A class of enzymes that catalyze the hydrolysis of phosphoglycerides or glycerophosphatidates. EC 3.1.-.
Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
Phospholipases that hydrolyze the acyl group attached to the 2-position of PHOSPHOGLYCERIDES.
A phospholipase that hydrolyzes the acyl group attached to the 1-position of PHOSPHOGLYCERIDES.
A subcategory of secreted phospholipases A2 that includes enzymes isolated from a variety of sources. The creation of this group is based upon similarities in the structural determinants of the enzymes including a negatively charged carboxy-terminal segment.
A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS.
A secreted phospholipase A2 subtype that contains a interfacial-binding region with specificity for PHOSPHATIDYLCHOLINE. This enzyme group may play a role in eliciting ARACHIDONIC ACID release from intact cellular membranes and from LOW DENSITY LIPOPROTEINS. Members of this group bind specifically to PHOSPHOLIPASE A2 RECEPTORS.
A subcategory of phospholipases A2 that are secreted from cells. They are 14 kDa proteins containing multiple disulfide-bonds and access their substrate via an interfacial binding site that interacts with phospholipid membranes. In addition specific PHOSPHOLIPASE A2 RECEPTORS can bind to and internalize the enzymes.
A subcategory of secreted phospholipases A2 that includes enzymes isolated from ELAPID VENOMS and pancreatic sources. The creation of this group is based upon similarities in the structural determinants of the enzymes.
An enzyme that catalyzes the hydrolysis of a single fatty acid ester bond in lysoglycerophosphatidates with the formation of glyceryl phosphatidates and a fatty acid. EC 3.1.1.5.
A subcategory of secreted phospholipases A2 that contains both a negatively charged carboxy-terminal segment and interfacial-binding region specific for PHOSPHATIDYL CHOLINE-containing membranes. This enzyme group may play a role in the release of ARACHIDONIC ACID from phospholipid membranes.
Solutions or mixtures of toxic and nontoxic substances elaborated by snake (Ophidia) salivary glands for the purpose of killing prey or disabling predators and delivered by grooved or hollow fangs. They usually contain enzymes, toxins, and other factors.
An enzyme found mostly in plant tissue. It hydrolyzes glycerophosphatidates with the formation of a phosphatidic acid and a nitrogenous base such as choline. This enzyme also catalyzes transphosphatidylation reactions. EC 3.1.4.4.
Venoms from snakes of the subfamily Crotalinae or pit vipers, found mostly in the Americas. They include the rattlesnake, cottonmouth, fer-de-lance, bushmaster, and American copperhead. Their venoms contain nontoxic proteins, cardio-, hemo-, cyto-, and neurotoxins, and many enzymes, especially phospholipases A. Many of the toxins have been characterized.
Cell surface receptors that bind to and internalize SECRETED PHOSPHOLIPASES A2. Although primarily acting as scavenger receptors, these proteins may also play a role in intracellular signaling. Soluble forms of phospholipase A2 receptors occur through the action of proteases and may a play a role in the inhibition of extracellular phospholipase activity.
A calcium-independent phospholipase A2 group that may play a role in membrane phospholipid remodeling and homeostasis by controling the levels of PHOSPHATIDYLCHOLINE in mammalian cell membranes.
Venoms from snakes of the genus Naja (family Elapidae). They contain many specific proteins that have cytotoxic, hemolytic, neurotoxic, and other properties. Like other elapid venoms, they are rich in enzymes. They include cobramines and cobralysins.
A cytosolic phospholipase A2 group that plays an important role in the release of free ARACHIDONIC ACID, which in turn is metabolized to PROSTAGLANDINS by the CYCLOOXYGENASE pathway and to LEUKOTRIENES by the 5-LIPOXYGENASE pathway.
A family of snakes comprising three subfamilies: Azemiopinae (the mountain viper, the sole member of this subfamily), Viperinae (true vipers), and Crotalinae (pit vipers). They are widespread throughout the world, being found in the United States, Central and South America, Europe, Asia and Africa. Their venoms act on the blood (hemotoxic) as compared to the venom of elapids which act on the nervous system (neurotoxic). (Goin, Goin, and Zug, Introduction to Herpetology, 3d ed, pp333-36)
A genus of poisonous snakes of the VIPERIDAE family. About 50 species are known and all are found in tropical America and southern South America. Bothrops atrox is the fer-de-lance and B. jararaca is the jararaca. (Goin, Goin, and Zug, Introduction to Herpetology, 3d ed, p336)
Proteins obtained from species of REPTILES.
Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system.
Venoms from SNAKES of the viperid family. They tend to be less toxic than elapid or hydrophid venoms and act mainly on the vascular system, interfering with coagulation and capillary membrane integrity and are highly cytotoxic. They contain large amounts of several enzymes, other factors, and some toxins.
A specific complex of toxic proteins from the venom of Crotalus durissus terrificus (South American rattlesnake). It can be separated into a phospholipase A and crotapotin fragment; the latter consists of three different amino acid chains, potentiates the enzyme, and is specifically neurotoxic.
A subcategory of secreted phospholipases A2 with specificity for PHOSPHATIDYLETHANOLAMINES and PHOSPHATIDYLCHOLINE. It occurs as a component of VENOMS and as a mammalian secretory phospholipase A2. The creation of this group is based upon similarities in the structural determinants of the enzymes including a long amino-terminal domain, a conserved group III-specific domain, and a long carboxyl-terminal domain.
Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized.
Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to a choline moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and choline and 2 moles of fatty acids.
A family of extremely venomous snakes, comprising coral snakes, cobras, mambas, kraits, and sea snakes. They are widely distributed, being found in the southern United States, South America, Africa, southern Asia, Australia, and the Pacific Islands. The elapids include three subfamilies: Elapinae, Hydrophiinae, and Lauticaudinae. Like the viperids, they have venom fangs in the front part of the upper jaw. The mambas of Africa are the most dangerous of all snakes by virtue of their size, speed, and highly toxic venom. (Goin, Goin, and Zug, Introduction to Herpetology, 3d ed, p329-33)
An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes.
A subcategory of phospholipases A2 that occur in the CYTOSOL.
A subcategory of structurally-related phospholipases A2 that do not require calcium for activity.
The process of cleaving a chemical compound by the addition of a molecule of water.
Venoms obtained from Apis mellifera (honey bee) and related species. They contain various enzymes, polypeptide toxins, and other substances, some of which are allergenic or immunogenic or both. These venoms were formerly used in rheumatism to stimulate the pituitary-adrenal system.
A subclass of group I phospholipases A2 that includes enzymes isolated from ELAPID VENOMS.
Compounds that inhibit or block the activity of a PHOSPHOLIPASE A2 enzyme.
Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids.
A phosphorus-oxygen lyase found primarily in BACTERIA. The enzyme catalyzes the cleavage of a phosphoester linkage in 1-phosphatidyl-1D-myo-inositol to form 1D-myo-inositol 1,2-cyclic phosphate and diacylglycerol. The enzyme was formerly classified as a phosphoric diester hydrolase (EC 3.1.4.10) and is often referred to as a TYPE C PHOSPHOLIPASES. However it is now known that a cyclic phosphate is the final product of this enzyme and that water does not enter into the reaction.
Limbless REPTILES of the suborder Serpentes.
Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups.
Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
A species of rod-shaped bacteria that is a common soil saprophyte. Its spores are widespread and multiplication has been observed chiefly in foods. Contamination may lead to food poisoning.
A genus of snakes of the family VIPERIDAE, one of the pit vipers, so-called from the pit hollowing out the maxillary bone, opening between the eye and the nostril. They are distinctively American serpents. Most of the 25 recognized species are found in the southwestern United States and northern Mexico. Several species are found as far north as Canada and east of the Mississippi, including southern Appalachia. They are named for the jointed rattle (Greek krotalon) at the tip of their tail. (Goin, Goin, and Zug: Introduction to Herpetology, 3d ed; Moore: Poisonous Snakes of the World, 1980, p335)
Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
The rate dynamics in chemical or physical systems.
An acridine derivative formerly widely used as an antimalarial but superseded by chloroquine in recent years. It has also been used as an anthelmintic and in the treatment of giardiasis and malignant effusions. It is used in cell biological experiments as an inhibitor of phospholipase A2.
Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation.
A genus of snakes of the family VIPERIDAE. About 30 species are currently recognized, found in southeast Asia and adjacent island chains. The Okinawa habu frequently enters dwellings in search of rats and mice; the Chinese habu is often found in suburban and agricultural areas. They are quite irritable. (Moore: Poisonous Snakes of the World, 1980, p136)
Arachidonic acids are polyunsaturated fatty acids, specifically a type of omega-6 fatty acid, that are essential for human nutrition and play crucial roles in various biological processes, including inflammation, immunity, and cell signaling. They serve as precursors to eicosanoids, which are hormone-like substances that mediate a wide range of physiological responses.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A type C phospholipase with specificity towards PHOSPHATIDYLINOSITOLS that contain INOSITOL 1,4,5-TRISPHOSPHATE. Many of the enzymes listed under this classification are involved in intracellular signaling.
Keto-pyrans.
Derivatives of PHOSPHATIDYLCHOLINES obtained by their partial hydrolysis which removes one of the fatty acid moieties.
A subclass of group I phospholipases A2 that includes enzymes isolated from PANCREATIC JUICE. Members of this group have specificity for PHOSPHOLIPASE A2 RECEPTORS.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
Diglycerides are a type of glyceride, specifically a form of lipid, that contains two fatty acid chains linked to a glycerol molecule by ester bonds.
Thiones are organic compounds containing a sulfur atom bonded to two carbon atoms, often found in certain drugs and naturally occurring substances, which possess various pharmacological activities.
A genus of snakes of the family VIPERIDAE. It is distributed in West Pakistan, most of India, Burma, Ceylon, Thailand, southeast China, Taiwan, and a few islands of Indonesia. It hisses loudly when disturbed and strikes with great force and speed. Very prolific, it gives birth to 20-60 young. This viper is the leading cause of snakebite in India and Burma. (Moore: Poisonous Snakes of the World, 1980, p127)
Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components.
Derivatives of phosphatidic acid in which the hydrophobic regions are composed of two fatty acids and a polar alcohol is joined to the C-3 position of glycerol through a phosphodiester bond. They are named according to their polar head groups, such as phosphatidylcholine and phosphatidylethanolamine.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Isomeric forms and derivatives of butanol (C4H9OH).
Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS.
A phosphoinositide phospholipase C subtype that is primarily regulated by its association with HETEROTRIMERIC G-PROTEINS. It is structurally related to PHOSPHOLIPASE C DELTA with the addition of C-terminal extension of 400 residues.
Saturated indolizines that are fused six and five-membered rings with a nitrogen atom at the ring fusion. They are biosynthesized in PLANTS by cyclization of a LYSINE coupled to ACETYL COENZYME A. Many of them are naturally occurring ALKALOIDS.
Derivatives of PHOSPHATIDIC ACIDS that lack one of its fatty acyl chains due to its hydrolytic removal.
The most common etiologic agent of GAS GANGRENE. It is differentiable into several distinct types based on the distribution of twelve different toxins.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured. Such rupture is supposed to be under metabolic (hormonal) control. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
Cyclic hydrocarbons that contain multiple rings and share one or more atoms.
A class of compounds named after and generally derived from C20 fatty acids (EICOSANOIC ACIDS) that includes PROSTAGLANDINS; LEUKOTRIENES; THROMBOXANES, and HYDROXYEICOSATETRAENOIC ACIDS. They have hormone-like effects mediated by specialized receptors (RECEPTORS, EICOSANOID).
Compounds containing carbohydrate or glycosyl groups linked to phosphatidylinositols. They anchor GPI-LINKED PROTEINS or polysaccharides to cell membranes.
A four carbon linear hydrocarbon that has a hydroxy group at position 1.
Poisonous animal secretions forming fluid mixtures of many different enzymes, toxins, and other substances. These substances are produced in specialized glands and secreted through specialized delivery systems (nematocysts, spines, fangs, etc.) for disabling prey or predator.
A nitrogen-free class of lipids present in animal and particularly plant tissues and composed of one mole of glycerol and 1 or 2 moles of phosphatidic acid. Members of this group differ from one another in the nature of the fatty acids released on hydrolysis.
The use of fluorescence spectrometry to obtain quantitative results for the FLUORESCENT ANTIBODY TECHNIQUE. One advantage over the other methods (e.g., radioimmunoassay) is its extreme sensitivity, with a detection limit on the order of tenths of microgram/liter.
Antibiotic complex produced by Streptomyces fradiae. It is composed of neomycins A, B, and C. It acts by inhibiting translation during protein synthesis.
A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4.
Indolizines are organic compounds that consist of a condensed pyridine and pyrrole ring structure, which can be found in certain natural and synthetic substances, and have been studied for their potential biological activities.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
A group of GLYCOLIPIDS in which the sugar group is GALACTOSE. They are distinguished from GLYCOSPHINGOLIPIDS in lacking nitrogen. They constitute the majority of MEMBRANE LIPIDS in PLANTS.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
GLYCEROPHOSPHOLIPIDS in which one of the two acyl chains is attached to glycerol with an ether alkenyl linkage instead of an ester as with the other glycerophospholipids.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism.
Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties.
A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS.
Acetophenones are organic compounds that contain a ketone functional group (carbonyl, >C=O) attached to a phenyl ring, making them a subclass of aromatic ketones with the general formula C6H5COCH3.
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
A species of gram-positive, rod-shaped bacteria widely distributed in nature. It has been isolated from sewage, soil, silage, and from feces of healthy animals and man. Infection with this bacterium leads to encephalitis, meningitis, endocarditis, and abortion.
The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity.
Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept.
Two-ring crystalline hydrocarbons isolated from coal tar. They are used as intermediates in chemical synthesis, as insect repellents, fungicides, lubricants, preservatives, and, formerly, as topical antiseptics.
Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)
An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems.
A lipoprotein-associated PHOSPHOLIPASE A2 which modulates the action of PLATELET ACTIVATING FACTOR by hydrolyzing the SN-2 ester bond to yield the biologically inactive lyso-platelet-activating factor. It has specificity for phospholipid substrates with short-chain residues at the SN-2 position, but inactive against long-chain phospholipids. Deficiency in this enzyme is associated with many diseases including ASTHMA, and HYPERCHOLESTEROLEMIA.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Chromatography on non-ionic gels without regard to the mechanism of solute discrimination.
Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID.
Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-.
Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
An enzyme that catalyzes the hydrolysis of sphingomyelin to ceramide (N-acylsphingosine) plus choline phosphate. A defect in this enzyme leads to NIEMANN-PICK DISEASE. EC 3.1.4.12.
A class of sphingolipids found largely in the brain and other nervous tissue. They contain phosphocholine or phosphoethanolamine as their polar head group so therefore are the only sphingolipids classified as PHOSPHOLIPIDS.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.
The sum of the weight of all the atoms in a molecule.
The principal cyclooxygenase metabolite of arachidonic acid. It is released upon activation of mast cells and is also synthesized by alveolar macrophages. Among its many biological actions, the most important are its bronchoconstrictor, platelet-activating-factor-inhibitory, and cytotoxic effects.
A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies.
Proteins prepared by recombinant DNA technology.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3.
Nonionic surfactant mixtures varying in the number of repeating ethoxy (oxy-1,2-ethanediyl) groups. They are used as detergents, emulsifiers, wetting agents, defoaming agents, etc. Octoxynol-9, the compound with 9 repeating ethoxy groups, is a spermatocide.
Any compound containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety such as an acylglycerol (see GLYCERIDES), a sphingoid, a ceramide (CERAMIDES) (N-acylsphingoid) or a prenyl phosphate. (From IUPAC's webpage)
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Established cell cultures that have the potential to propagate indefinitely.
An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. It is produced by glands on the tongue and by the pancreas and initiates the digestion of dietary fats. (From Dorland, 27th ed) EC 3.1.1.3.
The addition of an organic acid radical into a molecule.
The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa.
Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor.
Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to a serine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and serine and 2 moles of fatty acids.
Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163)

Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. (1/2788)

A novel and potent azetidinone inhibitor of the lipoprotein-associated phospholipase A2 (Lp-PLA2), i.e. platelet-activating factor acetylhydrolase, is described for the first time. This inhibitor, SB-222657 (Ki=40+/-3 nM, kobs/[I]=6. 6x10(5) M-1.s-1), is inactive against paraoxonase, is a poor inhibitor of lecithin:cholesterol acyltransferase and has been used to investigate the role of Lp-PLA2 in the oxidative modification of lipoproteins. Although pretreatment with SB-222657 did not affect the kinetics of low-density lipoprotein (LDL) oxidation by Cu2+ or an azo free-radical generator as determined by assay of lipid hydroperoxides (LOOHs), conjugated dienes and thiobarbituric acid-reacting substances, in both cases it inhibited the elevation in lysophosphatidylcholine content. Moreover, the significantly increased monocyte chemoattractant activity found in a non-esterified fatty acid fraction from LDL oxidized by Cu2+ was also prevented by pretreatment with SB-222657, with an IC50 value of 5.0+/-0.4 nM. The less potent diastereoisomer of SB-222657, SB-223777 (Ki=6.3+/-0.5 microM, kobs/[I]=1.6x10(4) M-1.s-1), was found to be significantly less active in both assays. Thus, in addition to generating lysophosphatidylcholine, a known biologically active lipid, these results demonstrate that Lp-PLA2 is capable of generating oxidized non-esterified fatty acid moieties that are also bioactive. These findings are consistent with our proposal that Lp-PLA2 has a predominantly pro-inflammatory role in atherogenesis. Finally, similar studies have demonstrated that a different situation exists during the oxidation of high-density lipoprotein, with enzyme(s) other than Lp-PLA2 apparently being responsible for generating lysophosphatidylcholine.  (+info)

Mechanisms of prostaglandin E2 release by intact cells expressing cyclooxygenase-2: evidence for a 'two-component' model. (2/2788)

Prostaglandin (PG) release in cells expressing constitutive cyclooxygenase-1 is known to be regulated by liberation of arachidonic acid by phospholipase A2 followed by metabolism by cyclooxygenase. However, the relative contribution of phospholipase A2 to the release of PGs in cells expressing cyclooxygenase-2 is not clear. We addressed this question by using radioimmunoassay to measure PGE2 release by human cells (A549) induced to express cyclooxygenase-2 (measured by Western blot analysis) by interleukin-1beta. Cells were either unstimulated or stimulated with agents known to activate phospholipase A2 (bradykinin, Des-Arg10-kallidin, or the calcium ionophore A23187) or treated with exogenous arachidonic acid. When cells were treated to express cyclooxygenase-2, the levels of PGE2 released over 15 min were undetectable; however, in the same cells stimulated with bradykinin, A23187, or arachidonic acid, large amounts of prostanoid were produced. Using selective inhibitors/antagonists, we found that the effects of bradykinin were mediated by B2 receptor activation and that prostanoid release was due to cyclooxygenase-2, and not cyclooxygenase-1, activity. In addition, we show that the release of PGE2 stimulated by either bradykinin, A23187, or arachidonic acid was inhibited by the phospholipase A2 inhibitor arachidonate trifluoromethyl ketone. Hence, we have demonstrated that PGE2 is released by two components: induction of cyclooxygenase-2 and supply of substrate, probably via activation of phospholipase A2. This is illustrated in A549 cells by a clear synergy between the cytokine interleukin-1beta and the kinin bradykinin.  (+info)

Pharmacology of LY315920/S-5920, [[3-(aminooxoacetyl)-2-ethyl-1- (phenylmethyl)-1H-indol-4-yl]oxy] acetate, a potent and selective secretory phospholipase A2 inhibitor: A new class of anti-inflammatory drugs, SPI. (3/2788)

LY315920 is a potent, selective inhibitor of recombinant human, group IIA, nonpancreatic secretory PLA2 (sPLA2). In a chromogenic isolated enzyme assay, LY315920 inhibited sPLA2 activity with an IC50 of 9 +/- 1 nM or 7.3 x 10(-6) mole fraction, which approached the stiochiometric limit of this assay. The true potency of LY315920 was defined using a deoxycholate/phosphatidylcholine assay with a mole fraction of 1.5 x 10(-6). LY315920 was 40-fold less active against human, group IB, pancreatic sPLA2 and was inactive against cytosolic PLA2 and the constitutive and inducible forms of cyclooxygenase. Human sPLA2-induced release of thromboxane A2 (TXA2) from isolated guinea pig lung bronchoalveolar lavage cells was inhibited by LY315920 with an IC50 of 0.79 microM. The release of TXA2 from these cells by N-formyl-methionyl-leucyl-phenylalanine or arachidonic acid was not inhibited. The i.v. administration of LY315920, 5 min before harvesting the bronchoalveolar lavage cells, resulted in the inhibition of sPLA2-induced production of TXA2 with an ED50 of 16.1 mg/kg. Challenge of guinea pig lung pleural strips with sPLA2 produced contractile responses that were suppressed in a concentration-dependent manner by LY315920 with an apparent KB of 83 +/- 14 nM. Contractile responses induced by arachidonic acid were not altered. Intravenous or oral administration of LY315920 to transgenic mice expressing the human sPLA2 protein inhibited serum sPLA2 activity in a dose-related manner over a 4-h time course. LY315920 is a potent and selective sPLA2 inhibitor and represents a new class of anti-inflammatory agent designated SPI. This agent is currently undergoing clinical evaluation and should help to define the role of sPLA2 in various inflammatory disease states.  (+info)

Cytosolic phospholipase A2 in rat decidual cells: evidence for its role in decidualization. (4/2788)

We investigated the existence and possible role of cytosolic phospholipase A2 (cPLA2) in rat decidualized uteri. PLA2 activity in the cytosol of a decidualized uterine horn, induced by intraluminal oil infusion, was significantly higher than that in contralateral intact horn. The activity was almost completely depressed by cPLA2 inhibitors including arachidonyl trifluoromethyl ketone (ATK). The immunoreactive signals for cPLA2 were intense in decidua and glandular epithelial cells. In vivo administration of ATK (0.1-100 microg) caused a dose-dependent inhibition of decidualization. These results show the presence of cPLA2 and its probable implication in decidualization in rat uterus.  (+info)

Modulation of acute and chronic inflammatory processes by cacospongionolide B, a novel inhibitor of human synovial phospholipase A2. (5/2788)

1. Cacospongionolide B is a novel marine metabolite isolated from the sponge Fasciospongia cavernosa. In in vitro studies, this compound inhibited phospholipase A2 (PLA2), showing selectivity for secretory PLA2 (sPLA2) versus cytosolic PLA2 (cPLA2), and its potency on the human synovial enzyme (group II) was similar to that of manoalide. 2. This activity was confirmed in vivo in the 8 h zymosan-injected rat air pouch, on the secretory enzyme accumulating in the pouch exudate. Cacospongionolide B, that is bioavailable when is given orally, reduced the elevated levels of sPLA2 present in paw homogenates of rats with adjuvant arthritis. 3. This marine metabolite showed topical anti-inflammatory activity on the mouse ear oedema induced by 12-O-tetradecanoylphorbol acetate (TPA) and decreased carrageenin paw oedema in mice after oral administration of 5, 10 or 20 mg kg(-1). 4. In the mouse air pouch injected with zymosan, cacospongionolide B administered into the pouch, induced a dose-dependent reduction in the levels of eicosanoids and tumour necrosis factor alpha (TNFalpha) in the exudates 4 h after the stimulus. It also had a weak effect on cell migration. 5. The inflammatory response of adjuvant arthritis was reduced by cacospongionolide B, which did not significantly affect eicosanoid levels in serum, paw or stomach homogenates and did not induce toxic effects. 6 Cacospongionolide B is a new inhibitor of sPLA2 in vitro and in vivo, with anti-inflammatory properties in acute and chronic inflammation. This marine metabolite was active after oral administration and able to modify TNFalpha levels, and may offer an interesting approach in the search for new anti-inflammatory agents.  (+info)

Identification and characterization of alkenyl hydrolase (lysoplasmalogenase) in microsomes and identification of a plasmalogen-active phospholipase A2 in cytosol of small intestinal epithelium. (6/2788)

A lysoplasmalogenase (EC 3.3.2.2; EC 3.3.2.5) that liberates free aldehyde from 1-alk-1'-enyl-sn-glycero-3-phospho-ethanolamine or -choline (lysoplasmalogen) was identified and characterized in rat gastrointestinal tract epithelial cells. Glycerophosphoethanolamine was produced in the reaction in equimolar amounts with the free aldehyde. The microsomal membrane associated enzyme was present throughout the length of the small intestines, with the highest activity in the jejunum and proximal ileum. The rate of alkenyl ether bond hydrolysis was dependent on the concentrations of microsomal protein and substrate, and was linear with respect to time. The enzyme hydrolyzed both ethanolamine- and choline-lysoplasmalogens with similar affinities; the Km values were 40 and 66 microM, respectively. The enzyme had no activity with 1-alk-1'-enyl-2-acyl-sn-glycero-3-phospho-ethanolamine or -choline (intact plasmalogen), thus indicating enzyme specificity for a free hydroxyl group at the sn-2 position. The specific activities were 70 nmol/min/mg protein and 57 nmol/min/mg protein, respectively, for ethanolamine- and choline-lysoplasmalogen. The pH optimum was between 6.8 and 7.4. The enzyme required no known cofactors and was not affected by low mM levels of Ca2+, Mg2+, EDTA, or EGTA. The detergents, Triton X-100, deoxycholate, and octyl glucoside inhibited the enzyme. The chemical and physical properties of the lysoplasmalogenase were very similar to those of the enzyme in liver and brain microsomes. In developmental studies the specific activities of the small intestinal and liver enzymes increased markedly, 11.1- and 3.4-fold, respectively, in the first approximately 40 days of postnatal life. A plasmalogen-active phospholipase A2 activity was identified in the cytosol of the small intestines (3.3 nmol/min/mg protein) and liver (0.3 nmol/min/mg protein) using a novel coupled enzyme assay with microsomal lysoplasmalogenase as the coupling enzyme.  (+info)

Tumor necrosis factor-alpha and ceramide induce cell death through different mechanisms in rat mesangial cells. (7/2788)

It has been proposed that ceramide acts as a cellular messenger to mediate tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis. Based on this hypothesis, it was postulated that resistance of some cells to TNF-alpha cytotoxicity was due to an insufficient production of ceramide on stimulation by TNF-alpha. The present study was initiated to investigate whether this was the case in mesangial cells, which normally are insensitive to TNF-alpha-induced apoptosis. Our results indicate that although C2 ceramide was toxic to mesangial cells, the cell death it induced differed both morphologically and biochemically from that induced by TNF-alpha in the presence of cycloheximide (CHX). The most apparent effect of C2 ceramide was to cause cells to swell, followed by disruption of the cell membrane. It is evident that C2 ceramide caused cell death by necrosis, whereas TNF-alpha in the presence of CHX killed the cells by apoptosis. C2 ceramide did not mimic the effects of TNF-alpha on the activation of c-Jun NH2-terminal protein kinase and nuclear factor-kappaB transcription factor. Although mitogen-activated protein kinase [extracellular signal-related kinase (ERK)] was activated by both C2 ceramide and TNF-alpha, such activation appeared to be mediated by different mechanisms as judged from the kinetics of ERK activation. Furthermore, the cleavage of cytosolic phospholipase A2 during cell death induced by C2 ceramide and by TNF-alpha in the presence of CHX showed distinctive patterns. The present study provides evidence that apoptosis and necrosis use distinctive signaling machinery to cause cell death.  (+info)

Endogenous platelet-activating factor is critically involved in effector functions of eosinophils stimulated with IL-5 or IgG. (8/2788)

Eosinophil activation and subsequent release of inflammatory mediators are implicated in the pathophysiology of allergic diseases. Eosinophils are activated by various classes of secretagogues, such as cytokines (e.g., IL-5), lipid mediators (e.g., platelet-activating factor (PAF)), and Ig (e.g., immobilized IgG). However, do these agonists act directly on eosinophils or indirectly through the generation of intermediate active metabolites? We now report that endogenous PAF produced by activated eosinophils plays a critical role in eosinophil functions. Human eosinophils produced superoxide when stimulated with immobilized IgG, soluble IL-5, or PAF. Pretreating eosinophils with pertussis toxin abolished their responses to these stimuli, suggesting involvement of a metabolite(s) that acts on G proteins. Indeed, PAF was detected in supernatants from eosinophils stimulated with IgG or IL-5. Furthermore, structurally distinct PAF antagonists, including CV6209, hexanolamine PAF, and Y-24180 (israpafant), inhibited IgG- or IL-5-induced superoxide production and degranulation. Previous reports indicated that exogenous PAF stimulates eosinophil eicosanoid production through formation of lipid bodies. We found in this study that IgG or IL-5 also induces lipid body formation and subsequent leukotriene C4 production mediated by endogenous PAF. Finally, inhibition of cytosolic phospholipase A2, one of the key enzymes involved in PAF synthesis, attenuated both PAF production and effector functions of eosinophils. These findings suggest that endogenous PAF plays important roles in eosinophil functional responses to various exogenous stimuli, such as cytokines and Igs. Therefore, inhibition of PAF synthesis or action may be beneficial for the treatment of eosinophilic inflammation.  (+info)

Phospholipases are a group of enzymes that catalyze the hydrolysis of phospholipids, which are major components of cell membranes. Phospholipases cleave specific ester bonds in phospholipids, releasing free fatty acids and other lipophilic molecules. Based on the site of action, phospholipases are classified into four types:

1. Phospholipase A1 (PLA1): This enzyme hydrolyzes the ester bond at the sn-1 position of a glycerophospholipid, releasing a free fatty acid and a lysophospholipid.
2. Phospholipase A2 (PLA2): PLA2 cleaves the ester bond at the sn-2 position of a glycerophospholipid, releasing a free fatty acid (often arachidonic acid) and a lysophospholipid. Arachidonic acid is a precursor for eicosanoids, which are signaling molecules involved in inflammation and other physiological processes.
3. Phospholipase C (PLC): PLC hydrolyzes the phosphodiester bond in the headgroup of a glycerophospholipid, releasing diacylglycerol (DAG) and a soluble head group, such as inositol trisphosphate (IP3). DAG acts as a secondary messenger in intracellular signaling pathways, while IP3 mediates the release of calcium ions from intracellular stores.
4. Phospholipase D (PLD): PLD cleaves the phosphoester bond between the headgroup and the glycerol moiety of a glycerophospholipid, releasing phosphatidic acid (PA) and a free head group. PA is an important signaling molecule involved in various cellular processes, including membrane trafficking, cytoskeletal reorganization, and cell survival.

Phospholipases have diverse roles in normal physiology and pathophysiological conditions, such as inflammation, immunity, and neurotransmission. Dysregulation of phospholipase activity can contribute to the development of various diseases, including cancer, cardiovascular disease, and neurological disorders.

Phospholipases A are a group of enzymes that hydrolyze phospholipids into fatty acids and lysophospholipids by cleaving the ester bond at the sn-1 or sn-2 position of the glycerol backbone. There are three main types of Phospholipases A:

* Phospholipase A1 (PLA1): This enzyme specifically hydrolyzes the ester bond at the sn-1 position, releasing a free fatty acid and a lysophospholipid.
* Phospholipase A2 (PLA2): This enzyme specifically hydrolyzes the ester bond at the sn-2 position, releasing a free fatty acid (often arachidonic acid, which is a precursor for eicosanoids) and a lysophospholipid.
* Phospholipase A/B (PLA/B): This enzyme has both PLA1 and PLA2 activity and can hydrolyze the ester bond at either the sn-1 or sn-2 position.

Phospholipases A play important roles in various biological processes, including cell signaling, membrane remodeling, and host defense. They are also involved in several diseases, such as atherosclerosis, neurodegenerative disorders, and cancer.

Phospholipase A2 (PLA2) is a type of enzyme that catalyzes the hydrolysis of the sn-2 ester bond in glycerophospholipids, releasing free fatty acids, such as arachidonic acid, and lysophospholipids. These products are important precursors for the biosynthesis of various signaling molecules, including eicosanoids, platelet-activating factor (PAF), and lipoxins, which play crucial roles in inflammation, immunity, and other cellular processes.

Phospholipases A2 are classified into several groups based on their structure, mechanism of action, and cellular localization. The secreted PLA2s (sPLA2s) are found in extracellular fluids and are characterized by a low molecular weight, while the calcium-dependent cytosolic PLA2s (cPLA2s) are larger proteins that reside within cells.

Abnormal regulation or activity of Phospholipase A2 has been implicated in various pathological conditions, such as inflammation, neurodegenerative diseases, and cancer. Therefore, understanding the biology and function of these enzymes is essential for developing novel therapeutic strategies to target these disorders.

Phospholipase A1 (PLA1) is an enzyme that catalyzes the hydrolysis of the ester bond at the sn-1 position of glycerophospholipids, resulting in the production of free fatty acids and lysophospholipids. This enzyme plays a crucial role in various biological processes, including cell signaling, membrane remodeling, and inflammation. PLA1 is widely distributed in nature and can be found in different organisms, such as bacteria, plants, and animals. In humans, PLA1 is involved in several physiological and pathological conditions, including lipid metabolism, atherosclerosis, neurodegenerative diseases, and cancer.

Group II Phospholipases A2 (PLA2) are a class of enzymes that hydrolyze the sn-2 ester bond of glycerophospholipids to release free fatty acids and lysophospholipids. They are classified as one of the several groups of PLA2 based on their structure, function, and calcium dependence.

Group II PLA2s are secreted enzymes that require millimolar concentrations of calcium ions for their activity. They consist of a single polypeptide chain with a molecular weight ranging from 14 to 18 kDa. These enzymes play important roles in various biological processes, including inflammation, host defense, and lipid metabolism. Dysregulation of Group II PLA2 activity has been implicated in several pathological conditions, such as atherosclerosis, arthritis, and neurodegenerative diseases.

Type C phospholipases, also known as group CIA phospholipases or patatin-like phospholipase domain containing proteins (PNPLAs), are a subclass of phospholipases that specifically hydrolyze the sn-2 ester bond of glycerophospholipids. They belong to the PNPLA family, which includes nine members (PNPLA1-9) with diverse functions in lipid metabolism and cell signaling.

Type C phospholipases contain a patatin domain, which is a conserved region of approximately 240 amino acids that exhibits lipase and acyltransferase activities. These enzymes are primarily involved in the regulation of triglyceride metabolism, membrane remodeling, and cell signaling pathways.

PNPLA1 (adiponutrin) is mainly expressed in the liver and adipose tissue, where it plays a role in lipid droplet homeostasis and triglyceride hydrolysis. PNPLA2 (ATGL or desnutrin) is a key regulator of triglyceride metabolism, responsible for the initial step of triacylglycerol hydrolysis in adipose tissue and other tissues.

PNPLA3 (calcium-independent phospholipase A2 epsilon or iPLA2ε) is involved in membrane remodeling, arachidonic acid release, and cell signaling pathways. Mutations in PNPLA3 have been associated with an increased risk of developing nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease, and hepatic steatosis.

PNPLA4 (lipase maturation factor 1 or LMF1) is involved in the intracellular processing and trafficking of lipases, such as pancreatic lipase and hepatic lipase. PNPLA5 ( Mozart1 or GSPML) has been implicated in membrane trafficking and cell signaling pathways.

PNPLA6 (neuropathy target esterase or NTE) is primarily expressed in the brain, where it plays a role in maintaining neuronal integrity by regulating lipid metabolism. Mutations in PNPLA6 have been associated with neuropathy and cognitive impairment.

PNPLA7 (adiponutrin or ADPN) has been implicated in lipid droplet formation, triacylglycerol hydrolysis, and cell signaling pathways. Mutations in PNPLA7 have been associated with an increased risk of developing NAFLD and hepatic steatosis.

PNPLA8 (diglyceride lipase or DGLα) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA9 (calcium-independent phospholipase A2 gamma or iPLA2γ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA10 (calcium-independent phospholipase A2 delta or iPLA2δ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA11 (calcium-independent phospholipase A2 epsilon or iPLA2ε) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA12 (calcium-independent phospholipase A2 zeta or iPLA2ζ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA13 (calcium-independent phospholipase A2 eta or iPLA2η) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA14 (calcium-independent phospholipase A2 theta or iPLA2θ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA15 (calcium-independent phospholipase A2 iota or iPLA2ι) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA16 (calcium-independent phospholipase A2 kappa or iPLA2κ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA17 (calcium-independent phospholipase A2 lambda or iPLA2λ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA18 (calcium-independent phospholipase A2 mu or iPLA2μ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA19 (calcium-independent phospholipase A2 nu or iPLA2ν) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA20 (calcium-independent phospholipase A2 xi or iPLA2ξ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA21 (calcium-independent phospholipase A2 omicron or iPLA2ο) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA22 (calcium-independent phospholipase A2 pi or iPLA2π) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA23 (calcium-independent phospholipase A2 rho or iPLA2ρ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA24 (calcium-independent phospholipase A2 sigma or iPLA2σ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA25 (calcium-independent phospholipase A2 tau or iPLA2τ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA26 (calcium-independent phospholipase A2 upsilon or iPLA2υ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA27 (calcium-independent phospholipase A2 phi or iPLA2φ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA28 (calcium-independent phospholipase A2 chi or iPLA2χ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA29 (calcium-independent phospholipase A2 psi or iPLA2ψ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA30 (calcium-independent phospholipase A2 omega or iPLA2ω) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA31 (calcium-independent phospholipase A2 pi or iPLA2π) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA32 (calcium-independent phospholipase A2 rho or iPLA2ρ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA33 (calcium-independent phospholipase A2 sigma or iPLA2σ) has been implicated in membrane remodeling, ar

Group X Phospholipases A2 (PLA2) are a group of enzymes that belong to the larger family of PLA2 enzymes, which are responsible for hydrolyzing the sn-2 ester bond of glycerophospholipids to release free fatty acids and lysophospholipids. Specifically, Group X PLA2 enzymes selectively hydrolyze arachidonic acid, a polyunsaturated fatty acid that is a precursor for eicosanoids, which are signaling molecules involved in inflammation and other physiological processes.

Group X PLA2 enzymes are secreted by various cells, including immune cells, and play important roles in host defense, inflammation, and lipid metabolism. Dysregulation of Group X PLA2 activity has been implicated in several diseases, such as atherosclerosis, arthritis, and neurodegenerative disorders. Therefore, understanding the function and regulation of these enzymes is crucial for developing new therapeutic strategies to treat these conditions.

Phospholipases A2, Secretory (sPLA2s) are a group of enzymes that hydrolyze the sn-2 ester bond of glycerophospholipids to release free fatty acids and lysophospholipids. They are called "secretory" because they are secreted by various cells, such as inflammatory cells, pancreatic acinar cells, and epididymal cells, into the extracellular space or biological fluids.

sPLA2s are small enzymes with a molecular weight of approximately 14-18 kDa and contain a highly conserved calcium-binding site that is essential for their catalytic activity. They play important roles in various physiological and pathophysiological processes, including inflammation, host defense, lipid metabolism, and cell signaling.

Inflammation is one of the main biological functions of sPLA2s. They are rapidly released from activated immune cells, such as macrophages and neutrophils, in response to various stimuli, including bacterial products, cytokines, and oxidative stress. Once secreted, sPLA2s can induce the production of pro-inflammatory mediators, such as eicosanoids and platelet-activating factor (PAF), which contribute to the amplification and perpetuation of the inflammatory response.

Dysregulation of sPLA2 activity has been implicated in various pathological conditions, including atherosclerosis, acute pancreatitis, sepsis, neurodegenerative diseases, and cancer. Therefore, sPLA2s are considered potential therapeutic targets for the treatment of these disorders.

Group I Phospholipases A2 (PLA2) are a group of enzymes that hydrolyze the sn-2 ester bond of glycerophospholipids to release free fatty acids and lysophospholipids. They are characterized by a low molecular weight, calcium-dependent enzymes, and a highly conserved catalytic site.

Group I PLA2s are further divided into subgroups based on their structure and function. The secreted PLA2s (sPLA2) are found in subgroup IB, which includes 10 human isoforms (sPLA2-IB to sPLA2-IN). These enzymes are produced by various cells, such as pancreas, macrophages and neutrophils, and are secreted into the extracellular space. They play a role in inflammation, host defense, and lipid metabolism.

The intracellular PLA2s (iPLA2) are found in subgroup IC, which includes 3 human isoforms (iPLA2-IC to iPLA2-IE). These enzymes are located in the cytosol and are involved in various cellular processes such as membrane remodeling, signal transduction, and apoptosis.

It's important to note that abnormal regulation of PLA2 activity has been implicated in several diseases, including atherosclerosis, arthritis, neurodegenerative disorders, and cancer.

Lysophospholipase is an enzyme that catalyzes the hydrolysis of a single fatty acid from lysophospholipids, producing a glycerophosphocholine and free fatty acid. This enzyme plays a role in the metabolism of lipids and membrane homeostasis. There are several types of lysophospholipases that differ based on their specificity for the head group of the lysophospholipid substrate, such as lysophosphatidylcholine-specific phospholipase or lysophospholipase 1 (LPLA1), and lysophosphatidic acid-specific phospholipase D or autotaxin (ATX).

Deficiency or mutations in lysophospholipases can lead to various diseases, such as LPI (lysophosphatidylinositol lipidosis) caused by a deficiency of the lysophospholipase superfamily member called Ptdlns-specific phospholipase C (PLC).

Note: This definition is for general information purposes only and may not include all the latest findings or medical terminologies. For accurate and comprehensive understanding, it's recommended to consult authoritative medical textbooks or resources.

Group V Phospholipases A2 (Group V PLA2s) are a subclass of the phospholipase A2 enzymes, which are a group of enzymes that hydrolyze the sn-2 ester bond of glycerophospholipids to release free fatty acids and lysophospholipids. Specifically, Group V PLA2s are calcium-dependent cytosolic enzymes that play a role in inflammation, immunity, and cell signaling processes.

Group V PLA2s consist of three isoforms (Group VA,VB,VC) which are expressed in various tissues including the brain, lungs, and reproductive organs. They have been implicated in several pathological conditions such as atherosclerosis, acute respiratory distress syndrome (ARDS), and cancer.

In addition to their enzymatic activity, Group V PLA2s also have non-enzymatic functions, including acting as chaperone proteins, regulating gene expression, and modulating the activity of other signaling molecules. Further research is needed to fully understand the complex roles and mechanisms of Group V PLA2s in health and disease.

Snake venoms are complex mixtures of bioactive compounds produced by specialized glands in snakes. They primarily consist of proteins and peptides, including enzymes, neurotoxins, hemotoxins, cytotoxins, and cardiotoxins. These toxins can cause a variety of pharmacological effects on the victim's body, such as disruption of the nervous system, blood coagulation, muscle function, and cell membrane integrity, ultimately leading to tissue damage and potentially death. The composition of snake venoms varies widely among different species, making each species' venom unique in its toxicity profile.

Phospholipase D is an enzyme that catalyzes the hydrolysis of phosphatidylcholine and other glycerophospholipids to produce phosphatidic acid and a corresponding alcohol. This reaction plays a crucial role in various cellular processes, including signal transduction, membrane trafficking, and lipid metabolism. There are several isoforms of Phospholipase D identified in different tissues and organisms, each with distinct regulatory mechanisms and functions. The enzyme's activity can be modulated by various factors such as calcium ions, protein kinases, and G proteins, making it a critical component in the regulation of cellular homeostasis.

Crotalid venoms are the toxic secretions produced by the members of the Crotalinae subfamily, also known as pit vipers. This group includes rattlesnakes, cottonmouths (or water moccasins), and copperheads, which are native to the Americas, as well as Old World vipers found in Asia and Europe, such as gaboon vipers and saw-scaled vipers.

Crotalid venoms are complex mixtures of various bioactive molecules, including enzymes, proteins, peptides, and other low molecular weight components. They typically contain a variety of pharmacologically active components, such as hemotoxic and neurotoxic agents, which can cause extensive local tissue damage, coagulopathy, cardiovascular dysfunction, and neuromuscular disorders in the victim.

The composition of crotalid venoms can vary significantly between different species and even among individual specimens within the same species. This variability is influenced by factors such as geographic location, age, sex, diet, and environmental conditions. As a result, the clinical manifestations of crotalid envenomation can be highly variable, ranging from mild local reactions to severe systemic effects that may require intensive medical treatment and supportive care.

Crotalid venoms have been the subject of extensive research in recent years due to their potential therapeutic applications. For example, certain components of crotalid venoms have shown promise as drugs for treating various medical conditions, such as cardiovascular diseases, pain, and inflammation. However, further studies are needed to fully understand the mechanisms of action of these venom components and to develop safe and effective therapies based on them.

Phospholipase A2 (PLA2) receptors are a group of proteins that are involved in the signaling pathways related to inflammation and immune response. PLA2 is an enzyme that cleaves phospholipids in cell membranes to produce arachidonic acid, which is a precursor for various eicosanoids, such as prostaglandins, leukotrienes, and thromboxanes, that play crucial roles in the inflammatory response.

There are two main types of PLA2 receptors: secreted PLA2 (sPLA2) receptors and intracellular PLA2 (iPLA2) receptors. The sPLA2 receptors are found on the cell surface and mediate the binding and internalization of sPLA2 enzymes, which are released from activated immune cells during inflammation. The iPLA2 receptors, on the other hand, are located inside the cell and regulate the intracellular levels of arachidonic acid and other lipid mediators.

Abnormal activation or regulation of PLA2 receptors has been implicated in various pathological conditions, including inflammatory diseases, neurodegenerative disorders, and cancer. Therefore, understanding the structure, function, and regulation of these receptors is important for developing new therapeutic strategies to target these diseases.

Group VI Phospholipases A2 (PLA2) are a subclass of the PLA2 family, which are enzymes that hydrolyze the sn-2 ester bond of glycerophospholipids to release free fatty acids and lysophospholipids. Specifically, Group VI PLA2s are calcium-dependent enzymes that have been identified in various tissues, including the brain and testis. They play important roles in several biological processes, such as cell signaling, inflammation, and lipid metabolism.

Group VI PLA2s are further divided into two subgroups: Group VI A and Group VI B. The Group VI A subgroup includes the iPLA2-VIA (also known as PLA2G6) enzyme, which has been implicated in several neurological disorders, such as neurodegenerative diseases and hereditary spastic paraplegia. On the other hand, the Group VI B subgroup includes the pancreatic-type PLA2 (also known as PLA2G1B) enzyme, which is primarily involved in digestion.

It's worth noting that while Group VI PLA2s have important physiological functions, they can also contribute to pathological conditions when their activity is dysregulated. For example, excessive activation of these enzymes has been linked to the development and progression of various inflammatory diseases, such as atherosclerosis, arthritis, and asthma.

Cobra venoms are a type of snake venom that is produced by cobras, which are members of the genus Naja in the family Elapidae. These venoms are complex mixtures of proteins and other molecules that have evolved to help the snake immobilize and digest its prey.

Cobra venoms typically contain a variety of toxic components, including neurotoxins, hemotoxins, and cytotoxins. Neurotoxins target the nervous system and can cause paralysis and respiratory failure. Hemotoxins damage blood vessels and tissues, leading to internal bleeding and organ damage. Cytotoxins destroy cells and can cause tissue necrosis.

The specific composition of cobra venoms can vary widely between different species of cobras, as well as between individual snakes of the same species. Some cobras have venoms that are primarily neurotoxic, while others have venoms that are more hemotoxic or cytotoxic. The potency and effects of cobra venoms can also be influenced by factors such as the age and size of the snake, as well as the temperature and pH of the environment.

Cobra bites can be extremely dangerous and even fatal to humans, depending on the species of cobra, the amount of venom injected, and the location of the bite. Immediate medical attention is required in the event of a cobra bite, including the administration of antivenom therapy to neutralize the effects of the venom.

Group IV Phospholipases A2 (PLA2) are a subclass of the PLA2 family, which are enzymes that hydrolyze the sn-2 acyl bond of glycerophospholipids to release free fatty acids and lysophospholipids. Specifically, Group IV PLA2s are calcium-dependent enzymes that are primarily located in the cytoplasm of cells and are involved in various cellular processes such as membrane remodeling, signal transduction, and inflammation.

Group IV PLA2s can be further divided into several subgroups, including Group IVA (also known as cPLA2s) and Group IVB (also known as iPLA2s). These enzymes have distinct structural features and play different roles in cellular physiology. For example, cPLA2s are involved in the production of eicosanoids, which are signaling molecules that mediate inflammation and other responses to injury or infection. On the other hand, iPLA2s are involved in maintaining membrane homeostasis and regulating cellular energy metabolism.

Abnormal regulation of Group IV PLA2 activity has been implicated in various pathological conditions, including cancer, neurodegenerative diseases, and cardiovascular disease. Therefore, understanding the function and regulation of these enzymes is an important area of research with potential therapeutic implications.

Viperidae is not a term that has a medical definition per se, but it is a term used in the field of biology and zoology. Viperidae is the family name for a group of venomous snakes commonly known as vipers. This family includes various types of pit vipers, adders, and rattlesnakes.

While Viperidae itself may not have direct medical relevance, understanding the biology and behavior of these creatures is important in the context of medical fields such as toxicology and emergency medicine. Knowledge about the venomous properties of viper snakes and their potential to cause harm to humans is crucial for appropriate treatment and management of snakebites.

"Bothrops" is a genus of venomous snakes commonly known as lancehead vipers, found primarily in Central and South America. The name "Bothrops" comes from the Greek words "bothros," meaning pit, and "ops," meaning face, referring to the deep pits on the sides of their heads that help them detect heat and locate prey. These snakes are known for their aggressive behavior and potent venom, which can cause severe pain, swelling, tissue damage, and potentially life-threatening systemic effects if left untreated.

The genus "Bothrops" includes over 30 species of pit vipers, many of which are considered medically important due to their ability to inflict serious envenomations in humans. Some notable examples include Bothrops asper (the terciopelo or fer-de-lance), Bothrops atrox (the common lancehead), and Bothrops jararaca (the jararaca).

If you encounter a snake of this genus, it is essential to seek medical attention immediately if bitten, as the venom can cause significant harm if not treated promptly.

I'm sorry for any confusion, but the term "Reptilian Proteins" does not have a specific or established medical or scientific meaning. The term "reptilian" generally refers to characteristics of reptiles, and proteins are complex molecules that perform various functions within all living organisms, including reptiles. However, there isn't a recognized category or classification called "Reptilian Proteins" in the field of medicine or biology. If you have any questions about specific reptile-related proteins or reptile physiology, I would be happy to try and help with those!

Phospholipids are a major class of lipids that consist of a hydrophilic (water-attracting) head and two hydrophobic (water-repelling) tails. The head is composed of a phosphate group, which is often bound to an organic molecule such as choline, ethanolamine, serine or inositol. The tails are made up of two fatty acid chains.

Phospholipids are a key component of cell membranes and play a crucial role in maintaining the structural integrity and function of the cell. They form a lipid bilayer, with the hydrophilic heads facing outwards and the hydrophobic tails facing inwards, creating a barrier that separates the interior of the cell from the outside environment.

Phospholipids are also involved in various cellular processes such as signal transduction, intracellular trafficking, and protein function regulation. Additionally, they serve as emulsifiers in the digestive system, helping to break down fats in the diet.

"Viper venoms" refer to the toxic secretions produced by members of the Viperidae family of snakes, which include pit vipers (such as rattlesnakes, copperheads, and cottonmouths) and true vipers (like adders, vipers, and gaboon vipers). These venoms are complex mixtures of proteins, enzymes, and other bioactive molecules that can cause a wide range of symptoms in prey or predators, including local tissue damage, pain, swelling, bleeding, and potentially life-threatening systemic effects such as coagulopathy, cardiovascular shock, and respiratory failure.

The composition of viper venoms varies widely between different species and even among individuals within the same species. However, many viper venoms contain a variety of enzymes (such as phospholipases A2, metalloproteinases, and serine proteases) that can cause tissue damage and disrupt vital physiological processes in the victim. Additionally, some viper venoms contain neurotoxins that can affect the nervous system and cause paralysis or other neurological symptoms.

Understanding the composition and mechanisms of action of viper venoms is important for developing effective treatments for venomous snakebites, as well as for gaining insights into the evolution and ecology of these fascinating and diverse creatures.

Crotoxin is a type of protein toxin found in the venom of the South American rattlesnake, Crotalus durissus terrificus. It is a heterodimeric presynaptic neurotoxin composed of two subunits, an acidic subunit (CA) and a basic subunit (CB), which work together to inhibit the release of neurotransmitters from nerve endings. Crotoxin has been extensively studied for its potential therapeutic applications in various medical conditions, including inflammation, pain, and cancer. However, it is also highly toxic and can cause serious harm if ingested or introduced into the body through a snake bite.

Group III Phospholipases A2 (PLA2) are a subclass of the PLA2 family, which are enzymes that hydrolyze the sn-2 ester bond of glycerophospholipids to release free fatty acids and lysophospholipids. Specifically, Group III PLA2s are secreted enzymes that require calcium ions for their activity and are further divided into subgroups based on their structure and function. They play important roles in various biological processes, including inflammation, host defense, and lipid metabolism.

Group III PLA2s have been implicated in several pathological conditions, such as atherosclerosis, arthritis, and neurodegenerative diseases. Therefore, they are considered potential therapeutic targets for these disorders. However, further research is needed to fully understand their functions and regulatory mechanisms.

Elapid venoms are the toxic secretions produced by elapid snakes, a family of venomous snakes that includes cobras, mambas, kraits, and coral snakes. These venoms are primarily composed of neurotoxins, which can cause paralysis and respiratory failure in prey or predators.

Elapid venoms work by targeting the nervous system, disrupting communication between the brain and muscles. This results in muscle weakness, paralysis, and eventually respiratory failure if left untreated. Some elapid venoms also contain hemotoxins, which can cause tissue damage, bleeding, and other systemic effects.

The severity of envenomation by an elapid snake depends on several factors, including the species of snake, the amount of venom injected, the location of the bite, and the size and health of the victim. Prompt medical treatment is essential in cases of elapid envenomation, as the effects of the venom can progress rapidly and lead to serious complications or death if left untreated.

Phosphatidylcholines (PtdCho) are a type of phospholipids that are essential components of cell membranes in living organisms. They are composed of a hydrophilic head group, which contains a choline moiety, and two hydrophobic fatty acid chains. Phosphatidylcholines are crucial for maintaining the structural integrity and function of cell membranes, and they also serve as important precursors for the synthesis of signaling molecules such as acetylcholine. They can be found in various tissues and biological fluids, including blood, and are abundant in foods such as soybeans, eggs, and meat. Phosphatidylcholines have been studied for their potential health benefits, including their role in maintaining healthy lipid metabolism and reducing the risk of cardiovascular disease.

Elapidae is a family of venomous snakes, also known as elapids. This family includes many well-known species such as cobras, mambas, death adders, and sea snakes. Elapids are characterized by their fixed fangs, which are located at the front of the upper jaw and deliver venom through a hollow canal. The venom of these snakes is typically neurotoxic, causing paralysis and respiratory failure in prey or attackers.

Elapids are found throughout the world, with the greatest diversity occurring in tropical regions. They vary widely in size, from small species like the death adders that measure only a few inches long, to large species like the king cobra, which can reach lengths of up to 18 feet (5.5 meters).

Elapids are generally shy and avoid confrontations with humans whenever possible. However, they will defend themselves aggressively if threatened or cornered. Bites from elapid snakes can be medically significant and may require antivenom treatment.

Arachidonic acid is a type of polyunsaturated fatty acid that is found naturally in the body and in certain foods. It is an essential fatty acid, meaning that it cannot be produced by the human body and must be obtained through the diet. Arachidonic acid is a key component of cell membranes and plays a role in various physiological processes, including inflammation and blood clotting.

In the body, arachidonic acid is released from cell membranes in response to various stimuli, such as injury or infection. Once released, it can be converted into a variety of bioactive compounds, including prostaglandins, thromboxanes, and leukotrienes, which mediate various physiological responses, including inflammation, pain, fever, and blood clotting.

Arachidonic acid is found in high concentrations in animal products such as meat, poultry, fish, and eggs, as well as in some plant sources such as certain nuts and seeds. It is also available as a dietary supplement. However, it is important to note that excessive intake of arachidonic acid can contribute to the development of inflammation and other health problems, so it is recommended to consume this fatty acid in moderation as part of a balanced diet.

Phospholipases A2, Cytosolic are a group of enzymes that are responsible for hydrolyzing the ester bond at the sn-2 position of glycerophospholipids, releasing free fatty acids and lysophospholipids. They are classified as a subtype of phospholipases A2 (PLA2s) and are located in the cytosolic fraction of the cell. These enzymes play important roles in various biological processes such as membrane remodeling, signal transduction, and host defense mechanisms. They can be activated by a variety of stimuli, including calcium ions, hormones, and growth factors. Dysregulation of cytosolic PLA2s has been implicated in several pathological conditions, including inflammation, neurodegenerative diseases, and cancer.

Phospholipases A2, Calcium-Independent are a group of enzymes that belong to the phospholipase A2 family, which are capable of hydrolyzing the sn-2 ester bond of glycerophospholipids (also known as phospholipids) to release free fatty acids and lysophospholipids. Unlike other members of the phospholipase A2 family, calcium-independent phospholipases A2 do not require calcium ions for their catalytic activity. These enzymes play important roles in various biological processes, including inflammation, cell signaling, and membrane remodeling. They have been implicated in several pathological conditions, such as atherosclerosis, neurodegenerative diseases, and cancer.

Hydrolysis is a chemical process, not a medical one. However, it is relevant to medicine and biology.

Hydrolysis is the breakdown of a chemical compound due to its reaction with water, often resulting in the formation of two or more simpler compounds. In the context of physiology and medicine, hydrolysis is a crucial process in various biological reactions, such as the digestion of food molecules like proteins, carbohydrates, and fats. Enzymes called hydrolases catalyze these hydrolysis reactions to speed up the breakdown process in the body.

Bee venom is a poisonous substance that a honeybee (Apis mellifera) injects into the skin of a person or animal when it stings. It's produced in the venom gland and stored in the venom sac of the bee. Bee venom is a complex mixture of proteins, peptides, and other compounds. The main active components of bee venom include melittin, apamin, and phospholipase A2.

Melittin is a toxic peptide that causes pain, redness, and swelling at the site of the sting. It also has hemolytic (red blood cell-destroying) properties. Apamin is a neurotoxin that can affect the nervous system and cause neurological symptoms in severe cases. Phospholipase A2 is an enzyme that can damage cell membranes and contribute to the inflammatory response.

Bee venom has been used in traditional medicine for centuries, particularly in China and other parts of Asia. It's believed to have anti-inflammatory, analgesic (pain-relieving), and immunomodulatory effects. Some studies suggest that bee venom may have therapeutic potential for a variety of medical conditions, including rheumatoid arthritis, multiple sclerosis, and chronic pain. However, more research is needed to confirm these findings and to determine the safety and efficacy of bee venom therapy.

It's important to note that bee stings can cause severe allergic reactions (anaphylaxis) in some people, which can be life-threatening. If you experience symptoms such as difficulty breathing, rapid heartbeat, or hives after being stung by a bee, seek medical attention immediately.

Group IA Phospholipases A2 (PLA2s) are a subclass of phospholipases A2 that are characterized by their calcium-dependent enzymatic activity. They are a type of hydrolase enzyme that cleaves the sn-2 ester bond of glycerophospholipids, releasing free fatty acids and lysophospholipids.

In particular, Group IA PLA2s prefer to act on phosphatidylcholine (PC) substrates, and they play important roles in various biological processes, including inflammation, host defense, and lipid metabolism. These enzymes are secreted by various cells, such as pancreatic acinar cells, macrophages, and neutrophils, and can be activated by a variety of stimuli, including cytokines, bacterial products, and oxidative stress.

Group IA PLA2s are also known to contribute to the development and progression of several diseases, such as atherosclerosis, arthritis, and neurodegenerative disorders. Therefore, they have been considered as potential therapeutic targets for these conditions.

Phospholipase A2 (PLA2) inhibitors are substances that inhibit or block the activity of phospholipase A2, an enzyme that plays a role in inflammation. Phospholipase A2 is responsible for the breakdown of certain types of fat molecules called phospholipids, which are found in cell membranes. This breakdown releases fatty acids, including arachidonic acid, which can be further metabolized to produce pro-inflammatory signaling molecules called eicosanoids.

By inhibiting the activity of phospholipase A2, PLA2 inhibitors can help reduce the production of these inflammatory mediators and potentially decrease inflammation in the body. These inhibitors have been studied for their potential therapeutic benefits in a variety of conditions associated with inflammation, such as rheumatoid arthritis, pancreatitis, and atherosclerosis. However, more research is needed to fully understand their safety and efficacy.

Phosphatidylinositols (PIs) are a type of phospholipid that are abundant in the cell membrane. They contain a glycerol backbone, two fatty acid chains, and a head group consisting of myo-inositol, a cyclic sugar molecule, linked to a phosphate group.

Phosphatidylinositols can be phosphorylated at one or more of the hydroxyl groups on the inositol ring, forming various phosphoinositides (PtdInsPs) with different functions. These signaling molecules play crucial roles in regulating cellular processes such as membrane trafficking, cytoskeletal organization, and signal transduction pathways that control cell growth, differentiation, and survival.

Phosphatidylinositol 4,5-bisphosphate (PIP2) is a prominent phosphoinositide involved in the regulation of ion channels, enzymes, and cytoskeletal proteins. Upon activation of certain receptors, PIP2 can be cleaved by the enzyme phospholipase C into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (InsP3), which act as second messengers to trigger downstream signaling events.

Phosphatidylinositol Diacylglycerol-Lyase is an enzyme that plays a crucial role in the breakdown and metabolism of certain lipids known as phosphoinositides. These are important components of cell membranes and are involved in various cellular processes such as signal transduction.

The systematic name for this enzyme is 1-phosphatidyl-1D-myo-inositol-3,4-bisphosphate D-3-phosphoinositide phospholipase C. Its function is to cleave 1,2-diacylglycerol and inositol 1,3,4,5-tetrakisphosphate from 1-phosphatidyl-1D-myo-inositol-3,4-bisphosphate. This reaction is a key step in the phosphoinositide signaling pathway, which is involved in regulating various cellular functions such as cell growth, differentiation, and metabolism.

Defects in this enzyme have been associated with certain diseases, including neurological disorders and cancer. Therefore, understanding its function and regulation is an important area of research in biology and medicine.

I'm sorry for any confusion, but "snakes" is not a medical term. It refers to a group of legless reptiles that can be found on every continent except Antarctica. If you have any questions about snakes in a different context, please provide more information and I'll do my best to help!

Phosphatidic acids (PAs) are a type of phospholipid that are essential components of cell membranes. They are composed of a glycerol backbone linked to two fatty acid chains and a phosphate group. The phosphate group is esterified to another molecule, usually either serine, inositol, or choline, forming different types of phosphatidic acids.

PAs are particularly important as they serve as key regulators of many cellular processes, including signal transduction, membrane trafficking, and autophagy. They can act as signaling molecules by binding to and activating specific proteins, such as the enzyme phospholipase D, which generates second messengers involved in various signaling pathways.

PAs are also important intermediates in the synthesis of other phospholipids, such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. They are produced by the enzyme diacylglycerol kinase (DGK), which adds a phosphate group to diacylglycerol (DAG) to form PA.

Abnormal levels of PAs have been implicated in various diseases, including cancer, diabetes, and neurological disorders. Therefore, understanding the regulation and function of PAs is an active area of research with potential therapeutic implications.

Isoenzymes, also known as isoforms, are multiple forms of an enzyme that catalyze the same chemical reaction but differ in their amino acid sequence, structure, and/or kinetic properties. They are encoded by different genes or alternative splicing of the same gene. Isoenzymes can be found in various tissues and organs, and they play a crucial role in biological processes such as metabolism, detoxification, and cell signaling. Measurement of isoenzyme levels in body fluids (such as blood) can provide valuable diagnostic information for certain medical conditions, including tissue damage, inflammation, and various diseases.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

'Bacillus cereus' is a gram-positive, rod-shaped bacterium that is commonly found in soil and food. It can produce heat-resistant spores, which allow it to survive in a wide range of temperatures and environments. This bacterium can cause two types of foodborne illnesses: a diarrheal type and an emetic (vomiting) type.

The diarrheal type of illness is caused by the consumption of foods contaminated with large numbers of vegetative cells of B. cereus. The symptoms typically appear within 6 to 15 hours after ingestion and include watery diarrhea, abdominal cramps, and nausea. Vomiting may also occur in some cases.

The emetic type of illness is caused by the consumption of foods contaminated with B. cereus toxins. This type of illness is characterized by nausea and vomiting that usually occur within 0.5 to 6 hours after ingestion. The most common sources of B. cereus contamination include rice, pasta, and other starchy foods that have been cooked and left at room temperature for several hours.

Proper food handling, storage, and cooking practices can help prevent B. cereus infections. It is important to refrigerate or freeze cooked foods promptly, reheat them thoroughly, and avoid leaving them at room temperature for extended periods.

'Crotalus' is a genus of venomous snakes commonly known as rattlesnakes. These snakes are native to the Americas, ranging from southern Canada to Argentina. They are characterized by the distinctive rattle on the end of their tails, which they use to warn potential predators before striking. The venom of Crotalus species is hemotoxic, meaning that it causes damage to blood vessels and tissue.

Some examples of species in this genus include the Western diamondback rattlesnake (Crotalus atrox), the timber rattlesnake (Crotalus horridus), and the sidewinder (Crotalus cerastes). It is important to note that all rattlesnakes are potentially dangerous and should be treated with caution. If you encounter a rattlesnake in the wild, it is best to leave it alone and avoid approaching it.

Phosphatidylethanolamines (PE) are a type of phospholipid that are abundantly found in the cell membranes of living organisms. They play a crucial role in maintaining the structural integrity and functionality of the cell membrane. PE contains a hydrophilic head, which consists of an ethanolamine group linked to a phosphate group, and two hydrophobic fatty acid chains. This unique structure allows PE to form a lipid bilayer, where the hydrophilic heads face outwards and interact with the aqueous environment, while the hydrophobic tails face inwards and interact with each other.

PE is also involved in various cellular processes, such as membrane trafficking, autophagy, and signal transduction. Additionally, PE can be modified by the addition of various functional groups or molecules, which can further regulate its functions and interactions within the cell. Overall, phosphatidylethanolamines are essential components of cellular membranes and play a critical role in maintaining cellular homeostasis.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

The pancreas is a glandular organ located in the abdomen, posterior to the stomach. It has both exocrine and endocrine functions. The exocrine portion of the pancreas consists of acinar cells that produce and secrete digestive enzymes into the duodenum via the pancreatic duct. These enzymes help in the breakdown of proteins, carbohydrates, and fats in food.

The endocrine portion of the pancreas consists of clusters of cells called islets of Langerhans, which include alpha, beta, delta, and F cells. These cells produce and secrete hormones directly into the bloodstream, including insulin, glucagon, somatostatin, and pancreatic polypeptide. Insulin and glucagon are critical regulators of blood sugar levels, with insulin promoting glucose uptake and storage in tissues and glucagon stimulating glycogenolysis and gluconeogenesis to raise blood glucose when it is low.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Quinacrine is a medication that belongs to the class of drugs called antimalarials. It is primarily used in the treatment and prevention of malaria caused by Plasmodium falciparum and P. vivax parasites. Quinacrine works by inhibiting the growth of the malarial parasites in the red blood cells.

In addition to its antimalarial properties, quinacrine has been used off-label for various other medical conditions, including the treatment of rheumatoid arthritis and discoid lupus erythematosus (DLE), a type of skin lupus. However, its use in these conditions is not approved by regulatory authorities such as the US Food and Drug Administration (FDA) due to limited evidence and potential side effects.

Quinacrine has several known side effects, including gastrointestinal disturbances, skin rashes, headache, dizziness, and potential neuropsychiatric symptoms like depression, anxiety, or confusion. Long-term use of quinacrine may also lead to yellowing of the skin and eyes (known as quinacrine jaundice) and other eye-related issues. It is essential to consult a healthcare professional before starting quinacrine or any other medication for appropriate dosage, duration, and potential side effects.

Membrane lipids are the main component of biological membranes, forming a lipid bilayer in which various cellular processes take place. These lipids include phospholipids, glycolipids, and cholesterol. Phospholipids are the most abundant type, consisting of a hydrophilic head (containing a phosphate group) and two hydrophobic tails (composed of fatty acid chains). Glycolipids contain a sugar group attached to the lipid molecule. Cholesterol helps regulate membrane fluidity and permeability. Together, these lipids create a selectively permeable barrier that separates cells from their environment and organelles within cells.

"Trimeresurus" is a genus of venomous pit vipers found primarily in Asia. Commonly known as "Asian pit vipers" or " temple pit vipers," these snakes are characterized by the presence of a heat-sensing pit organ between the eye and the nostril, which they use to detect the body heat of their prey. They are responsible for causing serious bites and occasionally fatal accidents in human beings.

It's important to note that "Trimeresurus" is a taxonomic term used in the field of biology, specifically in systematics and classification of organisms. It does not have a direct medical definition, but it refers to a group of snakes with medical significance due to their venomous nature.

Arachidonic acids are a type of polyunsaturated fatty acid that is primarily found in the phospholipids of cell membranes. They contain 20 carbon atoms and four double bonds (20:4n-6), with the first double bond located at the sixth carbon atom from the methyl end.

Arachidonic acids are derived from linoleic acid, an essential fatty acid that cannot be synthesized by the human body and must be obtained through dietary sources such as meat, fish, and eggs. Once ingested, linoleic acid is converted to arachidonic acid in a series of enzymatic reactions.

Arachidonic acids play an important role in various physiological processes, including inflammation, immune response, and cell signaling. They serve as precursors for the synthesis of eicosanoids, which are signaling molecules that include prostaglandins, thromboxanes, and leukotrienes. These eicosanoids have diverse biological activities, such as modulating blood flow, platelet aggregation, and pain perception, among others.

However, excessive production of arachidonic acid-derived eicosanoids has been implicated in various pathological conditions, including inflammation, atherosclerosis, and cancer. Therefore, the regulation of arachidonic acid metabolism is an important area of research for the development of new therapeutic strategies.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Phosphoinositide Phospholipase C (PI-PLC) is an enzyme that plays a crucial role in intracellular signaling pathways. It catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), a phospholipid component of the cell membrane, into two second messengers: inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG).

IP3 is responsible for triggering the release of calcium ions from intracellular stores, while DAG remains in the membrane and activates certain protein kinase C (PKC) isoforms. These second messengers then go on to modulate various cellular processes such as gene expression, metabolism, secretion, and cell growth or differentiation. PI-PLC exists in multiple isoforms, which are classified based on their structure and activation mechanisms. They can be activated by a variety of extracellular signals, including hormones, neurotransmitters, and growth factors, making them important components in signal transduction cascades.

I believe there might be a misunderstanding in your question. "Pyrones" is not a medical term, but rather a chemical term used to describe a class of organic compounds known as lactones with a characteristic eight-membered ring. These compounds are found in various natural sources such as plants and fungi, and some have been studied for their potential biological activities.

However, if you meant "pyrexia" instead of "pyrones," then I can provide the medical definition:

Pyrexia is a term used to describe an abnormally elevated body temperature, also known as fever. In adults, a core body temperature of 100.4°F (38°C) or higher is generally considered indicative of pyrexia. Fever is often a response to an infection or inflammation in the body and can be part of the immune system's effort to combat pathogens.

Lysophosphatidylcholines (LPCs) are a type of glycerophospholipids, which are major components of cell membranes. They are formed by the hydrolysis of phosphatidylcholines, another type of glycerophospholipids, catalyzed by the enzyme phospholipase A2. LPCs contain a single fatty acid chain attached to a glycerol backbone and a choline headgroup.

In medical terms, LPCs have been implicated in various physiological and pathological processes, such as cell signaling, membrane remodeling, and inflammation. Elevated levels of LPCs have been found in several diseases, including cardiovascular disease, neurodegenerative disorders, and cancer. They can also serve as biomarkers for the diagnosis and prognosis of these conditions.

Group IB Phospholipases A2 (PLA2s) are a subclass of phospholipases A2, which are enzymes that hydrolyze the sn-2 acyl bond of glycerophospholipids to release free fatty acids and lysophospholipids. Specifically, Group IB PLA2s are secreted enzymes that require calcium ions for their activity and have a low molecular weight. They are produced by various tissues and cells, including pancreas, liver, and immune cells, and play important roles in various biological processes such as inflammation, host defense, and lipid metabolism. Group IB PLA2s have been implicated in several pathological conditions, including atherosclerosis, arthritis, and neurodegenerative diseases.

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

Diacylglycerols (also known as diglycerides) are a type of glyceride, which is a compound that consists of glycerol and one or more fatty acids. Diacylglycerols contain two fatty acid chains bonded to a glycerol molecule through ester linkages. They are important intermediates in the metabolism of lipids and can be found in many types of food, including vegetable oils and dairy products. In the body, diacylglycerols can serve as a source of energy and can also play roles in cell signaling processes.

I'm sorry for any confusion, but "Thiones" is not a recognized medical term or abbreviation in physiology, pharmacology, or clinical medicine. It seems there might be a misunderstanding or a typo in your question. If you meant "thiols," I can provide a definition for that. Thiols are organic compounds containing a sulfhydryl group (-SH), which is a functional group consisting of a sulfur atom bonded to a hydrogen atom. Thiols are important in biological systems and can be found in some proteins and enzymes, where they play a crucial role in their structure and function. If you meant something else, please clarify so I can provide the most accurate information.

Russell's Viper is not a medical condition or term. It is a type of venomous snake, scientifically known as Daboia russelii, found in parts of Asia. The bite of this viper can cause severe symptoms such as pain, swelling, bleeding, tissue damage, and potentially life-threatening systemic effects like kidney failure, blood clotting problems, and cardiac arrest. Medical personnel should be notified immediately in case of a snakebite, and appropriate antivenom therapy should be initiated as soon as possible to reduce the risk of complications or mortality.

Cytosol refers to the liquid portion of the cytoplasm found within a eukaryotic cell, excluding the organelles and structures suspended in it. It is the site of various metabolic activities and contains a variety of ions, small molecules, and enzymes. The cytosol is where many biochemical reactions take place, including glycolysis, protein synthesis, and the regulation of cellular pH. It is also where some organelles, such as ribosomes and vesicles, are located. In contrast to the cytosol, the term "cytoplasm" refers to the entire contents of a cell, including both the cytosol and the organelles suspended within it.

Glycerophospholipids, also known as phosphoglycerides, are a major class of lipids that constitute the structural components of biological membranes. They are composed of a glycerol backbone to which two fatty acid chains and a phosphate group are attached. The phosphate group is esterified to an alcohol, typically choline, ethanolamine, serine, or inositol, forming what is called a phosphatidyl headgroup.

The chemical structure of glycerophospholipids allows them to form bilayers, which are essential for the formation of cell membranes and organelles within cells. The fatty acid chains, which can be saturated or unsaturated, contribute to the fluidity and permeability of the membrane. Glycerophospholipids also play important roles in various cellular processes, including signal transduction, cell recognition, and metabolism.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Butanols are a family of alcohols with four carbon atoms and a chemical formula of C4H9OH. They are commonly used as solvents, intermediates in chemical synthesis, and fuel additives. The most common butanol is n-butanol (normal butanol), which has a straight chain of four carbon atoms. Other forms include secondary butanols (such as isobutanol) and tertiary butanols (such as tert-butanol). These compounds have different physical and chemical properties due to the differences in their molecular structure, but they all share the common characteristic of being alcohols with four carbon atoms.

Micelles are structures formed in a solution when certain substances, such as surfactants, reach a critical concentration called the critical micelle concentration (CMC). At this concentration, these molecules, which have both hydrophilic (water-attracting) and hydrophobic (water-repelling) components, arrange themselves in a spherical shape with the hydrophilic parts facing outward and the hydrophobic parts clustered inside. This formation allows the hydrophobic components to avoid contact with water while the hydrophilic components interact with it. Micelles are important in various biological and industrial processes, such as drug delivery, soil remediation, and the formation of emulsions.

Phospholipase C beta (PLCβ) is an enzyme that plays a crucial role in intracellular signaling transduction pathways. It is a subtype of Phospholipase C, which is responsible for cleaving phospholipids into secondary messengers, thereby mediating various cellular responses.

PLCβ is activated by G protein-coupled receptors (GPCRs) and can be found in various tissues throughout the body. Once activated, PLCβ hydrolyzes a specific phospholipid, PIP2 (Phosphatidylinositol 4,5-bisphosphate), into two secondary messengers: IP3 (Inositol 1,4,5-trisphosphate) and DAG (Diacylglycerol). These second messengers then trigger a series of downstream events, such as calcium mobilization and protein kinase C activation, which ultimately lead to changes in cell functions, including gene expression, cell growth, differentiation, and secretion.

There are four isoforms of PLCβ (PLCβ1, PLCβ2, PLCβ3, and PLCβ4) that differ in their tissue distribution, regulation, and substrate specificity. Mutations or dysregulation of PLCβ have been implicated in several diseases, including cancer, cardiovascular disease, and neurological disorders.

Indolizidines are a type of heterocyclic organic compound that contains a five-membered ring fused to a six-membered ring, with one nitrogen atom and one carbon atom common to both rings. The structure of indolizidine is similar to that of the naturally occurring alkaloids, which are found in various plants and animals and have diverse biological activities.

Indolizidines can be synthesized in the laboratory and have been studied for their potential therapeutic uses, such as anti-inflammatory, antiviral, and insecticidal properties. However, they can also have toxic effects and may interact with other drugs or chemicals in the body.

It is important to note that indolizidines are not a medical term per se, but rather a chemical classification of a specific type of organic compound.

Lysophospholipids are a type of glycerophospholipid, which is a major component of cell membranes. They are characterized by having only one fatty acid chain attached to the glycerol backbone, as opposed to two in regular phospholipids. This results in a more polar and charged molecule, which can play important roles in cell signaling and regulation.

Lysophospholipids can be derived from the breakdown of regular phospholipids through the action of enzymes such as phospholipase A1 or A2. They can also be synthesized de novo in the cell. Some lysophospholipids, such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P), have been found to act as signaling molecules that bind to specific G protein-coupled receptors and regulate various cellular processes, including proliferation, survival, and migration.

Abnormal levels of lysophospholipids have been implicated in several diseases, such as cancer, inflammation, and neurological disorders. Therefore, understanding the biology of lysophospholipids has important implications for developing new therapeutic strategies.

'Clostridium perfringens' is a type of Gram-positive, rod-shaped, spore-forming bacterium that is commonly found in the environment, including in soil, decaying vegetation, and the intestines of humans and animals. It is a major cause of foodborne illness worldwide, producing several toxins that can lead to symptoms such as diarrhea, abdominal cramps, nausea, and vomiting.

The bacterium can contaminate food during preparation or storage, particularly meat and poultry products. When ingested, the spores of C. perfringens can germinate and produce large numbers of toxin-producing cells in the intestines, leading to food poisoning. The most common form of C. perfringens food poisoning is characterized by symptoms that appear within 6 to 24 hours after ingestion and last for less than 24 hours.

In addition to foodborne illness, C. perfringens can also cause other types of infections, such as gas gangrene, a serious condition that can occur when the bacterium infects a wound and produces toxins that damage surrounding tissues. Gas gangrene is a medical emergency that requires prompt treatment with antibiotics and surgical debridement or amputation of affected tissue.

Prevention measures for C. perfringens food poisoning include proper cooking, handling, and storage of food, as well as rapid cooling of cooked foods to prevent the growth of the bacterium.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Lysosomes are membrane-bound organelles found in the cytoplasm of eukaryotic cells. They are responsible for breaking down and recycling various materials, such as waste products, foreign substances, and damaged cellular components, through a process called autophagy or phagocytosis. Lysosomes contain hydrolytic enzymes that can break down biomolecules like proteins, nucleic acids, lipids, and carbohydrates into their basic building blocks, which can then be reused by the cell. They play a crucial role in maintaining cellular homeostasis and are often referred to as the "garbage disposal system" of the cell.

Bridged compounds are a type of organic compound where two parts of the molecule are connected by a chain of atoms, known as a bridge. This bridge can consist of one or more atoms and can be made up of carbon, oxygen, nitrogen, or other elements. The bridge can be located between two carbon atoms in a hydrocarbon, for example, creating a bridged bicyclic structure. These types of compounds are important in organic chemistry and can have unique chemical and physical properties compared to non-bridged compounds.

Eicosanoids are a group of signaling molecules made by the enzymatic or non-enzymatic oxidation of arachidonic acid and other polyunsaturated fatty acids with 20 carbon atoms. They include prostaglandins, thromboxanes, leukotrienes, and lipoxins, which are involved in a wide range of physiological and pathophysiological processes, such as inflammation, immune response, blood clotting, and smooth muscle contraction. Eicosanoids act as local hormones or autacoids, affecting the function of cells near where they are produced. They are synthesized by various cell types, including immune cells, endothelial cells, and neurons, in response to different stimuli, such as injury, infection, or stress. The balance between different eicosanoids can have significant effects on health and disease.

Glycosylphosphatidylinositols (GPIs) are complex glycolipids that are attached to the outer leaflet of the cell membrane. They play a role in anchoring proteins to the cell surface by serving as a post-translational modification site for certain proteins, known as GPI-anchored proteins.

The structure of GPIs consists of a core glycan backbone made up of three mannose and one glucosamine residue, which is linked to a phosphatidylinositol (PI) anchor via a glycosylphosphatidylinositol anchor addition site. The PI anchor is composed of a diacylglycerol moiety and a phosphatidylinositol headgroup.

GPIs are involved in various cellular processes, including signal transduction, protein targeting, and cell adhesion. They have also been implicated in several diseases, such as cancer and neurodegenerative disorders.

1-Butanol, also known as n-butanol or butyl alcohol, is a primary alcohol with a chemical formula of C4H9OH. It is a colorless liquid that is used as a solvent and in the manufacture of other chemicals. 1-Butanol has a wide range of applications including use as a paint thinner, in the production of rubber, and as a fuel additive. It is also found naturally in some foods and beverages.

In medical terms, 1-butanol may be used as an ingredient in topical medications or as a solvent for various pharmaceutical preparations. However, it is not typically used as a therapeutic agent on its own. Exposure to high levels of 1-butanol can cause irritation to the eyes, skin, and respiratory tract, and prolonged exposure may lead to more serious health effects.

Venom is a complex mixture of toxic compounds produced by certain animals, such as snakes, spiders, scorpions, and marine creatures like cone snails and stonefish. These toxic substances are specifically designed to cause damage to the tissues or interfere with the normal physiological processes of other organisms, which can lead to harmful or even lethal effects.

Venoms typically contain a variety of components, including enzymes, peptides, proteins, and small molecules, each with specific functions that contribute to the overall toxicity of the mixture. Some of these components may cause localized damage, such as tissue necrosis or inflammation, while others can have systemic effects, impacting various organs and bodily functions.

The study of venoms, known as toxinology, has important implications for understanding the evolution of animal behavior, developing new therapeutics, and advancing medical treatments for envenomation (the process of being poisoned by venom). Additionally, venoms have been used in traditional medicine for centuries, and ongoing research continues to uncover novel compounds with potential applications in modern pharmacology.

Phosphatidylglycerols are a type of glycerophospholipids, which are major components of biological membranes. They are composed of a glycerol backbone to which two fatty acid chains and a phosphate group are attached. In the case of phosphatidylglycerols, the phosphate group is linked to a glycerol molecule through an ester bond, forming a phosphoglyceride.

Phosphatidylglycerols are unique because they have an additional glycerol molecule attached to the phosphate group, making them more complex than other glycerophospholipids such as phosphatidylcholine or phosphatidylethanolamine. This additional glycerol moiety can be further modified by the addition of various headgroups, leading to the formation of different subclasses of phosphatidylglycerols.

In biological membranes, phosphatidylglycerols are often found in the inner leaflet of the mitochondrial membrane and play important roles in maintaining the structure and function of this organelle. They have also been implicated in various cellular processes such as membrane fusion, protein trafficking, and bacterial cell wall biosynthesis.

A fluoroimmunoassay (FIA) is a type of biochemical test that uses fluorescence to detect and measure the presence or concentration of a specific component, such as a protein or hormone, in a sample. In a FIA, the sample is mixed with a reagent that contains a fluorescent label, which binds to the target component. When the mixture is exposed to light of a specific wavelength, the labeled component emits light at a different wavelength, allowing it to be detected and measured.

FIAs are often used in clinical laboratories to diagnose and monitor various medical conditions, as they can provide sensitive and accurate measurements of specific components in biological samples. They are also used in research settings to study the interactions between biomolecules and to develop new diagnostic tests.

Neomycin is an antibiotic drug derived from the bacterium Streptomyces fradiae. It belongs to the class of aminoglycoside antibiotics and works by binding to the 30S subunit of the bacterial ribosome, thereby inhibiting protein synthesis and leading to bacterial cell death. Neomycin is primarily used topically (on the skin or mucous membranes) due to its poor absorption into the bloodstream when taken orally. It is effective against a wide range of gram-positive and gram-negative bacteria. Medical definitions for Neomycin include:

1. An antibiotic (aminoglycoside) derived from Streptomyces fradiae, used primarily for topical application in the treatment of superficial infections, burns, and wounds. It is not usually used systemically due to its potential ototoxicity and nephrotoxicity.
2. A medication (generic name) available as a cream, ointment, solution, or powder, often combined with other active ingredients such as bacitracin and polymyxin B for broader-spectrum antibacterial coverage. Neomycin is used to treat various skin conditions, including eczema, dermatitis, and minor cuts or abrasions.
3. A component of some over-the-counter products (e.g., ear drops, eye drops) intended for the treatment of external otitis, swimmer's ear, or bacterial conjunctivitis. It is crucial to follow the instructions carefully and avoid using neomycin-containing products for extended periods or in larger quantities than recommended, as this may increase the risk of antibiotic resistance and potential side effects.

In summary, Neomycin is an aminoglycoside antibiotic primarily used topically for treating various superficial bacterial infections due to its effectiveness against a wide range of gram-positive and gram-negative bacteria. It should be used cautiously and as directed to minimize the risk of side effects and antibiotic resistance.

Phosphoric diester hydrolases are a class of enzymes that catalyze the hydrolysis of phosphoric diester bonds. These enzymes are also known as phosphatases or nucleotidases. They play important roles in various biological processes, such as signal transduction, metabolism, and regulation of cellular activities.

Phosphoric diester hydrolases can be further classified into several subclasses based on their substrate specificity and catalytic mechanism. For example, alkaline phosphatases (ALPs) are a group of phosphoric diester hydrolases that preferentially hydrolyze phosphomonoester bonds in a variety of organic molecules, releasing phosphate ions and alcohols. On the other hand, nucleotidases are a subclass of phosphoric diester hydrolases that specifically hydrolyze the phosphodiester bonds in nucleotides, releasing nucleosides and phosphate ions.

Overall, phosphoric diester hydrolases are essential for maintaining the balance of various cellular processes by regulating the levels of phosphorylated molecules and nucleotides.

I'm sorry for any confusion, but "Indolizines" is not a medical term. It is a chemical term that refers to a class of heterocyclic organic compounds which contain a seven-membered ring with two nitrogen atoms and a carbon-carbon double bond. They are used in the synthesis of various pharmaceuticals and natural products, but they are not a medical condition or diagnosis.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Galactolipids are a type of glycolipid, which are lipids that contain a carbohydrate moiety. They are the most abundant lipids in plant chloroplasts and play important roles in membrane structure and function. The term "galactolipid" refers to lipids that contain one or more galactose molecules as their polar headgroup.

The two major types of galactolipids are monogalactosyldiacylglycerols (MGDGs) and digalactosyldiacylglycerols (DGDGs). MGDGs contain a single galactose molecule, while DGDGs contain two. These lipids are important components of the thylakoid membrane in chloroplasts, where they help to maintain the structural integrity and fluidity of the membrane, as well as facilitate the movement of proteins and other molecules within it.

In addition to their role in plant cells, galactolipids have also been found to be important in animal cells, particularly in the brain. They are a major component of myelin sheaths, which surround and insulate nerve fibers, allowing for efficient electrical signaling. Abnormalities in galactolipid metabolism have been linked to several neurological disorders, including multiple sclerosis and Krabbe disease.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Plasmalogens are a type of complex lipid called glycerophospholipids, which are essential components of cell membranes. They are characterized by having a unique chemical structure that includes a vinyl ether bond at the sn-1 position of the glycerol backbone and an ester bond at the sn-2 position, with the majority of them containing polyunsaturated fatty acids. The headgroup attached to the sn-3 position is typically choline or ethanolamine.

Plasmalogens are abundant in certain tissues, such as the brain, heart, and skeletal muscle. They have been suggested to play important roles in cellular functions, including membrane fluidity, signal transduction, and protection against oxidative stress. Reduced levels of plasmalogens have been associated with various diseases, including neurological disorders, cardiovascular diseases, and aging-related conditions.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Choline is an essential nutrient that is vital for the normal functioning of all cells, particularly those in the brain and liver. It is a water-soluble compound that is neither a vitamin nor a mineral, but is often grouped with vitamins because it has many similar functions. Choline is a precursor to the neurotransmitter acetylcholine, which plays an important role in memory, mood, and other cognitive processes. It also helps to maintain the structural integrity of cell membranes and is involved in the transport and metabolism of fats.

Choline can be synthesized by the body in small amounts, but it is also found in a variety of foods such as eggs, meat, fish, nuts, and cruciferous vegetables. Some people may require additional choline through supplementation, particularly if they follow a vegetarian or vegan diet, are pregnant or breastfeeding, or have certain medical conditions that affect choline metabolism.

Deficiency in choline can lead to a variety of health problems, including liver disease, muscle damage, and neurological disorders. On the other hand, excessive intake of choline can cause fishy body odor, sweating, and gastrointestinal symptoms such as diarrhea and vomiting. It is important to maintain adequate levels of choline through a balanced diet and, if necessary, supplementation under the guidance of a healthcare professional.

Detergents are cleaning agents that are often used to remove dirt, grease, and stains from various surfaces. They contain one or more surfactants, which are compounds that lower the surface tension between two substances, such as water and oil, allowing them to mix more easily. This makes it possible for detergents to lift and suspend dirt particles in water so they can be rinsed away.

Detergents may also contain other ingredients, such as builders, which help to enhance the cleaning power of the surfactants by softening hard water or removing mineral deposits. Some detergents may also include fragrances, colorants, and other additives to improve their appearance or performance.

In a medical context, detergents are sometimes used as disinfectants or antiseptics, as they can help to kill bacteria, viruses, and other microorganisms on surfaces. However, it is important to note that not all detergents are effective against all types of microorganisms, and some may even be toxic or harmful if used improperly.

It is always important to follow the manufacturer's instructions when using any cleaning product, including detergents, to ensure that they are used safely and effectively.

Edetic acid, also known as ethylenediaminetetraacetic acid (EDTA), is not a medical term per se, but a chemical compound with various applications in medicine. EDTA is a synthetic amino acid that acts as a chelating agent, which means it can bind to metallic ions and form stable complexes.

In medicine, EDTA is primarily used in the treatment of heavy metal poisoning, such as lead or mercury toxicity. It works by binding to the toxic metal ions in the body, forming a stable compound that can be excreted through urine. This helps reduce the levels of harmful metals in the body and alleviate their toxic effects.

EDTA is also used in some diagnostic tests, such as the determination of calcium levels in blood. Additionally, it has been explored as a potential therapy for conditions like atherosclerosis and Alzheimer's disease, although its efficacy in these areas remains controversial and unproven.

It is important to note that EDTA should only be administered under medical supervision due to its potential side effects and the need for careful monitoring of its use.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Lipid metabolism is the process by which the body breaks down and utilizes lipids (fats) for various functions, such as energy production, cell membrane formation, and hormone synthesis. This complex process involves several enzymes and pathways that regulate the digestion, absorption, transport, storage, and consumption of fats in the body.

The main types of lipids involved in metabolism include triglycerides, cholesterol, phospholipids, and fatty acids. The breakdown of these lipids begins in the digestive system, where enzymes called lipases break down dietary fats into smaller molecules called fatty acids and glycerol. These molecules are then absorbed into the bloodstream and transported to the liver, which is the main site of lipid metabolism.

In the liver, fatty acids may be further broken down for energy production or used to synthesize new lipids. Excess fatty acids may be stored as triglycerides in specialized cells called adipocytes (fat cells) for later use. Cholesterol is also metabolized in the liver, where it may be used to synthesize bile acids, steroid hormones, and other important molecules.

Disorders of lipid metabolism can lead to a range of health problems, including obesity, diabetes, cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD). These conditions may be caused by genetic factors, lifestyle habits, or a combination of both. Proper diagnosis and management of lipid metabolism disorders typically involves a combination of dietary changes, exercise, and medication.

Acetophenones are organic compounds that consist of a phenyl group (a benzene ring with a hydroxyl group replaced by a hydrogen atom) bonded to an acetyl group (a carbonyl group bonded to a methyl group). The chemical structure can be represented as CH3COC6H5.

Acetophenones are aromatic ketones and can be found in essential oils of various plants, as well as in some synthetic fragrances. They have a characteristic sweet, fruity odor and are used in the perfume industry. In addition to their use as fragrances, acetophenones have been studied for their potential medicinal properties, including anti-inflammatory, antimicrobial, and analgesic effects. However, more research is needed before they can be considered safe and effective for medical use.

Cell surface receptors, also known as membrane receptors, are proteins located on the cell membrane that bind to specific molecules outside the cell, known as ligands. These receptors play a crucial role in signal transduction, which is the process of converting an extracellular signal into an intracellular response.

Cell surface receptors can be classified into several categories based on their structure and mechanism of action, including:

1. Ion channel receptors: These receptors contain a pore that opens to allow ions to flow across the cell membrane when they bind to their ligands. This ion flux can directly activate or inhibit various cellular processes.
2. G protein-coupled receptors (GPCRs): These receptors consist of seven transmembrane domains and are associated with heterotrimeric G proteins that modulate intracellular signaling pathways upon ligand binding.
3. Enzyme-linked receptors: These receptors possess an intrinsic enzymatic activity or are linked to an enzyme, which becomes activated when the receptor binds to its ligand. This activation can lead to the initiation of various signaling cascades within the cell.
4. Receptor tyrosine kinases (RTKs): These receptors contain intracellular tyrosine kinase domains that become activated upon ligand binding, leading to the phosphorylation and activation of downstream signaling molecules.
5. Integrins: These receptors are transmembrane proteins that mediate cell-cell or cell-matrix interactions by binding to extracellular matrix proteins or counter-receptors on adjacent cells. They play essential roles in cell adhesion, migration, and survival.

Cell surface receptors are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and cell growth and differentiation. Dysregulation of these receptors can contribute to the development of numerous diseases, such as cancer, diabetes, and neurological disorders.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

"Listeria monocytogenes" is a gram-positive, facultatively anaerobic, rod-shaped bacterium that is a major cause of foodborne illness. It is widely distributed in the environment and can be found in water, soil, vegetation, and various animal species. This pathogen is particularly notable for its ability to grow at low temperatures, allowing it to survive and multiply in refrigerated foods.

In humans, Listeria monocytogenes can cause a serious infection known as listeriosis, which primarily affects pregnant women, newborns, older adults, and individuals with weakened immune systems. The bacterium can cross the intestinal barrier, enter the bloodstream, and spread to the central nervous system, causing meningitis or encephalitis. Pregnant women infected with Listeria monocytogenes may experience mild flu-like symptoms but are at risk of transmitting the infection to their unborn children, which can result in stillbirth, premature delivery, or severe illness in newborns.

Common sources of Listeria monocytogenes include raw or undercooked meat, poultry, and seafood; unpasteurized dairy products; and ready-to-eat foods like deli meats, hot dogs, and soft cheeses. Proper food handling, cooking, and storage practices can help prevent listeriosis.

Hemolysis is the destruction or breakdown of red blood cells, resulting in the release of hemoglobin into the surrounding fluid (plasma). This process can occur due to various reasons such as chemical agents, infections, autoimmune disorders, mechanical trauma, or genetic abnormalities. Hemolysis may lead to anemia and jaundice, among other complications. It is essential to monitor hemolysis levels in patients undergoing medical treatments that might cause this condition.

Neurotoxins are substances that are poisonous or destructive to nerve cells (neurons) and the nervous system. They can cause damage by destroying neurons, disrupting communication between neurons, or interfering with the normal functioning of the nervous system. Neurotoxins can be produced naturally by certain organisms, such as bacteria, plants, and animals, or they can be synthetic compounds created in a laboratory. Examples of neurotoxins include botulinum toxin (found in botulism), tetrodotoxin (found in pufferfish), and heavy metals like lead and mercury. Neurotoxic effects can range from mild symptoms such as headaches, muscle weakness, and tremors, to more severe symptoms such as paralysis, seizures, and cognitive impairment. Long-term exposure to neurotoxins can lead to chronic neurological conditions and other health problems.

Naphthalene is not typically referred to as a medical term, but it is a chemical compound with the formula C10H8. It is a white crystalline solid that is aromatic and volatile, and it is known for its distinctive mothball smell. In a medical context, naphthalene is primarily relevant as a potential toxin or irritant.

Naphthalene can be found in some chemical products, such as mothballs and toilet deodorant blocks. Exposure to high levels of naphthalene can cause symptoms such as nausea, vomiting, diarrhea, and headaches. Long-term exposure has been linked to anemia and damage to the liver and nervous system.

In addition, naphthalene is a known environmental pollutant that can be found in air, water, and soil. It is produced by the combustion of fossil fuels and is also released from some industrial processes. Naphthalene has been shown to have toxic effects on aquatic life and may pose a risk to human health if exposure levels are high enough.

Fatty acids are carboxylic acids with a long aliphatic chain, which are important components of lipids and are widely distributed in living organisms. They can be classified based on the length of their carbon chain, saturation level (presence or absence of double bonds), and other structural features.

The two main types of fatty acids are:

1. Saturated fatty acids: These have no double bonds in their carbon chain and are typically solid at room temperature. Examples include palmitic acid (C16:0) and stearic acid (C18:0).
2. Unsaturated fatty acids: These contain one or more double bonds in their carbon chain and can be further classified into monounsaturated (one double bond) and polyunsaturated (two or more double bonds) fatty acids. Examples of unsaturated fatty acids include oleic acid (C18:1, monounsaturated), linoleic acid (C18:2, polyunsaturated), and alpha-linolenic acid (C18:3, polyunsaturated).

Fatty acids play crucial roles in various biological processes, such as energy storage, membrane structure, and cell signaling. Some essential fatty acids cannot be synthesized by the human body and must be obtained through dietary sources.

Calcimycin is a ionophore compound that is produced by the bacterium Streptomyces chartreusensis. It is also known as Calcineurin A inhibitor because it can bind to and inhibit the activity of calcineurin, a protein phosphatase. In medical research, calcimycin is often used to study calcium signaling in cells.
It has been also used in laboratory studies for its antiproliferative and pro-apoptotic effects on certain types of cancer cells. However, it is not approved for use as a drug in humans.

1-Alkyl-2-acetylglycerophosphocholine esterase is an enzyme that hydrolyzes the ester bond in 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (also known as platelet-activating factor, PAF), resulting in the production of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine and acetate. This enzyme is involved in the regulation of PAF levels and thus plays a role in the modulation of various physiological processes, including inflammation and allergic responses.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Virulence, in the context of medicine and microbiology, refers to the degree or severity of damage or harm that a pathogen (like a bacterium, virus, fungus, or parasite) can cause to its host. It is often associated with the ability of the pathogen to invade and damage host tissues, evade or suppress the host's immune response, replicate within the host, and spread between hosts.

Virulence factors are the specific components or mechanisms that contribute to a pathogen's virulence, such as toxins, enzymes, adhesins, and capsules. These factors enable the pathogen to establish an infection, cause tissue damage, and facilitate its transmission between hosts. The overall virulence of a pathogen can be influenced by various factors, including host susceptibility, environmental conditions, and the specific strain or species of the pathogen.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Thin-layer chromatography (TLC) is a type of chromatography used to separate, identify, and quantify the components of a mixture. In TLC, the sample is applied as a small spot onto a thin layer of adsorbent material, such as silica gel or alumina, which is coated on a flat, rigid support like a glass plate. The plate is then placed in a developing chamber containing a mobile phase, typically a mixture of solvents.

As the mobile phase moves up the plate by capillary action, it interacts with the stationary phase and the components of the sample. Different components of the mixture travel at different rates due to their varying interactions with the stationary and mobile phases, resulting in distinct spots on the plate. The distance each component travels can be measured and compared to known standards to identify and quantify the components of the mixture.

TLC is a simple, rapid, and cost-effective technique that is widely used in various fields, including forensics, pharmaceuticals, and research laboratories. It allows for the separation and analysis of complex mixtures with high resolution and sensitivity, making it an essential tool in many analytical applications.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Gel chromatography is a type of liquid chromatography that separates molecules based on their size or molecular weight. It uses a stationary phase that consists of a gel matrix made up of cross-linked polymers, such as dextran, agarose, or polyacrylamide. The gel matrix contains pores of various sizes, which allow smaller molecules to penetrate deeper into the matrix while larger molecules are excluded.

In gel chromatography, a mixture of molecules is loaded onto the top of the gel column and eluted with a solvent that moves down the column by gravity or pressure. As the sample components move down the column, they interact with the gel matrix and get separated based on their size. Smaller molecules can enter the pores of the gel and take longer to elute, while larger molecules are excluded from the pores and elute more quickly.

Gel chromatography is commonly used to separate and purify proteins, nucleic acids, and other biomolecules based on their size and molecular weight. It is also used in the analysis of polymers, colloids, and other materials with a wide range of applications in chemistry, biology, and medicine.

Inositol phosphates are a family of molecules that consist of an inositol ring, which is a six-carbon heterocyclic compound, linked to one or more phosphate groups. These molecules play important roles as intracellular signaling intermediates and are involved in various cellular processes such as cell growth, differentiation, and metabolism.

Inositol hexakisphosphate (IP6), also known as phytic acid, is a form of inositol phosphate that is found in plant-based foods. IP6 has the ability to bind to minerals such as calcium, magnesium, and iron, which can reduce their bioavailability in the body.

Inositol phosphates have been implicated in several diseases, including cancer, diabetes, and neurodegenerative disorders. For example, altered levels of certain inositol phosphates have been observed in cancer cells, suggesting that they may play a role in tumor growth and progression. Additionally, mutations in enzymes involved in the metabolism of inositol phosphates have been associated with several genetic diseases.

GTP-binding proteins, also known as G proteins, are a family of molecular switches present in many organisms, including humans. They play a crucial role in signal transduction pathways, particularly those involved in cellular responses to external stimuli such as hormones, neurotransmitters, and sensory signals like light and odorants.

G proteins are composed of three subunits: α, β, and γ. The α-subunit binds GTP (guanosine triphosphate) and acts as the active component of the complex. When a G protein-coupled receptor (GPCR) is activated by an external signal, it triggers a conformational change in the associated G protein, allowing the α-subunit to exchange GDP (guanosine diphosphate) for GTP. This activation leads to dissociation of the G protein complex into the GTP-bound α-subunit and the βγ-subunit pair. Both the α-GTP and βγ subunits can then interact with downstream effectors, such as enzymes or ion channels, to propagate and amplify the signal within the cell.

The intrinsic GTPase activity of the α-subunit eventually hydrolyzes the bound GTP to GDP, which leads to re-association of the α and βγ subunits and termination of the signal. This cycle of activation and inactivation makes G proteins versatile signaling elements that can respond quickly and precisely to changing environmental conditions.

Defects in G protein-mediated signaling pathways have been implicated in various diseases, including cancer, neurological disorders, and cardiovascular diseases. Therefore, understanding the function and regulation of GTP-binding proteins is essential for developing targeted therapeutic strategies.

Microsomes are subcellular membranous vesicles that are obtained as a byproduct during the preparation of cellular homogenates. They are not naturally occurring structures within the cell, but rather formed due to fragmentation of the endoplasmic reticulum (ER) during laboratory procedures. Microsomes are widely used in various research and scientific studies, particularly in the fields of biochemistry and pharmacology.

Microsomes are rich in enzymes, including the cytochrome P450 system, which is involved in the metabolism of drugs, toxins, and other xenobiotics. These enzymes play a crucial role in detoxifying foreign substances and eliminating them from the body. As such, microsomes serve as an essential tool for studying drug metabolism, toxicity, and interactions, allowing researchers to better understand and predict the effects of various compounds on living organisms.

Sphingomyelin phosphodiesterase is an enzyme that catalyzes the hydrolysis of sphingomyelin, a sphingolipid found in animal tissues, into ceramide and phosphorylcholine. This enzyme plays a crucial role in the metabolism of sphingomyelin and the regulation of cellular processes such as apoptosis, differentiation, and inflammation.

There are several isoforms of this enzyme, including acid sphingomyelinase (ASM) and neutral sphingomyelinase (NSM), which differ in their subcellular localization, regulation, and physiological functions. Deficiencies or dysfunctions in sphingomyelin phosphodiesterase activity have been implicated in various diseases, such as Niemann-Pick disease, atherosclerosis, and cancer.

Sphingomyelins are a type of sphingolipids, which are a class of lipids that contain sphingosine as a backbone. Sphingomyelins are composed of phosphocholine or phosphoethanolamine bound to the ceramide portion of the molecule through a phosphodiester linkage. They are important components of cell membranes, particularly in the myelin sheath that surrounds nerve fibers. Sphingomyelins can be hydrolyzed by the enzyme sphingomyelinase to form ceramide and phosphorylcholine or phosphorylethanolamine. Abnormalities in sphingomyelin metabolism have been implicated in several diseases, including Niemann-Pick disease, a group of inherited lipid storage disorders.

Gene expression regulation, enzymologic refers to the biochemical processes and mechanisms that control the transcription and translation of specific genes into functional proteins or enzymes. This regulation is achieved through various enzymatic activities that can either activate or repress gene expression at different levels, such as chromatin remodeling, transcription factor activation, mRNA processing, and protein degradation.

Enzymologic regulation of gene expression involves the action of specific enzymes that catalyze chemical reactions involved in these processes. For example, histone-modifying enzymes can alter the structure of chromatin to make genes more or less accessible for transcription, while RNA polymerase and its associated factors are responsible for transcribing DNA into mRNA. Additionally, various enzymes are involved in post-transcriptional modifications of mRNA, such as splicing, capping, and tailing, which can affect the stability and translation of the transcript.

Overall, the enzymologic regulation of gene expression is a complex and dynamic process that allows cells to respond to changes in their environment and maintain proper physiological function.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Prostaglandin D2 (PGD2) is a type of prostaglandin, which is a group of lipid compounds that are derived enzymatically from arachidonic acid and have diverse hormone-like effects in various tissues. PGD2 is one of the most abundant prostaglandins produced in the human body and is primarily synthesized and released by activated mast cells, which are a type of immune cell found in various tissues throughout the body.

PGD2 has a wide range of biological activities, including vasodilation, bronchoconstriction, and modulation of immune responses. It also plays important roles in regulating sleep and wakefulness, as well as in the development of allergic inflammation and other inflammatory processes. PGD2 exerts its effects by binding to specific G protein-coupled receptors, including the DP1 and CRTH2 receptors, which are expressed on various cell types throughout the body.

In addition to its role in normal physiological processes, PGD2 has also been implicated in a number of pathological conditions, including asthma, rhinitis, dermatitis, and certain types of cancer. As such, drugs that target the synthesis or action of PGD2 have been developed as potential therapeutic agents for these conditions.

Fungi, in the context of medical definitions, are a group of eukaryotic organisms that include microorganisms such as yeasts and molds, as well as the more familiar mushrooms. The study of fungi is known as mycology.

Fungi can exist as unicellular organisms or as multicellular filamentous structures called hyphae. They are heterotrophs, which means they obtain their nutrients by decomposing organic matter or by living as parasites on other organisms. Some fungi can cause various diseases in humans, animals, and plants, known as mycoses. These infections range from superficial, localized skin infections to systemic, life-threatening invasive diseases.

Examples of fungal infections include athlete's foot (tinea pedis), ringworm (dermatophytosis), candidiasis (yeast infection), histoplasmosis, coccidioidomycosis, and aspergillosis. Fungal infections can be challenging to treat due to the limited number of antifungal drugs available and the potential for drug resistance.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Acyltransferases are a group of enzymes that catalyze the transfer of an acyl group (a functional group consisting of a carbon atom double-bonded to an oxygen atom and single-bonded to a hydrogen atom) from one molecule to another. This transfer involves the formation of an ester bond between the acyl group donor and the acyl group acceptor.

Acyltransferases play important roles in various biological processes, including the biosynthesis of lipids, fatty acids, and other metabolites. They are also involved in the detoxification of xenobiotics (foreign substances) by catalyzing the addition of an acyl group to these compounds, making them more water-soluble and easier to excrete from the body.

Examples of acyltransferases include serine palmitoyltransferase, which is involved in the biosynthesis of sphingolipids, and cholesteryl ester transfer protein (CETP), which facilitates the transfer of cholesteryl esters between lipoproteins.

Acyltransferases are classified based on the type of acyl group they transfer and the nature of the acyl group donor and acceptor molecules. They can be further categorized into subclasses based on their sequence similarities, three-dimensional structures, and evolutionary relationships.

Octoxynol is a type of surfactant, which is a compound that lowers the surface tension between two substances, such as oil and water. It is a synthetic chemical that is composed of repeating units of octylphenoxy polyethoxy ethanol.

Octoxynol is commonly used in medical applications as a spermicide, as it is able to disrupt the membrane of sperm cells and prevent them from fertilizing an egg. It is found in some contraceptive creams, gels, and films, and is also used as an ingredient in some personal care products such as shampoos and toothpastes.

In addition to its use as a spermicide, octoxynol has been studied for its potential antimicrobial properties, and has been shown to have activity against certain viruses, bacteria, and fungi. However, its use as an antimicrobial agent is not widely established.

It's important to note that octoxynol can cause irritation and allergic reactions in some people, and should be used with caution. Additionally, there is some concern about the potential for octoxynol to have harmful effects on the environment, as it has been shown to be toxic to aquatic organisms at high concentrations.

Glycolipids are a type of lipid (fat) molecule that contain one or more sugar molecules attached to them. They are important components of cell membranes, where they play a role in cell recognition and signaling. Glycolipids are also found on the surface of some viruses and bacteria, where they can be recognized by the immune system as foreign invaders.

There are several different types of glycolipids, including cerebrosides, gangliosides, and globosides. These molecules differ in the number and type of sugar molecules they contain, as well as the structure of their lipid tails. Glycolipids are synthesized in the endoplasmic reticulum and Golgi apparatus of cells, and they are transported to the cell membrane through vesicles.

Abnormalities in glycolipid metabolism or structure have been implicated in a number of diseases, including certain types of cancer, neurological disorders, and autoimmune diseases. For example, mutations in genes involved in the synthesis of glycolipids can lead to conditions such as Tay-Sachs disease and Gaucher's disease, which are characterized by the accumulation of abnormal glycolipids in cells.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Lipase is an enzyme that is produced by the pancreas and found in the digestive system of most organisms. Its primary function is to catalyze the hydrolysis of fats (triglycerides) into smaller molecules, such as fatty acids and glycerol, which can then be absorbed by the intestines and utilized for energy or stored for later use.

In medical terms, lipase levels in the blood are often measured to diagnose or monitor conditions that affect the pancreas, such as pancreatitis (inflammation of the pancreas), pancreatic cancer, or cystic fibrosis. Elevated lipase levels may indicate damage to the pancreas and its ability to produce digestive enzymes.

Acylation is a medical and biological term that refers to the process of introducing an acyl group (-CO-) into a molecule. This process can occur naturally or it can be induced through chemical reactions. In the context of medicine and biology, acylation often occurs during post-translational modifications of proteins, where an acyl group is added to specific amino acid residues, altering the protein's function, stability, or localization.

An example of acylation in medicine is the administration of neuraminidase inhibitors, such as oseltamivir (Tamiflu), for the treatment and prevention of influenza. These drugs work by inhibiting the activity of the viral neuraminidase enzyme, which is essential for the release of newly formed virus particles from infected cells. Oseltamivir is administered orally as an ethyl ester prodrug, which is then hydrolyzed in the body to form the active acylated metabolite that inhibits the viral neuraminidase.

In summary, acylation is a vital process in medicine and biology, with implications for drug design, protein function, and post-translational modifications.

Dinoprostone is a prostaglandin E2 analog used in medical practice for the induction of labor and ripening of the cervix in pregnant women. It is available in various forms, including vaginal suppositories, gel, and tablets. Dinoprostone works by stimulating the contraction of uterine muscles and promoting cervical dilation, which helps in facilitating a successful delivery.

It's important to note that dinoprostone should only be administered under the supervision of a healthcare professional, as its use is associated with certain risks and side effects, including uterine hyperstimulation, fetal distress, and maternal infection. The dosage and duration of treatment are carefully monitored to minimize these risks and ensure the safety of both the mother and the baby.

Prostaglandin-Endoperoxide Synthases (PTGS), also known as Cyclooxygenases (COX), are a group of enzymes that catalyze the conversion of arachidonic acid into prostaglandin G2 and H2, which are further metabolized to produce various prostaglandins and thromboxanes. These lipid mediators play crucial roles in several physiological processes such as inflammation, pain, fever, and blood clotting. There are two major isoforms of PTGS: PTGS-1 (COX-1) and PTGS-2 (COX-2). While COX-1 is constitutively expressed in most tissues and involved in homeostatic functions, COX-2 is usually induced during inflammation and tissue injury. Nonsteroidal anti-inflammatory drugs (NSAIDs) exert their therapeutic effects by inhibiting these enzymes, thereby reducing the production of prostaglandins and thromboxanes.

Phosphatidylserines are a type of phospholipids that are essential components of the cell membrane, particularly in the brain. They play a crucial role in maintaining the fluidity and permeability of the cell membrane, and are involved in various cellular processes such as signal transduction, protein anchorage, and apoptosis (programmed cell death). Phosphatidylserines contain a polar head group made up of serine amino acids and two non-polar fatty acid tails. They are abundant in the inner layer of the cell membrane but can be externalized to the outer layer during apoptosis, where they serve as signals for recognition and removal of dying cells by the immune system. Phosphatidylserines have been studied for their potential benefits in various medical conditions, including cognitive decline, Alzheimer's disease, and depression.

Subcellular fractions refer to the separation and collection of specific parts or components of a cell, including organelles, membranes, and other structures, through various laboratory techniques such as centrifugation and ultracentrifugation. These fractions can be used in further biochemical and molecular analyses to study the structure, function, and interactions of individual cellular components. Examples of subcellular fractions include nuclear extracts, mitochondrial fractions, microsomal fractions (membrane vesicles), and cytosolic fractions (cytoplasmic extracts).

... is a protein that in humans is encoded by the PLA2G4D gene. The phospholipase A2 enzyme family, ... "Entrez Gene: Phospholipase A2 group IVD". Retrieved 2017-09-13. Chiba, H; Michibata, H; Wakimoto, K; Seishima, M; Kawasaki, S; ... Okubo, K; Mitsui, H; Torii, H; Imai, Y (2004). "Cloning of a gene for a novel epithelium-specific cytosolic phospholipase A2, ... "Cloning of a gene for a novel epithelium-specific cytosolic phospholipase A2, cPLA2delta, induced in psoriatic skin". J. Biol. ...
There are also prokaryotic A2 phospholipases. Additional types of phospholipases include phospholipase A1, phospholipase B, ... phospholipase C, and phospholipase D. Phospholipases A2 include several unrelated protein families with common enzymatic ... There are atypical members of the phospholipase A2 family, such as PLA2G12B, that have no phospholipase activity with typical ... Increase in phospholipase A2 activity is an acute-phase reaction that rises during inflammation, which is also seen to be ...
The prokaryotic phospholipase A2 domain is found in bacterial and fungal phospholipases. It enables the liberation of fatty ... Matoba Y, Katsube Y, Sugiyama M (May 2002). "The crystal structure of prokaryotic phospholipase A2". J. Biol. Chem. 277 (22): ... Katsube Y, Sugiyama M, Matoba Y (2002). "The crystal structure of prokaryotic phospholipase A2". J. Biol. Chem. 277 (22): 20059 ...
... (Lp-PLA2) also known as platelet-activating factor acetylhydrolase (PAF-AH) is a ... "Entrez Gene: PLA2G7 phospholipase A2, group VII (platelet-activating factor acetylhydrolase, plasma)". Mohler ER, Ballantyne CM ... Tellis CC, Tselepis AD (May 2009). "The role of lipoprotein-associated phospholipase A2 in atherosclerosis may depend on its ... October 1995). "Plasma platelet-activating factor acetylhydrolase is a secreted phospholipase A2 with a catalytic triad". The ...
PLAA phospholipase A2-activating protein". Clark MA, Ozgür LE, Conway TM, et al. (1991). "Cloning of a phospholipase A2- ... "Bimodal regulatory effect of melittin and phospholipase A2-activating protein on human type II secretory phospholipase A2". ... Phospholipase A-2-activating protein is an enzyme that in humans is encoded by the PLAA gene. GRCh38: Ensembl release 89: ... Ruiz A, Nadal M, Puig S, Estivill X (1999). "Cloning of the human phospholipase A2 activating protein (hPLAP) gene on the ...
Once localized, to the trans-golgi CERK activates cytosolic phospholipase A2 (cPLA2) that has localized to the trans-golgi. ... Gijón MA, Leslie CC (June 1997). "Phospholipases A2". Semin. Cell Dev. Biol. 8 (3): 297-303. doi:10.1006/scdb.1997.0151. PMID ... a phospholipase C homolog in Drosophila melanogaster. In addition to endosomal and trans-golgi localization, CERK has been ... "Ceramide kinase regulates phospholipase C and phosphatidylinositol 4, 5, bisphosphate in phototransduction". Proc. Natl. Acad. ...
The cytosolic PLA2 set (i.e. cPLA2s) of PLA2 enzymes (see Phospholipase A2 § Cytosolic phospholipases A2 (cPLA2)) in particular ... Burke JE, Dennis EA (2009). "Phospholipase A2 biochemistry". Cardiovascular Drugs and Therapy. 23 (1): 49-59. doi:10.1007/ ... This is accomplished by a large family of phospholipase A2 (PLA2) enzymes. ...
85 kDa calcium-independent phospholipase A2, also known as 85/88 kDa calcium-independent phospholipase A2, Group VI ... phospholipase A2, Intracellular membrane-associated calcium-independent phospholipase A2 beta, or Patatin-like phospholipase ... Specifically, the A2 phospholipase produced from the PLA2G6 gene, sometimes called PLA2 group VI, helps to regulate the levels ... The PLA2G6 gene encodes for a phospholipase A2 enzyme, which is a subclass of enzyme that catalyzes the release of fatty acids ...
Occurence [sic] of phospholipase A1 and A2 in human decidua". Prostaglandins. 9 (5): 667-673. doi:10.1016/0090-6980(75)90106-9 ... January 1997). "Identification of a human cDNA clone for lysosomal type Ca2+-independent phospholipase A2 and properties of the ... Yeats DA, Bakhle YS (June 1989). "Phospholipases A2 and C of human lung; subcellular distribution and substrate selectivity". ... November 2002). "A 29-kDa protein associated with p67phox expresses both peroxiredoxin and phospholipase A2 activity and ...
"Pfam entry: Phospholipase A2". Archived from the original on 2007-09-29. Retrieved 2007-01-25. "Pfam entry: ... ISBN 3-527-31151-3. Ghosh M, Tucker DE, Burchett SA, Leslie CC (November 2006). "Properties of the Group IV phospholipase A2 ... "Changes in Ca2+ affinity upon activation of Agkistrodon piscivorus piscivorus phospholipase A2". Biochemistry. 40 (11): 3264- ... Peripheral enzymes participate in metabolism of different membrane components, such as lipids (phospholipases and cholesterol ...
Lipocortins suppress phospholipase A2. Increased expression of the gene coding for annexin-1 is one of the mechanisms by which ... However some annexins (Annexin A1, Annexin A2, and Annexin A5) can be secreted from the cytoplasm to outside cellular ...
Lomonte B, Tarkowski A, Hanson LA (November 1994). "Broad cytolytic specificity of myotoxin II, a lysine-49 phospholipase A2 of ... Harris JB, MacDonell CA (1981-01-01). "Phospholipase A2 activity of notexin and its role in muscle damage". Toxicon. 19 (3): ... Taipoxin like many other pre-synaptic neurotoxins are phospholipase A2 (PLA2) toxins, which inhibit/complete block the release ... Leslie CC, Gelb MH (2004). Assaying phospholipase A2 activity. Methods in Molecular Biology. Vol. 284. Methods Mol. Biol. pp. ...
Phospholipase A2, group 1B is an enzyme that in humans is encoded by the PLA2G1B gene. Phospholipase A2 (EC 3.1.1.4) catalyzes ... "Entrez Gene: PLA2G1B phospholipase A2, group IB (pancreas)". Sæle O, Nordgreen A, Olsvik PA, Hamre K (2010). "Characterisation ... 1995). "Phospholipase A2 gene expression and activity in histologically normal ileal mucosa and in Crohn's ileitis". Gut. 37 (3 ... Verheij HM, Westerman J, Sternby B, De Haas GH (1983). "The complete primary structure of phospholipase A2 from human pancreas ...
Secretory phospholipase A2 receptor is a protein that in humans is encoded by the PLA2R1 gene. M-type phospholipase A2 receptor ... "Structural comparison of phospholipase-A2-binding regions in phospholipase-A2 receptors from various mammals". European Journal ... phospholipase A2 induces a potent release of arachidonic acid from spleen cells and acts as a ligand for the phospholipase A2 ... "Entrez Gene: PLA2R1 phospholipase A2 receptor 1, 180kDa". Beck LH, Bonegio RG, Lambeau G, Beck DM, Powell DW, Cummins TD, Klein ...
Phospholipase A2 is one specific type of phospholipases found in snake venom. Snake example: Okinawan habu (Trimeresurus ... Phospholipase A2 causes hemolysis by lysing the phospholipid cell membranes of red blood cells. Amino acid oxidases and ... For instance, phospholipases type A2 (PLA2s) from the Tunisian vipers Cerastes cerastes and Macrovipera lebetina have been ... Pahari S, Bickford D, Fry BG, Kini RM (September 2007). "Expression pattern of three-finger toxin and phospholipase A2 genes in ...
Phospholipase A2 group IVE is a protein that in humans is encoded by the PLA2G4E gene. This gene encodes a member of the ... "Entrez Gene: Phospholipase A2 group IVE". Retrieved 2018-06-13. Talmud PJ, Drenos F, Shah S, Shah T, Palmen J, Verzilli C, ... cytosolic phospholipase A2 group IV family. Members of this family are involved in regulation of membrane tubule-mediated ...
180 Kd secretory phospholipase A2 receptor; DEC-205 receptor; 72 Kd and 92 Kd type IV collagenase (EC 3.4.24.24); and ... "Cloning and expression of a membrane receptor for secretory phospholipases A2". J. Biol. Chem. 269 (3): 1575-1578. doi:10.1016/ ... BSP-A1/A2) and BSP-A3; cation-independent mannose-6-phosphate receptor; mannose receptor of macrophages; ...
Phospholipase A2 neurotoxins also cause damage to skeletal muscles and possibly the heart, causing general aches, pain, and ... The basic subunit (a phospholipase A2) is mildly toxic and apparently rather common in North American rattlesnake venoms. The ... and Phospholipase A2 with a diversity of activities. The LD50 of its venom is 1.07-1.42 mg/gram of mouse body weight. Cranial ... venom and its purified basic phospholipase A2 (LmTX-I) in cultured cells". Toxicon. 49 (5): 678-92. doi:10.1016/j.toxicon. ...
Group IID secretory phospholipase A2 is an enzyme that in humans is encoded by the PLA2G2D gene. GRCh38: Ensembl release 89: ... "Entrez Gene: PLA2G2D phospholipase A2, group IID". Schröder HC, Perovic S, Kavsan V, et al. (1998). "Mechanisms of prionSc- and ... 2006). "A novel polymorphism in secretory phospholipase A2-IID is associated with body weight loss in chronic obstructive ... Lindbom J, Ljungman AG, Tagesson C (2007). "Interferon gamma-induced gene expression of the novel secretory phospholipase A2 ...
Cytosolic phospholipase A2 gamma is an enzyme that in humans is encoded by the PLA2G4C gene. GRCh38: Ensembl release 89: ... "Entrez Gene: PLA2G4C phospholipase A2, group IVC (cytosolic, calcium-independent)". Schröder HC, Perovic S, Kavsan V, et al. ( ... Underwood KW, Song C, Kriz RW, Chang XJ, Knopf JL, Lin LL (Sep 1998). "A novel calcium-independent phospholipase A2, cPLA2- ... 2005). "Cytoplasmic phospholipase A2 levels correlate with apoptosis in human colon tumorigenesis". Clin. Cancer Res. 11 (6): ...
Cardiotoxin-analogue III and phospholipase A2" (PDF). Journal of Biological Chemistry. 256 (17): 9279-9282. doi:10.1016/S0021- ...
Group XIIA secretory phospholipase A2 is an enzyme that in humans is encoded by the PLA2G12A gene. GRCh38: Ensembl release 89: ... "Entrez Gene: PLA2G12A phospholipase A2, group XIIA". Schröder HC, Perovic S, Kavsan V, et al. (1998). "Mechanisms of prionSc- ... 1997). "HIV and SIV envelope glycoproteins induce phospholipase A2 activation in human and macaque lymphocytes". J. Acquir. ... 2003). "Novel mammalian group XII secreted phospholipase A2 lacking enzymatic activity". Biochemistry. 42 (39): 11494-503. doi: ...
... while the reaction at the sn-2 position is catalyzed by phospholipase A2. Outer membrane phospholipase A1 Phospholipase+A1 at ... Franson R, Waite M, LaVia M (May 1971). "Identification of phospholipase A1 and A2 in the soluble fraction of rat liver ... "Characterization of phospholipase A1, A2, C activity in Ureaplasma urealyticum membranes". Mol. Cell. Biochem. 201 (1-2): 159- ... Unlike other phospholipases such as PLA2, there is much that is unknown about PLA1 due to the lack of any efficient way to ...
... A Phospholipase A1 - cleaves the sn-1 acyl chain (where sn refers to stereospecific numbering). Phospholipase A2 ... Phospholipase A2 is an enzyme present in the venom of bees, blennies and viper snakes. Patatin-like phospholipase Infantile ... Endothelial lipase is primarily a phospholipase. Phospholipase A2 acts on the intact lecithin molecule and hydrolyzes the fatty ... Phospholipase B - cleaves both sn-1 and sn-2 acyl chains; this enzyme is also known as a lysophospholipase. Phospholipase C - ...
April 2012). "Circulating phospholipase-A2 activity in obstructive sleep apnea and recurrent tonsillitis". International ...
Bicknell R, Vallee BL (1989). "Angiogenin stimulates endothelial cell prostacyclin secretion by activation of phospholipase A2 ... Bicknell R, Vallee BL (1988). "Angiogenin activates endothelial cell phospholipase C". Proc. Natl. Acad. Sci. U.S.A. 85 (16): ...
Teshima K, Ikeda K, Hamaguchi K, Hayashi K (July 1983). "Bindings of cobra venom phospholipases A2 to micelles of n- ...
... , also known as Group XV phospholipase A2, is an enzyme that in humans is encoded by the PLA2G15 gene. Lysophospholipases ... Abe A, Poucher HK, Hiraoka M, Shayman JA (2004). "Induction of lysosomal phospholipase A2 through the retinoid X receptor in ... Schaloske RH, Dennis EA (Nov 2006). "The phospholipase A2 superfamily and its group numbering system". Biochim Biophys Acta. ... Hiraoka M, Abe A, Shayman JA (2002). "Cloning and characterization of a lysosomal phospholipase A2, 1-O-acylceramide synthase ...
"Entrez Gene: PLA2G4B phospholipase A2, group IVB (cytosolic)". Schröder HC, Perovic S, Kavsan V, et al. (1998). "Mechanisms of ... Phospholipase A2, group IVB (cytosolic), also known as PLA2G4B, is a human gene. GRCh38: Ensembl release 89: ENSG00000168970 - ... 1998). "A novel calcium-independent phospholipase A2, cPLA2-gamma, that is prenylated and contains homology to cPLA2". J. Biol ... 1997). "HIV and SIV envelope glycoproteins induce phospholipase A2 activation in human and macaque lymphocytes". J. Acquir. ...
This means the phospholipase A2 cannot adsorb onto a lipid/water interface from the cell membrane. Residues on the CB subunit ... The toxic effect of crotoxin is determined mainly by the phospholipase A2 action of CB. The CA subunit is non-enzymatic and non ... The CB subunit is a phospholipase A2 protein. The C-terminal (C-terminus) of the CB subunit is important for the interaction ... The CA subunit thereby blocks a part of the enzyme surface of phospholipase A2, resulting in an impossibility to be activated. ...
Phospholipase A2 group IVD is a protein that in humans is encoded by the PLA2G4D gene. The phospholipase A2 enzyme family, ... "Entrez Gene: Phospholipase A2 group IVD". Retrieved 2017-09-13. Chiba, H; Michibata, H; Wakimoto, K; Seishima, M; Kawasaki, S; ... Okubo, K; Mitsui, H; Torii, H; Imai, Y (2004). "Cloning of a gene for a novel epithelium-specific cytosolic phospholipase A2, ... "Cloning of a gene for a novel epithelium-specific cytosolic phospholipase A2, cPLA2delta, induced in psoriatic skin". J. Biol. ...
Phospholipase A1 (PLA1) hydrolyzes phospholipid acyl chains at the sn-1 position of membrane phospholipids, phospholipase A2 ( ... and phospholipase D (PLD) hydrolyzes the polar group-phosphodiester bond. Of the phospholipases, the PLA2s have been the most ... Membrane Association Allosterically Regulates Phospholipase A2 Enzymes and Their Specificity Acc Chem Res. 2022 Dec 6;55(23): ... PLA2) hydrolyzes acyl chains at the sn-2 position, phospholipase C (PLC) hydrolyzes the glycerol-phosphodiester bond, ...
Phospholipase A2 (Pla2) is required for memory retrieval, and its inhibition in the hippocampus has been reported to impair ... Lithium activates brain phospholipase A2 and improves memory in rats: implications for Alzheimers disease. *Fábio B. Mury1,2, ... Mury, F.B., da Silva, W.C., Barbosa, N.R. et al. Lithium activates brain phospholipase A2 and improves memory in rats: ... Phospholipase A2 (Pla2) is required for memory retrieval, and its inhibition in the hippocampus has been reported to impair ...
The C2 domain of cytosolic phospholipase A2 alpha bound to phosphatidylcholine ... Cytosolic phospholipase A2. A, B, C. 127. Gallus gallus. Mutation(s): 0 Gene Names: PLA2G4A, CPLA2, PLA2G4. EC: 3.1.1.4 (PDB ... The C2 domain of cytosolic phospholipase A2 alpha bound to phosphatidylcholine. *PDB DOI: https://doi.org/10.2210/pdb6IEJ/pdb ... Ca 2+ -stimulated translocation of cytosolic phospholipase A 2 α (cPLA 2 α) to the Golgi induces arachidonic acid production, ...
Our requirements are stated in our rapid response terms and conditions and must be read. These include ensuring that: i) you do not include any illustrative content including tables and graphs, ii) you do not include any information that includes specifics about any patients,iii) you do not include any original data, unless it has already been published in a peer reviewed journal and you have included a reference, iv) your response is lawful, not defamatory, original and accurate, v) you declare any competing interests, vi) you understand that your name and other personal details set out in our rapid response terms and conditions will be published with any responses we publish and vii) you understand that once a response is published, we may continue to publish your response and/or edit or remove it in the future ...
Baker, Sharon Felicity (1998) Studies of the interfacial and heparin binding properties of secreted phospholipases A2. ... Studies of the interfacial and heparin binding properties of secreted phospholipases A2 ... Studies of the interfacial and heparin binding properties of secreted phospholipases A2 ... Studies of the interfacial and heparin binding properties of secreted phospholipases A2 ...
Showing Protein Group XIIB secretory phospholipase A2-like protein (HMDBP00062). IdentificationBiological propertiesGene ... Rouault M, Bollinger JG, Lazdunski M, Gelb MH, Lambeau G: Novel mammalian group XII secreted phospholipase A2 lacking enzymatic ... Group XIIB secretory phospholipase A2-like protein MKLASGFLVLWLSLGGGLAQSDTSPDTEESYSDWGLRHLRGSFESVNSYFDSFLELLGGK ...
Cloning of a phospholipase A2-activating protein: M.A. Clark, et al.; PNAS 88, 5418 (1991), Abstract; ... Peptide fragment from phospholipase A2 (PLA2) activating protein (PLAP) that activates phospholipase A2 in a dose-dependent ...
2010) Cytosolic phospholipase A2 alpha inhibitor, pyrroxyphene, displays anti-arthritic and anti-bone destructive action in a ... 1996) Involvement of secretory phospholipase A2 activity in the zymosan rat air pouch model of inflammation. Br J Pharmacol 117 ... AK106-001616, a Potent and Selective Inhibitor of Cytosolic Phospholipase A2: In Vivo Efficacy for Inflammation, Neuropathic ... independent phospholipase A2β. LOX. lipoxygenase. LPS. lipopolysaccharide. LT. leukotriene. LTB4. leukotriene B4. LTE4. ...
Cyclin A2 modulates EMT via beta-catenin and phospholipase C pathways. Cheung, C. T.; Bendris, N.; Paul, C.; Hamieh, A.; Anouar ... Here, we dissected the pathways that are responsible for EMT in cells deficient for Cyclin A2. In Cyclin A2-depleted normal ... that a WNT-independent mechanism of beta-catenin activation via phospholipase C is involved in the EMT induced by Cyclin A2 ... We have previously demonstrated that Cyclin A2 is involved in cytoskeletal dynamics, epithelial-mesenchymal transition (EMT) ...
The phospholipase A2 activity was significantly raised in those sera of the patients with active Crohns disease and those with ... The major phospholipase A2 activity derived from the sera was separated into two peaks by reverse phase high performance liquid ... Serum phospholipase A2 activity in patients with ulcerative colitis tends to increase in relation with endoscopic severity, and ... Calcium dependent phospholipase A2 activity in the mixed micelles of 1-palmitoyl-2-oleoyl-phosphatidylglycerol and cholate was ...
Secreted group IIA phospholipase A2 protects humans against the group B streptococcus: experimental and clinical evidence. ... Here, we analyze the role of human group IIA secreted phospholipase A2 (sPLA2-IIA), a bactericidal enzyme induced during acute ...
Clearance of group X secretory phospholipase A2 via mouse phospholipase A2 receptor. FEBS Letters. 2001;509:250-4 ... 8. Hanasaki K, Arita H. Phospholipase A2 receptor: A regulator of biological functions of secretory phospholipase A2. ... Articular inflammation induced by an enzymatically-inactive Lys49 phospholipase A2: activation of endogenous phospholipases ... Pro-inflammatory secretory phospholipase A2 type IIA binds to integrins αvβ3 and α4β1 and induces proliferation of monocytic ...
Phospholipase A2 is well known for its role in liver fibrosis and inhibition of tumour cells. The JNK signalling pathway is ... Secreted phospholipase A2 (sPLA2) is a protein secreted by Clonorchis sinensis and is a component of excretory and secretory ... Secreted phospholipase A2 (sPLA2) is a protein secreted by C. sinensis and is a component of CsESPs. sPLA2 enzymes, ... Secreted phospholipase A2 (sPLA2) is a protein secreted by Clonorchis sinensis and is a component of excretory and secretory ...
Phospholipases A2 have been shown to be activated in a concentration dependent manner by a number of antimicrobial peptides, ... Activation of phospholipase A2 by temporin B: Formation of antimicrobial peptide-enzyme amyloid-type cofibrils. DSpace/Manakin ...
The health content and information on this site is made possible through the generous support of the Haspel Education Fund ...
The University of Oklahoma Health Sciences Center is the academic partner of OU Health, the states only comprehensive academic health system of hospitals, clinics and centers of excellence.. ...
The University of Oklahoma Health Sciences Center is the academic partner of OU Health, the states only comprehensive academic health system of hospitals, clinics and centers of excellence.. ...
The Alpha-type phospholipase A2 inhibitor family has 0 members , canSARS ...
Book Anti Phospholipase A2 Receptor Test (PLA2R) in Jaipur with NABL-accredited Redcliffe Labs. One-stop destination for ... The anti-phospholipase-a2-receptor-pla2r measures anti-phospholipase A2 receptor levels in the blood for detecting membranous ...
You need info about Rat Phospholipase A2, membrane associated (PLA2G2A) ELISA Kit or any other Gentaur produtct? Contact us on ...
... ... Here, we studied the contribution of Ca2+-independent phospholipase A(2) (iPLA(2)), and the role of the MAP kinase family as ... Here, we studied the contribution of Ca2+-independent phospholipase A(2) (iPLA(2)), and the role of the MAP kinase family as ... stimulates arachidonic acid release and phosphatidylcholine hydrolysis by activation of cytosolic phospholipase A(2) (cPLA(2 ...
c-PLA2; cPLA2; PLA2G4A; Phospholipase A2, Cytosolic; Phospholipase A2,Group IV(Cytosolic,Calcium-Dependent); ... Cytosolic Phospholipase A2 (PLA2G4) Polyclonal Antibody, Cat#CAU25600. Rating Required Select Rating. 1 star (worst). 2 stars. ...
SDS-induced oligomerization of Lys49-phospholipase A2 from snake venom *Takashi Matsui ...
We aimed to: 1) identify phospholipases A2 isoforms expressed in preterm lung; 2) study the enzyme role on surfactant ... verify whether phospholipase A2 is linked to respiratory outcomes. In bronchoalveolar lavages of preterm neonates, we measured ... Subtype-IIA is the main phospholipase isoform in preterm lung, although subtype-IB may be significantly expressed. Neonates ... but the interaction between surfactant and phospholipase is unknown. We hypothesize that this interplay is complex and the ...
Lipoprotein-associated phospholipase A2: an independent risk marker for periprocedural new iscemic lesions and future major ...
The imprinted gene PLA2G7, which encodes lipoprotein-associated phospholipase A2 (Lp-PLA2), was one of the top hypomethylated ... Lipoprotein-associated phospholipase A2 and its association with cardiovascular outcomes in patients with acute coronary ... Koenig W, Vossen CY, Mallat Z, Brenner H, Benessiano J, Rothenbacher D. Association between type II secretory phospholipase A2 ... Huang F, Wang K, Shen J. Lipoprotein-associated phospholipase A2: the story continues. Med Res Rev. 2020;40(1):79-134. ...
Phospholipase A2-Associated Neurodegeneration): Read more about Symptoms, Diagnosis, Treatment, Complications, Causes and ... The PLA2G6 gene provides instructions for making an enzyme called an A2 phospholipase. [en.wikipedia.org] ...
  • Phospholipase A2 (Pla2) is required for memory retrieval, and its inhibition in the hippocampus has been reported to impair memory acquisition in rats. (springer.com)
  • abstract = "Low density lipoproteins (LDL) as well as isolated apolipoprotein B (ApoB) have been shown to exhibit phospholipase A2 (PLA2) activity toward phospholipids containing an oxidized or short fatty acyl chain at position 2. (tau.ac.il)
  • Trimeresurus flavoviridis venom gland phospholipase A2 (PLA2) genes pgPLA 1a and pgPLA 2a encode Asp-49-PLA2 and genes pgPLA 1b and pgPLA 2b encode an isozyme of Asp-49-PLA2. (elsevierpure.com)
  • As a step towards understanding the structure and function of phospholipases A2 (PLA2s), five cDNAs encoding Trimeresurus flavoviridis venom gland PLA2 isozymes have been sequenced. (elsevierpure.com)
  • Polymorphisms of Trimeresurus flavoviridis venom gland phospholipase A2 isozyme genes. (elsevierpure.com)
  • Trimeresurus flavoviridis venom gland phospholipase A2 isozymes genes have evolved via accelerated substitutions. (elsevierpure.com)
  • Dive into the research topics of 'Trimeresurus flavoviridis venom gland phospholipase A2 isozymes genes have evolved via accelerated substitutions. (elsevierpure.com)
  • The imprinted gene PLA2G7 , which encodes lipoprotein-associated phospholipase A 2 (Lp-PLA 2 ), was one of the top hypomethylated genes with an increased expression upon inflammation. (biomedcentral.com)
  • The aim of this study is to evaluate serum level biomarkers of atherosclerosis lipoprotein-associated phospholipase A2 and E-selectin in patients with atherosclerotic carotid stenosis with different clinical manifestation in associated with vascular risk factors. (uran.ua)
  • Lipoprotein-associated phospholipase A2 and E-selectin was measured using commercially available (ELISA) kit. (uran.ua)
  • No association the serum level of lipoprotein-associated phospholipase A2 and E-selectin with common stroke risk factor such as hypercholesterinemia, smoking and body mass index were found, but positive correlation of lipoprotein-associated phospholipase A2 with E-selectin was significant (p=0.00085). (uran.ua)
  • Increasing plasma level lipoprotein-associated phospholipase A2 and E-selectin in patients with the carotid atherosclerotic stenosis were observe. (uran.ua)
  • 2014). Association between the Lipoprotein-Associated Phospholipase A2 Activity and the Progression of Subclinical Atherosclerosis. (uran.ua)
  • Lipoprotein-associated phospholipase A2: role in atherosclerosis and utility as a cardiovascular biomarker. (uran.ua)
  • Adjusted HR for lipoprotein-associated phospholipase A2 (mass) (HR 1.53, 95% CI 1.14-2.04 vs. HR 1.05, 95% CI.99-1.12) was higher for incident isolated AAA compared to incident isolated AD, respectively. (lu.se)
  • Lipoprotein-associated phospholipase A2 activity, genetics and calcific aortic valve stenosis in humans. (cdc.gov)
  • Phospholipase A 1 (PLA 1 ) hydrolyzes phospholipid acyl chains at the sn -1 position of membrane phospholipids, phospholipase A 2 (PLA 2 ) hydrolyzes acyl chains at the sn -2 position, phospholipase C (PLC) hydrolyzes the glycerol-phosphodiester bond, and phospholipase D (PLD) hydrolyzes the polar group-phosphodiester bond. (nih.gov)
  • Secreted phospholipases A 2 (sPLA 2 s) (EC 3.1.1.4) are a structurally related group of low-molecular-mass enzymes (14-18 kDa) that catalyse the hydrolysis of glycerophospholipids (phospholipids hereafter) at their sn -2 position, to produce lysophospholipids and free fatty acids. (ijbs.com)
  • Low density lipoproteins (LDL) as well as isolated apolipoprotein B (ApoB) have been shown to exhibit phospholipase A 2 (PLA 2 ) activity toward phospholipids containing an oxidized or short fatty acyl chain at position 2. (tau.ac.il)
  • On the other hand, we found that LDL as well as isolated ApoB hydrolyse C 6 -NBD-FA from both carbon 1 and carbon 2 of these phospholipids, thus exhibiting independent and simultaneous activities of phospholipase A 1 and phospholipase A 2 . (tau.ac.il)
  • Phospholipases typically hydrolyze glycerol phospholipids, but loss of iPLA2-VIA does not affect the phospholipid composition of brain tissue but rather causes an elevation in ceramides. (nih.gov)
  • Cytosolic phospholipase A(2) is a Ca(2+)-dependent enzyme that acts on membrane phospholipids to release arachidonic acid, which in platelets is converted to thromboxane A(2). (ox.ac.uk)
  • Secreted phospholipase A 2 -IIA (sPLA 2 -IIA) hydrolyzes phospholipids to liberate lysophospholipids and fatty acids. (elsevierpure.com)
  • The anti-phospholipase-a2-receptor-pla2r measures anti-phospholipase A2 receptor levels in the blood for detecting membranous glomerulonephritis and nephrotic syndrome. (redcliffelabs.com)
  • Previous studies have measured the accuracy, sensitivity, and specificity of phospholipase A2 receptor (PLA2R) on MN. (elsevierpure.com)
  • In 2009, we had a seminal moment when you published a manuscript in The New England Journal of Medicine describing PLA2R, phospholipase A2 receptor, as the antigen that was responsible for a majority of the cases of MN. (medscape.com)
  • The M-type phospholipase A2 receptor (PLA2R) in the glomerular podocyte has been identified as the major target antigen in deposited immune-complexes. (msdmanuals.com)
  • Investigation of the relocation of cytosolic phospholipase A2 and annexin V in activated platelets. (ox.ac.uk)
  • The study was based on the hypothesis that poultry PM would induce the release of inflammatory cytokine interleukin-8 (IL-8) by respiratory epithelial cells under the upstream regulation by cytosolic phospholipase A2 (cPLA2) activation and subsequent formation of cyclooxygenase (COX)- and lipoxygenase (LOX)-catalyzed arachidonic acid (AA) metabolites (eicosanoids). (cdc.gov)
  • Secreted phospholipase A2 (sPLA2) is a protein secreted by Clonorchis sinensis and is a component of excretory and secretory products ( Cs ESPs). (biomedcentral.com)
  • The phospholipase A2 enzyme family, including PLA2G4D, catalyze the hydrolysis of glycerophospholipids at the sn-2 position and then liberate free fatty acids and lysophospholipids. (wikipedia.org)
  • 3-[3-Amino-4-(indan-2-yloxy)-5-(1-methyl-1 H -indazol-5-yl)-phenyl]-propionic acid (AK106-001616) is a novel, potent, and selective inhibitor of the cytosolic phospholipase A 2 (cPLA 2 ) enzyme. (aspetjournals.org)
  • Raised serum activity of phospholipase A2 immunochemically related to group II enzyme in inflammatory bowel disease: its correlation with disease activity of Crohn's disease and ulcerative colitis. (bmj.com)
  • The results suggest that raised serum phospholipase A2 activity in patients with Crohn's disease and ulcerative colitis was mainly attributed to the two forms of phospholipase A2 immunochemically related to group II enzyme. (bmj.com)
  • Here, we analyze the role of human group IIA secreted phospholipase A2 (sPLA2-IIA), a bactericidal enzyme induced during acute inflammation, in innate immunity against GBS. (pasteur.fr)
  • Among these proteins, annexin is known to inhibit phospholipase A2 and thus block the production of mediators and arachidonic acid metabolites such as the COX-2 enzyme, leukotrienes and prostaglandins, cytokines, interleukins, adhesion molecules and enzymes such as collagenase 24,25 . (bvsalud.org)
  • Phospholipase A2 group IVD is a protein that in humans is encoded by the PLA2G4D gene. (wikipedia.org)
  • Human non-pancreatic secreted phospholipase A 2 (hnps PLA 2 ) is a small (14 kDa) secreted protein of considerable biomedical interest. (soton.ac.uk)
  • Peptide fragment from phospholipase A 2 (PLA 2 ) activating protein (PLAP) that activates phospholipase A 2 in a dose-dependent manner (10-fold at 1 µg/ml). (enzolifesciences.com)
  • Components of the canonical wingless (WNT) pathway, including WNT8b, WNT10a, WNT10b, frizzled 1 and 2 and TCF4 were upregulated at the messenger RNA and protein levels following Cyclin A2 depletion. (cnrs.fr)
  • In patients with Crohn's disease, serum phospholipase A2 activity decreased in parallel with clinical improvement, and correlated with serum C-reactive protein and erythrocyte sedimentation rate. (bmj.com)
  • Serum phospholipase A2 activity in patients with ulcerative colitis tends to increase in relation with endoscopic severity, and may be a more sensitive laboratory index than serum C-reactive protein and erythrocyte sedimentation rate to evaluate disease activity. (bmj.com)
  • Annexin V is a Ca(2+)-dependent, phospholipid-binding protein, which is proposed to regulate inflammation by inhibiting cytosolic phospholipase A(2). (ox.ac.uk)
  • The effect of poly(ethylene glycol)-phospholipid (PE-PEG) lipopolymers on phospholipase A 2 (PLA 2 ) hydrolysis of liposomes composed of stearoyl-oleoylphosphatidylcholine (SOPC) was investigated. (ku.dk)
  • In Cyclin A2-depleted normal murine mammary gland (NMuMG) cells expressing RasV12, we found that beta-catenin was liberated from the cell membrane and cell-cell junctions and underwent nuclear translocation and activation. (cnrs.fr)
  • Secreted phospholipases A 2 (sPLA 2 s) participate in a very broad spectrum of biological processes through their enzymatic activity and as ligands for membrane and soluble receptors. (ijbs.com)
  • You need info about Rat Phospholipase A2, membrane associated (PLA2G2A) ELISA Kit or any other Gentaur produtct? (gentaurshop.com)
  • The mechanism of inhibition of Ca2+ - triggered phospholipase A(2) (PLA(2)) activity and respiratory burst in macrophages by shown that capsaicin inhibits calcium-ionophore stimulated pro-inflammatory responses in macrophages such as generation of superoxide anion, PLA(2) activity (IC50 = 20 uM) and membrane liquid peroxidation (IC50 = 10 uM). (uni-mysore.ac.in)
  • In a time-dependent manner, an exact correlation was found between the membrane association of cytosolic phospholipase A(2) and annexin V. Calcium from the intracellular stores was sufficient for the relocation of intracellular annexin V and cytosolic phospholipase A(2) to platelet membranes. (ox.ac.uk)
  • The incorporation of cytosolic phospholipase A(2) into the membrane fraction of thrombin-activated platelets parallels that of annexin V, which suggests an interaction between the two proteins. (ox.ac.uk)
  • We hypothesized that phospholipase A2 group IVA (PLA2G4A) expression is upregulated in granulosa cells (GC) at ovulation. (bioone.org)
  • This suggests that a WNT-independent mechanism of beta-catenin activation via phospholipase C is involved in the EMT induced by Cyclin A2 depletion. (cnrs.fr)
  • Activation in the presence of arginyl-glycyl-aspartyl-serine (RGDS), which inhibits binding of fibrinogen to its adhesive ligand, does not alter the amount of cytosolic phospholipase A(2) or annexin V that binds to membranes. (ox.ac.uk)
  • When activation-induced actin polymerisation was prevented by cytochalasin E, the recovery of both annexin V and cytosolic phospholipase A(2) remained unchanged. (ox.ac.uk)
  • These findings suggest that following platelet activation with thrombin, both cytosolic phospholipase A(2) and annexin V, relocate to platelet membranes where they interact. (ox.ac.uk)
  • Poultry PM also significantly induced the release of COX- and LOX-catalyzed eicosanoids (prostaglandins, thromboxane A2 and leukotrienes B4 and C4) and upstream activation of AA LOX in the cells. (cdc.gov)
  • However, suppression of the WNT pathway using the acetyltransferase porcupine inhibitor C59 did not reverse EMT whereas a dominant negative form of TCF4 as well as inhibition of phospholipase C using U73122 were able to do so. (cnrs.fr)
  • Phospholipase A2 is well known for its role in liver fibrosis and inhibition of tumour cells. (biomedcentral.com)
  • Here, we have studied the association of cytosolic phospholipase A(2) and annexin V with platelet membranes after thrombin stimulation. (ox.ac.uk)
  • However, complete depolymerisation of the cytoskeleton with DNase I almost abolished the association of cytosolic phospholipase A(2) with the membranes, and it completely abolished the relocation of annexin V to platelet membranes. (ox.ac.uk)
  • Finally, we show that cytosolic phospholipase A(2) can be specifically purified from platelet membranes by affinity chromatography on GST-annexin V and that immunoprecipitation using antibodies against cytosolic phospholipase A(2) copurify annexin V and cytosolic phospholipase A(2) from activated platelets. (ox.ac.uk)
  • An intact cytoskeleton seems to be a prerequisite for the interaction of cytosolic phospholipase A(2) and annexin V with platelet membranes. (ox.ac.uk)
  • Rouault M, Bollinger JG, Lazdunski M, Gelb MH, Lambeau G: Novel mammalian group XII secreted phospholipase A2 lacking enzymatic activity. (hmdb.ca)
  • Calcium dependent phospholipase A2 activity in the mixed micelles of 1-palmitoyl-2-oleoyl-phosphatidylglycerol and cholate was measured in sera of 39 patients with Crohn's disease, 40 patients with ulcerative colitis, and 40 healthy controls. (bmj.com)
  • The phospholipase A2 activity was significantly raised in those sera of the patients with active Crohn's disease and those with moderate and severe ulcerative colitis. (bmj.com)
  • The major phospholipase A2 activity derived from the sera was separated into two peaks by reverse phase high performance liquid chromatography. (bmj.com)
  • The results suggest that serum phospholipase A2 activity may serve as an additional indicator of disease activity. (bmj.com)
  • Exogenous surfactant significantly reduced global phospholipase activity (P 0.001) and subtype-IIA (P 0.005) and increased dioleoylphosphatidylglycerol (P 0.001) and surfactant adsorption (P 0.001). (ucm.es)
  • Ca 2+ -stimulated translocation of cytosolic phospholipase A 2 α (cPLA 2 α) to the Golgi induces arachidonic acid production, the rate-limiting step in pro-inflammatory eicosanoid synthesis. (rcsb.org)
  • and 3) verify whether phospholipase A2 is linked to respiratory outcomes. (ucm.es)
  • Ivanušec A, Šribar J, Križaj I. Secreted Phospholipases A 2 - not just Enzymes: Revisited. (ijbs.com)
  • Aims: Human atherosclerotic plaques express markers of macrophage/dendritic cells as well as high levels of inflammatory proteins such as secreted phospholipase A2 type IIA (sPLA2-IIA). (uva.es)
  • Subtype-IIA is the main phospholipase isoform in preterm lung, although subtype-IB may be significantly expressed. (ucm.es)
  • The phospholipase A2 active fractions were immunochemically characterised using specific antibody directed against human group II phospholipase A2 purified from rheumatoid synovial fluid. (bmj.com)
  • preterm neonates are treated with exogenous surfactant, but the interaction between surfactant and phospholipase is unknown. (ucm.es)
  • Here, we studied the contribution of Ca2+-independent phospholipase A(2) (iPLA(2)), and the role of the MAP kinase family as well as both cPLA(2) and iPLA(2) mRNA expression by RT-PCR in oxLDL toxicity to GP8.39 cells in vitro. (unict.it)
  • Baker, Sharon Felicity (1998) Studies of the interfacial and heparin binding properties of secreted phospholipases A2. (soton.ac.uk)