Piperidines: A family of hexahydropyridines.Receptors, Phencyclidine: Specific sites or molecular structures on cell membranes or in cells with which phencyclidine reacts or to which it binds to elicit the specific response of the cell to phencyclidine. Studies have demonstrated the presence of multiple receptor sites for PCP. These are the PCP/sigma site, which binds both PCP and psychotomimetic opiates but not certain antipsychotics, and the PCP site, which selectively binds PCP analogs.Pipecolic AcidsReceptors, sigma: A class of cell surface receptors recognized by its pharmacological profile. Sigma receptors were originally considered to be opioid receptors because they bind certain synthetic opioids. However they also interact with a variety of other psychoactive drugs, and their endogenous ligand is not known (although they can react to certain endogenous steroids). Sigma receptors are found in the immune, endocrine, and nervous systems, and in some peripheral tissues.Phencyclidine: A hallucinogen formerly used as a veterinary anesthetic, and briefly as a general anesthetic for humans. Phencyclidine is similar to KETAMINE in structure and in many of its effects. Like ketamine, it can produce a dissociative state. It exerts its pharmacological action through inhibition of NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE). As a drug of abuse, it is known as PCP and Angel Dust.Stereoisomerism: The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)Cyclization: Changing an open-chain hydrocarbon to a closed ring. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)Diphenylacetic AcidsHeterocyclic Compounds, Bridged-Ring: A class of organic compounds which contain two rings that share a pair of bridgehead carbon atoms.Imino Sugars: Sugars in which the OXYGEN is replaced by a NITROGEN atom. This substitution prevents normal METABOLISM resulting in inhibition of GLYCOSIDASES and GLYCOSYLTRANSFERASES.Amination: The creation of an amine. It can be produced by the addition of an amino group to an organic compound or reduction of a nitro group.Molecular Structure: The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.Alkaloids: Organic nitrogenous bases. Many alkaloids of medical importance occur in the animal and vegetable kingdoms, and some have been synthesized. (Grant & Hackh's Chemical Dictionary, 5th ed)Organosilicon Compounds: Organic compounds that contain silicon as an integral part of the molecule.Lobeline: An alkaloid that has actions similar to NICOTINE on nicotinic cholinergic receptors but is less potent. It has been proposed for a variety of therapeutic uses including in respiratory disorders, peripheral vascular disorders, insomnia, and smoking cessation.Haloperidol: A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279)PyrrolidinesPacific States: The geographic designation for states bordering on or located in the Pacific Ocean. The states so designated are Alaska, California, Hawaii, Oregon, and Washington. (U.S. Geologic Survey telephone communication)Structure-Activity Relationship: The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.Heterocyclic Compounds, 2-Ring: A class of organic compounds containing two ring structures, one of which is made up of more than one kind of atom, usually carbon plus another atom. The heterocycle may be either aromatic or nonaromatic.Amino Alcohols: Compounds possessing both a hydroxyl (-OH) and an amino group (-NH2).Receptor, Muscarinic M1: A specific subtype of muscarinic receptor that has a high affinity for the drug PIRENZEPINE. It is found in the peripheral GANGLIA where it signals a variety of physiological functions such as GASTRIC ACID secretion and BRONCHOCONSTRICTION. This subtype of muscarinic receptor is also found in neuronal tissues including the CEREBRAL CORTEX and HIPPOCAMPUS where it mediates the process of MEMORY and LEARNING.Pinus ponderosa: A plant species of the genus PINUS that contains isocupressic acid.Monoacylglycerol Lipases: An enzyme that catalyzes the hydrolysis of glycerol monoesters of long-chain fatty acids EC 3.1.1.23.Receptors, Neurotransmitter: Cell surface receptors that bind signalling molecules released by neurons and convert these signals into intracellular changes influencing the behavior of cells. Neurotransmitter is used here in its most general sense, including not only messengers that act to regulate ion channels, but also those which act on second messenger systems and those which may act at a distance from their release sites. Included are receptors for neuromodulators, neuroregulators, neuromediators, and neurohumors, whether or not located at synapses.Alkenes: Unsaturated hydrocarbons of the type Cn-H2n, indicated by the suffix -ene. (Grant & Hackh's Chemical Dictionary, 5th ed, p408)PiperidonesDioxolanesN-Methylaspartate: An amino acid that, as the D-isomer, is the defining agonist for the NMDA receptor subtype of glutamate receptors (RECEPTORS, NMDA).Molecular Conformation: The characteristic three-dimensional shape of a molecule.Phenazocine: An opioid analgesic with actions and uses similar to MORPHINE. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1095)Radioligand Assay: Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders).Benzylidene Compounds: Compounds containing the PhCH= radical.Pepstatins: N-acylated oligopeptides isolated from culture filtrates of Actinomycetes, which act specifically to inhibit acid proteases such as pepsin and renin.Cadaverine: A foul-smelling diamine formed by bacterial decarboxylation of lysine.Benzodioxoles: Compounds based on benzene fused to oxole. They can be formed from methylated CATECHOLS such as EUGENOL.Muscarinic Agonists: Drugs that bind to and activate muscarinic cholinergic receptors (RECEPTORS, MUSCARINIC). Muscarinic agonists are most commonly used when it is desirable to increase smooth muscle tone, especially in the GI tract, urinary bladder and the eye. They may also be used to reduce heart rate.DioxolesReceptors, Opioid: Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known.PiperazinesPapaverine: An alkaloid found in opium but not closely related to the other opium alkaloids in its structure or pharmacological actions. It is a direct-acting smooth muscle relaxant used in the treatment of impotence and as a vasodilator, especially for cerebral vasodilation. The mechanism of its pharmacological actions is not clear, but it apparently can inhibit phosphodiesterases and it may have direct actions on calcium channels.Receptors, N-Methyl-D-Aspartate: A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity.Dizocilpine Maleate: A potent noncompetitive antagonist of the NMDA receptor (RECEPTORS, N-METHYL-D-ASPARTATE) used mainly as a research tool. The drug has been considered for the wide variety of neurodegenerative conditions or disorders in which NMDA receptors may play an important role. Its use has been primarily limited to animal and tissue experiments because of its psychotropic effects.Dose-Response Relationship, Drug: The relationship between the dose of an administered drug and the response of the organism to the drug.Receptors, Muscarinic: One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology.Receptor, Serotonin, 5-HT2A: A serotonin receptor subtype found widely distributed in peripheral tissues where it mediates the contractile responses of variety of tissues that contain SMOOTH MUSCLE. Selective 5-HT2A receptor antagonists include KETANSERIN. The 5-HT2A subtype is also located in BASAL GANGLIA and CEREBRAL CORTEX of the BRAIN where it mediates the effects of HALLUCINOGENS such as LSD.Hydroxyl Radical: The univalent radical OH. Hydroxyl radical is a potent oxidizing agent.Ligands: A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed)Magnetic Resonance Spectroscopy: Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).Catalysis: The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.Fentanyl: A potent narcotic analgesic, abuse of which leads to habituation or addiction. It is primarily a mu-opioid agonist. Fentanyl is also used as an adjunct to general anesthetics, and as an anesthetic for induction and maintenance. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1078)Models, Chemical: Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.2-Amino-5-phosphonovalerate: The D-enantiomer is a potent and specific antagonist of NMDA glutamate receptors (RECEPTORS, N-METHYL-D-ASPARTATE). The L form is inactive at NMDA receptors but may affect the AP4 (2-amino-4-phosphonobutyrate; APB) excitatory amino acid receptors.Guinea Pigs: A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research.Injections, Intra-Arterial: Delivery of drugs into an artery.Alkylation: The covalent bonding of an alkyl group to an organic compound. It can occur by a simple addition reaction or by substitution of another functional group.Aspartic Acid: One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter.Excitatory Amino Acid Antagonists: Drugs that bind to but do not activate excitatory amino acid receptors, thereby blocking the actions of agonists.Biotransformation: The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.Muscarinic Antagonists: Drugs that bind to but do not activate MUSCARINIC RECEPTORS, thereby blocking the actions of endogenous ACETYLCHOLINE or exogenous agonists. Muscarinic antagonists have widespread effects including actions on the iris and ciliary muscle of the eye, the heart and blood vessels, secretions of the respiratory tract, GI system, and salivary glands, GI motility, urinary bladder tone, and the central nervous system.Microsomes, Liver: Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough.Vertebral Artery: The first branch of the SUBCLAVIAN ARTERY with distribution to muscles of the NECK; VERTEBRAE; SPINAL CORD; CEREBELLUM; and interior of the CEREBRUM.CHO Cells: CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells.PhotochemistryGuanineBinding, Competitive: The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements.Models, Molecular: Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.DNA: A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).Rats, Sprague-Dawley: A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.Chromatography, High Pressure Liquid: Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.Kinetics: The rate dynamics in chemical or physical systems.Cricetinae: A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.Enzyme Inhibitors: Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.Binding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.Brain: The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.Receptors, AMPA: A class of ionotropic glutamate receptors characterized by their affinity for the agonist AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid).Rats, Inbred Strains: Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.Rats, Wistar: A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Aspartic Acid Endopeptidases: A sub-subclass of endopeptidases that depend on an ASPARTIC ACID residue for their activity.Acetylcholine: A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system.Injections, Intravenous: Injections made into a vein for therapeutic or experimental purposes.Oxidation-Reduction: A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).Neurons: The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.Crystallography, X-Ray: The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)Amino Acids: Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.Pyridines: Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.Cytochrome P-450 Enzyme System: A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Motor Activity: The physical activity of a human or an animal as a behavioral phenomenon.

Inhibition of in vitro enteric neuronal development by endothelin-3: mediation by endothelin B receptors. (1/5317)

The terminal colon is aganglionic in mice lacking endothelin-3 or its receptor, endothelin B. To analyze the effects of endothelin-3/endothelin B on the differentiation of enteric neurons, E11-13 mouse gut was dissociated, and positive and negative immunoselection with antibodies to p75(NTR )were used to isolate neural crest- and non-crest-derived cells. mRNA encoding endothelin B was present in both the crest-and non-crest-derived cells, but that encoding preproendothelin-3 was detected only in the non-crest-derived population. The crest- and non-crest-derived cells were exposed in vitro to endothelin-3, IRL 1620 (an endothelin B agonist), and/or BQ 788 (an endothelin B antagonist). Neurons and glia developed only in cultures of crest-derived cells, and did so even when endothelin-3 was absent and BQ 788 was present. Endothelin-3 inhibited neuronal development, an effect that was mimicked by IRL 1620 and blocked by BQ 788. Endothelin-3 failed to stimulate the incorporation of [3H]thymidine or bromodeoxyuridine. Smooth muscle development in non-crest-derived cell cultures was promoted by endothelin-3 and inhibited by BQ 788. In contrast, transcription of laminin alpha1, a smooth muscle-derived promoter of neuronal development, was inhibited by endothelin-3, but promoted by BQ 788. Neurons did not develop in explants of the terminal bowel of E12 ls/ls (endothelin-3-deficient) mice, but could be induced to do so by endothelin-3 if a source of neural precursors was present. We suggest that endothelin-3/endothelin B normally prevents the premature differentiation of crest-derived precursors migrating to and within the fetal bowel, enabling the precursor population to persist long enough to finish colonizing the bowel.  (+info)

Role of endothelin in the increased vascular tone of patients with essential hypertension. (2/5317)

We investigated the possible role of endothelin in the increased vasoconstrictor tone of hypertensive patients using antagonists of endothelin receptors. Forearm blood flow (FBF) responses (strain-gauge plethysmography) to intraarterial infusion of blockers of endothelin-A (ETA) (BQ-123) and endothelin-B (ETB) (BQ-788) receptors, separately and in combination, were measured in hypertensive patients and normotensive control subjects. In healthy subjects, BQ-123 alone or in combination with BQ-788 did not significantly modify FBF (P=0.78 and P=0.63, respectively). In hypertensive patients, in contrast, BQ-123 increased FBF by 33+/-7% (P<0.001 versus baseline), and the combination of BQ-123 and BQ-788 resulted in a greater vasodilator response (63+/-12%; P=0.006 versus BQ-123 alone in the same subjects). BQ-788 produced a divergent vasoactive effect in the two groups, with a decrease of FBF (17+/-5%; P=0.004 versus baseline) in control subjects and transient vasodilation (15+/-7% after 20 minutes) in hypertensive patients (P<0.001, hypertensives versus controls). The vasoconstrictor response to endothelin-1 was slightly higher (P=0.04) in hypertensive patients (46+/-4%) than in control subjects (32+/-4%). Our data indicate that patients with essential hypertension have increased vascular endothelin activity, which may be of pathophysiological relevance to their increased vascular tone. In these patients, nonselective ETA and ETB blockade seems to produce a greater vasodilator effect than selective ETA blockade.  (+info)

Comparison of functional antagonism between isoproterenol and M2 muscarinic receptors in guinea pig ileum and trachea. (3/5317)

The ability of the M2 muscarinic receptor to mediate an inhibition of the relaxant effects of forskolin and isoproterenol was investigated in guinea pig ileum and trachea. In some experiments, trachea was first treated with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) mustard to inactivate M3 receptors. The contractile response to oxotremorine-M was measured subsequently in the presence of both histamine (10 microM) and isoproterenol (10 nM). Under these conditions, [[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5, 11-dihydro-6H-pyrido[2,3b]-[1,4]benzodiazepine-6-one (AF-DX 116) antagonized the contractile response to oxotremorine-M in a manner consistent with an M3 mechanism. However, when the same experiment was repeated using forskolin (4 microM) instead of isoproterenol, the response to oxotremorine-M exhibited greater potency and was antagonized by AF-DX 116 in a manner consistent with an M2 mechanism. We also measured the effects of pertussis toxin treatment on the ability of isoproterenol to inhibit the contraction elicited by a single concentration of either histamine (0.3 microM) or oxotremorine-M (40 nM) in both the ileum and trachea. Pertussis toxin treatment had no significant effect on the potency of isoproterenol for inhibiting histamine-induced contractions in the ileum and trachea. In contrast, pertussis toxin treatment enhanced the relaxant potency of isoproterenol against oxotremorine-M-induced contractions in the ileum but not in the trachea. Also, pertussis toxin treatment enhanced the relaxant potency of forskolin against oxotremorine-M-induced contractions in the ileum and trachea. We investigated the relaxant potency of isoproterenol when very low, equi-effective (i.e., 20-34% of maximal response) concentrations of either histamine or oxotremorine-M were used to elicit contraction. Under these conditions, isoproterenol exhibited greater relaxant potency against histamine in the ileum but exhibited similar relaxant potencies against histamine and oxotremorine-M in the trachea. Following 4-DAMP mustard treatment, a low concentration of oxotremorine-M (10 nM) had no contractile effect in either the ileum or trachea. Nevertheless, in 4-DAMP mustard-treated tissue, oxotremorine-M (10 nM) reduced the relaxant potency of isoproterenol against histamine-induced contractions in the ileum, but not in the trachea. We conclude that in the trachea the M2 receptor mediates an inhibition of the relaxant effects of forskolin, but not isoproterenol, and the decreased relaxant potency of isoproterenol against contractions elicited by a muscarinic agonist relative to histamine is not due to activation of M2 receptors but rather to the greater contractile stimulus mediated by the M3 receptor compared with the H1 histamine receptor.  (+info)

Intestinal prokinesia by two esters of 4-amino-5-chloro-2- methoxybenzoic acid: involvement of 5-hydroxytryptamine-4 receptors and dissociation from cardiac effects in vivo. (4/5317)

In five fasting, conscious dogs, we compared the prokinetic action of two selective 5-hydroxytryptamine-4 (5-HT4) receptor agonists with low affinity for 5-HT3 receptors ML10302 (2-piperidinoethyl 4-amino-5-chloro-2-methoxybenzoate) and SR59768 (2-[(3S)-3-hydroxypiperidino]ethyl 4-amino-5-chloro-2-methoxybenzoate) in the duodenum and jejunum, using cisapride as a reference compound. Heart rate and rate-corrected QT (QTc) also were monitored to assess whether or not the cardiac effects of cisapride are shared by other 5-HT4 receptor agonists. Both ML10302 and SR59768 dose-dependently stimulated spike activity in the duodenum with similar potencies (dose range, 3-300 nmol/kg i.v.; ED50 values: 24 and 23 nmol/kg i.v., respectively), mimicking the effect of cisapride (30-3000 nmol/kg i.v.). The maximal effect was achieved with the dose of 100 nmol/kg i.v. for both compounds. Similar findings were obtained in the jejunum. Atropine and GR125487 (1-[2-[(methylsulfonyl)amino]ethyl]-4-piperidinyl-methyl 5-fluoro-2-methoxy-1H-indole-3-carboxylate, selective 5-HT4 receptor antagonist), at doses having no effect per se, antagonized intestinal prokinesia by maximal doses of ML10302 and SR59768. Neither ML10302 nor SR59768 had any effect on heart rate or QTc at any of the doses tested, whereas cisapride, at the highest dose (3000 nmol/kg), induced tachycardia and lengthened the QTC (p <.01). In conclusion, ML10302 and SR59768 share with cisapride a similar prokinetic action in the canine duodenum and jejunum in vivo. This effect is mediated by pathways involving activation of 5-HT4 and muscarinic receptors. Unlike cisapride, which induces tachycardia and prolongs the QTc by a mechanism probably unrelated to 5-HT4 receptor activation, ML10302 and SR59768 are devoid of cardiac effects in this model.  (+info)

Development of muscarinic analgesics derived from epibatidine: role of the M4 receptor subtype. (5/5317)

Epibatidine, a neurotoxin isolated from the skin of Epipedobates tricolor, is an efficacious antinociceptive agent with a potency 200 times that of morphine. The toxicity of epibatidine, because of its nonspecificity for both peripheral and central nicotinic receptors, precludes its development as an analgesic. During the synthesis of epibatidine analogs we developed potent antinociceptive agents, typified by CMI-936 and CMI-1145, whose antinociception, unlike that of epibatidine, is mediated via muscarinic receptors. Subsequently, we used specific muscarinic toxins and antagonists to delineate the muscarinic receptor subtype involved in the antinociception evoked by these agents. Thus, the antinociception produced by CMI-936 and CMI-1145 is inhibited substantially by 1) intrathecal injection of the specific muscarinic M4 toxin, muscarinic toxin-3; 2) intrathecally administered pertussis toxin, which inhibits the G proteins coupled to M2 and M4 receptors; and 3) s.c. injection of the M2/M4 muscarinic antagonist himbacine. These results demonstrate that the antinociception elicited by these epibatidine analogs is mediated via muscarinic M4 receptors located in the spinal cord. Compounds that specifically target the M4 receptor therefore may be of substantial value as alternative analgesics to the opiates.  (+info)

The central cannabinoid receptor (CB1) mediates inhibition of nitric oxide production by rat microglial cells. (6/5317)

Upon activation, brain microglial cells release proinflammatory mediators, such as nitric oxide (NO), which may play an important role in the central nervous system antibacterial, antiviral, and antitumor activities. However, excessive release of NO has been postulated to elicit immune-mediated neurodegenerative inflammatory processes and to cause brain injury. In the present study, the effect of cannabinoids on the release of NO from endotoxin/cytokine-activated rat cortical microglial cells was evaluated. A drug dose-dependent (0.1 microM-8 microM) inhibition of NO release from rat microglial cells was exerted by the cannabinoid receptor high-affinity binding enantiomer (-)-CP55940. In contrast, a minimal inhibitory effect was exerted by the lower affinity binding paired enantiomer (+)-CP56667. Pretreatment of microglial cells with the Galphai/Galphao protein inactivator pertussis toxin, cyclic AMP reconstitution with the cell-permeable analog dibutyryl-cAMP, or treatment of cells with the Galphas activator cholera toxin, resulted in reversal of the (-)-CP55940-mediated inhibition of NO release. A similar reversal in (-)-CP55940-mediated inhibition of NO release was effected when microglial cells were pretreated with the central cannabinoid receptor (CB1) selective antagonist SR141716A. Mutagenic reverse transcription-polymerase chain reaction, Western immunoblot assay using a CB1 receptor amine terminal domain-specific antibody, and cellular colocalization of CB1 and the microglial marker Griffonia simplicifolia isolectin B4 confirmed the expression of the CB1 receptor in rat microglial cells. Collectively, these results indicate a functional linkage between the CB1 receptor and cannabinoid-mediated inhibition of NO production by rat microglial cells.  (+info)

Cannabinoid suppression of noxious heat-evoked activity in wide dynamic range neurons in the lumbar dorsal horn of the rat. (7/5317)

The effects of cannabinoid agonists on noxious heat-evoked firing of 62 spinal wide dynamic range (WDR) neurons were examined in urethan-anesthetized rats (1 cell/animal). Noxious thermal stimulation was applied with a Peltier device to the receptive fields in the ipsilateral hindpaw of isolated WDR neurons. To assess the site of action, cannabinoids were administered systemically in intact and spinally transected rats and intraventricularly. Both the aminoalkylindole cannabinoid WIN55,212-2 (125 microg/kg iv) and the bicyclic cannabinoid CP55,940 (125 microg/kg iv) suppressed noxious heat-evoked activity. Responses evoked by mild pressure in nonnociceptive neurons were not altered by CP55,940 (125 microg/kg iv), consistent with previous observations with another cannabinoid agonist, WIN55,212-2. The cannabinoid induced-suppression of noxious heat-evoked activity was blocked by pretreatment with SR141716A (1 mg/kg iv), a competitive antagonist for central cannabinoid CB1 receptors. By contrast, intravenous administration of either vehicle or the receptor-inactive enantiomer WIN55,212-3 (125 microg/kg) failed to alter noxious heat-evoked activity. The suppression of noxious heat-evoked activity induced by WIN55,212-2 in the lumbar dorsal horn of intact animals was markedly attenuated in spinal rats. Moreover, intraventricular administration of WIN55,212-2 suppressed noxious heat-evoked activity in spinal WDR neurons. By contrast, both vehicle and enantiomer were inactive. These findings suggest that cannabinoids selectively modulate the activity of nociceptive neurons in the spinal dorsal horn by actions at CB1 receptors. This modulation represents a suppression of pain neurotransmission because the inhibitory effects are selective for pain-sensitive neurons and are observed with different modalities of noxious stimulation. The data also provide converging lines of evidence for a role for descending antinociceptive mechanisms in cannabinoid modulation of spinal nociceptive processing.  (+info)

Nitric oxide limits the eicosanoid-dependent bronchoconstriction and hypotension induced by endothelin-1 in the guinea-pig. (8/5317)

1. This study attempts to investigate if endogenous nitric oxide (NO) can modulate the eicosanoid-releasing properties of intravenously administered endothelin-1 (ET-1) in the pulmonary and circulatory systems in the guinea-pig. 2. The nitric oxide synthase blocker N(omega)-nitro-L-arginine methyl ester (L-NAME; 300 microM; 30 min infusion) potentiated, in an L-arginine sensitive fashion, the release of thromboxane A2 (TxA2) stimulated by ET-1, the selective ET(B) receptor agonist IRL 1620 (Suc-[Glu9,Ala11,15]-ET-1(8-21)) or bradykinin (BK) (5, 50 and 50 nM, respectively, 3 min infusion) in guinea-pig isolated and perfused lungs. 3. In anaesthetized and ventilated guinea-pigs intravenous injection of ET-1 (0.1-1.0 nmol kg(-1)), IRL 1620 (0.2-1.6 nmol kg(-1)), BK (1.0-10.0 nmol kg(-1)) or U 46619 (0.2-5.7 nmol kg(-1)) each induced dose-dependent increases in pulmonary insufflation pressure (PIP). Pretreatment with L-NAME (5 mg kg(-1)) did not change basal PIP, but increased, in L-arginine sensitive manner, the magnitude of the PIP increases (in both amplitude and duration) triggered by each of the peptides (at 0.25, 0.4 and 1.0 nmol kg(-1), respectively), without modifying bronchoconstriction caused by U 46619 (0.57 nmol kg(-1)). 4. The increases in PIP induced by ET-1, IRL 1620 (0.25 and 0.4 nmol kg(-1), respectively) or U 46619 (0.57 nmol kg(-1)) were accompanied by rapid and transient increases of mean arterial blood pressure (MAP). Pretreatment with L-NAME (5 mg kg(-1); i.v. raised basal MAP persistently and, under this condition, subsequent administration of ET-1 or IRL 1620, but not of U-46619, induced hypotensive responses which were prevented by pretreatment with the cyclo-oxygenase inhibitor indomethacin. 5. Thus, endogenous NO appears to modulate ET-1-induced bronchoconstriction and pressor effects in the guinea-pig by limiting the peptide's ability to induce, possibly via ET(B) receptors, the release of TxA2 in the lungs and of vasodilatory prostanoids in the systemic circulation. Furthermore, it would seem that these eicosanoid-dependent actions of ET-1 in the pulmonary system and on systemic arterial resistance in this species are physiologically dissociated.  (+info)

  • The photocytotoxicity and photobiochemical properties of the new complex trans,trans,trans-[Pt(N3)2(OH)2(NH3)(piperidine)] are compared with its analogue containing the less basic and less lipophilic ligand pyridine. (cas.cz)
  • The results indicate that the piperidine complex has a more rapid rate of light activation to cytotoxic species but in other cellular and biochemical aspects its behavior is similar to that of pyridine analogue. (cas.cz)
  • abstract = "Several series of CCR5 antagonists have been discovered by derivatization at the N-terminal of the piperidine ring of the core template 2. (elsevier.com)
  • The present invention is directed to certain novel compounds identified as substituted piperidines, pyrrolidines and hexahydro-1H-azepines of the general structural formula: ##STR1## wherein R 1 , R 4 , R 5 , A, X, Y and n are as defined herein. (freepatentsonline.com)
  • The compounds were biased toward opioid receptor antagonist activity by incorporating (+)-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine (a potent, nonselective opioid pure antagonist) as one of the monomers. (nih.gov)
  • Screening of these compounds in competitive binding experiments with the kappa opioid receptor selective ligand [3H]U69,593 led to the discovery of a novel kappa opioid receptor selective ligand, N-¿(2'S)-[3-(4-hydroxyphenyl)propanamido]-3'-methylbutyl¿-(3R, 4R)-dimethyl-4-(3-hydroxyphenyl)piperidine (8, RTI-5989-29). (nih.gov)
  • Piperidine derivative compounds are used as intermediate to make crystal derivative of aromatic nitrogen compounds containing nuclear halogen atoms. (chemicalland21.com)
  • Through an examination of all spectroscopic information (1H, 13C NMR, VT-1H NMR, and 2D NMR) it was possible to correctly predict amide configurations and piperidine ring conformations of starting and final spiropiperidine compounds. (infona.pl)
  • They are used to determine the strain enthalpies of the cyclic amines A-G. The N-alkylated piperidine rings have been found to be about strainless. (ovid.com)
  • The photochemistry and photophysics of piperidine- and steroid- separated bichromophoric systems containing an aroyl azide as the electron acceptor and secondary aromatic amines as the electron donors was examined. (illinois.edu)
  • The Knoevenagel condensation is generally carried out in the presence of weak organic bases such as aliphatic amines, ethylenediamine and piperidine or their corresponding ammonium salts, Lewis bases and acids including Zn[Cl. (thefreedictionary.com)
  • We provide independent and unbiased information on manufacturers, prices, production news and consumers for the global and regional (North America, Asia and Europe) market of tert-butyl 4-(cyanomethyl)piperidine-1-carboxylate. (reportsnreports.com)
  • The Pipe and Kim research groups devised a way to strongly link long polymer chains of a plastic called polyacrylic acid (PAA) with short strands of another called polyacryloyl piperidine (PAP). (thefreedictionary.com)
  • Reaction of 1 with ethyl cyanoacetate in the presence of catalytic amount of piperidine furnished the chromene derivative (12), while its reaction with ethyl cyanoacetate in the presence of ammonium acetate gave the quinoline derivative (13). (thefreedictionary.com)
  • Finally, the annulation reaction between 2-alkoxy-1,1-cyclobutane diesters and imines or aldehydes gave access to highly functionalized piperidines and tetrahydropyrans, respectively. (oatd.org)
  • Linthicum, Structure-Activity Relationships of 33 Piperidines as Toxicants Against Female Adults of Aedes Aegypti (Diptera: Culicidae), J Med Entomol, 44, 263 (2007). (thefreedictionary.com)
  • Consequently piperidine analogues exhibited many therapeutic activities after altering its chemical structure, most of which were found to possess analgesic, hypotensive and anticancer activity due to the conformational flexibility of the molecule [30, (thefreedictionary.com)
  • This paper presents the results of an optimization study on biaryl piperidine and 4-amino-2-biarylurea MCH1 receptor antagonists, which was accomplished by using quantitative-structure activity relationships (QSARs), classification and virtual screening techniques. (springer.com)
  • N-Methylbenzyl-Piperidine HCl (CAS 13127-28-1) Market Research Report 2018 aims at providing comprehensive data on n-methylbenzyl-piperidine hcl market globally and regionally (Europe, Asia, North America, Latin America etc. (marketpublishers.com)
  • N-Methylbenzyl-Piperidine HCl (CAS 13127-28-1) Market Research Report 2018 contents were worked out and placed on the website in February, 2018. (marketpublishers.com)
  • Please note that N-Methylbenzyl-Piperidine HCl (CAS 13127-28-1) Market Research Report 2018 is a half ready publication and contents are subject to change. (marketpublishers.com)
  • 4-(4-Morpholinyl)-piperidine dihydrochloride (CAS 550370-31-5) Market Research Report 2018 aims at providing comprehensive data on 4-(4-morpholinyl)-piperidine dihydrochloride market globally and regionally (Europe, Asia, North America, Latin America etc. (marketpublishers.com)
  • 4-(4-Morpholinyl)-piperidine dihydrochloride (CAS 550370-31-5) Market Research Report 2018 contents were prepared and placed on the website in January, 2018. (marketpublishers.com)
  • Please note that 4-(4-Morpholinyl)-piperidine dihydrochloride (CAS 550370-31-5) Market Research Report 2018 is a half ready publication and contents are subject to change. (marketpublishers.com)