Proteins that bind to and are involved in the metabolism of phosphate ions.
Inorganic salts of phosphoric acid.
Carboxypeptidases that are primarily found the DIGESTIVE SYSTEM that catalyze the release of C-terminal amino acids. Carboxypeptidases A have little or no activity for hydrolysis of C-terminal ASPARTIC ACID; GLUTAMIC ACID; ARGININE; LYSINE; or PROLINE. This enzyme requires ZINC as a cofactor and was formerly listed as EC 3.4.2.1 and EC 3.4.12.2.
A sulfhydryl reagent that is widely used in experimental biochemical studies.
Membrane proteins that are involved in the active transport of phosphate.
The mitochondria of the myocardium.
Transport proteins that carry specific substances in the blood or across cell membranes.
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.
A family of symporters that facilitate sodium-dependent membrane transport of phosphate.
The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy.
A toxic thiol mercury salt formerly used as a diuretic. It inhibits various biochemical functions, especially in mitochondria, and is used to study those functions.
Membrane proteins whose primary function is to facilitate the transport of molecules across a biological membrane. Included in this broad category are proteins involved in active transport (BIOLOGICAL TRANSPORT, ACTIVE), facilitated transport and ION CHANNELS.
A broad category of membrane transport proteins that specifically transport FREE FATTY ACIDS across cellular membranes. They play an important role in LIPID METABOLISM in CELLS that utilize free fatty acids as an energy source.
Inorganic or organic salts and esters of arsenic acid.
An ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose-6-phosphate. (Stedman, 26th ed)
'Glucosephosphates' are organic compounds resulting from the reaction of glucose with phosphoric acid, playing crucial roles in various metabolic processes, such as energy transfer and storage within cells.
Any salt or ester of glycerophosphoric acid.
Hexosephosphates are sugar phosphate molecules, specifically those derived from hexoses (six-carbon sugars), such as glucose-6-phosphate and fructose-6-phosphate, which play crucial roles in various metabolic pathways including glycolysis, gluconeogenesis, and the pentose phosphate pathway.
A family of highly conserved and widely expressed sodium-phosphate cotransporter proteins. They are electrogenic sodium-dependent transporters of phosphate that were originally identified as retroviral receptors in HUMANS and have been described in yeast and many other organisms.
A sodium-dependent phosphate transporter present primarily at apical sites of EPITHELIAL CELLS in the SMALL INTESTINE.
An electrogenic sodium-dependent phosphate transporter. It is present primarily in BRUSH BORDER membranes of PROXIMAL RENAL TUBULES.
Membrane transporters that co-transport two or more dissimilar molecules in the same direction across a membrane. Usually the transport of one ion or molecule is against its electrochemical gradient and is "powered" by the movement of another ion or molecule with its electrochemical gradient.
An inherited condition of abnormally low serum levels of PHOSPHATES (below 1 mg/liter) which can occur in a number of genetic diseases with defective reabsorption of inorganic phosphorus by the PROXIMAL RENAL TUBULES. This leads to phosphaturia, HYPOPHOSPHATEMIA, and disturbances of cellular and organ functions such as those in X-LINKED HYPOPHOSPHATEMIC RICKETS; OSTEOMALACIA; and FANCONI SYNDROME.
The rate dynamics in chemical or physical systems.
New World marsupials of the family Didelphidae. Opossums are omnivorous, largely nocturnal and arboreal MAMMALS, grow to about three feet in length, including the scaly prehensile tail, and have an abdominal pouch in which the young are carried at birth.
Minute projections of cell membranes which greatly increase the surface area of the cell.
A family of sodium-phosphate cotransporter proteins that also transport organic ANIONS. They are low affinity phosphate transporters.
A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES.
The movement of ions across energy-transducing cell membranes. Transport can be active, passive or facilitated. Ions may travel by themselves (uniport), or as a group of two or more ions in the same (symport) or opposite (antiport) directions.
Mercury-containing benzoic acid derivatives.
The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE.
'Sugar phosphates' are organic compounds that consist of a sugar molecule linked to one or more phosphate groups, playing crucial roles in biochemical processes such as energy transfer and nucleic acid metabolism.
A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates.
A family of sodium-phosphate cotransporter proteins with eight transmembrane domains. They are present primarily in the KIDNEY and SMALL INTESTINE and are responsible for renal and small intestinal epithelial transport of phosphate.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23.
Trioses are monosaccharides, specifically simple sugars, that contain three carbon atoms, and can be glyceraldehydes or dihydroxyacetones, which are important intermediates in metabolic pathways such as glycolysis.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
Membrane proteins whose primary function is to facilitate the transport of positively charged molecules (cations) across a biological membrane.
Calcium salts of phosphoric acid. These compounds are frequently used as calcium supplements.
Membrane proteins whose primary function is to facilitate the transport of negatively charged molecules (anions) across a biological membrane.
Proteins found in any species of bacterium.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD.
The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.
A condition of an abnormally low level of PHOSPHATES in the blood.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3)
A plasma membrane exchange glycoprotein transporter that functions in intracellular pH regulation, cell volume regulation, and cellular response to many different hormones and mitogens.
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.
A family of MEMBRANE TRANSPORT PROTEINS that require ATP hydrolysis for the transport of substrates across membranes. The protein family derives its name from the ATP-binding domain found on the protein.
Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis.
Proteins obtained from ESCHERICHIA COLI.
An enzyme that catalyzes the conversion of D-glucose 6-phosphate and water to D-glucose and orthophosphate. EC 3.1.3.9.
An antibiotic produced by Streptomyces fradiae.
A membrane-bound metalloendopeptidase that may play a role in the degradation or activation of a variety of PEPTIDE HORMONES and INTERCELLULAR SIGNALING PEPTIDES AND PROTEINS. Genetic mutations that result in loss of function of this protein are a cause of HYPOPHOSPHATEMIC RICKETS, X-LINKED DOMINANT.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.
The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL.
An increase in MITOCHONDRIAL VOLUME due to an influx of fluid; it occurs in hypotonic solutions due to osmotic pressure and in isotonic solutions as a result of altered permeability of the membranes of respiring mitochondria.
Uptake of substances through the lining of the INTESTINES.
A class of nucleotide translocases found abundantly in mitochondria that function as integral components of the inner mitochondrial membrane. They facilitate the exchange of ADP and ATP between the cytosol and the mitochondria, thereby linking the subcellular compartments of ATP production to those of ATP utilization.
A hereditary disorder characterized by HYPOPHOSPHATEMIA; RICKETS; OSTEOMALACIA; renal defects in phosphate reabsorption and vitamin D metabolism; and growth retardation. Autosomal and X-linked dominant and recessive variants have been reported.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID.
The functional hereditary units of BACTERIA.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions.
A broad category of proteins involved in the formation, transport and dissolution of TRANSPORT VESICLES. They play a role in the intracellular transport of molecules contained within membrane vesicles. Vesicular transport proteins are distinguished from MEMBRANE TRANSPORT PROTEINS, which move molecules across membranes, by the mode in which the molecules are transported.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures.
Established cell cultures that have the potential to propagate indefinitely.
Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.

Transcriptional regulation of plant phosphate transporters. (1/227)

Phosphorus is acquired by plant roots primarily via the high-affinity inorganic phosphate (Pi) transporters. The transcripts for Pi transporters are highly inducible upon Pi starvation, which also results in enhanced Pi uptake when Pi is resupplied. Using antibodies specific to one of the tomato Pi transporters (encoded by LePT1), we show that an increase in the LePT1 transcript under Pi starvation leads to a concurrent increase in the transporter protein, suggesting a transcriptional regulation for Pi acquisition. LePT1 protein accumulates rapidly in tomato roots in response to Pi starvation. The level of transporter protein accumulation depends on the Pi concentration in the medium, and it is reversible upon resupply of Pi. LePT1 protein accumulates all along the roots under Pi starvation and is localized primarily in the plasma membranes. These results clearly demonstrate that plants increase their capacity for Pi uptake during Pi starvation by synthesis of additional transporter molecules.  (+info)

Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC. (2/227)

In eukaryotes, DNA is packaged into chromatin, a compact structure that must be disrupted when genes are transcribed by RNA polymerase II. For transcription to take place, chromatin is remodeled via nucleosome disruption or displacement, a fundamental transcriptional regulatory mechanism in eukaryotic organisms. Here we show that the yeast chromatin-remodeling complex, RSC (remodels the structure of chromatin), isolated on the basis of homology to the SWI/SNF complex, is required for proper transcriptional regulation and nucleosome positioning in the highly inducible CHA1 promoter. In the absence of Sth1p/Nps1p (a homolog of Swi2p/Snf2p) or of Swh3p (a homolog of Swi3p), expression of CHA1 in non-induced cells is increased to a level comparable with that of fully induced cells. Furthermore, in non-induced cells depleted for Sth1p/Nps1p or Swh3p, a nucleosome positioned over the TATA box of the CHA1 promoter is disrupted, an architectural change normally only observed during transcriptional induction. In addition, deletion of the gene-specific activator Cha4p did not affect derepression of CHA1 in cells depleted for Swh3p. Thus, CHA1 constitutes a target for the RSC complex, and we propose that RSC is essential for maintaining a repressive chromatin structure at the CHA1 promoter.  (+info)

Efficient gene delivery to quiescent interleukin-2 (IL-2)-dependent cells by murine leukemia virus-derived vectors harboring IL-2 chimeric envelope glycoproteins. (3/227)

Interleukin-2 (IL-2) is a cytokine that induces the proliferation of certain IL-2 receptor expressing quiescent cells. Human IL-2 was fused to the amino-terminus of amphotropic murine leukemia virus (MLV) envelope glycoproteins. Retroviral vectors were pseudotyped with both the IL-2 chimeric envelope and the wild-type amphotropic MLV envelope. The chimeric IL-2 glycoproteins were incorporated on retroviral vectors and the IL-2-displaying vector particles could bind specifically to cell surface IL-2 receptors. In addition, the IL-2-displaying vectors could infect proliferating cells through amphotropic receptors irrespective of whether the cells expressed the IL-2 receptor. IL-2-displaying vector particles could also transiently stimulate the cell cycle entry and proliferation of several IL-2-dependent cell lines. Finally, retroviral vectors displaying IL-2 could efficiently transduce G0/G1-arrested cells expressing the IL-2 receptor at a 34-fold higher efficiency compared with vectors with unmodified envelopes. This new strategy, whereby C-type retroviral vector particles display a ligand that activates the cell cycle of the target cells at the time of virus entry, may represent an alternative to lentivirus-derived retroviral vectors for the infection of quiescent cells. In addition, upon infection of an heterogeneous population of nonproliferating cells, MLV-retroviral vectors that display cytokines/growth factors will allow the transgene of interest to be integrated specifically in quiescent cells expressing the corresponding cytokine/growth factor receptor.  (+info)

Subcellular redistribution of Pit-2 P(i) transporter/amphotropic leukemia virus (A-MuLV) receptor in A-MuLV-infected NIH 3T3 fibroblasts: involvement in superinfection interference. (4/227)

Amphotropic murine leukemia virus (A-MuLV) utilizes the Pit-2 sodium-dependent phosphate transporter as a cell surface receptor to infect mammalian cells. Previous studies established that infection of cells with A-MuLV resulted in the specific down-modulation of phosphate uptake mediated by Pit-2 and in resistance to superinfection with A-MuLV. To study the mechanisms underlying these phenomena, we constructed plasmids capable of efficiently expressing epsilon epitope- and green fluorescent protein (GFP)-tagged human Pit-2 proteins in mammalian cells. Overexpression of epsilon-epitope-tagged Pit-2 transporters in NIH 3T3 cells resulted in a marked increase in sodium-dependent P(i) uptake. This increase in P(i) uptake was specifically blocked by A-MuLV infection but not by infection with ecotropic MuLV (E-MuLV) (which utilizes a cationic amino acid transporter, not Pit-2, as a cell surface receptor). These data, together with the finding that the tagged Pit-2 transporters retained their A-MuLV receptor function, indicate that the insertion of epitope tags does not affect either retrovirus receptor or P(i) transporter function. The overexpressed epitope-tagged transporters were detected in cell lysates, by Western blot analysis using both epsilon-epitope- and GFP-specific antibodies as well as with Pit-2 antiserum. Both the epitope- and GFP-tagged transporters showed almost exclusive plasma membrane localization when expressed in NIH 3T3 cells, as determined by laser scanning confocal microscopy. Importantly, when NIH 3T3 cells expressing these proteins were productively infected with A-MuLV, the tagged transporters and receptors were no longer detected in the plasma membrane but rather were localized to a punctate structure within the cytosolic compartment distinct from Golgi, endoplasmic reticulum, endosomes, lysosomes, and mitochondria. The intracellular Pit-2 pool colocalized with the virus in A-MuLV-infected cells. A similar redistribution of the tagged Pit-2 proteins was not observed following infection with E-MuLV, indicating that the redistribution of Pit-2 is not directly attributable to general effects associated with retroviral infection but rather is a specific consequence of A-MuLV-Pit-2 interactions.  (+info)

Regulation of the yeast transcriptional factor PHO2 activity by phosphorylation. (5/227)

The induction of yeast Saccharomyces cerevisiae gene PHO5 expression is mediated by transcriptional factors PHO2 and PHO4. PHO4 protein has been reported to be phosphorylated and inactivated by a cyclin-CDK (cyclin-dependent kinase) complex, PHO80-PHO85. We report here that PHO2 can also be phosphorylated. A Ser-230 to Ala mutation in the consensus sequence (SPIK) recognized by cdc2/CDC28-related kinase in PHO2 protein led to complete loss of its ability to activate the transcription of PHO5 gene. Further investigation showed that the Pro-231 to Ser mutation inactivated PHO2 protein as well, whereas the Ser-230 to Asp mutation did not affect PHO2 activity. Since the PHO2 Asp-230 mutant mimics Ser-230-phosphorylated PHO2, we postulate that only phosphorylated PHO2 protein could activate the transcription of PHO5 gene. Two hybrid assays showed that yeast CDC28 could interact with PHO2. CDC28 immunoprecipitate derived from the YPH499 strain grown under low phosphate conditions phosphorylated GST-PHO2 in vitro. A phosphate switch regulates the transcriptional activation activity of PHO2, and mutations of the (SPIK) site affect the transcriptional activation activity of PHO2 and the interaction between PHO2 and PHO4. BIAcore(R) analysis indicated that the negative charge in residue 230 of PHO2 was sufficient to help PHO2 interact with PHO4 in vitro.  (+info)

Role of the mouse ank gene in control of tissue calcification and arthritis. (6/227)

Mutation at the mouse progressive ankylosis (ank) locus causes a generalized, progressive form of arthritis accompanied by mineral deposition, formation of bony outgrowths, and joint destruction. Here, we show that the ank locus encodes a multipass transmembrane protein (ANK) that is expressed in joints and other tissues and controls pyrophosphate levels in cultured cells. A highly conserved gene is present in humans and other vertebrates. These results identify ANK-mediated control of pyrophosphate levels as a possible mechanism regulating tissue calcification and susceptibility to arthritis in higher animals.  (+info)

Scope, limitations and mechanistic aspects of the photo-induced cross-linking of proteins by water-soluble metal complexes. (7/227)

BACKGROUND: Chemical cross-linking is a valuable tool with which to study protein-protein interactions. Recently, a new kind of cross-linking reaction was developed in which the photolysis of associated proteins with visible light in the presence of ammonium persulfate and tris(2,2'-bipyridyl)ruthenium(II) dication or palladium(II) porphyrins results in rapid and efficient covalent coupling (Fancy, D.A. & Kodadek, T. (1999). Proc. Natl. Acad. Sci. USA 96, 6020-6024 and Kim, K., Fancy, D.A. & Kodadek, T. (1999). J. Am. Chem. Soc. 121, 11896-11897). Here, mechanistic and practical aspects of the reaction of importance for its application to biochemical problems are examined. RESULTS: It is shown that the photo-initiated cross-linking chemistry can be optimized for the analysis of protein-protein interactions in crude cell extracts. A number of commonly used epitope or affinity tags survive the reaction in functional form, allowing the simple visualization of the cross-linked products, or their isolation. It is shown that very little light-independent oxidation of protein residues occurs and that significant perturbation of complexes of interest prior to the brief photolysis period does not occur. Finally, evidence is presented that is consistent with a mechanistic model in which ammonium persulfate functions simply as an electron acceptor, facilitating the generation of the key high valent metal complex from the photoexcited species by electron transfer. In the absence of an electron acceptor, a much lower efficiency reaction is observed that appears to involve products resulting from reaction of the excited state metal complex with molecular oxygen. CONCLUSIONS: These results provide useful practical information for chemists and biochemists who may wish to employ this new cross-linking chemistry for the analysis of protein complexes. They also shed new light on the mechanism of this interesting reaction.  (+info)

Histone H2A.Z regulats transcription and is partially redundant with nucleosome remodeling complexes. (8/227)

Nucleosomes impose a block to transcription that can be overcome in vivo by remodeling complexes such as SNF/SWI and histone modification complexes such as SAGA. Mutations in the major core histones relieve transcriptional repression and bypass the requirement for SNF/SWI and SAGA. We have found that the variant histone H2A.Z regulates gene transcription, and deletion of the gene encoding H2A.Z strongly increases the requirement for SNF/SWI and SAGA. This synthetic genetic interaction is seen at the level of single genes and acts downstream of promoter nucleosome reorganization. H2A.Z is preferentially crosslinked in vivo to intergenic DNA at the PH05 and GAL1 loci, and this association changes with transcriptional activation. These results describe a novel pathway for regulating transcription using variant histones to modulate chromatin structure.  (+info)

Phosphate-binding proteins are a type of protein that play a crucial role in regulating the concentration of phosphates in cells. They function by binding to phosphate ions and facilitating their transport, storage, or excretion. These proteins can be found in various organisms, including bacteria, plants, and animals.

In humans, one example of a phosphate-binding protein is the plasma protein known as fetuin-A. Fetuin-A helps regulate the amount of phosphate in the blood by binding to it and preventing it from forming insoluble precipitates with calcium, which can lead to the formation of kidney stones or calcifications in soft tissues.

Another example is the intracellular protein called alkaline phosphatase, which plays a role in removing phosphate groups from molecules within the cell. This enzyme helps regulate the levels of phosphates and other ions within the cell, as well as contributing to various metabolic processes.

Overall, phosphate-binding proteins are essential for maintaining proper phosphate homeostasis in the body, which is critical for numerous physiological functions, including energy metabolism, bone health, and signal transduction.

Phosphates, in a medical context, refer to the salts or esters of phosphoric acid. Phosphates play crucial roles in various biological processes within the human body. They are essential components of bones and teeth, where they combine with calcium to form hydroxyapatite crystals. Phosphates also participate in energy transfer reactions as phosphate groups attached to adenosine diphosphate (ADP) and adenosine triphosphate (ATP). Additionally, they contribute to buffer systems that help maintain normal pH levels in the body.

Abnormal levels of phosphates in the blood can indicate certain medical conditions. High phosphate levels (hyperphosphatemia) may be associated with kidney dysfunction, hyperparathyroidism, or excessive intake of phosphate-containing products. Low phosphate levels (hypophosphatemia) might result from malnutrition, vitamin D deficiency, or certain diseases affecting the small intestine or kidneys. Both hypophosphatemia and hyperphosphatemia can have significant impacts on various organ systems and may require medical intervention.

Carboxypeptidases A are a group of enzymes that play a role in the digestion of proteins. They are found in various organisms, including humans, and function to cleave specific amino acids from the carboxyl-terminal end of protein substrates. In humans, Carboxypeptidase A is primarily produced in the pancreas and secreted into the small intestine as an inactive zymogen called procarboxypeptidase A.

Procarboxypeptidase A is activated by trypsin, another proteolytic enzyme, to form Carboxypeptidase A1 and Carboxypeptidase A2. These enzymes have different substrate specificities, with Carboxypeptidase A1 preferentially cleaving aromatic amino acids such as phenylalanine and tyrosine, while Carboxypeptidase A2 cleaves basic amino acids such as arginine and lysine.

Carboxypeptidases A play a crucial role in the final stages of protein digestion by breaking down large peptides into smaller di- and tripeptides, which can then be absorbed by the intestinal epithelium and transported to other parts of the body for use as building blocks or energy sources.

Ethylmaleimide is a chemical compound that is commonly used in research and scientific studies. Its chemical formula is C7H10N2S. It is known to modify proteins by forming covalent bonds with them, which can alter their function or structure. This property makes it a useful tool in the study of protein function and interactions.

In a medical context, Ethylmaleimide is not used as a therapeutic agent due to its reactivity and potential toxicity. However, it has been used in research to investigate various physiological processes, including the regulation of ion channels and the modulation of enzyme activity. It is important to note that the use of Ethylmaleimide in medical research should be carried out with appropriate precautions and safety measures due to its potential hazards.

Phosphate transport proteins are membrane-bound proteins responsible for the active transport of phosphate ions across cell membranes. They play a crucial role in maintaining appropriate phosphate concentrations within cells and between intracellular compartments, which is essential for various biological processes such as energy metabolism, signal transduction, and bone formation.

These proteins utilize the energy derived from ATP hydrolysis or other sources to move phosphate ions against their concentration gradient, thereby facilitating cellular uptake of phosphate even when extracellular concentrations are low. Phosphate transport proteins can be classified based on their structure, function, and localization into different types, including sodium-dependent and sodium-independent transporters, secondary active transporters, and channels.

Dysregulation of phosphate transport proteins has been implicated in several pathological conditions, such as renal Fanconi syndrome, tumoral calcinosis, and hypophosphatemic rickets. Therefore, understanding the molecular mechanisms underlying phosphate transport protein function is essential for developing targeted therapies to treat these disorders.

I'm happy to help! However, it seems like there are two terms combined into one request: "Mitochondria" and "Heart." I will provide separate definitions for each.

Mitochondrion (singular) or Mitochondria (plural): These are specialized structures found in the cytoplasm of most eukaryotic cells (cells with a true nucleus), including human cells. They are often referred to as the "powerhouse" of the cell because they generate energy in the form of ATP (adenosine triphosphate) through a process called oxidative phosphorylation. Mitochondria contain their own DNA, which is distinct from the nuclear DNA, and are believed to have originated from ancient bacteria that established a symbiotic relationship with primitive eukaryotic cells.

Heart: In human anatomy, the heart is a muscular organ responsible for pumping blood throughout the body. It is located in the thoracic cavity, slightly left of the center, and is enclosed by the pericardium, a double-walled sac that provides protection and lubrication for the heart's movement. The human heart is divided into four chambers: two atria on the top and two ventricles on the bottom. The right side of the heart receives deoxygenated blood from the body and pumps it to the lungs, while the left side receives oxygenated blood from the lungs and pumps it to the rest of the body. The heart's pumping action is regulated by electrical signals that originate in a group of specialized cardiac muscle cells called the sinoatrial node (SA node).

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

Sodium-phosphate cotransporter proteins are membrane transport proteins that facilitate the active transport of sodium and inorganic phosphate ions across biological membranes. These proteins play a crucial role in maintaining phosphate homeostasis within the body by regulating the absorption and excretion of phosphate in the kidneys and intestines. They exist in two major types, type I (NaPi-I) and type II (NaPi-II), each having multiple subtypes with distinct tissue distributions and regulatory mechanisms.

Type I sodium-phosphate cotransporters are primarily expressed in the kidney's proximal tubules and play a significant role in reabsorbing phosphate from the primary urine back into the bloodstream. Type II sodium-phosphate cotransporters, on the other hand, are found in both the kidneys and intestines. In the kidneys, they contribute to phosphate reabsorption, while in the intestines, they facilitate phosphate absorption from food.

These proteins function by coupling the passive downhill movement of sodium ions (driven by the electrochemical gradient) with the active uphill transport of phosphate ions against their concentration gradient. This coupled transport process enables cells to maintain intracellular phosphate concentrations within a narrow range, despite fluctuations in dietary intake and renal function.

Dysregulation of sodium-phosphate cotransporter proteins has been implicated in various pathological conditions, such as chronic kidney disease (CKD), tumoral calcinosis, and certain genetic disorders affecting phosphate homeostasis.

Biological transport, active is the process by which cells use energy to move materials across their membranes from an area of lower concentration to an area of higher concentration. This type of transport is facilitated by specialized proteins called transporters or pumps that are located in the cell membrane. These proteins undergo conformational changes to physically carry the molecules through the lipid bilayer of the membrane, often against their concentration gradient.

Active transport requires energy because it works against the natural tendency of molecules to move from an area of higher concentration to an area of lower concentration, a process known as diffusion. Cells obtain this energy in the form of ATP (adenosine triphosphate), which is produced through cellular respiration.

Examples of active transport include the uptake of glucose and amino acids into cells, as well as the secretion of hormones and neurotransmitters. The sodium-potassium pump, which helps maintain resting membrane potential in nerve and muscle cells, is a classic example of an active transporter.

Mersalyl is not a medical condition or diagnosis, but rather a pharmaceutical compound. It is a type of organic mercurial salt that was historically used in medicine as a diuretic and an antimicrobial agent. However, its use has been largely discontinued due to the toxic effects of mercury on the human body. Therefore, there isn't a medical definition for 'Mersalyl'.

Membrane transport proteins are specialized biological molecules, specifically integral membrane proteins, that facilitate the movement of various substances across the lipid bilayer of cell membranes. They are responsible for the selective and regulated transport of ions, sugars, amino acids, nucleotides, and other molecules into and out of cells, as well as within different cellular compartments. These proteins can be categorized into two main types: channels and carriers (or pumps). Channels provide a passive transport mechanism, allowing ions or small molecules to move down their electrochemical gradient, while carriers actively transport substances against their concentration gradient, requiring energy usually in the form of ATP. Membrane transport proteins play a crucial role in maintaining cell homeostasis, signaling processes, and many other physiological functions.

Fatty acid transport proteins (FATPs) are a group of membrane-bound proteins that play a crucial role in the uptake and transport of long-chain fatty acids across the plasma membrane of cells. They are widely expressed in various tissues, including the heart, muscle, adipose tissue, and liver.

FATPs have several domains that enable them to perform their functions, including a cytoplasmic domain that binds to fatty acids, a transmembrane domain that spans the plasma membrane, and an ATP-binding cassette (ABC) domain that hydrolyzes ATP to provide energy for fatty acid transport.

FATPs also play a role in the regulation of intracellular lipid metabolism by modulating the activity of enzymes involved in fatty acid activation, desaturation, and elongation. Mutations in FATP genes have been associated with various metabolic disorders, including congenital deficiency of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD), a rare autosomal recessive disorder that affects fatty acid oxidation.

In summary, fatty acid transport proteins are essential for the uptake and metabolism of long-chain fatty acids in cells and have implications in various metabolic disorders.

Arsenates are salts or esters of arsenic acid (AsO4). They contain the anion AsO4(3-), which consists of an arsenic atom bonded to four oxygen atoms in a tetrahedral arrangement. Arsenates can be found in various minerals, and they have been used in pesticides, wood preservatives, and other industrial applications. However, arsenic is highly toxic to humans and animals, so exposure to arsenates should be limited. Long-term exposure to arsenic can cause skin lesions, cancer, and damage to the nervous system, among other health problems.

Glucose-6-phosphate (G6P) is a vital intermediate compound in the metabolism of glucose, which is a simple sugar that serves as a primary source of energy for living organisms. G6P plays a critical role in both glycolysis and gluconeogenesis pathways, contributing to the regulation of blood glucose levels and energy production within cells.

In biochemistry, glucose-6-phosphate is defined as:

A hexose sugar phosphate ester formed by the phosphorylation of glucose at the 6th carbon atom by ATP in a reaction catalyzed by the enzyme hexokinase or glucokinase. This reaction is the first step in both glycolysis and glucose storage (glycogen synthesis) processes, ensuring that glucose can be effectively utilized for energy production or stored for later use.

G6P serves as a crucial metabolic branch point, leading to various pathways such as:

1. Glycolysis: In the presence of sufficient ATP and NAD+ levels, G6P is further metabolized through glycolysis to generate pyruvate, which enters the citric acid cycle for additional energy production in the form of ATP, NADH, and FADH2.
2. Gluconeogenesis: During periods of low blood glucose levels, G6P can be synthesized back into glucose through the gluconeogenesis pathway, primarily occurring in the liver and kidneys. This process helps maintain stable blood glucose concentrations and provides energy to cells when dietary intake is insufficient.
3. Pentose phosphate pathway (PPP): A portion of G6P can be shunted into the PPP, an alternative metabolic route that generates NADPH, ribose-5-phosphate for nucleotide synthesis, and erythrose-4-phosphate for aromatic amino acid production. The PPP is essential in maintaining redox balance within cells and supporting biosynthetic processes.

Overall, glucose-6-phosphate plays a critical role as a central metabolic intermediate, connecting various pathways to regulate energy homeostasis, redox balance, and biosynthesis in response to cellular demands and environmental cues.

Glucose phosphates are organic compounds that result from the reaction of glucose (a simple sugar) with phosphate groups. These compounds play a crucial role in various metabolic processes, particularly in energy metabolism within cells. The addition of phosphate groups to glucose makes it more reactive and enables it to undergo further reactions that lead to the formation of important molecules such as adenosine triphosphate (ATP), which is a primary source of energy for cellular functions.

One notable example of a glucose phosphate is glucose 1-phosphate, which is an intermediate in several metabolic pathways, including glycogenesis (the process of forming glycogen, a storage form of glucose) and glycolysis (the breakdown of glucose to release energy). Another example is glucose 6-phosphate, which is a key regulator of carbohydrate metabolism and serves as an important intermediate in the pentose phosphate pathway, a metabolic route that generates reducing equivalents (NADPH) and ribose sugars for nucleotide synthesis.

In summary, glucose phosphates are essential compounds in cellular metabolism, facilitating energy production, storage, and utilization.

Glycerophosphates are esters of glycerol and phosphoric acid. In the context of biochemistry and medicine, glycerophosphates often refer to glycerol 3-phosphate (also known as glyceraldehyde 3-phosphate or glycerone phosphate) and its derivatives.

Glycerol 3-phosphate plays a crucial role in cellular metabolism, particularly in the process of energy production and storage. It is an important intermediate in both glycolysis (the breakdown of glucose to produce energy) and gluconeogenesis (the synthesis of glucose from non-carbohydrate precursors).

In addition, glycerophosphates are also involved in the formation of phospholipids, a major component of cell membranes. The esterification of glycerol 3-phosphate with fatty acids leads to the synthesis of phosphatidic acid, which is a key intermediate in the biosynthesis of other phospholipids.

Abnormalities in glycerophosphate metabolism have been implicated in various diseases, including metabolic disorders and neurological conditions.

Hexose phosphates are organic compounds that consist of a hexose sugar molecule (a monosaccharide containing six carbon atoms, such as glucose or fructose) that has been phosphorylated, meaning that a phosphate group has been added to it. This process is typically facilitated by enzymes called kinases, which transfer a phosphate group from a donor molecule (usually ATP) to the sugar molecule.

Hexose phosphates play important roles in various metabolic pathways, including glycolysis, gluconeogenesis, and the pentose phosphate pathway. For example, glucose-6-phosphate is a key intermediate in both glycolysis and gluconeogenesis, while fructose-6-phosphate and fructose-1,6-bisphosphate are important intermediates in glycolysis. The pentose phosphate pathway, which is involved in the production of NADPH and ribose-5-phosphate, begins with the conversion of glucose-6-phosphate to 6-phosphogluconolactone by the enzyme glucose-6-phosphate dehydrogenase.

Overall, hexose phosphates are important metabolic intermediates that help regulate energy production and utilization in cells.

Sodium-phosphate cotransporter proteins, type III (NPTIII), are a subfamily of sodium-dependent phosphate transporters that play a crucial role in the regulation of phosphate homeostasis within the body. They are located primarily in the proximal tubule cells of the kidney and facilitate the active transport of inorganic phosphate (Pi) from the lumen into the cell, coupled with the movement of sodium ions (Na+) in the same direction.

The type III sodium-phosphate cotransporters consist of two isoforms, NaPi-IIa and NaPi-IIc, which are encoded by the SLC34A1 and SLC34A3 genes, respectively. These proteins have a molecular weight of approximately 80-90 kDa and contain 13 transmembrane domains, with both the N- and C-termini located intracellularly.

NaPi-IIa is responsible for the majority of sodium-dependent phosphate reabsorption in the kidney, while NaPi-IIc plays a modulatory role under conditions of high dietary phosphate intake or during development. Dysregulation of these cotransporters has been implicated in various pathological conditions, such as chronic kidney disease (CKD), tumoral calcinosis, and certain forms of hypophosphatemic rickets.

In summary, sodium-phosphate cotransporter proteins, type III, are essential for maintaining phosphate balance by mediating the active reabsorption of inorganic phosphate from the kidney tubular lumen into the bloodstream.

Sodium-phosphate cotransporter proteins, type IIb (NaPi-IIb), are membrane transport proteins found in the kidney's brush border membrane of proximal tubule cells. They play a crucial role in reabsorbing inorganic phosphate from the primary urine back into the bloodstream. These cotransporters facilitate the active transport of phosphate ions (PO4^3-) coupled with sodium ions (Na+) through the cell membrane, using the energy derived from the electrochemical gradient of sodium ions.

Type IIb sodium-phosphate cotransporters are specifically expressed in the kidney and contribute to maintaining phosphate homeostasis in the body. Disorders in NaPi-IIb function can lead to abnormal phosphate levels, which may be associated with various medical conditions such as hypophosphatemia or hyperphosphatemia.

Sodium-phosphate cotransporter proteins, type IIa (NaPi-IIa), are a subtype of membrane transport proteins that facilitate the active transport of sodium and phosphate ions across the cell membrane. They play a crucial role in maintaining phosphate homeostasis within the body by regulating the reabsorption of phosphate in the kidney's proximal tubules.

NaPi-IIa proteins are located on the brush border membrane of the proximal tubule cells and function to couple the movement of sodium ions down its electrochemical gradient into the cell with the influx of phosphate ions against its concentration gradient, from the lumen into the cell. This process is driven by the sodium-potassium ATPase pump, which maintains a low intracellular sodium concentration and a negative membrane potential.

NaPi-IIa proteins are encoded by the SLC34A1 gene in humans and are subject to regulation by various hormonal and physiological factors, such as parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and dietary phosphate intake. Dysregulation of NaPi-IIa function has been implicated in several kidney diseases and disorders of phosphate homeostasis, such as hyperphosphatemia and hypophosphatemic rickets.

A symporter is a type of transmembrane protein that functions to transport two or more molecules or ions across a biological membrane in the same direction, simultaneously. This process is called co-transport and it is driven by the concentration gradient of one of the substrates, which is usually an ion such as sodium (Na+) or proton (H+).

Symporters are classified based on the type of energy that drives the transport process. Primary active transporters, such as symporters, use the energy from ATP hydrolysis or from the electrochemical gradient of ions to move substrates against their concentration gradient. In contrast, secondary active transporters use the energy stored in an existing electrochemical gradient of one substrate to drive the transport of another substrate against its own concentration gradient.

Symporters play important roles in various physiological processes, including nutrient uptake, neurotransmitter reuptake, and ion homeostasis. For example, the sodium-glucose transporter (SGLT) is a symporter that co-transports glucose and sodium ions across the intestinal epithelium and the renal proximal tubule, contributing to glucose absorption and regulation of blood glucose levels. Similarly, the dopamine transporter (DAT) is a symporter that co-transports dopamine and sodium ions back into presynaptic neurons, terminating the action of dopamine in the synapse.

Familial Hypophosphatemia is a genetic disorder characterized by low levels of phosphate in the blood (hypophosphatemia) due to impaired absorption of phosphates in the gut. This condition results from mutations in the SLC34A3 gene, which provides instructions for making a protein called NaPi-IIc, responsible for reabsorbing phosphates from the filtrate in the kidney tubules back into the bloodstream.

In familial hypophosphatemia, the impaired function of NaPi-IIc leads to excessive loss of phosphate through urine, resulting in hypophosphatemia. This condition can cause rickets (a softening and weakening of bones) in children and osteomalacia (softening of bones) in adults. Symptoms may include bowed legs, bone pain, muscle weakness, and short stature.

Familial Hypophosphatemia is inherited as an autosomal recessive trait, meaning that an individual must inherit two copies of the mutated gene (one from each parent) to develop the condition.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

I'm sorry for any confusion, but "opossums" are not a medical term or a medical condition. Opossums are actually marsupials (pouched mammals) that are native to the Americas. They are often known for their "playing dead" behavior as a defense mechanism when threatened. If you have any questions about medical terminology or health-related topics, I'd be happy to help with those!

Microvilli are small, finger-like projections that line the apical surface (the side facing the lumen) of many types of cells, including epithelial and absorptive cells. They serve to increase the surface area of the cell membrane, which in turn enhances the cell's ability to absorb nutrients, transport ions, and secrete molecules.

Microvilli are typically found in high density and are arranged in a brush-like border called the "brush border." They contain a core of actin filaments that provide structural support and allow for their movement and flexibility. The membrane surrounding microvilli contains various transporters, channels, and enzymes that facilitate specific functions related to absorption and secretion.

In summary, microvilli are specialized structures on the surface of cells that enhance their ability to interact with their environment by increasing the surface area for transport and secretory processes.

Sodium-phosphate cotransporter proteins, type I (NaPi-I), are a group of membrane transport proteins that facilitate the active transport of sodium and phosphate ions across the cell membrane. These proteins play a crucial role in regulating phosphate homeostasis in the body by reabsorbing phosphate from the glomerular filtrate in the kidney back into the bloodstream.

The type I sodium-phosphate cotransporters are composed of two subtypes, NaPi-IA and NaPi-IB, which share a similar structure and function. They consist of 13 transmembrane domains, with both the N- and C-termini located in the cytoplasm. These proteins are primarily expressed in the brush border membrane of the proximal tubule cells in the kidney.

NaPi-I proteins function as sodium-phosphate symporters, meaning they transport both sodium and phosphate ions in the same direction. The energy required for this active transport process comes from the electrochemical gradient of sodium ions across the cell membrane, which is maintained by the activity of the Na+/K+-ATPase pump.

Regulation of these proteins is critical for maintaining phosphate balance in the body. In response to changes in dietary phosphate intake or hormonal signals, such as parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), the expression and activity of NaPi-I proteins can be modulated to adjust phosphate reabsorption in the kidney.

In summary, sodium-phosphate cotransporter proteins, type I, are essential membrane transport proteins that regulate phosphate homeostasis by facilitating the active reabsorption of phosphate from the glomerular filtrate in the kidney. Their expression and activity are tightly regulated to maintain proper phosphate balance in the body.

Monosaccharide transport proteins are a type of membrane transport protein that facilitate the passive or active transport of monosaccharides, such as glucose, fructose, and galactose, across cell membranes. These proteins play a crucial role in the absorption, distribution, and metabolism of carbohydrates in the body.

There are two main types of monosaccharide transport proteins: facilitated diffusion transporters and active transporters. Facilitated diffusion transporters, also known as glucose transporters (GLUTs), passively transport monosaccharides down their concentration gradient without the need for energy. In contrast, active transporters, such as the sodium-glucose cotransporter (SGLT), use energy in the form of ATP to actively transport monosaccharides against their concentration gradient.

Monosaccharide transport proteins are found in various tissues throughout the body, including the intestines, kidneys, liver, and brain. They play a critical role in maintaining glucose homeostasis by regulating the uptake and release of glucose into and out of cells. Dysfunction of these transporters has been implicated in several diseases, such as diabetes, cancer, and neurological disorders.

Ion transport refers to the active or passive movement of ions, such as sodium (Na+), potassium (K+), chloride (Cl-), and calcium (Ca2+) ions, across cell membranes. This process is essential for various physiological functions, including nerve impulse transmission, muscle contraction, and maintenance of resting membrane potential.

Ion transport can occur through several mechanisms, including:

1. Diffusion: the passive movement of ions down their concentration gradient, from an area of high concentration to an area of low concentration.
2. Facilitated diffusion: the passive movement of ions through specialized channels or transporters in the cell membrane.
3. Active transport: the energy-dependent movement of ions against their concentration gradient, requiring the use of ATP. This process is often mediated by ion pumps, such as the sodium-potassium pump (Na+/K+-ATPase).
4. Co-transport or symport: the coupled transport of two or more different ions or molecules in the same direction, often driven by an electrochemical gradient.
5. Counter-transport or antiport: the coupled transport of two or more different ions or molecules in opposite directions, also often driven by an electrochemical gradient.

Abnormalities in ion transport can lead to various medical conditions, such as cystic fibrosis (which involves defective chloride channel function), hypertension (which may be related to altered sodium transport), and certain forms of heart disease (which can result from abnormal calcium handling).

Mercuribenzoates are organic compounds that contain a mercury atom bonded to a benzoate group. They were historically used as diuretics and antiseptics, but their use has been largely discontinued due to the toxicity of mercury.

The medical definition of Mercuribenzoates is not widely used in modern medicine, as these compounds have fallen out of favor due to safer and more effective treatment options being available. Additionally, the use of mercury-containing compounds in medicine has become increasingly restricted due to concerns about their environmental impact and potential health risks.

The proximal kidney tubule is the initial portion of the renal tubule in the nephron of the kidney. It is located in the renal cortex and is called "proximal" because it is closer to the glomerulus, compared to the distal tubule. The proximal tubule plays a crucial role in the reabsorption of water, electrolytes, and nutrients from the filtrate that has been formed by the glomerulus. It also helps in the secretion of waste products and other substances into the urine.

The proximal tubule is divided into two segments: the pars convoluta and the pars recta. The pars convoluta is the curved portion that receives filtrate from the Bowman's capsule, while the pars recta is the straight portion that extends deeper into the renal cortex.

The proximal tubule is lined with a simple cuboidal epithelium, and its cells are characterized by numerous mitochondria, which provide energy for active transport processes. The apical surface of the proximal tubular cells has numerous microvilli, forming a brush border that increases the surface area for reabsorption.

In summary, the proximal kidney tubule is a critical site for the reabsorption of water, electrolytes, and nutrients from the glomerular filtrate, contributing to the maintenance of fluid and electrolyte balance in the body.

Sugar phosphates are organic compounds that play crucial roles in various biological processes, particularly in the field of genetics and molecular biology. They are formed by the attachment of a phosphate group to a sugar molecule, most commonly to the 5-carbon sugar ribose or deoxyribose.

In genetics, sugar phosphates form the backbone of nucleic acids, such as DNA and RNA. In DNA, the sugar phosphate backbone consists of alternating deoxyribose (a sugar) and phosphate groups, linked together by covalent bonds between the 5' carbon atom of one sugar molecule and the 3' carbon atom of another sugar molecule. This forms a long, twisted ladder-like structure known as a double helix.

Similarly, in RNA, the sugar phosphate backbone is formed by ribose (a sugar) and phosphate groups, creating a single-stranded structure that can fold back on itself to form complex shapes. These sugar phosphate backbones provide structural support for the nucleic acids and help to protect the genetic information stored within them.

Sugar phosphates also play important roles in energy metabolism, as they are involved in the formation and breakdown of high-energy compounds such as ATP (adenosine triphosphate) and GTP (guanosine triphosphate). These molecules serve as energy currency for cells, storing and releasing energy as needed to power various cellular processes.

Parathyroid hormone (PTH) is a polypeptide hormone that plays a crucial role in the regulation of calcium and phosphate levels in the body. It is produced and secreted by the parathyroid glands, which are four small endocrine glands located on the back surface of the thyroid gland.

The primary function of PTH is to maintain normal calcium levels in the blood by increasing calcium absorption from the gut, mobilizing calcium from bones, and decreasing calcium excretion by the kidneys. PTH also increases phosphate excretion by the kidneys, which helps to lower serum phosphate levels.

In addition to its role in calcium and phosphate homeostasis, PTH has been shown to have anabolic effects on bone tissue, stimulating bone formation and preventing bone loss. However, chronic elevations in PTH levels can lead to excessive bone resorption and osteoporosis.

Overall, Parathyroid Hormone is a critical hormone that helps maintain mineral homeostasis and supports healthy bone metabolism.

Sodium-phosphate cotransporter proteins, type II (NPTII), are a group of membrane transport proteins that facilitate the active transport of inorganic phosphate (Pi) and sodium ions (Na+) across the cell membrane. They play a crucial role in maintaining intracellular phosphate homeostasis and regulating various physiological processes, including energy metabolism, signal transduction, and bone mineralization.

The type II sodium-phosphate cotransporters are further divided into three subtypes: NPT2a, NPT2b, and NPT2c. These subtypes differ in their tissue distribution, substrate affinity, and regulatory mechanisms. NPT2a is primarily expressed in the kidney proximal tubules and plays a major role in reabsorbing phosphate from the glomerular filtrate. NPT2b is predominantly found in the small intestine and contributes to phosphate absorption from the diet. NPT2c is widely distributed, with significant expression in the kidney, brain, and testis, although its specific functions are not as well understood as those of NPT2a and NPT2b.

Dysregulation of sodium-phosphate cotransporter proteins, type II, has been implicated in several pathological conditions, such as renal phosphate wasting disorders, tumoral calcinosis, and certain forms of hyperparathyroidism.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Sodium is an essential mineral and electrolyte that is necessary for human health. In a medical context, sodium is often discussed in terms of its concentration in the blood, as measured by serum sodium levels. The normal range for serum sodium is typically between 135 and 145 milliequivalents per liter (mEq/L).

Sodium plays a number of important roles in the body, including:

* Regulating fluid balance: Sodium helps to regulate the amount of water in and around your cells, which is important for maintaining normal blood pressure and preventing dehydration.
* Facilitating nerve impulse transmission: Sodium is involved in the generation and transmission of electrical signals in the nervous system, which is necessary for proper muscle function and coordination.
* Assisting with muscle contraction: Sodium helps to regulate muscle contractions by interacting with other minerals such as calcium and potassium.

Low sodium levels (hyponatremia) can cause symptoms such as confusion, seizures, and coma, while high sodium levels (hypernatremia) can lead to symptoms such as weakness, muscle cramps, and seizures. Both conditions require medical treatment to correct.

Trioses are simple sugars that contain three carbon atoms and a functional group called a ketone or aldehyde. They are the simplest type of sugar molecule, after monosaccharides such as glyceraldehyde and dihydroxyacetone.

Triose sugars can exist in two structural forms:

* Dihydroxyacetone (DHA), which is a ketotriose with the formula CH2OH-CO-CH2OH, and
* Glyceraldehyde (GA), which is an aldotriose with the formula HO-CHOH-CHO.

Trioses play important roles in various metabolic pathways, including glycolysis, gluconeogenesis, and the Calvin cycle of photosynthesis. In particular, DHA and GA are intermediates in the conversion of glucose to pyruvate during glycolysis, and they are also produced from pyruvate during gluconeogenesis.

Trioses can be synthesized chemically or biochemically through various methods, such as enzymatic reactions or microbial fermentation. They have potential applications in the food, pharmaceutical, and chemical industries, as they can serve as building blocks for more complex carbohydrates or as precursors for other organic compounds.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Cation transport proteins are a type of membrane protein that facilitate the movement of cations (positively charged ions) across biological membranes. These proteins play a crucial role in maintaining ion balance and electrical excitability within cells, as well as in various physiological processes such as nutrient uptake, waste elimination, and signal transduction.

There are several types of cation transport proteins, including:

1. Ion channels: These are specialized protein structures that form a pore or channel through the membrane, allowing ions to pass through rapidly and selectively. They can be either voltage-gated or ligand-gated, meaning they open in response to changes in electrical potential or binding of specific molecules, respectively.

2. Ion pumps: These are active transport proteins that use energy from ATP hydrolysis to move ions against their electrochemical gradient, effectively pumping them from one side of the membrane to the other. Examples include the sodium-potassium pump (Na+/K+-ATPase) and calcium pumps (Ca2+ ATPase).

3. Ion exchangers: These are antiporter proteins that facilitate the exchange of one ion for another across the membrane, maintaining electroneutrality. For example, the sodium-proton exchanger (NHE) moves a proton into the cell in exchange for a sodium ion being moved out.

4. Symporters: These are cotransporter proteins that move two or more ions together in the same direction, often coupled with the transport of a solute molecule. An example is the sodium-glucose cotransporter (SGLT), which facilitates glucose uptake into cells by coupling its movement with that of sodium ions.

Collectively, cation transport proteins help maintain ion homeostasis and contribute to various cellular functions, including electrical signaling, enzyme regulation, and metabolic processes. Dysfunction in these proteins can lead to a range of diseases, such as neurological disorders, cardiovascular disease, and kidney dysfunction.

Calcium phosphates are a group of minerals that are important components of bones and teeth. They are also found in some foods and are used in dietary supplements and medical applications. Chemically, calcium phosphates are salts of calcium and phosphoric acid, and they exist in various forms, including hydroxyapatite, which is the primary mineral component of bone tissue. Other forms of calcium phosphates include monocalcium phosphate, dicalcium phosphate, and tricalcium phosphate, which are used as food additives and dietary supplements. Calcium phosphates are important for maintaining strong bones and teeth, and they also play a role in various physiological processes, such as nerve impulse transmission and muscle contraction.

Anion transport proteins are specialized membrane transport proteins that facilitate the movement of negatively charged ions, known as anions, across biological membranes. These proteins play a crucial role in maintaining ionic balance and regulating various physiological processes within the body.

There are several types of anion transport proteins, including:

1. Cl-/HCO3- exchangers (also known as anion exchangers or band 3 proteins): These transporters facilitate the exchange of chloride (Cl-) and bicarbonate (HCO3-) ions across the membrane. They are widely expressed in various tissues, including the red blood cells, gastrointestinal tract, and kidneys, where they help regulate pH, fluid balance, and electrolyte homeostasis.
2. Sulfate permeases: These transporters facilitate the movement of sulfate ions (SO42-) across membranes. They are primarily found in the epithelial cells of the kidneys, intestines, and choroid plexus, where they play a role in sulfur metabolism and absorption.
3. Cl- channels: These proteins form ion channels that allow chloride ions to pass through the membrane. They are involved in various physiological processes, such as neuronal excitability, transepithelial fluid transport, and cell volume regulation.
4. Cation-chloride cotransporters: These transporters move both cations (positively charged ions) and chloride anions together across the membrane. They are involved in regulating neuronal excitability, cell volume, and ionic balance in various tissues.

Dysfunction of anion transport proteins has been implicated in several diseases, such as cystic fibrosis (due to mutations in the CFTR Cl- channel), distal renal tubular acidosis (due to defects in Cl-/HCO3- exchangers), and some forms of epilepsy (due to abnormalities in cation-chloride cotransporters).

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme that plays a crucial role in the metabolic pathway of glycolysis. Its primary function is to convert glyceraldehyde-3-phosphate (a triose sugar phosphate) into D-glycerate 1,3-bisphosphate, while also converting nicotinamide adenine dinucleotide (NAD+) into its reduced form NADH. This reaction is essential for the production of energy in the form of adenosine triphosphate (ATP) during cellular respiration. GAPDH has also been implicated in various non-metabolic processes, including DNA replication, repair, and transcription regulation, due to its ability to interact with different proteins and nucleic acids.

Protein transport, in the context of cellular biology, refers to the process by which proteins are actively moved from one location to another within or between cells. This is a crucial mechanism for maintaining proper cell function and regulation.

Intracellular protein transport involves the movement of proteins within a single cell. Proteins can be transported across membranes (such as the nuclear envelope, endoplasmic reticulum, Golgi apparatus, or plasma membrane) via specialized transport systems like vesicles and transport channels.

Intercellular protein transport refers to the movement of proteins from one cell to another, often facilitated by exocytosis (release of proteins in vesicles) and endocytosis (uptake of extracellular substances via membrane-bound vesicles). This is essential for communication between cells, immune response, and other physiological processes.

It's important to note that any disruption in protein transport can lead to various diseases, including neurological disorders, cancer, and metabolic conditions.

Hypophosphatemia is a medical condition characterized by abnormally low levels of phosphate (phosphorus) in the blood, specifically below 2.5 mg/dL. Phosphate is an essential electrolyte that plays a crucial role in various bodily functions such as energy production, bone formation, and maintaining acid-base balance.

Hypophosphatemia can result from several factors, including malnutrition, vitamin D deficiency, alcoholism, hormonal imbalances, and certain medications. Symptoms of hypophosphatemia may include muscle weakness, fatigue, bone pain, confusion, and respiratory failure in severe cases. Treatment typically involves correcting the underlying cause and administering phosphate supplements to restore normal levels.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Axonal transport is the controlled movement of materials and organelles within axons, which are the nerve fibers of neurons (nerve cells). This intracellular transport system is essential for maintaining the structural and functional integrity of axons, particularly in neurons with long axonal processes. There are two types of axonal transport: anterograde transport, which moves materials from the cell body toward the synaptic terminals, and retrograde transport, which transports materials from the synaptic terminals back to the cell body. Anterograde transport is typically slower than retrograde transport and can be divided into fast and slow components based on velocity. Fast anterograde transport moves vesicles containing neurotransmitters and their receptors, as well as mitochondria and other organelles, at speeds of up to 400 mm/day. Slow anterograde transport moves cytoskeletal elements, proteins, and RNA at speeds of 1-10 mm/day. Retrograde transport is primarily responsible for recycling membrane components, removing damaged organelles, and transmitting signals from the axon terminal to the cell body. Dysfunctions in axonal transport have been implicated in various neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS).

A Sodium-Hydrogen Antiporter (NHA) is a type of membrane transport protein that exchanges sodium ions (Na+) and protons (H+) across a biological membrane. It is also known as a Na+/H+ antiporter or exchanger. This exchange mechanism plays a crucial role in regulating pH, cell volume, and intracellular sodium concentration within various cells and organelles, including the kidney, brain, heart, and mitochondria.

In general, NHA transporters utilize the energy generated by the electrochemical gradient of sodium ions across a membrane to drive the uphill transport of protons from inside to outside the cell or organelle. This process helps maintain an optimal intracellular pH and volume, which is essential for proper cellular function and homeostasis.

There are several isoforms of Sodium-Hydrogen Antiporters found in different tissues and organelles, each with distinct physiological roles and regulatory mechanisms. Dysfunction or alterations in NHA activity have been implicated in various pathophysiological conditions, such as hypertension, heart failure, neurological disorders, and cancer.

Alkaline phosphatase (ALP) is an enzyme found in various body tissues, including the liver, bile ducts, digestive system, bones, and kidneys. It plays a role in breaking down proteins and minerals, such as phosphate, in the body.

The medical definition of alkaline phosphatase refers to its function as a hydrolase enzyme that removes phosphate groups from molecules at an alkaline pH level. In clinical settings, ALP is often measured through blood tests as a biomarker for various health conditions.

Elevated levels of ALP in the blood may indicate liver or bone diseases, such as hepatitis, cirrhosis, bone fractures, or cancer. Therefore, physicians may order an alkaline phosphatase test to help diagnose and monitor these conditions. However, it is essential to interpret ALP results in conjunction with other diagnostic tests and clinical findings for accurate diagnosis and treatment.

Glucose is a simple monosaccharide (or single sugar) that serves as the primary source of energy for living organisms. It's a fundamental molecule in biology, often referred to as "dextrose" or "grape sugar." Glucose has the molecular formula C6H12O6 and is vital to the functioning of cells, especially those in the brain and nervous system.

In the body, glucose is derived from the digestion of carbohydrates in food, and it's transported around the body via the bloodstream to cells where it can be used for energy. Cells convert glucose into a usable form through a process called cellular respiration, which involves a series of metabolic reactions that generate adenosine triphosphate (ATP)—the main currency of energy in cells.

Glucose is also stored in the liver and muscles as glycogen, a polysaccharide (multiple sugar) that can be broken down back into glucose when needed for energy between meals or during physical activity. Maintaining appropriate blood glucose levels is crucial for overall health, and imbalances can lead to conditions such as diabetes mellitus.

ATP-binding cassette (ABC) transporters are a family of membrane proteins that utilize the energy from ATP hydrolysis to transport various substrates across extra- and intracellular membranes. These transporters play crucial roles in several biological processes, including detoxification, drug resistance, nutrient uptake, and regulation of cellular cholesterol homeostasis.

The structure of ABC transporters consists of two nucleotide-binding domains (NBDs) that bind and hydrolyze ATP, and two transmembrane domains (TMDs) that form the substrate-translocation pathway. The NBDs are typically located adjacent to each other in the cytoplasm, while the TMDs can be either integral membrane domains or separate structures associated with the membrane.

The human genome encodes 48 distinct ABC transporters, which are classified into seven subfamilies (ABCA-ABCG) based on their sequence similarity and domain organization. Some well-known examples of ABC transporters include P-glycoprotein (ABCB1), multidrug resistance protein 1 (ABCC1), and breast cancer resistance protein (ABCG2).

Dysregulation or mutations in ABC transporters have been implicated in various diseases, such as cystic fibrosis, neurological disorders, and cancer. In cancer, overexpression of certain ABC transporters can contribute to drug resistance by actively effluxing chemotherapeutic agents from cancer cells, making them less susceptible to treatment.

An anion is an ion that has a negative electrical charge because it has more electrons than protons. The term "anion" is derived from the Greek word "anion," which means "to go up" or "to move upward." This name reflects the fact that anions are attracted to positively charged electrodes, or anodes, and will move toward them during electrolysis.

Anions can be formed when a neutral atom or molecule gains one or more extra electrons. For example, if a chlorine atom gains an electron, it becomes a chloride anion (Cl-). Anions are important in many chemical reactions and processes, including the conduction of electricity through solutions and the formation of salts.

In medicine, anions may be relevant in certain physiological processes, such as acid-base balance. For example, the concentration of anions such as bicarbonate (HCO3-) and chloride (Cl-) in the blood can affect the pH of the body fluids and help maintain normal acid-base balance. Abnormal levels of anions may indicate the presence of certain medical conditions, such as metabolic acidosis or alkalosis.

'Escherichia coli (E. coli) proteins' refer to the various types of proteins that are produced and expressed by the bacterium Escherichia coli. These proteins play a critical role in the growth, development, and survival of the organism. They are involved in various cellular processes such as metabolism, DNA replication, transcription, translation, repair, and regulation.

E. coli is a gram-negative, facultative anaerobe that is commonly found in the intestines of warm-blooded organisms. It is widely used as a model organism in scientific research due to its well-studied genetics, rapid growth, and ability to be easily manipulated in the laboratory. As a result, many E. coli proteins have been identified, characterized, and studied in great detail.

Some examples of E. coli proteins include enzymes involved in carbohydrate metabolism such as lactase, sucrase, and maltose; proteins involved in DNA replication such as the polymerases, single-stranded binding proteins, and helicases; proteins involved in transcription such as RNA polymerase and sigma factors; proteins involved in translation such as ribosomal proteins, tRNAs, and aminoacyl-tRNA synthetases; and regulatory proteins such as global regulators, two-component systems, and transcription factors.

Understanding the structure, function, and regulation of E. coli proteins is essential for understanding the basic biology of this important organism, as well as for developing new strategies for combating bacterial infections and improving industrial processes involving bacteria.

Glucose-6-phosphatase is an enzyme that plays a crucial role in the regulation of glucose metabolism. It is primarily located in the endoplasmic reticulum of cells in liver, kidney, and intestinal mucosa. The main function of this enzyme is to remove the phosphate group from glucose-6-phosphate (G6P), converting it into free glucose, which can then be released into the bloodstream and used as a source of energy by cells throughout the body.

The reaction catalyzed by glucose-6-phosphatase is as follows:

Glucose-6-phosphate + H2O → Glucose + Pi (inorganic phosphate)

This enzyme is essential for maintaining normal blood glucose levels, particularly during periods of fasting or starvation. In these situations, the body needs to break down stored glycogen in the liver and convert it into glucose to supply energy to the brain and other vital organs. Glucose-6-phosphatase is a key enzyme in this process, allowing for the release of free glucose into the bloodstream.

Deficiencies or mutations in the gene encoding glucose-6-phosphatase can lead to several metabolic disorders, such as glycogen storage disease type I (von Gierke's disease) and other related conditions. These disorders are characterized by an accumulation of glycogen and/or fat in various organs, leading to impaired glucose metabolism, growth retardation, and increased risk of infection and liver dysfunction.

Fosfomycin is an antibiotic that is primarily used to treat uncomplicated lower urinary tract infections. It works by inhibiting the bacterial enzyme responsible for the synthesis of the cell wall. The chemical name for fosfomycin is (E)-1,2-epoxypropylphosphonic acid.

Fosfomycin is available as an oral tablet and as a granule that can be dissolved in water for oral administration. It has a broad spectrum of activity against both gram-positive and gram-negative bacteria, including some strains that are resistant to other antibiotics.

Common side effects of fosfomycin include diarrhea, nausea, and headache. It is generally well tolerated and can be used in patients with impaired renal function. However, it should be avoided in people who have a history of allergic reactions to fosfomycin or any of its components.

It's important to note that the use of antibiotics like fosfomycin can lead to the development of bacterial resistance, so they should only be used when necessary and under the guidance of a healthcare professional.

PHEX (Phosphate Regulating Endopeptidase Homolog, X-Linked) is a gene that encodes for an enzyme called phosphate regulating neutral endopeptidase. This enzyme is primarily expressed in osteoblasts, which are cells responsible for bone formation.

The main function of the PHEX protein is to regulate the levels of a hormone called fibroblast growth factor 23 (FGF23) by breaking it down. FGF23 plays an essential role in maintaining phosphate homeostasis by regulating its reabsorption in the kidneys and its absorption from the gut.

Inactivating mutations in the PHEX gene can lead to X-linked hypophosphatemia (XLH), a genetic disorder characterized by low levels of phosphate in the blood, impaired bone mineralization, and rickets. In XLH, the production of FGF23 is increased due to the lack of regulation by PHEX, leading to excessive excretion of phosphate in the urine and decreased absorption from the gut. This results in hypophosphatemia, impaired bone mineralization, and other skeletal abnormalities.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Adenosine Triphosphate (ATP) is a high-energy molecule that stores and transports energy within cells. It is the main source of energy for most cellular processes, including muscle contraction, nerve impulse transmission, and protein synthesis. ATP is composed of a base (adenine), a sugar (ribose), and three phosphate groups. The bonds between these phosphate groups contain a significant amount of energy, which can be released when the bond between the second and third phosphate group is broken, resulting in the formation of adenosine diphosphate (ADP) and inorganic phosphate. This process is known as hydrolysis and can be catalyzed by various enzymes to drive a wide range of cellular functions. ATP can also be regenerated from ADP through various metabolic pathways, such as oxidative phosphorylation or substrate-level phosphorylation, allowing for the continuous supply of energy to cells.

The kidney cortex is the outer region of the kidney where most of the functional units called nephrons are located. It plays a crucial role in filtering blood and regulating water, electrolyte, and acid-base balance in the body. The kidney cortex contains the glomeruli, proximal tubules, loop of Henle, and distal tubules, which work together to reabsorb necessary substances and excrete waste products into the urine.

Mitochondrial swelling is a pathological change in the structure of mitochondria, which are the energy-producing organelles found in cells. This condition is characterized by an increase in the volume of the mitochondrial matrix, which is the space inside the mitochondrion that contains enzymes and other molecules involved in energy production.

Mitochondrial swelling can occur as a result of various cellular stressors, such as oxidative damage, calcium overload, or decreased levels of adenosine triphosphate (ATP), which is the primary energy currency of the cell. This swelling can lead to disruption of the mitochondrial membrane and release of cytochrome c, a protein involved in apoptosis or programmed cell death.

Mitochondrial swelling has been implicated in several diseases, including neurodegenerative disorders, ischemia-reperfusion injury, and drug toxicity. It can be observed under an electron microscope as part of an ultrastructural analysis of tissue samples or detected through biochemical assays that measure changes in mitochondrial membrane potential or matrix volume.

Intestinal absorption refers to the process by which the small intestine absorbs water, nutrients, and electrolytes from food into the bloodstream. This is a critical part of the digestive process, allowing the body to utilize the nutrients it needs and eliminate waste products. The inner wall of the small intestine contains tiny finger-like projections called villi, which increase the surface area for absorption. Nutrients are absorbed into the bloodstream through the walls of the capillaries in these villi, and then transported to other parts of the body for use or storage.

Mitochondrial ADP/ATP translocases, also known as adenine nucleotide translocators (ANT), are a group of proteins located in the inner mitochondrial membrane that play a crucial role in cellular energy production. These translocases facilitate the exchange of adenosine diphosphate (ADP) and adenosine triphosphate (ATP) across the mitochondrial membrane, which is essential for oxidative phosphorylation and thus, energy homeostasis in the cell.

In more detail, during oxidative phosphorylation, ATP is produced within the mitochondria as a result of the electron transport chain's activity. This ATP must be exported to the cytosol for use by the cell's various processes. Simultaneously, the mitochondria need a continuous supply of ADP to sustain the production of ATP. The mitochondrial ADP/ATP translocases facilitate this exchange, allowing for the import of ADP into the mitochondria and the export of ATP to the cytosol.

There are multiple isoforms of the ADP/ATP translocase in humans (ANT1, ANT2, ANT3, and ANT4), encoded by different genes, with varying tissue distributions and functions. Dysfunction of these translocases has been implicated in several pathological conditions, including neurodegenerative diseases, ischemia-reperfusion injury, and cancer.

Familial Hypophosphatemic Rickets (FHR) is a genetic disorder characterized by impaired reabsorption of phosphate in the kidneys, leading to low levels of phosphate in the blood (hypophosphatemia). This condition results in defective mineralization of bones and teeth, causing rickets in children and osteomalacia in adults.

FHR is typically caused by mutations in the PHEX gene, which encodes a protein that helps regulate phosphate levels in the body. In FHR, the mutation leads to an overproduction of a hormone called fibroblast growth factor 23 (FGF23), which increases phosphate excretion in the urine and decreases the activation of vitamin D, further contributing to hypophosphatemia.

Symptoms of FHR may include bowing of the legs, bone pain, muscle weakness, short stature, dental abnormalities, and skeletal deformities. Treatment typically involves oral phosphate supplements and active forms of vitamin D to correct the hypophosphatemia and improve bone mineralization. Regular monitoring of blood phosphate levels, kidney function, and bone health is essential for effective management of this condition.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Inositol phosphates are a family of molecules that consist of an inositol ring, which is a six-carbon heterocyclic compound, linked to one or more phosphate groups. These molecules play important roles as intracellular signaling intermediates and are involved in various cellular processes such as cell growth, differentiation, and metabolism.

Inositol hexakisphosphate (IP6), also known as phytic acid, is a form of inositol phosphate that is found in plant-based foods. IP6 has the ability to bind to minerals such as calcium, magnesium, and iron, which can reduce their bioavailability in the body.

Inositol phosphates have been implicated in several diseases, including cancer, diabetes, and neurodegenerative disorders. For example, altered levels of certain inositol phosphates have been observed in cancer cells, suggesting that they may play a role in tumor growth and progression. Additionally, mutations in enzymes involved in the metabolism of inositol phosphates have been associated with several genetic diseases.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Phosphorus is an essential mineral that is required by every cell in the body for normal functioning. It is a key component of several important biomolecules, including adenosine triphosphate (ATP), which is the primary source of energy for cells, and deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), which are the genetic materials in cells.

Phosphorus is also a major constituent of bones and teeth, where it combines with calcium to provide strength and structure. In addition, phosphorus plays a critical role in various metabolic processes, including energy production, nerve impulse transmission, and pH regulation.

The medical definition of phosphorus refers to the chemical element with the atomic number 15 and the symbol P. It is a highly reactive non-metal that exists in several forms, including white phosphorus, red phosphorus, and black phosphorus. In the body, phosphorus is primarily found in the form of organic compounds, such as phospholipids, phosphoproteins, and nucleic acids.

Abnormal levels of phosphorus in the body can lead to various health problems. For example, high levels of phosphorus (hyperphosphatemia) can occur in patients with kidney disease or those who consume large amounts of phosphorus-rich foods, and can contribute to the development of calcification of soft tissues and cardiovascular disease. On the other hand, low levels of phosphorus (hypophosphatemia) can occur in patients with malnutrition, vitamin D deficiency, or alcoholism, and can lead to muscle weakness, bone pain, and an increased risk of infection.

Vesicular transport proteins are specialized proteins that play a crucial role in the intracellular trafficking and transportation of various biomolecules, such as proteins and lipids, within eukaryotic cells. These proteins facilitate the formation, movement, and fusion of membrane-bound vesicles, which are small, spherical structures that carry cargo between different cellular compartments or organelles.

There are several types of vesicular transport proteins involved in this process:

1. Coat Proteins (COPs): These proteins form a coat around the vesicle membrane and help shape it into its spherical form during the budding process. They also participate in selecting and sorting cargo for transportation. Two main types of COPs exist: COPI, which is involved in transport between the Golgi apparatus and the endoplasmic reticulum (ER), and COPII, which mediates transport from the ER to the Golgi apparatus.

2. SNARE Proteins: These proteins are responsible for the specific recognition and docking of vesicles with their target membranes. They form complexes that bring the vesicle and target membranes close together, allowing for fusion and the release of cargo into the target organelle. There are two types of SNARE proteins: v-SNAREs (vesicle SNAREs) and t-SNAREs (target SNAREs), which interact to form a stable complex during membrane fusion.

3. Rab GTPases: These proteins act as molecular switches that regulate the recruitment of coat proteins, motor proteins, and SNAREs during vesicle transport. They cycle between an active GTP-bound state and an inactive GDP-bound state, controlling the various stages of vesicular trafficking, such as budding, transport, tethering, and fusion.

4. Tethering Proteins: These proteins help to bridge the gap between vesicles and their target membranes before SNARE-mediated fusion occurs. They play a role in ensuring specificity during vesicle docking and may also contribute to regulating the timing of membrane fusion events.

5. Soluble N-ethylmaleimide-sensitive factor Attachment Protein Receptors (SNAREs): These proteins are involved in intracellular transport, particularly in the trafficking of vesicles between organelles. They consist of a family of coiled-coil domain-containing proteins that form complexes to mediate membrane fusion events.

Overall, these various classes of proteins work together to ensure the specificity and efficiency of vesicular transport in eukaryotic cells. Dysregulation or mutation of these proteins can lead to various diseases, including neurodegenerative disorders and cancer.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

In medical terms, membranes refer to thin layers of tissue that cover or line various structures in the body. They are composed of connective tissue and epithelial cells, and they can be found lining the outer surface of the body, internal organs, blood vessels, and nerves. There are several types of membranes in the human body, including:

1. Serous Membranes: These membranes line the inside of body cavities and cover the organs contained within them. They produce a lubricating fluid that reduces friction between the organ and the cavity wall. Examples include the pleura (lungs), pericardium (heart), and peritoneum (abdominal cavity).
2. Mucous Membranes: These membranes line the respiratory, gastrointestinal, and genitourinary tracts, as well as the inner surface of the eyelids and the nasal passages. They produce mucus to trap particles, bacteria, and other substances, which helps protect the body from infection.
3. Synovial Membranes: These membranes line the joint cavities and produce synovial fluid, which lubricates the joints and allows for smooth movement.
4. Meninges: These are three layers of membranes that cover and protect the brain and spinal cord. They include the dura mater (outermost layer), arachnoid mater (middle layer), and pia mater (innermost layer).
5. Amniotic Membrane: This is a thin, transparent membrane that surrounds and protects the fetus during pregnancy. It produces amniotic fluid, which provides a cushion for the developing baby and helps regulate its temperature.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Regulator genes are a type of gene that regulates the activity of other genes in an organism. They do not code for a specific protein product but instead control the expression of other genes by producing regulatory proteins such as transcription factors, repressors, or enhancers. These regulatory proteins bind to specific DNA sequences near the target genes and either promote or inhibit their transcription into mRNA. This allows regulator genes to play a crucial role in coordinating complex biological processes, including development, differentiation, metabolism, and response to environmental stimuli.

There are several types of regulator genes, including:

1. Constitutive regulators: These genes are always active and produce regulatory proteins that control the expression of other genes in a consistent manner.
2. Inducible regulators: These genes respond to specific signals or environmental stimuli by producing regulatory proteins that modulate the expression of target genes.
3. Negative regulators: These genes produce repressor proteins that bind to DNA and inhibit the transcription of target genes, thereby reducing their expression.
4. Positive regulators: These genes produce activator proteins that bind to DNA and promote the transcription of target genes, thereby increasing their expression.
5. Master regulators: These genes control the expression of multiple downstream target genes involved in specific biological processes or developmental pathways.

Regulator genes are essential for maintaining proper gene expression patterns and ensuring normal cellular function. Mutations in regulator genes can lead to various diseases, including cancer, developmental disorders, and metabolic dysfunctions.

"Saccharomyces cerevisiae" is not typically considered a medical term, but it is a scientific name used in the field of microbiology. It refers to a species of yeast that is commonly used in various industrial processes, such as baking and brewing. It's also widely used in scientific research due to its genetic tractability and eukaryotic cellular organization.

However, it does have some relevance to medical fields like medicine and nutrition. For example, certain strains of S. cerevisiae are used as probiotics, which can provide health benefits when consumed. They may help support gut health, enhance the immune system, and even assist in the digestion of certain nutrients.

In summary, "Saccharomyces cerevisiae" is a species of yeast with various industrial and potential medical applications.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

... , also known as Na+-Pi cotransporter 2a (NaPi-2a), is a protein in humans that ... Once inside the cell hydrogen phosphate and dihydrogen phosphate may react with water to form each other. Transport of these ... The sodium/phosphate cotransporter is a protein found in the proximal tubule of the nephron. It is responsible for reabsorbing ... Sodium-Phosphate+Cotransporter+Proteins at the U.S. National Library of Medicine Medical Subject Headings (MeSH) v t e ( ...
... is a protein that in humans is encoded by the SLC17A1 gene. Solute carrier ... "Molecular cloning of the cDNA encoding a human renal sodium phosphate transport protein and its assignment to chromosome 6p21.3 ... 2000). "p-aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1". ... "Entrez Gene: SLC17A1 solute carrier family 17 (sodium phosphate), member 1". Miyamoto K, Tatsumi S, Sonoda T, et al. (1995). " ...
... is a protein that in humans is encoded by the SLC34A3 gene. SLC34A3 contributes ... an analogue sodium phosphate cotransporter protein. Symptoms include renal phosphate wasting in addition to increase levels of ... "Entrez Gene: SLC34A3 solute carrier family 34 (sodium phosphate), member 3". Gisler SM, Pribanic S, Bacic D, Forrer P, ... Forster IC, Hernando N, Biber J, Murer H (November 2006). "Proximal tubular handling of phosphate: A molecular perspective". ...
... (NaPi2b) is a protein that in humans is encoded by the SLC34A2 gene. Sodium- ... dependent phosphate transport protein 2b (NaPi2b) is a tumor-associated antigen. As of April 2023, upifitamab rilsodotin, an ... "Entrez Gene: SLC34A2 solute carrier family 34 (sodium phosphate), member 2". Yin BW, Kiyamova R, Chua R, Caballero OL, Gout I, ... small intestinal sodium-phosphate (Na+-Pi) transporter (SLC34A2)". Genomics. 62 (2): 281-284. doi:10.1006/geno.1999.6009. PMID ...
... and three transport proteins (T1, T2, T3) that facilitate movement of glucose-6-phosphate (G6P), phosphate, and glucose ( ... a deficiency in the transport protein glucose-6-phosphate translocase. Because glycogenolysis is the principal metabolic ... The free glucose molecules can be transported out of the liver cells into the blood to maintain an adequate supply of glucose ... GSD Ib results from mutations of the gene for SLC37A4 or "G6PT1", the glucose-6-phosphate transporter. GSD Ic results from ...
... a novel protein regulating calcium and phosphate transport across mammalian intestine". The American Journal of Physiology. 274 ... Unlike calcitonin, it also regulates phosphate level. It inhibits excretion of phosphate from the kidney. Stanniocalcin was ... Chemically, stanniocalcins are glycosylated proteins (i.e. proteins containing carbohydrate, or glycoproteins) having a ... One N-linked, glycosylation consensus sequence was identified in the protein coding region as well as an odd number of half ...
Unlike for glucose, there is no transport protein for glucose-6-phosphate. Gluconeogenesis allows the organism to build up ... In other cells, uptake happens by passive transport through one of the 14 GLUT proteins. In the other cell types, ... glucose requires special transport proteins from the major facilitator superfamily. In the small intestine (more precisely, in ... are probably due to the glycation of proteins or lipids. In contrast, enzyme-regulated addition of sugars to protein is called ...
... s are membrane transport proteins that facilitate the diffusion of phosphate into and out of a cell or ... protein". www.uniprot.org. Retrieved 2016-03-03. Versaw, W. K. (1995-02-03). "A phosphate-repressible, high-affinity phosphate ... "pho-4 - Phosphate-repressible phosphate permease pho-4 - Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM ... Portal: Biology v t e (Protein families, Solute carrier family, All stub articles, Membrane protein stubs). ...
This gene encodes a carrier protein that transports ATP-Mg exchanging it for phosphate. Multiple transcript variants encoding ... Calcium-binding mitochondrial carrier protein SCaMC-1 is a protein that in humans is encoded by the SLC25A24 gene. ... "Entrez Gene: Solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 24". Fiermonte G, De Leonardis F, ... EF-hand-containing proteins, Solute carrier family, All stub articles, Human chromosome 1 gene stubs). ...
Phosphate transport proteins are responsible for transport of phosphate across the inner membrane so it can be used in the ... Mitochondrial membrane transport proteins, also known as mitochondrial carrier proteins, are proteins which exist in the ... Phosphate transport proteins are similar in structure and are both part of the same family of mitochondrial carriers. It ... The outer membrane consists of two types of integral proteins, including proteins with transmembrane β-barrel and proteins with ...
Na-K-2Cl symporter K-Cl cotransporter Sodium/phosphate cotransporter Sodium-glucose transport proteins Glucose transporter ... Na+/phosphate cotransporter (NaPi) - Sodium-phosphate cotransporters are from the SLC34 and SLC20 protein families. They are ... anion transport protein. This cotransporter is an important integral protein in mammalian erythrocytes and moves chloride ion ... to provide the power needed for transport. This type of transport is known as secondary active transport and is powered by the ...
The encoded protein (PHC) catalyzes the transport of phosphate from the cytosol into the mitochondrial matrix, either by proton ... Phosphate carrier protein, mitochondrial is a protein that in humans is encoded by the SLC25A3 gene. The encoded protein is a ... "SLC25A3 - Phosphate carrier protein, mitochondrial precursor - Homo sapiens (Human) - SLC25A46 gene & protein". www.uniprot.org ... "SLC25A3 - Phosphate carrier protein, mitochondrial". Cardiac Organellar Protein Atlas Knowledgebase (COPaKB). Dolce V, ...
... hydrogen bond has been proposed to be involved in phosphate-arsenate discrimination for a phosphate transport protein. This ... and the conflicting requirements of strong salt-bridges in protein-protein interfaces. Low-barrier hydrogen bonds have been ... Low barrier hydrogen bonds occur in the water-excluding environments of proteins. Multiple residues act together in a charge- ... LBHBs also occur on the surfaces of proteins, but are unstable due to their proximity to bulk water, ...
Saier MH Jr (1998). "Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and ... a phosphate-transporting ATPase (EC 3.6.3.27) is an enzyme that catalyzes the chemical reaction ATP + H2O + phosphate(out) ⇌ {\ ... phosphate(in) The 3 substrates of this enzyme are ATP, H2O, and phosphate, whereas its two products are ADP and phosphate. This ... Webb DC, Rosenberg H, Cox GB (1992). "Mutational analysis of the Escherichia coli phosphate-specific transport system, a member ...
However, the tree exhibits two clusters of bacterial phosphate transport proteins. One bacterial cluster is distant from the ... Phylogenetic grouping of the phosphate transport proteins generally correlates with organismal phylogeny. Thus the fungal, ... The inorganic phosphate transporter (PiT) family is a group of carrier proteins derived from Gram-negative and Gram-positive ... eukaryotic proteins while the other cluster is close to the plant proteins. Both clusters include proteins from Gram-negative ...
... phosphate carrier protein (SLC25A3; TC# 2.A.29.4.2) Tricarboxylate transport protein, mitochondrial (SLC25A1, or citrate ... transport protein; TC# 2.A.29.7.2) Graves disease carrier protein (SLC25A16; TC# 2.A.29.12.1) Yeast mitochondrial proteins MRS3 ... Protein articles without symbol, Protein pages needing a picture, Protein families, Solute carrier family). ... Examples of transported compounds include: citrate - SLC25A1 ornithine - SLC25A2, SLC25A15 phosphate - SLC25A3, SLC25A23, ...
TPR domain-containing proteins, such as TTC7A, have diverse functions in cell cycle control, protein transport, phosphate ... TTC7A+protein,+human at the U.S. National Library of Medicine Medical Subject Headings (MeSH) (Use dmy dates from September ... Tetratricopeptide repeat domain 7A (TTC7A) is a protein that in humans is encoded by the TTC7A gene. ... turnover, and protein trafficking or secretion, and they can act as chaperones or scaffolding proteins. TTC7A deficiency ...
Transport of glucose is accompanied by its phosphorylation by EIIBGlc, draining the phosphate group from the other PTS proteins ... Joung J, Ramm E, Pabo C (2000). "A bacterial two-hybrid selection system for studying protein-DNA and protein-protein ... The second gene, crp, encodes a protein called catabolite activator protein (CAP) or cAMP receptor protein (CRP). However the ... the transport of glucose blocks the transport of the inducer of the lac operon. The lac repressor is a four-part protein, a ...
... especially a group of lipids known as phosphatidylinositol phosphates), protein transport in cells by vesicles and the role of ... ESCRTs are required for the degradation of membrane protein at the lysosome, a late step in cytokinesis, and the budding and ... His lab's study of the ESCRT (Endosomal Sorting Complexes Required for Transport) complexes earned him a Shaw Prize in Life ... Suzuki, Sho W.; Emr, Scott D. (2018). "Membrane protein recycling from the vacuole/lysosome membrane". Journal of Cell Biology ...
Sulphate ABC transporter permease protein 2 InterPro: IPR005667 Phosphate transport system permease protein 2 InterPro: ... IPR006469 Phosphate ABC transporter, permease protein PstC InterPro: IPR011864 Molybdate ABC transporter, permease protein ... Protein domains, Protein families, All stub articles, Membrane protein stubs). ... permease protein EhuD InterPro: IPR014341 Ectoine/hydroxyectoine ABC transporter, permease protein EhuC InterPro: IPR014342 ...
... encoding protein Glycerol-3-phosphate dehydrogenase 1 GOLT1B: Golgi transport 1B GPN3: encoding enzyme GPN-loop GTPase 3 HNF1A- ... encoding protein a protein of 377 amino acid residues FAM60A: encoding protein FAM60A FAM186B: encoding protein Protein FAM186B ... encoding protein Zinc finger protein 26 ZNF84: encoding protein Zinc finger protein 84 ZNF268: encoding protein Zinc finger ... encoding protein Protein LMBR1L LRRC23: encoding protein Leucine-rich repeat-containing protein 23 LRRIQ1: encoding protein ...
... a family of transmembrane proteins that help transport proteins from the Golgi apparatus Median price ratio, for drug costs ... MPR may refer to: The MMR vaccine, from Latin morbilli (measles), parotitis (mumps) and rubella Mannose 6-phosphate receptor, ... Multipoint relay in Computer Networks Multi-Purpose Room (Gym) My Pokémon Ranch, a video game Moisture to Protein Ratio, ...
Friedberg I (September 1977). "The effect of ionophores on phosphate and arsenate transport in Micrococcus lysodeikticus". FEBS ... Cerberus inhibits the proteins bone morphogenetic protein 4 (BMP4), Xnr1, and Xwnt8. This gene encodes a cytokine member of the ... Cerberus is a protein that in humans is encoded by the CER1 gene. Cerberus is a signaling molecule which contributes to the ... The proteins that Cerberus inhibits (BMP4, Xnr1, Xwnt8) concentrations were increased also. It was also shown that just the ...
... phosphates are then bound to carrier proteins which deliver the inorganic phosphates to a specific high-affinity transport ... known as the phosphate-specific transport system (Pst system), which transports phosphate across the cytoplasmic membrane. ... ISBN 978-0-470-08766-4. Rao NN, Torriani A (July 1990). "Molecular aspects of phosphate transport in Escherichia coli". ... Willsky GR, Bennett RL, Malamy MH (February 1973). "Inorganic phosphate transport in Escherichia coli: involvement of two genes ...
When this occurs, phosphate starvation-inducible (psi) genes activate other proteins that aid in the transport of inorganic ... Of the seven proteins, one is a metal binding protein (PhoU) and four are phosphate-specific transporters (Pst S, Pst C, Pst A ... E. coli has a protein to protect other periplasmic proteins from low pH environments called the Asr protein. The gene ... by acting as a phosphate reservoir and storing the necessary amount of inorganic phosphate in phosphate-starved conditions. ...
Saier MH Jr (1998). "Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and ... and glycerol-3-phosphate, whereas its 3 products are ADP, phosphate, and glycerol-3-phosphate. This enzyme belongs to the ... In enzymology, a glycerol-3-phosphate-transporting ATPase (EC 3.6.3.20) is an enzyme that catalyzes the chemical reaction ATP ... The systematic name of this enzyme class is ATP phosphohydrolase (glycerol-3-phosphate-importing). This enzyme participates in ...
Creatinine, urea, electrolytes, phosphate, and proteins are the commonly tested solutes for clinical use. Pannekeet M, Imholz A ... This ratio can be determined for any solute that is transported from the capillary blood to the dialysate. ... The peritoneal equilibration test (PET) is a semiquantitative assessment of peritoneal membrane transport function in patients ... is a tool used by nephrologists to determine the characteristics of the peritoneal membrane mass transport characteristics, ...
July 2008). "The DHR1 Domain of DOCK180 Binds to SNX5 and Regulates Cation-independent Mannose 6-phosphate Receptor Transport ... Dedicator of cytokinesis protein 1 (Dock1), also (DOCK180), is a large (~180 kDa) protein encoded in the human by the DOCK1 ... Subsequently it was reported that DOCK180 was able to activate the small GTP-binding protein (G protein) Rac1 and this was ... and this interaction promoted retrograde transport of the cation-independent mannose 6-phosphate receptor to the trans-Golgi ...
The glycerol phosphate shuttle was first characterized as a major route of mitochondrial hydride transport in the flight ... The other protein, mitochondrial glycerol-3-phosphate dehydrogenase (mGPD) catalyzes the oxidation of G3P by FAD, regenerating ... phosphate is converted back to dihydroxyacetone phosphate by an inner membrane-bound mitochondrial glycerol-3-phosphate ... These electrons bypass Complex I of the electron transport chain, making the glycerol-3-phosphate shuttle less energetically ...
The protein component(s) of the isolated phosphate-transport system of mitochondria, Eur. J. Biochem. 128, 97-105 (1982). P. ... Subsequent studies concentrated on the protein structure and function of the mitochondrial cytochrome c oxidase. He discovered ... Kadenbach studied the mitochondrial phosphate carrier and found its essential requirement for cardiolipin. ... Mende, F.-J. Hüther and B. Kadenbach: Specific and reversible activation and inactivation of the mitochondrial phosphate ...

No FAQ available that match "phosphate transport proteins"

No images available that match "phosphate transport proteins"