An enzyme catalyzing the transfer of a phosphate group from 3-phospho-D-glycerate in the presence of ATP to yield 3-phospho-D-glyceroyl phosphate and ADP. EC 2.7.2.3.
An enzyme that catalyzes the conversion of 2-phospho-D-glycerate to 3-phospho-D-glycerate. EC 5.4.2.1.
Glyceric acids are compounds that contain a glycerol moiety with one or more carboxylic acid groups, which can exist in various forms such as glycerate, glycerophosphate, and glyceronitrate, playing crucial roles in metabolism and energy production.
An enzyme that catalyzes the oxidation of 3-phosphoglycerate to 3-phosphohydroxypyruvate. It takes part in the L-SERINE biosynthesis pathway.
Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD.
An enzyme that catalyzes the transfer of phosphate from C-3 of 1,3-diphosphoglycerate to C-2 of 3-phosphoglycerate, forming 2,3-diphosphoglycerate. EC 5.4.2.4.
2,3-Diphosphoglycerate (2,3-DPG) is a physiological modulator of hemoglobin oxygen affinity, reducing its attraction to oxygen in red blood cells, which facilitates the release of oxygen to tissues with lower oxygen concentrations.
ATP:pyruvate 2-O-phosphotransferase. A phosphotransferase that catalyzes reversibly the phosphorylation of pyruvate to phosphoenolpyruvate in the presence of ATP. It has four isozymes (L, R, M1, and M2). Deficiency of the enzyme results in hemolytic anemia. EC 2.7.1.40.
A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH.
Reversibly catalyze the oxidation of a hydroxyl group of carbohydrates to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2.; and 1.1.99.
The rate dynamics in chemical or physical systems.
An enzyme that catalyzes reversibly the conversion of D-glyceraldehyde 3-phosphate to dihydroxyacetone phosphate. A deficiency in humans causes nonspherocytic hemolytic disease (ANEMIA, HEMOLYTIC, CONGENITAL NONSPHEROCYTIC). EC 5.3.1.1.
Phosphotransferases that catalyzes the conversion of 1-phosphatidylinositol to 1-phosphatidylinositol 3-phosphate. Many members of this enzyme class are involved in RECEPTOR MEDIATED SIGNAL TRANSDUCTION and regulation of vesicular transport with the cell. Phosphatidylinositol 3-Kinases have been classified both according to their substrate specificity and their mode of action within the cell.
An intracellular signaling system involving the MAP kinase cascades (three-membered protein kinase cascades). Various upstream activators, which act in response to extracellular stimuli, trigger the cascades by activating the first member of a cascade, MAP KINASE KINASE KINASES; (MAPKKKs). Activated MAPKKKs phosphorylate MITOGEN-ACTIVATED PROTEIN KINASE KINASES which in turn phosphorylate the MITOGEN-ACTIVATED PROTEIN KINASES; (MAPKs). The MAPKs then act on various downstream targets to affect gene expression. In mammals, there are several distinct MAP kinase pathways including the ERK (extracellular signal-regulated kinase) pathway, the SAPK/JNK (stress-activated protein kinase/c-jun kinase) pathway, and the p38 kinase pathway. There is some sharing of components among the pathways depending on which stimulus originates activation of the cascade.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein.
A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
An enzyme of the lyase class that catalyzes the cleavage of fructose 1,6-biphosphate to form dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The enzyme also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. (Enzyme Nomenclature, 1992) E.C. 4.1.2.13.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Trioses are monosaccharides, specifically simple sugars, that contain three carbon atoms, and can be glyceraldehydes or dihydroxyacetones, which are important intermediates in metabolic pathways such as glycolysis.
Any salt or ester of glycerophosphoric acid.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A standard reagent for the determination of reactive sulfhydryl groups by absorbance measurements. It is used primarily for the determination of sulfhydryl and disulfide groups in proteins. The color produced is due to the formation of a thio anion, 3-carboxyl-4-nitrothiophenolate.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
Agents that inhibit PROTEIN KINASES.
The female sex chromosome, being the differential sex chromosome carried by half the male gametes and all female gametes in human and other male-heterogametic species.
A CALMODULIN-dependent enzyme that catalyzes the phosphorylation of proteins. This enzyme is also sometimes dependent on CALCIUM. A wide range of proteins can act as acceptor, including VIMENTIN; SYNAPSINS; GLYCOGEN SYNTHASE; MYOSIN LIGHT CHAINS; and the MICROTUBULE-ASSOCIATED PROTEINS. (From Enzyme Nomenclature, 1992, p277)
The method of measuring the dispersion of an optically active molecule to determine the relative magnitude of right- or left-handed components and sometimes structural features of the molecule.
Contractile tissue that produces movement in animals.
A hydro-lyase that catalyzes the dehydration of 2-phosphoglycerate to form PHOSPHOENOLPYRUVATE. Several different isoforms of this enzyme exist, each with its own tissue specificity.
A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7.
Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.
A PROTEIN-TYROSINE KINASE family that was originally identified by homology to the Rous sarcoma virus ONCOGENE PROTEIN PP60(V-SRC). They interact with a variety of cell-surface receptors and participate in intracellular signal transduction pathways. Oncogenic forms of src-family kinases can occur through altered regulation or expression of the endogenous protein and by virally encoded src (v-src) genes.
A highly anionic organic phosphate which is present in human red blood cells at about the same molar ratio as hemoglobin. It binds to deoxyhemoglobin but not the oxygenated form, therefore diminishing the oxygen affinity of hemoglobin. This is essential in enabling hemoglobin to unload oxygen in tissue capillaries. It is also an intermediate in the conversion of 3-phosphoglycerate to 2-phosphoglycerate by phosphoglycerate mutase (EC 5.4.2.1). (From Stryer Biochemistry, 4th ed, p160; Enzyme Nomenclature, 1992, p508)
A condition of inadequate circulating red blood cells (ANEMIA) or insufficient HEMOGLOBIN due to premature destruction of red blood cells (ERYTHROCYTES).
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Mercuriphenols substituted with one or more chlorine atoms and one or more nitro groups. Some of these are sulfhydryl reagents which act as chromophoric probes in enzymes and other proteins.
Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters.
Common name for the order Pleuronectiformes. A very distinctive group in that during development they become asymmetrical, i.e., one eye migrates to lie adjacent to the other. They swim on the eyeless side. FLOUNDER, sole, and turbot, along with several others, are included in this order.
An enzyme that catalyzes the conversion of ATP and a D-hexose to ADP and a D-hexose 6-phosphate. D-Glucose, D-mannose, D-fructose, sorbitol, and D-glucosamine can act as acceptors; ITP and dATP can act as donors. The liver isoenzyme has sometimes been called glucokinase. (From Enzyme Nomenclature, 1992) EC 2.7.1.1.
The sum of the weight of all the atoms in a molecule.
A hemoflagellate subspecies of parasitic protozoa that causes nagana in domestic and game animals in Africa. It apparently does not infect humans. It is transmitted by bites of tsetse flies (Glossina).
The type species of gram-negative bacteria in the genus SPIROPLASMA, family SPIROPLASMATACEAE, causing citrus stubborn disease.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
A strong organic base existing primarily as guanidium ions at physiological pH. It is found in the urine as a normal product of protein metabolism. It is also used in laboratory research as a protein denaturant. (From Martindale, the Extra Pharmacopoeia, 30th ed and Merck Index, 12th ed) It is also used in the treatment of myasthenia and as a fluorescent probe in HPLC.
A mitogen-activated protein kinase subfamily that regulates a variety of cellular processes including CELL GROWTH PROCESSES; CELL DIFFERENTIATION; APOPTOSIS; and cellular responses to INFLAMMATION. The P38 MAP kinases are regulated by CYTOKINE RECEPTORS and can be activated in response to bacterial pathogens.
A group of enzymes that are dependent on CYCLIC AMP and catalyze the phosphorylation of SERINE or THREONINE residues on proteins. Included under this category are two cyclic-AMP-dependent protein kinase subtypes, each of which is defined by its subunit composition.
Electrophoresis in which a starch gel (a mixture of amylose and amylopectin) is used as the diffusion medium.
A proline-directed serine/threonine protein kinase which mediates signal transduction from the cell surface to the nucleus. Activation of the enzyme by phosphorylation leads to its translocation into the nucleus where it acts upon specific transcription factors. p40 MAPK and p41 MAPK are isoforms.
Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
An enzyme that catalyzes the conversion of 5-phosphoribosyl-1-pyrophosphate and hypoxanthine, guanine, or 6-mercaptopurine to the corresponding 5'-mononucleotides and pyrophosphate. The enzyme is important in purine biosynthesis as well as central nervous system functions. Complete lack of enzyme activity is associated with the LESCH-NYHAN SYNDROME, while partial deficiency results in overproduction of uric acid. EC 2.4.2.8.
A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins.

Increased phosphoglycerate kinase in the brains of patients with Down's syndrome but not with Alzheimer's disease. (1/603)

Impaired glucose metabolism in Down's syndrome (DS) has been well-documented in vivo, although information on the underlying biochemical defect is limited and no biochemical studies on glucose handling enzymes have been carried out in the brain. Through gene hunting in fetal DS brain we found an overexpressed sequence homologous to the phosphoglycerate kinase (PGK) gene. This finding was studied further by investigating the activity levels of this key enzyme of carbohydrate metabolism in the brains of patients with DS. PGK activity was determined in five brain regions of nine patients with DS, nine patients with Alzheimer's disease and 14 controls. PGK activity was significantly elevated in the frontal, occipital and temporal lobe and in the cerebellum of patients with DS. PGK activity in corresponding brain regions of patients with Alzheimer's disease was comparable with controls. We conclude that our findings complement previously published data on impaired brain glucose metabolism in DS evaluated by positron emission tomography in clinical studies. Furthermore, we show that in DS, impaired glucose metabolism, represented by increased PGK activity, is a specific finding rather than a secondary phenomenon simply due to neurodegeneration or atrophy. These observations are also supported by data from subtractive hybridization, showing overexpressed PGK in DS brains at the transcriptional level early in life.  (+info)

Hox gene expression in limbs: colinearity by opposite regulatory controls. (2/603)

Genes of the HoxD complex have a crucial role in the morphogenesis of vertebrate limbs. During development, their functional domains are colinear with their genomic positions within the HoxD cluster such that Hoxd13 and Hoxd12 are necessary for digit development, whereas Hoxd11 and Hoxd10 are involved in making forearms. Mutational analyses of these genes have demonstrated their importance and illustrated the requirement for a precise control of their expression during early limb morphogenesis. To study the nature of this control, we have scanned the posterior part of the HoxD complex with a targeted reporter transgene and analyzed the response of this foreign promoter to limb regulatory influences. The results suggest that this regulation is achieved through the opposite effects of two enhancer elements which would compete with each other for interacting with nearby-located promoters. The physical position of a given gene within this genomic interval of opposite regulations might thus determine its final expression pattern. This model provides a conceptual link between the morphology of the future limb and the genetic organization of the Hox gene cluster, a translation of a genomic context into a morphogenetic topology.  (+info)

Position-dependent inhibition of class-switch recombination by PGK-neor cassettes inserted into the immunoglobulin heavy chain constant region locus. (3/603)

The Ig heavy chain (IgH) constant region (CH) genes are organized from 5' to 3' in the order Cmicro, Cdelta, Cgamma3, Cgamma1, Cgamma2b, Cgamma2a, Cepsilon, and Calpha. Expression of CH genes downstream of Cdelta involves class-switch recombination (CSR), a process that is targeted by germ-line transcription (GT) of the corresponding CH gene. Previously, we demonstrated that insertion of a PGK-neor cassette at two sites downstream of Calpha inhibits, in cultured B cells, GT of and CSR to a subset of CH genes (including Cgamma3, Cgamma2a, Cgamma2b, and Cepsilon) that lie as far as 120 kb upstream. Here we show that insertion of the PGK-neor cassette in place of sequences in the Igamma2b locus inhibits GT of and CSR to the upstream Cgamma3 gene, but has no major effect on the downstream Cgamma2a and Cepsilon genes. Moreover, replacement of the Cepsilon exons with a PGK-neor cassette in the opposite transcriptional orientation also inhibits, in culture, GT of and CSR to the upstream Cgamma3, Cgamma2b, and Cgamma2a genes. As with the PGK-neor insertions 3' of Calpha studied previously, the Cgamma1 and Calpha genes were less affected by these mutations both in culture and in mice, whereas the Cgamma2b gene appeared less affected in vivo. Our findings support the existence of a long-range 3' IgH regulatory region required for GT of and CSR to multiple CH genes and suggest that PGK-neor cassette insertion into the locus short circuits the ability of this region to facilitate GT of dependent CH genes upstream of the insertion.  (+info)

A conserved sequence block in the murine and human TCR J alpha region: assessment of regulatory function in vivo. (4/603)

Temporal control of rearrangement at the TCR alpha/delta locus is crucial for development of the gamma delta and alpha beta T cell lineages. Because the TCR delta locus is embedded within the alpha locus, rearrangement of any V alpha-J alpha excises the delta locus, precluding expression of a functional gamma delta TCR. Approximately 100 kb spanning the C delta-C alpha region has been sequenced from both human and mouse, and comparison has revealed an unexpectedly high degree of conservation between the two. Of interest in terms of regulation, several highly conserved sequence blocks (> 90% over > 50 bp) were identified that did not correspond to known regulatory elements such as the TCR alpha and delta enhancers or to coding regions. One of these blocks lying between J alpha 4 and J alpha 3, which appears to be conserved in other vertebrates, has been shown to augment TCR alpha enhancer function in vitro and differentially bind factors from nuclear extracts. To further assess a plausible regulatory role for this element, we have created mice in which this conserved sequence block is either deleted or replaced with a neomycin resistance gene driven by the phosphoglycerate kinase promoter (pgk-neor). Deletion of this conserved sequence block in vivo did have a local effect on J alpha usage, echoing the in vitro data. However, its replacement with pgk-neor had a much more dramatic, long range effect, perhaps underscoring the importance of maintaining overall structure at this locus.  (+info)

Site-directed mutagenesis of proline 204 in the 'hinge' region of yeast phosphoglycerate kinase. (5/603)

Site-specific mutants have been produced in order to investigate the role of proline 204 in the 'hinge' region of yeast phosphoglycerate kinase (PGK). This totally conserved proline has been shown to be the only cis-proline in the high resolution crystal structures of yeast, B. stearothermophilus, T. brucei and T. maritima PGK, and may therefore have a role in the independent folding of the two domains or in the 'hinge' bending of the molecule during catalysis. The residue was replaced by a histidine (Pro204His) and a phenylalanine (Pro204Phe), and the resulting proteins characterised by differential scanning calorimetry (DSC), circular dichroism (CD), tryptophan fluorescence emission and kinetic analysis. Although the secondary and tertiary structure of the Pro204His protein is generally similar to that of the wild-type enzyme as assessed by CD, the enzyme is less stable to heat and guanidinium chloride denaturation than the wild-type. In the denaturation experiments two transitions were observed for both the wild-type and the Pro204His mutant, as have been previously reported for yeast PGK [Missiakas, D., Betton, J.M., Minard, P. & Yon, J.M. (1990) Biochemistry 29, 8683-8689]. The first transition is accompanied by an increase in fluorescence intensity leading to a hyperfluorescent state, followed by the second, corresponding to a decrease in fluorescence intensity. However, for the Pro204His mutant, the first transition proceeded at lower concentrations of guanidinium chloride and the second transition proceeded to the same extent as for the wild-type protein, suggesting that sequence-distant interactions are more rapidly disrupted in this mutant enzyme than in the wild-type enzyme, while sequence-local interactions are disrupted in a similar way. The Michaelis constants (K(m)) for both 3-phospho-D-glycerate and ATP are increased only by three or fourfold, which confirms that, as expected, the substrate binding sites are largely unaffected by the mutation. However, the turnover and efficiency of the Pro204His mutant is severely impaired, indicating that the mechanism of 'hinge' bending is hindered. The Pro204Phe enzyme was shown to be significantly less well folded than the wild-type and Pro204His enzymes, with considerable loss of both secondary and tertiary structure. It is proposed that the proline residue at 204 in the 'hinge' region of PGK plays a role in the stability and catalytic mechanism of the enzyme.  (+info)

Pgk1 and Hprt gene activity in the peri-implantation mouse embryo is influenced by the parental origin of the X-chromosome. (6/603)

The activity of two X-linked genes, Pgk1 and Hprt, that are localized on X-chromosomes of different parental origins in the XX mouse embryo was analyzed by the quantification of allele-specific transcripts. For the Pgk1 gene, the maternal allele-specific transcripts were consistently more abundant than the paternal transcripts in the blastocyst and the late gastrula. For the Hprt gene, the Hprt(b) allele was preferentially expressed in the blastocysts when it is present on the maternal X-chromosome. However, this skewed expression of the maternal allele was not observed in the reciprocal situation when the Hprt(a) allele was on the maternal X-chromosome. Like the Pgk1 locus, significantly more maternal Hprt transcripts were found in the gastrula-stage embryos irrespective of their genotypes. One possible interpretation of these results is that, in the XX mouse embryos, the genetic loci on maternal X-chromosome may be transcriptionally more active than their paternal counterparts during peri-implantation development.  (+info)

What controls glycolysis in bloodstream form Trypanosoma brucei? (7/603)

On the basis of the experimentally determined kinetic properties of the trypanosomal enzymes, the question is addressed of which step limits the glycolytic flux in bloodstream form Trypanosoma brucei. There appeared to be no single answer; in the physiological range, control shifted between the glucose transporter on the one hand and aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and glycerol-3-phosphate dehydrogenase (GDH) on the other hand. The other kinases, which are often thought to control glycolysis, exerted little control; so did the utilization of ATP. We identified potential targets for anti-trypanosomal drugs by calculating which steps need the least inhibition to achieve a certain inhibition of the glycolytic flux in these parasites. The glucose transporter appeared to be the most promising target, followed by ALD, GDH, GAPDH, and PGK. By contrast, in erythrocytes more than 95% deficiencies of PGK, GAPDH, or ALD did not cause any clinical symptoms (Schuster, R. and Holzhutter, H.-G. (1995) Eur. J. Biochem. 229, 403-418). Therefore, the selectivity of drugs inhibiting these enzymes may be much higher than expected from their molecular effects alone. Quite unexpectedly, trypanosomes seem to possess a substantial overcapacity of hexokinase, phosphofructokinase, and pyruvate kinase, making these "irreversible" enzymes mediocre drug targets.  (+info)

Multiple elements influence transcriptional regulation from the human testis-specific PGK2 promoter in transgenic mice. (8/603)

The PGK2 gene is expressed in a strictly tissue-specific manner in meiotic spermatocytes and postmeiotic spermatids during spermatogenesis in eutherian mammals. Previous results indicate that this is regulated at the transcriptional level by core promoter sequences that bind ubiquitous transcription factors and by sequences in a 40-base pair (bp) upstream enhancer region (E1/E4) that bind tissue-specific transcription factors. Transgenic mice carrying different PGK2 promoter sequences linked to the chloramphenicol acetyltransferase (CAT) reporter gene, one containing only the 40-bp E1/E4 enhancer sequence plus the core promoter and two containing 515 bp of PGK2 promoter but with either the E1/E4 enhancer region or the Sp1-binding site in the core promoter disrupted by in vitro mutagenesis, all showed levels of expression reduced to less than half that of the wild-type 515 PGK2/CAT transgene. These results indicate that multiple factor-binding regions normally regulate initiation of transcription from the PGK2 promoter. The single disruption of any one of these binding activities reduced, but did not abolish, transgene expression. This is consistent with an "enhanceosome"-like function in this promoter involving multiple bound activator proteins that interact in a combinatorial manner to synergistically promote testis-specific transcription.  (+info)

Phosphoglycerate Kinase (PGK) is an enzyme that plays a crucial role in the glycolytic pathway, which is a series of reactions that convert glucose into pyruvate, producing ATP and NADH as energy-rich compounds. PGK catalyzes the conversion of 1,3-bisphosphoglycerate (1,3-BPG) to 3-phosphoglycerate (3-PG), concomitantly transferring a phosphate group to ADP to form ATP. This reaction is the fourth step in the glycolytic pathway and is reversible under certain conditions.

In humans, there are two isoforms of PGK: PGK1 and PGK2. PGK1 is widely expressed in various tissues, while PGK2 is primarily found in sperm cells. Deficiencies or mutations in the PGK1 gene can lead to a rare metabolic disorder called Phosphoglycerate Kinase Deficiency (PGKD), which can present with hemolytic anemia and neurological symptoms.

Phosphoglycerate Mutase (PGM) is an enzyme that plays a crucial role in the glycolytic pathway, which is a metabolic process that converts glucose into pyruvate, producing ATP and NADH as energy currency for the cell.

The enzyme catalyzes the interconversion of 3-phosphoglycerate (3-PG) and 2-phosphoglycerate (2-PG), which is the ninth step in glycolysis. Specifically, PGM transfers a phosphate group from the third carbon atom to the second carbon atom of 3-PG, resulting in the formation of 2-PG and inorganic phosphate.

There are two types of Phosphoglycerate Mutase isoenzymes in humans, including:

1. Phosphoglycerate Mutase 1 (PGAM1): This is a cytosolic enzyme that is widely expressed in various tissues, including skeletal muscle, heart, brain, and liver.
2. Phosphoglycerate Mutase 2 (PGAM2): This is a muscle-specific isoenzyme that is primarily found in cardiac and skeletal muscles.

Mutations in the PGAM1 gene have been associated with hemolytic anemia, neurodevelopmental disorders, and other metabolic abnormalities, while mutations in the PGAM2 gene have been linked to myopathies and other muscle-related disorders.

I believe there might be a slight misunderstanding in your question. "Glyceric acid" is not a widely recognized or established term in medicine or biochemistry. However, glyceric acid can refer to a specific compound with the chemical formula C3H8O4, also known as 2,3-dihydroxypropanoid acid or glycerol-3-phosphate when phosphorylated.

Glyceric acid is an organic compound that plays a crucial role in cellular metabolism, particularly in energy production pathways such as glycolysis and gluconeogenesis. It can be formed from the reduction of dihydroxyacetone phosphate (a glycolytic intermediate) or through the oxidation of glycerol.

If you were referring to a different term or concept, please provide more context so I can give a more accurate answer.

Phosphoglycerate Dehydrogenase (PGDH) is a critical enzyme in the metabolic pathway of glycolysis and serine synthesis. It catalyzes the first step in the serine synthesis pathway, where 3-phosphoglycerate is converted to 3-phosphohydroxypyruvate, while also reducing nicotinamide adenine dinucleotide (NAD+) to nicotinamide adenine dinucleotide hydride (NADH). This enzyme plays a significant role in cellular metabolism and has been linked to various diseases, including cancer, when its activity is dysregulated.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme that plays a crucial role in the metabolic pathway of glycolysis. Its primary function is to convert glyceraldehyde-3-phosphate (a triose sugar phosphate) into D-glycerate 1,3-bisphosphate, while also converting nicotinamide adenine dinucleotide (NAD+) into its reduced form NADH. This reaction is essential for the production of energy in the form of adenosine triphosphate (ATP) during cellular respiration. GAPDH has also been implicated in various non-metabolic processes, including DNA replication, repair, and transcription regulation, due to its ability to interact with different proteins and nucleic acids.

Bisphosphoglycerate mutase (BPGM) is an enzyme that plays a crucial role in the regulation of oxygen transport in red blood cells. The main function of BPGM is to convert 1,3-bisphosphoglycerate (1,3-BPG) into 2,3-bisphosphoglycerate (2,3-BPG), also known as 2,3-diphosphoglycerate (2,3-DPG).

2,3-BPG is essential for modulating the affinity of hemoglobin for oxygen. By increasing the concentration of 2,3-BPG in red blood cells, BPGM reduces the ability of hemoglobin to bind to oxygen, allowing more oxygen to be released from hemoglobin and made available to tissues, particularly under low-oxygen conditions. This is especially important for individuals living at high altitudes or those with chronic lung diseases who may have impaired oxygen transport.

Defects in the BPGM gene can lead to a rare disorder called 2,3-bisphosphoglycerate deficiency, which results in an increased affinity of hemoglobin for oxygen and reduced oxygen delivery to tissues. This condition is characterized by symptoms such as shortness of breath, fatigue, and headaches, particularly during exercise or at high altitudes.

Diphosphoglycerates (also known as 2,3-diphosphoglycerates or 2,3-DPG) are organic molecules found in red blood cells. They play a crucial role in regulating the affinity of hemoglobin for oxygen. Hemoglobin is the protein in red blood cells that carries oxygen from the lungs to the body's tissues.

When the concentration of diphosphoglycerates in red blood cells increases, it reduces the ability of hemoglobin to bind with oxygen, which allows more oxygen to be released into the tissues. This is particularly important in conditions where there is low oxygen availability, such as at high altitudes or in diseases that cause poor oxygen delivery to the tissues, like heart failure and chronic obstructive pulmonary disease (COPD).

In summary, diphosphoglycerates are essential molecules that help regulate hemoglobin's affinity for oxygen, ensuring optimal oxygen delivery to the body's tissues.

Pyruvate kinase is an enzyme that plays a crucial role in the final step of glycolysis, a process by which glucose is broken down to produce energy in the form of ATP (adenosine triphosphate). Specifically, pyruvate kinase catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP), resulting in the formation of pyruvate and ATP.

There are several isoforms of pyruvate kinase found in different tissues, including the liver, muscle, and brain. The type found in red blood cells is known as PK-RBC or PK-M2. Deficiencies in pyruvate kinase can lead to a genetic disorder called pyruvate kinase deficiency, which can result in hemolytic anemia due to the premature destruction of red blood cells.

Glycolysis is a fundamental metabolic pathway that occurs in the cytoplasm of cells, consisting of a series of biochemical reactions. It's the process by which a six-carbon glucose molecule is broken down into two three-carbon pyruvate molecules. This process generates a net gain of two ATP molecules (the main energy currency in cells), two NADH molecules, and two water molecules.

Glycolysis can be divided into two stages: the preparatory phase (or 'energy investment' phase) and the payoff phase (or 'energy generation' phase). During the preparatory phase, glucose is phosphorylated twice to form glucose-6-phosphate and then converted to fructose-1,6-bisphosphate. These reactions consume two ATP molecules but set up the subsequent breakdown of fructose-1,6-bisphosphate into triose phosphates in the payoff phase. In this second stage, each triose phosphate is further oxidized and degraded to produce one pyruvate molecule, one NADH molecule, and one ATP molecule through substrate-level phosphorylation.

Glycolysis does not require oxygen to proceed; thus, it can occur under both aerobic (with oxygen) and anaerobic (without oxygen) conditions. In the absence of oxygen, the pyruvate produced during glycolysis is further metabolized through fermentation pathways such as lactic acid fermentation or alcohol fermentation to regenerate NAD+, which is necessary for glycolysis to continue.

In summary, glycolysis is a crucial process in cellular energy metabolism, allowing cells to convert glucose into ATP and other essential molecules while also serving as a starting point for various other biochemical pathways.

Carbohydrate dehydrogenases are a group of enzymes that catalyze the oxidation of carbohydrates, including sugars and sugar alcohols. These enzymes play a crucial role in cellular metabolism by helping to convert these molecules into forms that can be used for energy or as building blocks for other biological compounds.

During the oxidation process, carbohydrate dehydrogenases remove hydrogen atoms from the carbohydrate substrate and transfer them to an electron acceptor, such as NAD+ or FAD. This results in the formation of a ketone or aldehyde group on the carbohydrate molecule and the reduction of the electron acceptor to NADH or FADH2.

Carbohydrate dehydrogenases are classified into several subgroups based on their substrate specificity, cofactor requirements, and other factors. Some examples include glucose dehydrogenase, galactose dehydrogenase, and sorbitol dehydrogenase.

These enzymes have important applications in various fields, including biotechnology, medicine, and industry. For example, they can be used to detect or quantify specific carbohydrates in biological samples, or to produce valuable chemical compounds through the oxidation of renewable resources such as plant-derived sugars.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Triose-phosphate isomerase (TPI) is a crucial enzyme in the glycolytic pathway, which is a metabolic process that converts glucose into pyruvate, producing ATP and NADH as energy currency for the cell. TPI specifically catalyzes the reversible interconversion of the triose phosphates dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P). This interconversion is a vital step in maintaining the balance of metabolites in the glycolytic pathway.

The reaction catalyzed by TPI is as follows:

Dihydroxyacetone phosphate ↔ Glyceraldehyde 3-phosphate

Deficiency or mutations in the gene encoding triose-phosphate isomerase can lead to a severe autosomal recessive disorder known as Triose Phosphate Isomerase Deficiency (TID). This condition is characterized by chronic hemolytic anemia, neuromuscular symptoms, and shortened lifespan.

Phosphatidylinositol 3-Kinases (PI3Ks) are a family of enzymes that play a crucial role in intracellular signal transduction. They phosphorylate the 3-hydroxyl group of the inositol ring in phosphatidylinositol and its derivatives, which results in the production of second messengers that regulate various cellular processes such as cell growth, proliferation, differentiation, motility, and survival.

PI3Ks are divided into three classes based on their structure and substrate specificity. Class I PI3Ks are further subdivided into two categories: class IA and class IB. Class IA PI3Ks are heterodimers consisting of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85α, p85β, p55γ, or p50γ). They are primarily activated by receptor tyrosine kinases and G protein-coupled receptors. Class IB PI3Ks consist of a catalytic subunit (p110γ) and a regulatory subunit (p101 or p84/87). They are mainly activated by G protein-coupled receptors.

Dysregulation of PI3K signaling has been implicated in various human diseases, including cancer, diabetes, and autoimmune disorders. Therefore, PI3Ks have emerged as important targets for drug development in these areas.

Mitogen-activated protein kinase (MAPK) signaling system is a crucial pathway for the transmission and regulation of various cellular responses in eukaryotic cells. It plays a significant role in several biological processes, including proliferation, differentiation, apoptosis, inflammation, and stress response. The MAPK cascade consists of three main components: MAP kinase kinase kinase (MAP3K or MEKK), MAP kinase kinase (MAP2K or MEK), and MAP kinase (MAPK).

The signaling system is activated by various extracellular stimuli, such as growth factors, cytokines, hormones, and stress signals. These stimuli initiate a phosphorylation cascade that ultimately leads to the activation of MAPKs. The activated MAPKs then translocate into the nucleus and regulate gene expression by phosphorylating various transcription factors and other regulatory proteins.

There are four major MAPK families: extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal kinases (JNK1/2/3), p38 MAPKs (p38α/β/γ/δ), and ERK5. Each family has distinct functions, substrates, and upstream activators. Dysregulation of the MAPK signaling system can lead to various diseases, including cancer, diabetes, cardiovascular diseases, and neurological disorders. Therefore, understanding the molecular mechanisms underlying this pathway is crucial for developing novel therapeutic strategies.

"Saccharomyces cerevisiae" is not typically considered a medical term, but it is a scientific name used in the field of microbiology. It refers to a species of yeast that is commonly used in various industrial processes, such as baking and brewing. It's also widely used in scientific research due to its genetic tractability and eukaryotic cellular organization.

However, it does have some relevance to medical fields like medicine and nutrition. For example, certain strains of S. cerevisiae are used as probiotics, which can provide health benefits when consumed. They may help support gut health, enhance the immune system, and even assist in the digestion of certain nutrients.

In summary, "Saccharomyces cerevisiae" is a species of yeast with various industrial and potential medical applications.

Protein kinases are a group of enzymes that play a crucial role in many cellular processes by adding phosphate groups to other proteins, a process known as phosphorylation. This modification can activate or deactivate the target protein's function, thereby regulating various signaling pathways within the cell. Protein kinases are essential for numerous biological functions, including metabolism, signal transduction, cell cycle progression, and apoptosis (programmed cell death). Abnormal regulation of protein kinases has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

Protein-Serine-Threonine Kinases (PSTKs) are a type of protein kinase that catalyzes the transfer of a phosphate group from ATP to the hydroxyl side chains of serine or threonine residues on target proteins. This phosphorylation process plays a crucial role in various cellular signaling pathways, including regulation of metabolism, gene expression, cell cycle progression, and apoptosis. PSTKs are involved in many physiological and pathological processes, and their dysregulation has been implicated in several diseases, such as cancer, diabetes, and neurodegenerative disorders.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Fructose-bisphosphate aldolase is a crucial enzyme in the glycolytic pathway, which is a metabolic process that breaks down glucose to produce energy. This enzyme catalyzes the conversion of fructose-1,6-bisphosphate into two triose sugars: dihydroxyacetone phosphate and glyceraldehyde-3-phosphate.

There are two main types of aldolase isoenzymes in humans, classified as aldolase A (or muscle type) and aldolase B (or liver type). Fructose-bisphosphate aldolase refers specifically to aldolase A, which is primarily found in the muscles, brain, and red blood cells. Aldolase B, on the other hand, is predominantly found in the liver, kidney, and small intestine.

Deficiency or dysfunction of fructose-bisphosphate aldolase can lead to metabolic disorders, such as hereditary fructose intolerance, which results from a deficiency in another enzyme called aldolase B. However, it is essential to note that the term "fructose-bisphosphate aldolase" typically refers to aldolase A and not aldolase B.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Trioses are simple sugars that contain three carbon atoms and a functional group called a ketone or aldehyde. They are the simplest type of sugar molecule, after monosaccharides such as glyceraldehyde and dihydroxyacetone.

Triose sugars can exist in two structural forms:

* Dihydroxyacetone (DHA), which is a ketotriose with the formula CH2OH-CO-CH2OH, and
* Glyceraldehyde (GA), which is an aldotriose with the formula HO-CHOH-CHO.

Trioses play important roles in various metabolic pathways, including glycolysis, gluconeogenesis, and the Calvin cycle of photosynthesis. In particular, DHA and GA are intermediates in the conversion of glucose to pyruvate during glycolysis, and they are also produced from pyruvate during gluconeogenesis.

Trioses can be synthesized chemically or biochemically through various methods, such as enzymatic reactions or microbial fermentation. They have potential applications in the food, pharmaceutical, and chemical industries, as they can serve as building blocks for more complex carbohydrates or as precursors for other organic compounds.

Glycerophosphates are esters of glycerol and phosphoric acid. In the context of biochemistry and medicine, glycerophosphates often refer to glycerol 3-phosphate (also known as glyceraldehyde 3-phosphate or glycerone phosphate) and its derivatives.

Glycerol 3-phosphate plays a crucial role in cellular metabolism, particularly in the process of energy production and storage. It is an important intermediate in both glycolysis (the breakdown of glucose to produce energy) and gluconeogenesis (the synthesis of glucose from non-carbohydrate precursors).

In addition, glycerophosphates are also involved in the formation of phospholipids, a major component of cell membranes. The esterification of glycerol 3-phosphate with fatty acids leads to the synthesis of phosphatidic acid, which is a key intermediate in the biosynthesis of other phospholipids.

Abnormalities in glycerophosphate metabolism have been implicated in various diseases, including metabolic disorders and neurological conditions.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Adenosine Triphosphate (ATP) is a high-energy molecule that stores and transports energy within cells. It is the main source of energy for most cellular processes, including muscle contraction, nerve impulse transmission, and protein synthesis. ATP is composed of a base (adenine), a sugar (ribose), and three phosphate groups. The bonds between these phosphate groups contain a significant amount of energy, which can be released when the bond between the second and third phosphate group is broken, resulting in the formation of adenosine diphosphate (ADP) and inorganic phosphate. This process is known as hydrolysis and can be catalyzed by various enzymes to drive a wide range of cellular functions. ATP can also be regenerated from ADP through various metabolic pathways, such as oxidative phosphorylation or substrate-level phosphorylation, allowing for the continuous supply of energy to cells.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Dithionitrobenzoic acid is not a medical term, as it is related to chemistry rather than medicine. It is an organic compound with the formula C6H4N2O4S2. This compound is a type of benzenediol that contains two sulfur atoms and two nitro groups. It is a white crystalline powder that is soluble in water and alcohol.

Dithionitrobenzoic acid is not used directly in medical applications, but it can be used as a reagent in chemical reactions that are relevant to medical research or analysis. For example, it can be used to determine the concentration of iron in biological samples through a reaction that produces a colored complex. However, if you have any specific questions related to its use or application in a medical context, I would recommend consulting with a medical professional or a researcher in the relevant field.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

Protein kinase inhibitors (PKIs) are a class of drugs that work by interfering with the function of protein kinases. Protein kinases are enzymes that play a crucial role in many cellular processes by adding a phosphate group to specific proteins, thereby modifying their activity, localization, or interaction with other molecules. This process of adding a phosphate group is known as phosphorylation and is a key mechanism for regulating various cellular functions, including signal transduction, metabolism, and cell division.

In some diseases, such as cancer, protein kinases can become overactive or mutated, leading to uncontrolled cell growth and division. Protein kinase inhibitors are designed to block the activity of these dysregulated kinases, thereby preventing or slowing down the progression of the disease. These drugs can be highly specific, targeting individual protein kinases or families of kinases, making them valuable tools for targeted therapy in cancer and other diseases.

Protein kinase inhibitors can work in various ways to block the activity of protein kinases. Some bind directly to the active site of the enzyme, preventing it from interacting with its substrates. Others bind to allosteric sites, changing the conformation of the enzyme and making it inactive. Still, others target upstream regulators of protein kinases or interfere with their ability to form functional complexes.

Examples of protein kinase inhibitors include imatinib (Gleevec), which targets the BCR-ABL kinase in chronic myeloid leukemia, and gefitinib (Iressa), which inhibits the EGFR kinase in non-small cell lung cancer. These drugs have shown significant clinical benefits in treating these diseases and have become important components of modern cancer therapy.

The X chromosome is one of the two types of sex-determining chromosomes in humans (the other being the Y chromosome). It's one of the 23 pairs of chromosomes that make up a person's genetic material. Females typically have two copies of the X chromosome (XX), while males usually have one X and one Y chromosome (XY).

The X chromosome contains hundreds of genes that are responsible for the production of various proteins, many of which are essential for normal bodily functions. Some of the critical roles of the X chromosome include:

1. Sex Determination: The presence or absence of the Y chromosome determines whether an individual is male or female. If there is no Y chromosome, the individual will typically develop as a female.
2. Genetic Disorders: Since females have two copies of the X chromosome, they are less likely to be affected by X-linked genetic disorders than males. Males, having only one X chromosome, will express any recessive X-linked traits they inherit.
3. Dosage Compensation: To compensate for the difference in gene dosage between males and females, a process called X-inactivation occurs during female embryonic development. One of the two X chromosomes is randomly inactivated in each cell, resulting in a single functional copy per cell.

The X chromosome plays a crucial role in human genetics and development, contributing to various traits and characteristics, including sex determination and dosage compensation.

Calcium-calmodulin-dependent protein kinases (CAMKs) are a family of enzymes that play a crucial role in intracellular signaling pathways. They are activated by the binding of calcium ions and calmodulin, a ubiquitous calcium-binding protein, to their regulatory domain.

Once activated, CAMKs phosphorylate specific serine or threonine residues on target proteins, thereby modulating their activity, localization, or stability. This post-translational modification is essential for various cellular processes, including synaptic plasticity, gene expression, metabolism, and cell cycle regulation.

There are several subfamilies of CAMKs, including CaMKI, CaMKII, CaMKIII (also known as CaMKIV), and CaMK kinase (CaMKK). Each subfamily has distinct structural features, substrate specificity, and regulatory mechanisms. Dysregulation of CAMK signaling has been implicated in various pathological conditions, such as neurodegenerative diseases, cancer, and cardiovascular disorders.

Optical rotatory dispersion (ORD) is a phenomenon in which plane-polarized light is rotated as it passes through an optically active substance. It is a measure of the difference in refractive index between left and right circularly polarized light, and is dependent on the wavelength of the light. ORD is used to determine the optical purity and absolute configuration of chiral molecules, particularly in the field of stereochemistry. The magnitude and sign of the rotation can provide information about the concentration and type of optically active compound present in a sample.

A muscle is a soft tissue in our body that contracts to produce force and motion. It is composed mainly of specialized cells called muscle fibers, which are bound together by connective tissue. There are three types of muscles: skeletal (voluntary), smooth (involuntary), and cardiac. Skeletal muscles attach to bones and help in movement, while smooth muscles are found within the walls of organs and blood vessels, helping with functions like digestion and circulation. Cardiac muscle is the specific type that makes up the heart, allowing it to pump blood throughout the body.

Phosphopyruvate Hydratase is an enzyme also known as Enolase. It plays a crucial role in the glycolytic pathway, which is a series of reactions that occur in the cell to break down glucose into pyruvate, producing ATP and NADH as energy-rich intermediates.

Specifically, Phosphopyruvate Hydratase catalyzes the conversion of 2-phospho-D-glycerate (2-PG) to phosphoenolpyruvate (PEP), which is the second to last step in the glycolytic pathway. This reaction includes the removal of a water molecule from 2-PG, resulting in the formation of PEP and the release of a molecule of water.

The enzyme requires magnesium ions as a cofactor for its activity, and it is inhibited by fluoride ions. Deficiency or dysfunction of Phosphopyruvate Hydratase can lead to various metabolic disorders, including some forms of muscular dystrophy and neurodegenerative diseases.

Phosphotransferases are a group of enzymes that catalyze the transfer of a phosphate group from a donor molecule to an acceptor molecule. This reaction is essential for various cellular processes, including energy metabolism, signal transduction, and biosynthesis.

The systematic name for this group of enzymes is phosphotransferase, which is derived from the general reaction they catalyze: D-donor + A-acceptor = D-donor minus phosphate + A-phosphate. The donor molecule can be a variety of compounds, such as ATP or a phosphorylated protein, while the acceptor molecule is typically a compound that becomes phosphorylated during the reaction.

Phosphotransferases are classified into several subgroups based on the type of donor and acceptor molecules they act upon. For example, kinases are a subgroup of phosphotransferases that transfer a phosphate group from ATP to a protein or other organic compound. Phosphatases, another subgroup, remove phosphate groups from molecules by transferring them to water.

Overall, phosphotransferases play a critical role in regulating many cellular functions and are important targets for drug development in various diseases, including cancer and neurological disorders.

Isoenzymes, also known as isoforms, are multiple forms of an enzyme that catalyze the same chemical reaction but differ in their amino acid sequence, structure, and/or kinetic properties. They are encoded by different genes or alternative splicing of the same gene. Isoenzymes can be found in various tissues and organs, and they play a crucial role in biological processes such as metabolism, detoxification, and cell signaling. Measurement of isoenzyme levels in body fluids (such as blood) can provide valuable diagnostic information for certain medical conditions, including tissue damage, inflammation, and various diseases.

SRC-family kinases (SFKs) are a group of non-receptor tyrosine kinases that play important roles in various cellular processes, including cell proliferation, differentiation, survival, and migration. They are named after the founding member, SRC, which was first identified as an oncogene in Rous sarcoma virus.

SFKs share a common structure, consisting of an N-terminal unique domain, a SH3 domain, a SH2 domain, a catalytic kinase domain, and a C-terminal regulatory tail with a negative regulatory tyrosine residue (Y527 in human SRC). In their inactive state, SFKs are maintained in a closed conformation through intramolecular interactions between the SH3 domain, SH2 domain, and the phosphorylated C-terminal tyrosine.

Upon activation by various signals, such as growth factors, cytokines, or integrin engagement, SFKs are activated through a series of events that involve dephosphorylation of the regulatory tyrosine residue, recruitment to membrane receptors via their SH2 and SH3 domains, and trans-autophosphorylation of the activation loop in the kinase domain.

Once activated, SFKs can phosphorylate a wide range of downstream substrates, including other protein kinases, adaptor proteins, and cytoskeletal components, thereby regulating various signaling pathways that control cell behavior. Dysregulation of SFK activity has been implicated in various diseases, including cancer, inflammation, and neurological disorders.

2,3-Diphosphoglycerate (2,3-DPG) is a molecule found in red blood cells that plays a crucial role in regulating the affinity of hemoglobin for oxygen. It is a byproduct of the glycolytic pathway, which is a series of biochemical reactions that convert glucose into energy.

In the tissues where oxygen demand is high, such as muscles and organs, 2,3-DPG concentrations are typically elevated. This molecule binds to deoxygenated hemoglobin at specific sites on the beta chains, reducing its affinity for oxygen and promoting the release of oxygen to the tissues.

Conversely, in the lungs where oxygen is abundant, 2,3-DPG concentrations are lower, allowing hemoglobin to bind more readily to oxygen and load up with oxygen for delivery to the tissues. Therefore, 2,3-DPG helps optimize the matching of oxygen supply and demand in the body.

Hemolytic anemia is a type of anemia that occurs when red blood cells are destroyed (hemolysis) faster than they can be produced. Red blood cells are essential for carrying oxygen throughout the body. When they are destroyed, hemoglobin and other cellular components are released into the bloodstream, which can lead to complications such as kidney damage and gallstones.

Hemolytic anemia can be inherited or acquired. Inherited forms of the condition may result from genetic defects that affect the structure or function of red blood cells. Acquired forms of hemolytic anemia can be caused by various factors, including infections, medications, autoimmune disorders, and certain medical conditions such as cancer or blood disorders.

Symptoms of hemolytic anemia may include fatigue, weakness, shortness of breath, pale skin, jaundice (yellowing of the skin and eyes), dark urine, and a rapid heartbeat. Treatment for hemolytic anemia depends on the underlying cause and may include medications, blood transfusions, or surgery.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Chloromercurinitrophenols are organic compounds that contain a mercury atom, a chlorine atom, a nitro group (-NO2), and a phenol group (-C6H5OH). They have the general formula C6H4ClHgNO2. These compounds were once used in medicine as antiseptics and preservatives, but their use has been largely discontinued due to their toxicity and environmental persistence.

Adenosine diphosphate (ADP) is a chemical compound that plays a crucial role in energy transfer within cells. It is a nucleotide, which consists of a adenosine molecule (a sugar molecule called ribose attached to a nitrogenous base called adenine) and two phosphate groups.

In the cell, ADP functions as an intermediate in the conversion of energy from one form to another. When a high-energy phosphate bond in ADP is broken, energy is released and ADP is converted to adenosine triphosphate (ATP), which serves as the main energy currency of the cell. Conversely, when ATP donates a phosphate group to another molecule, it is converted back to ADP, releasing energy for the cell to use.

ADP also plays a role in blood clotting and other physiological processes. In the coagulation cascade, ADP released from damaged red blood cells can help activate platelets and initiate the formation of a blood clot.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Protein Kinase C (PKC) is a family of serine-threonine kinases that play crucial roles in various cellular signaling pathways. These enzymes are activated by second messengers such as diacylglycerol (DAG) and calcium ions (Ca2+), which result from the activation of cell surface receptors like G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs).

Once activated, PKC proteins phosphorylate downstream target proteins, thereby modulating their activities. This regulation is involved in numerous cellular processes, including cell growth, differentiation, apoptosis, and membrane trafficking. There are at least 10 isoforms of PKC, classified into three subfamilies based on their second messenger requirements and structural features: conventional (cPKC; α, βI, βII, and γ), novel (nPKC; δ, ε, η, and θ), and atypical (aPKC; ζ and ι/λ). Dysregulation of PKC signaling has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

Flatfishes are a group of marine fish characterized by having both eyes on one side of their head, which is flattened laterally. This gives them a distinctive asymmetrical appearance. They belong to the order Pleuronectiformes and include various species such as halibut, flounder, sole, and plaice. Flatfishes start their life with eyes on both sides of their head, but during development, one eye migrates to the other side of the head, a process known as metamorphosis. They are bottom-dwelling predators that rely on their excellent camouflage abilities to ambush prey.

Hexokinase is an enzyme that plays a crucial role in the initial step of glucose metabolism, which is the phosphorylation of glucose to form glucose-6-phosphate. This reaction is the first step in most glucose catabolic pathways, including glycolysis, pentose phosphate pathway, and glycogen synthesis.

Hexokinase has a high affinity for glucose, meaning it can bind and phosphorylate glucose even at low concentrations. This property makes hexokinase an important regulator of glucose metabolism in cells. There are four isoforms of hexokinase (I-IV) found in different tissues, with hexokinase IV (also known as glucokinase) being primarily expressed in the liver and pancreas.

In summary, hexokinase is a vital enzyme involved in glucose metabolism, catalyzing the conversion of glucose to glucose-6-phosphate, and playing a crucial role in regulating cellular energy homeostasis.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Trypanosoma brucei brucei is a species of protozoan flagellate parasite that causes African trypanosomiasis, also known as sleeping sickness in humans and Nagana in animals. This parasite is transmitted through the bite of an infected tsetse fly (Glossina spp.). The life cycle of T. b. brucei involves two main stages: the insect-dwelling procyclic trypomastigote stage and the mammalian-dwelling bloodstream trypomastigote stage.

The distinguishing feature of T. b. brucei is its ability to change its surface coat, which helps it evade the host's immune system. This allows the parasite to establish a long-term infection in the mammalian host. However, T. b. brucei is not infectious to humans; instead, two other subspecies, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, are responsible for human African trypanosomiasis.

In summary, Trypanosoma brucei brucei is a non-human-infective subspecies of the parasite that causes African trypanosomiasis in animals and serves as an essential model organism for understanding the biology and pathogenesis of related human-infective trypanosomes.

"Spiroplasma citri" is a species of bacterium that belongs to the class Mollicutes. It is a plant pathogen, responsible for the disease known as stubborn greening or citrus stubborn disease in citrus plants. The bacteria are transmitted by insects, particularly the brown winged leafhopper (Graphocephala atropunctata), and can cause significant damage to citrus crops.

The bacteria have a unique spiral shape and lack a cell wall, which makes them resistant to many antibiotics. They infect the phloem tissue of plants and disrupt the flow of nutrients, leading to stunted growth, yellowing of leaves, and reduced fruit production. Currently, there is no effective treatment for citrus stubborn disease, and management strategies focus on preventing the spread of the bacteria through insect control and the use of disease-free planting material.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Guanidine is not typically defined in the context of medical terminology, but rather, it is a chemical compound with the formula NH2(C=NH)NH2. However, guanidine and its derivatives do have medical relevance:

1. Guanidine is used as a medication in some neurological disorders, such as stiff-person syndrome, to reduce muscle spasms and rigidity. It acts on the central nervous system to decrease abnormal nerve impulses that cause muscle spasticity.

2. Guanidine derivatives are found in various medications used for treating diabetes, like metformin. These compounds help lower glucose production in the liver and improve insulin sensitivity in muscle cells.

3. In some cases, guanidine is used as a skin penetration enhancer in transdermal drug delivery systems to increase the absorption of certain medications through the skin.

It is essential to note that guanidine itself has limited medical use due to its potential toxicity and narrow therapeutic window. Its derivatives, like metformin, are more commonly used in medical practice.

p38 Mitogen-Activated Protein Kinases (p38 MAPKs) are a family of conserved serine-threonine protein kinases that play crucial roles in various cellular processes, including inflammation, immune response, differentiation, apoptosis, and stress responses. They are activated by diverse stimuli such as cytokines, ultraviolet radiation, heat shock, osmotic stress, and lipopolysaccharides (LPS).

Once activated, p38 MAPKs phosphorylate and regulate several downstream targets, including transcription factors and other protein kinases. This regulation leads to the expression of genes involved in inflammation, cell cycle arrest, and apoptosis. Dysregulation of p38 MAPK signaling has been implicated in various diseases, such as cancer, neurodegenerative disorders, and autoimmune diseases. Therefore, p38 MAPKs are considered promising targets for developing new therapeutic strategies to treat these conditions.

Cyclic AMP (cAMP)-dependent protein kinases, also known as protein kinase A (PKA), are a family of enzymes that play a crucial role in intracellular signaling pathways. These enzymes are responsible for the regulation of various cellular processes, including metabolism, gene expression, and cell growth and differentiation.

PKA is composed of two regulatory subunits and two catalytic subunits. When cAMP binds to the regulatory subunits, it causes a conformational change that leads to the dissociation of the catalytic subunits. The freed catalytic subunits then phosphorylate specific serine and threonine residues on target proteins, thereby modulating their activity.

The cAMP-dependent protein kinases are activated in response to a variety of extracellular signals, such as hormones and neurotransmitters, that bind to G protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs). These signals lead to the activation of adenylyl cyclase, which catalyzes the conversion of ATP to cAMP. The resulting increase in intracellular cAMP levels triggers the activation of PKA and the downstream phosphorylation of target proteins.

Overall, cAMP-dependent protein kinases are essential regulators of many fundamental cellular processes and play a critical role in maintaining normal physiology and homeostasis. Dysregulation of these enzymes has been implicated in various diseases, including cancer, diabetes, and neurological disorders.

Electrophoresis, starch gel is a type of electrophoretic technique used in laboratory settings for the separation and analysis of large biomolecules such as DNA, RNA, and proteins. In this method, a gel made from cooked starch is used as the supporting matrix for the molecules being separated.

The sample containing the mixture of biomolecules is loaded onto the gel and an electric field is applied, causing the negatively charged molecules to migrate towards the positive electrode. The starch gel acts as a molecular sieve, with smaller molecules moving more quickly through the gel than larger ones. This results in the separation of the mixture into individual components based on their size and charge.

Once the separation is complete, the gel can be stained to visualize the separated bands. Different staining techniques are used depending on the type of biomolecule being analyzed. For example, proteins can be stained with dyes such as Coomassie Brilliant Blue or silver nitrate, while nucleic acids can be stained with dyes such as ethidium bromide.

Starch gel electrophoresis is a relatively simple and inexpensive technique that has been widely used in molecular biology research and diagnostic applications. However, it has largely been replaced by other electrophoretic techniques, such as polyacrylamide gel electrophoresis (PAGE), which offer higher resolution and can be automated for high-throughput analysis.

Mitogen-Activated Protein Kinase 1 (MAPK1), also known as Extracellular Signal-Regulated Kinase 2 (ERK2), is a protein kinase that plays a crucial role in intracellular signal transduction pathways. It is a member of the MAPK family, which regulates various cellular processes such as proliferation, differentiation, apoptosis, and stress response.

MAPK1 is activated by a cascade of phosphorylation events initiated by upstream activators like MAPKK (Mitogen-Activated Protein Kinase Kinase) in response to various extracellular signals such as growth factors, hormones, and mitogens. Once activated, MAPK1 phosphorylates downstream targets, including transcription factors and other protein kinases, thereby modulating their activities and ultimately influencing gene expression and cellular responses.

MAPK1 is widely expressed in various tissues and cells, and its dysregulation has been implicated in several pathological conditions, including cancer, inflammation, and neurodegenerative diseases. Therefore, understanding the regulation and function of MAPK1 signaling pathways has important implications for developing therapeutic strategies to treat these disorders.

Protein denaturation is a process in which the native structure of a protein is altered, leading to loss of its biological activity. This can be caused by various factors such as changes in temperature, pH, or exposure to chemicals or radiation. The three-dimensional shape of a protein is crucial for its function, and denaturation causes the protein to lose this shape, resulting in impaired or complete loss of function. Denaturation is often irreversible and can lead to the aggregation of proteins, which can have negative effects on cellular function and can contribute to diseases such as Alzheimer's and Parkinson's.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is an enzyme that plays a crucial role in the salvage pathway of nucleotide synthesis. This enzyme catalyzes the conversion of hypoxanthine and guanine to their respective nucleotides, inosine monophosphate (IMP) and guanosine monophosphate (GMP), by transferring the phosphoribosyl group from 5-phosphoribosyl-1 pyrophosphate (PRPP) to the purine bases.

HGPRT deficiency is a genetic disorder known as Lesch-Nyhan syndrome, which is characterized by mental retardation, self-mutilation, spasticity, and uric acid overproduction due to the accumulation of hypoxanthine and guanine. This disorder is caused by mutations in the HPRT1 gene, leading to a decrease or absence of HGPRT enzyme activity.

Creatine kinase (CK) is a muscle enzyme that is normally present in small amounts in the blood. It is primarily found in tissues that require a lot of energy, such as the heart, brain, and skeletal muscles. When these tissues are damaged or injured, CK is released into the bloodstream, causing the levels to rise.

Creatine kinase exists in several forms, known as isoenzymes, which can be measured in the blood to help identify the location of tissue damage. The three main isoenzymes are:

1. CK-MM: Found primarily in skeletal muscle
2. CK-MB: Found primarily in heart muscle
3. CK-BB: Found primarily in the brain

Elevated levels of creatine kinase, particularly CK-MB, can indicate damage to the heart muscle, such as occurs with a heart attack. Similarly, elevated levels of CK-BB may suggest brain injury or disease. Overall, measuring creatine kinase levels is a useful diagnostic tool for assessing tissue damage and determining the severity of injuries or illnesses.

"Kinetic studies on the reaction catalyzed by phosphoglycerate kinase. II. The kinetic relationships between 3-phosphoglycerate ... Phosphoglycerate kinase (EC 2.7.2.3) (PGK 1) is an enzyme that catalyzes the reversible transfer of a phosphate group from 1,3- ... Phosphoglycerate+kinase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Illustration at arizona.edu ... Phosphoglycerate kinase (PGK) deficiency is an X-linked recessive trait associated with hemolytic anemia, mental disorders and ...
Phosphoglycerate kinase deficiency is a genetic disorder that affects the bodys ability to break down the simple sugar glucose ... Deficiency of phosphoglycerate kinase *Genetic Testing Registry: Glycogen storage disease due to phosphoglycerate kinase 1 ... medlineplus.gov/genetics/condition/phosphoglycerate-kinase-deficiency/ Phosphoglycerate kinase deficiency. ... Phosphoglycerate kinase deficiency is caused by mutations in the PGK1 gene. This gene provides instructions for making an ...
Protein target information for Phosphoglycerate kinase (Bacillus cereus B4264). Find diseases associated with this biological ...
... phosphoglycerate kinase. Fields of Study , biochemistry , biochemical compounds , enzymes , transferases , phosphotransferases ...
Presence of the glycolytic enzymes D-glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate ... Presence of the glycolytic enzymes D-glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate ...
Phosphoglycerate kinase activity. Specific Function. In addition to its role as a glycolytic enzyme, it seems that PGK-1 acts ... Fujii H, Kanno H, Hirono A, Shiomura T, Miwa S: A single amino acid substitution (157 Gly----Val) in a phosphoglycerate kinase ... Valentin C, Birgens H, Craescu CT, Brodum-Nielsen K, Cohen-Solal M: A phosphoglycerate kinase mutant (PGK Herlev; D285V) in a ... Fujii H, Krietsch WK, Yoshida A: A single amino acid substitution (Asp leads to Asn) in a phosphoglycerate kinase variant (PGK ...
As a member of the wwPDB, the RCSB PDB curates and annotates PDB data according to agreed upon standards. The RCSB PDB also provides a variety of tools and resources. Users can perform simple and advanced searches based on annotations relating to sequence, structure and function. These molecules are visualized, downloaded, and analyzed by users who range from students to specialized scientists.
Anti-Phosphoglycerate kinase 1, chloroplastic Antibody Product Information Form: Lyophilized Stability & Storage: Use a manual ... Youre reviewing:PGK1 / Anti-Phosphoglycerate kinase 1, chloroplastic Antibody. Your Rating. Rating. 1 star 2 stars 3 stars 4 ... Phosphoglycerate kinase is an ATP-generating enzyme that acts in the glycolytic, gluconeogenic, and photosynthetic pathways. ...
Phosphoglycerate Kinase From Trypanosoma Brucei Bisubstrate Analog. Enzymatic activity of Phosphoglycerate Kinase From ... The structure of Phosphoglycerate Kinase From Trypanosoma Brucei Bisubstrate Analog, PDB code: 16pk was solved by B.E.Bernstein ... A full contact list of Phosphorus with other atoms in the P binding site number 1 of Phosphoglycerate Kinase From Trypanosoma ... A full contact list of Phosphorus with other atoms in the P binding site number 2 of Phosphoglycerate Kinase From Trypanosoma ...
The pgk- mutant strain that has been isolated is deficient in 3-phosphoglycerate kinase activity, requires both acetate and ... Sequence elements contributing to high level expression of the 3-phosphoglycerate kinase (pgk) gene of Aspergillus nidulans ...
Phosphoglycerate kinase. Links. ?. Source:. pfam. Taxonomy:. cellular organisms. Protein:. Representatives. Specific Protein. ...
Phosphoglycerate kinase deficiency: MedlinePlus Genetics (National Library of Medicine) * Phosphoglycerate mutase deficiency: ...
Sensitive laboratory markers of myocyte injury include elevated plasma creatine kinase (CK) levels (often in excess of 4- to 5- ... Lappalainen H, Tiula E, Uotila L, Mänttäri M. Elimination kinetics of myoglobin and creatine kinase in rhabdomyolysis: ...
Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the ... Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the ...
... phosphoglycerate kinase; 49, phosphoglycerate mutase; 50, enolase; 51, pyruvate kinase; Entner-Doudoroff Pathway: 52, glucose-6 ... phosphoglycerate kinase (#16), mannose-1-phosphate guanylyltransferase/mannose-6-phosphate isomerase (#17), D-hexose-6- ... phosphoglycerate kinase; 68, glyceraldehyde-3-phosphate dehydrogenase; 69, triose-phosphate isomerase; 70, fructose- ... acetate kinase, phosphate acetyltransferase (a.k.a. phosphotransacetylase), acetyl-CoA hydrolase, and acetate:succinate CoA- ...
phosphoglycerate kinase 1 311800 PGK1 database at LOVD Johan T. den Dunnen Leiden Univ. Med Centre (acting), Curator vacancy ... Protein Kinase multiple protein kinase domains \N KinMutBase: A registry of disease-causing mutations in protein kinase domains ... Mutations of the Protein Kinase C γ Retina International PRKX protein kinase, X-linked 300083 PRKX database at LOVD Johan T. ... pyruvate dehydrogenase kinase, isozyme 3 602526 PDK3 database at LOVD Johan T. den Dunnen Leiden Univ. Med Centre (acting), ...
PHOSPHOGLYCERATE KINASE 1 (PGK1) MAPS TO XQ1.2 IN THE PORCINE GENOME (Abstract Only) (6-Nov-98) ...
A spring-loaded release mechanism regulates domain movement and catalysis in phosphoglycerate kinase. J. Biol. Chem. 286, 14040 ... 32 or the open-close transition of phosphoglycerate kinase during catalysis (~8.0%)33. This result clearly indicates that a ...
phosphoglycerate kinase. Term. What enzyme helps convert g3p to 1,3-bpg?. ... What enzyme is needed in order for 1,3-BPG to become 3-phosphoglycerate?. ...
Phosphoglycerate dehydrogenase deficiency: MedlinePlus Genetics (National Library of Medicine) * Phosphoglycerate kinase ... Deoxyguanosine kinase deficiency: MedlinePlus Genetics (National Library of Medicine) * Dihydrolipoamide dehydrogenase ...
Superfamily c.86.1: Phosphoglycerate kinase [53748] (2 families) *. Family c.86.1.1: Phosphoglycerate kinase [53749] (2 ... Fold c.86: Phosphoglycerate kinase [53747] (1 superfamily). consists of two non-similar domains, 3 layers (a/b/a) each. Domain ... PDB Compounds: (A:) phosphoglycerate kinase. SCOPe Domain Sequences for d1vjda_:. Sequence; same for both SEQRES and ATOM ... d1vjda_ c.86.1.1 (A:) Phosphoglycerate kinase {Pig (Sus scrofa) [TaxId: 9823]} ...
phosphoglycerate kinase 1. Intracellular. 128.7. 2.65e-6. EFNB2. ephrin B2. Membrane. 19.5. 3.11e-6. ... calcium/calmodulin dependent protein kinase II inhibitor 1. Intracellular. 9.5. 1.37e-7. ...
Phosphoglycerate Kinase, Recombinant Proteins, Saccharomyces cerevisiae, Thermus thermophilus, Xylose. in Applied and ... Phosphoglycerate Kinase; Recombinant Proteins; Saccharomyces cerevisiae; Thermus thermophilus; Xylose}}, language = {{eng}}, ...
Phosphoglycerate Kinase Deficiency: Biochemical Studies on Hair Follicles  Dijkstra, A. C.; Vermeesch-Markslag, A. M. G.; Goos ...
Phosphoglycerate kinase 1 deficiency. XL. PGM1. 171900. Congenital disorder of glycosylation type It ...
... phosphoglycerate mutase) and PGK (phosphoglycerate kinase). Both multimeric and monomeric units were included in the analysis. ... 2010) Structure, function, and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding PNAS 107: ... The stabilities of five proteins (phosphoglycerate kinase, PGK; pyruvate dehydrogenase E1.a, PDHA; NADH oxidase, NOX; enolase, ... Systems with single macromolecules in explicit solvent were built for phosphoglycerate kinase (PGK), pyruvate dehydrogenase E1. ...
phosphoglycerate kinase 1 deficiency Phosphohydroxylysinuria plasma protein metabolism disease + Poor Drug Metabolism, CYP2C19- ...
Hwang, T.-L., Liang, Y., Chien, K.-Y. & Yu, J.-S. Overexpression and elevated serum levels of phosphoglycerate kinase 1 in ... Cystatin-B (CSTB), leukotriene A-4 hydrolase (LTA4H), protein NDRG1 (NDRG1), and phosphoglycerate kinase 1 (PGK1) from the ...
  • Phosphoglycerate kinase deficiency is caused by mutations in the PGK1 gene. (medlineplus.gov)
  • Mutations in the PGK1 gene reduce the activity of phosphoglycerate kinase, which disrupts energy production and leads to cell damage or cell death. (medlineplus.gov)
  • Researchers speculate that different PGK1 gene mutations may have varying effects on the activity of phosphoglycerate kinase in different types of cells. (medlineplus.gov)
  • Females with one altered PGK1 gene, however, may have some features of phosphoglycerate kinase deficiency, such as anemia. (medlineplus.gov)
  • d ) Validation of the yeast mRNA interactome using western blotting of input samples and eluate after interactome capture with specific antibodies (ADH1, alcohol dehydrogenase 1, PUB1) or against TAP-tagged proteins (PGK1, phosphoglycerate kinase 1, TDH1, triose phosphate dehydrogenase, TRX2, thioredoxine 2, SHE2, Swi5p-dependent HO Expression 2). (nature.com)
  • The company distributing the GM yeast, Springer Oenologie, Lesaffre Group of North America, stated that the malate transporter gene and malolactic gene were both controlled by the phosphoglycerate kinase gene (PGK1) promoter and transcription terminator. (i-sis.org.uk)
  • Michelson AM, Blake CC, Evans ST, Orkin SH: Structure of the human phosphoglycerate kinase gene and the intron-mediated evolution and dispersal of the nucleotide-binding domain. (drugbank.com)
  • Huang IY, Welch CD, Yoshida A: Complete amino acid sequence of human phosphoglycerate kinase. (drugbank.com)
  • Jindal HK, Vishwanatha JK: Functional identity of a primer recognition protein as phosphoglycerate kinase. (drugbank.com)
  • Global mapping of protein-metabolite interactions in Saccharomyces cerevisiae reveals that Ser-Leu dipeptide regulates phosphoglycerate kinase activity. (mpg.de)
  • Upon peptidoglycan detection, Nod1 and Nod2 recruit and associate with the adaptor protein Rip2, triggering proinflammatory pathways such as NF- κ B and the mitogen-activated protein (MAP) kinases p38, JNK, and ERK [ 4 ]. (hindawi.com)
  • Identified MWCNT-responsive peptides depicted a mechanism involving aberrant fibrinolysis (fibrinopeptide A), blood-brain barrier permeation (homeobox protein A4), neuroinflammation (transmembrane protein 131L) with reactivity by astrocytes and microglia, and a pro-degradative (signal transducing adapter molecule, phosphoglycerate kinase), anti-plastic (AF4/FMR2 family member 1, vacuolar protein sorting-associated protein 18) state with the excitation-inhibition balance shifted to a hyperexcited (microtubule-associated protein 1B) phenotype. (cdc.gov)
  • MSCs significantly reversed the imbalance of glycolysis in sperm and testis induced by testicular torsion-detorsion, as evidenced by increasing the expression of phosphoglycerate kinase 2 and glyceraldehyde-3-phosphate dehydrogenase-spermatogenic, activating Akt, and increasing glycogen synthase kinase 3 (GSK3), which led to the increase in glycolysis cascades and ATP production. (biomedcentral.com)
  • This gene provides instructions for making an enzyme called phosphoglycerate kinase, which is involved in a critical energy-producing process in cells known as glycolysis. (medlineplus.gov)
  • 2-Phosphoglycerate (2PG) is an important intermediate in the glycolysis pathway, a critical mechanism of ATP generation. (sigmaaldrich.com)
  • Phosphoglycerate kinase deficiency is a genetic disorder that affects the body's ability to break down the simple sugar glucose, which is the primary energy source for most cells. (medlineplus.gov)
  • The other form of phosphoglycerate kinase deficiency is often called the myopathic form. (medlineplus.gov)
  • Most people with phosphoglycerate kinase deficiency have either the hemolytic form or the myopathic form. (medlineplus.gov)
  • Phosphoglycerate kinase deficiency appears to be a rare disorder. (medlineplus.gov)
  • Aasly J, van Diggelen OP, Boer AM, Bronstad G. Phosphoglycerate kinase deficiency in two brothers with McArdle-like clinical symptoms. (medlineplus.gov)
  • Singer-Sam J, Keith DH, Tani K, Simmer RL, Shively L, Lindsay S, Yoshida A, Riggs AD: Sequence of the promoter region of the gene for human X-linked 3-phosphoglycerate kinase. (drugbank.com)
  • Functional analysis of the promoter of the 3-phosphoglycerate kinase gene of Aspergillus nidulans. (le.ac.uk)
  • E2F regulation of the Phosphoglycerate kinase gene is functionally important in Drosophila development. (bvsalud.org)
  • Two new phosphoglycerate kinase mutations associated with chronic haemolytic anaemia and neurological dysfunction in two patients from Spain. (medlineplus.gov)
  • Yoshida A: Hematologically important mutations: molecular abnormalities of phosphoglycerate kinase. (drugbank.com)
  • Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3' enhancer. (ox.ac.uk)
  • Phosphoglycerate kinase (EC 2.7.2.3) (PGK 1) is an enzyme that catalyzes the reversible transfer of a phosphate group from 1,3-bisphosphoglycerate (1,3-BPG) to ADP producing 3-phosphoglycerate (3-PG) and ATP : 1,3-bisphosphoglycerate + ADP ⇌ glycerate 3-phosphate + ATP Like all kinases it is a transferase. (wikipedia.org)
  • 3-phosphoglycerate (3-PG) binds to the N-terminal, while the nucleotide substrates, MgATP or MgADP, bind to the C-terminal domain of the enzyme. (wikipedia.org)
  • Phosphoglycerate kinase is an ATP-generating enzyme that acts in the glycolytic, gluconeogenic, and photosynthetic pathways. (phytoab.com)
  • What enzyme is needed in order for 1,3-BPG to become 3-phosphoglycerate? (flashcardmachine.com)
  • Affinity purification with metabolomic and proteomic analysis unravels diverse roles of nucleoside diphosphate kinases. (mpg.de)
  • Michelson AM, Markham AF, Orkin SH: Isolation and DNA sequence of a full-length cDNA clone for human X chromosome-encoded phosphoglycerate kinase. (drugbank.com)
  • The pgk- mutant strain that has been isolated is deficient in 3-phosphoglycerate kinase activity, requires both acetate and glycerol for growth, conidiates poorly, and is poisoned by even moderate concentrations of hexoses. (le.ac.uk)
  • 28911 shikimate kinase CP001857 CDS Arcpr_0034 complement(28829. (go.jp)
  • Margaret Cheung, assistant professor of physics at UH, and Antonios Samiotakis, a physics Ph.D. student, described their findings in a paper titled "Structure, function, and folding of phosphoglycerate kinase (PGK) are strongly perturbed by macromolecular crowding," published in a recent issue of the journal Proceedings of the National Academy of Sciences, one of the world's most-cited multidisciplinary scientific serials. (uh.edu)
  • The other form of phosphoglycerate kinase deficiency is often called the myopathic form. (medlineplus.gov)
  • C) in the phosphoglycerate kinase gene of a patient with a myopathic form of phosphoglycerate kinase deficiency. (nih.gov)
  • Up-regulated proteins, including phosphoglycerate mutase and phosphopyruvate hydratase, as well as down-regulated proteins such as glyceraldehyde-3-phosphate dehydrogenase and fructose-bisphosphate aldolase, not only directly or indirectly affected a variety of metabolic processes, but were specifically closely related to glycolysis and glycometabolism. (scielo.br)
  • Phosphoglyceratekinase (PGK) plays a vital role in the glycolytic pathway by catalyzing one of the two ATP-producing reactions. (sigmaaldrich.com)
  • Most people with phosphoglycerate kinase deficiency have either the hemolytic form or the myopathic form. (medlineplus.gov)
  • Phosphoglycerate kinase deficiency: an adult myopathic form with a novel mutation. (nih.gov)
  • In hepatocytes cultured in the presence of benfluorex or S 422-1 (10 or 100 μmol/l), the expression of genes encoding enzymes of fatty acid oxidation (carnitine palmitoyltransferase [CPT] I), ketogenesis (hydroxymethylglutaryl-CoA synthase), and gluconeogenesis (glucose-6-phosphatase, PEPCK) was decreased, whereas mRNAs encoding glucokinase and pyruvate kinase were increased. (diabetesjournals.org)
  • Elongation factor 2 kinase,eEF-2 kinase,Calcium/ca. (wfleabase.org)
  • Affinity purification with metabolomic and proteomic analysis unravels diverse roles of nucleoside diphosphate kinases. (mpg.de)
  • 3-Phosphoglyceric phosphokinase catalyzes the reversible transfer of a phosphate group from 1,3-diphosphoglycerate to ADP to generate ATP and 3-phosphoglycerate. (sigmaaldrich.com)
  • Catalyzes the phosphorylation of 2-phosphoglycerate to 2,3-diphosphoglycerate. (expasy.org)
  • Flanagan JM, Rhodes M, Wilson M, Beutler E. The identification of a recurrent phosphoglycerate kinase mutation associated with chronic haemolytic anaemia and neurological dysfunction in a family from USA. (medlineplus.gov)
  • Crystallographic and thiol-reactivity studies on the complex of pig muscle phosphoglycerate kinase with ATP analogues: correlation between nucleotide binding mode and helix flexibility. (expasy.org)
  • Elevated levels of phosphoglycerate kinase 1 in the serum were also significantly correlated with poor outcome in a validation set of 107 patients with lung adenocarcinomas using ELISA analysis. (nih.gov)
  • Belongs to the 2-phosphoglycerate kinase family. (expasy.org)
  • Phosphoglycerate kinase deficiency is a genetic disorder that affects the body's ability to break down the simple sugar glucose, which is the primary energy source for most cells. (medlineplus.gov)
  • Phosphoglycerate kinase deficiency: biochemical and molecular genetic studies in a new myopathic variant (PGK Alberta). (nih.gov)