5-carbon straight-chain or branched-chain ketones.

Effects of vanadium complexes with organic ligands on glucose metabolism: a comparison study in diabetic rats. (1/82)

1. Vanadium compounds can mimic actions of insulin through alternative signalling pathways. The effects of three organic vanadium compounds were studied in non-ketotic, streptozotocin-diabetic rats: vanadyl acetylacetonate (VAc), vanadyl 3-ethylacetylacetonate (VEt), and bis(maltolato)oxovanadium (VM). A simple inorganic vanadium salt, vanadyl sulphate (VS) was also studied. 2. Oral administration of the three organic vanadium compounds (125 mg vanadium element 1(-1) in drinking fluids) for up to 3 months induced a faster and larger fall in glycemia (VAc being the most potent) than VS. Glucosuria and tolerance to a glucose load were improved accordingly. 3. Activities and mRNA levels of key glycolytic enzymes (glucokinase and L-type pyruvate kinase) which are suppressed in the diabetic liver, were restored by vanadium treatment. The organic forms showed greater efficacy than VS, especially VAc. 4. VAc rats exhibited the highest levels of plasma or tissue vanadium, most likely due to a greater intestinal absorption. However, VAc retained its potency when given as a single i.p. injection to diabetic rats. Moreover, there was no relationship between plasma or tissue vanadium levels and any parameters of glucose homeostasis and hepatic glucose metabolism. Thus, these data suggest that differences in potency between compounds are due to differences in their insulin-like properties. 5. There was no marked toxicity observed on hepatic or renal function. However, diarrhoea occurred in 50% of rats chronically treated with VS, but not in those receiving the organic compounds. 6. In conclusion, organic vanadium compounds, in particular VAc, correct the hyperglycemia and impaired hepatic glycolysis of diabetic rats more safely and potently than VS. This is not simply due to improved intestinal absorption, indicating more potent insulin-like properties.  (+info)

Nitecapone reduces cardiac neutrophil accumulation in clinical open heart surgery. (2/82)

BACKGROUND: To study the effect of nitecapone, a novel antioxidant, on cardiac neutrophil activation during cardiopulmonary bypass in patients. METHODS: In a double-blind, placebo controlled trial, 30 male patients undergoing coronary artery bypass grafting were randomly assigned to control (crystalloid cardioplegia, n = 15) and nitecapone groups (cardioplegia supplemented with nitecapone, n = 15). Leukocyte differential counts, neutrophil and monocyte CD11b and L-selectin expressions and neutrophil hydrogen peroxide production were measured in blood samples parallelly obtained from the coronary sinus and aorta before cardiopulmonary bypass and at 1, 5, and 10 min after aortic declamping. Myocardial myeloperoxidase activity was analyzed in biopsies taken at 1, 5, and 10 min after declamping. RESULTS: Transcoronary neutrophil difference (i.e., aorta--sinus coronarius) at 1 min after aortic declamping was significantly lower in nitecapone-treated patients (0.41 [-0.42-0.98] x 10(9) cells/l) than in controls (0.68 [-0.28-2.47] x 10(9) cells/l; P = 0.032). At 5 min after aortic declamping, significant transcoronary reduction of neutrophil hydrogen peroxide production and CD11b expression were observed in controls but not in nitecapone patients. At 24 h postoperatively, left ventricular stroke volume was better in nitecapone-treated patients (94 [51-118] ml) than controls (66 [40-104] ml; P= 0.018). Data are median [range]. CONCLUSION: Nitecapone added to cardioplegia solution reduces cardiac neutrophil accumulation and transcoronary neutrophil activation during clinical cardiopulmonary bypass. Reflected by better left ventricular stroke volume, nitecapone treatment may be an additional way of reducing the deleterious effects of neutrophil activation during cardiopulmonary bypass.  (+info)

Specific binding of ethanol to cholesterol in organic solvents. (3/82)

Although ethanol has been reported to affect cholesterol homeostasis in biological membranes, the molecular mechanism of action is unknown. Here, nuclear magnetic resonance (NMR) spectroscopic techniques have been used to investigate possible direct interactions between ethanol and cholesterol in various low dielectric solvents (acetone, methanol, isopropanol, DMF, DMSO, chloroform, and CCl(4)). Measurement of (13)C chemical shifts, spin-lattice and multiplet relaxation times, as well as self-diffusion coefficients, indicates that ethanol interacts weakly, yet specifically, with the HC-OH moiety and the two flanking methylenes in the cyclohexanol ring of cholesterol. This interaction is most strong in the least polar-solvent carbon tetrachloride where the ethanol-cholesterol equilibrium dissociation constant is estimated to be 2 x 10(-3) M. (13)C-NMR spin-lattice relaxation studies allow insight into the geometry of this complex, which is best modeled with the methyl group of ethanol sandwiched between the two methylenes in the cyclohexanol ring and the hydroxyl group of ethanol hydrogen bonded to the hydroxyl group of cholesterol.  (+info)

Combined antioxidant and COMT inhibitor treatment reverses renal abnormalities in diabetic rats. (4/82)

The development and progression of diabetic nephropathy is dependent on glucose homeostasis and many other contributing factors. In the present study, we examined the effect of nitecapone, an inhibitor of the dopamine-metabolizing enzyme catechol-O-methyl transferase (COMT) and a potent antioxidant, on functional and cellular determinants of renal function in rats with streptozotocin-induced diabetes. Administration of nitecapone to diabetic rats normalized urinary sodium excretion in a manner consistent with the dopamine-dependent inhibition of proximal tubule Na,K-ATPase activity. Hyperfiltration, focal glomerulosclerosis, and albuminuria were also reversed by nitecapone, but in a manner that is more readily attributed to the antioxidant potential of the agent. A pattern of elevated oxidative stress, measured as CuZn superoxide dismutase gene expression and thiobarbituric acid-reactive substance content, was noted in diabetic rats, and both parameters were normalized by nitecapone treatment. In diabetic rats, activation of glomerular protein kinase C (PKC) was confirmed by isoform-specific translocation and Ser23 phosphorylation of the PKC substrate Na,K-ATPase. PKC-dependent changes in Na,K-ATPase phosphorylation were associated with decreased glomerular Na,K-ATPase activity. Nitecapone-treated diabetic rats were protected from these intracellular modifications. The combined results suggest that the COMT-inhibitory and antioxidant properties of nitecapone provide a protective therapy against the development of diabetic nephropathy.  (+info)

Cell-fate choice in Dictyostelium: intrinsic biases modulate sensitivity to DIF signaling. (5/82)

Cell fate in Dictyostelium development depends on intrinsic differences between cells, dating from their growth period, and on cell interactions occurring during development. We have sought for a mechanism linking these two influences on cell fate. First, we confirmed earlier work showing that the vegetative differences are biases, not commitments, since cells that are stalky-biased when developed with one partner are sporey with another. Then we tested the idea that these biases operate by modulating the sensitivity of cells to the signals controlling cell fate during development. Cells grown without glucose are stalky-biased when developed with cells grown with glucose. We find, using monolayer culture conditions, that they are more sensitive to each of the stalk-inducing signals, DIFs 1-3. Mixing experiments show that this bias is a cell-intrinsic property. Cells initiating development early in the cell cycle are stalky compared to those initiating development later in the cycle. Likewise, they are more sensitive to DIF-1. Assays of standard markers for prestalk and prespore cell differentiation reveal similar differences in DIF-1 sensitivity between biased cells; DIF-1 dechlorinase (an early prestalk cell marker enzyme) behaves in a consistent manner. We propose that cell-fate biases are manifest as differences in sensitivity to DIF.  (+info)

Investigation of gastroprotective compounds at subcellular level in isolated gastric mucosal cells. (6/82)

We tested the hypothesis that recognized gastroprotective agents exert direct protection against ethanol-induced injury in isolated rat gastric mucosal cells in vitro. If protection exists, we also wanted to identify subcellular targets in the reversible and/or irreversible stages of cell injury. Ethanol-induced cell injury was quantified by measuring plasma membrane leakage (trypan blue exclusion and lactate dehydrogenase release), mitochondrial integrity (succinic dehydrogenase), and nuclear damage (ethidium bromide-DNA fluorescence). Initial cell viability and responsiveness were estimated by the effects of carbachol, carbachol + atropine, or 16,16-dimethyl-PGE(2) on chief cell pepsinogen secretion. Enriched parietal cells were stimulated by histamine, carbachol, or histamine + IBMX. Preincubation of cells with PG, sucrose octasulfate, or the sulfhydryl compounds N-acetylcysteine, taurine, or cysteamine increased cell resistance +info)

The Caenorhabditis elegans odr-2 gene encodes a novel Ly-6-related protein required for olfaction. (7/82)

Caenorhabditis elegans odr-2 mutants are defective in the ability to chemotax to odorants that are recognized by the two AWC olfactory neurons. Like many other olfactory mutants, they retain responses to high concentrations of AWC-sensed odors; we show here that these residual responses are caused by the ability of other olfactory neurons (the AWA neurons) to be recruited at high odor concentrations. odr-2 encodes a membrane-associated protein related to the Ly-6 superfamily of GPI-linked signaling proteins and is the founding member of a C. elegans gene family with at least seven other members. Alternative splicing of odr-2 yields three predicted proteins that differ only at the extreme amino terminus. The three isoforms have different promoters, and one isoform may have a unique role in olfaction. An epitope-tagged ODR-2 protein is expressed at high levels in sensory neurons, motor neurons, and interneurons and is enriched in axons. The AWC neurons are superficially normal in their development and structure in odr-2 mutants, but their function is impaired. Our results suggest that ODR-2 may regulate AWC signaling within the neuronal network required for chemotaxis.  (+info)

D1-like dopamine receptor activation and natriuresis by nitrocatechol COMT inhibitors. (8/82)

BACKGROUND: In recent years, several nitrocatechol derivatives (tolcapone, entacapone, and nitecapone) have been developed and found to be highly selective and potent inhibitors of catechol-O-methyltransferase (COMT). More recently, natriuretic properties were described for two of these compounds (entacapone and nitecapone), although this was not accompanied by enhanced urinary excretion of dopamine. We hypothesized that nitrocatechol derivatives stimulate D1-like dopamine receptors. METHODS: Adult male Wistar rats were treated with a nitrocatechol COMT inhibitor (entacapone, tolcapone, or nitecapone, 30 mg/kg, orally), and the urinary excretion of dopamine and sodium was quantitated. The interaction of nitrocatechol derivatives with D1-like receptors was evaluated by their ability to displace [3H]-Sch23390 binding from membranes of rat renal cortex and cAMP production in opossum kidney (OK) cells. RESULTS: Urinary excretion of sodium (micromol/h) was markedly increased by all three nitrocatechol derivatives: vehicle, 55.0 +/- 5.6; entacapone, 98.4 +/- 9.3; tolcapone, 97.5 +/- 9.3; and nitecapone, 120.5 +/- 12.6. Pretreatment with the selective D1 antagonist Sch 23390 (60 microg/kg) completely prevented their natriuretic effects. Nitecapone and tolcapone were equipotent (IC50s of 48 and 42 micromol/L) and more potent than entacapone and dopamine (IC50s of 107 and 279 micromol/L) in displacing [3H]-Sch23390 binding. In OK cells, all three nitrocatechol derivatives significantly increased cAMP accumulation and reduced Na(+)/H(+) exchange and Na(+),K(+)-ATPase activities, this being prevented by a blockade of D1-like receptors. CONCLUSION: Stimulation of D1-like dopamine receptors and inhibition of Na(+)/H(+) exchange and Na(+),K(+)-ATPase activities by nitrocatechol COMT inhibitors may contribute to natriuresis produced by these compounds.  (+info)

I'm sorry for any confusion, but "Pentanones" is not a recognized medical term. It is a chemical term that refers to a class of compounds known as ketones, where the parent compound contains five carbon atoms and a ketone functional group. Ketones are organic compounds containing a carbonyl group (a functional group consisting of a carbon atom double-bonded to an oxygen atom: C=O) with the carbon atom also being bonded to two other carbon atoms.

If you have any questions related to medical terminology or concepts, please feel free to ask!

Welcome to lookformedical.com, where you can ask questions and receive answers from other members of the community ...
Carboligases catalysing the production of odorous α-hydroxy pentanones: Flavour of cheese, wine and durian. Dobiašová, H., ...
AlkenesCatalysisModels, MolecularMolecular StructureNaphthalenesNitro CompoundsPentanonesStereoisomerismThiourea ...
This graph shows the total number of publications written about "Camphor" by people in this website by year, and whether "Camphor" was a major or minor topic of these publications ...
Descritores em Ciências da Saúde
Concept scores are derived automatically based on a persons publications. Keywords in the their attributed publications are matched to keywords from the National Library of Medicines controlled vocabulary thesaurus, MeSH (Medical Subject Headings). The strength of a persons concept scores is based not only on the number of corresponding publications, but also how relevant the concepts are to the overall topics of the publications, how long ago the publications were written, whether the person was the first or senior author, and how many other people have written about the topic.Concepts cannot be directly edited. You can help ensure your concepts are accurate by making sure your attributed publications are correct and up-to-date. We recommend checking over your attributed publications list every three to four months. ...
Ketones, Methyl Propyl use Pentanones Ketones, Peptide Chloromethyl use Amino Acid Chloromethyl Ketones ...
Ketones, Methyl Propyl use Pentanones Ketones, Peptide Chloromethyl use Amino Acid Chloromethyl Ketones ...
Ketones, Methyl Propyl use Pentanones Ketones, Peptide Chloromethyl use Amino Acid Chloromethyl Ketones ...
Ketones, Methyl Propyl use Pentanones Ketones, Peptide Chloromethyl use Amino Acid Chloromethyl Ketones ...
Copper-Catalyzed Chemoselective Asymmetric Hydrogenation of C=O Bonds of Exocyclic α,ß-Unsaturated Pentanones. Guan, Jing; Chen ...
Biotransformation, Glutathione, Membrane Transport Proteins, Monosaccharide Transport Proteins, Pentanones, Saccharomyces ...

No FAQ available that match "pentanones"

No images available that match "pentanones"