Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes.
A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions.
Isotopes that exhibit radioactivity and undergo radioactive decay. (From Grant & Hackh's Chemical Dictionary, 5th ed & McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Phosphorus used in foods or obtained from food. This element is a major intracellular component which plays an important role in many biochemical pathways relating to normal physiological functions. High concentrations of dietary phosphorus can cause nephrocalcinosis which is associated with impaired kidney function. Low concentrations of dietary phosphorus cause an increase in calcitriol in the blood and osteoporosis.
Unstable isotopes of zinc that decay or disintegrate emitting radiation. Zn atoms with atomic weights 60-63, 65, 69, 71, and 72 are radioactive zinc isotopes.
Inorganic compounds that contain phosphorus as an integral part of the molecule.
Method for assessing flow through a system by injection of a known quantity of radionuclide into the system and monitoring its concentration over time at a specific point in the system. (From Dorland, 28th ed)
Unstable isotopes of strontium that decay or disintegrate spontaneously emitting radiation. Sr 80-83, 85, and 89-95 are radioactive strontium isotopes.
Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes.
Unstable isotopes of krypton that decay or disintegrate emitting radiation. Kr atoms with atomic weights 74-77, 79, 81, 85, and 87-94 are radioactive krypton isotopes.
Unstable isotopes of indium that decay or disintegrate emitting radiation. In atoms with atomic weights 106-112, 113m, 114, and 116-124 are radioactive indium isotopes.
Unstable isotopes of sodium that decay or disintegrate emitting radiation. Na atoms with atomic weights 20-22 and 24-26 are radioactive sodium isotopes.
The spontaneous transformation of a nuclide into one or more different nuclides, accompanied by either the emission of particles from the nucleus, nuclear capture or ejection of orbital electrons, or fission. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Unstable isotopes of barium that decay or disintegrate emitting radiation. Ba atoms with atomic weights 126-129, 131, 133, and 139-143 are radioactive barium isotopes.
The production of an image obtained by cameras that detect the radioactive emissions of an injected radionuclide as it has distributed differentially throughout tissues in the body. The image obtained from a moving detector is called a scan, while the image obtained from a stationary camera device is called a scintiphotograph.
Unstable isotopes of yttrium that decay or disintegrate emitting radiation. Y atoms with atomic weights 82-88 and 90-96 are radioactive yttrium isotopes.
Unstable isotopes of tin that decay or disintegrate emitting radiation. Sn atoms with atomic weights 108-111, 113, 120-121, 123 and 125-128 are tin radioisotopes.
Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes.
Unstable isotopes of iron that decay or disintegrate emitting radiation. Fe atoms with atomic weights 52, 53, 55, and 59-61 are radioactive iron isotopes.
Unstable isotopes of copper that decay or disintegrate emitting radiation. Cu atoms with atomic weights 58-62, 64, and 66-68 are radioactive copper isotopes.
High energy POSITRONS or ELECTRONS ejected from a disintegrating atomic nucleus.
Stable phosphorus atoms that have the same atomic number as the element phosphorus, but differ in atomic weight. P-31 is a stable phosphorus isotope.
The first artificially produced element and a radioactive fission product of URANIUM. Technetium has the atomic symbol Tc, atomic number 43, and atomic weight 98.91. All technetium isotopes are radioactive. Technetium 99m (m=metastable) which is the decay product of Molybdenum 99, has a half-life of about 6 hours and is used diagnostically as a radioactive imaging agent. Technetium 99 which is a decay product of technetium 99m, has a half-life of 210,000 years.
Inorganic salts of phosphoric acid.
Disorders in the processing of phosphorus in the body: its absorption, transport, storage, and utilization.
Unstable isotopes of mercury that decay or disintegrate emitting radiation. Hg atoms with atomic weights 185-195, 197, 203, 205, and 206 are radioactive mercury isotopes.
A gamma-emitting radionuclide imaging agent used for the diagnosis of diseases in many tissues, particularly in the gastrointestinal system, liver, and spleen.
Stable cesium atoms that have the same atomic number as the element cesium, but differ in atomic weight. Cs-133 is a naturally occurring isotope.
Unstable isotopes of cerium that decay or disintegrate emitting radiation. Ce atoms with atomic weights 132-135, 137, 139, and 141-148 are radioactive cerium isotopes.
Stable cobalt atoms that have the same atomic number as the element cobalt, but differ in atomic weight. Co-59 is a stable cobalt isotope.
Hafnium. A metal element of atomic number 72 and atomic weight 178.49, symbol Hf. (From Dorland, 28th ed)
Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms.
Unstable isotopes of gold that decay or disintegrate emitting radiation. Au 185-196, 198-201, and 203 are radioactive gold isotopes.
Unstable isotopes of lead that decay or disintegrate emitting radiation. Pb atoms with atomic weights 194-203, 205, and 209-214 are radioactive lead isotopes.
Any diagnostic evaluation using radioactive (unstable) isotopes. This diagnosis includes many nuclear medicine procedures as well as radioimmunoassay tests.
Stable zinc atoms that have the same atomic number as the element zinc, but differ in atomic weight. Zn-66-68, and 70 are stable zinc isotopes.
Unstable isotopes of sulfur that decay or disintegrate spontaneously emitting radiation. S 29-31, 35, 37, and 38 are radioactive sulfur isotopes.
An enzyme that catalyzes the conversion of myo-inositol hexakisphosphate and water to 1L-myo-inositol 1,2,3,4,5-pentakisphosphate and orthophosphate. EC 3.1.3.26.
Unstable isotopes of cadmium that decay or disintegrate emitting radiation. Cd atoms with atomic weights 103-105, 107, 109, 115, and 117-119 are radioactive cadmium isotopes.
Astatine. A radioactive halogen with the atomic symbol At, atomic number 85, and atomic weight 210. Its isotopes range in mass number from 200 to 219 and all have an extremely short half-life. Astatine may be of use in the treatment of hyperthyroidism.
A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates.
Native, inorganic or fossilized organic substances having a definite chemical composition and formed by inorganic reactions. They may occur as individual crystals or may be disseminated in some other mineral or rock. (Grant & Hackh's Chemical Dictionary, 5th ed; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Radiotherapy where cytotoxic radionuclides are linked to antibodies in order to deliver toxins directly to tumor targets. Therapy with targeted radiation rather than antibody-targeted toxins (IMMUNOTOXINS) has the advantage that adjacent tumor cells, which lack the appropriate antigenic determinants, can be destroyed by radiation cross-fire. Radioimmunotherapy is sometimes called targeted radiotherapy, but this latter term can also refer to radionuclides linked to non-immune molecules (see RADIOTHERAPY).
A condition of abnormally high level of PHOSPHATES in the blood, usually significantly above the normal range of 0.84-1.58 mmol per liter of serum.
Lutetium. An element of the rare earth family of metals. It has the atomic symbol Lu, atomic number 71, and atomic weight 175.
Rhenium. A metal, atomic number 75, atomic weight 186.2, symbol Re. (Dorland, 28th ed)
Samarium. An element of the rare earth family of metals. It has the atomic symbol Sm, atomic number 62, and atomic weight 150.36. The oxide is used in the control rods of some nuclear reactors.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
Compounds that are used in medicine as sources of radiation for radiotherapy and for diagnostic purposes. They have numerous uses in research and industry. (Martindale, The Extra Pharmacopoeia, 30th ed, p1161)
Pollutants, present in soil, which exhibit radioactivity.
Calcium compounds used as food supplements or in food to supply the body with calcium. Dietary calcium is needed during growth for bone development and for maintenance of skeletal integrity later in life to prevent osteoporosis.
An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
Unstable isotopes of bromine that decay or disintegrate emitting radiation. Br atoms with atomic weights 74-78, 80, and 82-90 are radioactive bromine isotopes.
Detection and counting of scintillations produced in a fluorescent material by ionizing radiation.
Leakage and accumulation of CEREBROSPINAL FLUID in the subdural space which may be associated with an infectious process; CRANIOCEREBRAL TRAUMA; BRAIN NEOPLASMS; INTRACRANIAL HYPOTENSION; and other conditions.
Stable calcium atoms that have the same atomic number as the element calcium, but differ in atomic weight. Ca-42-44, 46, and 48 are stable calcium isotopes.
Liquid, solid, or gaseous waste resulting from mining of radioactive ore, production of reactor fuel materials, reactor operation, processing of irradiated reactor fuels, and related operations, and from use of radioactive materials in research, industry, and medicine. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Normal human serum albumin mildly iodinated with radioactive iodine (131-I) which has a half-life of 8 days, and emits beta and gamma rays. It is used as a diagnostic aid in blood volume determination. (from Merck Index, 11th ed)
Unstable isotopes of ruthenium that decay or disintegrate emitting radiation. Ru atoms with atomic weights 93-95, 97, 103, and 105-108 are radioactive ruthenium isotopes.
Techniques used to determine the age of materials, based on the content and half-lives of the RADIOACTIVE ISOTOPES they contain.
A series of steps taken in order to conduct research.
Unstable isotopes of selenium that decay or disintegrate emitting radiation. Se atoms with atomic weights 70-73, 75, 79, 81, and 83-85 are radioactive selenium isotopes.
Positively charged particles composed of two protons and two NEUTRONS, i.e. equivalent to HELIUM nuclei, which are emitted during disintegration of heavy ISOTOPES. Alpha rays have very strong ionizing power, but weak penetrability.
The physical or physiological processes by which substances, tissue, cells, etc. take up or take in other substances or energy.
A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principle cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX.
Uptake of substances through the lining of the INTESTINES.
The enrichment of a terrestrial or aquatic ECOSYSTEM by the addition of nutrients, especially nitrogen and phosphorus, that results in a superabundant growth of plants, ALGAE, or other primary producers. It can be a natural process or result from human activity such as agriculture runoff or sewage pollution. In aquatic ecosystems, an increase in the algae population is termed an algal bloom.
A class of organic compounds containing a ring structure made up of more than one kind of atom, usually carbon plus another atom. The ring structure can be aromatic or nonaromatic.
A gamma-emitting radionuclide imaging agent used for the diagnosis of diseases in many tissues, particularly in the gastrointestinal system, cardiovascular and cerebral circulation, brain, thyroid, and joints.
Tungsten. A metallic element with the atomic symbol W, atomic number 74, and atomic weight 183.85. It is used in many manufacturing applications, including increasing the hardness, toughness, and tensile strength of steel; manufacture of filaments for incandescent light bulbs; and in contact points for automotive and electrical apparatus.
Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios.
Atomic species differing in mass number but having the same atomic number. (Grant & Hackh's Chemical Dictionary, 5th ed)
A type of high-energy radiotherapy using a beam of gamma-radiation produced by a radioisotope source encapsulated within a teletherapy unit.
An iron chelating agent with properties like EDETIC ACID. DTPA has also been used as a chelator for other metals, such as plutonium.
Determination of the energy distribution of gamma rays emitted by nuclei. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A specialty field of radiology concerned with diagnostic, therapeutic, and investigative use of radioactive compounds in a pharmaceutical form.
A technetium imaging agent used in renal scintigraphy, computed tomography, lung ventilation imaging, gastrointestinal scintigraphy, and many other procedures which employ radionuclide imaging agents.
The unconsolidated mineral or organic matter on the surface of the earth that serves as a natural medium for the growth of land plants.
Complexing agent for removal of traces of heavy metal ions. It acts also as a hypocalcemic agent.
The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING.
A condition of an abnormally low level of PHOSPHATES in the blood.
Compounds that contain the triphenylmethane aniline structure found in rosaniline. Many of them have a characteristic magenta color and are used as COLORING AGENTS.
Tritium is an isotope of hydrogen (specifically, hydrogen-3) that contains one proton and two neutrons in its nucleus, making it radioactive with a half-life of about 12.3 years, and is used in various applications including nuclear research, illumination, and dating techniques due to its low energy beta decay.
Stable carbon atoms that have the same atomic number as the element carbon, but differ in atomic weight. C-13 is a stable carbon isotope.
A form species of spore-producing CYANOBACTERIA, in the family Nostocaceae, order Nostocales. It is an important source of fixed NITROGEN in nutrient-depleted soils. When wet, it appears as a jelly-like mass.
Substances or mixtures that are added to the soil to supply nutrients or to make available nutrients already present in the soil, in order to increase plant growth and productivity.
Measurement of radioactivity in the entire human body.
Unstable isotopes of potassium that decay or disintegrate emitting radiation. K atoms with atomic weights 37, 38, 40, and 42-45 are radioactive potassium isotopes.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
Regular course of eating and drinking adopted by a person or animal.
An iodine-containing compound used in pyelography as a radiopaque medium. If labeled with radioiodine, it can be used for studies of renal function.
Total mass of all the organisms of a given type and/or in a given area. (From Concise Dictionary of Biology, 1990) It includes the yield of vegetative mass produced from any given crop.
Elements of limited time intervals, contributing to particular results or situations.
The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption.
Inorganic salts or organic esters of phosphorous acid that contain the (3-)PO3 radical. (From Grant & Hackh's Chemical Dictionary, 5th ed)
A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with ANEMIA, short stature, HYPOGONADISM, impaired WOUND HEALING, and geophagia. It is known by the symbol Zn.
Excrement from the INTESTINES, containing unabsorbed solids, waste products, secretions, and BACTERIA of the DIGESTIVE SYSTEM.
A condition characterized by calcification of the renal tissue itself. It is usually seen in distal RENAL TUBULAR ACIDOSIS with calcium deposition in the DISTAL KIDNEY TUBULES and the surrounding interstitium. Nephrocalcinosis causes RENAL INSUFFICIENCY.
Abnormally elevated PARATHYROID HORMONE secretion as a response to HYPOCALCEMIA. It is caused by chronic KIDNEY FAILURE or other abnormalities in the controls of bone and mineral metabolism, leading to various BONE DISEASES, such as RENAL OSTEODYSTROPHY.
The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv).
Foodstuff used especially for domestic and laboratory animals, or livestock.
Identification and measurement of ELEMENTS and their location based on the fact that X-RAYS emitted by an element excited by an electron beam have a wavelength characteristic of that element and an intensity related to its concentration. It is performed with an electron microscope fitted with an x-ray spectrometer, in scanning or transmission mode.
Linear polymers in which orthophosphate residues are linked with energy-rich phosphoanhydride bonds. They are found in plants, animals, and microorganisms.
The usually underground portions of a plant that serve as support, store food, and through which water and mineral nutrients enter the plant. (From American Heritage Dictionary, 1982; Concise Dictionary of Biology, 1990)
Disorders caused by interruption of BONE MINERALIZATION manifesting as OSTEOMALACIA in adults and characteristic deformities in infancy and childhood due to disturbances in normal BONE FORMATION. The mineralization process may be interrupted by disruption of VITAMIN D; PHOSPHORUS; or CALCIUM homeostasis, resulting from dietary deficiencies, or acquired, or inherited metabolic, or hormonal disturbances.
An imaging technique using compounds labelled with short-lived positron-emitting radionuclides (such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18) to measure cell metabolism. It has been useful in study of soft tissues such as CANCER; CARDIOVASCULAR SYSTEM; and brain. SINGLE-PHOTON EMISSION-COMPUTED TOMOGRAPHY is closely related to positron emission tomography, but uses isotopes with longer half-lives and resolution is lower.
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
Substances which are of little or no nutritive value, but are used in the processing or storage of foods or animal feed, especially in the developed countries; includes ANTIOXIDANTS; FOOD PRESERVATIVES; FOOD COLORING AGENTS; FLAVORING AGENTS; ANTI-INFECTIVE AGENTS (both plain and LOCAL); VEHICLES; EXCIPIENTS and other similarly used substances. Many of the same substances are PHARMACEUTIC AIDS when added to pharmaceuticals rather than to foods.
Therapy for the insufficient cleansing of the BLOOD by the kidneys based on dialysis and including hemodialysis, PERITONEAL DIALYSIS, and HEMODIAFILTRATION.
A cobalt-containing coordination compound produced by intestinal micro-organisms and found also in soil and water. Higher plants do not concentrate vitamin B 12 from the soil and so are a poor source of the substance as compared with animal tissues. INTRINSIC FACTOR is important for the assimilation of vitamin B 12.
A diagnostic procedure used to determine whether LYMPHATIC METASTASIS has occurred. The sentinel lymph node is the first lymph node to receive drainage from a neoplasm.
The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed)
A class of compounds of the type R-M, where a C atom is joined directly to any other element except H, C, N, O, F, Cl, Br, I, or At. (Grant & Hackh's Chemical Dictionary, 5th ed)
A gamma-emitting radionuclide imaging agent used primarily in skeletal scintigraphy. Because of its absorption by a variety of tumors, it is useful for the detection of neoplasms.
The end-stage of CHRONIC RENAL INSUFFICIENCY. It is characterized by the severe irreversible kidney damage (as measured by the level of PROTEINURIA) and the reduction in GLOMERULAR FILTRATION RATE to less than 15 ml per min (Kidney Foundation: Kidney Disease Outcome Quality Initiative, 2002). These patients generally require HEMODIALYSIS or KIDNEY TRANSPLANTATION.
Refuse liquid or waste matter carried off by sewers.
A metallic element that has the atomic symbol Bi, atomic number 83 and atomic weight 208.98.
Accumulations of solid or liquid animal excreta usually from stables and barnyards with or without litter material. Its chief application is as a fertilizer. (From Webster's 3d ed)
A family of gram-negative, moderately halophilic bacteria in the order Oceanospirillales. Members of the family have been isolated from temperate and Antarctic saline lakes, solar salt facilities, saline soils, and marine environments.
A specific protein in egg albumin that interacts with BIOTIN to render it unavailable to mammals, thereby producing biotin deficiency.
The rate dynamics in chemical or physical systems.
Antibodies produced by a single clone of cells.
Carbonic acid calcium salt (CaCO3). An odorless, tasteless powder or crystal that occurs in nature. It is used therapeutically as a phosphate buffer in hemodialysis patients and as a calcium supplement.
Unstable isotopes of cesium that decay or disintegrate emitting radiation. Cs atoms with atomic weights of 123, 125-132, and 134-145 are radioactive cesium isotopes.
Two pairs of small oval-shaped glands located in the front and the base of the NECK and adjacent to the two lobes of THYROID GLAND. They secrete PARATHYROID HORMONE that regulates the balance of CALCIUM; PHOSPHORUS; and MAGNESIUM in the body.
A collective term for interstitial, intracavity, and surface radiotherapy. It uses small sealed or partly-sealed sources that may be placed on or near the body surface or within a natural body cavity or implanted directly into the tissues.
Unstable isotopes of iridium that decay or disintegrate emitting radiation. Ir atoms with atomic weights 182-190, 192, and 194-198 are radioactive iridium isotopes.
An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996)
Conditions in which the KIDNEYS perform below the normal level for more than three months. Chronic kidney insufficiency is classified by five stages according to the decline in GLOMERULAR FILTRATION RATE and the degree of kidney damage (as measured by the level of PROTEINURIA). The most severe form is the end-stage renal disease (CHRONIC KIDNEY FAILURE). (Kidney Foundation: Kidney Disease Outcome Quality Initiative, 2002)
New immature growth of a plant including stem, leaves, tips of branches, and SEEDLINGS.
Decalcification of bone or abnormal bone development due to chronic KIDNEY DISEASES, in which 1,25-DIHYDROXYVITAMIN D3 synthesis by the kidneys is impaired, leading to reduced negative feedback on PARATHYROID HORMONE. The resulting SECONDARY HYPERPARATHYROIDISM eventually leads to bone disorders.
A vitamin that includes both CHOLECALCIFEROLS and ERGOCALCIFEROLS, which have the common effect of preventing or curing RICKETS in animals. It can also be viewed as a hormone since it can be formed in SKIN by action of ULTRAVIOLET RAYS upon the precursors, 7-dehydrocholesterol and ERGOSTEROL, and acts on VITAMIN D RECEPTORS to regulate CALCIUM in opposition to PARATHYROID HORMONE.
A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel.
A metallic element that has the atomic number 13, atomic symbol Al, and atomic weight 26.98.
Substances that comprise all matter. Each element is made up of atoms that are identical in number of electrons and protons and in nuclear charge, but may differ in mass or number of neutrons.
The region of the HAND between the WRIST and the FINGERS.
A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN.
A plant genus of the family FABACEAE that is a source of SPARTEINE, lupanine and other lupin alkaloids.
The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity.
Studies determining the effectiveness or value of processes, personnel, and equipment, or the material on conducting such studies. For drugs and devices, CLINICAL TRIALS AS TOPIC; DRUG EVALUATION; and DRUG EVALUATION, PRECLINICAL are available.
Hydroxy analogs of vitamin D 3; (CHOLECALCIFEROL); including CALCIFEDIOL; CALCITRIOL; and 24,25-DIHYDROXYVITAMIN D 3.
The discarding or destroying of liquid waste products or their transformation into something useful or innocuous.
Inorganic compounds that contain calcium as an integral part of the molecule.
A rating of a body of water based on measurable physical, chemical, and biological characteristics.
Derivatives of ERGOSTEROL formed by ULTRAVIOLET RAYS breaking of the C9-C10 bond. They differ from CHOLECALCIFEROL in having a double bond between C22 and C23 and a methyl group at C24.
Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS.
A potent, long-acting synthetic SOMATOSTATIN octapeptide analog that inhibits secretion of GROWTH HORMONE and is used to treat hormone-secreting tumors; DIABETES MELLITUS; HYPOTENSION, ORTHOSTATIC; HYPERINSULINISM; hypergastrinemia; and small bowel fistula.
An inherited condition of abnormally low serum levels of PHOSPHATES (below 1 mg/liter) which can occur in a number of genetic diseases with defective reabsorption of inorganic phosphorus by the PROXIMAL RENAL TUBULES. This leads to phosphaturia, HYPOPHOSPHATEMIA, and disturbances of cellular and organ functions such as those in X-LINKED HYPOPHOSPHATEMIC RICKETS; OSTEOMALACIA; and FANCONI SYNDROME.
An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers.
Free-floating minute organisms that are photosynthetic. The term is non-taxonomic and refers to a lifestyle (energy utilization and motility), rather than a particular type of organism. Most, but not all, are unicellular algae. Important groups include DIATOMS; DINOFLAGELLATES; CYANOBACTERIA; CHLOROPHYTA; HAPTOPHYTA; CRYPTOMONADS; and silicoflagellates.
An annual legume. The SEEDS of this plant are edible and used to produce a variety of SOY FOODS.
Pathologic deposition of calcium salts in tissues.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
Nutritional physiology of animals.
Water containing no significant amounts of salts, such as water from RIVERS and LAKES.
A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family.
Symbiotic combination (dual organism) of the MYCELIUM of FUNGI with the roots of plants (PLANT ROOTS). The roots of almost all higher plants exhibit this mutually beneficial relationship, whereby the fungus supplies water and mineral salts to the plant, and the plant supplies CARBOHYDRATES to the fungus. There are two major types of mycorrhizae: ectomycorrhizae and endomycorrhizae.
Process by which organic tissue becomes hardened by the physiologic deposit of calcium salts.
Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site.
A clinical syndrome associated with the retention of renal waste products or uremic toxins in the blood. It is usually the result of RENAL INSUFFICIENCY. Most uremic toxins are end products of protein or nitrogen CATABOLISM, such as UREA or CREATININE. Severe uremia can lead to multiple organ dysfunctions with a constellation of symptoms.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Unstable isotopes of cobalt that decay or disintegrate emitting radiation. Co atoms with atomic weights of 54-64, except 59, are radioactive cobalt isotopes.
A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23.
Tomography using radioactive emissions from injected RADIONUCLIDES and computer ALGORITHMS to reconstruct an image.
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.
Polyamines are organic compounds with more than one amino group, involved in various biological processes such as cell growth, differentiation, and apoptosis, and found to be increased in certain diseases including cancer.
Proteins obtained from foods. They are the main source of the ESSENTIAL AMINO ACIDS.
Tools or devices for generating products using the synthetic or chemical conversion capacity of a biological system. They can be classical fermentors, cell culture perfusion systems, or enzyme bioreactors. For production of proteins or enzymes, recombinant microorganisms such as bacteria, mammalian cells, or insect or plant cells are usually chosen.

Relative efficacy of 32P and 89Sr in palliation in skeletal metastases. (1/1667)

32p and 89Sr have been shown to produce significant pain relief in patients with skeletal metastases from advanced cancer. Clinically significant pancytopenia has not been reported in doses up to 12 mCi (444 MBq) of either radionuclide. To date, no reports comparing the relative efficacy and toxicity of the two radionuclides in comparable patient populations have been available. Although a cure has not been reported, both treatments have achieved substantial pain relief. However, several studies have used semiquantitative measures such as "slight," "fair," "partial" and "dramatic" responses, which lend themselves to subjective bias. This report examines the responses to treatment with 32P or 89Sr by attempting a quantification of pain relief and quality of life using the patients as their own controls and compares toxicity in terms of hematological parameters. METHODS: Thirty-one patients with skeletal metastases were treated for pain relief with either 32P (16 patients) or 89Sr (15 patients). Inclusion criteria were pain from bone scan-positive sites above a subjective score of 5 of 10 despite analgesic therapy with narcotic or non-narcotic medication, limitation of movement related to the performance of routine daily activity and a predicted life expectancy of at least 4 mo. The patients had not had chemotherapy or radiotherapy during the previous 6 wk and had normal serum creatinine, white cell and platelet counts. 32P was given orally as a 12 mCi dose, and 89Sr was given intravenously as a 4 mCi (148 MBq) dose. The patients were monitored for 4 mo. RESULTS: Complete absence of pain was seen in 7 of 16 patients who were given 32P and in 7 of 15 patients who were given 89Sr. Pain scores fell by at least 50% of the pretreatment score in 14 of 16 patients who were given 32P and 14 of 15 patients who were given 89Sr. Mean duration of pain relief was 9.6 wk with 32P and 10 wk with 89Sr. Analgesic scores fell along with the drop in pain scores. A fall in total white cell, absolute granulocyte and platelet counts occurred in all patients. Subnormal values of white cells and platelets were seen in 5 and 7 patients, respectively, with 32P, and in 0 and 4 patients, respectively, after 89Sr therapy. The decrease in platelet count (but not absolute granulocyte count) was statistically significant when 32P patients were compared with 89Sr patients. However, in no instance did the fall in blood counts require treatment. Absolute granulocyte counts did not fall below 1000 in any patient. There was no significant difference between the two treatments in terms of either efficacy or toxicity. CONCLUSION: No justification has been found in this study for the recommendation of 89Sr over the considerably less expensive oral 32P for the palliation of skeletal pain from metastases of advanced cancer.  (+info)

Maintenance of motility in mouse sperm permeabilized with streptolysin O. (2/1667)

One approach to studying the mechanisms governing sperm motility is to permeabilize sperm and examine the regulation of motility by manipulating the intracellular milieu of the cell. The most common method of sperm permeabilization, detergent treatment, has the disadvantage that the membranes and many proteins are extracted from the cell. To avoid this problem, we have developed a method that uses streptolysin O to create stable pores within the plasma membrane while leaving internal membranes intact. Sperm were permeabilized, preincubated, and then treated with 0.6 U/ml of streptolysin O. Permeabilization was assessed by fluorescent dye technologies and endogenous protein phosphorylation using exogenously added [gamma-32P]ATP. Streptolysin O-induced permeabilization rendered the sperm immotile, and the effect was Ca2+-dependent. When the cells were treated simultaneously with a medium containing ATP, streptolysin O-treated sperm maintained flagellar movement. These results demonstrate that the streptolysin O permeabilization model system is a useful experimental method for studying the mechanisms that regulate sperm motility since it allows the flagellar apparatus to be exposed to various exogenously added molecules.  (+info)

Lack of evidence from HPLC 32P-post-labelling for tamoxifen-DNA adducts in the human endometrium. (3/1667)

Tamoxifen is associated with an increased incidence of endometrial cancer in women. It is also a potent carcinogen in rat liver and forms covalent DNA adducts in this tissue. A previous study exploring DNA adducts in human endometria, utilizing thin layer chromatography 32P-postlabelling, found no evidence for adducts in tamoxifen-treated women [Carmichael,P.L., Ugwumadu,A.H.N., Neven,P., Hewer,A.J., Poon,G.K. and Phillips,D.H. (1996) Cancer Res., 56, 1475-1479]. However, subsequent work utilizing HPLC 32P-post-labelling [Hemminki,K., Ranjaniemi,H., Lindahl,B. and Moberger,B. (1996) Cancer Res., 56, 4374-4377] suggested that very low levels could be detected. We have sought to investigate this question further by reproducing the HPLC methodology at two centres, and analysing endometrial DNA from 20 patients treated with 20 mg/day tamoxifen for between 22 and 65 months. Liver DNA isolated from tamoxifen-treated rats was used as a positive control. We found no convincing evidence for tamoxifen-derived DNA adducts in human endometrium. HPLC elution profiles of post-labelled DNA from tamoxifen-treated women were indistinguishable from those obtained with DNA from 14 untreated women and from six women taking toremifene, an analogue of tamoxifen.  (+info)

Cellular effects of beta-particle delivery on vascular smooth muscle cells and endothelial cells: a dose-response study. (4/1667)

BACKGROUND: Although endovascular radiotherapy inhibits neointimal hyperplasia, the exact cellular alterations induced by beta irradiation remain to be elucidated. METHODS AND RESULTS: We investigated in vitro the ability of 32P-labeled oligonucleotides to alter (1) proliferation of human and porcine vascular smooth muscle cells (VSMCs) and human coronary artery endothelial cells (ECs), (2) cell cycle progression, (3) cell viability and apoptosis, (4) cell migration, and (5) cell phenotype and morphological features. beta radiation significantly reduced proliferation of VSMCs (ED50 1.10 Gy) and ECs (ED50 2.15 Gy) in a dose-dependent manner. Exposure to beta emission interfered with cell cycle progression, with induction of G0/G1 arrest in VSMCs, without evidence of cell viability alteration, apoptosis, or ultrastructural changes. This strategy also proved to efficiently inhibit VSMC migration by 80% and induce contractile phenotype appearance, as shown by the predominance of alpha-actin immunostaining in beta-irradiated cells compared with control cells. CONCLUSIONS: 32P-labeled oligonucleotide was highly effective in inhibiting proliferation of both VSMCs and ECs in a dose-dependent fashion, with ECs showing a higher resistance to these effects. beta irradiation-induced G1 arrest was not associated with cytotoxicity and apoptosis, thus demonstrating a potent cytostatic effect of beta-based therapy. This effect, coupled to that on VSMC migration inhibition and the appearance of a contractile phenotype, reinforced the potential of ionizing radiation to prevent neointima formation after angioplasty.  (+info)

Radioactive phosphorus uptake testing of choroidal lesions. A report of two false-negative tests. (5/1667)

Two false-negative results from 32P testing for histologically verified malignant melanomas of the choroid are reported. In the first case, a haemorrhagic choroidal detachment caused an increase in probe; additionally, the tumour was necrotic. Both factors are likely to have contributed to the false-negative result. A satisfactory explanation for the false-negative result in the second case was not determined, although it may have accurately reflected a period of minimal tumour activity, inasmuch as repeat 32P testing was strongly positive eight months later, when unequivocal evidence of tumour growth was present. An alternative explanation is that the orally administered 32P was incompletely absorbed. Since 32P testing is frequently accompanied by significant manipulation both in the manoeuvre associated with tumour localization and in that associated with the actual radioactive counting, it would seem desirable to perform indicated enucleation immediately after completion of the 32P testing. While the properly performed 32P test remains a valuable diagnostic test for helping to establish the presence or absence of malignancies of the posterior globe, it is important to guard against the tendency to underestimate careful clinical evaluation.  (+info)

Abnormal myo-inositol and phospholipid metabolism in cultured fibroblasts from patients with ataxia telangiectasia. (6/1667)

Ataxia telangiectasia (AT) is a complex autosomal recessive disorder that has been associated with a wide range of physiological defects including an increased sensitivity to ionizing radiation and abnormal checkpoints in the cell cycle. The mutated gene product, ATM, has a domain possessing homology to phosphatidylinositol-3-kinase and has been shown to possess protein kinase activity. In this study, we have investigated how AT affects myo-inositol metabolism and phospholipid synthesis using cultured human fibroblasts. In six fibroblast lines from patients with AT, myo-inositol accumulation over a 3-h period was decreased compared to normal fibroblasts. The uptake and incorporation of myo-inositol into phosphoinositides over a 24-h period, as well as the free myo-inositol content was also lower in some but not all of the AT fibroblast lines. A consistent finding was that the proportion of 32P in total labeled phospholipid that was incorporated into phosphatidylglycerol was greater in AT than normal fibroblasts, whereas the fraction of radioactivity in phosphatidic acid was decreased. Turnover studies revealed that AT cells exhibit a less active phospholipid metabolism as compared to normal cells. In summary, these studies demonstrate that two manifestations of the AT defect are alterations in myo-inositol metabolism and phospholipid synthesis. These abnormalities could have an effect on cellular signaling pathways and membrane production, as well as on the sensitivity of the cells to ionizing radiation and proliferative responses.  (+info)

Identification, purification, and characterization of the rat liver golgi membrane ATP transporter. (7/1667)

Phosphorylation of secretory and integral membrane proteins and of proteoglycans also occurs in the lumen of the Golgi apparatus. ATP, the phosphate donor in these reactions, must first cross the Golgi membrane before it can serve as substrate. The existence of a specific ATP transporter in the Golgi membrane has been previously demonstrated in vitro using intact Golgi membrane vesicles from rat liver and mammary gland. We have now identified and purified the rat liver Golgi membrane ATP transporter. The transporter was purified to apparent homogeneity by a combination of conventional ion exchange, dye color, and affinity chromatography. An approximately 70,000-fold purification (2% yield) was achieved starting from crude rat liver Golgi membranes. A protein with an apparent molecular mass of 60 kDa was identified as the putative transporter by a combination of column chromatography, photoaffinity labeling with an analog of ATP, and native functional size determination on a glycerol gradient. The purified transporter appears to exist as a homodimer within the Golgi membrane, and when reconstituted into phosphatidylcholine liposomes, was active in ATP but not nucleotide sugar or adenosine 3'-phosphate 5'-phosphosulfate transport. The transport activity was saturable with an apparent Km very similar to that of intact Golgi vesicles.  (+info)

Ku antigen-DNA conformation determines the activation of DNA-dependent protein kinase and DNA sequence-directed repression of mouse mammary tumor virus transcription. (8/1667)

Mouse mammary tumor virus (MMTV) transcription is repressed by DNA-dependent protein kinase (DNA-PK) through a DNA sequence element, NRE1, in the viral long terminal repeat that is a sequence-specific DNA binding site for the Ku antigen subunit of the kinase. While Ku is an essential component of the active kinase, how the catalytic subunit of DNA-PK (DNA-PKcs) is regulated through its association with Ku is only beginning to be understood. We report that activation of DNA-PKcs and the repression of MMTV transcription from NRE1 are dependent upon Ku conformation, the manipulation of DNA structure by Ku, and the contact of Ku80 with DNA. Truncation of one copy of the overlapping direct repeat that comprises NRE1 abrogated the repression of MMTV transcription by Ku-DNA-PKcs. Remarkably, the truncated element was recognized by Ku-DNA-PKcs with affinity similar to that of the full-length element but was unable to promote the activation of DNA-PKcs. Analysis of Ku-DNA-PKcs interactions with DNA ends, double- and single-stranded forms of NRE1, and the truncated NRE1 element revealed striking differences in Ku conformation that differentially affected the recruitment of DNA-PKcs and the activation of kinase activity.  (+info)

Phosphorus radioisotopes are radioactive isotopes or variants of the element phosphorus that emit radiation. Phosphorus has several radioisotopes, with the most common ones being phosphorus-32 (^32P) and phosphorus-33 (^33P). These radioisotopes are used in various medical applications such as cancer treatment and diagnostic procedures.

Phosphorus-32 has a half-life of approximately 14.3 days and emits beta particles, making it useful for treating certain types of cancer, such as leukemia and lymphoma. It can also be used in brachytherapy, a type of radiation therapy that involves placing a radioactive source close to the tumor.

Phosphorus-33 has a shorter half-life of approximately 25.4 days and emits both beta particles and gamma rays. This makes it useful for diagnostic procedures, such as positron emission tomography (PET) scans, where the gamma rays can be detected and used to create images of the body's internal structures.

It is important to note that handling and using radioisotopes requires specialized training and equipment to ensure safety and prevent radiation exposure.

Phosphorus is an essential mineral that is required by every cell in the body for normal functioning. It is a key component of several important biomolecules, including adenosine triphosphate (ATP), which is the primary source of energy for cells, and deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), which are the genetic materials in cells.

Phosphorus is also a major constituent of bones and teeth, where it combines with calcium to provide strength and structure. In addition, phosphorus plays a critical role in various metabolic processes, including energy production, nerve impulse transmission, and pH regulation.

The medical definition of phosphorus refers to the chemical element with the atomic number 15 and the symbol P. It is a highly reactive non-metal that exists in several forms, including white phosphorus, red phosphorus, and black phosphorus. In the body, phosphorus is primarily found in the form of organic compounds, such as phospholipids, phosphoproteins, and nucleic acids.

Abnormal levels of phosphorus in the body can lead to various health problems. For example, high levels of phosphorus (hyperphosphatemia) can occur in patients with kidney disease or those who consume large amounts of phosphorus-rich foods, and can contribute to the development of calcification of soft tissues and cardiovascular disease. On the other hand, low levels of phosphorus (hypophosphatemia) can occur in patients with malnutrition, vitamin D deficiency, or alcoholism, and can lead to muscle weakness, bone pain, and an increased risk of infection.

Radioisotopes, also known as radioactive isotopes or radionuclides, are variants of chemical elements that have unstable nuclei and emit radiation in the form of alpha particles, beta particles, gamma rays, or conversion electrons. These isotopes are formed when an element's nucleus undergoes natural or artificial radioactive decay.

Radioisotopes can be produced through various processes, including nuclear fission, nuclear fusion, and particle bombardment in a cyclotron or other types of particle accelerators. They have a wide range of applications in medicine, industry, agriculture, research, and energy production. In the medical field, radioisotopes are used for diagnostic imaging, radiation therapy, and in the labeling of molecules for research purposes.

It is important to note that handling and using radioisotopes requires proper training, safety measures, and regulatory compliance due to their ionizing radiation properties, which can pose potential health risks if not handled correctly.

Dietary Phosphorus is a mineral that is an essential nutrient for human health. It is required for the growth, maintenance, and repair of body tissues, including bones and teeth. Phosphorus is also necessary for the production of energy, the formation of DNA and RNA, and the regulation of various physiological processes.

In the diet, phosphorus is primarily found in protein-containing foods such as meat, poultry, fish, dairy products, legumes, and nuts. It can also be found in processed foods that contain additives such as phosphoric acid, which is used to enhance flavor or as a preservative.

The recommended daily intake of phosphorus for adults is 700 milligrams (mg) per day. However, it's important to note that excessive intake of phosphorus, particularly from supplements and fortified foods, can lead to health problems such as kidney damage and calcification of soft tissues. Therefore, it's recommended to obtain phosphorus primarily from whole foods rather than supplements.

Zinc radioisotopes are unstable isotopes or variants of the element zinc that undergo radioactive decay, emitting radiation in the process. These isotopes have a different number of neutrons than the stable isotope of zinc (zinc-64), which contributes to their instability and tendency to decay.

Examples of zinc radioisotopes include zinc-65, zinc-70, and zinc-72. These isotopes are often used in medical research and diagnostic procedures due to their ability to emit gamma rays or positrons, which can be detected using specialized equipment.

Zinc radioisotopes may be used as tracers to study the metabolism and distribution of zinc in the body, or as therapeutic agents to deliver targeted radiation therapy to cancer cells. However, it is important to note that the use of radioisotopes carries potential risks, including exposure to ionizing radiation and the potential for damage to healthy tissues.

Phosphorus compounds refer to chemical substances that contain phosphorus (P) combined with one or more other elements. Phosphorus can form a variety of compounds due to its ability to exist in several oxidation states, most commonly +3 and +5.

In biological systems, phosphorus is an essential element for life, playing crucial roles in energy transfer, metabolism, and structural components of cells. Some common examples of phosphorus compounds include:

1. Phosphoric acid (H3PO4): A weak triprotic acid that forms salts called phosphates when combined with metal ions or basic radicals.
2. Phosphates (PO4^3-): The salt or ester form of phosphoric acid, widely found in nature and essential for various biological processes such as bone formation, energy metabolism, and nucleic acid synthesis.
3. Phosphorus pentachloride (PCl5): A pungent, white crystalline solid used in organic chemistry as a chlorinating agent.
4. Phosphorus trichloride (PCl3): A colorless liquid with a suffocating odor, used in the production of various chemical compounds, including pharmaceuticals and agrochemicals.
5. Dicalcium phosphate (CaHPO4): A calcium salt of phosphoric acid, commonly found in mineral supplements and used as a dietary supplement for animals and humans.
6. Adenosine triphosphate (ATP): A high-energy molecule that stores and transfers energy within cells, playing a critical role in metabolic processes such as muscle contraction and biosynthesis.

Phosphorus compounds have numerous applications across various industries, including agriculture, food processing, pharmaceuticals, and chemical manufacturing.

The Radioisotope Dilution Technique is a method used in nuclear medicine to measure the volume and flow rate of a particular fluid in the body. It involves introducing a known amount of a radioactive isotope, or radioisotope, into the fluid, such as blood. The isotope mixes with the fluid, and samples are then taken from the fluid at various time points.

By measuring the concentration of the radioisotope in each sample, it is possible to calculate the total volume of the fluid based on the amount of the isotope introduced and the dilution factor. The flow rate can also be calculated by measuring the concentration of the isotope over time and using the formula:

Flow rate = Volume/Time

This technique is commonly used in medical research and clinical settings to measure cardiac output, cerebral blood flow, and renal function, among other applications. It is a safe and reliable method that has been widely used for many years. However, it does require the use of radioactive materials and specialized equipment, so it should only be performed by trained medical professionals in appropriate facilities.

Strontium radioisotopes are radioactive isotopes of the element strontium. Strontium is an alkaline earth metal that is found in nature and has several isotopes, some of which are stable and some of which are radioactive. The radioactive isotopes of strontium, also known as strontium radionuclides, decay and emit radiation in the form of beta particles.

Strontium-89 (^89Sr) and strontium-90 (^90Sr) are two common radioisotopes of strontium that are used in medical applications. Strontium-89 is a pure beta emitter with a half-life of 50.5 days, which makes it useful for the treatment of bone pain associated with metastatic cancer. When administered, strontium-89 is taken up by bones and irradiates the bone tissue, reducing pain and improving quality of life in some patients.

Strontium-90, on the other hand, has a longer half-life of 28.8 years and emits more powerful beta particles than strontium-89. It is used as a component in radioactive waste and in some nuclear weapons, but it is not used in medical applications due to its long half-life and high radiation dose.

It's important to note that exposure to strontium radioisotopes can be harmful to human health, especially if ingested or inhaled. Therefore, handling and disposal of strontium radioisotopes require special precautions and regulations.

Iodine radioisotopes are radioactive isotopes of the element iodine, which decays and emits radiation in the form of gamma rays. Some commonly used iodine radioisotopes include I-123, I-125, I-131. These radioisotopes have various medical applications such as in diagnostic imaging, therapy for thyroid disorders, and cancer treatment.

For example, I-131 is commonly used to treat hyperthyroidism and differentiated thyroid cancer due to its ability to destroy thyroid tissue. On the other hand, I-123 is often used in nuclear medicine scans of the thyroid gland because it emits gamma rays that can be detected by a gamma camera, allowing for detailed images of the gland's structure and function.

It is important to note that handling and administering radioisotopes require specialized training and safety precautions due to their radiation-emitting properties.

Krypton is a noble gas with the symbol Kr and atomic number 36. It exists in various radioisotopes, which are unstable isotopes of krypton that undergo radioactive decay. A few examples include:

1. Krypton-81: This radioisotope has a half-life of about 2.1 x 10^5 years and decays via electron capture to rubidium-81. It is produced naturally in the atmosphere by cosmic rays.
2. Krypton-83: With a half-life of approximately 85.7 days, this radioisotope decays via beta decay to bromine-83. It can be used in medical imaging for lung ventilation studies.
3. Krypton-85: This radioisotope has a half-life of about 10.7 years and decays via beta decay to rubidium-85. It is produced as a byproduct of nuclear fission and can be found in trace amounts in the atmosphere.
4. Krypton-87: With a half-life of approximately 76.3 minutes, this radioisotope decays via beta decay to rubidium-87. It is not found naturally on Earth but can be produced artificially.

It's important to note that while krypton radioisotopes have medical applications, they are also associated with potential health risks due to their radioactivity. Proper handling and safety precautions must be taken when working with these substances.

Indium radioisotopes refer to specific types of radioactive indium atoms, which are unstable and emit radiation as they decay. Indium is a chemical element with the symbol In and atomic number 49. Its radioisotopes are often used in medical imaging and therapy due to their unique properties.

For instance, one commonly used indium radioisotope is Indium-111 (^111In), which has a half-life of approximately 2.8 days. It emits gamma rays, making it useful for diagnostic imaging techniques such as single-photon emission computed tomography (SPECT). In clinical applications, indium-111 is often attached to specific molecules or antibodies that target particular cells or tissues in the body, allowing medical professionals to monitor biological processes and identify diseases like cancer.

Another example is Indium-113m (^113mIn), which has a half-life of about 99 minutes. It emits low-energy gamma rays and is used as a source for in vivo counting, typically in the form of indium chloride (InCl3) solution. This radioisotope can be used to measure blood flow, ventilation, and other physiological parameters.

It's important to note that handling and using radioisotopes require proper training and safety measures due to their ionizing radiation properties.

Sodium radioisotopes are unstable forms of sodium, an element naturally occurring in the human body, that emit radiation as they decay over time. These isotopes can be used for medical purposes such as imaging and treatment of various diseases. Commonly used sodium radioisotopes include Sodium-22 (^22Na) and Sodium-24 (^24Na).

It's important to note that the use of radioisotopes in medicine should be under the supervision of trained medical professionals, as improper handling or exposure can pose health risks.

Radioactivity is not typically considered within the realm of medical definitions, but since it does have medical applications and implications, here is a brief explanation:

Radioactivity is a natural property of certain elements (referred to as radioisotopes) that emit particles or electromagnetic waves due to changes in their atomic nuclei. This process can occur spontaneously without any external influence, leading to the emission of alpha particles, beta particles, gamma rays, or neutrons. These emissions can penetrate various materials and ionize atoms along their path, which can cause damage to living tissues.

In a medical context, radioactivity is used in both diagnostic and therapeutic settings:

1. Diagnostic applications include imaging techniques such as positron emission tomography (PET) scans and single-photon emission computed tomography (SPECT), where radioisotopes are introduced into the body to visualize organ function or detect diseases like cancer.
2. Therapeutic uses involve targeting radioisotopes directly at cancer cells, either through external beam radiation therapy or internal radiotherapy, such as brachytherapy, where a radioactive source is placed near or within the tumor.

While radioactivity has significant medical benefits, it also poses risks due to ionizing radiation exposure. Proper handling and safety measures are essential when working with radioactive materials to minimize potential harm.

Barium radioisotopes are radioactive forms of the element barium, which are used in medical imaging procedures to help diagnose various conditions. The radioisotopes emit gamma rays that can be detected by external devices, allowing doctors to visualize the inside of the body. Barium sulfate is often used as a contrast agent in X-rays and CT scans, but when combined with a radioisotope such as barium-133, barium-198, or barium-207, it can provide more detailed images of specific organs or systems.

For example, barium sulfate mixed with barium-133 may be used in a lung scan to help diagnose pulmonary embolism or other respiratory conditions. Barium-207 is sometimes used in bone scans to detect fractures, tumors, or infections.

It's important to note that the use of radioisotopes carries some risks, including exposure to radiation and potential allergic reactions to the barium compound. However, these risks are generally considered low compared to the benefits of accurate diagnosis and effective treatment.

Radionuclide imaging, also known as nuclear medicine, is a medical imaging technique that uses small amounts of radioactive material, called radionuclides or radiopharmaceuticals, to diagnose and treat various diseases and conditions. The radionuclides are introduced into the body through injection, inhalation, or ingestion and accumulate in specific organs or tissues. A special camera then detects the gamma rays emitted by these radionuclides and converts them into images that provide information about the structure and function of the organ or tissue being studied.

Radionuclide imaging can be used to evaluate a wide range of medical conditions, including heart disease, cancer, neurological disorders, gastrointestinal disorders, and bone diseases. The technique is non-invasive and generally safe, with minimal exposure to radiation. However, it should only be performed by qualified healthcare professionals in accordance with established guidelines and regulations.

Yttrium radioisotopes are radioactive isotopes or variants of the element Yttrium, which is a rare earth metal. These radioisotopes are artificially produced and have unstable nuclei that emit radiation in the form of gamma rays or high-speed particles. Examples of yttrium radioisotopes include Yttrium-90 and Yttrium-86, which are used in medical applications such as radiotherapy for cancer treatment and molecular imaging for diagnostic purposes.

Yttrium-90 is a pure beta emitter with a half-life of 64.1 hours, making it useful for targeted radionuclide therapy. It can be used to treat liver tumors, leukemia, and lymphoma by attaching it to monoclonal antibodies or other targeting agents that selectively bind to cancer cells.

Yttrium-86 is a positron emitter with a half-life of 14.7 hours, making it useful for positron emission tomography (PET) imaging. It can be used to label radiopharmaceuticals and track their distribution in the body, providing information on the location and extent of disease.

It is important to note that handling and use of radioisotopes require specialized training and equipment due to their potential radiation hazards.

Tin radioisotopes refer to specific variants of the element tin that have unstable nuclei and emit radiation as they decay towards a more stable state. These isotopes are often produced in nuclear reactors or particle accelerators and can be used in a variety of medical applications, such as:

1. Medical Imaging: Tin-117m, for example, is used as a radiopharmaceutical in medical imaging studies to help diagnose various conditions, including bone disorders and liver diseases.
2. Radiation Therapy: Tin-125 can be used in the treatment of certain types of cancer, such as prostate cancer, through brachytherapy - a type of radiation therapy that involves placing a radioactive source directly into or near the tumor.
3. Radioisotope Production: Tin-106 is used as a parent isotope in the production of other medical radioisotopes, such as iodine-125 and gallium-67.

It's important to note that handling and using radioisotopes requires specialized training and equipment due to their potential radiation hazards.

Carbon radioisotopes are radioactive isotopes of carbon, which is an naturally occurring chemical element with the atomic number 6. The most common and stable isotope of carbon is carbon-12 (^12C), but there are also several radioactive isotopes, including carbon-11 (^11C), carbon-14 (^14C), and carbon-13 (^13C). These radioisotopes have different numbers of neutrons in their nuclei, which makes them unstable and causes them to emit radiation.

Carbon-11 has a half-life of about 20 minutes and is used in medical imaging techniques such as positron emission tomography (PET) scans. It is produced by bombarding nitrogen-14 with protons in a cyclotron.

Carbon-14, also known as radiocarbon, has a half-life of about 5730 years and is used in archaeology and geology to date organic materials. It is produced naturally in the atmosphere by cosmic rays.

Carbon-13 is stable and has a natural abundance of about 1.1% in carbon. It is not radioactive, but it can be used as a tracer in medical research and in the study of metabolic processes.

"Iron radioisotopes" refer to specific forms of the element iron that have unstable nuclei and emit radiation. These isotopes are often used in medical imaging and treatment procedures due to their ability to be detected by specialized equipment. Common iron radioisotopes include Iron-52, Iron-55, Iron-59, and Iron-60. They can be used as tracers to study the distribution, metabolism, or excretion of iron in the body, or for targeted radiation therapy in conditions such as cancer.

Copper radioisotopes are radioactive isotopes or variants of the chemical element copper. These isotopes have an unstable nucleus and emit radiation as they decay over time. Copper has several radioisotopes, including copper-64, copper-67, and copper-60, among others. These radioisotopes are used in various medical applications such as diagnostic imaging, therapy, and research. For example, copper-64 is used in positron emission tomography (PET) scans to help diagnose diseases like cancer, while copper-67 is used in targeted radionuclide therapy for cancer treatment. The use of radioisotopes in medicine requires careful handling and regulation due to their radiation hazards.

Beta particles, also known as beta rays, are a type of ionizing radiation that consist of high-energy electrons or positrons emitted from the nucleus of certain radioactive isotopes during their decay process. When a neutron in the nucleus decays into a proton, it results in an excess energy state and one electron is ejected from the atom at high speed. This ejected electron is referred to as a beta particle.

Beta particles can have both positive and negative charges, depending on the type of decay process. Negative beta particles (β−) are equivalent to electrons, while positive beta particles (β+) are equivalent to positrons. They possess kinetic energy that varies in range, with higher energies associated with greater penetrating power.

Beta particles can cause ionization and excitation of atoms and molecules they encounter, leading to chemical reactions and potential damage to living tissues. Therefore, appropriate safety measures must be taken when handling materials that emit beta radiation.

Phosphorus isotopes are different forms of the element phosphorus that have different numbers of neutrons in their atomic nuclei, while the number of protons remains the same. The most common and stable isotope of phosphorus is 31P, which contains 15 protons and 16 neutrons. However, there are also several other isotopes of phosphorus that exist, including 32P and 33P, which are radioactive and have 15 protons and 17 or 18 neutrons, respectively. These radioactive isotopes are often used in medical research and treatment, such as in the form of radiopharmaceuticals to diagnose and treat various diseases.

Technetium is not a medical term itself, but it is a chemical element with the symbol Tc and atomic number 43. However, in the field of nuclear medicine, which is a branch of medicine that uses small amounts of radioactive material to diagnose or treat diseases, Technetium-99m (a radioisotope of technetium) is commonly used for various diagnostic procedures.

Technetium-99m is a metastable nuclear isomer of technetium-99, and it emits gamma rays that can be detected outside the body to create images of internal organs or tissues. It has a short half-life of about 6 hours, which makes it ideal for diagnostic imaging since it decays quickly and reduces the patient's exposure to radiation.

Technetium-99m is used in a variety of medical procedures, such as bone scans, lung scans, heart scans, liver-spleen scans, brain scans, and kidney scans, among others. It can be attached to different pharmaceuticals or molecules that target specific organs or tissues, allowing healthcare professionals to assess their function or identify any abnormalities.

Phosphates, in a medical context, refer to the salts or esters of phosphoric acid. Phosphates play crucial roles in various biological processes within the human body. They are essential components of bones and teeth, where they combine with calcium to form hydroxyapatite crystals. Phosphates also participate in energy transfer reactions as phosphate groups attached to adenosine diphosphate (ADP) and adenosine triphosphate (ATP). Additionally, they contribute to buffer systems that help maintain normal pH levels in the body.

Abnormal levels of phosphates in the blood can indicate certain medical conditions. High phosphate levels (hyperphosphatemia) may be associated with kidney dysfunction, hyperparathyroidism, or excessive intake of phosphate-containing products. Low phosphate levels (hypophosphatemia) might result from malnutrition, vitamin D deficiency, or certain diseases affecting the small intestine or kidneys. Both hypophosphatemia and hyperphosphatemia can have significant impacts on various organ systems and may require medical intervention.

Phosphorus metabolism disorders refer to a group of conditions that affect the body's ability to properly regulate the levels and utilization of phosphorus. Phosphorus is an essential mineral that plays a critical role in many biological processes, including energy production, bone formation, and nerve function.

Disorders of phosphorus metabolism can result from genetic defects, kidney dysfunction, vitamin D deficiency, or other medical conditions. These disorders can lead to abnormal levels of phosphorus in the blood, which can cause a range of symptoms, including muscle weakness, bone pain, seizures, and respiratory failure.

Examples of phosphorus metabolism disorders include:

1. Hypophosphatemia: This is a condition characterized by low levels of phosphorus in the blood. It can be caused by various factors, such as malnutrition, vitamin D deficiency, and kidney dysfunction.
2. Hyperphosphatemia: This is a condition characterized by high levels of phosphorus in the blood. It can be caused by kidney failure, tumor lysis syndrome, and certain medications.
3. Hereditary hypophosphatemic rickets: This is a genetic disorder that affects the body's ability to regulate vitamin D and phosphorus metabolism. It can lead to weakened bones and skeletal deformities.
4. Oncogenic osteomalacia: This is a rare condition that occurs when tumors produce substances that interfere with phosphorus metabolism, leading to bone pain and weakness.

Treatment for phosphorus metabolism disorders depends on the underlying cause of the disorder and may include dietary changes, supplements, medications, or surgery.

Mercury radioisotopes refer to specific variants of the element mercury that have unstable nuclei and emit radiation as they decay towards a more stable state. These isotopes are often produced in nuclear reactors or particle accelerators for various medical, industrial, and research applications. In the medical field, mercury-203 (^203Hg) and mercury-207 (^207Hg) are used as gamma emitters in diagnostic procedures and therapeutic treatments. However, due to environmental and health concerns associated with mercury, its use in medical applications has significantly decreased over time.

Technetium Tc 99m Sulfur Colloid is a radioactive tracer used in medical imaging procedures, specifically in nuclear medicine. It is composed of tiny particles of sulfur colloid that are labeled with the radioisotope Technetium-99m. This compound is typically injected into the patient's body, where it accumulates in certain organs or tissues, depending on the specific medical test being conducted.

The radioactive emissions from Technetium Tc 99m Sulfur Colloid are then detected by a gamma camera, which produces images that can help doctors diagnose various medical conditions, such as liver disease, inflammation, or tumors. The half-life of Technetium-99m is approximately six hours, which means that its radioactivity decreases rapidly and is eliminated from the body within a few days.

Cesium is a chemical element with the atomic number 55 and the symbol Cs. There are several isotopes of cesium, which are variants of the element that have different numbers of neutrons in their nuclei. The most stable and naturally occurring cesium isotope is cesium-133, which has 78 neutrons and a half-life of more than 3 x 10^20 years (effectively stable).

However, there are also radioactive isotopes of cesium, including cesium-134 and cesium-137. Cesium-134 has a half-life of about 2 years, while cesium-137 has a half-life of about 30 years. These isotopes are produced naturally in trace amounts by the decay of uranium and thorium in the Earth's crust, but they can also be produced artificially in nuclear reactors and nuclear weapons tests.

Cesium isotopes are commonly used in medical research and industrial applications. For example, cesium-137 is used as a radiation source in cancer therapy and industrial radiography. However, exposure to high levels of radioactive cesium can be harmful to human health, causing symptoms such as nausea, vomiting, diarrhea, and potentially more serious effects such as damage to the central nervous system and an increased risk of cancer.

Cerium is a naturally occurring element found in the Earth's crust, and it has several radioisotopes, which are radioactive isotopes or forms of cerium. These isotopes have unstable nuclei that emit radiation as they decay into more stable forms. Here are some examples of cerium radioisotopes:

* Cerium-134: This radioisotope has a half-life of about 3.12 days, which means that half of its atoms will decay into other elements in this time period. It decays by emitting beta particles and gamma rays.
* Cerium-137: This is a long-lived radioisotope with a half-life of about 2.5 years. It decays by emitting beta particles and gamma rays, and it can be used in medical imaging and cancer treatment. However, if released into the environment, it can pose a radiation hazard to humans and other organisms.
* Cerium-141: This radioisotope has a half-life of about 32.5 days, and it decays by emitting beta particles and gamma rays. It is produced in nuclear reactors and can be used for research purposes.
* Cerium-144: This radioisotope has a half-life of about 284 days, and it decays by emitting beta particles and gamma rays. It is produced in nuclear reactors and can be used for research purposes.

It's important to note that handling and working with radioisotopes requires proper training and protective measures to ensure safety and prevent radiation exposure.

Cobalt isotopes are variants of the chemical element Cobalt (Co) that have different numbers of neutrons in their atomic nuclei. This results in the different isotopes having slightly different masses and varying levels of stability.

The most naturally occurring stable cobalt isotope is Co-59, which contains 27 neutrons in its nucleus. However, there are also several radioactive isotopes of cobalt, including Co-60, which is a commonly used medical and industrial radioisotope.

Co-60 has 30 neutrons in its nucleus and undergoes beta decay, emitting gamma rays and becoming Nickel-60. It has a half-life of approximately 5.27 years, making it useful for a variety of applications, including cancer treatment, industrial radiography, and sterilization of medical equipment.

Other radioactive isotopes of cobalt include Co-57, which has a half-life of 271.8 days and is used in medical imaging, and Co-56, which has a half-life of just 77.2 seconds and is used in research.

I'm sorry for any confusion, but Hafnium is not a medical term. It is a chemical element with the symbol Hf and atomic number 72. Hafnium is a lustrous, silvery, tetravalent transition metal that chemically resembles zirconium and is found in zirconium minerals.

It has no relevance to medical terminology or healthcare. If you have any questions related to medical definitions or health-related topics, I'd be happy to try to help with those instead!

Isotope labeling is a scientific technique used in the field of medicine, particularly in molecular biology, chemistry, and pharmacology. It involves replacing one or more atoms in a molecule with a radioactive or stable isotope of the same element. This modified molecule can then be traced and analyzed to study its structure, function, metabolism, or interaction with other molecules within biological systems.

Radioisotope labeling uses unstable radioactive isotopes that emit radiation, allowing for detection and quantification of the labeled molecule using various imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT). This approach is particularly useful in tracking the distribution and metabolism of drugs, hormones, or other biomolecules in living organisms.

Stable isotope labeling, on the other hand, employs non-radioactive isotopes that do not emit radiation. These isotopes have different atomic masses compared to their natural counterparts and can be detected using mass spectrometry. Stable isotope labeling is often used in metabolic studies, protein turnover analysis, or for identifying the origin of specific molecules within complex biological samples.

In summary, isotope labeling is a versatile tool in medical research that enables researchers to investigate various aspects of molecular behavior and interactions within biological systems.

Gold radioisotopes are unstable forms of gold that emit radiation as they decay into more stable elements. They are not typically used for medical purposes, but there have been some experimental uses in the treatment of cancer. For example, Gold-198 is a radioisotope that has been used in the brachytherapy (internal radiation therapy) of certain types of tumors. It releases high-energy gamma rays and is often used as a sealed source for the treatment of cancer.

It's important to note that the use of radioisotopes in medicine, including gold radioisotopes, should only be performed under the supervision of trained medical professionals and radiation safety experts due to the potential risks associated with radiation exposure.

Lead radioisotopes refer to specific types of radioactive isotopes (or radionuclides) of the element lead. These isotopes have unstable nuclei and emit radiation as they decay over time, changing into different elements in the process. Examples of lead radioisotopes include lead-210, lead-212, and lead-214. These isotopes are often found in the decay chains of heavier radioactive elements such as uranium and thorium, and they have various applications in fields like nuclear medicine, research, and industrial radiography. However, exposure to high levels of radiation from lead radioisotopes can pose significant health risks, including damage to DNA and increased risk of cancer.

Diagnostic techniques using radioisotopes, also known as nuclear medicine, are medical diagnostic procedures that use small amounts of radioactive material, called radioisotopes or radionuclides, to diagnose and monitor various diseases and conditions. The radioisotopes are introduced into the body through different routes (such as injection, inhalation, or ingestion) and accumulate in specific organs or tissues.

The gamma rays or photons emitted by these radioisotopes are then detected by specialized imaging devices, such as gamma cameras or PET scanners, which generate images that provide information about the structure and function of the organ or tissue being examined. This information helps healthcare professionals to make accurate diagnoses, monitor disease progression, assess treatment response, and plan appropriate therapies.

Common diagnostic techniques using radioisotopes include:

1. Radionuclide imaging (also known as scintigraphy): A gamma camera is used to produce images of specific organs or tissues after the administration of a radioisotope. Examples include bone scans, lung scans, heart scans, and brain scans.
2. Positron emission tomography (PET) scans: A PET scanner detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide, such as fluorodeoxyglucose (FDG), which is often used in oncology to assess metabolic activity and identify cancerous lesions.
3. Single-photon emission computed tomography (SPECT): A specialized gamma camera rotates around the patient, acquiring multiple images from different angles that are then reconstructed into a 3D image, providing detailed information about organ function and structure.

Diagnostic techniques using radioisotopes offer several advantages, including high sensitivity, non-invasiveness, and the ability to assess both anatomical and functional aspects of organs and tissues. However, they also involve exposure to ionizing radiation, so their use should be balanced against potential risks and benefits, and alternative diagnostic methods should be considered when appropriate.

Zinc isotopes refer to variants of the chemical element zinc, each with a different number of neutrons in their atomic nucleus. Zinc has five stable isotopes: zinc-64, zinc-66, zinc-67, zinc-68, and zinc-70. These isotopes have naturally occurring abundances that vary, with zinc-64 being the most abundant at approximately 48.6%.

Additionally, there are also several radioactive isotopes of zinc, including zinc-65, zinc-71, and zinc-72, among others. These isotopes have unstable nuclei that decay over time, emitting radiation in the process. They are not found naturally on Earth and must be produced artificially through nuclear reactions.

Medical Definition: Zinc isotopes refer to variants of the chemical element zinc with different numbers of neutrons in their atomic nucleus, including stable isotopes such as zinc-64, zinc-66, zinc-67, zinc-68, and zinc-70, and radioactive isotopes such as zinc-65, zinc-71, and zinc-72.

Sulfur radioisotopes are unstable forms of the element sulfur that emit radiation as they decay into more stable forms. These isotopes can be used in medical imaging and treatment, such as in the detection and treatment of certain cancers. Common sulfur radioisotopes used in medicine include sulfur-35 and sulfur-32. Sulfur-35 is used in research and diagnostic applications, while sulfur-32 is used in brachytherapy, a type of internal radiation therapy. It's important to note that handling and usage of radioisotopes should be done by trained professionals due to the potential radiation hazards they pose.

6-Phytase is an enzyme that catalyzes the hydrolysis of phytic acid (myo-inositol hexakisphosphate), a major storage form of phosphorus in plants, into inorganic phosphate and lower molecular weight myo-inositol phosphates. This enzymatic reaction releases phosphate and micronutrients, making them more available for absorption in the gastrointestinal tract of monogastric animals, such as pigs, poultry, and fish. The "6" in 6-Phytase refers to the position of the phosphate group that is cleaved from the myo-inositol ring. This enzyme has significant applications in animal nutrition and feed industry to improve nutrient utilization and reduce phosphorus pollution in the environment.

Cadmium radioisotopes are unstable forms of the heavy metal cadmium that emit radiation as they decay into more stable elements. These isotopes can be created through various nuclear reactions, such as bombarding a cadmium atom with a high-energy particle. Some common cadmium radioisotopes include cadmium-109, cadmium-113, and cadmium-115.

These radioisotopes have a wide range of applications in medicine, particularly in diagnostic imaging and radiation therapy. For example, cadmium-109 is used as a gamma ray source for medical imaging, while cadmium-115 has been studied as a potential therapeutic agent for cancer treatment.

However, exposure to cadmium radioisotopes can also be hazardous to human health, as they can cause damage to tissues and organs through ionizing radiation. Therefore, handling and disposal of these materials must be done with care and in accordance with established safety protocols.

Astatine is a naturally occurring, radioactive, semi-metallic chemical element with the symbol At and atomic number 85. It is the rarest naturally occurring element in the Earth's crust, and the heaviest of the halogens. Astatine is not found free in nature, but is always found in combination with other elements, such as uranium and thorium.

Astatine is a highly reactive element that exists in several allotropic forms and is characterized by its metallic appearance and chemical properties similar to those of iodine. It has a short half-life, ranging from a few hours to a few days, depending on the isotope, and emits alpha, beta, and gamma radiation.

Due to its rarity, radioactivity, and short half-life, astatine has limited practical applications. However, it has been studied for potential use in medical imaging and cancer therapy due to its ability to selectively accumulate in tumors.

Parathyroid hormone (PTH) is a polypeptide hormone that plays a crucial role in the regulation of calcium and phosphate levels in the body. It is produced and secreted by the parathyroid glands, which are four small endocrine glands located on the back surface of the thyroid gland.

The primary function of PTH is to maintain normal calcium levels in the blood by increasing calcium absorption from the gut, mobilizing calcium from bones, and decreasing calcium excretion by the kidneys. PTH also increases phosphate excretion by the kidneys, which helps to lower serum phosphate levels.

In addition to its role in calcium and phosphate homeostasis, PTH has been shown to have anabolic effects on bone tissue, stimulating bone formation and preventing bone loss. However, chronic elevations in PTH levels can lead to excessive bone resorption and osteoporosis.

Overall, Parathyroid Hormone is a critical hormone that helps maintain mineral homeostasis and supports healthy bone metabolism.

In the context of nutrition and health, minerals are inorganic elements that are essential for various bodily functions, such as nerve impulse transmission, muscle contraction, maintaining fluid and electrolyte balance, and bone structure. They are required in small amounts compared to macronutrients (carbohydrates, proteins, and fats) and are obtained from food and water.

Some of the major minerals include calcium, phosphorus, magnesium, sodium, potassium, and chloride, while trace minerals or microminerals are required in even smaller amounts and include iron, zinc, copper, manganese, iodine, selenium, and fluoride.

It's worth noting that the term "minerals" can also refer to geological substances found in the earth, but in medical terminology, it specifically refers to the essential inorganic elements required for human health.

Radioimmunotherapy (RIT) is a medical treatment that combines the specificity of antibodies and the therapeutic effects of radiation to target and destroy cancer cells. It involves the use of radioactive isotopes, which are attached to monoclonal antibodies, that recognize and bind to antigens expressed on the surface of cancer cells. Once bound, the radioactivity emitted from the isotope irradiates the cancer cells, causing damage to their DNA and leading to cell death. This targeted approach helps minimize radiation exposure to healthy tissues and reduces side effects compared to conventional radiotherapy techniques. RIT has been used in the treatment of various hematological malignancies, such as non-Hodgkin lymphoma, and is being investigated for solid tumors as well.

Hyperphosphatemia is a medical condition characterized by an excessively high level of phosphate (a form of the chemical element phosphorus) in the blood. Phosphate is an important component of various biological molecules, such as DNA, RNA, and ATP, and it plays a crucial role in many cellular processes, including energy metabolism and signal transduction.

In healthy individuals, the concentration of phosphate in the blood is tightly regulated within a narrow range to maintain normal physiological functions. However, when the phosphate level rises above this range (typically defined as a serum phosphate level greater than 4.5 mg/dL or 1.46 mmol/L), it can lead to hyperphosphatemia.

Hyperphosphatemia can result from various underlying medical conditions, including:

* Kidney dysfunction: The kidneys are responsible for filtering excess phosphate out of the blood and excreting it in the urine. When the kidneys fail to function properly, they may be unable to remove enough phosphate, leading to its accumulation in the blood.
* Hypoparathyroidism: The parathyroid glands produce a hormone called parathyroid hormone (PTH), which helps regulate calcium and phosphate levels in the body. In hypoparathyroidism, the production of PTH is insufficient, leading to an increase in phosphate levels.
* Hyperparathyroidism: In contrast, excessive production of PTH can also lead to hyperphosphatemia by increasing the release of phosphate from bones and decreasing its reabsorption in the kidneys.
* Excessive intake of phosphate-rich foods or supplements: Consuming large amounts of phosphate-rich foods, such as dairy products, nuts, and legumes, or taking phosphate supplements can raise blood phosphate levels.
* Tumor lysis syndrome: This is a complication that can occur after the treatment of certain types of cancer, particularly hematological malignancies. The rapid destruction of cancer cells releases large amounts of intracellular contents, including phosphate, into the bloodstream, leading to hyperphosphatemia.
* Rhabdomyolysis: This is a condition in which muscle tissue breaks down, releasing its contents, including phosphate, into the bloodstream. It can be caused by various factors, such as trauma, infection, or drug toxicity.

Hyperphosphatemia can have several adverse effects on the body, including calcification of soft tissues, kidney damage, and metabolic disturbances. Therefore, it is essential to diagnose and manage hyperphosphatemia promptly to prevent complications. Treatment options may include dietary modifications, medications that bind phosphate in the gastrointestinal tract, and dialysis in severe cases.

Lutetium is a chemical element with the symbol Lu and atomic number 71. It is a rare earth metal that belongs to the lanthanide series. In its pure form, lutetium is a silvery-white metal that is solid at room temperature.

Medically, lutetium is used in the form of radioactive isotopes for diagnostic and therapeutic purposes. For example, lutetium-177 (^177Lu) is a radiopharmaceutical agent that can be used to treat certain types of cancer, such as neuroendocrine tumors. The radioactivity of ^177Lu can be harnessed to destroy cancer cells while minimizing damage to healthy tissue.

It's important to note that the use of lutetium in medical treatments should only be performed under the supervision of trained medical professionals, and with appropriate safety measures in place to protect patients and healthcare workers from radiation exposure.

I'm sorry for any confusion, but "Rhenium" is not a medical term. It is a chemical element with the symbol "Re" and atomic number 75. Rhenium is a heavy, silvery-white, metallic element that is highly resistant to corrosion and is used in high-temperature alloys and electronics.

It does not have any direct medical relevance or application as a drug, treatment, or diagnostic tool in human medicine. However, like many other elements, rhenium compounds are being studied for their potential medicinal uses, such as in cancer therapy. But it's important to note that these are still in the research phase and have not yet been approved for use in humans.

Samarium is not a medical term itself, but it is a chemical element with the symbol Sm and atomic number 62. It is a silvery-white metallic element that belongs to the lanthanide series in the periodic table.

However, samarium-153 (Sm-153) is a radioactive isotope of samarium that has medical applications. It is used as a therapeutic agent for the treatment of painful bone metastases, particularly in patients with prostate or breast cancer. Sm-153 is combined with a chelating agent to form a complex that can be injected into the patient's bloodstream. The chelating agent helps to ensure that the samarium is distributed throughout the body and is not taken up by healthy tissues. Once inside the body, Sm-153 emits beta particles, which can destroy cancer cells in the bones and relieve pain.

Therefore, while samarium is not a medical term itself, it does have medical applications as a therapeutic agent for the treatment of bone metastases.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Radiopharmaceuticals are defined as pharmaceutical preparations that contain radioactive isotopes and are used for diagnosis or therapy in nuclear medicine. These compounds are designed to interact specifically with certain biological targets, such as cells, tissues, or organs, and emit radiation that can be detected and measured to provide diagnostic information or used to destroy abnormal cells or tissue in therapeutic applications.

The radioactive isotopes used in radiopharmaceuticals have carefully controlled half-lives, which determine how long they remain radioactive and how long the pharmaceutical preparation remains effective. The choice of radioisotope depends on the intended use of the radiopharmaceutical, as well as factors such as its energy, range of emission, and chemical properties.

Radiopharmaceuticals are used in a wide range of medical applications, including imaging, cancer therapy, and treatment of other diseases and conditions. Examples of radiopharmaceuticals include technetium-99m for imaging the heart, lungs, and bones; iodine-131 for treating thyroid cancer; and samarium-153 for palliative treatment of bone metastases.

The use of radiopharmaceuticals requires specialized training and expertise in nuclear medicine, as well as strict adherence to safety protocols to minimize radiation exposure to patients and healthcare workers.

Radioactive soil pollutants refer to radioactive substances that contaminate and negatively impact the chemical, physical, and biological properties of soil. These pollutants can arise from various sources such as nuclear accidents, industrial activities, agricultural practices, and military testing. They include radionuclides such as uranium, plutonium, cesium-137, and strontium-90, among others.

Exposure to radioactive soil pollutants can have serious health consequences for humans and other living organisms. Direct contact with contaminated soil can result in radiation exposure, while ingestion or inhalation of contaminated soil particles can lead to internal radiation exposure. This can increase the risk of cancer, genetic mutations, and other health problems.

Radioactive soil pollutants can also have negative impacts on the environment, such as reducing soil fertility, disrupting ecosystems, and contaminating water sources. Therefore, it is essential to monitor and regulate radioactive soil pollution to protect human health and the environment.

Dietary calcium is a type of calcium that is obtained through food sources. Calcium is an essential mineral that is necessary for many bodily functions, including bone formation and maintenance, muscle contraction, nerve impulse transmission, and blood clotting.

The recommended daily intake of dietary calcium varies depending on age, sex, and other factors. For example, the recommended daily intake for adults aged 19-50 is 1000 mg, while women over 50 and men over 70 require 1200 mg per day.

Good dietary sources of calcium include dairy products such as milk, cheese, and yogurt; leafy green vegetables like broccoli and kale; fortified cereals and juices; and certain types of fish, such as salmon and sardines. It is important to note that some foods can inhibit the absorption of calcium, including oxalates found in spinach and rhubarb, and phytates found in whole grains and legumes.

If a person is unable to get enough calcium through their diet, they may need to take calcium supplements. However, it is important to talk to a healthcare provider before starting any new supplement regimen, as excessive intake of calcium can lead to negative health effects.

Nitrogen is not typically referred to as a medical term, but it is an element that is crucial to medicine and human life.

In a medical context, nitrogen is often mentioned in relation to gas analysis, respiratory therapy, or medical gases. Nitrogen (N) is a colorless, odorless, and nonreactive gas that makes up about 78% of the Earth's atmosphere. It is an essential element for various biological processes, such as the growth and maintenance of organisms, because it is a key component of amino acids, nucleic acids, and other organic compounds.

In some medical applications, nitrogen is used to displace oxygen in a mixture to create a controlled environment with reduced oxygen levels (hypoxic conditions) for therapeutic purposes, such as in certain types of hyperbaric chambers. Additionally, nitrogen gas is sometimes used in cryotherapy, where extremely low temperatures are applied to tissues to reduce pain, swelling, and inflammation.

However, it's important to note that breathing pure nitrogen can be dangerous, as it can lead to unconsciousness and even death due to lack of oxygen (asphyxiation) within minutes.

Bromine radioisotopes are unstable forms of the element bromine that emit radiation as they decay into more stable forms. These isotopes can be used in various medical applications, such as diagnostic imaging and cancer treatment. Some commonly used bromine radioisotopes include Bromine-75, Bromine-76, and Bromine-77.

Bromine-75 is a positron-emitting radionuclide that can be used in positron emission tomography (PET) scans to image and diagnose various diseases, including cancer. It has a half-life of about 97 minutes.

Bromine-76 is also a positron-emitting radionuclide with a longer half-life of approximately 16.2 hours. It can be used in PET imaging to study the pharmacokinetics and metabolism of drugs, as well as for tumor imaging.

Bromine-77 is a gamma-emitting radionuclide with a half-life of about 57 hours. It can be used in various medical applications, such as in the labeling of antibodies and other biomolecules for diagnostic purposes.

It's important to note that handling and using radioisotopes require specialized training and equipment due to their potential radiation hazards.

Scintillation counting is a method used in medical physics and nuclear medicine to detect and quantify radioactivity. It relies on the principle that certain materials, known as scintillators, emit light flashes (scintillations) when they absorb ionizing radiation. This light can then be detected and measured to determine the amount of radiation present.

In a scintillation counting system, the sample containing radioisotopes is placed in close proximity to the scintillator. When radiation is emitted from the sample, it interacts with the scintillator material, causing it to emit light. This light is then detected by a photomultiplier tube (PMT), which converts the light into an electrical signal that can be processed and counted by electronic circuits.

The number of counts recorded over a specific period of time is proportional to the amount of radiation emitted by the sample, allowing for the quantification of radioactivity. Scintillation counting is widely used in various applications such as measuring radioactive decay rates, monitoring environmental radiation levels, and analyzing radioisotopes in biological samples.

A subdural effusion is an abnormal accumulation of fluid in the potential space between the dura mater (the outermost layer of the meninges that covers the brain and spinal cord) and the arachnoid membrane (one of the three layers of the meninges that surround the brain and spinal cord) in the subdural space.

Subdural effusions can occur due to various reasons, including head trauma, infection, or complications from neurosurgical procedures. The fluid accumulation may result from bleeding (subdural hematoma), inflammation, or increased cerebrospinal fluid pressure. Depending on the underlying cause and the amount of fluid accumulated, subdural effusions can cause various symptoms, such as headaches, altered mental status, or neurological deficits.

Subdural effusions are often asymptomatic and may resolve independently; however, in some cases, medical intervention might be necessary to alleviate the pressure on the brain or address the underlying condition. Imaging techniques like computed tomography (CT) or magnetic resonance imaging (MRI) scans are typically used to diagnose and monitor subdural effusions.

Calcium isotopes refer to variants of the chemical element calcium (ca) that have different numbers of neutrons in their atomic nuclei, and therefore differ in their atomic masses while having the same number of protons. The most common and stable calcium isotope is Calcium-40, which contains 20 protons and 20 neutrons. However, calcium has several other isotopes, including Calcium-42, Calcium-43, Calcium-44, and Calcium-46 to -52, each with different numbers of neutrons. Some of these isotopes are radioactive and decay over time. The relative abundances of calcium isotopes can vary in different environments and can provide information about geological and biological processes.

Radioactive waste is defined in the medical context as any material that contains radioactive nuclides in sufficient concentrations or for such durations that it is considered a threat to human health and the environment. It includes materials ranging from used hospital supplies, equipment, and substances contaminated with radionuclides, to liquids and gases released during the reprocessing of spent nuclear fuel.

Radioactive waste can be classified into two main categories:

1. Exempt waste: Waste that does not require long-term management as a radioactive waste due to its low activity and short half-life.
2. Radioactive waste: Waste that requires long-term management as a radioactive waste due to its higher activity or longer half-life, which can pose a threat to human health and the environment for many years.

Radioactive waste management is a critical aspect of nuclear medicine and radiation safety, with regulations in place to ensure proper handling, storage, transportation, and disposal of such materials.

Radio-iodinated serum albumin refers to human serum albumin that has been chemically bonded with radioactive iodine isotopes, typically I-125 or I-131. This results in a radiolabeled protein that can be used in medical imaging and research to track the distribution and movement of the protein in the body.

In human physiology, serum albumin is the most abundant protein in plasma, synthesized by the liver, and it plays a crucial role in maintaining oncotic pressure and transporting various molecules in the bloodstream. Radio-iodination of serum albumin allows for non-invasive monitoring of its behavior in vivo, which can be useful in evaluating conditions such as protein losing enteropathies, nephrotic syndrome, or liver dysfunction.

It is essential to handle and dispose of radio-iodinated serum albumin with proper radiation safety protocols due to its radioactive nature.

Ruthenium radioisotopes refer to unstable isotopes of the element ruthenium, which decays or disintegrates spontaneously emitting radiation. Ruthenium is a rare transition metal with the atomic number 44 and has several radioisotopes, including ruthenium-97, ruthenium-103, ruthenium-105, and ruthenium-106. These radioisotopes have medical applications in diagnostic imaging, radiation therapy, and brachytherapy (a type of internal radiation therapy).

For instance, ruthenium-106 is used as a radiation source in ophthalmic treatments for conditions such as neovascular age-related macular degeneration and diabetic retinopathy. Ruthenium-103 is also used in brachytherapy seeds for the treatment of prostate cancer.

It's important to note that handling and using radioisotopes require specialized training, equipment, and safety measures due to their radiation hazards.

Radiometric dating is a method used to determine the age of objects, including rocks and other fossilized materials, based on the decay rates of radioactive isotopes. This technique relies on the fact that certain elements, such as carbon-14, potassium-40, and uranium-238, are unstable and gradually decay into different elements over time.

By measuring the ratio of the remaining radioactive isotope to the stable end product, scientists can calculate the age of a sample using the following formula:

age = (ln(Nf/N0)) / λ

where Nf is the number of atoms of the decayed isotope, N0 is the initial number of atoms of the radioactive isotope, and λ is the decay constant.

Radiometric dating has been used to date objects ranging from a few thousand years old to billions of years old, making it an essential tool for archaeologists, geologists, and other scientists who study the history of our planet.

In the context of medical research, "methods" refers to the specific procedures or techniques used in conducting a study or experiment. This includes details on how data was collected, what measurements were taken, and what statistical analyses were performed. The methods section of a medical paper allows other researchers to replicate the study if they choose to do so. It is considered one of the key components of a well-written research article, as it provides transparency and helps establish the validity of the findings.

Selenium radioisotopes are unstable forms of the element selenium that emit radiation as they decay into more stable forms. These isotopes can be produced through various nuclear reactions, such as irradiating a stable selenium target with protons or alpha particles. Some examples of selenium radioisotopes include selenium-75, selenium-79, and selenium-81.

Selenium-75 is commonly used in medical imaging to study the function of the thyroid gland, as it accumulates in this gland and can be detected using a gamma camera. Selenium-79 and selenium-81 have potential uses in cancer treatment, as they can be incorporated into compounds that selectively target and destroy cancer cells. However, more research is needed to fully understand the potential benefits and risks of using these radioisotopes in medical treatments.

It's important to note that handling and using radioisotopes requires special training and precautions, as they can be dangerous if not handled properly. Exposure to radiation from radioisotopes can increase the risk of cancer and other health problems, so it's essential to use them only under controlled conditions and with appropriate safety measures in place.

Alpha particles are a type of radiation that consist of two protons and two neutrons. They are essentially the nuclei of helium atoms and are produced during the decay of radioactive isotopes, such as uranium or radon. When an alpha particle is emitted from a radioactive atom, it carries away energy and causes the atom to transform into a different element with a lower atomic number and mass number.

Alpha particles have a positive charge and are relatively massive compared to other types of radiation, such as beta particles (which are high-energy electrons) or gamma rays (which are high-energy photons). Because of their charge and mass, alpha particles can cause significant ionization and damage to biological tissue. However, they have a limited range in air and cannot penetrate the outer layers of human skin, making them generally less hazardous than other forms of radiation if exposure is external.

Internal exposure to alpha-emitting radionuclides, however, can be much more dangerous because alpha particles can cause significant damage to cells and DNA when they are emitted inside the body. This is why inhaling or ingesting radioactive materials that emit alpha particles can pose a serious health risk.

In medicine, "absorption" refers to the process by which substances, including nutrients, medications, or toxins, are taken up and assimilated into the body's tissues or bloodstream after they have been introduced into the body via various routes (such as oral, intravenous, or transdermal).

The absorption of a substance depends on several factors, including its chemical properties, the route of administration, and the presence of other substances that may affect its uptake. For example, some medications may be better absorbed when taken with food, while others may require an empty stomach for optimal absorption.

Once a substance is absorbed into the bloodstream, it can then be distributed to various tissues throughout the body, where it may exert its effects or be metabolized and eliminated by the body's detoxification systems. Understanding the process of absorption is crucial in developing effective medical treatments and determining appropriate dosages for medications.

"Bone" is the hard, dense connective tissue that makes up the skeleton of vertebrate animals. It provides support and protection for the body's internal organs, and serves as a attachment site for muscles, tendons, and ligaments. Bone is composed of cells called osteoblasts and osteoclasts, which are responsible for bone formation and resorption, respectively, and an extracellular matrix made up of collagen fibers and mineral crystals.

Bones can be classified into two main types: compact bone and spongy bone. Compact bone is dense and hard, and makes up the outer layer of all bones and the shafts of long bones. Spongy bone is less dense and contains large spaces, and makes up the ends of long bones and the interior of flat and irregular bones.

The human body has 206 bones in total. They can be further classified into five categories based on their shape: long bones, short bones, flat bones, irregular bones, and sesamoid bones.

Intestinal absorption refers to the process by which the small intestine absorbs water, nutrients, and electrolytes from food into the bloodstream. This is a critical part of the digestive process, allowing the body to utilize the nutrients it needs and eliminate waste products. The inner wall of the small intestine contains tiny finger-like projections called villi, which increase the surface area for absorption. Nutrients are absorbed into the bloodstream through the walls of the capillaries in these villi, and then transported to other parts of the body for use or storage.

Eutrophication is the process of excessive nutrient enrichment in bodies of water, which can lead to a rapid growth of aquatic plants and algae. This overgrowth can result in decreased levels of oxygen in the water, harming or even killing fish and other aquatic life. The primary cause of eutrophication is the addition of nutrients, particularly nitrogen and phosphorus, from human activities such as agricultural runoff, sewage and wastewater discharge, and air pollution.

In advanced stages, eutrophication can lead to a shift in the dominant species in the aquatic ecosystem, favoring those that are better adapted to the high-nutrient conditions. This can result in a loss of biodiversity and changes in water quality, making it difficult for many organisms to survive.

Eutrophication is a significant global environmental problem, affecting both freshwater and marine ecosystems. It can lead to harmful algal blooms (HABs), which can produce toxins that are dangerous to humans and animals. In addition, eutrophication can impact water use for drinking, irrigation, recreation, and industry, making it a critical issue for public health and economic development.

Heterocyclic compounds are organic molecules that contain a ring structure made up of at least one atom that is not carbon, known as a heteroatom. These heteroatoms can include nitrogen, oxygen, sulfur, or other elements. In the case of "1-ring" heterocyclic compounds, the molecule contains a single ring structure composed of these heteroatoms and carbon atoms. Examples of 1-ring heterocyclic compounds include pyridine (contains one nitrogen atom in the ring), furan (contains one oxygen atom in the ring), and thiophene (contains one sulfur atom in the ring). These compounds play important roles in various biological processes and are also found in many drugs, dyes, and materials.

Sodium Pertechnetate Tc 99m is a radioactive pharmaceutical preparation used in medical diagnostic imaging. It is a technetium-99m radiopharmaceutical, where technetium-99m is a metastable nuclear isomer of technetium-99, which emits gamma rays and has a half-life of 6 hours. Sodium Pertechnetate Tc 99m is used as a contrast agent in various diagnostic procedures, such as imaging of the thyroid, salivary glands, or the brain, to evaluate conditions like inflammation, tumors, or abnormalities in blood flow. It is typically administered intravenously, and its short half-life ensures that the radiation exposure is limited.

I'm sorry for any confusion, but 'Tungsten' is not a medical term. It is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth, and it has many industrial uses due to its hardness, high density, and high melting point.

In the context of medicine or healthcare, tungsten may be encountered in certain medical devices, such as X-ray tubes and electrodes, where its properties are utilized for their durability and heat resistance. However, it is not a term that would typically have a formal medical definition.

Tissue distribution, in the context of pharmacology and toxicology, refers to the way that a drug or xenobiotic (a chemical substance found within an organism that is not naturally produced by or expected to be present within that organism) is distributed throughout the body's tissues after administration. It describes how much of the drug or xenobiotic can be found in various tissues and organs, and is influenced by factors such as blood flow, lipid solubility, protein binding, and the permeability of cell membranes. Understanding tissue distribution is important for predicting the potential effects of a drug or toxin on different parts of the body, and for designing drugs with improved safety and efficacy profiles.

Isotopes are variants of a chemical element that have the same number of protons in their atomic nucleus, but a different number of neutrons. This means they have different atomic masses, but share similar chemical properties. Some isotopes are stable and do not decay naturally, while others are unstable and radioactive, undergoing radioactive decay and emitting radiation in the process. These radioisotopes are often used in medical imaging and treatment procedures.

Radioisotope teletherapy is a type of cancer treatment that uses high-energy radiation from a radioisotope to destroy cancer cells. In this procedure, the radioisotope is placed outside the body and aimed at the tumor site, rather than being inserted into the body like in brachytherapy. The radiation travels through space and penetrates the tissue to reach the tumor, where it damages the DNA of cancer cells and inhibits their ability to divide and grow. This type of radiotherapy is often used for larger or more difficult-to-reach tumors, as well as for palliative care in advanced stages of cancer. Examples of radioisotopes commonly used in teletherapy include cobalt-60 and cesium-137.

Pentetic Acid, also known as DTPA (Diethylenetriaminepentaacetic acid), is not a medication itself but a chelating agent used in the preparation of pharmaceutical products. A chelating agent is a compound that can form multiple bonds with metal ions, allowing them to be excreted from the body.

Pentetic Acid is used in medical treatments to remove or decrease the levels of certain toxic metals, such as lead, plutonium, americium, and curium, from the body. It can be given intravenously or orally, depending on the specific situation and the formulation of the medication.

It is important to note that the use of Pentetic Acid should be under the supervision of a healthcare professional, as it can also bind to essential metals like zinc, calcium, and iron, which can lead to deficiencies if not properly managed.

Gamma spectrometry is a type of spectrometry used to identify and measure the energy and intensity of gamma rays emitted by radioactive materials. It utilizes a device called a gamma spectrometer, which typically consists of a scintillation detector or semiconductor detector, coupled with electronic circuitry that records and analyzes the energy of each detected gamma ray.

Gamma rays are a form of ionizing radiation, characterized by their high energy and short wavelength. When they interact with matter, such as the detector in a gamma spectrometer, they can cause the ejection of electrons from atoms or molecules, leading to the creation of charged particles that can be detected and measured.

In gamma spectrometry, the energy of each detected gamma ray is used to identify the radioactive isotope that emitted it, based on the characteristic energy levels associated with different isotopes. The intensity of the gamma rays can also be measured, providing information about the quantity or activity of the radioactive material present.

Gamma spectrometry has a wide range of applications in fields such as nuclear medicine, radiation protection, environmental monitoring, and nuclear non-proliferation.

Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material, called radiopharmaceuticals, to diagnose and treat various diseases. The radiopharmaceuticals are taken internally, usually through injection or oral administration, and accumulate in specific organs or tissues. A special camera then detects the radiation emitted by these substances, which helps create detailed images of the body's internal structures and functions.

The images produced in nuclear medicine can help doctors identify abnormalities such as tumors, fractures, infection, or inflammation. Additionally, some radiopharmaceuticals can be used to treat certain conditions, like hyperthyroidism or cancer, by delivering targeted doses of radiation directly to the affected area. Overall, nuclear medicine provides valuable information for the diagnosis, treatment planning, and monitoring of many medical conditions.

Technetium Tc 99m Pentetate is a radioactive pharmaceutical preparation used as a radiopharmaceutical agent in medical imaging. It is a salt of technetium-99m, a metastable nuclear isomer of technetium-99, which emits gamma rays and has a half-life of 6 hours.

Technetium Tc 99m Pentetate is used in various diagnostic procedures, including renal imaging, brain scans, lung perfusion studies, and bone scans. It is distributed throughout the body after intravenous injection and is excreted primarily by the kidneys, making it useful for evaluating renal function and detecting abnormalities in the urinary tract.

The compound itself is a colorless, sterile, pyrogen-free solution that is typically supplied in a lead shielded container to protect against radiation exposure. It should be used promptly after preparation and handled with care to minimize radiation exposure to healthcare workers and patients.

I'm sorry for any confusion, but "soil" is not a term that has a medical definition. Soil is defined as the top layer of earth in which plants grow, a mixture of organic material, clay, sand, and silt. If you have any questions related to medicine or health, I would be happy to try to help answer them for you.

Phytic acid, also known as phytate in its salt form, is a natural substance found in plant-based foods such as grains, legumes, nuts, and seeds. It's a storage form of phosphorus for the plant and is often referred to as an "anti-nutrient" because it can bind to certain minerals like calcium, iron, magnesium, and zinc in the gastrointestinal tract and prevent their absorption. This can potentially lead to mineral deficiencies if a diet is consistently high in phytic acid-rich foods and low in mineral-rich foods. However, it's important to note that phytic acid also has antioxidant properties and may have health benefits when consumed as part of a balanced diet.

The bioavailability of minerals from phytic acid-rich foods can be improved through various methods such as soaking, sprouting, fermenting, or cooking, which can help break down some of the phytic acid and release the bound minerals.

Radiometry is the measurement of electromagnetic radiation, including visible light. It quantifies the amount and characteristics of radiant energy in terms of power or intensity, wavelength, direction, and polarization. In medical physics, radiometry is often used to measure therapeutic and diagnostic radiation beams used in various imaging techniques and cancer treatments such as X-rays, gamma rays, and ultraviolet or infrared light. Radiometric measurements are essential for ensuring the safe and effective use of these medical technologies.

Hypophosphatemia is a medical condition characterized by abnormally low levels of phosphate (phosphorus) in the blood, specifically below 2.5 mg/dL. Phosphate is an essential electrolyte that plays a crucial role in various bodily functions such as energy production, bone formation, and maintaining acid-base balance.

Hypophosphatemia can result from several factors, including malnutrition, vitamin D deficiency, alcoholism, hormonal imbalances, and certain medications. Symptoms of hypophosphatemia may include muscle weakness, fatigue, bone pain, confusion, and respiratory failure in severe cases. Treatment typically involves correcting the underlying cause and administering phosphate supplements to restore normal levels.

Rosaniline dyes are a type of basic dye that were first synthesized in the late 19th century. They are named after rosaniline, which is a primary chemical used in their production. Rosaniline dyes are characterized by their ability to form complexes with metal ions, which can then bind to proteins and other biological molecules. This property makes them useful as histological stains, which are used to highlight specific structures or features within tissues and cells.

Rosaniline dyes include a range of different chemicals, such as methyl violet, crystal violet, and basic fuchsin. These dyes are often used in combination with other staining techniques to provide contrast and enhance the visibility of specific cellular components. For example, they may be used to stain nuclei, cytoplasm, or other structures within cells, allowing researchers and clinicians to visualize and analyze tissue samples more effectively.

It's worth noting that some rosaniline dyes have been found to have potential health hazards, particularly when used in certain forms or concentrations. Therefore, it's important to follow proper safety protocols when handling these chemicals and to use them only under the guidance of trained professionals.

Tritium is not a medical term, but it is a term used in the field of nuclear physics and chemistry. Tritium (symbol: T or 3H) is a radioactive isotope of hydrogen with two neutrons and one proton in its nucleus. It is also known as heavy hydrogen or superheavy hydrogen.

Tritium has a half-life of about 12.3 years, which means that it decays by emitting a low-energy beta particle (an electron) to become helium-3. Due to its radioactive nature and relatively short half-life, tritium is used in various applications, including nuclear weapons, fusion reactors, luminous paints, and medical research.

In the context of medicine, tritium may be used as a radioactive tracer in some scientific studies or medical research, but it is not a term commonly used to describe a medical condition or treatment.

Carbon isotopes are variants of the chemical element carbon that have different numbers of neutrons in their atomic nuclei. The most common and stable isotope of carbon is carbon-12 (^{12}C), which contains six protons and six neutrons. However, carbon can also come in other forms, known as isotopes, which contain different numbers of neutrons.

Carbon-13 (^{13}C) is a stable isotope of carbon that contains seven neutrons in its nucleus. It makes up about 1.1% of all carbon found on Earth and is used in various scientific applications, such as in tracing the metabolic pathways of organisms or in studying the age of fossilized materials.

Carbon-14 (^{14}C), also known as radiocarbon, is a radioactive isotope of carbon that contains eight neutrons in its nucleus. It is produced naturally in the atmosphere through the interaction of cosmic rays with nitrogen gas. Carbon-14 has a half-life of about 5,730 years, which makes it useful for dating organic materials, such as archaeological artifacts or fossils, up to around 60,000 years old.

Carbon isotopes are important in many scientific fields, including geology, biology, and medicine, and are used in a variety of applications, from studying the Earth's climate history to diagnosing medical conditions.

"Nostoc commune" is not a medical term, but a scientific name for a type of cyanobacteria (blue-green algae). It's commonly found in various environments such as freshwater, soil, and on rocks. This organism can form colonies that appear as slimy, dark green or black mats.

While not a direct medical term, certain species of cyanobacteria, including Nostoc commune, can produce toxins that may pose health risks to humans and animals if ingested, inhaled, or contact skin. These toxins can cause various symptoms, such as rashes, nausea, vomiting, diarrhea, and liver damage. However, not all strains of Nostoc commune produce toxins, and the health risks associated with this specific species are relatively low compared to other cyanobacteria.

Nonetheless, it is essential to be aware of potential health hazards when encountering cyanobacterial blooms in recreational water bodies or drinking water sources and follow local guidelines for reporting and managing such incidents.

Fertilizers are substances that are added to soil to provide nutrients necessary for plant growth and development. They typically contain macronutrients such as nitrogen (N), phosphorus (P), and potassium (K) in forms that can be readily taken up by plants. These three nutrients are essential for photosynthesis, energy transfer, and the production of proteins, nucleic acids, and other vital plant compounds.

Fertilizers may also contain secondary nutrients like calcium (Ca), magnesium (Mg), and sulfur (S) as well as micronutrients such as iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), boron (B), and molybdenum (Mo). These elements play crucial roles in various plant metabolic processes, including enzyme activation, chlorophyll synthesis, and hormone production.

Fertilizers can be organic or synthetic. Organic fertilizers include materials like compost, manure, bone meal, and blood meal, which release nutrients slowly over time as they decompose. Synthetic fertilizers, also known as inorganic or chemical fertilizers, are manufactured chemicals that contain precise amounts of specific nutrients. They can be quickly absorbed by plants but may pose environmental risks if not used properly.

Proper fertilization is essential for optimal plant growth and crop yield. However, overuse or improper application of fertilizers can lead to nutrient runoff, soil degradation, water pollution, and other negative environmental impacts. Therefore, it's crucial to follow recommended fertilizer application rates and practices based on the specific needs of the plants and local regulations.

Whole-body counting is a non-invasive nuclear medicine technique used for the detection and measurement of radioactivity in the human body. It involves the use of sensitive radiation detectors that can measure the gamma rays emitted by radionuclides present within the body tissues.

The individual lies on a table or sits in a chair with their entire body inside a large detector, which is typically a scintillation camera or a NaI(Tl) crystal. The detector measures the number and energy of gamma rays emitted from the body, allowing for the identification and quantification of specific radionuclides present within the body.

Whole-body counting has several clinical applications, including monitoring patients who have received therapeutic radioisotopes, evaluating the effectiveness of radiation therapy, detecting and measuring internal contamination due to accidental exposure or intentional intake, and assessing the distribution and retention of radionuclides in research studies.

It is important to note that whole-body counting does not provide anatomical information like other imaging techniques (e.g., CT, MRI), but rather offers functional data on the presence and quantity of radioactivity within the body.

Potassium radioisotopes refer to unstable isotopes or variants of the element potassium that emit radiation as they decay towards a stable form. A common example is Potassium-40 (40K), which occurs naturally in small amounts in potassium-containing substances. It decays through beta decay and positron emission, as well as electron capture, with a half-life of approximately 1.25 billion years.

Radioisotopes like 40K have medical applications such as in dating archaeological artifacts or studying certain biological processes. However, exposure to high levels of radiation from potassium radioisotopes can be harmful and potentially lead to health issues like radiation sickness or cancer.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

A diet, in medical terms, refers to the planned and regular consumption of food and drinks. It is a balanced selection of nutrient-rich foods that an individual eats on a daily or periodic basis to meet their energy needs and maintain good health. A well-balanced diet typically includes a variety of fruits, vegetables, whole grains, lean proteins, and low-fat dairy products.

A diet may also be prescribed for therapeutic purposes, such as in the management of certain medical conditions like diabetes, hypertension, or obesity. In these cases, a healthcare professional may recommend specific restrictions or modifications to an individual's regular diet to help manage their condition and improve their overall health.

It is important to note that a healthy and balanced diet should be tailored to an individual's age, gender, body size, activity level, and any underlying medical conditions. Consulting with a healthcare professional, such as a registered dietitian or nutritionist, can help ensure that an individual's dietary needs are being met in a safe and effective way.

Iodohippuric acid is not typically defined in medical textbooks, but it is a radiocontrast agent used in imaging studies. Here's the definition from a chemistry perspective:

Iodohippuric acid, also known as iodine-131 hippuran or Hippuran, is an organic compound with the formula C6H5IO2 + . It is a derivative of hippuric acid, where one hydrogen atom has been replaced by radioactive iodine-131.

In medical imaging, it is used as a radiocontrast agent for renal function studies, such as renography, to assess the functioning and anatomy of the kidneys. The compound is excreted primarily by the kidneys, so its clearance rate can be used to estimate the glomerular filtration rate (GFR), which is a measure of kidney function.

Therefore, while not a medical definition per se, iodohippuric acid is an essential compound in nuclear medicine for evaluating renal function.

Biomass is defined in the medical field as a renewable energy source derived from organic materials, primarily plant matter, that can be burned or converted into fuel. This includes materials such as wood, agricultural waste, and even methane gas produced by landfills. Biomass is often used as a source of heat, electricity, or transportation fuels, and its use can help reduce greenhouse gas emissions and dependence on fossil fuels.

In the context of human health, biomass burning can have both positive and negative impacts. On one hand, biomass can provide a source of heat and energy for cooking and heating, which can improve living standards and reduce exposure to harmful pollutants from traditional cooking methods such as open fires. On the other hand, biomass burning can also produce air pollution, including particulate matter and toxic chemicals, that can have negative effects on respiratory health and contribute to climate change.

Therefore, while biomass has the potential to be a sustainable and low-carbon source of energy, it is important to consider the potential health and environmental impacts of its use and implement appropriate measures to minimize any negative effects.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Calcitriol is the active form of vitamin D, also known as 1,25-dihydroxyvitamin D. It is a steroid hormone that plays a crucial role in regulating calcium and phosphate levels in the body to maintain healthy bones. Calcitriol is produced in the kidneys from its precursor, calcidiol (25-hydroxyvitamin D), which is derived from dietary sources or synthesized in the skin upon exposure to sunlight.

Calcitriol promotes calcium absorption in the intestines, helps regulate calcium and phosphate levels in the kidneys, and stimulates bone cells (osteoblasts) to form new bone tissue while inhibiting the activity of osteoclasts, which resorb bone. This hormone is essential for normal bone mineralization and growth, as well as for preventing hypocalcemia (low calcium levels).

In addition to its role in bone health, calcitriol has various other physiological functions, including modulating immune responses, cell proliferation, differentiation, and apoptosis. Calcitriol deficiency or resistance can lead to conditions such as rickets in children and osteomalacia or osteoporosis in adults.

I'm sorry for any confusion, but "Phosphites" is not a term commonly used in medical definitions. It is a term more frequently used in chemistry and biochemistry, where it refers to salts or esters of phosphorous acid in which the phosphorus has an oxidation state of +3. If you're looking for information on a medical topic, could you please provide more context or clarify what you're asking? I'm here to help!

Zinc is an essential mineral that is vital for the functioning of over 300 enzymes and involved in various biological processes in the human body, including protein synthesis, DNA synthesis, immune function, wound healing, and cell division. It is a component of many proteins and participates in the maintenance of structural integrity and functionality of proteins. Zinc also plays a crucial role in maintaining the sense of taste and smell.

The recommended daily intake of zinc varies depending on age, sex, and life stage. Good dietary sources of zinc include red meat, poultry, seafood, beans, nuts, dairy products, and fortified cereals. Zinc deficiency can lead to various health problems, including impaired immune function, growth retardation, and developmental delays in children. On the other hand, excessive intake of zinc can also have adverse effects on health, such as nausea, vomiting, and impaired immune function.

Feces are the solid or semisolid remains of food that could not be digested or absorbed in the small intestine, along with bacteria and other waste products. After being stored in the colon, feces are eliminated from the body through the rectum and anus during defecation. Feces can vary in color, consistency, and odor depending on a person's diet, health status, and other factors.

Nephrocalcinosis is a medical condition characterized by the deposition of calcium salts in the renal parenchyma, specifically within the tubular epithelial cells and interstitium of the kidneys. This process can lead to chronic inflammation, tissue damage, and ultimately impaired renal function if left untreated.

The condition is often associated with metabolic disorders such as hyperparathyroidism, distal renal tubular acidosis, or hyperoxaluria; medications like loop diuretics, corticosteroids, or calcineurin inhibitors; and chronic kidney diseases. The diagnosis of nephrocalcinosis is typically made through imaging studies such as ultrasound, CT scan, or X-ray. Treatment usually involves addressing the underlying cause, modifying dietary habits, and administering medications to control calcium levels in the body.

Secondary hyperparathyroidism is a condition characterized by an overproduction of parathyroid hormone (PTH) from the parathyroid glands due to hypocalcemia (low levels of calcium in the blood). This condition is usually a result of chronic kidney disease, where the kidneys fail to convert vitamin D into its active form, leading to decreased absorption of calcium in the intestines. The body responds by increasing PTH production to maintain normal calcium levels, but over time, this results in high PTH levels and associated complications such as bone disease, kidney stones, and cardiovascular calcification.

Radiation dosage, in the context of medical physics, refers to the amount of radiation energy that is absorbed by a material or tissue, usually measured in units of Gray (Gy), where 1 Gy equals an absorption of 1 Joule of radiation energy per kilogram of matter. In the clinical setting, radiation dosage is used to plan and assess the amount of radiation delivered to a patient during treatments such as radiotherapy. It's important to note that the biological impact of radiation also depends on other factors, including the type and energy level of the radiation, as well as the sensitivity of the irradiated tissues or organs.

Animal feed refers to any substance or mixture of substances, whether processed, unprocessed, or partially processed, which is intended to be used as food for animals, including fish, without further processing. It includes ingredients such as grains, hay, straw, oilseed meals, and by-products from the milling, processing, and manufacturing industries. Animal feed can be in the form of pellets, crumbles, mash, or other forms, and is used to provide nutrients such as energy, protein, fiber, vitamins, and minerals to support the growth, reproduction, and maintenance of animals. It's important to note that animal feed must be safe, nutritious, and properly labeled to ensure the health and well-being of the animals that consume it.

Electron Probe Microanalysis (EPMA) is a technique used in materials science and geology to analyze the chemical composition of materials at very small scales, typically on the order of microns or less. In this technique, a focused beam of electrons is directed at a sample, causing the emission of X-rays that are characteristic of the elements present in the sample. By analyzing the energy and intensity of these X-rays, researchers can determine the concentration of different elements in the sample with high precision and accuracy.

EPMA is typically performed using a specialized instrument called an electron probe microanalyzer (EPMA), which consists of an electron column for generating and focusing the electron beam, an X-ray spectrometer for analyzing the emitted X-rays, and a stage for positioning and manipulating the sample. The technique is widely used in fields such as mineralogy, geochemistry, metallurgy, and materials science to study the composition and structure of minerals, alloys, semiconductors, and other materials.

One of the key advantages of EPMA is its ability to analyze the chemical composition of small regions within a sample, even in cases where there are spatial variations in composition or where the sample is heterogeneous. This makes it an ideal technique for studying the distribution and behavior of trace elements in minerals, the microstructure of alloys and other materials, and the composition of individual grains or phases within a polyphase material. Additionally, EPMA can be used to analyze both conductive and non-conductive samples, making it a versatile tool for a wide range of applications.

Polyphosphates are compounds consisting of many phosphate groups linked together in the form of chains or rings. They are often used in various medical and healthcare applications, such as:

* Dental care products: Polyphosphates can help prevent the formation of dental plaque and calculus by binding to calcium ions in saliva and inhibiting the growth of bacteria that cause tooth decay.
* Nutritional supplements: Polyphosphates are sometimes used as a source of phosphorus in nutritional supplements, particularly for people who have kidney disease or other medical conditions that require them to limit their intake of phosphorus from food sources.
* Medical devices: Polyphosphates may be used in the manufacture of medical devices, such as contact lenses and catheters, to improve their biocompatibility and resistance to bacterial growth.

It's worth noting that while polyphosphates have various medical uses, they can also be found in many non-medical products, such as food additives, water treatment chemicals, and cleaning agents.

A plant root is not a medical term per se, but it is a term from botany, which is the study of plants. However, I can certainly provide a definition for you.

Plant roots are the underground organs of a plant that typically grow downward into the soil. They serve several important functions, including:

1. Anchorage: Roots help to stabilize the plant and keep it upright in the ground.
2. Absorption: Roots absorb water and nutrients from the soil, which are essential for the plant's growth and development.
3. Conduction: Roots conduct water and nutrients up to the above-ground parts of the plant, such as the stem and leaves.
4. Vegetative reproduction: Some plants can reproduce vegetatively through their roots, producing new plants from root fragments or specialized structures called rhizomes or tubers.

Roots are composed of several different tissues, including the epidermis, cortex, endodermis, and vascular tissue. The epidermis is the outermost layer of the root, which secretes a waxy substance called suberin that helps to prevent water loss. The cortex is the middle layer of the root, which contains cells that store carbohydrates and other nutrients. The endodermis is a thin layer of cells that surrounds the vascular tissue and regulates the movement of water and solutes into and out of the root. The vascular tissue consists of xylem and phloem, which transport water and nutrients throughout the plant.

Rickets is a medical condition characterized by the softening and weakening of bones in children, primarily caused by deficiency of vitamin D, calcium, or phosphate. It leads to skeletal deformities, bone pain, and growth retardation. Prolonged lack of sunlight exposure, inadequate intake of vitamin D-rich foods, or impaired absorption or utilization of vitamin D can contribute to the development of rickets.

Positron-Emission Tomography (PET) is a type of nuclear medicine imaging that uses small amounts of radioactive material, called a radiotracer, to produce detailed, three-dimensional images. This technique measures metabolic activity within the body, such as sugar metabolism, to help distinguish between healthy and diseased tissue, identify cancerous cells, or examine the function of organs.

During a PET scan, the patient is injected with a radiotracer, typically a sugar-based compound labeled with a positron-emitting radioisotope, such as fluorine-18 (^18^F). The radiotracer accumulates in cells that are metabolically active, like cancer cells. As the radiotracer decays, it emits positrons, which then collide with electrons in nearby tissue, producing gamma rays. A special camera, called a PET scanner, detects these gamma rays and uses this information to create detailed images of the body's internal structures and processes.

PET is often used in conjunction with computed tomography (CT) or magnetic resonance imaging (MRI) to provide both functional and anatomical information, allowing for more accurate diagnosis and treatment planning. Common applications include detecting cancer recurrence, staging and monitoring cancer, evaluating heart function, and assessing brain function in conditions like dementia and epilepsy.

Alkaline phosphatase (ALP) is an enzyme found in various body tissues, including the liver, bile ducts, digestive system, bones, and kidneys. It plays a role in breaking down proteins and minerals, such as phosphate, in the body.

The medical definition of alkaline phosphatase refers to its function as a hydrolase enzyme that removes phosphate groups from molecules at an alkaline pH level. In clinical settings, ALP is often measured through blood tests as a biomarker for various health conditions.

Elevated levels of ALP in the blood may indicate liver or bone diseases, such as hepatitis, cirrhosis, bone fractures, or cancer. Therefore, physicians may order an alkaline phosphatase test to help diagnose and monitor these conditions. However, it is essential to interpret ALP results in conjunction with other diagnostic tests and clinical findings for accurate diagnosis and treatment.

Magnesium is an essential mineral that plays a crucial role in various biological processes in the human body. It is the fourth most abundant cation in the body and is involved in over 300 enzymatic reactions, including protein synthesis, muscle and nerve function, blood glucose control, and blood pressure regulation. Magnesium also contributes to the structural development of bones and teeth.

In medical terms, magnesium deficiency can lead to several health issues, such as muscle cramps, weakness, heart arrhythmias, and seizures. On the other hand, excessive magnesium levels can cause symptoms like diarrhea, nausea, and muscle weakness. Magnesium supplements or magnesium-rich foods are often recommended to maintain optimal magnesium levels in the body.

Some common dietary sources of magnesium include leafy green vegetables, nuts, seeds, legumes, whole grains, and dairy products. Magnesium is also available in various forms as a dietary supplement, including magnesium oxide, magnesium citrate, magnesium chloride, and magnesium glycinate.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Food additives are substances that are added to food or drink during manufacturing or processing to perform various functions such as preservation, coloring, flavoring, enhancing taste and texture, and increasing nutritional value. These additives can be natural or synthetic and must be approved by regulatory authorities before they can be used in food products. Examples of food additives include salt, sugar, vinegar, spices, artificial flavors, preservatives, emulsifiers, and food dyes. It is important to note that some people may have allergies or sensitivities to certain food additives, and excessive consumption of some additives may have negative health effects.

Renal dialysis is a medical procedure that is used to artificially remove waste products, toxins, and excess fluids from the blood when the kidneys are no longer able to perform these functions effectively. This process is also known as hemodialysis.

During renal dialysis, the patient's blood is circulated through a special machine called a dialyzer or an artificial kidney, which contains a semi-permeable membrane that filters out waste products and excess fluids from the blood. The cleaned blood is then returned to the patient's body.

Renal dialysis is typically recommended for patients with advanced kidney disease or kidney failure, such as those with end-stage renal disease (ESRD). It is a life-sustaining treatment that helps to maintain the balance of fluids and electrolytes in the body, prevent the buildup of waste products and toxins, and control blood pressure.

There are two main types of renal dialysis: hemodialysis and peritoneal dialysis. Hemodialysis is the most common type and involves using a dialyzer to filter the blood outside the body. Peritoneal dialysis, on the other hand, involves placing a catheter in the abdomen and using the lining of the abdomen (peritoneum) as a natural filter to remove waste products and excess fluids from the body.

Overall, renal dialysis is an essential treatment option for patients with kidney failure, helping them to maintain their quality of life and prolong their survival.

Vitamin B12, also known as cobalamin, is a water-soluble vitamin that plays a crucial role in the synthesis of DNA, formation of red blood cells, and maintenance of the nervous system. It is involved in the metabolism of every cell in the body, particularly affecting DNA regulation and neurological function.

Vitamin B12 is unique among vitamins because it contains a metal ion, cobalt, from which its name is derived. This vitamin can be synthesized only by certain types of bacteria and is not produced by plants or animals. The major sources of vitamin B12 in the human diet include animal-derived foods such as meat, fish, poultry, eggs, and dairy products, as well as fortified plant-based milk alternatives and breakfast cereals.

Deficiency in vitamin B12 can lead to various health issues, including megaloblastic anemia, fatigue, neurological symptoms such as numbness and tingling in the extremities, memory loss, and depression. Since vitamin B12 is not readily available from plant-based sources, vegetarians and vegans are at a higher risk of deficiency and may require supplementation or fortified foods to meet their daily requirements.

A sentinel lymph node biopsy is a surgical procedure used in cancer staging to determine if the cancer has spread beyond the primary tumor to the lymphatic system. This procedure involves identifying and removing the sentinel lymph node(s), which are the first few lymph nodes to which cancer cells are most likely to spread from the primary tumor site.

The sentinel lymph node(s) are identified by injecting a tracer substance (usually a radioactive material and/or a blue dye) near the tumor site. The tracer substance is taken up by the lymphatic vessels and transported to the sentinel lymph node(s), allowing the surgeon to locate and remove them.

The removed sentinel lymph node(s) are then examined under a microscope for the presence of cancer cells. If no cancer cells are found, it is unlikely that the cancer has spread to other lymph nodes or distant sites in the body. However, if cancer cells are present, further lymph node dissection and/or additional treatment may be necessary.

Sentinel lymph node biopsy is commonly used in the staging of melanoma, breast cancer, and some types of head and neck cancer.

Autoradiography is a medical imaging technique used to visualize and localize the distribution of radioactively labeled compounds within tissues or organisms. In this process, the subject is first exposed to a radioactive tracer that binds to specific molecules or structures of interest. The tissue is then placed in close contact with a radiation-sensitive film or detector, such as X-ray film or an imaging plate.

As the radioactive atoms decay, they emit particles (such as beta particles) that interact with the film or detector, causing chemical changes and leaving behind a visible image of the distribution of the labeled compound. The resulting autoradiogram provides information about the location, quantity, and sometimes even the identity of the molecules or structures that have taken up the radioactive tracer.

Autoradiography has been widely used in various fields of biology and medical research, including pharmacology, neuroscience, genetics, and cell biology, to study processes such as protein-DNA interactions, gene expression, drug metabolism, and neuronal connectivity. However, due to the use of radioactive materials and potential hazards associated with them, this technique has been gradually replaced by non-radioactive alternatives like fluorescence in situ hybridization (FISH) or immunofluorescence techniques.

Organometallic compounds are a type of chemical compound that contain at least one metal-carbon bond. This means that the metal is directly attached to carbon atom(s) from an organic molecule. These compounds can be synthesized through various methods, and they have found widespread use in industrial and medicinal applications, including catalysis, polymerization, and pharmaceuticals.

It's worth noting that while organometallic compounds contain metal-carbon bonds, not all compounds with metal-carbon bonds are considered organometallic. For example, in classical inorganic chemistry, simple salts of metal carbonyls (M(CO)n) are not typically classified as organometallic, but rather as metal carbonyl complexes. The distinction between these classes of compounds can sometimes be subtle and is a matter of ongoing debate among chemists.

Technetium Tc 99m Medronate is a radiopharmaceutical agent used in nuclear medicine for bone scintigraphy. It is a technetium-labeled bisphosphonate compound, which accumulates in areas of increased bone turnover and metabolism. This makes it useful for detecting and evaluating various bone diseases and conditions, such as fractures, tumors, infections, and arthritis.

The "Tc 99m" refers to the radioisotope technetium-99m, which has a half-life of approximately 6 hours and emits gamma rays that can be detected by a gamma camera. The medronate component is a bisphosphonate molecule that binds to hydroxyapatite crystals in bone tissue, allowing the radiolabeled compound to accumulate in areas of active bone remodeling.

Overall, Technetium Tc 99m Medronate is an important tool in nuclear medicine for diagnosing and managing various musculoskeletal disorders.

Chronic kidney failure, also known as chronic kidney disease (CKD) stage 5 or end-stage renal disease (ESRD), is a permanent loss of kidney function that occurs gradually over a period of months to years. It is defined as a glomerular filtration rate (GFR) of less than 15 ml/min, which means the kidneys are filtering waste and excess fluids at less than 15% of their normal capacity.

CKD can be caused by various underlying conditions such as diabetes, hypertension, glomerulonephritis, polycystic kidney disease, and recurrent kidney infections. Over time, the damage to the kidneys can lead to a buildup of waste products and fluids in the body, which can cause a range of symptoms including fatigue, weakness, shortness of breath, nausea, vomiting, and confusion.

Treatment for chronic kidney failure typically involves managing the underlying condition, making lifestyle changes such as following a healthy diet, and receiving supportive care such as dialysis or a kidney transplant to replace lost kidney function.

Sewage is not typically considered a medical term, but it does have relevance to public health and medicine. Sewage is the wastewater that is produced by households and industries, which contains a variety of contaminants including human waste, chemicals, and other pollutants. It can contain various pathogens such as bacteria, viruses, and parasites, which can cause diseases in humans if they come into contact with it or consume contaminated food or water. Therefore, the proper treatment and disposal of sewage is essential to prevent the spread of infectious diseases and protect public health.

Bismuth is a heavy, brittle, white metallic element (symbol: Bi; atomic number: 83) that is found in various minerals and is used in several industrial, medical, and household products. In medicine, bismuth compounds are commonly used as antidiarrheal and anti-ulcer agents due to their antibacterial properties. They can be found in medications like Pepto-Bismol and Kaopectate. It's important to note that bismuth itself is not used medically, but its compounds have medical applications.

"Manure" is not a term typically used in medical definitions. However, it is commonly referred to in agriculture and horticulture. Manure is defined as organic matter, such as animal feces and urine, that is used as a fertilizer to enrich and amend the soil. It is often rich in nutrients like nitrogen, phosphorus, and potassium, which are essential for plant growth. While manure can be beneficial for agriculture and gardening, it can also pose risks to human health if not handled properly due to the potential presence of pathogens and other harmful substances.

Halomonadaceae is a family of halophilic (salt-loving) bacteria within the order Oceanospirillales. These bacteria are commonly found in saline environments such as salt lakes, marine solar salterns, and salted foods. They have the ability to grow in media with a wide range of salinities, from around 0.5% to saturated salt concentrations. Some members of this family can also tolerate or even require the presence of organic solvents. The type genus of Halomonadaceae is Halomonas.

Avidin is a protein found in the white of eggs (egg whites) and some other animal tissues. It has a high binding affinity for biotin, also known as vitamin B7 or vitamin H, which is an essential nutrient for humans and other organisms. This property makes avidin useful in various biochemical and medical applications, such as immunohistochemistry, blotting techniques, and drug delivery systems.

Biotin-avidin interactions are among the strongest non-covalent interactions known in nature, with a dissociation constant (Kd) of approximately 10^-15 M. This means that once biotin is bound to avidin, it is very difficult to separate them. In some cases, this property can be exploited to create stable and specific complexes for various applications.

However, it's worth noting that the high affinity of avidin for biotin can also have negative effects in certain contexts. For example, raw egg whites contain large amounts of avidin, which can bind to biotin in the gut and prevent its absorption if consumed in sufficient quantities. This can lead to biotin deficiency, which can cause various health problems. Cooking egg whites denatures avidin and reduces its ability to bind to biotin, making cooked eggs a safe source of biotin.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

Calcium carbonate is a chemical compound with the formula CaCO3. It is a common substance found in rocks and in the shells of many marine animals. As a mineral, it is known as calcite or aragonite.

In the medical field, calcium carbonate is often used as a dietary supplement to prevent or treat calcium deficiency. It is also commonly used as an antacid to neutralize stomach acid and relieve symptoms of heartburn, acid reflux, and indigestion.

Calcium carbonate works by reacting with hydrochloric acid in the stomach to form water, carbon dioxide, and calcium chloride. This reaction helps to raise the pH level in the stomach and neutralize excess acid.

It is important to note that excessive use of calcium carbonate can lead to hypercalcemia, a condition characterized by high levels of calcium in the blood, which can cause symptoms such as nausea, vomiting, constipation, confusion, and muscle weakness. Therefore, it is recommended to consult with a healthcare provider before starting any new supplement regimen.

Cesium radioisotopes are different forms of the element cesium that have unstable nuclei and emit radiation. Some commonly used medical cesium radioisotopes include Cs-134 and Cs-137, which are produced from nuclear reactions in nuclear reactors or during nuclear weapons testing.

In medicine, cesium radioisotopes have been used in cancer treatment for the brachytherapy of certain types of tumors. Brachytherapy involves placing a small amount of radioactive material directly into or near the tumor to deliver a high dose of radiation to the cancer cells while minimizing exposure to healthy tissues.

Cesium-137, for example, has been used in the treatment of cervical, endometrial, and prostate cancers. However, due to concerns about potential long-term risks associated with the use of cesium radioisotopes, their use in cancer therapy is becoming less common.

It's important to note that handling and using radioactive materials requires specialized training and equipment to ensure safety and prevent radiation exposure.

The parathyroid glands are four small endocrine glands located in the neck, usually near or behind the thyroid gland. They secrete parathyroid hormone (PTH), which plays a critical role in regulating calcium and phosphate levels in the blood and bones. PTH helps maintain the balance of these minerals by increasing the absorption of calcium from food in the intestines, promoting reabsorption of calcium in the kidneys, and stimulating the release of calcium from bones when needed. Additionally, PTH decreases the excretion of calcium through urine and reduces phosphate reabsorption in the kidneys, leading to increased phosphate excretion. Disorders of the parathyroid glands can result in conditions such as hyperparathyroidism (overactive glands) or hypoparathyroidism (underactive glands), which can have significant impacts on calcium and phosphate homeostasis and overall health.

Brachytherapy is a type of cancer treatment that involves placing radioactive material directly into or near the tumor site. The term "brachy" comes from the Greek word for "short," which refers to the short distance that the radiation travels. This allows for a high dose of radiation to be delivered directly to the tumor while minimizing exposure to healthy surrounding tissue.

There are two main types of brachytherapy:

1. Intracavitary brachytherapy: The radioactive material is placed inside a body cavity, such as the uterus or windpipe.
2. Interstitial brachytherapy: The radioactive material is placed directly into the tumor or surrounding tissue using needles, seeds, or catheters.

Brachytherapy can be used alone or in combination with other cancer treatments such as surgery, external beam radiation therapy, and chemotherapy. It may be recommended for a variety of cancers, including prostate, cervical, vaginal, vulvar, head and neck, and skin cancers. The specific type of brachytherapy used will depend on the size, location, and stage of the tumor.

The advantages of brachytherapy include its ability to deliver a high dose of radiation directly to the tumor while minimizing exposure to healthy tissue, which can result in fewer side effects compared to other forms of radiation therapy. Additionally, brachytherapy is often a shorter treatment course than external beam radiation therapy, with some treatments lasting only a few minutes or hours.

However, there are also potential risks and side effects associated with brachytherapy, including damage to nearby organs and tissues, bleeding, infection, and pain. Patients should discuss the benefits and risks of brachytherapy with their healthcare provider to determine if it is an appropriate treatment option for them.

Iridium radioisotopes are unstable isotopes or variants of the element iridium that emit radiation as they decay into more stable forms. These isotopes can be used in various medical applications, such as brachytherapy, a type of cancer treatment where a small amount of radioactive material is placed inside the body near the tumor site to deliver targeted radiation therapy.

Iridium-192 is one commonly used iridium radioisotope for this purpose. It has a half-life of 74.2 days and emits gamma rays, making it useful for treating various types of cancer, including breast, gynecological, prostate, and head and neck cancers.

It's important to note that handling and using radioisotopes requires specialized training and equipment due to the potential radiation hazards associated with them.

Phosphocreatine (PCr) is a high-energy phosphate compound found in the skeletal muscles, cardiac muscle, and brain. It plays a crucial role in energy metabolism and storage within cells. Phosphocreatine serves as an immediate energy reserve that helps regenerate ATP (adenosine triphosphate), the primary source of cellular energy, during short bursts of intense activity or stress. This process is facilitated by the enzyme creatine kinase, which catalyzes the transfer of a phosphate group from phosphocreatine to ADP (adenosine diphosphate) to form ATP.

In a medical context, phosphocreatine levels may be assessed in muscle biopsies or magnetic resonance spectroscopy (MRS) imaging to evaluate muscle energy metabolism and potential mitochondrial dysfunction in conditions such as muscular dystrophies, mitochondrial disorders, and neuromuscular diseases. Additionally, phosphocreatine depletion has been implicated in various pathological processes, including ischemia-reperfusion injury, neurodegenerative disorders, and heart failure.

Chronic Renal Insufficiency (CRI) is a medical condition characterized by a gradual and progressive loss of kidney function over a period of months or years. It is also known as Chronic Kidney Disease (CKD). The main function of the kidneys is to filter waste products and excess fluids from the blood, which are then excreted in the urine. When the kidneys become insufficient, these waste products and fluids accumulate in the body, leading to various complications.

CRI is defined as a glomerular filtration rate (GFR) of less than 60 ml/min/1.73m2 for three months or more, regardless of cause. GFR is a measure of kidney function that estimates how well the kidneys are filtering waste products from the blood. The condition is classified into five stages based on the severity of the disease and the GFR value.

Stage 1: GFR greater than or equal to 90 ml/min/1.73m2
Stage 2: GFR between 60-89 ml/min/1.73m2
Stage 3: GFR between 30-59 ml/min/1.73m2
Stage 4: GFR between 15-29 ml/min/1.73m2
Stage 5: GFR less than 15 ml/min/1.73m2 or dialysis

CRI can be caused by various underlying conditions such as diabetes, hypertension, glomerulonephritis, polycystic kidney disease, and other genetic or acquired disorders. Symptoms of CRI may include fatigue, weakness, loss of appetite, swelling in the legs and ankles, shortness of breath, and changes in urination patterns. Treatment for CRI focuses on slowing down the progression of the disease, managing symptoms, and preventing complications. This may involve lifestyle modifications, medication, dialysis, or kidney transplantation.

A medical definition for "plant shoots" may not be readily available, as the term is primarily used in botany and horticulture. However, I can provide you with a general definition:

Plant shoots refer to the above-ground portion of a plant, which typically includes structures like stems, leaves, flowers, and buds. Shoots originate from the seed or the growing tip of the plant and are responsible for photosynthesis, nutrient absorption, and reproduction. In some contexts, "plant shoots" might also refer to new growth that emerges from an existing plant, such as when a leaf or stem sprouts a new branch or flower.

Renal osteodystrophy is a bone disease that occurs in individuals with chronic kidney disease (CKD). It is characterized by abnormalities in the bones' structure and mineral composition due to disturbances in the metabolism of calcium, phosphorus, and vitamin D. These metabolic disturbances result from the kidneys' decreased ability to maintain balance in the levels of these minerals and hormones.

Renal osteodystrophy can manifest as several bone disorders, including:

1. Osteitis fibrosa cystica: Increased bone turnover due to excessive parathyroid hormone (PTH) production, leading to high levels of alkaline phosphatase and increased resorption of bones.
2. Adynamic bone disease: Decreased bone turnover due to reduced PTH levels, resulting in low bone formation rates and increased fracture risk.
3. Mixed uremic osteodystrophy: A combination of high and low bone turnover, with varying degrees of mineralization defects.
4. Osteomalacia: Defective mineralization of bones due to vitamin D deficiency or resistance, leading to soft and weak bones.

Symptoms of renal osteodystrophy may include bone pain, muscle weakness, fractures, deformities, and growth retardation in children. Diagnosis typically involves laboratory tests, imaging studies, and sometimes bone biopsies. Treatment focuses on correcting the metabolic imbalances through dietary modifications, medications (such as phosphate binders, vitamin D analogs, and calcimimetics), and addressing any secondary hyperparathyroidism if present.

Vitamin D is a fat-soluble secosteroid that is crucial for the regulation of calcium and phosphate levels in the body, which are essential for maintaining healthy bones and teeth. It can be synthesized by the human body when skin is exposed to ultraviolet-B (UVB) rays from sunlight, or it can be obtained through dietary sources such as fatty fish, fortified dairy products, and supplements. There are two major forms of vitamin D: vitamin D2 (ergocalciferol), which is found in some plants and fungi, and vitamin D3 (cholecalciferol), which is produced in the skin or obtained from animal-derived foods. Both forms need to undergo two hydroxylations in the body to become biologically active as calcitriol (1,25-dihydroxyvitamin D3), the hormonally active form of vitamin D. This activated form exerts its effects by binding to the vitamin D receptor (VDR) found in various tissues, including the small intestine, bone, kidney, and immune cells, thereby influencing numerous physiological processes such as calcium homeostasis, bone metabolism, cell growth, and immune function.

In the context of medical definitions, 'carbon' is not typically used as a standalone term. Carbon is an element with the symbol C and atomic number 6, which is naturally abundant in the human body and the environment. It is a crucial component of all living organisms, forming the basis of organic compounds, such as proteins, carbohydrates, lipids, and nucleic acids (DNA and RNA).

Carbon forms strong covalent bonds with various elements, allowing for the creation of complex molecules that are essential to life. In this sense, carbon is a fundamental building block of life on Earth. However, it does not have a specific medical definition as an isolated term.

The chemical element aluminum (or aluminium in British English) is a silvery-white, soft, non-magnetic, ductile metal. The atomic number of aluminum is 13 and its symbol on the periodic table is Al. It is the most abundant metallic element in the Earth's crust and is found in a variety of minerals such as bauxite.

Aluminum is resistant to corrosion due to the formation of a thin layer of aluminum oxide on its surface that protects it from further oxidation. It is lightweight, has good thermal and electrical conductivity, and can be easily formed and machined. These properties make aluminum a widely used metal in various industries such as construction, packaging, transportation, and electronics.

In the medical field, aluminum is used in some medications and medical devices. For example, aluminum hydroxide is commonly used as an antacid to neutralize stomach acid and treat heartburn, while aluminum salts are used as adjuvants in vaccines to enhance the immune response. However, excessive exposure to aluminum can be harmful and has been linked to neurological disorders such as Alzheimer's disease, although the exact relationship between aluminum and these conditions is not fully understood.

In the context of medicine, the term "elements" generally refers to the basic constituents or parts that make up a whole. These can include chemical elements, such as carbon, hydrogen, and oxygen, which are the building blocks of biological molecules like proteins, lipids, and carbohydrates.

However, "elements" can also refer more broadly to the fundamental components of a system or process. For example, in traditional humorism, one of the ancient medical systems, the four "elements" were considered to be black bile, yellow bile, phlegm, and blood, which were believed to correspond to different temperaments and bodily functions.

In modern medicine, the term is less commonly used, but it may still refer to the basic components of a biological or chemical system, such as the elements of a chemical reaction or the building blocks of a cell.

The metacarpus is the medical term for the part of the hand located between the carpus (wrist) and the digits (fingers). It consists of five bones, known as the metacarpal bones, which are numbered 1 to 5 from the thumb side to the little finger side. Each metacarpal bone has a base, a shaft, and a head. The bases of the metacarpal bones articulate with the carpal bones to form the wrist joint, while the heads of the metacarpal bones form the knuckles at the back of the hand.

The metacarpus plays an essential role in hand function as it provides stability and support for the movement of the fingers and thumb. Injuries or conditions affecting the metacarpus can significantly impact hand function, causing pain, stiffness, weakness, or deformity.

In the context of medicine, iron is an essential micromineral and key component of various proteins and enzymes. It plays a crucial role in oxygen transport, DNA synthesis, and energy production within the body. Iron exists in two main forms: heme and non-heme. Heme iron is derived from hemoglobin and myoglobin in animal products, while non-heme iron comes from plant sources and supplements.

The recommended daily allowance (RDA) for iron varies depending on age, sex, and life stage:

* For men aged 19-50 years, the RDA is 8 mg/day
* For women aged 19-50 years, the RDA is 18 mg/day
* During pregnancy, the RDA increases to 27 mg/day
* During lactation, the RDA for breastfeeding mothers is 9 mg/day

Iron deficiency can lead to anemia, characterized by fatigue, weakness, and shortness of breath. Excessive iron intake may result in iron overload, causing damage to organs such as the liver and heart. Balanced iron levels are essential for maintaining optimal health.

"Lupinus" is not a medical term. It is the genus name for the group of plants commonly known as lupines or bluebonnets. Some people may use "lupinus" in a medical context to refer to an allergy or sensitivity to lupine beans or other parts of the lupine plant, which can cause symptoms such as rash, itching, and digestive issues. However, this is not a widely recognized medical condition and reactions to lupines are relatively rare. If you have any concerns about a potential allergy or sensitivity to lupines, it is best to consult with a healthcare professional for proper evaluation and treatment.

In the context of pharmacology, "half-life" refers to the time it takes for the concentration or amount of a drug in the body to be reduced by half during its elimination phase. This is typically influenced by factors such as metabolism and excretion rates of the drug. It's a key factor in determining dosage intervals and therapeutic effectiveness of medications, as well as potential side effects or toxicity risks.

"Evaluation studies" is a broad term that refers to the systematic assessment or examination of a program, project, policy, intervention, or product. The goal of an evaluation study is to determine its merits, worth, and value by measuring its effects, efficiency, and impact. There are different types of evaluation studies, including formative evaluations (conducted during the development or implementation of a program to provide feedback for improvement), summative evaluations (conducted at the end of a program to determine its overall effectiveness), process evaluations (focusing on how a program is implemented and delivered), outcome evaluations (assessing the short-term and intermediate effects of a program), and impact evaluations (measuring the long-term and broad consequences of a program).

In medical contexts, evaluation studies are often used to assess the safety, efficacy, and cost-effectiveness of new treatments, interventions, or technologies. These studies can help healthcare providers make informed decisions about patient care, guide policymakers in developing evidence-based policies, and promote accountability and transparency in healthcare systems. Examples of evaluation studies in medicine include randomized controlled trials (RCTs) that compare the outcomes of a new treatment to those of a standard or placebo treatment, observational studies that examine the real-world effectiveness and safety of interventions, and economic evaluations that assess the costs and benefits of different healthcare options.

Hydroxycholecalciferols are metabolites of vitamin D that are formed in the liver and kidneys. They are important for maintaining calcium homeostasis in the body by promoting the absorption of calcium from the gut and reabsorption of calcium from the kidneys.

The two main forms of hydroxycholecalciferols are 25-hydroxyvitamin D (25(OH)D) and 1,25-dihydroxyvitamin D (1,25(OH)2D). 25-hydroxyvitamin D is the major circulating form of vitamin D in the body and is used as a clinical measure of vitamin D status. It is converted to 1,25-dihydroxyvitamin D in the kidneys by the enzyme 1α-hydroxylase, which is activated in response to low serum calcium or high phosphate levels.

1,25-dihydroxyvitamin D is the biologically active form of vitamin D and plays a critical role in regulating calcium homeostasis by increasing intestinal calcium absorption and promoting bone health. Deficiency in hydroxycholecalciferols can lead to rickets in children and osteomalacia or osteoporosis in adults, characterized by weakened bones and increased risk of fractures.

Fluid waste disposal in a medical context refers to the proper and safe management of liquid byproducts generated during medical procedures, patient care, or research. These fluids can include bodily excretions (such as urine, feces, or vomit), irrigation solutions, blood, or other biological fluids.

The process of fluid waste disposal involves several steps:

1. Collection: Fluid waste is collected in appropriate containers that are designed to prevent leakage and contamination.
2. Segregation: Different types of fluid waste may require separate collection and disposal methods based on their infectious or hazardous nature.
3. Treatment: Depending on the type and volume of fluid waste, various treatments can be applied, such as disinfection, sterilization, or chemical neutralization, to reduce the risk of infection or harm to the environment and personnel.
4. Disposal: Treated fluid waste is then disposed of according to local regulations, which may involve transporting it to a designated waste management facility for further processing or disposal in a safe and environmentally friendly manner (e.g., deep well injection, incineration, or landfilling).
5. Documentation and tracking: Proper records should be maintained to ensure compliance with regulatory requirements and to enable effective monitoring and auditing of the waste disposal process.

It is essential to handle fluid waste disposal carefully to minimize the risk of infection, protect the environment, and maintain regulatory compliance. Healthcare facilities must adhere to strict guidelines and regulations regarding fluid waste management to ensure the safety of patients, staff, and the community.

Calcium compounds are chemical substances that contain calcium ions (Ca2+) bonded to various anions. Calcium is an essential mineral for human health, and calcium compounds have numerous biological and industrial applications. Here are some examples of calcium compounds with their medical definitions:

1. Calcium carbonate (CaCO3): A common mineral found in rocks and sediments, calcium carbonate is also a major component of shells, pearls, and bones. It is used as a dietary supplement to prevent or treat calcium deficiency and as an antacid to neutralize stomach acid.
2. Calcium citrate (C6H8CaO7): A calcium salt of citric acid, calcium citrate is often used as a dietary supplement to prevent or treat calcium deficiency. It is more soluble in water and gastric juice than calcium carbonate, making it easier to absorb, especially for people with low stomach acid.
3. Calcium gluconate (C12H22CaO14): A calcium salt of gluconic acid, calcium gluconate is used as a medication to treat or prevent hypocalcemia (low blood calcium levels) and hyperkalemia (high blood potassium levels). It can be given intravenously, orally, or topically.
4. Calcium chloride (CaCl2): A white, deliquescent salt, calcium chloride is used as a de-icing agent, a food additive, and a desiccant. In medical settings, it can be used to treat hypocalcemia or hyperkalemia, or as an antidote for magnesium overdose.
5. Calcium lactate (C6H10CaO6): A calcium salt of lactic acid, calcium lactate is used as a dietary supplement to prevent or treat calcium deficiency. It is less commonly used than calcium carbonate or calcium citrate but may be better tolerated by some people.
6. Calcium phosphate (Ca3(PO4)2): A mineral found in rocks and bones, calcium phosphate is used as a dietary supplement to prevent or treat calcium deficiency. It can also be used as a food additive or a pharmaceutical excipient.
7. Calcium sulfate (CaSO4): A white, insoluble powder, calcium sulfate is used as a desiccant, a plaster, and a fertilizer. In medical settings, it can be used to treat hypocalcemia or as an antidote for magnesium overdose.
8. Calcium hydroxide (Ca(OH)2): A white, alkaline powder, calcium hydroxide is used as a disinfectant, a flocculant, and a building material. In medical settings, it can be used to treat hyperkalemia or as an antidote for aluminum overdose.
9. Calcium acetate (Ca(C2H3O2)2): A white, crystalline powder, calcium acetate is used as a food additive and a medication. It can be used to treat hyperphosphatemia (high blood phosphate levels) in patients with kidney disease.
10. Calcium carbonate (CaCO3): A white, chalky powder, calcium carbonate is used as a dietary supplement, a food additive, and a pharmaceutical excipient. It can also be used as a building material and a mineral supplement.

Water quality, in the context of public health and environmental medicine, refers to the chemical, physical, and biological characteristics of water that determine its suitability for various uses, such as drinking, recreation, or industrial processes. The term encompasses a wide range of parameters, including but not limited to:

1. Microbial contaminants: Presence of pathogenic bacteria, viruses, parasites, and other microorganisms that can cause waterborne diseases.
2. Chemical contaminants: Including heavy metals (e.g., lead, mercury), pesticides, volatile organic compounds (VOCs), disinfection byproducts, and other potentially harmful substances.
3. Physical parameters: Such as temperature, turbidity (cloudiness), color, taste, and odor, which can affect the water's acceptability for different uses.
4. Radiological contaminants: Exposure to ionizing radiation from radioactive elements present in water sources.

Regulatory agencies establish guidelines and standards for water quality to protect public health and minimize potential adverse effects associated with exposure to contaminated water. Regular monitoring, treatment, and management of water sources are essential to ensure safe and reliable water supplies.

Ergocalciferols are a form of vitamin D, specifically vitamin D2, that is found in some plants. They are not produced by the human body and must be obtained through diet or supplementation. Ergocalciferols can be converted into an active form of vitamin D in the body, which is important for maintaining healthy bones and calcium levels. However, vitamin D3 (cholecalciferol), which is produced by the body in response to sunlight exposure, is generally considered to be more effective at raising and maintaining vitamin D levels in the body than ergocalciferols.

Organophosphorus compounds are a class of chemical substances that contain phosphorus bonded to organic compounds. They are used in various applications, including as plasticizers, flame retardants, pesticides (insecticides, herbicides, and nerve gases), and solvents. In medicine, they are also used in the treatment of certain conditions such as glaucoma. However, organophosphorus compounds can be toxic to humans and animals, particularly those that affect the nervous system by inhibiting acetylcholinesterase, an enzyme that breaks down the neurotransmitter acetylcholine. Exposure to these compounds can cause symptoms such as nausea, vomiting, muscle weakness, and in severe cases, respiratory failure and death.

Octreotide is a synthetic analogue of the natural hormone somatostatin, which is used in medical treatment. It is a octapeptide with similar effects to somatostatin, but with a longer duration of action. Octreotide is primarily used in the management of acromegaly, gastroenteropancreatic neuroendocrine tumors (GEP-NETs), and diarrhea and flushing associated with carcinoid syndrome.

It works by inhibiting the release of several hormones, including growth hormone, insulin, glucagon, and gastrin. This results in a decrease in symptoms caused by excessive hormone secretion, such as reduced growth hormone levels in acromegaly, decreased tumor size in some GEP-NETs, and improved diarrhea and flushing in carcinoid syndrome.

Octreotide is available in several forms, including short-acting subcutaneous injections (Sandostatin®), long-acting depot intramuscular injections (Sandostatin LAR®), and a slow-release formulation for the treatment of diarrhea associated with AIDS (Mycapssa™).

The medical definition of Octreotide is:

A synthetic octapeptide analogue of somatostatin, used in the management of acromegaly, gastroenteropancreatic neuroendocrine tumors (GEP-NETs), and diarrhea and flushing associated with carcinoid syndrome. Octreotide inhibits the release of several hormones, including growth hormone, insulin, glucagon, and gastrin, leading to symptomatic improvement in these conditions. It is available as short-acting subcutaneous injections, long-acting depot intramuscular injections, and a slow-release formulation for diarrhea associated with AIDS.

Familial Hypophosphatemia is a genetic disorder characterized by low levels of phosphate in the blood (hypophosphatemia) due to impaired absorption of phosphates in the gut. This condition results from mutations in the SLC34A3 gene, which provides instructions for making a protein called NaPi-IIc, responsible for reabsorbing phosphates from the filtrate in the kidney tubules back into the bloodstream.

In familial hypophosphatemia, the impaired function of NaPi-IIc leads to excessive loss of phosphate through urine, resulting in hypophosphatemia. This condition can cause rickets (a softening and weakening of bones) in children and osteomalacia (softening of bones) in adults. Symptoms may include bowed legs, bone pain, muscle weakness, and short stature.

Familial Hypophosphatemia is inherited as an autosomal recessive trait, meaning that an individual must inherit two copies of the mutated gene (one from each parent) to develop the condition.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

Phytoplankton are microscopic photosynthetic organisms that live in watery environments such as oceans, seas, lakes, and rivers. They are a diverse group of organisms, including bacteria, algae, and protozoa. Phytoplankton are a critical component of the marine food chain, serving as primary producers that convert sunlight, carbon dioxide, and nutrients into organic matter through photosynthesis. This organic matter forms the base of the food chain and supports the growth and survival of many larger organisms, including zooplankton, fish, and other marine animals. Phytoplankton also play an important role in global carbon cycling and help to regulate Earth's climate by absorbing carbon dioxide from the atmosphere and releasing oxygen.

I'm sorry for any confusion, but "soybeans" are not a medical term. They are a type of legume that is commonly used in agriculture and food production. The medical community might discuss soybeans in the context of nutrition or allergies, but there isn't a formal medical definition for this term.

Here's some general information: Soybeans, scientifically known as Glycine max, are native to East Asia and are now grown worldwide. They are a significant source of plant-based protein and oil. Soybeans contain various nutrients, including essential amino acids, fiber, B vitamins, and minerals like calcium, iron, magnesium, and zinc. They are used in various food products such as tofu, soy milk, tempeh, and miso. Additionally, soybeans are also used in the production of industrial products, including biodiesel, plastics, and inks. Some people may have allergic reactions to soybeans or soy products.

Calcinosis is a medical condition characterized by the abnormal deposit of calcium salts in various tissues of the body, commonly under the skin or in the muscles and tendons. These calcium deposits can form hard lumps or nodules that can cause pain, inflammation, and restricted mobility. Calcinosis can occur as a complication of other medical conditions, such as autoimmune disorders, kidney disease, and hypercalcemia (high levels of calcium in the blood). In some cases, the cause of calcinosis may be unknown. Treatment for calcinosis depends on the underlying cause and may include medications to manage calcium levels, physical therapy, and surgical removal of large deposits.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

"Animal nutritional physiological phenomena" is not a standardized medical or scientific term. However, it seems to refer to the processes and functions related to nutrition and physiology in animals. Here's a breakdown of the possible components:

1. Animal: This term refers to non-human living organisms that are multicellular, heterotrophic, and have a distinct nervous system.
2. Nutritional: This term pertains to the nourishment and energy requirements of an animal, including the ingestion, digestion, absorption, transportation, metabolism, and excretion of nutrients.
3. Physiological: This term refers to the functions and processes that occur within a living organism, including the interactions between different organs and systems.
4. Phenomena: This term generally means an observable fact or event.

Therefore, "animal nutritional physiological phenomena" could refer to the observable events and processes related to nutrition and physiology in animals. Examples of such phenomena include digestion, absorption, metabolism, energy production, growth, reproduction, and waste elimination.

I'm sorry for any confusion, but "Fresh Water" is not a medical term. It is a term used to describe water that contains low concentrations of dissolved salts and other dissolved minerals. It is distinguished from saline water, which includes saltwater found in the ocean and brackish water found in estuaries. Fresh water is essential for many biological processes and is the primary source of water for human consumption, agriculture, and industrial use.

Fibroblast Growth Factors (FGFs) are a family of growth factors that play crucial roles in various biological processes, including cell survival, proliferation, migration, and differentiation. They bind to specific tyrosine kinase receptors (FGFRs) on the cell surface, leading to intracellular signaling cascades that regulate gene expression and downstream cellular responses. FGFs are involved in embryonic development, tissue repair, and angiogenesis (the formation of new blood vessels). There are at least 22 distinct FGFs identified in humans, each with unique functions and patterns of expression. Some FGFs, like FGF1 and FGF2, have mitogenic effects on fibroblasts and other cell types, while others, such as FGF7 and FGF10, are essential for epithelial-mesenchymal interactions during organ development. Dysregulation of FGF signaling has been implicated in various pathological conditions, including cancer, fibrosis, and developmental disorders.

Mycorrhizae are symbiotic associations between fungi and the roots of most plant species. In a mycorrhizal association, fungi colonize the root tissues of plants and extend their mycelial networks into the surrounding soil. This association enhances the nutrient uptake capacity of the host plant, particularly with regards to phosphorus and nitrogen, while the fungi receive carbohydrates from the plant for their own growth and metabolism.

Mycorrhizal fungi can be broadly classified into two types: ectomycorrhizae and endomycorrhizae (or arbuscular mycorrhizae). Ectomycorrhizae form a sheath around the root surface, while endomycorrhizae penetrate the root cells and form structures called arbuscules, where nutrient exchange occurs. Mycorrhizal associations play crucial roles in maintaining ecosystem stability, promoting plant growth, and improving soil structure and fertility.

Physiologic calcification is the normal deposit of calcium salts in body tissues and organs. It is a natural process that occurs as part of the growth and development of the human body, as well as during the repair and remodeling of tissues.

Calcium is an essential mineral that plays a critical role in many bodily functions, including bone formation, muscle contraction, nerve impulse transmission, and blood clotting. In order to maintain proper levels of calcium in the body, excess calcium that is not needed for these functions may be deposited in various tissues as a normal part of the aging process.

Physiologic calcification typically occurs in areas such as the walls of blood vessels, the lungs, and the heart valves. While these calcifications are generally harmless, they can sometimes lead to complications, particularly if they occur in large amounts or in sensitive areas. For example, calcification of the coronary arteries can increase the risk of heart disease, while calcification of the lung tissue can cause respiratory symptoms.

It is important to note that pathologic calcification, on the other hand, refers to the abnormal deposit of calcium salts in tissues and organs, which can be caused by various medical conditions such as chronic kidney disease, hyperparathyroidism, and certain infections. Pathologic calcification is not a normal process and can lead to serious health complications if left untreated.

Metabolic clearance rate is a term used in pharmacology to describe the volume of blood or plasma from which a drug is completely removed per unit time by metabolic processes. It is a measure of the body's ability to eliminate a particular substance and is usually expressed in units of volume (e.g., milliliters or liters) per time (e.g., minutes, hours, or days).

The metabolic clearance rate can be calculated by dividing the total amount of drug eliminated by the plasma concentration of the drug and the time over which it was eliminated. It provides important information about the pharmacokinetics of a drug, including its rate of elimination and the potential for drug-drug interactions that may affect metabolism.

It is worth noting that there are different types of clearance rates, such as renal clearance rate (which refers to the removal of a drug by the kidneys) or hepatic clearance rate (which refers to the removal of a drug by the liver). Metabolic clearance rate specifically refers to the elimination of a drug through metabolic processes, which can occur in various organs throughout the body.

Uremia is not a disease itself, but rather it's a condition that results from the buildup of waste products in the blood due to kidney failure. The term "uremia" comes from the word "urea," which is one of the waste products that accumulate when the kidneys are not functioning properly.

In uremia, the kidneys are unable to effectively filter waste and excess fluids from the blood, leading to a variety of symptoms such as nausea, vomiting, fatigue, itching, mental confusion, and ultimately, if left untreated, can lead to coma and death. It is a serious condition that requires immediate medical attention, often involving dialysis or a kidney transplant to manage the underlying kidney dysfunction.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Cobalt radioisotopes are radioactive forms of the element cobalt, which are used in various medical applications. The most commonly used cobalt radioisotope is Cobalt-60 (Co-60), which has a half-life of 5.27 years.

Co-60 emits gamma rays and beta particles, making it useful for radiation therapy to treat cancer, as well as for sterilizing medical equipment and food irradiation. In radiation therapy, Co-60 is used in teletherapy machines to deliver a focused beam of radiation to tumors, helping to destroy cancer cells while minimizing damage to surrounding healthy tissue.

It's important to note that handling and disposal of cobalt radioisotopes require strict safety measures due to their radioactive nature, as they can pose risks to human health and the environment if not managed properly.

Sodium is an essential mineral and electrolyte that is necessary for human health. In a medical context, sodium is often discussed in terms of its concentration in the blood, as measured by serum sodium levels. The normal range for serum sodium is typically between 135 and 145 milliequivalents per liter (mEq/L).

Sodium plays a number of important roles in the body, including:

* Regulating fluid balance: Sodium helps to regulate the amount of water in and around your cells, which is important for maintaining normal blood pressure and preventing dehydration.
* Facilitating nerve impulse transmission: Sodium is involved in the generation and transmission of electrical signals in the nervous system, which is necessary for proper muscle function and coordination.
* Assisting with muscle contraction: Sodium helps to regulate muscle contractions by interacting with other minerals such as calcium and potassium.

Low sodium levels (hyponatremia) can cause symptoms such as confusion, seizures, and coma, while high sodium levels (hypernatremia) can lead to symptoms such as weakness, muscle cramps, and seizures. Both conditions require medical treatment to correct.

Emission computed tomography (ECT) is a type of tomographic imaging technique in which an emission signal from within the body is detected to create cross-sectional images of that signal's distribution. In Emission-Computed Tomography (ECT), a radionuclide is introduced into the body, usually through injection, inhalation or ingestion. The radionuclide emits gamma rays that are then detected by external gamma cameras.

The data collected from these cameras is then used to create cross-sectional images of the distribution of the radiopharmaceutical within the body. This allows for the identification and quantification of functional information about specific organs or systems within the body, such as blood flow, metabolic activity, or receptor density.

One common type of Emission-Computed Tomography is Single Photon Emission Computed Tomography (SPECT), which uses a single gamma camera that rotates around the patient to collect data from multiple angles. Another type is Positron Emission Tomography (PET), which uses positron-emitting radionuclides and detects the coincident gamma rays emitted by the annihilation of positrons and electrons.

Overall, ECT is a valuable tool in medical imaging for diagnosing and monitoring various diseases, including cancer, heart disease, and neurological disorders.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

Polyamines are organic compounds with more than one amino group (-NH2) and at least one carbon atom bonded to two or more amino groups. They are found in various tissues and fluids of living organisms and play important roles in many biological processes, such as cell growth, differentiation, and apoptosis (programmed cell death). Polyamines are also involved in the regulation of ion channels and transporters, DNA replication and gene expression. The most common polyamines found in mammalian cells are putrescine, spermidine, and spermine. They are derived from the decarboxylation of amino acids such as ornithine and methionine. Abnormal levels of polyamines have been associated with various pathological conditions, including cancer and neurodegenerative diseases.

Dietary proteins are sources of protein that come from the foods we eat. Protein is an essential nutrient for the human body, required for various bodily functions such as growth, repair, and immune function. Dietary proteins are broken down into amino acids during digestion, which are then absorbed and used to synthesize new proteins in the body.

Dietary proteins can be classified as complete or incomplete based on their essential amino acid content. Complete proteins contain all nine essential amino acids that cannot be produced by the human body and must be obtained through the diet. Examples of complete protein sources include meat, poultry, fish, eggs, dairy products, soy, and quinoa.

Incomplete proteins lack one or more essential amino acids and are typically found in plant-based foods such as grains, legumes, nuts, and seeds. However, by combining different incomplete protein sources, it is possible to obtain all the essential amino acids needed for a complete protein diet. This concept is known as complementary proteins.

It's important to note that while dietary proteins are essential for good health, excessive protein intake can have negative effects on the body, such as increased stress on the kidneys and bones. Therefore, it's recommended to consume protein in moderation as part of a balanced and varied diet.

A bioreactor is a device or system that supports and controls the conditions necessary for biological organisms, cells, or tissues to grow and perform their specific functions. It provides a controlled environment with appropriate temperature, pH, nutrients, and other factors required for the desired biological process to occur. Bioreactors are widely used in various fields such as biotechnology, pharmaceuticals, agriculture, and environmental science for applications like production of therapeutic proteins, vaccines, biofuels, enzymes, and wastewater treatment.

"Phosphorus Radioisotopes". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-04-08. "phosphorus-33 atom (CHEBI:37973)". www.ebi.ac.uk. ... Although phosphorus (15P) has 22 isotopes from 26P to 47P, only 31P is stable; as such, phosphorus is considered a monoisotopic ... Phosphorus isotopes data from The Berkeley Laboratory Isotopes Project's "Standard Atomic Weights: Phosphorus". CIAAW. 2013. ... "Phosphorus-32". "Phosphorus 33 (P-33)". (Articles with short description, Short description is different from Wikidata, ...
Singh, B., Singh, J., & Kaur, A. (2013). Applications of Radioisotopes in Agriculture. International Journal of Biotechnology ... Phosphorus-32 (32P) is a radioactive isotope of phosphorus. The nucleus of phosphorus-32 contains 15 protons and 17 neutrons, ... one more neutron than the most common isotope of phosphorus, phosphorus-31. Phosphorus-32 only exists in small quantities on ... Phosphorus is found in many organic molecules and so phosphorus-32 has many applications in medicine, biochemistry, and ...
Some of these radioisotopes are tritium, carbon-14 and phosphorus-32. Here is a list of radioisotopes formed by the action of ... This radioisotope can be released from the nuclear fuel cycle; this is the radioisotope responsible for the majority of the ... In addition some natural radioisotopes are present. A recent paper reports the levels of long-lived radioisotopes in the ... Just because a radioisotope lands on the surface of the soil, does not mean it will enter the human food chain. After release ...
Creager, Angela N.H. (March 2009). "Phosphorus-32 in the Phage Group: radioisotopes as historical tracers of molecular biology ... While at Chicago, Kozloff and Frank Putnam reported the then-surprising discovery that a fraction of the phosphorus found in ...
The half-life of phosphorus-32 is 14.2 days, and its maximum specific activity is 9,131 kCi/mol (337.8 PBq/mol). Phosphorus-33 ... The decay of radioisotopes may limit the shelf life of a reagent, requiring its replacement and thus increasing expenses. ... A disadvantage is its higher cost compared to phosphorus-32, as most of the bombarded phosphorus-31 will have acquired only one ... sulfur-35 and phosphorus-33 are in the window of 361-660; and phosphorus-32 is in the window of 661-1024.[citation needed] In ...
Some of the well-known naturally-occurring radioisotopes are tritium, carbon-14, and phosphorus-32. The timing of their ... In addition to the above light elements, tritium and isotopes of aluminium, carbon (carbon-14), phosphorus (phosphorus-32), ...
Radioisotopes of hydrogen, carbon, phosphorus, sulfur, and iodine have been used extensively to trace the path of biochemical ... 99mTc is a very versatile radioisotope, and is the most commonly used radioisotope tracer in medicine. It is easy to produce in ... In biological contexts, use of radioisotope tracers are sometimes called radioisotope feeding experiments. ... The commonly used radioisotopes have short half lives and so do not occur in nature in large amounts. They are produced by ...
Brucer told a conference that the use of radio-isotopes of iodine, gold and phosphorus was becoming increasingly commonplace. ... They were given atomic "cocktails" to drink and injections of radio-isotopes, and became temporarily radioactive. While not ... 50,000 units of radio-gold and 13,000 units of radio-phosphorus each month. In 1956, Brucer said of progress in his field: ... and was acting as an editor of the International Journal of Applied Radiation and Radioisotopes. In 1967, Brucer was appointed ...
Injections of certain radioisotopes, such as strontium-89, phosphorus-32, or samarium-153, also target bone metastases and may ...
... of sulfur-32 or from phosphorus-31 by neutron capture. Nickel-63 is a radioisotope of nickel that can be used as an energy ... Phosphorus-32 is a short-lived high energy beta emitter, which is used in research in radiotracers. It has a half-life of 14 ... It is also used as a thermal power source in radioisotope thermoelectric generator (RTG) power packs. These use heat produced ... Phosphorus-32 can be made by the neutron irradiation (np reaction) ...
The X-10 reactor at Oak Ridge was used to produce radioisotopes such as cobalt-60, phosphorus-32, sulfur-35, and carbon-14. As ... A History of Radioisotopes in Science and Medicine (University of Chicago Press, 2013) on the use of radioisotopes in science ... Natural radioisotopes were used as tracers to track atoms and illuminate biological processes in living creatures and ... Bud, Robert (August 2015). "Angela N. H. Creager, Life Atomic: A History of Radioisotopes in Science and Medicine". Social ...
Subsequent shipments of radioisotopes, primarily iodine-131, phosphorus-32, carbon-14, and molybdenum-99/technetium-99m, were ... A radioisotope building, a steam plant, and other structures were added in April 1946 to support the laboratory's peacetime ... "Peacetime use of radioisotopes at Oak Ridge cited as Chemical Landmark". American Chemical Society. February 25, 2008. ... Creager, Angela N. H. (2013). Life Atomic: A History of Radioisotopes in Science and Medicine. University of Chicago Press. ...
Starting in mid-1946, Oak Ridge began distributing radioisotopes to hospitals and universities, primarily iodine-131 and ... phosphorus-32 for cancer diagnosis and treatment. Isotopes were also used in biological, industrial and agricultural research. ... which used the short-lived radioisotope lanthanum-140, a potent source of gamma radiation. The gamma ray source was placed in ...
It was the third medical radioisotope, after phosphorus-32 and iodine-131 introduced respectively by John H. Lawrence and ... The bones are largely composed of calcium and phosphorus in the form of tricalcium phosphate. W. Wesley Campbell and David M. ... For this reason, the metabolism of calcium attracted very early the interest of physicians looking for applying radioisotopes ... His autoradiographies of animals or organs after administration of strontium-89 or phosphorus-32 started the development of ...
Tritium Beryllium-7 Beryllium-10 Carbon-14 Fluorine-18 Sodium-22 Sodium-24 Magnesium-28 Silicon-31 Silicon-32 Phosphorus-32 ... A trace radioisotope is a radioisotope that occurs naturally in trace amounts (i.e. extremely small). Generally speaking, trace ... Trace radioisotopes are therefore present only because they are continually produced on Earth by natural processes. Natural ... radioisotopes have half-lives that are short in comparison with the age of the Earth, since primordial nuclides tend to occur ...
For physicians and radiation safety officers, activation of sodium in the human body to sodium-24, and phosphorus to phosphorus ... Salted bomb Table of nuclides Manual for reactor produced radioisotopes from the International Atomic Energy Agency Neeb, Karl ... as a result of the production of neutron-rich radioisotopes.[citation needed] Some atoms require more than one neutron to ... to trigger fractional transmutation of Si atoms into phosphorus (P) and therefore doping it into n-type silicon : 366 Si 14 30 ...
... like phosphorus and sulfur, fairly abundant for minor minerals. The major metals such as iron, lead and tin are commonplace.[ ... TV screens and in radio isotopes. Demand for these metals appeared to be increasing as computers and mobile phones became more ... Phosphorus, rhodium, molybdenum, manganese, vanadium and palladium are used in high grade steels, oil based lubricants, ...
... beta-emitting radioisotope, such as phosphorus 32, in large-scale field tests of fertilizers, (2) the use of radioisotopes such ... The Radioisotope, Parts ?? - XIII PMF 5147A (195?) - The Radioisotope - Part ?? PMF 5147B (1952) - The Radioisotope - Part XII ... The Radioisotope - Part XIII: General Sciences; The radioisotope as a research tool that is adaptable to tracer investigations ... The Radioisotope, Parts I - VI PMF 5145A (1951) - The Radioisotope - Part I: Fundamentals of Radioactivity; This introduction ...
... nitrogen radioisotopes MeSH D01.496.625.600 - oxygen radioisotopes MeSH D01.496.669.604 - phosphorus radioisotopes MeSH D01.496 ... nitrogen radioisotopes MeSH D01.496.749.635 - oxygen radioisotopes MeSH D01.496.749.658 - phosphorus radioisotopes MeSH D01.496 ... iron radioisotopes MeSH D01.496.749.540 - krypton radioisotopes MeSH D01.496.749.560 - lead radioisotopes MeSH D01.496.749.590 ... xenon radioisotopes MeSH D01.496.749.960 - yttrium radioisotopes MeSH D01.496.749.980 - zinc radioisotopes MeSH D01.496.807.800 ...
Non-mononuclidic elements are marked with an asterisk, and the long-lived primordial radioisotope given. In two cases (indium ... Beryllium-9 Fluorine-19 Sodium-23 Aluminium-27 Phosphorus-31 Scandium-45 Vanadium-51* naturally occurs with 0.25% of ...
Chicago U.P. (1st ed 1955; 3rd ed 1968 ISBN 0-226-56073-2) Radioisotopes and bone: a symposium organized by the Council for ... Blackwell (1962) Calcium and phosphorus metabolism in man and animals with special reference to pregnancy and lactation. ...
The soil should have available 89 to 135 kg/ha of nitrogen, 46 kg/ha phosphorus, 67 kg/ha potassium, and 17 kg/ha sulfur. ... the process of clearing radioisotopes and a variety of other toxins from the soil, water, and air. Hemp crops are tall, have ... Hemp can be used as a "mop crop" to clear impurities out of wastewater, such as sewage effluent, excessive phosphorus from ... Hemp seeds are a rich source of dietary fiber (20% DV), B vitamins, and the dietary minerals manganese (362% DV), phosphorus ( ...
OPAL is able to produce four times as many radioisotopes for nuclear medicine treatments as the old HIFAR reactor, and a wider ... technique and the delay neutron activation technique Irradiation of silicon ingots in order to dope them with phosphorus and ... The main reactor uses are: Irradiation of target materials to produce radioisotopes for medical and industrial applications ... OPAL is the centrepiece of the facilities at ANSTO, providing radiopharmaceutical and radioisotope production, irradiation ...
Notes: The main uses of the current OPAL reactor are: Irradiation of target materials to produce radioisotopes for medical and ... technique and the delay neutron activation technique Irradiation of silicon ingots in order to dope them with phosphorus and ...
"Phosphorus Deoxidized Arsenical Copper" with an arsenic content of 0.3% has an increased corrosion stability in certain ... As of 2003, at least 33 radioisotopes have also been synthesized, ranging in atomic mass from 60 to 92. The most stable of ... In 2011, it was postulated that a strain of Halomonadaceae could be grown in the absence of phosphorus if that element were ... Black arsenic is similar in structure to black phosphorus. Black arsenic can also be formed by cooling vapor at around 100-220 ...
... radioisotope Radium Radon Radon difluoride Raman spectroscopy Raoult's law Redox Reduction Reflux Reversible reaction Rhazes ... Mitchell Peter Debye pH phases of matter Phenacite phenol phenyl Phlogopite Phosphorite Phosphorus Phosphoric acid Phthalates ... Svante Arrhenius Syenite Sylvite synthetic radioisotope systematic element name Tabun Talc Talcum Tantalite Tantalum Tanzanite ...
Phosphorus and antimony oxides and their reaction products can be formed from some fire retardant additives, increasing smoke ... Deposited hot particles of radioactive fallout and bioaccumulated radioisotopes can be reintroduced into the atmosphere by ... Phosphorus-based and halogen-based flame retardants decrease production of smoke. Higher degree of cross-linking between the ...
Some bacteria use phosphonates as a phosphorus source for growth. Aminophosphonates can also be used as sole nitrogen source by ... Chelators for Copper Radioisotopes with Fast Complexation". Inorganic Chemistry. 59 (12): 8432-8443. doi:10.1021/acs.inorgchem. ... Phosphonates feature tetrahedral phosphorus centers. They are structurally closely related to (and often prepared from) ... "Phosphorus Compounds, Organic," in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2008. doi:10.1002/ ...
The exotic atom muonium (symbol Mu), composed of an antimuon and an electron, can also be considered a light radioisotope of ... but the symbol P is already in use for phosphorus and thus is not available for protium. In its nomenclatural guidelines, the ...
One biological application is the study of DNA using radioactive phosphorus-32. In these experiments, stable phosphorus is ... Radiochemistry includes the study of both natural and man-made radioisotopes. All radioisotopes are unstable isotopes of ... Radiochemistry also includes the study of the behaviour of radioisotopes in the environment; for instance, a forest or grass ... the action of cosmic rays on the air is responsible for the formation of radioisotopes (such as 14C and 32P), the decay of ...
"Phosphorus Radioisotopes". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-04-08. "phosphorus-33 atom (CHEBI:37973)". www.ebi.ac.uk. ... Although phosphorus (15P) has 22 isotopes from 26P to 47P, only 31P is stable; as such, phosphorus is considered a monoisotopic ... Phosphorus isotopes data from The Berkeley Laboratory Isotopes Projects "Standard Atomic Weights: Phosphorus". CIAAW. 2013. ... "Phosphorus-32". "Phosphorus 33 (P-33)". (Articles with short description, Short description is different from Wikidata, ...
Radioisotopes are placed into the cystic portions of the craniopharyngioma. Phosphorus-32 (32P), colloidal gold-198, colloidal ... Management of cystic craniopharyngiomas with phosphorus-32 intracavitary irradiation. Neurosurgery. 2004 Apr. 54 (4):813-20; ...
1934: Frederic and Irene Joliot-Curie artificially produce radioisotopes. *1936: John Lawrence uses phosphorus-32 to treat ...
1934: Frederic and Irene Joliot-Curie artificially produce radioisotopes. *1936: John Lawrence uses phosphorus-32 to treat ...
Phosphorus. 15 P 30.973762000 Phosphorus See more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a ... Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word ... white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus ... The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non- ...
Biomolecules can be "tagged" with a radio isotope to allow for the study of very dilute samples. == Biological membranes and [[ ... Allotropes of phosphorus == {{Image,Phosphorus P4 atomic structure.jpg,right,200px,Structure of white phosphorus.}} Both ... Glow of phosphorus== In the dark pure white phosphorus glows, which explains the name of the element. This greenish glow ... Antoine Lavoisier]] recognized phosphorus as an element in 1777. Bone ash was the major source of phosphorus until the 1840s. ...
Kholodov, V.N and Butuzova, G. Yu, Problems of iron and phosphorus geochemistry in the Precambrian, Lithology and Mineral ... Austin, S.A., Do radioisotope clocks need repair? Testing the assumptions of isochron dating using K-Ar, Rb-Sr, Sm-Nd, and Pb- ... Baumgardner, J., Do radioisotope methods yield trustworthy relative ages for the earths rocks?, J. Creation 26(3):68-75, 2012 ... Snelling, A.A., Isochron discordances and the role of inheritance and mixing of radioisotopes in the mantle and crust; in: ...
Colonies were either fed with artemia or supplied with nitrogen- and phosphorus-enriched seawater. We measured DOC and DON ... from corals using the high temperature catalytic oxidation method and DOC release as 14C-photosynthate using a radioisotope ...
This show that the radio-phosphorus content in human blood falls after only 2 hours to just 2% of its original amount as it ... He also discovered, with Dirk Coster, the element hafnium (1923). He published Adventures in Radioisotope Research in two ... For example, a radioactive isotope of phosphorus, prepared in solutions of sodium phosphate can be injected into animals and ... changes places with the phosphorus atoms within the tissues, organs and skeleton. ...
Radioisotopes in Medicine. This book explains the following topics: What Is Radiation, What Is Radioactivity, What Are ... Phosphorus and Sodium. ... Radioisotopes, How Are Radioisotopes Used,What Do We Mean by ...
Most of the orders were for iodine-131 and phosphorus-32, which were used in the diagnosis and treatment of cancer. In addition ... Starting in mid-1946, Oak Ridge began distributing radioisotopes to hospitals and universities. ...
The T1 relaxation times of the phosphorus metabolites in human heart muscle measurable by 31P-MR spectra were determined in 12 ... Phosphorus, Phosphorus Radioisotopes, Time Factors ... The T1 relaxation times of the phosphorus metabolites in human ... The direct measurement of the spin-grid-relaxation times of phosphorus metabolites in the human myocardium]. ... The direct measurement of the spin-grid-relaxation times of phosphorus metabolites in the human myocardium]. ...
Phosphorus Radioisotopes. Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic ... Reverse-PhasePhospholipidsViscoelastic SubstancesCarbohydrate ConformationOligosaccharidesLiverPhosphorus RadioisotopesDrug ... Radioisotope Dilution Technique. Method for assessing flow through a system by injection of a known quantity of radionuclide ... Carbon Radioisotopes. Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10 ...
Phosphorus Radioisotopes (MeSH) * Tumor Cells, Cultured (MeSH) published in * Anti-Cancer Drugs: international journal on anti- ...
Experimentation involving animals and radioisotopes is common in molecu- lar biology today. Use of radioisotopes in or with ... such as those from phosphorus- 32, can travel up to 30 ft (9 m), but beta particles from tritium (hydrogen-3) travel only 0.02 ... The use of radioisotopes is strictly controlled by the US Nuclear Regu- latory Commission (US Congress 1971). Investigators ... Beta particles are electrons that are emitted with very high energy from many radioisotopes. Positively charged counterparts of ...
... chemical binding of radioisotopes to L1 amino acids; and/or 4) chemical binding of radioisotopes to L1 and L2 amino acids. ... phosphorus-32, boron-10, actinium-225, ismuth-213, lead-212, bismuth-212, polonium-212, thallium-208, Pb-208. ... Examples of radioisotopes that may be used with the methods described herein include, but are not limited to, lutetium-177 ( ... In some embodiments, radioisotopes are useful to treat cancer by killing cancer cells (for example by inducing apoptosis). In ...
Radioisotopes such as phosphorus-32, carbon-14, sodium-24 and iodine-131 emit radiations. Thus, detectors like Geiger-Müller ... Radioisotopes are used in agricultural, medicinal, archaeological and industrial fields.. Some examples of the various uses of ... Isotope Phosphorus-32 or Nitrogen-15 used to traces the rate of nutrient absorptions in plants. ...
The calcium and phosphorus in bones and teeth stay put longer,... To continue reading: or Log-In ... Aebersold based his conclusion on experiments with radioisotopes, which trace the movements of chemical elements in and out of ...
Erythrocytes, Humans, In Vitro Techniques, Kinetics, Mathematics, Models, Biological, Phosphates, Phosphorus Radioisotopes, ...
Radioisotopes are placed into the cystic portions of the craniopharyngioma. Phosphorus-32 (32 P), colloidal gold-198, colloidal ... Cyst aspiration combined with intracavitary phosphorus-32 (32 P) instillation is an alternative to traditional surgical ... Management of cystic craniopharyngiomas with phosphorus-32 intracavitary irradiation. Neurosurgery. 2004 Apr. 54(4):813-20; ...
3. Use of Radioisotopes. Radioisotopes offer various applications in the industrial sector, particularly in detection ... and phosphorus. ... have been releasing radioisotopes into the water for decades. ... and other radioisotopes from hospitals and laboratories. ...
Phosphorus Radioisotopes, RNA, Messenger, Rats, Scintillation Counting ...
Phosphorus Radioisotopes, Predictive Value of Tests, Stroke ...
The significance of the uptake of radioisotopes by fresh-water fishes / Richard F. Foster ; Investigation of the effects of ... The toxicity of organic phosphorus and chlorinated hydrocarbon insecticides to fish / Croswell Henderson, Q. H. Pickering, and ...
This objective is addressed using (i) thorium radioisotopes… ... Scavenging and Transport of Thorium Radioisotopes in the North ... Interactions of Cadmium, Zinc, and Phosphorus in Marine Synechococcus: Field Uptake, Physiological and Proteomic Studies ... Scavenging and Transport of Thorium Radioisotopes in the North Atlantic Ocean. *Radium Isotopes as Tracers of Boundary Inputs ... Scavenging and Transport of Thorium Radioisotopes in the North Atlantic Ocean. Paul Lerner, Ph.D., 2018. Olivier Marchal, Co- ...
A. In case of poisoning with toxins (chlorine, sublimate, phosphorus, aniline dyes). ... 1) excretory urography 2) retrograde pyeloureterography 3) radioisotope renography 4) aortography 5) chromocytoscopy. Choose ...
Krypton Radioisotopes. *Lead Radioisotopes. *Mercury Radioisotopes. *Nitrogen Radioisotopes. *Oxygen Radioisotopes. *Phosphorus ... "Cesium Radioisotopes" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH (Medical ... This graph shows the total number of publications written about "Cesium Radioisotopes" by people in this website by year, and ... Below are the most recent publications written about "Cesium Radioisotopes" by people in Profiles. ...
... particularly for phosphorus. With global phosphorus supplies dwindling and persistent pollution problems from the nutrient, ... utilizing the radioisotope 33P in order to achieve a real-time view of P transport by AMF hyphae. Plantago lanceolata, also ... Scientists set out to better understand the conditions that promote AMFs ability to transfer phosphorus (P) to plants by ...
Phosphorus, Precancerous, Radioisotope, Radioisotopes, Sensitivity, Sequence, Specificity, Support, Technique, Transformation, ... Phosphorus, Precancerous, Radioisotope, Radioisotopes, Sensitivity, Sequence, Specificity, Support, Technique, Transformation, ...
  • Phosphorus is a highly-reactive non- metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon . (americanelements.com)
  • Structure of white phosphorus. (citizendium.org)
  • White phosphorus and yellow arsenic both have four atoms arranged in a tetrahedral structure in which each atom is bound to the other three atoms by a single bond. (citizendium.org)
  • The toxicity of white phosphorus led to its discontinued use in matches. (citizendium.org)
  • Its density (2.34 kg/L) is higher than that of white phosphorus. (citizendium.org)
  • Phosphorus, like nitrogen, is trivalent in this molecule. (citizendium.org)
  • Colonies were either fed with artemia or supplied with nitrogen- and phosphorus-enriched seawater. (int-res.com)
  • Isotope Phosphorus-32 or Nitrogen-15 used to traces the rate of nutrient absorptions in plants. (cikgunaza.com)
  • Raja Ganeshram is based at the University of Edinburgh and studies changes in marine biogeochemical cycles of carbon, nitrogen, silicon and phosphorus due to facets of global changes. (changing-arctic-ocean.ac.uk)
  • Nitrogen trifluoride: A new reactant gas in CRIMS (Chemical Reaction Interface Mass Spectrometry) for detection of phosphorus, deuterium, chlorine, and sulfur. (sisweb.com)
  • The dataset contains sediment core analyses (extraction for total phosphorus, aluminum, iron, manganese, sodium, sulfur, and potassium, sequential chemical extractions of phosphorus species, and pigment concentrations) along with radioisotope-derived sediment core dating results (sediment age and sediment accumulate rates). (frdr-dfdr.ca)
  • Radioisotopes such as phosphorus-32, carbon-14, sodium-24 and iodine-131 emit radiations. (cikgunaza.com)
  • Has 1 halo proton 32P is a radioactive isotope of phosphorus with relative atomic mass 31.973907 and half-life of 14.26 days. (wikipedia.org)
  • 32P is a radioactive isotope of phosphorus with beta particle-emitting radiocytotoxic activity. (wikipedia.org)
  • At low exposure levels (below 100 mg/kg/day), ingestion of stable strontium poses no harm to organisms with access to adequate calcium, phosphorus, and vitamin D (ATSDR 2001e). (cdc.gov)
  • At higher exposure levels, especially under conditions of inadequate calcium, phosphorus, and vitamin D, stable strontium will interfere with normal bone development, causing `strontium rickets' of variable severity. (cdc.gov)
  • Radioisotopes or radioactivity isotopes are isotopes that are made artificially by bombarding neutrons or protons or deuterons at elements. (stoplearn.com)
  • His expertise is in applying stable and radioisotope methods to document and understand the biogeochemical consequences of polar sea ice loss, ocean de-oxygenation and eutrophication. (changing-arctic-ocean.ac.uk)
  • Thus phosphorus nuclei which are not stable but radioactive can be produced by bombarding non-radioactive aluminium with α-particles. (stoplearn.com)
  • The radioactive phosphorus nuclei then disintegrates spontaneously into stable Silicon atoms. (stoplearn.com)
  • Both the white and red allotropes of phosphorus are insoluble in water. (citizendium.org)
  • Phosphorus and arsenic share many chemical properties. (citizendium.org)
  • Both phosphorus and arsenic have many [[allotrope]]s, but only the white and red forms predominate. (citizendium.org)
  • The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. (americanelements.com)
  • Phosphorous was first recognized as an element by Hennig Brand in 1669 its name ( phosphorus mirabilis , or "bearer of light") was inspired from the brilliant glow emitted by its distillation. (americanelements.com)
  • Radioisotopes are used in agricultural, medicinal, archaeological and industrial fields. (cikgunaza.com)
  • We measured DOC and DON fluxes from corals using the high temperature catalytic oxidation method and DOC release as 14 C-photosynthate using a radioisotope technique. (int-res.com)
  • Dr. Aebersold based his conclusion on experiments with radioisotopes, which trace the movements of chemical elements in and out of the body. (time.com)
  • However there are cases where a shielding becomes necessary against secondary X or gamma rays radiations .This is the case for example of phosphorus-32, a radioisotope used in medicine for which the maximum beta electron energy of 1.7 MeV is large. (eu.com)
  • In this sense, the fact that the injected radioisotope -specifically Phosphorus 32 - emits a beta radiation is very important because the side effects are minor and the tumor lesion will be receiving this millimeter radiation controlled for several months . (oncosil.com)
  • Cesium Radioisotopes" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus, MeSH (Medical Subject Headings) . (ucdenver.edu)
  • periodic table]], phosphorus is never found as a pure element in nature, but only in combination with other elements. (citizendium.org)
  • Black phosphorus is made of even larger aggregates and is the least reactive allotrope. (citizendium.org)
  • This graph shows the total number of publications written about "Cesium Radioisotopes" by people in this website by year, and whether "Cesium Radioisotopes" was a major or minor topic of these publications. (ucdenver.edu)
  • Eco&Sols is hosted by the Radioisotope Laboratory (LRI) at the University of Antananarivo. (umr-ecosols.fr)
  • Collectively, my findings suggest that spatial variations in Th radioisotope activities observed in the North Atlantic partly reflect variations in the rate at which Th is removed from the water column. (whoi.edu)
  • Land use changes and salinization: Impacts on lake phosphorus cycling and water quality. (frdr-dfdr.ca)
  • Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. (americanelements.com)
  • While a number of radioisotopes of strontium exist, the most common are 89Sr and 90Sr. (cdc.gov)
  • Not only are radioisotopes expensive and difficult to use, but they cannot be employed in some applications, such as the analysis of drug metabolism in children. (sisweb.com)