A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials.
A group of compounds that contain a bivalent O-O group, i.e., the oxygen atoms are univalent. They can either be inorganic or organic in nature. Such compounds release atomic (nascent) oxygen readily. Thus they are strong oxidizing agents and fire hazards when in contact with combustible materials, especially under high-temperature conditions. The chief industrial uses of peroxides are as oxidizing agents, bleaching agents, and initiators of polymerization. (From Hawley's Condensed Chemical Dictionary, 11th ed)
Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension.
A peroxide derivative that has been used topically for BURNS and as a dermatologic agent in the treatment of ACNE and POISON IVY DERMATITIS. It is used also as a bleach in the food industry.
An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA.
Electron-accepting molecules in chemical reactions in which electrons are transferred from one molecule to another (OXIDATION-REDUCTION).
Peroxidases are enzymes that catalyze the reduction of hydrogen peroxide to water, while oxidizing various organic and inorganic compounds, playing crucial roles in diverse biological processes including stress response, immune defense, and biosynthetic reactions.
A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi).
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
A family of ubiquitously-expressed peroxidases that play a role in the reduction of a broad spectrum of PEROXIDES like HYDROGEN PEROXIDE; LIPID PEROXIDES and peroxinitrite. They are found in a wide range of organisms, such as BACTERIA; PLANTS; and MAMMALS. The enzyme requires the presence of a thiol-containing intermediate such as THIOREDOXIN as a reducing cofactor.
The use of a chemical oxidizing agent to whiten TEETH. In some procedures the oxidation process is activated by the use of heat or light.
Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of signal transduction and gene expression, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS.
Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated.
An oxidoreductase that catalyzes the reaction between superoxide anions and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. EC 1.15.1.1.
An enzyme of the oxidoreductase class that catalyzes the conversion of beta-D-glucose and oxygen to D-glucono-1,5-lactone and peroxide. It is a flavoprotein, highly specific for beta-D-glucose. The enzyme is produced by Penicillium notatum and other fungi and has antibacterial activity in the presence of glucose and oxygen. It is used to estimate glucose concentration in blood or urine samples through the formation of colored dyes by the hydrogen peroxide produced in the reaction. (From Enzyme Nomenclature, 1992) EC 1.1.3.4.
The univalent radical OH. Hydroxyl radical is a potent oxidizing agent.
Naturally occurring or synthetic substances that inhibit or retard the oxidation of a substance to which it is added. They counteract the harmful and damaging effects of oxidation in animal tissues.
A non-selective post-emergence, translocated herbicide. According to the Seventh Annual Report on Carcinogens (PB95-109781, 1994) this substance may reasonably be anticipated to be a carcinogen. (From Merck Index, 12th ed) It is an irreversible inhibitor of CATALASE, and thus impairs activity of peroxisomes.
Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides.
Chemicals that are used to oxidize pigments in TEETH and thus effect whitening.
A rare autosomal recessive disorder resulting from the absence of CATALASE activity. Though usually asymptomatic, a syndrome of oral ulcerations and gangrene may be present.
Inorganic compounds that contain the OH- group.
Peroxidase catalyzed oxidation of lipids using hydrogen peroxide as an electron acceptor.
An enzyme catalyzing the oxidation of 2 moles of glutathione in the presence of hydrogen peroxide to yield oxidized glutathione and water. EC 1.11.1.9.
A direct-acting oxidative stress-inducing agent used to examine the effects of oxidant stress on Ca(2+)-dependent signal transduction in vascular endothelial cells. It is also used as a catalyst in polymerization reactions and to introduce peroxy groups into organic molecules.
Substances that influence the course of a chemical reaction by ready combination with free radicals. Among other effects, this combining activity protects pancreatic islets against damage by cytokines and prevents myocardial and pulmonary perfusion injuries.
A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides.
An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology.
An enzyme derived from cow's milk. It catalyzes the radioiodination of tyrosine and its derivatives and of peptides containing tyrosine.
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
An oxyacid of chlorine (HClO) containing monovalent chlorine that acts as an oxidizing or reducing agent.
A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7.
A poisonous dipyridilium compound used as contact herbicide. Contact with concentrated solutions causes irritation of the skin, cracking and shedding of the nails, and delayed healing of cuts and wounds.
A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN.
An iron-molybdenum flavoprotein containing FLAVIN-ADENINE DINUCLEOTIDE that oxidizes hypoxanthine, some other purines and pterins, and aldehydes. Deficiency of the enzyme, an autosomal recessive trait, causes xanthinuria.
A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant.
Any change in the hue, color, or translucency of a tooth due to any cause. Restorative filling materials, drugs (both topical and systemic), pulpal necrosis, or hemorrhage may be responsible. (Jablonski, Dictionary of Dentistry, 1992, p253)
The rate dynamics in chemical or physical systems.
A metabolite of AMINOPYRINE with analgesic and anti-inflammatory properties. It is used as a reagent for biochemical reactions producing peroxides or phenols. Ampyrone stimulates LIVER MICROSOMES and is also used to measure extracellular water.
Compounds containing the -SH radical.
A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A hemeprotein which catalyzes the oxidation of ferrocytochrome c to ferricytochrome c in the presence of hydrogen peroxide. EC 1.11.1.5.
The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
Low-molecular-weight end products, probably malondialdehyde, that are formed during the decomposition of lipid peroxidation products. These compounds react with thiobarbituric acid to form a fluorescent red adduct.
'Benzene derivatives' are organic compounds that contain a benzene ring as the core structure, with various functional groups attached to it, and can have diverse chemical properties and uses, including as solvents, intermediates in chemical synthesis, and pharmaceuticals.
An excited state of molecular oxygen generated photochemically or chemically. Singlet oxygen reacts with a variety of biological molecules such as NUCLEIC ACIDS; PROTEINS; and LIPIDS; causing oxidative damages.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability.
Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Substances used on inanimate objects that destroy harmful microorganisms or inhibit their activity. Disinfectants are classed as complete, destroying SPORES as well as vegetative forms of microorganisms, or incomplete, destroying only vegetative forms of the organisms. They are distinguished from ANTISEPTICS, which are local anti-infective agents used on humans and other animals. (From Hawley's Condensed Chemical Dictionary, 11th ed)
Plant growth factor derived from the root of Scopolia carniolica or Scopolia japonica.
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)
Proteins found in any species of bacterium.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Elements of limited time intervals, contributing to particular results or situations.
A flavoprotein enzyme that catalyzes the univalent reduction of OXYGEN using NADPH as an electron donor to create SUPEROXIDE ANION. The enzyme is dependent on a variety of CYTOCHROMES. Defects in the production of superoxide ions by enzymes such as NADPH oxidase result in GRANULOMATOUS DISEASE, CHRONIC.
Peroxidases that utilize ASCORBIC ACID as an electron donor to reduce HYDROGEN PEROXIDE to WATER. The reaction results in the production of monodehydroascorbic acid and DEHYDROASCORBIC ACID.
Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE.
Highly toxic compound which can cause skin irritation and sensitization. It is used in manufacture of azo dyes.
Natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form.
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS.
Inorganic salts of the hypothetical acid ferrocyanic acid (H4Fe(CN)6).
Inorganic or organic compounds that contain divalent iron.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
A THIOREDOXIN-dependent hydroperoxidase that is localized in the mitochondrial matrix. The enzyme plays a crucial role in protecting mitochondrial components from elevated levels of HYDROGEN PEROXIDE.
Hydrogen-donating proteins that participates in a variety of biochemical reactions including ribonucleotide reduction and reduction of PEROXIREDOXINS. Thioredoxin is oxidized from a dithiol to a disulfide when acting as a reducing cofactor. The disulfide form is then reduced by NADPH in a reaction catalyzed by THIOREDOXIN REDUCTASE.
Ability of a microbe to survive under given conditions. This can also be related to a colony's ability to replicate.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
An enzyme that catalyzes the chlorination of a range of organic molecules, forming stable carbon-chloride bonds. EC 1.11.1.10.
A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP.
The dialdehyde of malonic acid.
A cytochrome oxidase inhibitor which is a nitridizing agent and an inhibitor of terminal oxidation. (From Merck Index, 12th ed)
A thiol-containing non-essential amino acid that is oxidized to form CYSTINE.
Heterocyclic compounds in which an oxygen is attached to a cyclic nitrogen.
Methemoglobin is a form of hemoglobin where the iron within the heme group is in the ferric (Fe3+) state, unable to bind oxygen and leading to impaired oxygen-carrying capacity of the blood.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
The N-acetyl derivative of CYSTEINE. It is used as a mucolytic agent to reduce the viscosity of mucous secretions. It has also been shown to have antiviral effects in patients with HIV due to inhibition of viral stimulation by reactive oxygen intermediates.
A potent oxidant synthesized by the cell during its normal metabolism. Peroxynitrite is formed from the reaction of two free radicals, NITRIC OXIDE and the superoxide anion (SUPEROXIDES).
Life or metabolic reactions occurring in an environment containing oxygen.
Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes.
Organic derivatives of thiocyanic acid which contain the general formula R-SCN.
Oxy acids of sulfur with the general formula RSOH, where R is an alkyl or aryl group such as CH3. They are often encountered as esters and halides. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A trihydroxybenzene or dihydroxy phenol that can be prepared by heating GALLIC ACID.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
A generic descriptor for all TOCOPHEROLS and TOCOTRIENOLS that exhibit ALPHA-TOCOPHEROL activity. By virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus, these compounds exhibit varying degree of antioxidant activity, depending on the site and number of methyl groups and the type of ISOPRENOIDS.
Established cell cultures that have the potential to propagate indefinitely.
A GLUTATHIONE dimer formed by a disulfide bond between the cysteine sulfhydryl side chains during the course of being oxidized.
A purine base found in most body tissues and fluids, certain plants, and some urinary calculi. It is an intermediate in the degradation of adenosine monophosphate to uric acid, being formed by oxidation of hypoxanthine. The methylated xanthine compounds caffeine, theobromine, and theophylline and their derivatives are used in medicine for their bronchodilator effects. (Dorland, 28th ed)
Pyruvate oxidase is an enzyme complex located within the mitochondrial matrix that catalyzes the oxidative decarboxylation of pyruvate into acetyl-CoA, thereby linking glycolysis to the citric acid cycle and playing a crucial role in cellular energy production.
The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability.
Inorganic or organic compounds containing trivalent iron.
Organic compounds containing a carbonyl group in the form -CHO.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.
Enzymes which are immobilized on or in a variety of water-soluble or water-insoluble matrices with little or no loss of their catalytic activity. Since they can be reused continuously, immobilized enzymes have found wide application in the industrial, medical and research fields.
Rendering pathogens harmless through the use of heat, antiseptics, antibacterial agents, etc.
The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Materials that add an electron to an element or compound, that is, decrease the positiveness of its valence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346)
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A reagent used for the determination of iron.
Myoglobin which is in the oxidized ferric or hemin form. The oxidation causes a change in color from red to brown.
A hard thin translucent layer of calcified substance which envelops and protects the dentin of the crown of the tooth. It is the hardest substance in the body and is almost entirely composed of calcium salts. Under the microscope, it is composed of thin rods (enamel prisms) held together by cementing substance, and surrounded by an enamel sheath. (From Jablonski, Dictionary of Dentistry, 1992, p286)
A chronic disorder of the pilosebaceous apparatus associated with an increase in sebum secretion. It is characterized by open comedones (blackheads), closed comedones (whiteheads), and pustular nodules. The cause is unknown, but heredity and age are predisposing factors.
An element of the rare earth family of metals. It has the atomic symbol Ce, atomic number 58, and atomic weight 140.12. Cerium is a malleable metal used in industrial applications.
Compounds in which one or more of the ketone groups on the pyrimidine ring of barbituric acid are replaced by thione groups.
A large increase in oxygen uptake by neutrophils and most types of tissue macrophages through activation of an NADPH-cytochrome b-dependent oxidase that reduces oxygen to a superoxide. Individuals with an inherited defect in which the oxidase that reduces oxygen to superoxide is decreased or absent (GRANULOMATOUS DISEASE, CHRONIC) often die as a result of recurrent bacterial infections.
Compounds with two peroxide groups, that is, two pairs of adjacent OXYGEN atoms. They may have activity against PLASMODIUM similar to the ARTEMISININS.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
The property of dental enamel to permit passage of light, heat, gases, liquids, metabolites, mineral ions and other substances. It does not include the penetration of the dental enamel by microorganisms.
The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes.
Expanded structures, usually green, of vascular plants, characteristically consisting of a bladelike expansion attached to a stem, and functioning as the principal organ of photosynthesis and transpiration. (American Heritage Dictionary, 2d ed)
Inorganic binary compounds of iodine or the I- ion.
That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants.
An enzyme that catalyzes the oxidative deamination of L-amino acids to KETO ACIDS with the generation of AMMONIA and HYDROGEN PEROXIDE. L-amino acid oxidase is widely distributed in and is thought to contribute to the toxicity of SNAKE VENOMS.
Nitrogenous products of NITRIC OXIDE synthases, ranging from NITRIC OXIDE to NITRATES. These reactive nitrogen intermediates also include the inorganic PEROXYNITROUS ACID and the organic S-NITROSOTHIOLS.
The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions.
A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6.
A chelating agent that has been used to mobilize toxic metals from the tissues of humans and experimental animals. It is the main metabolite of DISULFIRAM.
A compound formed in the liver from ammonia produced by the deamination of amino acids. It is the principal end product of protein catabolism and constitutes about one half of the total urinary solids.
5-Amino-2,3-dihydro-1,4-phthalazinedione. Substance that emits light on oxidation. It is used in chemical determinations.
Any of a variety of procedures which use biomolecular probes to measure the presence or concentration of biological molecules, biological structures, microorganisms, etc., by translating a biochemical interaction at the probe surface into a quantifiable physical signal.
A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)
A genus of gram-positive, anaerobic, coccoid bacteria that is part of the normal flora of humans. Its organisms are opportunistic pathogens causing bacteremias and soft tissue infections.
Inorganic or organic salts and esters of boric acid.
A compound obtained from the bark of the white willow and wintergreen leaves. It has bacteriostatic, fungicidal, and keratolytic actions.
Eighteen-carbon essential fatty acids that contain two double bonds.
Devices used in the home by persons to maintain dental and periodontal health. The devices include toothbrushes, dental flosses, water irrigators, gingival stimulators, etc.
An agent thought to have disinfectant properties and used as an expectorant. (From Martindale, The Extra Pharmacopoeia, 30th ed, p747)
A technique for detecting short-lived reactive FREE RADICALS in biological systems by providing a nitrone or nitrose compound for an addition reaction to occur which produces an ELECTRON SPIN RESONANCE SPECTROSCOPY-detectable aminoxyl radical. In spin trapping, the compound trapping the radical is called the spin trap and the addition product of the radical is identified as the spin adduct. (Free Rad Res Comm 1990;9(3-6):163)
Very toxic industrial chemicals. They are absorbed through the skin, causing lethal blood, bladder, liver, and kidney damage and are potent, broad-spectrum carcinogens in most species.
Ions with the suffix -onium, indicating cations with coordination number 4 of the type RxA+ which are analogous to QUATERNARY AMMONIUM COMPOUNDS (H4N+). Ions include phosphonium R4P+, oxonium R3O+, sulfonium R3S+, chloronium R2Cl+
A sulfhydryl reagent which oxidizes sulfhydryl groups to the disulfide form. It is a radiation-sensitizing agent of anoxic bacterial and mammalian cells.
Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Organic chemicals that form two or more coordination links with an iron ion. Once coordination has occurred, the complex formed is called a chelate. The iron-binding porphyrin group of hemoglobin is an example of a metal chelate found in biological systems.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Inorganic salts of HYDROGEN CYANIDE containing the -CN radical. The concept also includes isocyanides. It is distinguished from NITRILES, which denotes organic compounds containing the -CN radical.
Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components.
The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270)
Thiomalates are medicinal compounds, such as dimethylamine thiomalate, that contain a thiomalic acid structure and are used in the treatment of conditions like rheumatoid arthritis and ankylosing spondylitis due to their anti-inflammatory and analgesic properties.
Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard.
Any technique by which an unknown color is evaluated in terms of standard colors. The technique may be visual, photoelectric, or indirect by means of spectrophotometry. It is used in chemistry and physics. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist.
Presence of warmth or heat or a temperature notably higher than an accustomed norm.
Substances used on humans and other animals that destroy harmful microorganisms or inhibit their activity. They are distinguished from DISINFECTANTS, which are used on inanimate objects.
A lipid cofactor that is required for normal blood clotting. Several forms of vitamin K have been identified: VITAMIN K 1 (phytomenadione) derived from plants, VITAMIN K 2 (menaquinone) from bacteria, and synthetic naphthoquinone provitamins, VITAMIN K 3 (menadione). Vitamin K 3 provitamins, after being alkylated in vivo, exhibit the antifibrinolytic activity of vitamin K. Green leafy vegetables, liver, cheese, butter, and egg yolk are good sources of vitamin K.
A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
A FLAVOPROTEIN enzyme that catalyzes the oxidation of THIOREDOXINS to thioredoxin disulfide in the presence of NADP+. It was formerly listed as EC 1.6.4.5
Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499)
A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays.
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
The removal of contaminating material, such as radioactive materials, biological materials, or CHEMICAL WARFARE AGENTS, from a person or object.
Molecules which contain an atom or a group of atoms exhibiting an unpaired electron spin that can be detected by electron spin resonance spectroscopy and can be bonded to another molecule. (McGraw-Hill Dictionary of Chemical and Technical Terms, 4th ed)
The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin.
An extensive order of basidiomycetous fungi whose fruiting bodies are commonly called mushrooms.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
In eukaryotes, a genetic unit consisting of a noncontiguous group of genes under the control of a single regulator gene. In bacteria, regulons are global regulatory systems involved in the interplay of pleiotropic regulatory domains and consist of several OPERONS.
A group of enzymes including those oxidizing primary monoamines, diamines, and histamine. They are copper proteins, and, as their action depends on a carbonyl group, they are sensitive to inhibition by semicarbazide.
Deoxyribose is a 5-carbon sugar (monosaccharide) that lacks one hydroxyl group at the 2' carbon position, compared to ribose, and is a key component of DNA molecules, forming part of the nucleotides along with phosphate and nitrogenous bases.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Proteins obtained from ESCHERICHIA COLI.
A photographic fixative used also in the manufacture of resins. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), this substance may reasonably be anticipated to be a carcinogen (Merck Index, 9th ed). Many of its derivatives are ANTITHYROID AGENTS and/or FREE RADICAL SCAVENGERS.
Proteins that contain an iron-porphyrin, or heme, prosthetic group resembling that of hemoglobin. (From Lehninger, Principles of Biochemistry, 1982, p480)
Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release.
Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS.
A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.

Treatment of cutaneous ulcers with benzoyl peroxide. (1/1045)

Benzoyl peroxide, a powerful organic oxidizing agent, was applied topically according to a carefully developed technique to cutaneous ulcers of different types. The healing time was shortened greatly by the rapid development of healthy granulation tissue and the quick ingrowth of epithelium. Exceptionally large pressure ulcers with deep cavities, undercut edges and sinus tracts were sucessfully treated, as were stasis ulcers of long duration resistant to all other therapy. There were only 13 treatment failures among the 133 cases. The slow, sustained release of oxygen by benzoyl peroxide was though to be responsible for the success. The only complications were contact irritant dermatitis in 3% and contact allergic dermatitis in 2% of patients treated.  (+info)

Metabolism of the antimalarial endoperoxide Ro 42-1611 (arteflene) in the rat: evidence for endoperoxide bioactivation. (2/1045)

Ro 42-1611 (arteflene) is a synthetic endoperoxide antimalarial. The antimalarial activity of endoperoxides is attributed to iron(II)-mediated generation of carbon-centered radicals. An alpha, beta-unsaturated ketone (enone; 4-[2',4' bis(trifluoromethyl)phenyl]-3-buten-2-one), obtained from arteflene by reaction with iron(II), was identified previously as the stable product of a reaction that, by inference, also yields a cyclohexyl radical. The activation of arteflene in vivo has been characterized with particular reference to enone formation. [14C]Arteflene (35 micromol/kg) was given i.v. to anesthetized and cannulated male rats: 42.2 +/- 7.0% (mean +/- S.D., n = 7) of the radiolabel was recovered in bile over 5 h. In the majority of rats, the principal biliary metabolites were 8-hydroxyarteflene glucuronide (14.2 +/- 3. 9% dose, 0-3 h) and the cis and trans isomers of the enone (13.5 +/- 4.6% dose, 0-3 h). In conscious rats, 15.3 +/- 1.6% (mean +/- S.D., n = 8) of the radiolabel was recovered in urine over 24 h. The principal urinary metabolite appeared to be a glycine conjugate of a derivative of the enone. Biliary excretion of the glucuronide, but not of the enones, was inhibited by ketoconazole. 8-Hydroxyarteflene was formed extensively by rat and human liver microsomes but no enone was found. Bioactivation is a major pathway of arteflene's metabolism in the rat. Although the mechanism of in vivo bioactivation is unclear, the reaction is not catalyzed by microsomal cytochrome P-450 enzymes.  (+info)

Paraquat toxicity: proposed mechanism of action involving lipid peroxidation. (3/1045)

The purpose of this study was to investigate the hypothesis that paraquat pulmonary toxicity results from cyclic reduction-oxidation of paraquat with sequential generation of superoxide radicals and singlet oxygen and initiation of lipid peroxidation. In vitro mouse lung microsomes catalyzed an NADPH-dependent, single-electron reduction of paraquat. Incubation of paraquat with NADPH, NADPH-cytochrome c reductase, and purified microsomal lipid increased malondialdehyde production is a concentration dependent manner. Addition of either superoxide dismutase or a single oxygen trapping agent 1,3-dipheylisobenzo furan inhibited paraquat stimulated lipid peroxidation. In vivo, pretreatment of mice with phenobarbital decreased paraquat toxicity, possibly by competing for electrons which might otherwise reduce paraquat. In contrast, paraquat toxicity in mice was increased by exposure to 100% oxygen and by deficiencies of the antioxidants selenium, vitamin E, or reduced glutahione (GSH). Paraquat, given IP to mice, at 30 mg/kg, decreased concentrations of the water-soluble antioxidant GSH in liver and lipid soluble antioxidants in lung. Oxygen-tolerant rats, which hae increased activities of pulmonary enzymes which combat lipid peroxidation, were also tolerant to lethal doses of paraquat as indicated by an increased paraquat LT50. Furthermore, rats chronically exposed to 100 ppm paraquat in the water had elevated pulmonary activities of glucose-6-phosphate dehydrogenase and GSH reductase. These results were consistent with the hypothesis that lipid peroxidation is involved in the toxicity of paraquat.  (+info)

Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials. (4/1045)

The malaria parasite feeds by degrading haemoglobin in an acidic food vacuole, producing free haem moieties as a by-product. The haem in oxyhaemoglobin is oxidized from the Fe(II) state to the Fe(III) state with the consequent production of an equimolar concentration of H2O2. We have analysed the fate of haem molecules in Plasmodium falciparum-infected erythrocytes and have found that only about one third of the haem is polymerized to form haemozoin. The remainder appears to be degraded by a non-enzymic process which leads to an accumulation of iron in the parasite. A possible route for degradation of the haem is by reacting with H2O2, and we show that, under conditions designed to resemble those found in the food vacuole, i.e., at pH5.2 in the presence of protein, free haem undergoes rapid peroxidative decomposition. Chloroquine and quinacrine are shown to be efficient inhibitors of the peroxidative destruction of haem, while epiquinine, a quinoline compound with very low antimalarial activity, has little inhibitory effect. We also show that chloroquine enhances the association of haem with membranes, while epiquinine inhibits this association, and that treatment of parasitized erythrocytes with chloroquine leads to a build-up of membrane-associated haem in the parasite. We suggest that chloroquine exerts its antimalarial activity by causing a build-up of toxic membrane-associated haem molecules that eventually destroy the integrity of the malaria parasite. We have further shown that resistance-modulating compounds, such as chlorpromazine, interact with haem and efficiently inhibit its degradation. This may explain the weak antimalarial activities of these compounds.  (+info)

Biotransformation of (1-phenyl)ethyl hydroperoxide with Aspergillus niger: a model study on enzyme selectivity and on the induction of peroxidase activity. (5/1045)

The biocatalytic enantioselective reduction of (1-phenyl)ethyl hydroperoxide (1) by the fungus Aspergillus niger to the corresponding alcohol 2 involves a multi-enzyme biotransformation of the hydroperoxide 1, as revealed by the change in the enantioselectivity as a function of incubation times. This unusual behavior is not exhibited by other fungi and seems to be restricted to A. niger. Furthermore, the peroxidase and other oxidoreductase activities of A. niger depend on the availability of metal ions such as Fe2+, Mn2+ and Zn2+ in the growth medium, since the addition of Fe2+ ions substantially (threefold) increases the enantioselectivity, whereas addition of Mn2+ and Zn2+ ions decreases it. Finally, the cold shock (4 degrees C) significantly enhances the reduction of the hydroperoxide by the microorganism A. niger.  (+info)

Clinical trial of three 10% carbamide peroxide bleaching products. (6/1045)

BACKGROUND: A profusion of commercial bleaching systems exists on the market today, but there are few clinical comparisons of these systems. METHODS: In this study, three different commercial 10% carbamide peroxide bleaching systems were used by 24 patients in an overnight protocol for two weeks. Each patient used two of the bleaching products simultaneously in a side-by-side comparison. RESULTS: The mean onset of tooth whitening was 2.4 +/- 1.7 days. Tooth sensitivity was the most frequent side effect, as 64% of the patients reported tooth sensitivity occurring after 4.8 +/- 4.1 days and lasting for 5.0 +/- 3.8 days. Although intrapatient differences were recorded for the three commercial 10% carbamide peroxide bleaching systems by the patients, there were no statistical differences in the time of onset of subjective tooth whitening and the onset, frequency and duration of tooth sensitivity among the three commercial bleaching systems when compared pairwise or independently (p < 0.05). CONCLUSION: Selection of which bleaching product to use should be based on the concentration of the active ingredient, the viscosity of the product and other marketing features. Further research is needed to investigate the causes of tooth sensitivity and methods to reduce its severity and frequency.  (+info)

The effect of aging and an oxidative stress on peroxide levels and the mitochondrial membrane potential in isolated rat hepatocytes. (7/1045)

We have investigated the effect of ageing and of adriamycin treatment on the bioenergetics of isolated rat hepatocytes. Ageing per se, whilst being associated with a striking increase of hydrogen peroxide in the cells, induces only minor changes on the mitochondrial membrane potential. The adriamycin treatment induces a decrease of the mitochondrial membrane potential in situ and a consistent increase of the superoxide anion cellular content independently of the donor age. The hydrogen peroxide is significantly increased in both aged and adult rat hepatocytes, however, due to the high basal level in the aged cells, it is higher in aged rat cells not subjected to oxidative stress than that elicited by 50 microM adriamycin in young rat hepatocytes. The results suggest that a hydrogen peroxide increase in hepatocytes of aged rats is unable to induce major modifications of mitochondrial bioenergetics. This contrasts with the damaging effect of adriamycin, suggesting that the effects of the drug may be due to the concomitant high level of both superoxide and hydrogen peroxide.  (+info)

Antioxidant activity of a medicine based on Aspergillus oryzae NK koji measured by a modified t-butyl peroxyl radical scavenging assay. (8/1045)

A koji-based medicine composed of powder of Aspergillus oryzae NK koji, dried yeast, and lactobacilli koji had high antioxidant activity measured by a modified t-butyl peroxyl radical scavenging assay. This activity was mainly derived from A. oryzae NK koji. Digestion of koji-making grain germ medium with several commercial enzymes also increased antioxidant activity. By two weeks of oral administration of A. oryzae NK koji, the serum lipid peroxide levels elevated in STZ-induced diabetic rats could be decreased significantly.  (+info)

Hydrogen peroxide (H2O2) is a colorless, odorless, clear liquid with a slightly sweet taste, although drinking it is harmful and can cause poisoning. It is a weak oxidizing agent and is used as an antiseptic and a bleaching agent. In diluted form, it is used to disinfect wounds and kill bacteria and viruses on the skin; in higher concentrations, it can be used to bleach hair or remove stains from clothing. It is also used as a propellant in rocketry and in certain industrial processes. Chemically, hydrogen peroxide is composed of two hydrogen atoms and two oxygen atoms, and it is structurally similar to water (H2O), with an extra oxygen atom. This gives it its oxidizing properties, as the additional oxygen can be released and used to react with other substances.

Peroxides, in a medical context, most commonly refer to chemical compounds that contain the peroxide ion (O2−2). Peroxides are characterized by the presence of an oxygen-oxygen single bond and can be found in various substances.

In dentistry, hydrogen peroxide (H2O2) is a widely used agent for teeth whitening or bleaching due to its oxidizing properties. It can help remove stains and discoloration on the tooth surface by breaking down into water and oxygen-free radicals, which react with the stain molecules, ultimately leading to their oxidation and elimination.

However, it is essential to note that high concentrations of hydrogen peroxide or prolonged exposure can cause tooth sensitivity, irritation to the oral soft tissues, and potential damage to the dental pulp. Therefore, professional supervision and appropriate concentration control are crucial when using peroxides for dental treatments.

Lipid peroxides are chemical compounds that form when lipids (fats or fat-like substances) oxidize. This process, known as lipid peroxidation, involves the reaction of lipids with oxygen in a way that leads to the formation of hydroperoxides and various aldehydes, such as malondialdehyde.

Lipid peroxidation is a naturally occurring process that can also be accelerated by factors such as exposure to radiation, certain chemicals, or enzymatic reactions. It plays a role in many biological processes, including cell signaling and regulation of gene expression, but it can also contribute to the development of various diseases when it becomes excessive.

Examples of lipid peroxides include phospholipid hydroperoxides, cholesteryl ester hydroperoxides, and triglyceride hydroperoxides. These compounds are often used as markers of oxidative stress in biological systems and have been implicated in the pathogenesis of atherosclerosis, cancer, neurodegenerative diseases, and other conditions associated with oxidative damage.

Benzoyl peroxide is a medication used in the treatment of acne. It is available in various forms, including creams, gels, and washes. Benzoyl peroxide works by reducing the amount of bacteria on the skin and helping to unclog pores. It is typically applied to the affected area once or twice a day.

Benzoyl peroxide can cause side effects such as dryness, redness, and irritation of the skin. It is important to follow the directions for use carefully and start with a lower concentration if you are new to using this medication. If you experience severe or persistent side effects, it is recommended that you speak with a healthcare provider.

It is also important to note that benzoyl peroxide can bleach clothing and hair, so it is best to apply it carefully and allow it to fully absorb into the skin before dressing or coming into contact with fabrics.

Catalase is a type of enzyme that is found in many living organisms, including humans. Its primary function is to catalyze the decomposition of hydrogen peroxide (H2O2) into water (H2O) and oxygen (O2). This reaction helps protect cells from the harmful effects of hydrogen peroxide, which can be toxic at high concentrations.

The chemical reaction catalyzed by catalase can be represented as follows:

H2O2 + Catalase → H2O + O2 + Catalase

Catalase is a powerful antioxidant enzyme that plays an important role in protecting cells from oxidative damage. It is found in high concentrations in tissues that produce or are exposed to hydrogen peroxide, such as the liver, kidneys, and erythrocytes (red blood cells).

Deficiency in catalase activity has been linked to several diseases, including cancer, neurodegenerative disorders, and aging. On the other hand, overexpression of catalase has been shown to have potential therapeutic benefits in various disease models, such as reducing inflammation and oxidative stress.

Medical definitions of "oxidants" refer to them as oxidizing agents or substances that can gain electrons and be reduced. They are capable of accepting electrons from other molecules in chemical reactions, leading to the production of oxidation products. In biological systems, oxidants play a crucial role in various cellular processes such as energy production and immune responses. However, an imbalance between oxidant and antioxidant levels can lead to a state of oxidative stress, which has been linked to several diseases, including cancer, cardiovascular disease, and neurodegenerative disorders. Examples of oxidants include reactive oxygen species (ROS), such as superoxide anion, hydrogen peroxide, and hydroxyl radical, as well as reactive nitrogen species (RNS), such as nitric oxide and peroxynitrite.

Peroxidases are a group of enzymes that catalyze the oxidation of various substrates using hydrogen peroxide (H2O2) as the electron acceptor. These enzymes contain a heme prosthetic group, which plays a crucial role in their catalytic activity. Peroxidases are widely distributed in nature and can be found in plants, animals, and microorganisms. They play important roles in various biological processes, including defense against oxidative stress, lignin degradation, and host-pathogen interactions. Some common examples of peroxidases include glutathione peroxidase, which helps protect cells from oxidative damage, and horseradish peroxidase, which is often used in laboratory research.

Oxidative stress is defined as an imbalance between the production of reactive oxygen species (free radicals) and the body's ability to detoxify them or repair the damage they cause. This imbalance can lead to cellular damage, oxidation of proteins, lipids, and DNA, disruption of cellular functions, and activation of inflammatory responses. Prolonged or excessive oxidative stress has been linked to various health conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and aging-related diseases.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

Peroxiredoxins (Prx) are a family of peroxidases that play a crucial role in cellular defense against oxidative stress. They catalyze the reduction of hydrogen peroxide, organic hydroperoxides, and peroxynitrite, thereby protecting cells from potentially harmful effects of these reactive oxygen and nitrogen species.

Peroxiredoxins are ubiquitously expressed in various cellular compartments, including the cytosol, mitochondria, and nucleus. They contain a conserved catalytic cysteine residue that gets oxidized during the reduction of peroxides, which is then reduced back to its active form by thioredoxins or other reducing agents.

Dysregulation of peroxiredoxin function has been implicated in various pathological conditions, including cancer, neurodegenerative diseases, and inflammatory disorders. Therefore, understanding the role of peroxiredoxins in cellular redox homeostasis is essential for developing novel therapeutic strategies to treat oxidative stress-related diseases.

Tooth bleaching, also known as tooth whitening, is a cosmetic dental procedure that aims to lighten the color of natural teeth and remove stains or discoloration. It's important to note that this process doesn't involve physically removing the tooth structure but rather uses various agents containing bleaching chemicals like hydrogen peroxide or carbamide peroxide to oxidize the stain molecules, breaking them down and making the teeth appear whiter and brighter.

The procedure can be performed in a dental office under professional supervision (in-office bleaching), at home using custom-made trays provided by a dentist (at-home or take-home bleaching), or through over-the-counter products such as whitening toothpaste, strips, and gels. However, it is always recommended to consult with a dental professional before starting any tooth bleaching treatment to ensure safety, effectiveness, and suitability for your specific oral health condition.

Reactive Oxygen Species (ROS) are highly reactive molecules containing oxygen, including peroxides, superoxide, hydroxyl radical, and singlet oxygen. They are naturally produced as byproducts of normal cellular metabolism in the mitochondria, and can also be generated by external sources such as ionizing radiation, tobacco smoke, and air pollutants. At low or moderate concentrations, ROS play important roles in cell signaling and homeostasis, but at high concentrations, they can cause significant damage to cell structures, including lipids, proteins, and DNA, leading to oxidative stress and potential cell death.

Free radicals are molecules or atoms that have one or more unpaired electrons in their outermost shell, making them highly reactive. They can be formed naturally in the body through processes such as metabolism and exercise, or they can come from external sources like pollution, radiation, and certain chemicals. Free radicals can cause damage to cells and contribute to the development of various diseases, including cancer, cardiovascular disease, and neurodegenerative disorders. Antioxidants are substances that can neutralize free radicals and help protect against their harmful effects.

Medical Definition:

Superoxide dismutase (SOD) is an enzyme that catalyzes the dismutation of superoxide radicals (O2-) into oxygen (O2) and hydrogen peroxide (H2O2). This essential antioxidant defense mechanism helps protect the body's cells from damage caused by reactive oxygen species (ROS), which are produced during normal metabolic processes and can lead to oxidative stress when their levels become too high.

There are three main types of superoxide dismutase found in different cellular locations:
1. Copper-zinc superoxide dismutase (CuZnSOD or SOD1) - Present mainly in the cytoplasm of cells.
2. Manganese superoxide dismutase (MnSOD or SOD2) - Located within the mitochondrial matrix.
3. Extracellular superoxide dismutase (EcSOD or SOD3) - Found in the extracellular spaces, such as blood vessels and connective tissues.

Imbalances in SOD levels or activity have been linked to various pathological conditions, including neurodegenerative diseases, cancer, and aging-related disorders.

Glucose oxidase (GOD) is an enzyme that catalyzes the oxidation of D-glucose to D-glucono-1,5-lactone, while reducing oxygen to hydrogen peroxide in the process. This reaction is a part of the metabolic pathway in some organisms that convert glucose into energy. The systematic name for this enzyme is D-glucose:oxygen 1-oxidoreductase.

Glucose oxidase is commonly found in certain fungi, such as Aspergillus niger, and it has various applications in industry, medicine, and research. For instance, it's used in the production of glucose sensors for monitoring blood sugar levels, in the detection and quantification of glucose in food and beverages, and in the development of biosensors for environmental monitoring.

It's worth noting that while glucose oxidase has many applications, it should not be confused with glutathione peroxidase, another enzyme involved in the reduction of hydrogen peroxide to water.

A hydroxyl radical is defined in biochemistry and medicine as an extremely reactive species, characterized by the presence of an oxygen atom bonded to a hydrogen atom (OH-). It is formed when a water molecule (H2O) is split into a hydroxide ion (OH-) and a hydrogen ion (H+) in the process of oxidation.

In medical terms, hydroxyl radicals are important in understanding free radical damage and oxidative stress, which can contribute to the development of various diseases, including cancer, cardiovascular disease, and neurodegenerative disorders. They are also involved in the body's natural defense mechanisms against pathogens. However, an overproduction of hydroxyl radicals can cause damage to cellular components such as DNA, proteins, and lipids, leading to cell dysfunction and death.

Antioxidants are substances that can prevent or slow damage to cells caused by free radicals, which are unstable molecules that the body produces as a reaction to environmental and other pressures. Antioxidants are able to neutralize free radicals by donating an electron to them, thus stabilizing them and preventing them from causing further damage to the cells.

Antioxidants can be found in a variety of foods, including fruits, vegetables, nuts, and grains. Some common antioxidants include vitamins C and E, beta-carotene, and selenium. Antioxidants are also available as dietary supplements.

In addition to their role in protecting cells from damage, antioxidants have been studied for their potential to prevent or treat a number of health conditions, including cancer, heart disease, and age-related macular degeneration. However, more research is needed to fully understand the potential benefits and risks of using antioxidant supplements.

Amitrole is a non-selective herbicide that is used to control broadleaf weeds and some annual grasses. Its chemical name is 3-amino-1,2,4-triazole, and it works by inhibiting the enzyme responsible for the production of certain aromatic amino acids in plants, which are essential for their growth and development.

Amitrole is absorbed through the leaves and roots of plants and can be applied either before or after weed emergence. It is commonly used in agricultural settings, as well as in non-crop areas such as industrial sites, railways, and roadsides.

While amitrole is generally considered safe for use around humans and animals when used according to label instructions, it can cause eye and skin irritation, and may be harmful if swallowed or inhaled. It is important to follow all safety precautions when handling and applying this herbicide.

Superoxides are partially reduced derivatives of oxygen that contain one extra electron, giving them an overall charge of -1. They are highly reactive and unstable, with the most common superoxide being the hydroxyl radical (•OH-) and the superoxide anion (O2-). Superoxides are produced naturally in the body during metabolic processes, particularly within the mitochondria during cellular respiration. They play a role in various physiological processes, but when produced in excess or not properly neutralized, they can contribute to oxidative stress and damage to cells and tissues, potentially leading to the development of various diseases such as cancer, atherosclerosis, and neurodegenerative disorders.

Tooth bleaching agents are substances used to whiten and remove stains from teeth through a chemical process. They typically contain either hydrogen peroxide or carbamide peroxide, which break down into oxygen ions that penetrate the tooth enamel and dentin, oxidizing and breaking up stain molecules. Commonly used tooth bleaching agents include in-office professional treatments, at-home whitening kits, and over-the-counter products like whitening strips and toothpastes. It is essential to follow the manufacturer's instructions or consult with a dental professional to ensure safe and effective use of these products.

Acatalasia is a very rare inherited disorder that affects the body's ability to break down and remove hydrogen peroxide, a byproduct produced during normal cellular metabolism. This condition is caused by a deficiency or complete lack of the enzyme catalase, which is responsible for converting hydrogen peroxide into water and oxygen.

The medical definition of Acatalasia can be described as:

1. An autosomal recessive genetic disorder: Acatalasia is inherited in an autosomal recessive pattern, meaning that an individual must inherit two copies of the defective gene (one from each parent) to develop the condition. Individuals who inherit only one copy of the defective gene are carriers and do not typically show symptoms themselves.

2. Absence or deficiency of catalase enzyme: Acatalasia is characterized by a near-complete absence or significantly reduced levels of the catalase enzyme in the body, primarily in red blood cells and certain tissues such as the liver and spleen. This deficiency leads to an accumulation of hydrogen peroxide within cells.

3. Accumulation of hydrogen peroxide: The buildup of hydrogen peroxide can cause damage to cellular components, including proteins, lipids, and DNA, potentially leading to various health issues over time.

4. Clinical manifestations: Although Acatalasia is a rare condition, when it does occur, it can lead to several health problems, such as chronic granulomatous disease (CGD), which is characterized by recurrent bacterial and fungal infections due to impaired immune function. Additionally, individuals with Acatalasia may have an increased risk of developing certain types of cancer, particularly those related to the hematopoietic system (blood cells and bone marrow).

5. Diagnosis: Acatalasia can be diagnosed through various methods, including blood tests that measure catalase enzyme activity, genetic testing to identify mutations in the CAT gene (which encodes for the catalase enzyme), and clinical evaluation of symptoms and medical history.

6. Treatment and management: Currently, there is no specific treatment or cure for Acatalasia. Management typically focuses on addressing individual symptoms as they arise and implementing strategies to reduce the risk of complications. This may include antibiotics or antifungal medications to treat infections, cancer surveillance and prevention measures, and regular monitoring of overall health.

Hydroxides are inorganic compounds that contain the hydroxide ion (OH−). They are formed when a base, which is an electron pair donor, reacts with water. The hydroxide ion consists of one oxygen atom and one hydrogen atom, and it carries a negative charge. Hydroxides are basic in nature due to their ability to donate hydroxide ions in solution, which increases the pH and makes the solution more alkaline. Common examples of hydroxides include sodium hydroxide (NaOH), potassium hydroxide (KOH), and calcium hydroxide (Ca(OH)2). They have various applications in industry, medicine, and research.

Lipid peroxidation is a process in which free radicals, such as reactive oxygen species (ROS), steal electrons from lipids containing carbon-carbon double bonds, particularly polyunsaturated fatty acids (PUFAs). This results in the formation of lipid hydroperoxides, which can decompose to form a variety of compounds including reactive carbonyl compounds, aldehydes, and ketones.

Malondialdehyde (MDA) is one such compound that is commonly used as a marker for lipid peroxidation. Lipid peroxidation can cause damage to cell membranes, leading to changes in their fluidity and permeability, and can also result in the modification of proteins and DNA, contributing to cellular dysfunction and ultimately cell death. It is associated with various pathological conditions such as atherosclerosis, neurodegenerative diseases, and cancer.

Glutathione peroxidase (GPx) is a family of enzymes with peroxidase activity whose main function is to protect the organism from oxidative damage. They catalyze the reduction of hydrogen peroxide, lipid peroxides, and organic hydroperoxides to water or corresponding alcohols, using glutathione (GSH) as a reducing agent, which is converted to its oxidized form (GSSG). There are several isoforms of GPx found in different tissues, including GPx1 (also known as cellular GPx), GPx2 (gastrointestinal GPx), GPx3 (plasma GPx), GPx4 (also known as phospholipid hydroperoxide GPx), and GPx5-GPx8. These enzymes play crucial roles in various biological processes, such as antioxidant defense, cell signaling, and apoptosis regulation.

Tert-butylhydroperoxide (t-BuOOH) is not typically considered a medical term, but rather a chemical compound. It is used in some medical and laboratory contexts. Here's a definition:

Tert-butylhydroperoxide (t-BuOOH) is an organic peroxide with the formula (CH3)3COOH. It is a colorless liquid, commercially available in concentrations up to 70%. It is used as an initiator in chemical reactions, a source of hydroxyl radicals in free-radical chemistry, and as a reagent in organic synthesis. Its use in medical contexts is typically limited to laboratory research and not as a therapeutic agent.

Handling tert-butylhydroperoxide requires caution due to its potential to cause fires and explosions when it comes into contact with certain substances, especially reducing agents and strong acids. Always follow safety guidelines and use appropriate personal protective equipment when handling this compound.

Free radical scavengers, also known as antioxidants, are substances that neutralize or stabilize free radicals. Free radicals are highly reactive atoms or molecules with unpaired electrons, capable of causing damage to cells and tissues in the body through a process called oxidative stress. Antioxidants donate an electron to the free radical, thereby neutralizing it and preventing it from causing further damage. They can be found naturally in foods such as fruits, vegetables, and nuts, or they can be synthesized and used as dietary supplements. Examples of antioxidants include vitamins C and E, beta-carotene, and selenium.

Glutathione is a tripeptide composed of three amino acids: cysteine, glutamic acid, and glycine. It is a vital antioxidant that plays an essential role in maintaining cellular health and function. Glutathione helps protect cells from oxidative stress by neutralizing free radicals, which are unstable molecules that can damage cells and contribute to aging and diseases such as cancer, heart disease, and dementia. It also supports the immune system, detoxifies harmful substances, and regulates various cellular processes, including DNA synthesis and repair.

Glutathione is found in every cell of the body, with particularly high concentrations in the liver, lungs, and eyes. The body can produce its own glutathione, but levels may decline with age, illness, or exposure to toxins. As such, maintaining optimal glutathione levels through diet, supplementation, or other means is essential for overall health and well-being.

Horseradish peroxidase (HRP) is not a medical term, but a type of enzyme that is derived from the horseradish plant. In biological terms, HRP is defined as a heme-containing enzyme isolated from the roots of the horseradish plant (Armoracia rusticana). It is widely used in molecular biology and diagnostic applications due to its ability to catalyze various oxidative reactions, particularly in immunological techniques such as Western blotting and ELISA.

HRP catalyzes the conversion of hydrogen peroxide into water and oxygen, while simultaneously converting a variety of substrates into colored or fluorescent products that can be easily detected. This enzymatic activity makes HRP a valuable tool in detecting and quantifying specific biomolecules, such as proteins and nucleic acids, in biological samples.

Lactoperoxidase is a type of peroxidase enzyme that is present in various secretory fluids, including milk, saliva, and tears. In milk, lactoperoxidase plays an important role in the natural defense system by helping to protect against microbial growth. It does this by catalyzing the oxidation of thiocyanate ions (SCN-) in the presence of hydrogen peroxide (H2O2) to produce hypothiocyanite (OSCN-), which is a potent antimicrobial agent.

Lactoperoxidase is a glycoprotein with a molecular weight of approximately 78 kDa, and it is composed of four identical subunits, each containing a heme group that binds to the hydrogen peroxide molecule during the enzymatic reaction. Lactoperoxidase has been studied for its potential therapeutic applications in various fields, including oral health, food preservation, and wound healing.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

Hypochlorous acid (HClO) is a weak acid that is primarily used as a disinfectant and sanitizer. It is a colorless and nearly odorless substance that is formed when chlorine gas is dissolved in water. Hypochlorous acid is a powerful oxidizing agent, which makes it effective at killing bacteria, viruses, and other microorganisms.

In the human body, hypochlorous acid is produced by white blood cells as part of the immune response to infection. It helps to kill invading pathogens and prevent the spread of infection. Hypochlorous acid is also used in medical settings as a disinfectant for surfaces and equipment, as well as in wound care to help prevent infection and promote healing.

It's important to note that while hypochlorous acid is safe and effective as a disinfectant, it can be harmful if swallowed or inhaled in large quantities. Therefore, it should be used with caution and according to the manufacturer's instructions.

Peroxidase is a type of enzyme that catalyzes the chemical reaction in which hydrogen peroxide (H2O2) is broken down into water (H2O) and oxygen (O2). This enzymatic reaction also involves the oxidation of various organic and inorganic compounds, which can serve as electron donors.

Peroxidases are widely distributed in nature and can be found in various organisms, including bacteria, fungi, plants, and animals. They play important roles in various biological processes, such as defense against oxidative stress, breakdown of toxic substances, and participation in metabolic pathways.

The peroxidase-catalyzed reaction can be represented by the following chemical equation:

H2O2 + 2e- + 2H+ → 2H2O

In this reaction, hydrogen peroxide is reduced to water, and the electron donor is oxidized. The peroxidase enzyme facilitates the transfer of electrons between the substrate (hydrogen peroxide) and the electron donor, making the reaction more efficient and specific.

Peroxidases have various applications in medicine, industry, and research. For example, they can be used for diagnostic purposes, as biosensors, and in the treatment of wastewater and medical wastes. Additionally, peroxidases are involved in several pathological conditions, such as inflammation, cancer, and neurodegenerative diseases, making them potential targets for therapeutic interventions.

Paraquat is a highly toxic herbicide that is used for controlling weeds and grasses in agricultural settings. It is a non-selective contact weed killer, meaning it kills any green plant it comes into contact with. Paraquat is a fast-acting chemical that causes rapid desiccation of plant tissues upon contact.

In a medical context, paraquat is classified as a toxicological emergency and can cause severe poisoning in humans if ingested, inhaled, or comes into contact with the skin or eyes. Paraquat poisoning can lead to multiple organ failure, including the lungs, kidneys, and liver, and can be fatal in severe cases. There is no specific antidote for paraquat poisoning, and treatment typically focuses on supportive care and managing symptoms.

It's important to note that paraquat is highly regulated and its use is restricted to licensed professionals due to its high toxicity. Proper protective equipment, including gloves, goggles, and respiratory protection, should be used when handling paraquat to minimize the risk of exposure.

In the context of medicine, iron is an essential micromineral and key component of various proteins and enzymes. It plays a crucial role in oxygen transport, DNA synthesis, and energy production within the body. Iron exists in two main forms: heme and non-heme. Heme iron is derived from hemoglobin and myoglobin in animal products, while non-heme iron comes from plant sources and supplements.

The recommended daily allowance (RDA) for iron varies depending on age, sex, and life stage:

* For men aged 19-50 years, the RDA is 8 mg/day
* For women aged 19-50 years, the RDA is 18 mg/day
* During pregnancy, the RDA increases to 27 mg/day
* During lactation, the RDA for breastfeeding mothers is 9 mg/day

Iron deficiency can lead to anemia, characterized by fatigue, weakness, and shortness of breath. Excessive iron intake may result in iron overload, causing damage to organs such as the liver and heart. Balanced iron levels are essential for maintaining optimal health.

Xanthine oxidase is an enzyme that catalyzes the oxidation of xanthine to uric acid, which is the last step in purine metabolism. It's a type of molybdenum-containing oxidoreductase that generates reactive oxygen species (ROS) during its reaction mechanism.

The enzyme exists in two interconvertible forms: an oxidized state and a reduced state. The oxidized form, called xanthine oxidase, reduces molecular oxygen to superoxide and hydrogen peroxide, while the reduced form, called xanthine dehydrogenase, reduces NAD+ to NADH.

Xanthine oxidase is found in various tissues, including the liver, intestines, and milk. An overproduction of uric acid due to increased activity of xanthine oxidase can lead to hyperuricemia, which may result in gout or kidney stones. Some medications and natural compounds are known to inhibit xanthine oxidase, such as allopurinol and febuxostat, which are used to treat gout and prevent the formation of uric acid stones in the kidneys.

Ascorbic acid is the chemical name for Vitamin C. It is a water-soluble vitamin that is essential for human health. Ascorbic acid is required for the synthesis of collagen, a protein that plays a role in the structure of bones, tendons, ligaments, and blood vessels. It also functions as an antioxidant, helping to protect cells from damage caused by free radicals.

Ascorbic acid cannot be produced by the human body and must be obtained through diet or supplementation. Good food sources of vitamin C include citrus fruits, strawberries, bell peppers, broccoli, and spinach.

In the medical field, ascorbic acid is used to treat or prevent vitamin C deficiency and related conditions, such as scurvy. It may also be used in the treatment of various other health conditions, including common cold, cancer, and cardiovascular disease, although its effectiveness for these uses is still a matter of scientific debate.

Tooth discoloration, also known as tooth staining or tooth color change, refers to the darkening or staining of teeth. It can be categorized into two main types: extrinsic and intrinsic. Extrinsic discoloration occurs when the outer layer of the tooth (enamel) becomes stained due to exposure to colored substances such as coffee, tea, wine, tobacco, and certain foods. Intrinsic discoloration, on the other hand, occurs when the inner structure of the tooth (dentin) darkens or gets a yellowish tint due to factors like genetics, aging, trauma, or exposure to certain medications during tooth development. Tooth discoloration can also be caused by dental diseases or decay. It is important to note that while some forms of tooth discoloration are cosmetic concerns, others may indicate underlying oral health issues and should be evaluated by a dental professional.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

I couldn't find a medical definition for "Ampyrone" as it is not a recognized or commonly used term in medicine or pharmacology. It may be possible that you have made a slight error in the spelling, and you are actually looking for "Amiodarone," which is a medication used to treat and prevent various types of heart rhythm disorders.

If this is not the case, please provide more context or clarify your question so I can give you an accurate answer.

Sulfhydryl compounds, also known as thiol compounds, are organic compounds that contain a functional group consisting of a sulfur atom bonded to a hydrogen atom (-SH). This functional group is also called a sulfhydryl group. Sulfhydryl compounds can be found in various biological systems and play important roles in maintaining the structure and function of proteins, enzymes, and other biomolecules. They can also act as antioxidants and help protect cells from damage caused by reactive oxygen species. Examples of sulfhydryl compounds include cysteine, glutathione, and coenzyme A.

Electron Spin Resonance (ESR) Spectroscopy, also known as Electron Paramagnetic Resonance (EPR) Spectroscopy, is a technique used to investigate materials with unpaired electrons. It is based on the principle of absorption of energy by the unpaired electrons when they are exposed to an external magnetic field and microwave radiation.

In this technique, a sample is placed in a magnetic field and microwave radiation is applied. The unpaired electrons in the sample absorb energy and change their spin state when the energy of the microwaves matches the energy difference between the spin states. This absorption of energy is recorded as a function of the magnetic field strength, producing an ESR spectrum.

ESR spectroscopy can provide information about the number, type, and behavior of unpaired electrons in a sample, as well as the local environment around the electron. It is widely used in physics, chemistry, and biology to study materials such as free radicals, transition metal ions, and defects in solids.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Cytochrome-c peroxidase is an enzyme found in the inner membrane of mitochondria, which are the energy-producing structures in cells. It plays a crucial role in the electron transport chain, a series of complexes that generate energy in the form of ATP through a process called oxidative phosphorylation.

The enzyme's primary function is to catalyze the conversion of hydrogen peroxide (H2O2) into water (H2O) and oxygen (O2). This reaction helps protect the cell from the harmful effects of hydrogen peroxide, which can damage proteins, lipids, and DNA if left unchecked.

Cytochrome-c peroxidase contains a heme group, which is a prosthetic group consisting of an iron atom surrounded by a porphyrin ring. This heme group is responsible for the enzyme's ability to undergo redox reactions, where it cycles between its oxidized and reduced states during the catalytic cycle.

The medical relevance of cytochrome-c peroxidase lies in its role in cellular metabolism and energy production. Dysfunctions in the electron transport chain or oxidative phosphorylation processes, including those involving cytochrome-c peroxidase, can lead to various mitochondrial disorders and diseases, such as neurodegenerative conditions, muscle weakness, and metabolic abnormalities. However, it is essential to note that the study of this enzyme and its role in health and disease is still an active area of research.

Spectrophotometry is a technical analytical method used in the field of medicine and science to measure the amount of light absorbed or transmitted by a substance at specific wavelengths. This technique involves the use of a spectrophotometer, an instrument that measures the intensity of light as it passes through a sample.

In medical applications, spectrophotometry is often used in laboratory settings to analyze various biological samples such as blood, urine, and tissues. For example, it can be used to measure the concentration of specific chemicals or compounds in a sample by measuring the amount of light that is absorbed or transmitted at specific wavelengths.

In addition, spectrophotometry can also be used to assess the properties of biological tissues, such as their optical density and thickness. This information can be useful in the diagnosis and treatment of various medical conditions, including skin disorders, eye diseases, and cancer.

Overall, spectrophotometry is a valuable tool for medical professionals and researchers seeking to understand the composition and properties of various biological samples and tissues.

Thiobarbituric acid reactive substances (TBARS) is not a medical term per se, but rather a method used to measure lipid peroxidation in biological samples. Lipid peroxidation is a process by which free radicals steal electrons from lipids, leading to cellular damage and potential disease progression.

The TBARS assay measures the amount of malondialdehyde (MDA), a byproduct of lipid peroxidation, that reacts with thiobarbituric acid (TBA) to produce a pink-colored complex. The concentration of this complex is then measured and used as an indicator of lipid peroxidation in the sample.

While TBARS has been widely used as a measure of oxidative stress, it has limitations, including potential interference from other compounds that can react with TBA and produce similar-colored complexes. Therefore, more specific and sensitive methods for measuring lipid peroxidation have since been developed.

Benzene derivatives are chemical compounds that are derived from benzene, which is a simple aromatic hydrocarbon with the molecular formula C6H6. Benzene has a planar, hexagonal ring structure, and its derivatives are formed by replacing one or more of the hydrogen atoms in the benzene molecule with other functional groups.

Benzene derivatives have a wide range of applications in various industries, including pharmaceuticals, dyes, plastics, and explosives. Some common examples of benzene derivatives include toluene, xylene, phenol, aniline, and nitrobenzene. These compounds can have different physical and chemical properties depending on the nature and position of the substituents attached to the benzene ring.

It is important to note that some benzene derivatives are known to be toxic or carcinogenic, and their production, use, and disposal must be carefully regulated to ensure safety and protect public health.

Singlet oxygen, also known as excited oxygen or oxygen triplet state, is a variant of molecular oxygen (O2) with unusual chemical and physical properties. In its ground state, molecular oxygen consists of two atoms with parallel spins, forming a triplet state. However, singlet oxygen has both atoms in a spin-paired configuration, which makes it more reactive than the ground state oxygen.

In biomedical terms, singlet oxygen is often generated during normal cellular metabolism or under pathological conditions such as inflammation and oxidative stress. It can react with various biological molecules, including lipids, proteins, and DNA, leading to damage and dysfunction of cells and tissues. Therefore, singlet oxygen has been implicated in the development and progression of several diseases, such as atherosclerosis, neurodegenerative disorders, and cancer.

It is worth noting that singlet oxygen can also be used in medical applications, such as photodynamic therapy (PDT), where it is generated by light-activated drugs to selectively destroy cancer cells or bacteria.

Oxidoreductases are a class of enzymes that catalyze oxidation-reduction reactions, which involve the transfer of electrons from one molecule (the reductant) to another (the oxidant). These enzymes play a crucial role in various biological processes, including energy production, metabolism, and detoxification.

The oxidoreductase-catalyzed reaction typically involves the donation of electrons from a reducing agent (donor) to an oxidizing agent (acceptor), often through the transfer of hydrogen atoms or hydride ions. The enzyme itself does not undergo any permanent chemical change during this process, but rather acts as a catalyst to lower the activation energy required for the reaction to occur.

Oxidoreductases are classified and named based on the type of electron donor or acceptor involved in the reaction. For example, oxidoreductases that act on the CH-OH group of donors are called dehydrogenases, while those that act on the aldehyde or ketone groups are called oxidases. Other examples include reductases, peroxidases, and catalases.

Understanding the function and regulation of oxidoreductases is important for understanding various physiological processes and developing therapeutic strategies for diseases associated with impaired redox homeostasis, such as cancer, neurodegenerative disorders, and cardiovascular disease.

Copper is a chemical element with the symbol Cu (from Latin: *cuprum*) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. Copper is found as a free element in nature, and it is also a constituent of many minerals such as chalcopyrite and bornite.

In the human body, copper is an essential trace element that plays a role in various physiological processes, including iron metabolism, energy production, antioxidant defense, and connective tissue synthesis. Copper is found in a variety of foods, such as shellfish, nuts, seeds, whole grains, and organ meats. The recommended daily intake of copper for adults is 900 micrograms (mcg) per day.

Copper deficiency can lead to anemia, neutropenia, impaired immune function, and abnormal bone development. Copper toxicity, on the other hand, can cause nausea, vomiting, abdominal pain, diarrhea, and in severe cases, liver damage and neurological symptoms. Therefore, it is important to maintain a balanced copper intake through diet and supplements if necessary.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Cell survival refers to the ability of a cell to continue living and functioning normally, despite being exposed to potentially harmful conditions or treatments. This can include exposure to toxins, radiation, chemotherapeutic drugs, or other stressors that can damage cells or interfere with their normal processes.

In scientific research, measures of cell survival are often used to evaluate the effectiveness of various therapies or treatments. For example, researchers may expose cells to a particular drug or treatment and then measure the percentage of cells that survive to assess its potential therapeutic value. Similarly, in toxicology studies, measures of cell survival can help to determine the safety of various chemicals or substances.

It's important to note that cell survival is not the same as cell proliferation, which refers to the ability of cells to divide and multiply. While some treatments may promote cell survival, they may also inhibit cell proliferation, making them useful for treating diseases such as cancer. Conversely, other treatments may be designed to specifically target and kill cancer cells, even if it means sacrificing some healthy cells in the process.

Glutathione reductase (GR) is an enzyme that plays a crucial role in maintaining the cellular redox state. The primary function of GR is to reduce oxidized glutathione (GSSG) to its reduced form (GSH), which is an essential intracellular antioxidant. This enzyme utilizes nicotinamide adenine dinucleotide phosphate (NADPH) as a reducing agent in the reaction, converting it to NADP+. The medical definition of Glutathione Reductase is:

Glutathione reductase (GSR; EC 1.8.1.7) is a homodimeric flavoprotein that catalyzes the reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH) in the presence of NADPH as a cofactor. This enzyme is essential for maintaining the cellular redox balance and protecting cells from oxidative stress by regenerating the active form of glutathione, a vital antioxidant and detoxifying agent.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Disinfectants are antimicrobial agents that are applied to non-living objects to destroy or irreversibly inactivate microorganisms, but not necessarily their spores. They are different from sterilizers, which kill all forms of life, and from antiseptics, which are used on living tissue. Disinfectants work by damaging the cell wall or membrane of the microorganism, disrupting its metabolism, or interfering with its ability to reproduce. Examples of disinfectants include alcohol, bleach, hydrogen peroxide, and quaternary ammonium compounds. They are commonly used in hospitals, laboratories, and other settings where the elimination of microorganisms is important for infection control. It's important to use disinfectants according to the manufacturer's instructions, as improper use can reduce their effectiveness or even increase the risk of infection.

Scopoletin is not a medical term, but it is a chemical compound found in some plants and fungi. It has been studied in the field of pharmacology for its potential medicinal properties. Scopoletin is a coumarin derivative and has been shown to have antioxidant, anti-inflammatory, and neuroprotective effects in various studies. However, more research is needed to fully understand its potential therapeutic uses and safety profile.

Mitochondria are specialized structures located inside cells that convert the energy from food into ATP (adenosine triphosphate), which is the primary form of energy used by cells. They are often referred to as the "powerhouses" of the cell because they generate most of the cell's supply of chemical energy. Mitochondria are also involved in various other cellular processes, such as signaling, differentiation, and apoptosis (programmed cell death).

Mitochondria have their own DNA, known as mitochondrial DNA (mtDNA), which is inherited maternally. This means that mtDNA is passed down from the mother to her offspring through the egg cells. Mitochondrial dysfunction has been linked to a variety of diseases and conditions, including neurodegenerative disorders, diabetes, and aging.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

NADPH oxidase is an enzyme complex that plays a crucial role in the production of reactive oxygen species (ROS) in various cell types. The primary function of NADPH oxidase is to catalyze the transfer of electrons from NADPH to molecular oxygen, resulting in the formation of superoxide radicals. This enzyme complex consists of several subunits, including two membrane-bound components (gp91phox and p22phox) and several cytosolic components (p47phox, p67phox, p40phox, and rac1 or rac2). Upon activation, these subunits assemble to form a functional enzyme complex that generates ROS, which serve as important signaling molecules in various cellular processes. However, excessive or uncontrolled production of ROS by NADPH oxidase has been implicated in the pathogenesis of several diseases, such as cardiovascular disorders, neurodegenerative diseases, and cancer.

Ascorbate peroxidases (AHPX) are a group of enzymes that use ascorbic acid (vitamin C) as a reducing cofactor to catalyze the conversion of hydrogen peroxide (H2O2) into water (H2O) and oxygen (O2). This reaction helps protect cells from oxidative damage caused by the accumulation of H2O2, a byproduct of various metabolic processes. Ascorbate peroxidases are primarily found in plants, algae, and cyanobacteria, where they play a crucial role in the detoxification of reactive oxygen species generated during photosynthesis.

Luminescent measurements refer to the quantitative assessment of the emission of light from a substance that has been excited, typically through some form of energy input such as electrical energy or radiation. In the context of medical diagnostics and research, luminescent measurements can be used in various applications, including bioluminescence imaging, which is used to study biological processes at the cellular and molecular level.

Bioluminescence occurs when a chemical reaction produces light within a living organism, often through the action of enzymes such as luciferase. By introducing a luciferase gene into cells or organisms, researchers can use bioluminescent measurements to track cellular processes and monitor gene expression in real time.

Luminescent measurements may also be used in medical research to study the properties of materials used in medical devices, such as LEDs or optical fibers, or to develop new diagnostic tools based on light-emitting nanoparticles or other luminescent materials.

In summary, luminescent measurements are a valuable tool in medical research and diagnostics, providing a non-invasive way to study biological processes and develop new technologies for disease detection and treatment.

Dianisidine is a chemical compound that is primarily used in laboratory research as a reagent for detecting and measuring the presence of iron (Fe) in various substances. It is an aromatic amine with the molecular formula C10H12N2O2. Dianisidine is known for its ability to form a colored complex when it reacts with iron, which can be measured and used to determine the amount of iron present in a sample.

In a medical context, dianisidine may be used in diagnostic tests to detect and measure iron levels in biological samples such as blood or tissue. However, dianisidine itself is not a medication or therapeutic agent and does not have a direct medical application for treating diseases or conditions.

Deferoxamine is a medication used to treat iron overload, which can occur due to various reasons such as frequent blood transfusions or excessive iron intake. It works by binding to excess iron in the body and promoting its excretion through urine. This helps to prevent damage to organs such as the heart and liver that can be caused by high levels of iron.

Deferoxamine is an injectable medication that is typically administered intravenously or subcutaneously, depending on the specific regimen prescribed by a healthcare professional. It may also be used in combination with other medications to manage iron overload more effectively.

It's important to note that deferoxamine should only be used under the guidance of a medical professional, as improper use or dosing can lead to serious side effects or complications.

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

DNA damage refers to any alteration in the structure or composition of deoxyribonucleic acid (DNA), which is the genetic material present in cells. DNA damage can result from various internal and external factors, including environmental exposures such as ultraviolet radiation, tobacco smoke, and certain chemicals, as well as normal cellular processes such as replication and oxidative metabolism.

Examples of DNA damage include base modifications, base deletions or insertions, single-strand breaks, double-strand breaks, and crosslinks between the two strands of the DNA helix. These types of damage can lead to mutations, genomic instability, and chromosomal aberrations, which can contribute to the development of diseases such as cancer, neurodegenerative disorders, and aging-related conditions.

The body has several mechanisms for repairing DNA damage, including base excision repair, nucleotide excision repair, mismatch repair, and double-strand break repair. However, if the damage is too extensive or the repair mechanisms are impaired, the cell may undergo apoptosis (programmed cell death) to prevent the propagation of potentially harmful mutations.

Ferrocyanides are salts or complex ions containing the ferrocyanide ion (Fe(CN)2-4). The ferrocyanide ion is a stable, soluble, and brightly colored complex that contains iron in the +2 oxidation state coordinated to four cyanide ligands. Ferrocyanides are commonly used in various industrial applications such as water treatment, chemical synthesis, and photography due to their stability and reactivity. However, they can be toxic if ingested or inhaled in large quantities, so proper handling and disposal procedures should be followed.

Ferrous compounds are inorganic substances that contain iron (Fe) in its +2 oxidation state. The term "ferrous" is derived from the Latin word "ferrum," which means iron. Ferrous compounds are often used in medicine, particularly in the treatment of iron-deficiency anemia due to their ability to provide bioavailable iron to the body.

Examples of ferrous compounds include ferrous sulfate, ferrous gluconate, and ferrous fumarate. These compounds are commonly found in dietary supplements and multivitamins. Ferrous sulfate is one of the most commonly used forms of iron supplementation, as it has a high iron content and is relatively inexpensive.

It's important to note that ferrous compounds can be toxic in large doses, so they should be taken under the guidance of a healthcare professional. Overdose can lead to symptoms such as nausea, vomiting, diarrhea, abdominal pain, and potentially fatal consequences if left untreated.

Apoptosis is a programmed and controlled cell death process that occurs in multicellular organisms. It is a natural process that helps maintain tissue homeostasis by eliminating damaged, infected, or unwanted cells. During apoptosis, the cell undergoes a series of morphological changes, including cell shrinkage, chromatin condensation, and fragmentation into membrane-bound vesicles called apoptotic bodies. These bodies are then recognized and engulfed by neighboring cells or phagocytic cells, preventing an inflammatory response. Apoptosis is regulated by a complex network of intracellular signaling pathways that involve proteins such as caspases, Bcl-2 family members, and inhibitors of apoptosis (IAPs).

Peroxiredoxin III (PrxIII) is an antioxidant enzyme that belongs to the peroxiredoxin family. It plays a crucial role in maintaining the redox balance within cells by reducing hydrogen peroxide and other organic peroxides into water and alcohol, respectively. PrxIII is primarily located in the mitochondrial matrix, where it protects against oxidative damage to proteins, lipids, and DNA caused by reactive oxygen species (ROS). It functions as a homodimer and contains a conserved catalytic cysteine residue that gets oxidized during the reduction of peroxides. This oxidized form can be reduced back to its active state by thioredoxin or other reducing agents, allowing PrxIII to continue scavenging ROS. Mutations in the PRDX3 gene, which encodes Peroxiredoxin III, have been associated with various pathological conditions, including neurodegenerative diseases and cancer.

Thioredoxins are a group of small proteins that contain a redox-active disulfide bond and play a crucial role in the redox regulation of cellular processes. They function as electron donors and help to maintain the intracellular reducing environment by reducing disulfide bonds in other proteins, thereby regulating their activity. Thioredoxins also have antioxidant properties and protect cells from oxidative stress by scavenging reactive oxygen species (ROS) and repairing oxidatively damaged proteins. They are widely distributed in various organisms, including bacteria, plants, and animals, and are involved in many physiological processes such as DNA synthesis, protein folding, and apoptosis.

Microbial viability is the ability of a microorganism to grow, reproduce and maintain its essential life functions. It can be determined through various methods such as cell growth in culture media, staining techniques that detect metabolic activity, or direct observation of active movement. In contrast, non-viable microorganisms are those that have been killed or inactivated and cannot replicate or cause further harm. The measurement of microbial viability is important in various fields such as medicine, food safety, water quality, and environmental monitoring to assess the effectiveness of disinfection and sterilization procedures, and to determine the presence and concentration of harmful bacteria in different environments.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Chloride peroxidase is an enzyme that contains heme as a cofactor and is responsible for catalyzing the oxidation of chloride ions (Cl-) to hypochlorous acid (HOCl) using hydrogen peroxide (H2O2) as a substrate. This reaction plays a crucial role in the microbial defense system of certain organisms, such as the halophilic archaea. The enzyme is also known as chloroperoxidase or CPO.

The chemical reaction catalyzed by chloride peroxidase can be represented as follows:

Cl- + H2O2 → HOCl + H2O

Hypochlorous acid is a powerful oxidizing agent that can kill or inhibit the growth of various microorganisms, making it an important component of the immune system in some organisms. Chloride peroxidase has attracted significant interest from researchers due to its potential applications in biotechnology and environmental protection, such as in the development of new disinfection methods and the removal of pollutants from water.

Nitric oxide (NO) is a molecule made up of one nitrogen atom and one oxygen atom. In the body, it is a crucial signaling molecule involved in various physiological processes such as vasodilation, immune response, neurotransmission, and inhibition of platelet aggregation. It is produced naturally by the enzyme nitric oxide synthase (NOS) from the amino acid L-arginine. Inhaled nitric oxide is used medically to treat pulmonary hypertension in newborns and adults, as it helps to relax and widen blood vessels, improving oxygenation and blood flow.

Malondialdehyde (MDA) is a naturally occurring organic compound that is formed as a byproduct of lipid peroxidation, a process in which free radicals or reactive oxygen species react with polyunsaturated fatty acids. MDA is a highly reactive aldehyde that can modify proteins, DNA, and other biomolecules, leading to cellular damage and dysfunction. It is often used as a marker of oxidative stress in biological systems and has been implicated in the development of various diseases, including cancer, cardiovascular disease, and neurodegenerative disorders.

Sodium azide is a chemical compound with the formula NaN3. Medically, it is not used as a treatment, but it can be found in some pharmaceutical and laboratory settings. It is a white crystalline powder that is highly soluble in water and has a relatively low melting point.

Sodium azide is well known for its ability to release nitrogen gas upon decomposition, which makes it useful as a propellant in airbags and as a preservative in laboratory settings to prevent bacterial growth. However, this property also makes it highly toxic to both animals and humans if ingested or inhaled, as it can cause rapid respiratory failure due to the release of nitrogen gas in the body. Therefore, it should be handled with great care and appropriate safety measures.

Cysteine is a semi-essential amino acid, which means that it can be produced by the human body under normal circumstances, but may need to be obtained from external sources in certain conditions such as illness or stress. Its chemical formula is HO2CCH(NH2)CH2SH, and it contains a sulfhydryl group (-SH), which allows it to act as a powerful antioxidant and participate in various cellular processes.

Cysteine plays important roles in protein structure and function, detoxification, and the synthesis of other molecules such as glutathione, taurine, and coenzyme A. It is also involved in wound healing, immune response, and the maintenance of healthy skin, hair, and nails.

Cysteine can be found in a variety of foods, including meat, poultry, fish, dairy products, eggs, legumes, nuts, seeds, and some grains. It is also available as a dietary supplement and can be used in the treatment of various medical conditions such as liver disease, bronchitis, and heavy metal toxicity. However, excessive intake of cysteine may have adverse effects on health, including gastrointestinal disturbances, nausea, vomiting, and headaches.

Cyclic N-oxides are a class of organic compounds that contain a cyclic structure with a nitrogen atom bonded to an oxygen atom as an N-oxide. An N-oxide is a compound in which the nitrogen atom has a positive charge and the oxygen atom has a negative charge, forming a polar covalent bond. In cyclic N-oxides, this N-O group is part of a ring structure, which can be composed of various combinations of carbon, nitrogen, and other atoms. These compounds have been studied for their potential use in pharmaceuticals, agrochemicals, and materials science.

Methemoglobin is a form of hemoglobin in which the iron within the heme group is in the ferric (Fe3+) state instead of the ferrous (Fe2+) state. This oxidation reduces its ability to bind and transport oxygen effectively, leading to methemoglobinemia when methemoglobin levels become too high. Methemoglobin has a limited capacity to release oxygen to tissues, which can result in hypoxia (reduced oxygen supply) and cyanosis (bluish discoloration of the skin and mucous membranes).

Methemoglobin is normally present in small amounts in the blood, but certain factors such as exposure to oxidizing agents, genetic predisposition, or certain medications can increase its levels. Elevated methemoglobin levels can be treated with methylene blue, which helps restore the iron within hemoglobin back to its ferrous state and improves oxygen transport capacity.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Acetylcysteine is a medication that is used for its antioxidant effects and to help loosen thick mucus in the lungs. It is commonly used to treat conditions such as chronic bronchitis, emphysema, and cystic fibrosis. Acetylcysteine is also known by the brand names Mucomyst and Accolate. It works by thinning and breaking down mucus in the airways, making it easier to cough up and clear the airways. Additionally, acetylcysteine is an antioxidant that helps to protect cells from damage caused by free radicals. It is available as a oral tablet, liquid, or inhaled medication.

Peroxynitrous acid (ONOOH) is a highly reactive nitrogen species formed from the reaction between nitric oxide (NO) and superoxide radical (O2-). It is an unstable compound that quickly decomposes to form other reactive species, such as nitrogen dioxide (NO2) and hydroxyl radical (HO•), which can cause significant damage to biological molecules, including proteins, lipids, and DNA. Peroxynitrous acid has been implicated in the pathogenesis of various diseases, including neurodegenerative disorders, cardiovascular disease, and cancer.

Aerobiosis is the process of living, growing, and functioning in the presence of oxygen. It refers to the metabolic processes that require oxygen to break down nutrients and produce energy in cells. This is in contrast to anaerobiosis, which is the ability to live and grow in the absence of oxygen.

In medical terms, aerobiosis is often used to describe the growth of microorganisms, such as bacteria and fungi, that require oxygen to survive and multiply. These organisms are called aerobic organisms, and they play an important role in many biological processes, including decomposition and waste breakdown.

However, some microorganisms are unable to grow in the presence of oxygen and are instead restricted to environments where oxygen is absent or limited. These organisms are called anaerobic organisms, and their growth and metabolism are referred to as anaerobiosis.

Neutrophils are a type of white blood cell that are part of the immune system's response to infection. They are produced in the bone marrow and released into the bloodstream where they circulate and are able to move quickly to sites of infection or inflammation in the body. Neutrophils are capable of engulfing and destroying bacteria, viruses, and other foreign substances through a process called phagocytosis. They are also involved in the release of inflammatory mediators, which can contribute to tissue damage in some cases. Neutrophils are characterized by the presence of granules in their cytoplasm, which contain enzymes and other proteins that help them carry out their immune functions.

Thiocyanates are chemical compounds that contain the thiocyanate ion (SCN-), which consists of a sulfur atom, a carbon atom, and a nitrogen atom. The thiocyanate ion is formed by the removal of a hydrogen ion from thiocyanic acid (HSCN). Thiocyanates are used in various applications, including pharmaceuticals, agrochemicals, and industrial chemicals. In medicine, thiocyanates have been studied for their potential effects on the thyroid gland and their use as a treatment for cyanide poisoning. However, excessive exposure to thiocyanates can be harmful and may cause symptoms such as irritation of the eyes, skin, and respiratory tract, as well as potential impacts on thyroid function.

I'm sorry for any confusion, but "Sulfenic Acids" is not a term used in medical definitions. Sulfenic acids are organic compounds that contain a functional group with the structure R-SOH, where R represents an alkyl or aryl group. They are important intermediates in organic chemistry and biochemistry, but they are not directly related to medical terminology or human health conditions.

Pyrogallol is not typically considered a medical term, but it does have relevance to the field of pathology as a chemical reagent. Pyrogallol is an organic compound with the formula C6H3(OH)3. It is a type of phenol and can be used in histological stains to demonstrate the presence of certain enzymes or structures within tissue samples.

In a medical context, pyrogallol may be mentioned in pathology reports related to the use of this chemical in laboratory tests. However, it is not a condition or disease entity itself.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Medical Definition of Vitamin E:

Vitamin E is a fat-soluble antioxidant that plays a crucial role in protecting your body's cells from damage caused by free radicals, which are unstable molecules produced when your body breaks down food or is exposed to environmental toxins like cigarette smoke and radiation. Vitamin E is also involved in immune function, DNA repair, and other metabolic processes.

It is a collective name for a group of eight fat-soluble compounds that include four tocopherols and four tocotrienols. Alpha-tocopherol is the most biologically active form of vitamin E in humans and is the one most commonly found in supplements.

Vitamin E deficiency is rare but can occur in people with certain genetic disorders or who cannot absorb fat properly. Symptoms of deficiency include nerve and muscle damage, loss of feeling in the arms and legs, muscle weakness, and vision problems.

Food sources of vitamin E include vegetable oils (such as sunflower, safflower, and wheat germ oil), nuts and seeds (like almonds, peanuts, and sunflower seeds), and fortified foods (such as cereals and some fruit juices).

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Glutathione disulfide (GSSG) is the oxidized form of glutathione (GSH), which is a tripeptide composed of three amino acids: cysteine, glutamic acid, and glycine. It plays a crucial role in maintaining cellular redox homeostasis by scavenging free radicals and reactive oxygen species (ROS) in the body.

Glutathione exists in two forms - reduced (GSH) and oxidized (GSSG). In the reduced form, glutathione has a sulfhydryl group (-SH), which can donate an electron to neutralize free radicals and ROS. When glutathione donates an electron, it becomes oxidized and forms glutathione disulfide (GSSG).

Glutathione disulfide is a dimer of two glutathione molecules linked by a disulfide bond (-S-S-) between the sulfur atoms of their cysteine residues. The body can recycle GSSG back to its reduced form (GSH) through the action of an enzyme called glutathione reductase, which requires NADPH as a reducing agent.

Maintaining a proper balance between GSH and GSSG is essential for cellular health, as it helps regulate various physiological processes such as DNA synthesis, gene expression, immune function, and apoptosis (programmed cell death). An imbalance in glutathione homeostasis can lead to oxidative stress, inflammation, and the development of various diseases.

Xanthine is a purine base, which is a naturally occurring heterocyclic aromatic organic compound. It is formed in the body during the metabolism of purines, and it's a normal intermediate in the breakdown of nucleotides to uric acid. Xanthine is also found in various foods and beverages, such as coffee, tea, and chocolate. In the medical field, xanthine may refer to a class of drugs called xanthine derivatives, which include theophylline and caffeine, that act as bronchodilators and cardiac stimulants.

Pyruvate oxidase is not a term that has a widely recognized medical definition. However, pyruvate oxidase is an enzyme that plays a role in the metabolism of glucose in cells. It is involved in the conversion of pyruvate, a product of glycolysis, into acetyl-CoA, which can then be used in the citric acid cycle (also known as the Krebs cycle) to generate energy in the form of ATP.

Pyruvate oxidase is found in the mitochondria of cells and requires molecular oxygen (O2) to function. It catalyzes the following reaction:

pyruvate + CoA + NAD+ + H2O → acetyl-CoA + CO2 + NADH + H+

Deficiencies in pyruvate oxidase have been associated with certain metabolic disorders, such as pyruvate dehydrogenase deficiency and Leigh syndrome. However, these conditions are typically caused by defects in other enzymes involved in the metabolism of pyruvate rather than pyruvate oxidase itself.

Cell death is the process by which cells cease to function and eventually die. There are several ways that cells can die, but the two most well-known and well-studied forms of cell death are apoptosis and necrosis.

Apoptosis is a programmed form of cell death that occurs as a normal and necessary process in the development and maintenance of healthy tissues. During apoptosis, the cell's DNA is broken down into small fragments, the cell shrinks, and the membrane around the cell becomes fragmented, allowing the cell to be easily removed by phagocytic cells without causing an inflammatory response.

Necrosis, on the other hand, is a form of cell death that occurs as a result of acute tissue injury or overwhelming stress. During necrosis, the cell's membrane becomes damaged and the contents of the cell are released into the surrounding tissue, causing an inflammatory response.

There are also other forms of cell death, such as autophagy, which is a process by which cells break down their own organelles and proteins to recycle nutrients and maintain energy homeostasis, and pyroptosis, which is a form of programmed cell death that occurs in response to infection and involves the activation of inflammatory caspases.

Cell death is an important process in many physiological and pathological processes, including development, tissue homeostasis, and disease. Dysregulation of cell death can contribute to the development of various diseases, including cancer, neurodegenerative disorders, and autoimmune diseases.

Ferric compounds are inorganic compounds that contain the iron(III) cation, Fe3+. Iron(III) is a transition metal and can form stable compounds with various anions. Ferric compounds are often colored due to the d-d transitions of the iron ion. Examples of ferric compounds include ferric chloride (FeCl3), ferric sulfate (Fe2(SO4)3), and ferric oxide (Fe2O3). Ferric compounds have a variety of uses, including as catalysts, in dye production, and in medical applications.

Aldehydes are a class of organic compounds characterized by the presence of a functional group consisting of a carbon atom bonded to a hydrogen atom and a double bonded oxygen atom, also known as a formyl or aldehyde group. The general chemical structure of an aldehyde is R-CHO, where R represents a hydrocarbon chain.

Aldehydes are important in biochemistry and medicine as they are involved in various metabolic processes and are found in many biological molecules. For example, glucose is converted to pyruvate through a series of reactions that involve aldehyde intermediates. Additionally, some aldehydes have been identified as toxicants or environmental pollutants, such as formaldehyde, which is a known carcinogen and respiratory irritant.

Formaldehyde is also commonly used in medical and laboratory settings for its disinfectant properties and as a fixative for tissue samples. However, exposure to high levels of formaldehyde can be harmful to human health, causing symptoms such as coughing, wheezing, and irritation of the eyes, nose, and throat. Therefore, appropriate safety measures must be taken when handling aldehydes in medical and laboratory settings.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

A chemical model is a simplified representation or description of a chemical system, based on the laws of chemistry and physics. It is used to explain and predict the behavior of chemicals and chemical reactions. Chemical models can take many forms, including mathematical equations, diagrams, and computer simulations. They are often used in research, education, and industry to understand complex chemical processes and develop new products and technologies.

For example, a chemical model might be used to describe the way that atoms and molecules interact in a particular reaction, or to predict the properties of a new material. Chemical models can also be used to study the behavior of chemicals at the molecular level, such as how they bind to each other or how they are affected by changes in temperature or pressure.

It is important to note that chemical models are simplifications of reality and may not always accurately represent every aspect of a chemical system. They should be used with caution and validated against experimental data whenever possible.

Immobilized enzymes refer to enzymes that have been restricted or fixed in a specific location and are unable to move freely. This is typically achieved through physical or chemical methods that attach the enzyme to a solid support or matrix. The immobilization of enzymes can provide several advantages, including increased stability, reusability, and ease of separation from the reaction mixture.

Immobilized enzymes are widely used in various industrial applications, such as biotransformations, biosensors, and diagnostic kits. They can also be used for the production of pharmaceuticals, food additives, and other fine chemicals. The immobilization techniques include adsorption, covalent binding, entrapment, and cross-linking.

Adsorption involves physically attaching the enzyme to a solid support through weak forces such as van der Waals interactions or hydrogen bonding. Covalent binding involves forming chemical bonds between the enzyme and the support matrix. Entrapment involves encapsulating the enzyme within a porous matrix, while cross-linking involves chemically linking multiple enzyme molecules together to form a stable structure.

Overall, immobilized enzymes offer several advantages over free enzymes, including improved stability, reusability, and ease of separation from the reaction mixture, making them valuable tools in various industrial applications.

Disinfection is the process of eliminating or reducing harmful microorganisms from inanimate objects and surfaces through the use of chemicals, heat, or other methods. The goal of disinfection is to reduce the number of pathogens to a level that is considered safe for human health. Disinfection is an important step in preventing the spread of infectious diseases in healthcare settings, food processing facilities, and other environments where there is a risk of infection transmission.

It's important to note that disinfection is not the same as sterilization, which is the complete elimination of all microorganisms, including spores. Disinfection is generally less effective than sterilization but is often sufficient for most non-critical surfaces and objects. The choice between disinfection and sterilization depends on the level of risk associated with the item or surface being treated and the intended use of that item or surface.

Heme is not a medical term per se, but it is a term used in the field of medicine and biology. Heme is a prosthetic group found in hemoproteins, which are proteins that contain a heme iron complex. This complex plays a crucial role in various biological processes, including oxygen transport (in hemoglobin), electron transfer (in cytochromes), and chemical catalysis (in peroxidases and catalases).

The heme group consists of an organic component called a porphyrin ring, which binds to a central iron atom. The iron atom can bind or release electrons, making it essential for redox reactions in the body. Heme is also vital for the formation of hemoglobin and myoglobin, proteins responsible for oxygen transport and storage in the blood and muscles, respectively.

In summary, heme is a complex organic-inorganic structure that plays a critical role in several biological processes, particularly in electron transfer and oxygen transport.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Phenols, also known as phenolic acids or phenol derivatives, are a class of chemical compounds consisting of a hydroxyl group (-OH) attached to an aromatic hydrocarbon ring. In the context of medicine and biology, phenols are often referred to as a type of antioxidant that can be found in various foods and plants.

Phenols have the ability to neutralize free radicals, which are unstable molecules that can cause damage to cells and contribute to the development of chronic diseases such as cancer, heart disease, and neurodegenerative disorders. Some common examples of phenolic compounds include gallic acid, caffeic acid, ferulic acid, and ellagic acid, among many others.

Phenols can also have various pharmacological activities, including anti-inflammatory, antimicrobial, and analgesic effects. However, some phenolic compounds can also be toxic or irritating to the body in high concentrations, so their use as therapeutic agents must be carefully monitored and controlled.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

A reducing agent, in the context of biochemistry and medicine, is a substance that donates electrons to another molecule, thereby reducing it. This process is known as reduction, which is the opposite of oxidation. Reducing agents are often used in chemical reactions to reduce the oxidation state of other compounds. In medical terms, reducing agents may be used in various treatments and therapies, such as wound healing and antioxidant defense systems, where they help protect cells from damage caused by free radicals and other reactive oxygen species. Examples of reducing agents include ascorbic acid (vitamin C), glutathione, and certain enzymes like NADPH-dependent reductases.

Oxygen consumption, also known as oxygen uptake, is the amount of oxygen that is consumed or utilized by the body during a specific period of time, usually measured in liters per minute (L/min). It is a common measurement used in exercise physiology and critical care medicine to assess an individual's aerobic metabolism and overall health status.

In clinical settings, oxygen consumption is often measured during cardiopulmonary exercise testing (CPET) to evaluate cardiovascular function, pulmonary function, and exercise capacity in patients with various medical conditions such as heart failure, chronic obstructive pulmonary disease (COPD), and other respiratory or cardiac disorders.

During exercise, oxygen is consumed by the muscles to generate energy through a process called oxidative phosphorylation. The amount of oxygen consumed during exercise can provide important information about an individual's fitness level, exercise capacity, and overall health status. Additionally, measuring oxygen consumption can help healthcare providers assess the effectiveness of treatments and rehabilitation programs in patients with various medical conditions.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Dithiothreitol (DTT) is a reducing agent, which is a type of chemical compound that breaks disulfide bonds between cysteine residues in proteins. DTT is commonly used in biochemistry and molecular biology research to prevent the formation of disulfide bonds during protein purification and manipulation.

Chemically, DTT is a small molecule with two sulfhydryl groups (-SH) that can donate electrons to oxidized cysteine residues in proteins, converting them to their reduced form (-S-H). This reaction reduces disulfide bonds and helps to maintain the solubility and stability of proteins.

DTT is also used as an antioxidant to prevent the oxidation of other molecules, such as DNA and enzymes, during experimental procedures. However, it should be noted that DTT can also reduce other types of bonds, including those in metal ions and certain chemical dyes, so its use must be carefully controlled and monitored.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

'2,2'-Dipyridyl is an organic compound with the formula (C5H4N)2. It is a bidentate chelating ligand, which means that it can form stable coordination complexes with many metal ions by donating both of its nitrogen atoms to the metal. This ability to form complexes makes '2,2'-Dipyridyl useful in various applications, including as a catalyst in chemical reactions and as a reagent in the analysis of metal ions.

The compound is a solid at room temperature and has a molecular weight of 108.13 g/mol. It is soluble in organic solvents such as ethanol, acetone, and dichloromethane, but is insoluble in water. '2,2'-Dipyridyl is synthesized by the reaction of pyridine with formaldehyde and hydrochloric acid.

In medical contexts, '2,2'-Dipyridyl may be used as a reagent in diagnostic tests to detect the presence of certain metal ions in biological samples. However, it is not itself a drug or therapeutic agent.

Metmyoglobin is the oxidized form of myoglobin, a protein found in muscle tissue that binds and stores oxygen. When myoglobin is exposed to oxidizing agents or when muscle tissue is damaged (such as during exercise or after death), it can become oxidized and transform into metmyoglobin. This form of the protein cannot bind or store oxygen, and its presence in food (particularly in meats) can lead to off-flavors, discoloration, and reduced shelf life. In medical contexts, metmyoglobin may be used as a marker for muscle damage or hypoxia (lack of oxygen).

Dental enamel is the hard, white, outermost layer of a tooth. It is a highly mineralized and avascular tissue, meaning it contains no living cells or blood vessels. Enamel is primarily composed of calcium and phosphate minerals and serves as the protective covering for the crown of a tooth, which is the portion visible above the gum line.

Enamel is the hardest substance in the human body, and its primary function is to provide structural support and protection to the underlying dentin and pulp tissues of the tooth. It also plays a crucial role in chewing and biting by helping to distribute forces evenly across the tooth surface during these activities.

Despite its hardness, dental enamel can still be susceptible to damage from factors such as tooth decay, erosion, and abrasion. Once damaged or lost, enamel cannot regenerate or repair itself, making it essential to maintain good oral hygiene practices and seek regular dental checkups to prevent enamel damage and protect overall oral health.

Acne vulgaris is a common skin condition characterized by the formation of various types of blemishes on the skin, such as blackheads, whiteheads, papules, pustules, and cysts or nodules. These lesions typically appear on areas of the body that have a high concentration of sebaceous glands, including the face, neck, chest, back, and shoulders.

Acne vulgaris occurs when hair follicles become clogged with dead skin cells and excess oil (sebum) produced by the sebaceous glands. This blockage provides an ideal environment for bacteria, particularly Propionibacterium acnes, to multiply, leading to inflammation and infection. The severity of acne vulgaris can range from mild with only a few scattered comedones (blackheads or whiteheads) to severe cystic acne, which can cause significant scarring and emotional distress.

The exact causes of acne vulgaris are not fully understood, but several factors contribute to its development, including:

1. Hormonal changes during puberty, menstruation, pregnancy, or due to conditions like polycystic ovary syndrome (PCOS)
2. Genetic predisposition
3. Use of certain medications, such as corticosteroids and lithium
4. Excessive production of sebum due to overactive sebaceous glands
5. Accumulation of dead skin cells that clog pores
6. Bacterial infection (particularly Propionibacterium acnes)
7. Inflammation caused by the body's immune response to bacterial infection and clogged pores

Treatment for acne vulgaris depends on its severity and can include over-the-counter or prescription topical treatments, oral medications, chemical peels, light therapies, or even hormonal therapies in some cases. It is essential to seek professional medical advice from a dermatologist or healthcare provider to determine the most appropriate treatment plan for individual needs.

Cerium is a chemical element with the symbol "Ce" and atomic number 58. It belongs to the lanthanide series in the periodic table and is the second element in this series. Cerium is a solid at room temperature, with a silver-white appearance and has a face-centered cubic crystal structure.

In medicine, cerium oxide nanoparticles have been studied for their potential therapeutic applications, particularly in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. These nanoparticles are believed to have antioxidant properties that can help protect neurons from oxidative stress and inflammation. However, more research is needed to fully understand the safety and efficacy of cerium-based therapies in medical treatments.

Thiobarbiturates are a class of barbiturates that contain a sulfur atom in place of the oxygen atom in the urea-like structure. They are central nervous system depressants, which means they can cause decreased heart rate, blood pressure, and breathing. These properties make them useful for anesthesia and sedation, but also contribute to their potential for abuse and dependence.

Thiobarbiturates have been largely replaced by other classes of drugs due to their narrow therapeutic index (the difference between the effective dose and a toxic dose is small) and high potential for overdose. Examples of thiobarbiturates include thiopental, used for induction of anesthesia, and pentobarbital, which has been used for both anesthesia and as a treatment for seizures.

It's important to note that barbiturates and thiobarbiturates are controlled substances in many countries due to their potential for abuse and dependence. They should only be prescribed and administered by trained medical professionals.

Respiratory burst is a term used in the field of biology, particularly in the context of immunology and cellular processes. It does not have a direct application to clinical medicine, but it is important for understanding certain physiological and pathophysiological mechanisms. Here's a definition of respiratory burst:

Respiratory burst is a rapid increase in oxygen consumption by phagocytic cells (like neutrophils, monocytes, and macrophages) following their activation in response to various stimuli, such as pathogens or inflammatory molecules. This process is part of the innate immune response and serves to eliminate invading microorganisms.

The respiratory burst involves the activation of NADPH oxidase, an enzyme complex present in the membrane of phagosomes (the compartment where pathogens are engulfed). Upon activation, NADPH oxidase catalyzes the reduction of oxygen to superoxide radicals, which then dismutate to form hydrogen peroxide. These reactive oxygen species (ROS) can directly kill or damage microorganisms and also serve as signaling molecules for other immune cells.

While respiratory burst is a crucial part of the immune response, excessive or dysregulated ROS production can contribute to tissue damage and chronic inflammation, which have implications in various pathological conditions, such as atherosclerosis, neurodegenerative diseases, and cancer.

I'm sorry for any confusion, but "Tetraoxanes" is not a recognized term in medical terminology or pharmacology. It may be a term used in chemistry to describe a specific class of compounds containing four oxygen atoms, but it does not have a direct relevance to medical definition. If you could provide more context, I would be happy to help further.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Dental enamel permeability refers to the ability of substances to pass through the dental enamel, which is the hard, outermost layer of a tooth. The permeability of dental enamel can be affected by various factors such as its mineral content, structure, and the pH level of the oral environment.

Under normal conditions, dental enamel is relatively impermeable to substances due to its highly mineralized structure. However, when the enamel is exposed to acidic environments, such as those created by bacterial plaque, the minerals in the enamel can dissolve, creating microscopic pores that increase its permeability. This process, known as demineralization, can lead to tooth decay and other dental problems.

On the other hand, certain treatments and materials used in dentistry may temporarily increase the permeability of dental enamel, such as etching with acid before bonding procedures. This intentional increase in permeability allows for better adhesion of filling materials or sealants to the tooth surface. However, it is important to manage and control the permeability of dental enamel to maintain its structural integrity and protect oral health.

Electrochemistry is a branch of chemistry that deals with the interconversion of electrical energy and chemical energy. It involves the study of chemical processes that cause electrons to move, resulting in the transfer of electrical charge, and the reverse processes by which electrical energy can be used to drive chemical reactions. This field encompasses various phenomena such as the generation of electricity from chemical sources (as in batteries), the electrolysis of substances, and corrosion. Electrochemical reactions are fundamental to many technologies, including energy storage and conversion, environmental protection, and medical diagnostics.

I believe there may be a slight misunderstanding in your question. "Plant leaves" are not a medical term, but rather a general biological term referring to a specific organ found in plants.

Leaves are organs that are typically flat and broad, and they are the primary site of photosynthesis in most plants. They are usually green due to the presence of chlorophyll, which is essential for capturing sunlight and converting it into chemical energy through photosynthesis.

While leaves do not have a direct medical definition, understanding their structure and function can be important in various medical fields, such as pharmacognosy (the study of medicinal plants) or environmental health. For example, certain plant leaves may contain bioactive compounds that have therapeutic potential, while others may produce allergens or toxins that can impact human health.

Iodides are chemical compounds that contain iodine in the form of an iodide ion (I-). Iodide ions are negatively charged ions that consist of one iodine atom and an extra electron. Iodides are commonly found in dietary supplements and medications, and they are often used to treat or prevent iodine deficiency. They can also be used as expectorants to help thin and loosen mucus in the respiratory tract. Examples of iodides include potassium iodide (KI) and sodium iodide (NaI).

According to the medical definition, ultraviolet (UV) rays are invisible radiations that fall in the range of the electromagnetic spectrum between 100-400 nanometers. UV rays are further divided into three categories: UVA (320-400 nm), UVB (280-320 nm), and UVC (100-280 nm).

UV rays have various sources, including the sun and artificial sources like tanning beds. Prolonged exposure to UV rays can cause damage to the skin, leading to premature aging, eye damage, and an increased risk of skin cancer. UVA rays penetrate deeper into the skin and are associated with skin aging, while UVB rays primarily affect the outer layer of the skin and are linked to sunburns and skin cancer. UVC rays are the most harmful but fortunately, they are absorbed by the Earth's atmosphere and do not reach the surface.

Healthcare professionals recommend limiting exposure to UV rays, wearing protective clothing, using broad-spectrum sunscreen with an SPF of at least 30, and avoiding tanning beds to reduce the risk of UV-related health problems.

L-amino acid oxidase (LAAO) is an enzyme that belongs to the family of flavin monooxygenases. It catalyzes the oxidative deamination of L-amino acids into corresponding α-keto acids, ammonia, and hydrogen peroxide. The reaction takes place in the presence of molecular oxygen and FAD (flavin adenine dinucleotide) as a cofactor.

LAAO is found in various organisms, including mammals, reptiles, fish, insects, bacteria, and plants. In some species, LAAO plays a role in the metabolism of amino acids, while in others, it functions as a part of the immune system or contributes to the development of venoms and toxins.

In humans, LAAO is primarily located in the peroxisomes of liver, kidney, and intestinal cells, where it participates in the catabolism of amino acids. In addition, LAAO has been found to have potential roles in several pathological conditions, such as neurodegenerative disorders, atherosclerosis, and cancer, due to its ability to generate hydrogen peroxide and induce oxidative stress.

Reactive Nitrogen Species (RNS) are a group of highly reactive and chemically diverse molecules that are derived from nitric oxide (NO) or other nitrogen-containing compounds. They play important roles in various biological processes, such as cell signaling, neurotransmission, and immune response. However, an overproduction of RNS can also contribute to the development of several pathological conditions, including inflammation, neurodegenerative diseases, and cancer. Examples of RNS include nitric oxide (NO), peroxynitrite (ONOO-), and nitrogen dioxide (NO2). These species are generated through various biochemical reactions, such as the conversion of L-arginine to citrulline by nitric oxide synthase (NOS) enzymes, which leads to the production of NO. RNS can then react with other molecules in the body, such as reactive oxygen species (ROS), leading to the formation of harmful compounds that can damage cellular structures and disrupt normal physiological functions.

Physiological stress is a response of the body to a demand or threat that disrupts homeostasis and activates the autonomic nervous system and hypothalamic-pituitary-adrenal (HPA) axis. This results in the release of stress hormones such as adrenaline, cortisol, and noradrenaline, which prepare the body for a "fight or flight" response. Increased heart rate, rapid breathing, heightened sensory perception, and increased alertness are some of the physiological changes that occur during this response. Chronic stress can have negative effects on various bodily functions, including the immune, cardiovascular, and nervous systems.

NADH, NADPH oxidoreductases are a class of enzymes that catalyze the redox reaction between NADH or NADPH and various electron acceptors. These enzymes play a crucial role in cellular metabolism by transferring electrons from NADH or NADPH to other molecules, which is essential for many biochemical reactions.

NADH (nicotinamide adenine dinucleotide hydrogen) and NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) are coenzymes that act as electron carriers in redox reactions. They consist of a nicotinamide ring, which undergoes reduction or oxidation by accepting or donating electrons and a proton (H+).

NADH, NADPH oxidoreductases are classified based on their structure and mechanism of action. Some examples include:

1. Dehydrogenases: These enzymes catalyze the oxidation of NADH or NADPH to NAD+ or NADP+ while reducing an organic substrate. Examples include lactate dehydrogenase, alcohol dehydrogenase, and malate dehydrogenase.
2. Oxidases: These enzymes catalyze the oxidation of NADH or NADPH to NAD+ or NADP+ while reducing molecular oxygen (O2) to water (H2O). Examples include NADH oxidase and NADPH oxidase.
3. Reductases: These enzymes catalyze the reduction of various electron acceptors using NADH or NADPH as a source of electrons. Examples include glutathione reductase, thioredoxin reductase, and nitrate reductase.

Overall, NADH, NADPH oxidoreductases are essential for maintaining the redox balance in cells and play a critical role in various metabolic pathways, including energy production, detoxification, and biosynthesis.

I'm sorry for any confusion, but "Ditiocarb" is not a recognized medical term or abbreviation in standard medical or clinical contexts. It's possible that you may have made a typo or are referring to a term from a different field. If you have more information or if there's a specific context in which you encountered this term, I'd be happy to help further!

Urea is not a medical condition but it is a medically relevant substance. Here's the definition:

Urea is a colorless, odorless solid that is the primary nitrogen-containing compound in the urine of mammals. It is a normal metabolic end product that is excreted by the kidneys and is also used as a fertilizer and in various industrial applications. Chemically, urea is a carbamide, consisting of two amino groups (NH2) joined by a carbon atom and having a hydrogen atom and a hydroxyl group (OH) attached to the carbon atom. Urea is produced in the liver as an end product of protein metabolism and is then eliminated from the body by the kidneys through urination. Abnormal levels of urea in the blood, known as uremia, can indicate impaired kidney function or other medical conditions.

Luminol is not a medical term itself, but it is often used in forensic science which can have applications in the medical field. Luminol is a chemical compound that exhibits chemiluminescence, meaning it emits light when it reacts with certain substances. In forensic science, luminol is commonly used to detect the presence of blood at crime scenes, even if the blood has been cleaned up or is no longer visible to the naked eye. When luminol comes into contact with iron in hemoglobin (a protein found in red blood cells), it produces a bright blue light. This reaction can help investigators locate and document evidence of blood stains that might otherwise go unnoticed.

Biosensing techniques refer to the methods and technologies used to detect and measure biological molecules or processes, typically through the use of a physical device or sensor. These techniques often involve the conversion of a biological response into an electrical signal that can be measured and analyzed. Examples of biosensing techniques include electrochemical biosensors, optical biosensors, and piezoelectric biosensors.

Electrochemical biosensors measure the electrical current or potential generated by a biochemical reaction at an electrode surface. This type of biosensor typically consists of a biological recognition element, such as an enzyme or antibody, that is immobilized on the electrode surface and interacts with the target analyte to produce an electrical signal.

Optical biosensors measure changes in light intensity or wavelength that occur when a biochemical reaction takes place. This type of biosensor can be based on various optical principles, such as absorbance, fluorescence, or surface plasmon resonance (SPR).

Piezoelectric biosensors measure changes in mass or frequency that occur when a biomolecule binds to the surface of a piezoelectric crystal. This type of biosensor is based on the principle that piezoelectric materials generate an electrical charge when subjected to mechanical stress, and this charge can be used to detect changes in mass or frequency that are proportional to the amount of biomolecule bound to the surface.

Biosensing techniques have a wide range of applications in fields such as medicine, environmental monitoring, food safety, and biodefense. They can be used to detect and measure a variety of biological molecules, including proteins, nucleic acids, hormones, and small molecules, as well as to monitor biological processes such as cell growth or metabolism.

NAD (Nicotinamide Adenine Dinucleotide) is a coenzyme found in all living cells. It plays an essential role in cellular metabolism, particularly in redox reactions, where it acts as an electron carrier. NAD exists in two forms: NAD+, which accepts electrons and becomes reduced to NADH. This pairing of NAD+/NADH is involved in many fundamental biological processes such as generating energy in the form of ATP during cellular respiration, and serving as a critical cofactor for various enzymes that regulate cellular functions like DNA repair, gene expression, and cell death.

Maintaining optimal levels of NAD+/NADH is crucial for overall health and longevity, as it declines with age and in certain disease states. Therefore, strategies to boost NAD+ levels are being actively researched for their potential therapeutic benefits in various conditions such as aging, neurodegenerative disorders, and metabolic diseases.

Peptostreptococcus is a genus of Gram-positive, anaerobic, coccus-shaped bacteria that are commonly found as normal flora in the human mouth, gastrointestinal tract, and female genital tract. These organisms can become pathogenic and cause a variety of infections, particularly in individuals with compromised immune systems or following surgical procedures. Infections caused by Peptostreptococcus species can include abscesses, endocarditis, bacteremia, and joint infections. Proper identification and antibiotic susceptibility testing are essential for the effective treatment of these infections.

Borates are a group of minerals that contain boron, oxygen, and hydrogen in various combinations. They can also contain other elements such as sodium, calcium, or potassium. Borates have a wide range of uses, including as flame retardants, insecticides, and preservatives. In medicine, boric acid powder is sometimes used as a mild antiseptic to treat minor cuts, burns, and scrapes. However, it can be toxic if ingested or absorbed through the skin in large amounts, so it should be used with caution.

Salicylic Acid is a type of beta hydroxy acid (BHA) that is commonly used in dermatology due to its keratolytic and anti-inflammatory properties. It works by causing the cells of the epidermis to shed more easily, preventing the pores from becoming blocked and promoting the growth of new skin cells. Salicylic Acid is also a potent anti-inflammatory agent, which makes it useful in the treatment of inflammatory acne and other skin conditions associated with redness and irritation. It can be found in various over-the-counter skincare products, such as cleansers, creams, and peels, as well as in prescription-strength formulations.

Linoleic acid is a type of polyunsaturated fatty acid (PUFA) that is essential for human health. It is one of the two essential fatty acids, meaning that it cannot be produced by the body and must be obtained through diet.

Linoleic acid is a member of the omega-6 fatty acid family and has a chemical structure with two double bonds at the sixth and ninth carbon atoms from the methyl end of the molecule. It is found in various plant sources, such as vegetable oils (e.g., soybean, corn, safflower, and sunflower oils), nuts, seeds, and whole grains.

Linoleic acid plays a crucial role in maintaining the fluidity and function of cell membranes, producing eicosanoids (hormone-like substances that regulate various bodily functions), and supporting skin health. However, excessive intake of linoleic acid can lead to an imbalance between omega-6 and omega-3 fatty acids, which may contribute to inflammation and chronic diseases. Therefore, it is recommended to maintain a balanced diet with appropriate amounts of both omega-6 and omega-3 fatty acids.

Dental devices for home care are products designed for use by individuals or their caregivers in a home setting to maintain oral hygiene, manage dental health issues, and promote overall oral health. These devices can include:

1. Toothbrushes: Manual, electric, or battery-operated toothbrushes used to clean teeth and remove plaque and food debris.
2. Dental floss: A thin string used to remove food particles and plaque from between the teeth and under the gum line.
3. Interdental brushes: Small brushes designed to clean between the teeth and around dental appliances, such as braces or implants.
4. Water flossers/oral irrigators: Devices that use a stream of water to remove food particles and plaque from between the teeth and under the gum line.
5. Tongue scrapers: Tools used to clean the tongue's surface, removing bacteria and reducing bad breath.
6. Rubber tips/gum stimulators: Devices used to massage and stimulate the gums, promoting blood circulation and helping to maintain gum health.
7. Dental picks/sticks: Pointed tools used to remove food particles and plaque from between the teeth and under the gum line.
8. Mouthguards: Protective devices worn over the teeth to prevent damage from grinding, clenching, or sports-related injuries.
9. Night guards: Similar to mouthguards, these are designed to protect the teeth from damage caused by nighttime teeth grinding (bruxism).
10. Dental retainers: Devices used to maintain the alignment of teeth after orthodontic treatment.
11. Whitening trays and strips: At-home products used to whiten teeth by applying a bleaching agent to the tooth surface.
12. Fluoride mouth rinses: Anticavity rinses containing fluoride, which help strengthen tooth enamel and prevent decay.
13. Oral pain relievers: Topical gels or creams used to alleviate oral pain, such as canker sores or denture irritation.

Proper use of these dental devices, along with regular dental check-ups and professional cleanings, can help maintain good oral health and prevent dental issues.

Guaiacol is not a medical term per se, but it is a chemical compound with potential applications in the medical field. Here's a general definition:

Guaiacol (also known as 2-methoxyphenol) is an organic compound that belongs to the class of phenols. It is a colorless or slightly yellow oily liquid with a characteristic smoky odor, and it is soluble in alcohol and ether but only sparingly soluble in water. Guaiacol occurs naturally in the smoke of wood fires and is also found in certain plants, such as guaiacum and creosote bush. It has antimicrobial properties and is used in some medical and industrial applications, including as a precursor for the synthesis of other chemicals.

Spin trapping is a technique used in free radical research to detect and study short-lived, reactive free radicals. It involves the use of spin trap compounds, which react with the radicals to form more stable, longer-lived radical adducts. These adducts can then be detected and analyzed using various techniques such as electron paramagnetic resonance (EPR) spectroscopy.

The spin trap compound is typically a nitrone or nitroso compound, which reacts with the free radical to form a nitroxide radical. The nitroxide radical has a characteristic EPR spectrum that can be used to identify and quantify the original free radical. This technique allows for the direct detection and measurement of free radicals in biological systems, providing valuable insights into their role in various physiological and pathological processes.

Benzidines are a class of chemical compounds with the basic structure of two benzene rings linked by a central nitrogen atom. The term "benzidine" can refer specifically to the parent compound, but it is more commonly used as a general term for a group of related compounds known as benzidine congeners or benzidine derivatives.

Benzidines are primarily used in the manufacture of dyes and pigments, although they have also been used in some industrial and laboratory applications. Exposure to benzidines has been linked to an increased risk of bladder cancer and other health problems, so their use is regulated in many countries.

It's worth noting that the medical definition of "benzidines" primarily focuses on their chemical structure and potential health effects, rather than their specific medical uses or applications.

'Onium compounds' is a general term used in chemistry and biochemistry to describe a class of organic compounds that contain a positively charged functional group. The name 'onium' refers to the positive charge, which is usually located on a nitrogen or phosphorus atom.

The most common onium compounds are ammonium compounds (positive charge on a nitrogen atom) and phosphonium compounds (positive charge on a phosphorus atom). Other examples include sulfonium compounds (positive charge on a sulfur atom) and oxonium compounds (positive charge on an oxygen atom).

In the context of medical research, onium compounds may be studied for their potential use as drugs or diagnostic agents. For example, certain ammonium compounds have been shown to have antimicrobial properties and are used in some disinfectants and sanitizers. Phosphonium compounds have been investigated for their potential use as anti-cancer agents, while sulfonium compounds have been studied for their potential as enzyme inhibitors.

It's worth noting that onium compounds can also be found in nature, including in some biological systems. For example, certain enzymes and signaling molecules contain onium groups that are important for their function.

I couldn't find a medical definition for "diamide" as it is not a term commonly used in medicine or biomedical sciences. The term "diamide" is a chemical name that refers to a compound containing two amide groups. It may have various uses in different scientific fields, such as chemistry and biochemistry, but it is not a medical term.

Spectrophotometry, Ultraviolet (UV-Vis) is a type of spectrophotometry that measures how much ultraviolet (UV) and visible light is absorbed or transmitted by a sample. It uses a device called a spectrophotometer to measure the intensity of light at different wavelengths as it passes through a sample. The resulting data can be used to determine the concentration of specific components within the sample, identify unknown substances, or evaluate the physical and chemical properties of materials.

UV-Vis spectroscopy is widely used in various fields such as chemistry, biology, pharmaceuticals, and environmental science. It can detect a wide range of substances including organic compounds, metal ions, proteins, nucleic acids, and dyes. The technique is non-destructive, meaning that the sample remains unchanged after the measurement.

In UV-Vis spectroscopy, the sample is placed in a cuvette or other container, and light from a source is directed through it. The light then passes through a monochromator, which separates it into its component wavelengths. The monochromatic light is then directed through the sample, and the intensity of the transmitted or absorbed light is measured by a detector.

The resulting absorption spectrum can provide information about the concentration and identity of the components in the sample. For example, if a compound has a known absorption maximum at a specific wavelength, its concentration can be determined by measuring the absorbance at that wavelength and comparing it to a standard curve.

Overall, UV-Vis spectrophotometry is a versatile and powerful analytical technique for quantitative and qualitative analysis of various samples in different fields.

Iron chelating agents are medications that bind to iron in the body, forming a stable complex that can then be excreted from the body. These agents are primarily used to treat iron overload, a condition that can occur due to frequent blood transfusions or certain genetic disorders such as hemochromatosis. By reducing the amount of iron in the body, these medications can help prevent or reduce damage to organs such as the heart and liver. Examples of iron chelating agents include deferoxamine, deferasirox, and deferiprone.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Cyanides are a group of chemical compounds that contain the cyano group, -CN, which consists of a carbon atom triple-bonded to a nitrogen atom. They are highly toxic and can cause rapid death due to the inhibition of cellular respiration. Cyanide ions (CN-) bind to the ferric iron in cytochrome c oxidase, a crucial enzyme in the electron transport chain, preventing the flow of electrons and the production of ATP, leading to cellular asphyxiation.

Common sources of cyanides include industrial chemicals such as hydrogen cyanide (HCN) and potassium cyanide (KCN), as well as natural sources like certain fruits, nuts, and plants. Exposure to high levels of cyanides can occur through inhalation, ingestion, or skin absorption, leading to symptoms such as headache, dizziness, nausea, vomiting, rapid heartbeat, seizures, coma, and ultimately death. Treatment for cyanide poisoning typically involves the use of antidotes that bind to cyanide ions and convert them into less toxic forms, such as thiosulfate and rhodanese.

The endothelium is a thin layer of simple squamous epithelial cells that lines the interior surface of blood vessels, lymphatic vessels, and heart chambers. The vascular endothelium, specifically, refers to the endothelial cells that line the blood vessels. These cells play a crucial role in maintaining vascular homeostasis by regulating vasomotor tone, coagulation, platelet activation, inflammation, and permeability of the vessel wall. They also contribute to the growth and repair of the vascular system and are involved in various pathological processes such as atherosclerosis, hypertension, and diabetes.

The Electron Transport Chain (ETC) is a series of complexes in the inner mitochondrial membrane that are involved in the process of cellular respiration. It is the final pathway for electrons derived from the oxidation of nutrients such as glucose, fatty acids, and amino acids to be transferred to molecular oxygen. This transfer of electrons drives the generation of a proton gradient across the inner mitochondrial membrane, which is then used by ATP synthase to produce ATP, the main energy currency of the cell.

The electron transport chain consists of four complexes (I-IV) and two mobile electron carriers (ubiquinone and cytochrome c). Electrons from NADH and FADH2 are transferred to Complex I and Complex II respectively, which then pass them along to ubiquinone. Ubiquinone then transfers the electrons to Complex III, which passes them on to cytochrome c. Finally, cytochrome c transfers the electrons to Complex IV, where they combine with oxygen and protons to form water.

The transfer of electrons through the ETC is accompanied by the pumping of protons from the mitochondrial matrix to the intermembrane space, creating a proton gradient. The flow of protons back across the inner membrane through ATP synthase drives the synthesis of ATP from ADP and inorganic phosphate.

Overall, the electron transport chain is a crucial process for generating energy in the form of ATP in the cell, and it plays a key role in many metabolic pathways.

Thiomalates are not a medical term per se, but they refer to a group of chemical compounds that contain a sulfur atom (thio-) and a malic acid component (-malate). In the medical context, thiomalates are primarily known for their use in the preparation of certain medications. Specifically, potassium or sodium salt of thiomalic acid is used as an active ingredient in some types of disease-modifying antirheumatic drugs (DMARDs), such as rheumatoid arthritis treatments. These medications, known as thiomalate drugs, work by reducing inflammation and slowing down the progression of the disease.

Examples of thiomalate drugs include:

* Sodium thiomalate (brand name: Thiosal)
* Potassium thiomalate (brand name: Thiomal-K)

It is important to note that these medications can have side effects and potential risks, so they should only be used under the supervision of a healthcare professional.

A plant extract is a preparation containing chemical constituents that have been extracted from a plant using a solvent. The resulting extract may contain a single compound or a mixture of several compounds, depending on the extraction process and the specific plant material used. These extracts are often used in various industries including pharmaceuticals, nutraceuticals, cosmetics, and food and beverage, due to their potential therapeutic or beneficial properties. The composition of plant extracts can vary widely, and it is important to ensure their quality, safety, and efficacy before use in any application.

Colorimetry is the scientific measurement and quantification of color, typically using a colorimeter or spectrophotometer. In the medical field, colorimetry may be used in various applications such as:

1. Diagnosis and monitoring of skin conditions: Colorimeters can measure changes in skin color to help diagnose or monitor conditions like jaundice, cyanosis, or vitiligo. They can also assess the effectiveness of treatments for these conditions.
2. Vision assessment: Colorimetry is used in vision testing to determine the presence and severity of visual impairments such as color blindness or deficiencies. Special tests called anomaloscopes or color vision charts are used to measure an individual's ability to distinguish between different colors.
3. Environmental monitoring: In healthcare settings, colorimetry can be employed to monitor the cleanliness and sterility of surfaces or equipment by measuring the amount of contamination present. This is often done using ATP (adenosine triphosphate) bioluminescence assays, which emit light when they come into contact with microorganisms.
4. Medical research: Colorimetry has applications in medical research, such as studying the optical properties of tissues or developing new diagnostic tools and techniques based on color measurements.

In summary, colorimetry is a valuable tool in various medical fields for diagnosis, monitoring, and research purposes. It allows healthcare professionals to make more informed decisions about patient care and treatment plans.

L-Lactate Dehydrogenase (LDH) is an enzyme found in various tissues within the body, including the heart, liver, kidneys, muscles, and brain. It plays a crucial role in the process of energy production, particularly during anaerobic conditions when oxygen levels are low.

In the presence of the coenzyme NADH, LDH catalyzes the conversion of pyruvate to lactate, generating NAD+ as a byproduct. Conversely, in the presence of NAD+, LDH can convert lactate back to pyruvate using NADH. This reversible reaction is essential for maintaining the balance between lactate and pyruvate levels within cells.

Elevated blood levels of LDH may indicate tissue damage or injury, as this enzyme can be released into the circulation following cellular breakdown. As a result, LDH is often used as a nonspecific biomarker for various medical conditions, such as myocardial infarction (heart attack), liver disease, muscle damage, and certain types of cancer. However, it's important to note that an isolated increase in LDH does not necessarily pinpoint the exact location or cause of tissue damage, and further diagnostic tests are usually required for confirmation.

In a medical context, "hot temperature" is not a standard medical term with a specific definition. However, it is often used in relation to fever, which is a common symptom of illness. A fever is typically defined as a body temperature that is higher than normal, usually above 38°C (100.4°F) for adults and above 37.5-38°C (99.5-101.3°F) for children, depending on the source.

Therefore, when a medical professional talks about "hot temperature," they may be referring to a body temperature that is higher than normal due to fever or other causes. It's important to note that a high environmental temperature can also contribute to an elevated body temperature, so it's essential to consider both the body temperature and the environmental temperature when assessing a patient's condition.

Anti-infective agents, local, are medications that are applied directly to a specific area of the body to prevent or treat infections caused by bacteria, fungi, viruses, or parasites. These agents include topical antibiotics, antifungals, antivirals, and anti-parasitic drugs. They work by killing or inhibiting the growth of the infectious organisms, thereby preventing their spread and reducing the risk of infection. Local anti-infective agents are often used to treat skin infections, eye infections, and other localized infections, and can be administered as creams, ointments, gels, solutions, or drops.

Vitamin K is a fat-soluble vitamin that plays a crucial role in blood clotting and bone metabolism. It is essential for the production of several proteins involved in blood clotting, including factor II (prothrombin), factor VII, factor IX, and factor X. Additionally, Vitamin K is necessary for the synthesis of osteocalcin, a protein that contributes to bone health by regulating the deposition of calcium in bones.

There are two main forms of Vitamin K: Vitamin K1 (phylloquinone), which is found primarily in green leafy vegetables and some vegetable oils, and Vitamin K2 (menaquinones), which is produced by bacteria in the intestines and is also found in some fermented foods.

Vitamin K deficiency can lead to bleeding disorders such as hemorrhage and excessive bruising. While Vitamin K deficiency is rare in adults, it can occur in newborns who have not yet developed sufficient levels of the vitamin. Therefore, newborns are often given a Vitamin K injection shortly after birth to prevent bleeding problems.

Manganese is not a medical condition, but it's an essential trace element that is vital for human health. Here is the medical definition of Manganese:

Manganese (Mn) is a trace mineral that is present in tiny amounts in the body. It is found mainly in bones, the liver, kidneys, and pancreas. Manganese helps the body form connective tissue, bones, blood clotting factors, and sex hormones. It also plays a role in fat and carbohydrate metabolism, calcium absorption, and blood sugar regulation. Manganese is also necessary for normal brain and nerve function.

The recommended dietary allowance (RDA) for manganese is 2.3 mg per day for adult men and 1.8 mg per day for adult women. Good food sources of manganese include nuts, seeds, legumes, whole grains, green leafy vegetables, and tea.

In some cases, exposure to high levels of manganese can cause neurological symptoms similar to Parkinson's disease, a condition known as manganism. However, this is rare and usually occurs in people who are occupationally exposed to manganese dust or fumes, such as welders.

Thioredoxin-disulfide reductase (Txnrd, TrxR) is an enzyme that belongs to the pyridine nucleotide-disulfide oxidoreductase family. It plays a crucial role in maintaining the intracellular redox balance by reducing disulfide bonds in proteins and keeping them in their reduced state. This enzyme utilizes NADPH as an electron donor to reduce thioredoxin (Trx), which then transfers its electrons to various target proteins, thereby regulating their activity, protein folding, and antioxidant defense mechanisms.

Txnrd is essential for several cellular processes, including DNA synthesis, gene expression, signal transduction, and protection against oxidative stress. Dysregulation of Txnrd has been implicated in various pathological conditions, such as cancer, neurodegenerative diseases, and inflammatory disorders. Therefore, understanding the function and regulation of this enzyme is of great interest for developing novel therapeutic strategies.

Indicators and reagents are terms commonly used in the field of clinical chemistry and laboratory medicine. Here are their definitions:

1. Indicator: An indicator is a substance that changes its color or other physical properties in response to a chemical change, such as a change in pH, oxidation-reduction potential, or the presence of a particular ion or molecule. Indicators are often used in laboratory tests to monitor or signal the progress of a reaction or to indicate the end point of a titration. A familiar example is the use of phenolphthalein as a pH indicator in acid-base titrations, which turns pink in basic solutions and colorless in acidic solutions.

2. Reagent: A reagent is a substance that is added to a system (such as a sample or a reaction mixture) to bring about a chemical reaction, test for the presence or absence of a particular component, or measure the concentration of a specific analyte. Reagents are typically chemicals with well-defined and consistent properties, allowing them to be used reliably in analytical procedures. Examples of reagents include enzymes, antibodies, dyes, metal ions, and organic compounds. In laboratory settings, reagents are often prepared and standardized according to strict protocols to ensure their quality and performance in diagnostic tests and research applications.

Fluorescein is not a medical condition, but rather a diagnostic dye that is used in various medical tests and procedures. It is a fluorescent compound that absorbs light at one wavelength and emits light at another wavelength, which makes it useful for imaging and detecting various conditions.

In ophthalmology, fluorescein is commonly used in eye examinations to evaluate the health of the cornea, conjunctiva, and anterior chamber of the eye. A fluorescein dye is applied to the surface of the eye, and then the eye is examined under a blue light. The dye highlights any damage or abnormalities on the surface of the eye, such as scratches, ulcers, or inflammation.

Fluorescein is also used in angiography, a medical imaging technique used to examine blood vessels in the body. A fluorescein dye is injected into a vein, and then a special camera takes pictures of the dye as it flows through the blood vessels. This can help doctors diagnose and monitor conditions such as cancer, diabetes, and macular degeneration.

Overall, fluorescein is a valuable diagnostic tool that helps medical professionals detect and monitor various conditions in the body.

Erythrocytes, also known as red blood cells (RBCs), are the most common type of blood cell in circulating blood in mammals. They are responsible for transporting oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs.

Erythrocytes are formed in the bone marrow and have a biconcave shape, which allows them to fold and bend easily as they pass through narrow blood vessels. They do not have a nucleus or mitochondria, which makes them more flexible but also limits their ability to reproduce or repair themselves.

In humans, erythrocytes are typically disc-shaped and measure about 7 micrometers in diameter. They contain the protein hemoglobin, which binds to oxygen and gives blood its red color. The lifespan of an erythrocyte is approximately 120 days, after which it is broken down in the liver and spleen.

Abnormalities in erythrocyte count or function can lead to various medical conditions, such as anemia, polycythemia, and sickle cell disease.

Decontamination is the process of removing, inactivating or destroying harmful contaminants from a person, object, environment or substance. In a medical context, decontamination typically refers to the removal of pathogens, toxic chemicals, or radioactive substances from patients, equipment, or surfaces in order to prevent infection or illness.

There are different methods and techniques for decontamination depending on the type and extent of contamination. For example, mechanical cleaning (such as washing with soap and water), chemical disinfection (using antimicrobial agents), radiation sterilization (using ionizing radiation), and heat sterilization (using steam or dry heat) are some common methods used in medical settings to decontaminate surfaces, equipment, and supplies.

Decontamination is an important process in healthcare settings, such as hospitals and clinics, as well as in emergency response situations involving hazardous materials or bioterrorism incidents. Proper decontamination procedures can help prevent the spread of infectious diseases, reduce the risk of chemical or radiation exposure, and protect the health and safety of patients, healthcare workers, and the public.

"Spin labels" are a term used in the field of magnetic resonance, including nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). They refer to molecules or atoms that have been chemically attached to a system of interest and possess a stable, unpaired electron. This unpaired electron behaves like a tiny magnet and can be manipulated using magnetic fields and radiofrequency pulses in EPR experiments. The resulting changes in the electron's spin state can provide information about the local environment, dynamics, and structure of the system to which it is attached. Spin labels are often used in biochemistry and materials science to study complex biological systems or materials at the molecular level.

Anaerobiosis is a state in which an organism or a portion of an organism is able to live and grow in the absence of molecular oxygen (O2). In biological contexts, "anaerobe" refers to any organism that does not require oxygen for growth, and "aerobe" refers to an organism that does require oxygen for growth.

There are two types of anaerobes: obligate anaerobes, which cannot tolerate the presence of oxygen and will die if exposed to it; and facultative anaerobes, which can grow with or without oxygen but prefer to grow in its absence. Some organisms are able to switch between aerobic and anaerobic metabolism depending on the availability of oxygen, a process known as "facultative anaerobiosis."

Anaerobic respiration is a type of metabolic process that occurs in the absence of molecular oxygen. In this process, organisms use alternative electron acceptors other than oxygen to generate energy through the transfer of electrons during cellular respiration. Examples of alternative electron acceptors include nitrate, sulfate, and carbon dioxide.

Anaerobic metabolism is less efficient than aerobic metabolism in terms of energy production, but it allows organisms to survive in environments where oxygen is not available or is toxic. Anaerobic bacteria are important decomposers in many ecosystems, breaking down organic matter and releasing nutrients back into the environment. In the human body, anaerobic bacteria can cause infections and other health problems if they proliferate in areas with low oxygen levels, such as the mouth, intestines, or deep tissue wounds.

Tyrosine is an non-essential amino acid, which means that it can be synthesized by the human body from another amino acid called phenylalanine. Its name is derived from the Greek word "tyros," which means cheese, as it was first isolated from casein, a protein found in cheese.

Tyrosine plays a crucial role in the production of several important substances in the body, including neurotransmitters such as dopamine, norepinephrine, and epinephrine, which are involved in various physiological processes, including mood regulation, stress response, and cognitive functions. It also serves as a precursor to melanin, the pigment responsible for skin, hair, and eye color.

In addition, tyrosine is involved in the structure of proteins and is essential for normal growth and development. Some individuals may require tyrosine supplementation if they have a genetic disorder that affects tyrosine metabolism or if they are phenylketonurics (PKU), who cannot metabolize phenylalanine, which can lead to elevated tyrosine levels in the blood. However, it is important to consult with a healthcare professional before starting any supplementation regimen.

Agaricales is an order of fungi that includes mushrooms, toadstools, and other gilled fungi. These fungi are characterized by their distinctive fruiting bodies, which have a cap (pileus) and stem (stipe), and gills (lamellae) on the underside of the cap where the spores are produced. Agaricales contains many well-known and economically important genera, such as Agaricus (which includes the common button mushroom), Amanita (which includes the deadly "death cap" mushroom), and Coprinus (which includes the inky cap mushrooms). The order was established by the Swedish mycologist Elias Magnus Fries in 1821.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

A regulon is a group of genes that are regulated together in response to a specific signal or stimulus, often through the action of a single transcription factor or regulatory protein. This means that when the transcription factor binds to specific DNA sequences called operators, it can either activate or repress the transcription of all the genes within the regulon.

This type of gene regulation is important for coordinating complex biological processes, such as cellular metabolism, stress responses, and developmental programs. By regulating a group of genes together, cells can ensure that they are all turned on or off in a coordinated manner, allowing for more precise control over the overall response to a given signal.

It's worth noting that the term "regulon" is not commonly used in clinical medicine, but rather in molecular biology and genetics research.

Deoxyribose is a type of sugar that makes up the structural backbone of DNA (deoxyribonucleic acid), one of the two main types of nucleic acids in cells. The chemical formula for deoxyribose is C5H10O4, and it has a five-carbon ring structure with four hydroxyl (-OH) groups and one hydrogen atom attached to the carbons.

The key difference between deoxyribose and ribose, which makes up the structural backbone of RNA (ribonucleic acid), is that deoxyribose lacks a hydroxyl group on the second carbon atom in its ring structure. This small difference has significant implications for the structure and function of DNA compared to RNA.

Deoxyribose plays an essential role in the replication, transcription, and repair of genetic material in cells. It forms the sugar-phosphate backbone of DNA by linking with phosphate groups through ester bonds between the 3' carbon atom of one deoxyribose molecule and the 5' carbon atom of another, creating a long, twisted ladder-like structure known as a double helix. The nitrogenous bases adenine, thymine, guanine, and cytosine attach to the 1' carbon atom of each deoxyribose molecule in the DNA strand, forming pairs that are complementary to each other (adenine with thymine and guanine with cytosine).

Overall, deoxyribose is a crucial component of DNA, enabling the storage and transmission of genetic information from one generation to the next.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

'Escherichia coli (E. coli) proteins' refer to the various types of proteins that are produced and expressed by the bacterium Escherichia coli. These proteins play a critical role in the growth, development, and survival of the organism. They are involved in various cellular processes such as metabolism, DNA replication, transcription, translation, repair, and regulation.

E. coli is a gram-negative, facultative anaerobe that is commonly found in the intestines of warm-blooded organisms. It is widely used as a model organism in scientific research due to its well-studied genetics, rapid growth, and ability to be easily manipulated in the laboratory. As a result, many E. coli proteins have been identified, characterized, and studied in great detail.

Some examples of E. coli proteins include enzymes involved in carbohydrate metabolism such as lactase, sucrase, and maltose; proteins involved in DNA replication such as the polymerases, single-stranded binding proteins, and helicases; proteins involved in transcription such as RNA polymerase and sigma factors; proteins involved in translation such as ribosomal proteins, tRNAs, and aminoacyl-tRNA synthetases; and regulatory proteins such as global regulators, two-component systems, and transcription factors.

Understanding the structure, function, and regulation of E. coli proteins is essential for understanding the basic biology of this important organism, as well as for developing new strategies for combating bacterial infections and improving industrial processes involving bacteria.

Thiourea is not a medical term, but a chemical compound. It's a colorless crystalline solid with the formula SC(NH2)2. Thiourea is used in some industrial processes and can be found in some laboratory reagents. It has been studied for its potential effects on certain medical conditions, such as its ability to protect against radiation damage, but it is not a medication or a treatment that is currently in clinical use.

Heme proteins are a type of protein that contain a heme group, which is a prosthetic group composed of an iron atom contained in the center of a large organic ring called a porphyrin. The heme group gives these proteins their characteristic red color. Hemeproteins have various important functions in biological systems, including oxygen transport (e.g., hemoglobin), electron transfer (e.g., cytochromes), and enzymatic catalysis (e.g., peroxidases and catalases). The heme group can bind and release gases, such as oxygen and carbon monoxide, and can participate in redox reactions due to the ease with which iron can change its oxidation state.

Repressor proteins are a type of regulatory protein in molecular biology that suppress the transcription of specific genes into messenger RNA (mRNA) by binding to DNA. They function as part of gene regulation processes, often working in conjunction with an operator region and a promoter region within the DNA molecule. Repressor proteins can be activated or deactivated by various signals, allowing for precise control over gene expression in response to changing cellular conditions.

There are two main types of repressor proteins:

1. DNA-binding repressors: These directly bind to specific DNA sequences (operator regions) near the target gene and prevent RNA polymerase from transcribing the gene into mRNA.
2. Allosteric repressors: These bind to effector molecules, which then cause a conformational change in the repressor protein, enabling it to bind to DNA and inhibit transcription.

Repressor proteins play crucial roles in various biological processes, such as development, metabolism, and stress response, by controlling gene expression patterns in cells.

Chelating agents are substances that can bind and form stable complexes with certain metal ions, preventing them from participating in chemical reactions. In medicine, chelating agents are used to remove toxic or excessive amounts of metal ions from the body. For example, ethylenediaminetetraacetic acid (EDTA) is a commonly used chelating agent that can bind with heavy metals such as lead and mercury, helping to eliminate them from the body and reduce their toxic effects. Other chelating agents include dimercaprol (BAL), penicillamine, and deferoxamine. These agents are used to treat metal poisoning, including lead poisoning, iron overload, and copper toxicity.

Gene deletion is a type of mutation where a segment of DNA, containing one or more genes, is permanently lost or removed from a chromosome. This can occur due to various genetic mechanisms such as homologous recombination, non-homologous end joining, or other types of genomic rearrangements.

The deletion of a gene can have varying effects on the organism, depending on the function of the deleted gene and its importance for normal physiological processes. If the deleted gene is essential for survival, the deletion may result in embryonic lethality or developmental abnormalities. However, if the gene is non-essential or has redundant functions, the deletion may not have any noticeable effects on the organism's phenotype.

Gene deletions can also be used as a tool in genetic research to study the function of specific genes and their role in various biological processes. For example, researchers may use gene deletion techniques to create genetically modified animal models to investigate the impact of gene deletion on disease progression or development.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

... could also occur as unwanted byproducts in the Baeyer-Villiger oxidation when using hydrogen peroxide, which ... Alkenyl peroxides can be formed by acid catalyzed condensation of ketones with organic hydroperoxides or hydrogen peroxide. ... In organic chemistry, alkenyl peroxides are organic compounds bearing an alkene (R2C=CR2) residue directly at the peroxide (R−O ... Articles with short description, Short description matches Wikidata, Peroxides, Organic peroxides, Alkene derivatives). ...
Dialkyl peroxides, e.g., dicumyl peroxide, are synthesized by addition of hydrogen peroxide to alkenes or by O-alkylation of ... Methyl ethyl ketone peroxide, benzoyl peroxide and to a smaller degree acetone peroxide are used as initiators for radical ... where p is the number of peroxide groups in the molecule, and m is the molecular mass of the pure peroxide. Organic peroxides ... Alkenyl peroxides Peroxyacyl nitrates Ozonide Organic Peroxide Producers Safety Division OSH Answers - organic peroxides "The ...
... are peroxide derivatives of the main group elements. Many compounds of the main group elements form ... Many peroxides are not commercially valuable but are of academic interest. One example is bis(trimethylsilyl) peroxide ( ... Jih Ru Hwu; Buh-Luen Chen; Santhosh F. Neelamkavil; Yuzhong Chen (2002). "Bis(trimethylsilyl) Peroxide". Encyclopedia of ... Me3SiOOSiMe3). Phosphorus oxides form a number of peroxides, e.g. "P2O6". Jakob, Harald; Leininger, Stefan; Lehmann, Thomas; ...
Metal peroxides, examples being barium peroxide (BaO2), sodium peroxide (Na2O2) and zinc peroxide (ZnO2). Organic peroxides, ... Many organic peroxides are known as well. In addition to hydrogen peroxide, some other major classes of peroxides are: Peroxy ... The most common peroxide is hydrogen peroxide (H2O2), colloquially known simply as "peroxide". It is marketed as solutions in ... The O−O group in a peroxide is called the peroxide group or peroxy group (sometimes called peroxo group or peroxyl group). The ...
... (MgO2) is an odorless fine powder peroxide with a white to off-white color. It is similar to calcium ... Commercially, magnesium peroxide often exists as a compound of magnesium peroxide and magnesium hydroxide. O2, similarly to N2 ... MgO2 can be produced by mixing MgO with hydrogen peroxide to create magnesium peroxide and water. This being an exothermic ... Magnesium peroxide is used in the bioremediation of contaminated soil and can improve the soil quality for plant growth and ...
Sodium peroxide (Na2O2) is used to oxidize the sample that becomes soluble in a diluted acid solution. This method allows ... Peroxide fusion is used to prepare samples for inductively coupled plasma (ICP), atomic absorption (AA) analysis and wet ... Peroxide fusion can be performed either manually or with automated systems. The latter have the advantage of increasing ... Determination of platinum group elements and gold in geological samples with ICP-MS using a sodium peroxide fusion and ...
... is a peroxide, containing O2− 2 subunits. The solid is isomorphous to calcium carbide, CaC2. Barium peroxide ... This white solid (gray when impure) is one of the most common inorganic peroxides, and it was the first peroxide compound ... In another obsolete application, barium peroxide was once used to produce hydrogen peroxide via its reaction with sulfuric acid ... The peroxide forms around 500 °C and oxygen is released above 820 °C. 2 BaO + O2 ⇌ 2 BaO2 This reaction is the basis for the ...
Furthermore, unlike most other alkali metal peroxides, it is not hygroscopic. The reversible lithium peroxide reaction is the ... Lithium peroxide is the inorganic compound with the formula Li2O2. It is a white, nonhygroscopic solid. Because of its high ... L. G. Cota and P. de la Mora "On the structure of lithium peroxide, Li2O2" Acta Crystallogr. 2005, vol. B61, pages 133-136. doi ... ISBN 978-0-08-022057-4. E. Dönges "Lithium and Sodium Peroxides" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited ...
The peroxide value is determined by measuring the amount of iodine which is formed by the reaction of peroxides (formed in fat ... The peroxide value is defined as the amount of peroxide oxygen per 1 kilogram of fat or oil. Traditionally this was expressed ... Peroxide value, concentration of peroxide in an oil or fat, is useful for assessing the extent to which spoilage has advanced. ... Peroxide values of fresh oils are less than 10 milliequivalents/kg; when the peroxide value is between 30* and 40 ...
... has been used for creating organic peroxide-based explosives, such as acetone peroxide. It is used as an ... Hydrogen peroxide is a reactive oxygen species and the simplest peroxide, a compound having an oxygen-oxygen single bond. It ... Hydrogen peroxide is a weak acid, forming hydroperoxide or peroxide salts with many metals. It also converts metal oxides into ... Acne treatment Hydrogen peroxide may be used to treat acne, although benzoyl peroxide is a more common treatment. Oral cleaning ...
... is an inorganic compound with the formula Sr O2 that exists in both anhydrous and octahydrate form, both of ... It can also be used as an antiseptic and in tracer munitions.[citation needed] Strontium peroxide is produced by passing oxygen ... "Strontium Peroxide". American Elements. Retrieved March 7, 2019. Bernal, J. D.; D'yatlova, E.; Kasarnovskii, I.; Raikhstein, S ... Octahydrated strontium peroxide" Gazzetta Chimica Italiana (1932), 62, 444-56. Middleburgh, Simon C.; Lagerlof, Karl Peter D.; ...
60,000 ton/y production of dialkyl peroxides, dicumyl peroxide is dominant. Dicumyl peroxide is relatively stable compound ... Dicumyl peroxide is an organic compound with the formula (C6H5CMe2O)2 (Me = CH3). Classified as a dialky peroxide, it is ... "Dicumyl peroxide". pubchem.ncbi.nlm.nih.gov. Klenk, Herbert; Götz, Peter H.; Siegmeier, Rainer; Mayr, Wilfried. "Peroxy ... Alternatively, it can be produced by the addition of hydrogen peroxide to α-methylstyrene. Of the ca. ...
... or uranium peroxide hydrate (UO4·nH2O) is a pale-yellow, soluble peroxide of uranium. It is found to be present ... In general, uranyl peroxide can be obtained from a solution of uranium (VI) by adding a peroxide, usually hydrogen peroxide ... 13 Radiolysis of uranium salts dissolved in water produces peroxides; uranyl peroxide has been studied as a possible end ... The dihydrate is obtained from a boiling solution of uranyl nitrate with the addition of hydrogen peroxide and drying of the ...
... or calcium dioxide is the inorganic compound with the formula CaO2. It is the peroxide (O22−) salt of Ca2+. ... Calcium peroxide is produced by combining calcium salts and hydrogen peroxide: Ca(OH)2 + H2O2 → CaO2 + 2 H2O The octahydrate ... Calcium peroxide is used in a similar manner to magnesium peroxide for environmental restoration programs. It is used to ... Also, calcium peroxide has found use in aquaculture to oxygenate and disinfect water. In the ecological restoration industry it ...
... catalytically converts ozone into oxygen when it is irradiated by ultraviolet light. Chlorine peroxide can be ... Chlorine peroxide (also known as dichlorine dioxide or ClO dimer) is a molecular compound with formula ClOOCl. Chemically, it ... Cl2 + hν → 2Cl Cl + O3 → O2 + ClO· 2ClO· + M → ClOOCl + M ClOOCl + hν → Cl + ClO2 ClO2 + M → Cl + O2 + M Chlorine peroxide ... Difluorodichloromethane (CF2Cl2) can also act as a source of chlorine atoms for the formation of the peroxide. Microwave ...
... (5α,8α-epidioxy-22E-ergosta-6,22-dien-3β-ol) is a steroid derivative. It has been isolated from a variety ... Nam KS, Jo YS, Kim YH, Hyun JW, Kim HW (2001). "Cytotoxic activities of acetoxyscirpenediol and ergosterol peroxide from ... Kahols K, Kangas L, Hiltunen R (1989). "Ergosterol peroxide, an active compound from Inonotus radiatus". Planta Medica. 55 (4 ... Lindequist U, Lesnau A, Teuscher E, Pilgrim H (1989). "Antiviral activity of ergosterol peroxide". Pharmazie. 44 (8): 579-80. ...
Ketone peroxides, including acetone peroxide and methyl ethyl ketone peroxide, find application as initiators for ... "Studies in Organic Peroxides. XXVI. Organic Peroxides Derived from Acetone and Hydrogen Peroxide". Journal of the American ... Acetone peroxide (/æsəˈtəʊn pɛrˈɒksaɪd/ also called APEX and mother of Satan) is an organic peroxide and a primary explosive. ... Organic peroxides in general are sensitive, dangerous explosives, and all forms of acetone peroxide are sensitive to initiation ...
... is an oxidizer, but it is principally used as in the production of polymers. Benzoyl peroxide is mainly used ... Benzoyl peroxide is a chemical compound (specifically, an organic peroxide) with structural formula (C6H5−C(=O)O−)2, often ... Benzoyl peroxide is used in dentistry as a tooth whitening product. Benzoyl peroxide is potentially explosive like other ... The combination tretinoin/benzoyl peroxide was approved for medical use in the United States in 2021. Benzoyl peroxide for acne ...
... is rubidium's peroxide with the chemical formula Rb2O2. Rubidium peroxide can be produced by rapidly ... Rubidium peroxide is a colourless to light yellow solid with the orthorhombic crystal structure. Georg Brauer (Hrsg.), unter ...
... may also be produced by the reaction of an ice-cold solution of hydrogen peroxide with a suspension of copper ... Copper peroxide is an inorganic compound with the formula CuO2. It is an oxide of copper(II), with the two oxygen atoms as a ... When wet, copper peroxide decomposes at temperatures above 6 °C; it "is far more stable when dry." The collected works of Sir ... Copper peroxide is prepared by the reaction of cold solutions of Schweizer's reagent-a source of copper(II)-and hydrogen ...
The peroxide process is a method for the industrial production of hydrazine. In this process hydrogen peroxide is used as an ... The peroxide process, also called the Pechiney-Ugine-Kuhlmann process, was developed in the early 1970s by Produits Chimiques ... The main advantage of the peroxide process to hydrazine relative to the traditional Olin Raschig process is that it does not ... In this respect, the peroxide process is an example of green chemistry. Since many millions of kilograms of hydrazine are ...
It is the symmetrical peroxide of lauric acid. It is produced by treating lauroyl chloride with hydrogen peroxide in the ... Dilauroyl peroxide is an organic compound with the formula (C11H23CO2)2. A colorless solid, it is often sold as a water-damped ... presence of base: 2 C11H23COCl + H2O2 + 2 NaOH → (C11H23CO2)2 + 2 HCl "Lauroyl peroxide". pubchem.ncbi.nlm.nih.gov. Retrieved ...
... is used as an oxidizing agent and bleach (due to the peroxide), and to purify air. Lide, David R. (1998). ... Potassium peroxide is an inorganic compound with the molecular formula K2O2. It is formed as potassium reacts with oxygen in ... 1] The standard enthalpy of formation of potassium peroxide is ΔH f 0 = −496 kJ/mol. ... Potassium peroxide is a highly reactive, oxidizing white to yellowish solid which, while not flammable itself, reacts violently ...
... is the organic peroxide with the formula (CH3CO2)2. It is a white solid or oily liquid with a sharp odor. As ... The crystalline peroxide is especially shock sensitive and a high explosion risk. Organic peroxides are all prone to exothermic ... Diacetyl peroxide forms upon combining hydrogen peroxide and excess acetic anhydride. Peracetic acid is an intermediate. ... Organic peroxides, Explosive chemicals, Liquid explosives, Organic peroxide explosives, Carbonyl compounds). ...
Peroxides are a group of chemical compounds. Peroxide may also refer to: Hydrogen peroxide, the simplest peroxide High-test ... OOH group Peroxide (punk zine), a 1970s magazine Peroxide (Nina Nesbitt album), 2014 Peroxide blond, a variety of artificially ... peroxide (HTP), a highly concentrated solution of hydrogen peroxide solid hydrogen peroxide Inorganic peroxy acids, mineral ... Look up peroxide in Wiktionary, the free dictionary. ... OOH group Organic peroxide, organic compounds containing the ...
... or cesium peroxide is a compound of caesium and oxygen. It can be formed from caesium metal by adding a ... Caesium peroxide shows a Raman vibration at 743 cm−1, due to the presence of the peroxide ions. The compound is often used as a ... Sun, Yun; Liu, Zhi; Pianetta, Piero; Lee, Dong-Ick (2007). "Formation of cesium peroxide and cesium superoxide on InP ... Livneh, Tsachi; Band, Alisa; Tenne, Reshef (2002). "Raman scattering from the peroxide ion in Cs2O2". Journal of Raman ...
... can be synthesized through the reaction of zinc chloride and hydrogen peroxide. Zinc hydroxide is reacted with a ... Unlike in the preparation of copper peroxide, the zinc ion does not cause the peroxide to decompose. Since the 1930s zinc ... R.D. Ayengar (1971). "ESR Studies on Zinc Peroxide and Zinc Oxide Obtained from a Decomposition of Zinc Peroxide". J. Phys. ... peroxide and precipitated with sodium hydroxide also containing hydrogen peroxide to ensure a higher yield of zinc peroxide. ...
... may go by the commercial names of Solozone and Flocool. In chemistry preparations, sodium peroxide is used as ... Lithium peroxide and potassium superoxide have similar uses. Sodium peroxide was once used on a large scale for the production ... Sodium peroxide hydrolyzes to give sodium hydroxide and hydrogen peroxide according to the reaction Na2O2 + 2 H2O → 2 NaOH + ... Sodium peroxide is an inorganic compound with the formula Na2O2. This yellowish solid is the product of sodium ignited in ...
Some complexes mix oxide and peroxide ligands: for example, chromium(VI) oxide peroxide (Cr(O 2) 2O). Others have only peroxide ... of mercury peroxide (HgO2), and cadmium peroxide (CdO2). Peroxide is a common ligand in metal complexes. Within the area of ... Most alkali metal peroxides can be synthesized directly by oxygenation of the elements. Lithium peroxide is formed upon ... Metal peroxides are metal-containing compounds with ionically- or covalently-bonded peroxide (O2− 2) groups. This large family ...
A peroxide-based bleach or simply peroxide bleach is any bleach product that is based on the peroxide chemical group, namely ... All peroxide-based bleaches release hydrogen peroxide when dissolved in water. Peroxide bleaches are often used along with ... Peroxide-based bleaches became common household products in the late 20th century, being the base of many laundry detergent ... Most of these products are adducts of hydrogen peroxide (H 2O 2 or HOOH), that is, solids that contain H 2O 2 trapped in a ...
Alkenyl peroxides could also occur as unwanted byproducts in the Baeyer-Villiger oxidation when using hydrogen peroxide, which ... Alkenyl peroxides can be formed by acid catalyzed condensation of ketones with organic hydroperoxides or hydrogen peroxide. ... In organic chemistry, alkenyl peroxides are organic compounds bearing an alkene (R2C=CR2) residue directly at the peroxide (R−O ... Articles with short description, Short description matches Wikidata, Peroxides, Organic peroxides, Alkene derivatives). ...
Exposure to hydrogen peroxide can cause irritation of the eyes, throat, respiratory airway, and skin. Drinking concentrated ... although small amounts of hydrogen peroxide gas may occur naturally in the air. Low exposure may occur from use at home; higher ... How can hydrogen peroxide affect my health?. Hydrogen peroxide can be toxic if ingested, inhaled, or by contact with the skin ... What is hydrogen peroxide?. Hydrogen peroxide is a colorless liquid at room temperature with a bitter taste. Small amounts of ...
While some people use hydrogen peroxide to treat skin issues, it can cause burning and other adverse reactions. Learn about the ... It is always a good idea to handle hydrogen peroxide carefully. If a person gets hydrogen peroxide in their eyes, they should ... benzoyl peroxide - a common ingredient in acne medication. The same research indicates that hydrogen peroxide also causes fewer ... People use hydrogen peroxide on the skin in many ways, such as to prevent infections in minor wounds, such as scrapes or small ...
Benzoyl Peroxide Topical: learn about side effects, dosage, special precautions, and more on MedlinePlus ... Benzoyl peroxide is for external use only. Do not let benzoyl peroxide get into your eyes, nose, or mouth, and do not swallow ... Benzoyl peroxide comes in cleansing liquid or bar, lotion, cream, and gel for use on the skin. Benzoyl peroxide usually is used ... Before using benzoyl peroxide,. *tell your doctor and pharmacist if you are allergic to benzoyl peroxide, any other medications ...
Hydrogen peroxide (aqueous), Hydroperoxide, Peroxide Colorless liquid with a slightly sharp odor. [Note: The pure compound is a ...
HYDROGEN PEROXIDE (UNII: BBX060AN9V) (HYDROGEN PEROXIDE - UNII:BBX060AN9V) HYDROGEN PEROXIDE. 30 mg in 1 mL. ... HYDROGEN PEROXIDE solution. To receive this label RSS feed. Copy the URL below and paste it into your RSS Reader application. ... HYDROGEN PEROXIDE solution. If this SPL contains inactivated NDCs listed by the FDA initiated compliance action, they will be ...
This extra oxygen is the reason that hydrogen peroxide acts as a bleach and an antiseptic. The Hydrogen peroxide can react with ... Hydrogen peroxide has a molecule very like water but instead of being H2O it has an extra oxygen molecule to form H2O2. ... Warning - Hydrogen peroxide is a weak bleach, it will irritate the skin, and you really dont want to get it in your eyes, so ... Hydrogen peroxide will decompose into water and oxygen in sunlight, very slowly over a period of days, so it is sold in dark ...
Clindamycin and Benzoyl Peroxide Topical: learn about side effects, dosage, special precautions, and more on MedlinePlus ... The combination of clindamycin and benzoyl peroxide is used to treat acne. Clindamycin and benzoyl peroxide are in a class of ... Avoid getting clindamycin and benzoyl peroxide gel on your hair or clothing. Clindamycin and benzoyl peroxide may bleach hair ... Clindamycin and benzoyl peroxide may cause side effects. Tell your doctor if any of these symptoms are severe or do not go away ...
Advice for mothers using Carbamide Peroxide while breastfeeding. Includes possible effects on breastfed infants and lactation. ... Carbamide Peroxide Levels and Effects while Breastfeeding. Summary of Use during Lactation. Carbamide (urea) peroxide has not ... However, if any carbamide peroxide were absorbed, it would be broken down to urea and hydrogen peroxide, both of which are ... Drugs containing Carbamide Peroxide: Debrox, Ear Wax Remover, Auro, Canker Sore, Auro Ear Drops, Mollifene, Proxigel, ...
The combination of clindamycin and benzoyl peroxide is used to treat acne. Clindamycin and benzoyl peroxide are in a class of ... Avoid getting clindamycin and benzoyl peroxide gel on your hair or clothing. Clindamycin and benzoyl peroxide may bleach hair ... Clindamycin and benzoyl peroxide may cause side effects. Tell your doctor if any of these symptoms are severe or do not go away ... Clindamycin and benzoyl peroxide may make your skin sensitive to sunlight.. *ask your doctor or pharmacist to recommend a ...
Detailed drug Information for Aplicare One Hydrogen Peroxide. Includes common brand names, drug descriptions, warnings, side ... Aplicare One Hydrogen Peroxide (Topical application). Generic name: hydrogen peroxide [ HYE-droe-jen-per-OX-ide ]. Drug class: ... Uses for Aplicare One Hydrogen Peroxide. Hydrogen peroxide is used to treat raised seborrheic keratoses (waxy and scaly, raised ... Proper use of Aplicare One Hydrogen Peroxide. You will receive this medicine in a clinic or doctors office. A nurse or other ...
Boy George Genocide Peroxide lyrics & video : Beautiful child in razor heels Sashays into the room All the boys they catch ... check amazon for Genocide Peroxide mp3 download. browse other artists under B:B2B3B4B5B6B7B8B9B10B11B12. Songwriter(s): George ... Official page Boy George wiki Genocide Peroxide video Boy George twitter Boy George facebook ...
Benzoyl peroxide is a medicine you use to treat acne. It comes in different strengths in lotions, gels, soaps, and liquids. How ... How does benzoyl peroxide treat acne?. Benzoyl peroxide unclogs skin pores. It also helps stop bacteria from growing and ... Where can I get benzoyl peroxide?. You can buy products that contain benzoyl peroxide in the grocery store or pharmacy. Look at ... Benzoyl peroxide is a medicine you use to treat acne. It comes in different strengths in lotions, gels, soaps, and liquids. ...
As a global industry leader and responsible supplier of Hydrogen Peroxide formulations, Solvay promotes and continuously ... INTEROXⓇ PicoPlus Hydrogen Peroxide 31%. INTEROXⓇ Pico/Pico Plus: an ultra high purity grade for the cleaning and etching of ... Hydrogen peroxide is an oxidizing agent, known not only for its high oxidation potential, but its strong performance across a ... As the leading global producer and supplier of hydrogen peroxide (H2O2) solutions, Solvays portfolio boasts some of the purest ...
Chinas demand for Hydrogen Peroxide has grown at a fast pace in the past decade. In the next decade, both production and ... Hydrogen Peroxide Production Hydrogen Peroxide Export and Import Hydrogen Peroxide Demand V. HYDROGEN PEROXIDE MARKETS OUTLOOK ... Hydrogen Peroxide Production Hydrogen Peroxide Export and Import Hydrogen Peroxide Demand V. HYDROGEN PEROXIDE MARKETS OUTLOOK ... Hydrogen Peroxide Production Hydrogen Peroxide Export and Import Hydrogen Peroxide Demand Pricing Trend. V. HYDROGEN PEROXIDE ...
... carbamide peroxide and lactoperoxidase. ,i,Materials and methods,/i,. Participants were instructed to brush their teeth using ... Hydrogen peroxide (HP) and its precursor, carbamide peroxide (CP), are the most widely used whitening agents [4]. First, in- ... Whitening Efficacy of 3% Carbamide Peroxide Gel Activated by Lactoperoxidase. Mehdi Khemiss. ,1,2,3Ines Kallel. ,3,4,5Hela ... F. A. L. Farawati, S.-M. Hsu, E. ONeill, D. Neal, A. Clark, and J. Esquivel-Upshaw, "Effect of carbamide peroxide bleaching on ...
Listing of chemicals Limbitrol through Lithium peroxide with links to more detailed information for each chemical. ... Lithium peroxide (EnvironmentalChemistry.com),/a,- Listing of chemicals Limbitrol through Lithium peroxide with links to more ... Limbitrol ==, Lithium peroxide. *Limbitrol*Limbitrol DS*Limbux*Lime*Lime (Chemical) , Slaked or Hydrated*Lime acetate*Lime ... Lithium peroxide. Related Resources. *USDOT Hazardous Materials Table 49 CFR 172.101. An online version of the USDOTs listing ...
BENZOYL PEROXIDE (UNII: W9WZN9A0GM) (BENZOYL PEROXIDE - UNII:W9WZN9A0GM) BENZOYL PEROXIDE. 2.5 g in 100 mL. ... BENZOYL PEROXIDE (UNII: W9WZN9A0GM) (BENZOYL PEROXIDE - UNII:W9WZN9A0GM) BENZOYL PEROXIDE. 5 g in 100 mL. ... ACNE WIPEOUT CLINICAL ACNE SYSTEM- benzoyl peroxide kit. To receive this label RSS feed. Copy the URL below and paste it into ... Do not use • If you are sensitive to Benzoyl Peroxide or have very sensitive skin. This product may cause irritation. Ask a ...
Hydrogen peroxide, which is the active ingredient in over-the-counter whitening strips, can damage the... ...
... Urea-hydrogen peroxide is a non-toxic, odorless crystalline solid. This adduct, which ... Urea-hydrogen peroxide adduct (UHP) is stable, inexpensive and an easily handled reagent. UHP is used in an efficient solid ... Urea-hydrogen peroxide adduct (UHP) is stable, inexpensive and an easily handled reagent. UHP is used in an efficient solid ... Urea-hydrogen peroxide adduct (UHP) is stable, inexpensive and an easily handled reagent. UHP is used in an efficient solid ...
Hydrogen Peroxide Can Be Used to Induce Vomiting in All Pets - While hydrogen peroxide in controlled doses works for inducing ... "PEROXIDE IN CATS" FIRST AID MYTHS Your pet can encounter poison from numerous sources. Some of these poisons may be found ... Cats can develop irritation and intestinal bleeding, which can be potentially fatal from ingesting hydrogen peroxide, so under ... vomiting in dogs, but it is never safe to use hydrogen peroxide in cats. ...
This page contains information on the chemical Methyl ethyl ketone peroxide including: 62 synonyms/identifiers; U.S. Code of ... 2-Butanone peroxide*2-Butanone, peroxide*2-Butanone, peroxide [QR]*Butanox LPT*Butanox LPT [QR]*Butanox M 105*Butanox M 105 [QR ... Methyl Ethyl Ketone Peroxide*Methyl ethyl ketone peroxide [QR]*Methyl ethyl ketone peroxide, in solution with more than 9 ... Ethyl methyl ketone peroxide*Ethyl methyl ketone peroxide [QR]*FR 222*FR 222 [QR]*HI-Point 180*HI-Point 180 [QR]*HI-Point 90*HI ...
... is required for extending the tube line on the suction ... Silicone Peroxide Extension Tubing for 2 and 3-Stop Collared Tubing, 0.76 mm Tube ID, 1 roll of 15 m Please login to add to ... Silicone Peroxide Extension Tubing for 2 and 3-Stop Collared Tubing, 1.14 mm Tube ID, 1 roll of 15 m Please login to add to ... Silicone Peroxide Extension Tubing for 2 and 3-Stop Collared Tubing, 1.30 mm Tube ID, 1 roll of 15 m Please login to add to ...
Hydrogen Peroxide indications, usages and related health products lists ... Hydrogen Peroxide information about active ingredients, pharmaceutical forms and doses by R.W. Packaging, ... A01AB02 - Hydrogen Peroxide*D08AX01 - Hydrogen Peroxide*S02AA06 - Hydrogen Peroxide. Pharmaceutical companies: manufacturers, ... Available forms, composition and doses of Hydrogen Peroxide:. *Liquid; Topical; Hydrogen Peroxide 3%*Liquid; Topical; Hydrogen ...
Toxicity. Benzoyl peroxide has very high acute toxicity.. Risk. The use of Benzoyl peroxide (sales data Sweden 2019) has been ... Persistence. Benzoyl peroxide is degraded in the environment.. Bioaccumulation. Benzoyl peroxide has low potential for ... Fass environmental information for Duac (benzoyl peroxide, clindamycin) from GlaxoSmithKline (downloaded 2022-06-30). ...
Learn how canker sores form and whether you can use hydrogen peroxide on a canker sore. Read on for additional ways to heal a ... Can You Use Hydrogen Peroxide on Canker Sores?. Yes, you can use hydrogen peroxide on a canker sore. A review in the Journal of ... Should you use hydrogen peroxide on a canker sore?. What Are Canker Sores?. Canker sores are small, round, white lesions that ... Hydrogen peroxide is an antiseptic, meaning that it may reduce the amount of bacteria around your canker sore. Milk of Magnesia ...
The diacyl peroxide segment is estimated to be the largest type segment of the global organic peroxide market. Diacyl peroxide ... Diacyl peroxide is estimated to be the largest type segment of the global organic peroxide market ... Organic peroxides are widely used as initiators in coatings, adhesives, paints, and dry oils. They are also used as cross- ... Furthermore, diacyl peroxide is used as a curing agent for thermoset resins and for cross-linking of thermoplastics and ...
Hydrogen Peroxide from Priority Care is used as a topical antiseptic for use on cuts, abrasions, and wounds. It can also be ... In addition to its germicidal activity, the effervescence of hydrogen peroxide is beneficial to the mechanical removal of pus ...
  • Hydrogen peroxide is a manufactured chemical, although small amounts of hydrogen peroxide gas may occur naturally in the air. (cdc.gov)
  • HIGHLIGHTS: Hydrogen peroxide is a manufactured chemical, although small amounts of hydrogen peroxide gas may occur naturally in the air. (cdc.gov)
  • Ingestion of dilute solutions of hydrogen peroxide may result in vomiting, mild gastrointestinal irritation, gastric distension, and on rare occasions, gastrointestinal erosions or embolism (blockage of blood vessels by air bubbles). (cdc.gov)
  • The ATSDR note that exposure to diluted solutions of hydrogen peroxide can cause temporary skin bleaching. (medicalnewstoday.com)
  • Ingestion of dilute solutions of hydrogen peroxide may result in birth defects or other developmental effects in people. (cdc.gov)
  • The International Agency for Research on Cancer (IARC) has determined that hydrogen peroxide is not classifiable as to its carcinogenicity to humans. (cdc.gov)
  • Meanwhile, the Food and Drug Administration (FDA) have approved a hydrogen peroxide topical solution as a treatment for a type of noncancerous growth called seborrheic keratoses. (medicalnewstoday.com)
  • Clindamycin and benzoyl peroxide are in a class of medications called topical antibiotics. (medlineplus.gov)
  • Hydrogen Peroxide from Priority Care is used as a topical antiseptic for use on cuts, abrasions, and wounds. (farmvet.com)
  • A way of using benzoyl peroxide in combination with the topical retinoid, adapalene, that studies show works a bit better than benzoyl peroxide alone. (acne.org)
  • King points to studies that show 1% hydrogen peroxide can be even more effective than a traditional 4% benzoyl peroxide treatment - the topical ingredient typically used for acne - and cause less irritation. (bustle.com)
  • Some people use hydrogen peroxide, or products that contain it, to address skin issues such as acne or hyperpigmentation. (medicalnewstoday.com)
  • As the authors of one 2016 study report, researchers outside the United States have found that using a 1% hydrogen peroxide solution can treat acne as effectively as, and sometimes better than, benzoyl peroxide - a common ingredient in acne medication. (medicalnewstoday.com)
  • Instead of trying products containing hydrogen peroxide, people in the U.S. should consult a doctor about the best acne treatment options. (medicalnewstoday.com)
  • Lean what other research says about using hydrogen peroxide for acne here. (medicalnewstoday.com)
  • Benzoyl peroxide is used to treat mild to moderate acne. (medlineplus.gov)
  • The combination of clindamycin and benzoyl peroxide is used to treat acne. (medlineplus.gov)
  • The combination of clindamycin and benzoyl peroxide works by killing the bacteria that cause acne. (medlineplus.gov)
  • Benzoyl peroxide is a medicine you use to treat acne . (healthlinkbc.ca)
  • How does benzoyl peroxide treat acne? (healthlinkbc.ca)
  • So before you soak your hair in hydrogen peroxide, gargle with a cap full of the liquid, or consider using it all over your face to treat acne, read on for what you need to know. (bustle.com)
  • Regular over-the-counter hydrogen peroxide can be used occasionally to help dry up a pimple, but it should not be your regular, primary acne treatment,' King says. (bustle.com)
  • It is unlikely that carbamide peroxide found in ear drops or teeth whiteners is absorbed into the bloodstream. (drugs.com)
  • However, if any carbamide peroxide were absorbed, it would be broken down to urea and hydrogen peroxide, both of which are found normally in human milk. (drugs.com)
  • 1,2] If carbamide peroxide is used by the mother according to directions, it is not a reason to discontinue breastfeeding and no special precautions are required. (drugs.com)
  • The aim of this clinical study was to evaluate the effectiveness of a whitening toothpaste containing 3% carbamide peroxide and lactoperoxidase. (hindawi.com)
  • Hydrogen peroxide (HP) and its precursor, carbamide peroxide (CP), are the most widely used whitening agents [ 4 ]. (hindawi.com)
  • The liver is used to remove toxins from the body so there is a particularly high concentration of catalyase there so liver will decompose hydrogen peroxide particularly quickly. (thenakedscientists.com)
  • The efficiency of these kinds of toothpaste is questionable because of the low concentration of peroxide [ 10 ]. (hindawi.com)
  • The enzyme (lactoperoxidase) has been used as an activating agent to reduce peroxide concentration in order to minimize the risk of undesirable effects [ 13 ]. (hindawi.com)
  • First, remember that you always want to use 3% hydrogen peroxide mixed with equal parts water to avoid a concentration of the treatment that could cause additional drying and irritation to the vagina. (earthclinic.com)
  • Hydrogen peroxide in 3% concentration really isn't that dangerous. (chemicalforums.com)
  • New technology transfer required segregation and treatment of waste stream with high peroxide concentration (HPW). (f-w.com)
  • Most dealers today using hydrogen peroxide are using it at a seven percent concentration. (purewatergazette.net)
  • This extra oxygen is the reason that hydrogen peroxide acts as a bleach and an antiseptic. (thenakedscientists.com)
  • Hydrogen peroxide is an antiseptic, meaning that it may reduce the amount of bacteria around your canker sore. (colgate.com)
  • Dilute 3% and 6% hydrogen peroxide solutions are weak oxidizers and skin and eye irritants. (flinnsci.com)
  • Some interesting things to do with the 3% hydrogen peroxide, besides bleach your hair, is to use it as a co-dissolving agent in dilute hydrochloric acid (muratic acid) to make cool flame-colorants used in pyrotechnics (think copper chloride and copper oxychloride). (chemicalforums.com)
  • Customers should never be allowed to handle or dilute peroxide for safety reasons and for the risk of liability of the company providing it. (purewatergazette.net)
  • The market is driven by the increased demand for organic peroxide from various application segments, such as chemicals & plastics, coatings, adhesives & elastomers, paper & textile, detergents, and personal care, among others. (marketsandmarkets.com)
  • The chemicals & plastics application segment is estimated to lead the global organic peroxide market, in terms of volume and value, in 2017. (marketsandmarkets.com)
  • China is projected to be the largest market for organic peroxide in Asia Pacific during the forecast period. (marketsandmarkets.com)
  • The growth of the market in China is expected to be driven by increased foreign investments because of low-cost labor and easy availability of raw materials that has fueled the production of organic peroxide in the country. (marketsandmarkets.com)
  • Employees were concerned with exposures to PVC glue, fiberglass, acetone, organic peroxide, and unsaturated polyester resins in the production of cultured marble vanities, bath tubs, and shower walls and floors. (cdc.gov)
  • Concentrations of hydrogen peroxide in commercial products vary, depending on their intended use. (medicalnewstoday.com)
  • The Agency for Toxic Substances & Disease Registry (ATSDR) , for example, note that low concentrations of hydrogen peroxide can cause skin irritation and blistering. (medicalnewstoday.com)
  • She cautions, though, that doing so could irritate certain skin types, and she doesn't recommend it at all if you have a deeper complexion - higher concentrations of hydrogen peroxide (and continued use over time) can bleach skin . (bustle.com)
  • Hydrogen peroxide is found in many households at low concentrations (3-9%) for medicinal applications and as a clothes and hair bleach. (cdc.gov)
  • In industry, hydrogen peroxide in higher concentrations is used as a bleach for textiles and paper, as a component of rocket fuels, and for producing foam rubber and organic chemicals. (cdc.gov)
  • In industry, hydrogen peroxide in higher concentrations is used as a bleach for textiles and ` Because hydrogen peroxide is used in many industries for paper, as a component of rocket fuels, and for producing a variety of purposes, workers in such industries may be foam rubber and organic chemicals. (cdc.gov)
  • Warning - Hydrogen peroxide is a weak bleach, it will irritate the skin, and you really don't want to get it in your eyes, so wear some form of eye protection. (thenakedscientists.com)
  • So, can you use hydrogen peroxide to bleach hair? (bustle.com)
  • The combination of clindamycin and benzoyl peroxide comes as a gel to apply to the skin. (medlineplus.gov)
  • To help you remember to use clindamycin and benzoyl peroxide gel, apply it at around the same times every day. (medlineplus.gov)
  • Use clindamycin and benzoyl peroxide gel exactly as directed. (medlineplus.gov)
  • Clindamycin and benzoyl peroxide may make your skin sensitive to sunlight. (medlineplus.gov)
  • Fass environmental information for Duac (benzoyl peroxide, clindamycin) from GlaxoSmithKline (downloaded 2022-06-30). (janusinfo.se)
  • This combination product contains two medications: clindamycin and benzoyl peroxide. (medbroadcast.com)
  • Each 1 g of gel contains 10 mg of clindamycin and 50 mg of benzoyl peroxide. (medbroadcast.com)
  • Clindamycin - benzoyl peroxide should be applied to the affected skin areas once daily before bedtime. (medbroadcast.com)
  • Can You Use Hydrogen Peroxide On A Canker Sore? (colgate.com)
  • If you don't have hydrogen peroxide in your medicine cabinet, there are other over-the-counter remedies may help ease the discomfort of a canker sore. (colgate.com)
  • Alkenyl peroxides could also occur as unwanted byproducts in the Baeyer-Villiger oxidation when using hydrogen peroxide, which would diminish the effectiveness of this reaction. (wikipedia.org)
  • Hydrogen peroxide is an oxidizing agent, known not only for its high oxidation potential, but its strong performance across a wide pH range as well. (solvay.com)
  • Methyltrioxorhenium (MTO) catalyzes an oxidation of methyl trimethylsilyl ketene acetals with urea hydrogen peroxide to afford α-hydroxy and α-siloxy esters. (organic-chemistry.org)
  • The use of urea-hydrogen peroxide and phthalic anhydride in ethyl acetate enables a metal-free, environmentally benign oxidation of substituted sulfides to their corresponding sulfones without observation of the possible sulfoxide oxidation product. (organic-chemistry.org)
  • The use of urea-hydrogen peroxide as terminal oxidant in the presence of diphenyl diselenide as catalyst enables a highly selective catalytic oxidation of sulfides into the corresponding sulfoxides. (organic-chemistry.org)
  • On a commercial basis, products based on Calcium Peroxide are available for chemical oxidation and contaminants into biodegradation. (visiongain.com)
  • Here, we simulate this post-burial process through artificial maturation experiments using three synthetic and one natural eumelanin exposed to mild (100 â—¦ C/100 bar) and harsh (250 â—¦ C/200 bar) environmental conditions, followed by chemical analysis employing alkaline hydrogen peroxide oxidation (AHPO) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). (lu.se)
  • C/200 bar) environmental conditions, followed by chemical analysis employing alkaline hydrogen peroxide oxidation (AHPO) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). (lu.se)
  • Hydrogen peroxide is unstable, decomposing readily to oxygen and water with release of heat. (cdc.gov)
  • In rare cases, using hydrogen peroxide on wounds can cause an oxygen embolism . (medicalnewstoday.com)
  • Hydrogen peroxide has a molecule very like water but instead of being H 2 O it has an extra oxygen molecule to form H 2 O 2 . (thenakedscientists.com)
  • Hydrogen peroxide will decompose into water and oxygen in sunlight, very slowly over a period of days, so it is sold in dark brown bottles to keep the light out. (thenakedscientists.com)
  • Lithium peroxide is formed upon treating lithium hydroxide with hydrogen peroxide: 2 LiOH + H2O2 → Li2O2 + 2 H2O. (handlebar-online.com)
  • In organic chemistry, alkenyl peroxides are organic compounds bearing an alkene (R2C=CR2) residue directly at the peroxide (R−O−O−R) group, resulting in the general formula R2C=C(R)OOR. (wikipedia.org)
  • Hydrogen peroxide released to the atmosphere will react very rapidly with other compounds found in air. (cdc.gov)
  • If released to soil, hydrogen peroxide will be broken down by reacting with other compounds. (cdc.gov)
  • Hydrogen peroxide is a colorless liquid at room temperature by reacting with other compounds. (cdc.gov)
  • Hydrogen peroxide can be toxic if ingested, inhaled, or by very rapidly with other compounds found in air. (cdc.gov)
  • Carbamide (urea) peroxide has not been studied during breastfeeding. (drugs.com)
  • Urea-hydrogen peroxide is a non-toxic, odorless crystalline solid. (organic-chemistry.org)
  • Urea-hydrogen peroxide in the presence of a catalytic amount of magnesium bromide efficiently oxidizes primary and secondary benzylic alcohols into the corresponding aromatic aldehydes and ketones. (organic-chemistry.org)
  • Eco-friendly laboratory procedures allow the oxidative iodination of various activated and deactivated arenes with molecular iodine, in the presence of UHP (percarbamide), a stable, strongly H-bonded, solid urea-hydrogen peroxide adduct as the oxidant. (organic-chemistry.org)
  • Urea-hydrogen peroxide adduct (UHP) is stable, inexpensive and an easily handled reagent. (organic-chemistry.org)
  • Because of this weak bond, alkenyl peroxides are generally only postulated as reactive intermediates. (wikipedia.org)
  • Hydrogen peroxide is a "weak acidic, clear, colorless fluid, easily mixed with water in all proportions. (purewatergazette.net)
  • 1.2.1 Processes that use other sterilizing agents, or hydrogen peroxide solution in combination with other chemicals as the sterilizing agent are not addressed in this document. (iso.org)
  • ToxFAQsTM Internet address is http://www.atsdr.cdc.gov/toxfaq.html peroxide can cause mild ocular irritation. (cdc.gov)
  • Alkenyl peroxides decompose readily by homolytic O-O bond cleavage into two radicals, generating an oxyl radical and an alkenyloxyl- or α-oxo-alkyl radical. (wikipedia.org)
  • Inhalation of household strength hydrogen peroxide (3%) can cause respiratory irritation. (cdc.gov)
  • Exposure to household strength hydrogen peroxide can cause mild ocular irritation. (cdc.gov)
  • Ingestion of even more ` Most families may be exposed to household strength concentrated solutions, in addition to the above, may also hydrogen peroxide. (cdc.gov)
  • Hydrogen peroxide of less than eight percent strength is considered non-hazardous. (purewatergazette.net)
  • Be sure to determine what peroxide strength is being used and adjust for the calculations when sizing and setting chemical feeders 1 . (purewatergazette.net)
  • Lithium oxide, Li2O, is the most important oxide of lithium, but the peroxide, Li2O2, is readily formed by the reaction of metal and hydrogen peroxide. (handlebar-online.com)
  • But, it is observed that not only color of normal oxides deepens down the group but the peroxides and superoxides also follow the trend: Lithium peroxide ( L i X 2 O X 2) is a white solid that melts at 195 °C. Sodium peroxide ( N a X 2 O X 2) is a pale yellow solid that melts at 460 °Cand boils at 657 °C. (handlebar-online.com)
  • Lithium Peroxide-Li2O2. (handlebar-online.com)
  • Properties of Lithium Peroxide. (handlebar-online.com)
  • Hydrogen peroxide is a colorless liquid at room temperature with a bitter taste. (cdc.gov)
  • Exposure to hydrogen peroxide can cause irritation of the eyes, throat, respiratory airway, and skin. (cdc.gov)
  • Because hydrogen peroxide is used in many industries for a variety of purposes, workers in such industries may be exposed to this chemical through inhalation or contact with the skin. (cdc.gov)
  • Hydrogen peroxide is a chemical agent in many cleaning products. (medicalnewstoday.com)
  • Because of its particular physical and chemical properties, calcium peroxide (CP) has been applied progressively to the protection of environment. (visiongain.com)
  • Many chemical suppliers have seven-percent peroxide already available or can make it up in many cases. (purewatergazette.net)
  • However, experts no longer recommend using hydrogen peroxide in wound care, as it can irritate or damage the cells responsible for wound healing. (medicalnewstoday.com)
  • Just started another round of antibiotics, but my doc also recommended hydrogen peroxide. (earthclinic.com)
  • Our team performed a feasibility study for the use of an enzyme for the safe and near complete decomposition of the hydrogen peroxide. (f-w.com)
  • tell your doctor and pharmacist if you are allergic to benzoyl peroxide, any other medications, or any of the ingredients in benzoyl peroxide products. (medlineplus.gov)
  • Hydrogen Peroxide Can Be Used to Induce Vomiting in All Pets - While hydrogen peroxide in controlled doses works for inducing vomiting in dogs, but it is never safe to use hydrogen peroxide in cats. (petpoisonhelpline.com)
  • Eye exposure to 3% hydrogen peroxide may result in pain and irritation, but severe injury is rare. (cdc.gov)
  • We do not know if exposure to hydrogen peroxide may affect reproduction in humans. (cdc.gov)
  • We do not know if exposure to hydrogen peroxide may result in birth defects or other developmental effects in people. (cdc.gov)
  • We do not know if exposure to hydrogen peroxide may affect There are no clinical tests that show that you have been reproduction in humans. (cdc.gov)
  • Peroxide can be activated by exposure to heat or light for around one hour in the dental office [ 5 ]. (hindawi.com)
  • They designed a molecule that was sensitive to hydrogen peroxide and enabled expression of the firefly luciferase gene in live mammalian cells. (phys.org)
  • Employees who made plastic parts, generally made of polystyrene and rigid polyurethane, were exposed to diphenylmethane- diisocyanate (101688) (MDI), styrene (100425), diatomaceous-earth (68855549), silica (7631869), and methylethylketone-peroxide (1338234). (cdc.gov)
  • If you add hydrogen peroxide to a living cell it will Oxidise molecules at random, causing all sorts of biochemical chaos and seriously damage or kill the cell which is why hydrogen peroxide and other bleaches are very good antiseptics. (thenakedscientists.com)
  • Both hydrogen peroxide and rubbing alcohol are antiseptics, which means they do kill germs, but they can also harm the surrounding tissue of the wound, which is why they burn when you apply them," Dr. Caudle explains. (rachaelrayshow.com)
  • As a global industry leader and responsible supplier of hydrogen peroxide formulations, Solvay promotes and continuously improves safe, sustainable management of our products throughout the entire product life cycle. (solvay.com)
  • Small amounts of gaseous hydrogen peroxide occur naturally in the air. (cdc.gov)
  • Now researchers from North Carolina State University have found a way to use naturally occurring hydrogen peroxide inside cells to switch on gene expression. (phys.org)
  • Hydrogen peroxide also occurs naturally. (purewatergazette.net)
  • Containers with hydrogen peroxide should be stored out of and irritation, but severe injury is rare. (cdc.gov)
  • Cats can develop irritation and intestinal bleeding, which can be potentially fatal from ingesting hydrogen peroxide, so under no circumstance should you administer it to them as an emetic. (petpoisonhelpline.com)
  • Many dealers are purchasing 35 percent technical grade peroxide for diluting and using four gallons of water to one gallon of 35 percent peroxide. (purewatergazette.net)
  • People use hydrogen peroxide on the skin in many ways, such as to prevent infections in minor wounds, such as scrapes or small cuts. (medicalnewstoday.com)
  • In addition to its germicidal activity, the effervescence of hydrogen peroxide is beneficial to the mechanical removal of pus and debris from wounds. (farmvet.com)
  • Hydrogen peroxide is typically known for its safe and effective ability to clean and disinfect wounds. (bustle.com)
  • Benzoyl peroxide is a medication that has antibacterial effects and is a peeling agent . (medbroadcast.com)
  • Organic peroxides are widely used as initiators in coatings, adhesives, paints, and dry oils. (marketsandmarkets.com)
  • The deodorising, bleaching and desinfection of calcium peroxide has been widely used. (visiongain.com)
  • Effect of pH on whitening efficacy of 35% hydrogen peroxide and enamel microhardness. (bvsalud.org)
  • This study aimed to evaluate the effect of 35% hydrogen peroxide at different pH values and the degree of tooth staining on whitening efficacy and enamel microhardness. (bvsalud.org)
  • Despite the effectiveness of 35% hydrogen peroxide , changes on gel pH did not affect the whitening efficacy , and the enamel was superficially demineralized, regardless of pH values. (bvsalud.org)
  • Apply a small amount of the benzoyl peroxide product to one or two small areas you want to treat for 3 days when you begin to use this medication for the first time. (medlineplus.gov)
  • Talk to a doctor before allowing a child younger than 12 to use a product that contains benzoyl peroxide. (healthlinkbc.ca)
  • Versatility and performance aside, hydrogen peroxide is truly a product fit for the future because it also addresses growing sustainability concerns faced by markets and industries the world over. (solvay.com)
  • Commercial product is diluted with 40 percent dimethyl phthalate, cyclohexane peroxide, or diallyl phthalate to reduce sensitivity to shock. (environmentalchemistry.com)
  • Calcium peroxide, the hottest food-lower, thermally stable product and is also considered an effective and versatile hydrogen peroxide solid source. (visiongain.com)
  • You've probably used hydrogen peroxide to clean a scraped knee, but turns out, the product could be a useful beauty tool. (bustle.com)
  • It is very reactive to leather and can actually cause leather to ignite, even though peroxide itself is not flammable. (purewatergazette.net)
  • If you become pregnant while using benzoyl peroxide, call your doctor. (medlineplus.gov)
  • Benzoyl peroxide comes in cleansing liquid or bar, lotion, cream, and gel for use on the skin. (medlineplus.gov)
  • You can buy products that contain benzoyl peroxide in the grocery store or pharmacy. (healthlinkbc.ca)
  • Look at the outside package to find products that have benzoyl peroxide as the active ingredient. (healthlinkbc.ca)
  • A review in the Journal of Pharmaceutical Sciences and Research advises mixing a solution composed of half hydrogen peroxide and half water. (colgate.com)
  • You are actually creating a solution that is 1.5% hydrogen peroxide because you cannot buy 1.5% hydrogen peroxide. (earthclinic.com)
  • However, over-the-counter hydrogen peroxide at your local drugstore is typically a stronger 3% solution - in other words, don't start rubbing it all over your face every day. (bustle.com)
  • Furthermore, diacyl peroxide is used as a curing agent for thermoset resins and for cross-linking of thermoplastics and elastomers. (marketsandmarkets.com)
  • Hydrogen peroxide can be toxic if ingested, inhaled, or by contact with the skin or eyes. (cdc.gov)
  • Below, learn about the risks and applications of hydrogen peroxide in skin care. (medicalnewstoday.com)
  • Hydrogen peroxide has disinfecting and bleaching properties, and as a result, some people believe that it can combat infections, reduce blemishes, lighten the skin, and ease symptoms of certain conditions. (medicalnewstoday.com)
  • Always speak with a healthcare provider before using hydrogen peroxide on the skin. (medicalnewstoday.com)
  • Hydrogen peroxide is used to treat raised seborrheic keratoses (waxy and scaly, raised areas of skin). (drugs.com)
  • Benzoyl peroxide unclogs skin pores. (healthlinkbc.ca)
  • If you are sensitive to Benzoyl Peroxide or have very sensitive skin. (nih.gov)
  • Note: When used correctly, benzoyl peroxide on its own can completely clear the skin. (acne.org)
  • If using hydrogen peroxide in your hair isn't the greatest call, can you use it on your skin? (bustle.com)
  • At stronger concentrations, it can burn the skin,' she says, adding that diluted hydrogen peroxide available over the counter can still be damaging and drying. (bustle.com)
  • The Hydrogen peroxide can react with many different organic molecules oxidising them, which is equivalent to partially burning them. (thenakedscientists.com)
  • Our new innovation is called PEROXCAP®, for measuring vaporized hydrogen peroxide, temperature, relative saturation and relative humidity. (vaisala.com)
  • The Vaisala PEROXCAP® Hydrogen Peroxide, Humidity, and Temperature Probe HPP270 series probes are designed for demanding hydrogen peroxide bio-decontamination. (vaisala.com)
  • Barium peroxide is prepared by oxygenation of barium oxide at elevated temperature and pressure. (handlebar-online.com)
  • 1.1.1 This document provides requirements for the development, validation and routine monitoring and control of a low temperature sterilization process for medical devices using vaporized hydrogen peroxide (VH2O2) as the sterilizing agent. (iso.org)
  • Hydrogen peroxide, which is the active ingredient in over-the-counter whitening strips, can damage the. (dentistrytoday.com)
  • Recommended use level: 2.5-10.0% active benzoyl peroxide. (makingcosmetics.com)
  • The use of Benzoyl peroxide (sales data Sweden 2019) has been considered to result in moderate environmental risk. (janusinfo.se)
  • 1.2.6 This document does not cover hydrogen peroxide decontamination systems for use in rooms, enclosures or environmental spaces. (iso.org)