzyme that catabolizes platelet-activating factor. It is an important mediator of bronchoconstriction. It causes platelets ...
Effects of inhaled furosemide on platelet-activating factor challenge in mild asthma. AL Echazarreta, FP Gomez, J Ribas, M ... Platelet-activating factor (PAF) is a potent proinflammatory mediator that induces systemic and respiratory effects in normal ... It is concluded that furosemide is not effective in protecting against platelet-activating factor challenge in patients with ... These findings reinforce the view that the pulmonary effects of platelet-activating factor are mediated through different ...
Platelet-activating factor (PAF) stimulates human B cells, resulting in elevation of intracellular calcium and the release of ... Platelet-activating factor-mediated transmembrane signaling in human B lymphocytes is regulated through a pertussis- and ...
H. M. McGowan, R. Vandongen, L. D. Kelly, K. J. Hill; Increased levels of platelet-activating factor (1-O-alkyl-2- ... Increased levels of platelet-activating factor (1-O-alkyl-2-acetylglycerophosphocholine) in blood after reversal of renal clip ... hypertensive rats for the presence of platelet-activating factor (PAF), a potent vasodilator and a putative mediator of the ... The extract was analysed for PAF by a bioassay using 5-hydroxy-[14C]tryptamine-labelled platelets. ...
Singinatha Choornam against Platelet Activating Factor-induced Rhinosinusitis in Wistar Albino ... Platelet activating factor/platelet activating factor receptor pathway as a potential therapeutic target in autoimmune diseases ... A Rat Model of Rhinosinusitis induced by Platelet Activating Factor (PAF). Korean J Otolaryngol Head Neck Surg 2000;44:712-17. ... This study aimed to validate Singinatha choornam as an effective drug against platelet activating factor-induced rhinosinusitis ...
Cell migration activated by platelet-derived growth factor receptor is blocked by an inverse agonist of the sphingosine 1- ... Cell migration activated by platelet-derived growth factor receptor is blocked by an inverse agonist of the sphingosine 1- ... We have previously identified a novel complex between the platelet-derived growth factor (PDGF)β receptor and the sphingosine 1 ... These findings are the first to report that a GPCR inverse-agonist reduces growth factor-induced receptor tyrosine kinase ...
In vitro effects of recombinant activated factor VII on thrombin generation and coagulation following inhibition of platelet ... "In vitro effects of recombinant activated factor VII on thrombin generation and coagulation following inhibition of platelet ... In vitro effects of recombinant activated factor VII on thrombin generation and coagulation following inhibition of platelet ... "In vitro effects of recombinant activated factor VII on thrombin generation and coagulation following inhibition of platelet ...
Platelet activating factors (PAFs) are a family of ether lipids with properties that suggest a major role in inflammation. We ... Synthesis of Platelet Activating Factor by Ocular Tissue From Inflamed Eyes. James T. Rosenbaum, MD; Richard S. Boney; John R. ... Platelet activating factors (PAFs) are a family of ether lipids with properties that suggest a major role in inflammation. We ... Synthesis of Platelet Activating Factor by Ocular Tissue From Inflamed Eyes. Arch Ophthalmol. 1991;109(3):410-413. doi:10.1001/ ...
... lipids with Platelet-activating Factor-receptor (PAF-R) agonist activity. Our first studies examined the ability of UVB to ... UVB Generates Microvesicle Particles via Platelet-activating Factor-receptor Signaling: A Novel Pathway by which a Skin- ... lipids with Platelet-activating Factor-receptor (PAF-R) agonist activity. Our first studies examined the ability of UVB to ... UVB Generates Microvesicle Particles via Platelet-activating Factor-receptor Signaling: A Novel Pathway by which a Skin- ...
Platelet-Activating Factor Receptor Contributes to Antileishmanial Function of Miltefosine Pallavi R. Gangalum; Pallavi R. ... As platelet-activating factor and HPC share structural semblances and both induce killing of intracellular Leishmania, we ... HPC shared important structural features with platelet-activating factor (PAF), such as a single long fatty acyl chain and a ... Platelet activating factor receptor-deficient mice present delayed interferon-gamma upregulation and high susceptibility to ...
We use cookies to ensure that we give you the best experience on our website. If you click Accept all cookies well assume that you are happy to receive all cookies and you wont see this message again. If you click Reject all non-essential cookies only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click Find out more for information on how to change your cookie settings. ...
Abnormal level of platelet-activating factor*Decreased level of platelet-activating factor ... Abnormal level of platelet-activating factor Abnormal level of platelet-activating factor. ... Elevated Levels of Platelet Activating Factor and Its Acetylhydrolase Indicate High Risk of Kawasaki Disease. ... Elevated Levels of Platelet Activating Factor and Its Acetylhydrolase Indicate High Risk of Kawasaki Disease. ...
We use cookies to ensure that we give you the best experience on our website. If you click Accept all cookies well assume that you are happy to receive all cookies and you wont see this message again. If you click Reject all non-essential cookies only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click Find out more for information on how to change your cookie settings. ...
The potential role of platelet-activating factor (PAF)-acether and of IL-5 as an eosinophil-proliferating, activating, and/or ... Activation of guinea pig eosinophils by human recombinant IL-5. Selective priming to platelet-activating factor-acether and ... Functional expression and characterization of the interferon-induced double-stranded RNA activated P68 protein kinase from ...
E01P0037 Human Platelet activating factor receptor ELISA kit. The Human Platelet activating factor receptor ELISA kit can be ... Citations of Human Platelet activating factor receptor ELISA kit. E01P0037 has been referenced in the below publications: ... Quality Control on Human Platelet activating factor receptor ELISA kit. Coefficient of Variance ... Summary of the Assay Procedure for Human Platelet activating factor receptor ELISA kit. ...
Platelet-Activating Factor/Acetylhydrolase.. Platelet-activating factor (PAF)-inactivating enzyme PAF-acetylhydrolase (also ... platelet-activating factor. PBMC. peripheral blood mononuclear cell. PG. prostaglandin. PGE2. prostaglandin E2. PGEM. ... 2017) Relief from neuropathic pain by blocking of the platelet-activating factor-pain loop. FASEB J 31:2973-2980. ... 1987) Human plasma platelet-activating factor acetylhydrolase. Purification and properties. J Biol Chem 262:4223-4230. ...
... researchers assessed the association between platelet-activating factor (PAF) and severe acute respiratory ... Scientists explore SARS-CoV-2 spike protein and platelet-activating factor. by Nicholas ... Study: Is there an interplay between the SARS-CoV-2 spike protein and Platelet-Activating factor? Image Credit: PHOTOCREO ... In a recent study published in the IUBMB journal, researchers assessed the association between platelet-activating factor (PAF ...
SITE OF PLATELET-ACTIVATING-FACTOR ACTION ON COLONIC MUCOSA Share Share Share ...
... activating factor in pigs. Together they form a unique fingerprint. * Platelet Activating Factor Medicine & Life Sciences 100% ... the same doses of platelet-activating factor were repeated to establish a second dose response curve. Platelet-activating ... the same doses of platelet-activating factor were repeated to establish a second dose response curve. Platelet-activating ... the same doses of platelet-activating factor were repeated to establish a second dose response curve. Platelet-activating ...
keywords = "Dopamine, Microglia, Nuclear factor kappa B, Oxidative damage, Parkinsons disease, Platelet-activating factor ... Platelet-activating factor receptor knockout mice are protected from MPTP-induced dopaminergic degeneration. / Kim, Beom Keun; ... N2 - Platelet-activating factor (PAF), a potent mediator of inflammatory and immune responses, plays various roles in neuronal ... AB - Platelet-activating factor (PAF), a potent mediator of inflammatory and immune responses, plays various roles in neuronal ...
Platelet-activating factor in the enteric nervous system of the guinea pig small intestine. / Wang, Guo Du; Wang, Xi Yu; Hu, ... Platelet-activating factor in the enteric nervous system of the guinea pig small intestine. In: American Journal of Physiology ... Platelet-activating factor in the enteric nervous system of the guinea pig small intestine. American Journal of Physiology - ... Wang, G. D., Wang, X. Y., Hu, H. Z., Fang, X. C., Liu, S., Gao, N., & Xia, Y. (2006). Platelet-activating factor in the enteric ...
Role of platelet-activating factor antagonism in posthemorrhage septic shock in pigs. / Abu-Zidan, Fikri M.; Walther, Sten; ... Role of platelet-activating factor antagonism in posthemorrhage septic shock in pigs. In: Journal of Trauma - Injury, Infection ... Abu-Zidan FM, Walther S, Lennquist S. Role of platelet-activating factor antagonism in posthemorrhage septic shock in pigs. ... keywords = "Endotoxin, Hemorrhage, Platelet-activating factor antagonist, Shock",. author = "Abu-Zidan, {Fikri M.} and Sten ...
Platelet activating factor C18 from established swiss provider RC TRITEC AG. ... H-3]Platelet activating factor C18 [3H]Platelet activating factor C18 ... Order high quality tritium labeled [3H]Platelet activating factor C18 from established swiss provider RC TRITEC AG. ...
Dive into the research topics of Influence of isoproterenol and phosphodiesterase inhibitors on platelet- activating factor ... Influence of isoproterenol and phosphodiesterase inhibitors on platelet- activating factor biosynthesis in the human neutrophil ... Influence of isoproterenol and phosphodiesterase inhibitors on platelet- activating factor biosynthesis in the human neutrophil ... Influence of isoproterenol and phosphodiesterase inhibitors on platelet- activating factor biosynthesis in the human neutrophil ...
Platelet-activating factor * The cytokine RANTES (regulated upon activation, normal T cell expressed, and secreted). ... PDGFRA (platelet-derived growth factor receptor, alpha polypeptide)-rearranged eosinophilia - Systemic mastocytosis-chronic ... Clinical features predict responsiveness to imatinib in platelet derived growth factor receptor alpha-negative ... Prognostic factors of hypereosinophilic syndrome. Study of 40 cases] [French]. Ann Med Interne (Paris). 1989. 140(4):253-7. [ ...
Development of a platelet-activating factor antagonist for HIV-1 associated neurocognitive disorders.﻽. Eggert D, Dash PK, ... Platelet-activating factor receptor activation. An initiator step in HIV-1 neuropathogenesis.﻽. Perry SW, Hamilton JA, Tjoelker ... The phospholipid mediator platelet-activating factor mediates striatal synaptic facilitation.﻽. Lu SM, Tong N, Gelbard HA ... Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin.﻽. Gelbard HA, Nottet HS, ...
Rodrigo L, Mackness B, Durrington PN, Hernandez A, Mackness MI . Hydrolysis of platelet-activating factor by human serum ... Piven J, Tsai G, Nehme E, Coyle JT, Chase GA, Folstein SE . Platelet serotonin, a possible marker for familial autism. J Autism ... Katsui T, Okuda M, Usuda S, Koizumi T . Kinetics of 3H-serotonin uptake by platelets in infantile autism and developmental ... Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol Psychiatry 2001; 6: 150-159. ...
PAFAH1B1: platelet activating factor acetylhydrolase 1b regulatory subunit 1. *PAH: phenylalanine hydroxylase ... PRKAG2: protein kinase AMP-activated non-catalytic subunit gamma 2. *PRKAR1A: protein kinase cAMP-dependent type I regulatory ... PDGFB: platelet derived growth factor subunit B. *PDGFRA: platelet derived growth factor receptor alpha ...
... of a complex called platelet activating factor acetyl hydrolase 1B (PAFAH1B). Learn about this gene and related health ... platelet-activating factor acetylhydrolase, isoform Ib, alpha subunit. *platelet-activating factor acetylhydrolase, isoform Ib ... platelet-activating factor acetylhydrolase 1b, regulatory subunit 1 (45kDa). * ... This complex regulates the amount of a molecule called platelet activating factor (PAF) in the brain. PAF is thought to be ...
... and platelet activating factor (PAF). Finally, Spearmans correlation analysis showed that NAFLD related differential lipid ... platelet-activating factor (PAF), PC, PE, PG, phSM, PI, PS, and SM. In Figure 6A, the Sankey diagram showed the classification ... and platelet activating factor (PAF). Finally, Spearmans correlation analysis showed that NAFLD related differential lipid ... platelet-activating factor; NAFLD, non-alcoholic fatty liver disease; QHD, Qushi Huayu decoction. ...
  • The pathway to apoptosis can be inhibited by negative feedback from PAF acetylhydrolase (PAF-AH), an enzyme that catabolizes platelet-activating factor. (wikipedia.org)
  • Elevated Levels of Platelet Activating Factor and Its Acetylhydrolase Indicate High Risk of Kawasaki Disease. (nih.gov)
  • Activity and distribution of plasma platelet-activating factor acetylhydrolase in women with gestational diabetes mellitus and their neonates. (nih.gov)
  • The PAFAH1B1 gene (also known as LIS1 ) provides instructions for making a protein that is one part (subunit) of a complex called platelet activating factor acetyl hydrolase 1B (PAFAH1B). (medlineplus.gov)
  • [ 4 , 5 ] The primary site for the synthesis of subunit A in plasma factor XIII seems to exist in cells that originate in the marrow. (medscape.com)
  • We have previously identified a novel complex between the platelet-derived growth factor (PDGF)β receptor and the sphingosine 1-phosphate receptor-1 (S1P1). (strath.ac.uk)
  • These findings are the first to report that a GPCR inverse-agonist reduces growth factor-induced receptor tyrosine kinase signaling, fundamentally broadening their mechanism of action. (strath.ac.uk)
  • Previous studies from ours and other groups have established that through its ability to act as a pro-oxidative stressor, UVB generates oxidized glycerophosphocholine (Ox-GPC) lipids with Platelet-activating Factor-receptor (PAF-R) agonist activity. (wright.edu)
  • The Human Platelet activating factor receptor ELISA kit can be used to identify samples from the human species. (elisakit.cc)
  • Platelet activating factor receptor can also be called PTAFR. (elisakit.cc)
  • SIRT1 prevents pulmonary thrombus formation induced by arachidonic acid via downregulation of PAF receptor expression in platelets. (elisakit.cc)
  • The team collected bovine serum albumin fraction V (FV-BSA), ADP, PAF, collagen, and thrombin receptor activating peptide (TRAP) along with a recombinant HEK293-derived SARS-CoV-2 S receptor-binding domain (RBD) protein. (sepoy.net)
  • However, little is known about the role of PAF/platelet-activating factor receptor (PAF-R) in Parkinson's disease. (korea.ac.kr)
  • The capacity of pneumococci to adhere to and infect lower airway cells is mediated by host-expressed platelet-activating factor receptor (PAFR). (cdc.gov)
  • These findings reinforce the view that the pulmonary effects of platelet-activating factor are mediated through different pathways. (ersjournals.com)
  • The impact of platelets on pulmonary microcirculation throughout COVID-19 and its persistent activating factors. (nih.gov)
  • The purpose of this study was to investigate the effects of heparin on the haemodynamic changes which were induced by platelet-activating factor in the pulmonary and systemic circulation in pigs. (uaeu.ac.ae)
  • Platelet-activating factor caused a dose dependent pulmonary artery hypertension, associated with an initial systemic hypotension followed by systemic hypertension. (uaeu.ac.ae)
  • The pulmonary and systemic circulation responded differently to platelet-activating factor after giving heparin. (uaeu.ac.ae)
  • While heparin ameliorated the platelet-activating factor-induced pulmonary hypertension, it did not affect the changes in the systemic circulation. (uaeu.ac.ae)
  • These developments led to the finding that macrophages produce PAF and that macrophages play an important function in aggregation of platelets and liberation of their inflammatory and vasoactive substances. (wikipedia.org)
  • Aspirin, glycoprotein (GP) IIb/IIIa inhibitors, and clopidogrel have an inhibitory effect on platelet activation and aggregation. (medscape.com)
  • Platelet Inhibitors Reduce Rupture in a Mouse Model of Established Abdominal Aortic Aneurysm. (chop.edu)
  • Scholars@Duke publication: In vitro effects of recombinant activated factor VII on thrombin generation and coagulation following inhibition of platelet procoagulant activity by prasugrel. (duke.edu)
  • In the current study we evaluated whether recombinant activated factor VII may reverse prasugrel induced effects and increase thrombin generation in an in vitro model. (duke.edu)
  • METHODS: The effect of prasugrel active metabolite, PAM (R-138727), was evaluated on platelet aggregation, thrombin generation, and rotational thromboelastometry parameters using blood from 20 healthy volunteers. (duke.edu)
  • Treatment with recombinant activated factor VII restored all three parameters of thrombin generation towards baseline. (duke.edu)
  • When recombinant activated factor VII and ADP were combined they had a greater effect on thrombin parameters than either drug alone. (duke.edu)
  • CONCLUSIONS: Recombinant activated factor VII restores thrombin generation in the presence of PAM. (duke.edu)
  • Platelets play a crucial role in thrombosis and homeostasis and their aggregation has been widely reported among coronavirus disease 2019 (COVID-19) patients as a response to collagen, thrombin, and adenosine diphosphate (ADP). (sepoy.net)
  • During thrombus formation, circulating prothrombin is activated to the active clotting factor, thrombin, by activated platelets. (medscape.com)
  • Fibrinogen is activated to fibrin by the newly activated thrombin. (medscape.com)
  • Also known as fibrin-stabilizing factor, the 320,000-Dalton glycoprotein is activated by thrombin in the presence of calcium and has a plasma half-life of approximately 10 days. (medscape.com)
  • Thrombin cleavage of the Arg 37 -Gly 38 bond in the A chain, causing the release of an M r 4500 activation peptide, is the key step in the activation of plasma factor XIII. (medscape.com)
  • When activated by thrombin, factor XIIIa forms an insoluble clot by causing cross-linkage between fibrin molecules. (medscape.com)
  • Both hemostasis and thrombosis depend on the coagulation cascade, vascular wall integrity, and platelet response. (medscape.com)
  • Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. (chop.edu)
  • Factor XIII, an enzyme that cross-links fibrin, belongs to the blood coagulation system. (medscape.com)
  • Fas-Induced Apoptosis Increases Hepatocyte Tissue Factor Procoagulant Activity in Vitro and in Vivo. (chop.edu)
  • Platelet-activating factor, also known as PAF, PAF-acether or AGEPC (acetyl-glyceryl-ether-phosphorylcholine), is a potent phospholipid activator and mediator of many leukocyte functions, platelet aggregation and degranulation, inflammation, and anaphylaxis. (wikipedia.org)
  • Platelet-activating factor (PAF) is a potent proinflammatory mediator that induces systemic and respiratory effects in normal control subjects and asthmatics. (ersjournals.com)
  • 1. This study analyses whole blood in acutely unclipped one-kidney, one-clip (1K,1C) hypertensive rats for the presence of platelet-activating factor (PAF), a potent vasodilator and a putative mediator of the rapid blood pressure (BP) fall seen after unclipping. (portlandpress.com)
  • The potential role of platelet-activating factor (PAF)-acether and of IL-5 as an eosinophil-proliferating, activating, and/or recruiting mediator in asthma led us to study the effects of human (h) rIL-5 (hrIL-5) and PAF-acether, alone or combined, on isolated guinea pig eosinophils. (pasteur.fr)
  • Platelet-activating factor (PAF), a potent mediator of inflammatory and immune responses, plays various roles in neuronal functions. (korea.ac.kr)
  • Platelet-activating factor (PAF) is a proinflammatory mediator that may influence neuronal activity in the enteric nervous system (ENS). (edu.au)
  • Platelet-activating factor (PAF) stimulates human B cells, resulting in elevation of intracellular calcium and the release of inositol phosphates. (jci.org)
  • Platelets alone aggregated and showed intracellular Ca2+ movement only when exposed to PAF. (nih.gov)
  • IL-4 is a potent lymphoid cell growth factor which stimulates the growth and activation of certain B cells and T cells. (biolegend.com)
  • Platelet activating factors (PAFs) are a family of ether lipids with properties that suggest a major role in inflammation. (jamanetwork.com)
  • 6. Mono- and bis-aryl phosphate antagonists of platelet activating factor. (sigmaaldrich.com)
  • A series of aryl phosphoglyceride (3, 19-61) and bis-aryl phosphate (67-135) antagonists of platelet activating factor (PAF) were prepared. (sigmaaldrich.com)
  • 150,000 platelets per microliter of blood), consistent with a condition known as thrombotic thrombocytopenia, with platelet nadir counts ranging from 10,000 to 127,000 during their hospitalizations. (cdc.gov)
  • Platelet-leukocyte interaction could have physiopathological relevance and constitutes a new model for studying old and new platelet inhibitory drugs. (nih.gov)
  • Dangerous internal bleeding can occur when your platelet count follows below 10,000 or below 10 platelets per microliter. (cdc.gov)
  • Additionally, we evaluated the effects of adenosine diphosphate (ADP) and recombinant activated factor VII on restoring these parameters towards baseline values. (duke.edu)
  • Treatment with either recombinant activated factor VII or ADP restored these values towards baseline. (duke.edu)
  • In the present study, researchers evaluated the effect of the COVID-19 messenger ribonucleic acid (mRNA) vaccine on the human platelet-rich plasma (hPRP) aggregation response and whether a recombinant SSARS-CoV-2 S protein could modulate hPRP aggregation induced by PAF. (sepoy.net)
  • UVB Generates Microvesicle Particles via Platelet-activating Factor-re" by Jeffrey B. Travers, Christine M. Rapp et al. (wright.edu)
  • Addition of platelets at different times after leukocyte activation resulted in progressively reduced cytoplasmic Ca2+ increase. (nih.gov)
  • Cell-free supernatants prepared from FMLP-stimulated leukocytes were able to induce platelet aggregation, thromboxane B2 generation, and Ca2+ mobilization, although at a reduced degree as compared with intact leukocyte addition. (nih.gov)
  • It is concluded that furosemide is not effective in protecting against platelet-activating factor challenge in patients with asthma despite its potential inhibition of leukotriene synthesis. (ersjournals.com)
  • Furthermore, various studies have reported stimulation of tumor necrosis factor-α (TNF-α), platelet factor 4 (PF4), interleukin 1β (IL-1β), and IL-8 from platelets by the SARS-CoV-2 S protein. (sepoy.net)
  • Tissue Factor-positive Tumor Microvesicles Activate Platelets and Enhance Thrombosis in Mice. (chop.edu)
  • It had no effect on the platelet-activating factor- induced systemic hypotension or hypertension. (uaeu.ac.ae)
  • Increasing numbers of CD19 + CD24(high)CD38(high) regulatory B cells and pre-germinal center B cells reflect activated autoimmunity and predict future treatment response in patients with untreated immune thrombocytopenia. (nih.gov)
  • Platelet-Activating Antibodies Are Detectable at the Earliest Onset of Heparin-Induced Thrombocytopenia, With Implications for the Operating Characteristics of the Serotonin-Release Assay. (nih.gov)
  • And thrombocytopenia is a condition in which you have low blood platelet count, defined as less than 150. (cdc.gov)
  • So, the discussion around this issue or awareness of this issue originated from reports of a rare but serious condition following AstraZeneca's COVID-19 vaccine, and this condition initially recognized was CVST in the presence of thrombocytopenia, so, blood clots in the brain with low platelets. (cdc.gov)
  • In these cases, a type of blood clot called cerebral venous sinus thrombosis (CVST) was seen in combination with low levels of blood platelets (thrombocytopenia). (cdc.gov)
  • Based on studies conducted among the patients diagnosed with immune thrombotic thrombocytopenia after the AstraZeneca COVID-19 vaccine in Europe, the pathogenesis of these rare and unusual adverse events after vaccination may be associated with platelet-activating antibodies against platelet factor-4 (PF4), a type of protein. (cdc.gov)
  • The study is novel in that the researchers directly delivered bone-producing instructions (using piece of DNA that encodes for a platelet-derived growth factor called PDGF-B) to existing bone cells in vivo, allowing those cells to produce the proteins that led to more bone production. (sciencedaily.com)
  • This fusion gene encodes for the FIP1L1-PDGFR alpha protein, the constitutively activated tyrosine kinase activity that induces eosinophilia. (medscape.com)
  • In a recent study published in the IUBMB journal, researchers assessed the association between platelet-activating factor (PAF) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein. (sepoy.net)
  • Is there an interplay between the SARS-CoV-2 spike protein and Platelet-Activating factor? (sepoy.net)
  • The influence of the SARS-CoV-2 S protein on platelet aggregation induced by agonists was assessed by preincubating the platelets in the presence of the viral S protein, while different amounts of platelet agonists were added. (sepoy.net)
  • In some of the tests, the S protein was added when the agonist-induced aggregation occurred or before the secondary wave of platelet aggregation induced by the agonists. (sepoy.net)
  • The team also observed that incubation of the platelets from unvaccinated individuals for 10 minutes with the viral S protein did not stimulate hPRP aggregation. (sepoy.net)
  • Components of the clotting and fibrinolytic system, along with multiple adhesive and contractile proteins, are additional factor XIIIa protein substrates. (medscape.com)
  • Anti-heat shock protein 10 IgG in chronic spontaneous urticaria: Relation with miRNA-101-5p and platelet-activating factor. (cdc.gov)
  • In the absence of the B-chain, the elevation of intracytoplasmic Ca 2+ during platelet activation causes the zymogen to assume an active configuration. (medscape.com)
  • Several cellular factors are responsible for thrombus formation. (medscape.com)
  • Platelets migrate to the area of injury, where they secrete several cellular factors and mediators. (medscape.com)
  • In platelets, a nonproteolytic process activates cellular factor XIII. (medscape.com)
  • Screening for factor XIII, also known as fibrin-stabilizing factor, is performed when its absence is suspected. (medscape.com)
  • By crosslinking fibrin to alpha 2-antiplasmin, factor XIIIA also protects fibrin from fibrinolysis. (medscape.com)
  • Fibrin strands form a net that entraps more platelets and blood cells, producing a clot that plugs the break. (msdmanuals.com)
  • [ 1 ] Plasma factor XIII also plays a role in wound healing and tissue repair, and the enzyme is essential in maintaining pregnancy. (medscape.com)
  • The enzyme is very specific for monocytes and macrophages, so identification and classification of malignant diseases involving these cells can be carried out by determining whether or not factor XIII is present. (medscape.com)
  • Evaluation of venous thrombosis and tissue factor in epithelial ovarian cancer. (chop.edu)
  • The team also collected blood samples as an anticoagulant in trisodium citrate and platelet-rich plasma (PRP) via centrifugation. (sepoy.net)
  • [ 6 ] Although a clot will form if factor XIII is absent, it will not be adequate for hemostasis. (medscape.com)
  • Human platelets were loaded with aequorin, a Ca2(+)-sensitive photoprotein, and tested in the platelet-ionized calcium aggregometer for simultaneous recording of platelet aggregation and intraplatelet Ca2+ levels both in the presence and in the absence of autologous polymorphonuclear leukocytes. (nih.gov)
  • [ 5 ] The factor XIII A chain gene is found on chromosome 6. (medscape.com)
  • Platelet-aggregating activity was found in the chloroform phase in 2 of 9, 1 of 8, 0 of 9, and 3 of 9 studies involving iris, retina, ciliary body, or cornea, respectively. (jamanetwork.com)
  • The PAF concentrations were estimated by assessing the aggregatory activity toward washed rabbit platelets (WRP). (sepoy.net)
  • Although nuclear factor kappa B (NF-κB) DNA-binding activity was increased significantly in MPTP-treated wild-type mice, this increase was not significant in PAF-R antagonist ginkgolide B (GB)-treated mice or PAF-R knockout (PAF-R -/- ) mice. (korea.ac.kr)
  • PBMCs are divided into various functional subtypes with respect to the specific cytokine expression profiles, surface markers, and the transcription factors. (frontiersin.org)
  • IL-4 is a pleiotropic cytokine produced by activated T cells, mast cells, and basophils. (biolegend.com)
  • Platelet-activating factor-mediated transmembrane signaling in human B lymphocytes is regulated through a pertussis- and cholera toxin-sensitive pathway. (jci.org)
  • Circulation of plasma factor XIII occurs in association with its substrate, fibrinogen. (medscape.com)
  • Cells were exposed to one of three chemotactic stimuli: platelet-activating factor (PAF), N-formyl-methionyl-leucyl-phenylalanine (FMLP), or leukotriene B4 (LTB4). (nih.gov)
  • In platelets and other cells, factor XIII lacks the B domain, existing instead as an A 2 dimer. (medscape.com)
  • Platelets, red blood cells, and clotting factors circulate in your bloodstream. (msdmanuals.com)
  • Amplification of both platelet aggregation and intraplatelet Ca2+ movement was induced by PAF in the presence of leukocytes. (nih.gov)
  • Aggregation and intraplatelet Ca2+ mobilization were also observed in the presence of leukocytes activated by either FMLP or LTB4. (nih.gov)
  • Platelet thromboxane B2 production was also significantly increased in the presence of leukocytes. (nih.gov)
  • Screening for factor XIII is carried out when the enzyme's presence is suspected. (medscape.com)
  • Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. (nature.com)
  • The pellet resulting from centrifugation was further recentrifuged to acquire platelet-poor plasma (PPP). (sepoy.net)
  • This study aimed to validate Singinatha choornam as an effective drug against platelet activating factor-induced rhinosinusitis in rat model. (ijpsonline.com)
  • This complex regulates the amount of a molecule called platelet activating factor (PAF) in the brain. (medlineplus.gov)
  • Platelets stop bleeding by clumping and forming plugs in blood vessel injuries. (cdc.gov)
  • Drugs that block your clotting factors are sometimes called "blood thinners. (msdmanuals.com)