The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition.
The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME.
The total relative probability, expressed on a logarithmic scale, that a linkage relationship exists among selected loci. Lod is an acronym for "logarithmic odds."
Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.
Any method used for determining the location of and relative distances between genes on a chromosome.
A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event.
Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state.
The genetic constitution of individuals with respect to one member of a pair of allelic genes, or sets of genes that are closely linked and tend to be inherited together such as those of the MAJOR HISTOCOMPATIBILITY COMPLEX.
The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.
I'm sorry for any confusion, but "Utah" is a proper noun and refers to a state in the United States, it does not have a medical definition. If you have any medical questions or need information on specific medical conditions or terms, I would be happy to help!
The magnitude of INBREEDING in humans.
The mating of plants or non-human animals which are closely related genetically.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
A variety of simple repeat sequences that are distributed throughout the GENOME. They are characterized by a short repeat unit of 2-8 basepairs that is repeated up to 100 times. They are also known as short tandem repeats (STRs).
The different ways GENES and their ALLELES interact during the transmission of genetic traits that effect the outcome of GENE EXPRESSION.
The production of offspring by selective mating or HYBRIDIZATION, GENETIC in animals or plants.
Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.
Genetic loci associated with a QUANTITATIVE TRAIT.
The percent frequency with which a dominant or homozygous recessive gene or gene combination manifests itself in the phenotype of the carriers. (From Glossary of Genetics, 5th ed)
The health status of the family as a unit including the impact of the health of one member of the family on the family as a unit and on individual family members; also, the impact of family organization or disorganization on the health status of its members.
A characteristic showing quantitative inheritance such as SKIN PIGMENTATION in humans. (From A Dictionary of Genetics, 4th ed)
Genes that influence the PHENOTYPE only in the homozygous state.
Functions constructed from a statistical model and a set of observed data which give the probability of that data for various values of the unknown model parameters. Those parameter values that maximize the probability are the maximum likelihood estimates of the parameters.
A latent susceptibility to disease at the genetic level, which may be activated under certain conditions.
An individual having different alleles at one or more loci regarding a specific character.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Nonrandom association of linked genes. This is the tendency of the alleles of two separate but already linked loci to be found together more frequently than would be expected by chance alone.
A phenomenon that is observed when a small subgroup of a larger POPULATION establishes itself as a separate and isolated entity. The subgroup's GENE POOL carries only a fraction of the genetic diversity of the parental population resulting in an increased frequency of certain diseases in the subgroup, especially those diseases known to be autosomal recessive.
Biochemical identification of mutational changes in a nucleotide sequence.
Genealogy is the study of family history and descent, while heraldry refers to the practice of designing, displaying, and studying coats of arms, which often provide historical information about families or individuals.
A family composed of spouses and their children.
A single nucleotide variation in a genetic sequence that occurs at appreciable frequency in the population.
Computer-based representation of physical systems and phenomena such as chemical processes.
A specific pair of human chromosomes in group A (CHROMOSOMES, HUMAN, 1-3) of the human chromosome classification.
A hereditary disease of the hip joints in dogs. Signs of the disease may be evident any time after 4 weeks of age.
Detection of a MUTATION; GENOTYPE; KARYOTYPE; or specific ALLELES associated with genetic traits, heritable diseases, or predisposition to a disease, or that may lead to the disease in descendants. It includes prenatal genetic testing.
Genotypic differences observed among individuals in a population.
The complete genetic complement contained in the DNA of a set of CHROMOSOMES in a HUMAN. The length of the human genome is about 3 billion base pairs.
A social group consisting of parents or parent substitutes and children.
A phenotypic outcome (physical characteristic or disease predisposition) that is determined by more than one gene. Polygenic refers to those determined by many genes, while oligogenic refers to those determined by a few genes.
Establishing the father relationship of a man and a child.
The presence of apparently similar characters for which the genetic evidence indicates that different genes or different genetic mechanisms are involved in different pedigrees. In clinical settings genetic heterogeneity refers to the presence of a variety of genetic defects which cause the same disease, often due to mutations at different loci on the same gene, a finding common to many human diseases including ALZHEIMER DISEASE; CYSTIC FIBROSIS; LIPOPROTEIN LIPASE DEFICIENCY, FAMILIAL; and POLYCYSTIC KIDNEY DISEASES. (Rieger, et al., Glossary of Genetics: Classical and Molecular, 5th ed; Segen, Dictionary of Modern Medicine, 1992)
A maternally linked genetic disorder that presents in mid-life as acute or subacute central vision loss leading to central scotoma and blindness. The disease has been associated with missense mutations in the mtDNA, in genes for Complex I, III, and IV polypeptides, that can act autonomously or in association with each other to cause the disease. (from Online Mendelian Inheritance in Man, http://www.ncbi.nlm.nih.gov/Omim/, MIM#535000 (April 17, 2001))
The age, developmental stage, or period of life at which a disease or the initial symptoms or manifestations of a disease appear in an individual.
The discipline studying genetic composition of populations and effects of factors such as GENETIC SELECTION, population size, MUTATION, migration, and GENETIC DRIFT on the frequencies of various GENOTYPES and PHENOTYPES using a variety of GENETIC TECHNIQUES.
Sequential operating programs and data which instruct the functioning of a digital computer.
A specific pair of human chromosomes in group A (CHROMOSOMES, HUMAN, 1-3) of the human chromosome classification.
Identification of genetic carriers for a given trait.
The proportion of one particular in the total of all ALLELES for one genetic locus in a breeding POPULATION.
A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task.
Diseases that are caused by genetic mutations present during embryo or fetal development, although they may be observed later in life. The mutations may be inherited from a parent's genome or they may be acquired in utero.
An ethnic group with shared religious beliefs. Originating in Switzerland in the late 1600s, and first migrating to the mid-Atlantic, they now live throughout Eastern and Mid-Western United States and elsewhere. Communities are usually close-knit and marriage is within the community.
An individual in which both alleles at a given locus are identical.
A republic consisting of a group of about 100 islands and islets in the western Pacific Ocean. Its capital is Koror. Under Spain it was administered as a part of the Caroline Islands but was sold to Germany in 1899. Seized by Japan in 1914, it was taken by the Allies in World War II in 1944. In 1947 it became part of the U.S. Trust Territory of the Pacific Islands, became internally self-governing in 1980, obtained independent control over its foreign policy (except defense) in 1986, and achieved total independence October 1, 1994. (Webster's New Geographical Dictionary, 1988, p915; telephone communication with Randy Flynn, Board on Geographic Names, 17 January 1995)
A stochastic process such that the conditional probability distribution for a state at any future instant, given the present state, is unaffected by any additional knowledge of the past history of the system.
A subdiscipline of human genetics which entails the reliable prediction of certain human disorders as a function of the lineage and/or genetic makeup of an individual or of any two parents or potential parents.
The transmission of traits encoded in GENES from parent to offspring.
The study of chance processes or the relative frequency characterizing a chance process.
A specific pair of GROUP F CHROMOSOMES of the human chromosome classification.
A specific pair of human chromosomes in group A (CHROMOSOMES, HUMAN, 1-3) of the human chromosome classification.
A characteristic symptom complex.
In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993)
A specific pair of GROUP D CHROMOSOMES of the human chromosome classification.
One of the two pairs of human chromosomes in the group B class (CHROMOSOMES, HUMAN, 4-5).
Persons or animals having at least one parent in common. (American College Dictionary, 3d ed)
The female sex chromosome, being the differential sex chromosome carried by half the male gametes and all female gametes in human and other male-heterogametic species.
A specific pair of GROUP C CHROMOSOMES of the human chromosome classification.
The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA.
Hereditary conditions that feature progressive visual loss in association with optic atrophy. Relatively common forms include autosomal dominant optic atrophy (OPTIC ATROPHY, AUTOSOMAL DOMINANT) and Leber hereditary optic atrophy (OPTIC ATROPHY, HEREDITARY, LEBER).
A mutation in which a codon is mutated to one directing the incorporation of a different amino acid. This substitution may result in an inactive or unstable product. (From A Dictionary of Genetics, King & Stansfield, 5th ed)
An analysis comparing the allele frequencies of all available (or a whole GENOME representative set of) polymorphic markers in unrelated patients with a specific symptom or disease condition, and those of healthy controls to identify markers associated with a specific disease or condition.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins.
The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level.
A specific pair of GROUP C CHROMOSOMES of the human chromosome classification.
Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Individuals whose ancestral origins are in the southeastern and eastern areas of the Asian continent.
Hereditary, progressive degeneration of the neuroepithelium of the retina characterized by night blindness and progressive contraction of the visual field.
A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair.
A specific pair of GROUP F CHROMOSOMES of the human chromosome classification.
Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment.
A specific pair GROUP C CHROMSOMES of the human chromosome classification.
A specific pair of GROUP B CHROMOSOMES of the human chromosome classification.
A specific pair of GROUP C CHROMOSOMES of the human chromosome classification.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
Children who have reached maturity or the legal age of majority.
Specific regions that are mapped within a GENOME. Genetic loci are usually identified with a shorthand notation that indicates the chromosome number and the position of a specific band along the P or Q arm of the chromosome where they are found. For example the locus 6p21 is found within band 21 of the P-arm of CHROMOSOME 6. Many well known genetic loci are also known by common names that are associated with a genetic function or HEREDITARY DISEASE.
Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species.
That part of the genome that corresponds to the complete complement of EXONS of an organism or cell.
A specific pair of GROUP E CHROMOSOMES of the human chromosome classification.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
Bilateral hereditary disorders of the cornea, usually autosomal dominant, which may be present at birth but more frequently develop during adolescence and progress slowly throughout life. Central macular dystrophy is transmitted as an autosomal recessive defect.
The apparent tendency of certain diseases to appear at earlier AGE OF ONSET and with increasing severity in successive generations. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
'Eye proteins' are structural or functional proteins, such as crystallins, opsins, and collagens, located in various parts of the eye, including the cornea, lens, retina, and aqueous humor, that contribute to maintaining transparency, refractive power, phototransduction, and overall integrity of the visual system.
A specific pair of GROUP E CHROMOSOMES of the human chromosome classification.
A plant genus in the family PINACEAE, order Pinales, class Pinopsida, division Coniferophyta.
A theorem in probability theory named for Thomas Bayes (1702-1761). In epidemiology, it is used to obtain the probability of disease in a group of people with some characteristic on the basis of the overall rate of that disease and of the likelihood of that characteristic in healthy and diseased individuals. The most familiar application is in clinical decision analysis where it is used for estimating the probability of a particular diagnosis given the appearance of some symptoms or test result.
A plant species of the genus PINUS which is the subject of genetic study.
A specific pair of GROUP C CHROMSOMES of the human chromosome classification.
Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses.
A syndrome characterized by marked limitation of abduction of the eye, variable limitation of adduction and retraction of the globe, and narrowing of the palpebral fissure on attempted adduction. The condition is caused by aberrant innervation of the lateral rectus by fibers of the OCULOMOTOR NERVE.
A syndrome associated with inflammation of the BRACHIAL PLEXUS. Clinical features include severe pain in the shoulder region which may be accompanied by MUSCLE WEAKNESS and loss of sensation in the upper extremity. This condition may be associated with VIRUS DISEASES; IMMUNIZATION; SURGERY; heroin use (see HEROIN DEPENDENCE); and other conditions. The term brachial neuralgia generally refers to pain associated with brachial plexus injury. (From Adams et al., Principles of Neurology, 6th ed, pp1355-6)
Rapid and excessive rise of temperature accompanied by muscular rigidity following general anesthesia.
Variation in a population's DNA sequence that is detected by determining alterations in the conformation of denatured DNA fragments. Denatured DNA fragments are allowed to renature under conditions that prevent the formation of double-stranded DNA and allow secondary structure to form in single stranded fragments. These fragments are then run through polyacrylamide gels to detect variations in the secondary structure that is manifested as an alteration in migration through the gels.
A group of nine islands and several islets belonging to Portugal in the north Atlantic Ocean off the coast of Portugal. The islands are named after the acores, the Portuguese for goshawks, living there in abundance. (Webster's New Geographical Dictionary, 1988, p102 & Room, Brewer's Dictionary of Names, 1992, p42)
Abnormal number or structure of the SEX CHROMOSOMES. Some sex chromosome aberrations are associated with SEX CHROMOSOME DISORDERS and SEX CHROMOSOME DISORDERS OF SEX DEVELOPMENT.
Animals which have become adapted through breeding in captivity to a life intimately associated with humans. They include animals domesticated by humans to live and breed in a tame condition on farms or ranches for economic reasons, including LIVESTOCK (specifically CATTLE; SHEEP; HORSES; etc.), POULTRY; and those raised or kept for pleasure and companionship, e.g., PETS; or specifically DOGS; CATS; etc.
The human female sex chromosome, being the differential sex chromosome carried by half the male gametes and all female gametes in humans.
A specific pair of GROUP C CHROMOSOMES of the human chromosome classification.
A type of schizophrenia characterized by abnormality of motor behavior which may involve particular forms of stupor, rigidity, excitement or inappropriate posture.
A major affective disorder marked by severe mood swings (manic or major depressive episodes) and a tendency to remission and recurrence.

Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. (1/15278)

Angiotensin type 2 receptor gene null mutant mice display congenital anomalies of the kidney and urinary tract (CAKUT). Various features of mouse CAKUT impressively mimic human CAKUT. Studies of the human type 2 receptor (AGTR2) gene in two independent cohorts found that a significant association exists between CAKUT and a nucleotide transition within the lariat branchpoint motif of intron 1, which perturbs AGTR2 mRNA splicing efficiency. AGTR2, therefore, has a significant ontogenic role for the kidney and urinary tract system. Studies revealed that the establishment of CAKUT is preceded by delayed apoptosis of undifferentiated mesenchymal cells surrounding the urinary tract during key ontogenic events, from the ureteral budding to the expansive growth of the kidney and ureter.  (+info)

Hereditary juvenile haemochromatosis: a genetically heterogeneous life-threatening iron-storage disease. (2/15278)

Juvenile haemochromatosis is a rare inborn error of iron metabolism with clinical manifestations before 30 years of age. Unlike adult haemochromatosis which principally affects men, juvenile haemochromatosis affects the sexes equally; it causes early endocrine failure, dilated cardiomyopathy and joint disease. We report four patients (two of each sex) from three pedigrees affected by juvenile haemochromatosis with a mean onset at 22 years (range 14-30). All had endocrine deficiency with postpubertal gonadal failure secondary to pituitary disease; two suffered near-fatal cardiomyopathy with heart failure. Mean time to diagnosis from the first clinical signs of disease was 9.8 years (range 0.5-20) but general health and parameters of iron storage responded favourably to iron-depletion therapy. A 24-year-old man listed for heart transplantation because of cardiomyopathy [left ventricular (LV) ejection fraction 16%] responded to intravenous iron chelation with desferrioxamine combined with phlebotomy (ejection fraction 31%). A 27-year-old woman with subacute biventricular heart failure refractory to medication required orthotopic cardiac transplantation before the diagnosis was established (LV ejection fraction 25%). Genetic studies showed that these two patients with cardiomyopathy from unrelated families were heterozygous for the HFE 845G-->A (C282Y) mutation and wild-type at the H63D locus: complete sequencing of the intron-exon boundaries and entire coding sequence of the HFE gene failed to identify additional lesions. Two siblings in a pedigree without cardiomyopathy were wild-type at the HFE C282Y locus; although the brother harboured a single copy of the 187C-->G (H63D) allele, segregation analysis showed that in neither sibling was the iron-storage disease linked to MHC Class I markers on chromosome 6p. Juvenile haemochromatosis is thus a genetically heterogenous disorder distinct from the common adult variant.  (+info)

A new alkali-resistant hemoglobin alpha2J Oxford gammaF2 in a Sicilian baby girl with homozygous beta0 thalassemia. (3/15278)

A 10-mo-old baby girl with homozygous beta0 thalassemia and alphaJOxford, presenting the clinical picture of homozygous beta thalassemia is described. Hemoglobin electrophoresis showed three bands: the first two with the mobilities of hemoglobin Hb A2 (1%) and Hb F (69%), respectively, the third migrating a little faster than Hb A (30%). About 30% of her alpha chains were J Oxford which, bound to her gamma chains, produced a new alkali-resistant hemoglobin, alpha2 J Oxford gamma F2, which has not been described previously. Hemoglobin synthesis in vitro showed the absence of beta chain synthesis and an alpha/non-alpha ratio of 2. The patient's father was heterozygous for both the Hb J Oxford and beta0 thalassemia genes, the mother a carrier of beta0 thalassemia; four other relatives were carriers of Hb J Oxford, and one was a carrier of beta thalassemia.  (+info)

KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. (4/15278)

Potassium channels regulate electrical signaling and the ionic composition of biological fluids. Mutations in the three known genes of the KCNQ branch of the K+ channel gene family underlie inherited cardiac arrhythmias (in some cases associated with deafness) and neonatal epilepsy. We have now cloned KCNQ4, a novel member of this branch. It maps to the DFNA2 locus for a form of nonsyndromic dominant deafness. In the cochlea, it is expressed in sensory outer hair cells. A mutation in this gene in a DFNA2 pedigree changes a residue in the KCNQ4 pore region. It abolishes the potassium currents of wild-type KCNQ4 on which it exerts a strong dominant-negative effect. Whereas mutations in KCNQ1 cause deafness by affecting endolymph secretion, the mechanism leading to KCNQ4-related hearing loss is intrinsic to outer hair cells.  (+info)

Familial antiphospholipid antibody syndrome: criteria for disease and evidence for autosomal dominant inheritance. (5/15278)

OBJECTIVE: To develop diagnostic criteria for a familial form of antiphospholipid antibody syndrome (APS), identify families with >1 affected member, examine possible modes of inheritance, and determine linkage to potential candidate genes. METHODS: Family members of probands with primary APS were analyzed for clinical and laboratory abnormalities associated with APS. Families with > or =2 affected members were analyzed by segregation analysis and typed for candidate genetic markers. RESULTS: Seven families were identified. Thirty of 101 family members met diagnostic criteria for APS. Segregation studies rejected both environmental and autosomal recessive models, and the data were best fit by either a dominant or codominant model. Linkage analysis showed independent segregation of APS and several candidate genes. CONCLUSION: Clinical and laboratory criteria are essential to identify the spectrum of disease associated with APS. We believe a set of criteria was developed that can precisely define affected family members with APS. Modeling studies utilizing these criteria strongly support a genetic basis for disease in families with APS and suggest that a susceptibility gene is inherited in an autosomal dominant pattern. However, in these families, APS was not linked with HLA, Fas, or other candidate genes, including beta2-glycoprotein 1, HLA, T cell receptor beta chain, Ig heavy chain, antithrombin III, Fas ligand, factor V, complement factor H, IgK, and Fas.  (+info)

Inactivation of the glucose 6-phosphate transporter causes glycogen storage disease type 1b. (6/15278)

Glycogen storage disease type 1b (GSD-1b) is proposed to be caused by a deficiency in microsomal glucose 6-phosphate (G6P) transport, causing a loss of glucose-6-phosphatase activity and glucose homeostasis. However, for decades, this disorder has defied molecular characterization. In this study, we characterize the structural organization of the G6P transporter gene and identify mutations in the gene that segregate with the GSD-1b disorder. We report the functional characterization of the recombinant G6P transporter and demonstrate that mutations uncovered in GSD-1b patients disrupt G6P transport. Our results, for the first time, define a molecular basis for functional deficiency in GSD-1b and raise the possibility that the defective G6P transporter contributes to neutropenia and neutrophil/monocyte dysfunctions characteristic of GSD-1b patients.  (+info)

Hemoglobin Providence. A human hemoglobin variant occurring in two forms in vivo. (7/15278)

Hemoglobin Providence Asn and Hemoglobin Providence Asp are two abnormal hemoglobins which apparently arise from a single genetic change that substitutes asparagine for lysine at position 82 (EF6) in the beta chain of human hemoglobin. The second form appears to be thr result of a partial in vivo deamidation of the asparagine situated at position beta 82. Cellulose acetate and citrate agar electrophoresis of hemolysates from patients with this abnormality shows three bands. Globin chain electrophoresis at acid and alkaline pH shows three beta chains. These three chains correspond to the normal beta A chain and two abnormal beta chains. Sequence analysis indicates that the two abnormal chains differ from beta A at only position beta 82. In the two abnormal chains, the residue which is normally lysine is substituted either by asparagine or by aspartic acid. These substitutions are notable because beta 82 lysine is one of the residues involved in 2,3-diphosphoglycerate binding. Additionally, beta 82 lysine is typically invariant in hemoglobin beta chain sequences. Sequence data on the two forms of Hemoglobin Providence are given in this paper. The functional properties of these two forms are described in the next paper.  (+info)

Constitutional genetic variation at the human aromatase gene (Cyp19) and breast cancer risk. (8/15278)

The activity of the aromatase enzyme, which converts androgens into oestrogens and has a major role in regulating oestrogen levels in the breast, is thought to be a contributing factor in the development of breast cancer. We undertook this study to assess the role of constitutional genetic variation in the human aromatase gene (Cyp19) in the development of this disease. Our genotyping of 348 cases with breast cancer and 145 controls (all Caucasian women) for a published tetranucleotide repeat polymorphism at intron 4 of the Cyp19 gene revealed the presence of six common and two rare alleles. Contingency table analysis revealed a significant difference in allelic distribution between cases and controls (chi2 5df = 13.52, P = 0.019). The allele measuring 171 bp was over-represented in cases; of 14 individuals homozygous for this allele, 13 were cases. These individuals had a higher incidence of cancer in family members and an earlier age at diagnosis than other cases. In sequencing Cyp19's coding exons and regulatory regions, we discovered a perfect association between a silent polymorphism (G-->A at Val80) and the high-risk genotype. Our conclusion is that constitutional genetic variation at the Cyp19 locus is associated with the risk of developing breast cancer, with the 171-bp allele serving as the high-risk allele.  (+info)

I must clarify that the term "pedigree" is not typically used in medical definitions. Instead, it is often employed in genetics and breeding, where it refers to the recorded ancestry of an individual or a family, tracing the inheritance of specific traits or diseases. In human genetics, a pedigree can help illustrate the pattern of genetic inheritance in families over multiple generations. However, it is not a medical term with a specific clinical definition.

Genetic linkage is the phenomenon where two or more genetic loci (locations on a chromosome) tend to be inherited together because they are close to each other on the same chromosome. This occurs during the process of sexual reproduction, where homologous chromosomes pair up and exchange genetic material through a process called crossing over.

The closer two loci are to each other on a chromosome, the lower the probability that they will be separated by a crossover event. As a result, they are more likely to be inherited together and are said to be linked. The degree of linkage between two loci can be measured by their recombination frequency, which is the percentage of meiotic events in which a crossover occurs between them.

Linkage analysis is an important tool in genetic research, as it allows researchers to identify and map genes that are associated with specific traits or diseases. By analyzing patterns of linkage between markers (identifiable DNA sequences) and phenotypes (observable traits), researchers can infer the location of genes that contribute to those traits or diseases on chromosomes.

A LOD (Logarithm of Odds) score is not a medical term per se, but rather a statistical concept that is used in genetic research and linkage analysis to determine the likelihood of a gene or genetic marker being linked to a particular disease or trait. The LOD score compares the odds of observing the pattern of inheritance of a genetic marker in a family if the marker is linked to the disease, versus the odds if the marker is not linked. A LOD score of 3 or higher is generally considered evidence for linkage, while a score of -2 or lower is considered evidence against linkage.

Genetic models are theoretical frameworks used in genetics to describe and explain the inheritance patterns and genetic architecture of traits, diseases, or phenomena. These models are based on mathematical equations and statistical methods that incorporate information about gene frequencies, modes of inheritance, and the effects of environmental factors. They can be used to predict the probability of certain genetic outcomes, to understand the genetic basis of complex traits, and to inform medical management and treatment decisions.

There are several types of genetic models, including:

1. Mendelian models: These models describe the inheritance patterns of simple genetic traits that follow Mendel's laws of segregation and independent assortment. Examples include autosomal dominant, autosomal recessive, and X-linked inheritance.
2. Complex trait models: These models describe the inheritance patterns of complex traits that are influenced by multiple genes and environmental factors. Examples include heart disease, diabetes, and cancer.
3. Population genetics models: These models describe the distribution and frequency of genetic variants within populations over time. They can be used to study evolutionary processes, such as natural selection and genetic drift.
4. Quantitative genetics models: These models describe the relationship between genetic variation and phenotypic variation in continuous traits, such as height or IQ. They can be used to estimate heritability and to identify quantitative trait loci (QTLs) that contribute to trait variation.
5. Statistical genetics models: These models use statistical methods to analyze genetic data and infer the presence of genetic associations or linkage. They can be used to identify genetic risk factors for diseases or traits.

Overall, genetic models are essential tools in genetics research and medical genetics, as they allow researchers to make predictions about genetic outcomes, test hypotheses about the genetic basis of traits and diseases, and develop strategies for prevention, diagnosis, and treatment.

Chromosome mapping, also known as physical mapping, is the process of determining the location and order of specific genes or genetic markers on a chromosome. This is typically done by using various laboratory techniques to identify landmarks along the chromosome, such as restriction enzyme cutting sites or patterns of DNA sequence repeats. The resulting map provides important information about the organization and structure of the genome, and can be used for a variety of purposes, including identifying the location of genes associated with genetic diseases, studying evolutionary relationships between organisms, and developing genetic markers for use in breeding or forensic applications.

Genetic markers are specific segments of DNA that are used in genetic mapping and genotyping to identify specific genetic locations, diseases, or traits. They can be composed of short tandem repeats (STRs), single nucleotide polymorphisms (SNPs), restriction fragment length polymorphisms (RFLPs), or variable number tandem repeats (VNTRs). These markers are useful in various fields such as genetic research, medical diagnostics, forensic science, and breeding programs. They can help to track inheritance patterns, identify genetic predispositions to diseases, and solve crimes by linking biological evidence to suspects or victims.

Dominant genes refer to the alleles (versions of a gene) that are fully expressed in an individual's phenotype, even if only one copy of the gene is present. In dominant inheritance patterns, an individual needs only to receive one dominant allele from either parent to express the associated trait. This is in contrast to recessive genes, where both copies of the gene must be the recessive allele for the trait to be expressed. Dominant genes are represented by uppercase letters (e.g., 'A') and recessive genes by lowercase letters (e.g., 'a'). If an individual inherits one dominant allele (A) from either parent, they will express the dominant trait (A).

A haplotype is a group of genes or DNA sequences that are inherited together from a single parent. It refers to a combination of alleles (variant forms of a gene) that are located on the same chromosome and are usually transmitted as a unit. Haplotypes can be useful in tracing genetic ancestry, understanding the genetic basis of diseases, and developing personalized medical treatments.

In population genetics, haplotypes are often used to study patterns of genetic variation within and between populations. By comparing haplotype frequencies across populations, researchers can infer historical events such as migrations, population expansions, and bottlenecks. Additionally, haplotypes can provide information about the evolutionary history of genes and genomic regions.

In clinical genetics, haplotypes can be used to identify genetic risk factors for diseases or to predict an individual's response to certain medications. For example, specific haplotypes in the HLA gene region have been associated with increased susceptibility to certain autoimmune diseases, while other haplotypes in the CYP450 gene family can affect how individuals metabolize drugs.

Overall, haplotypes provide a powerful tool for understanding the genetic basis of complex traits and diseases, as well as for developing personalized medical treatments based on an individual's genetic makeup.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

I'm sorry for any confusion, but "Utah" is not a medical term or concept. It is a geographical location, being the 45th state admitted to the United States of America. If you have any questions related to medical topics, I would be happy to try and help answer those for you!

Consanguinity is a medical and genetic term that refers to the degree of genetic relationship between two individuals who share common ancestors. Consanguineous relationships exist when people are related by blood, through a common ancestor or siblings who have children together. The closer the relationship between the two individuals, the higher the degree of consanguinity.

The degree of consanguinity is typically expressed as a percentage or fraction, with higher values indicating a closer genetic relationship. For example, first-degree relatives, such as parents and children or full siblings, share approximately 50% of their genes and have a consanguinity coefficient of 0.25 (or 25%).

Consanguinity can increase the risk of certain genetic disorders and birth defects in offspring due to the increased likelihood of sharing harmful recessive genes. The risks depend on the degree of consanguinity, with closer relationships carrying higher risks. It is important for individuals who are planning to have children and have a history of consanguinity to consider genetic counseling and testing to assess their risk of passing on genetic disorders.

Inbreeding, in a medical context, refers to the practice of mating closely related individuals within a given family or breeding population. This leads to an increased proportion of homozygous genes, meaning that the same alleles (versions of a gene) are inherited from both parents. As a result, recessive traits and disorders become more likely to be expressed because the necessary dominant allele may be absent.

In human medicine, consanguinity is the term often used instead of inbreeding, and it refers to relationships between individuals who share a common ancestor. Consanguinity increases the risk of certain genetic disorders due to the increased likelihood of sharing harmful recessive genes. The closer the relationship, the higher the risk.

In animal breeding, inbreeding can lead to reduced fertility, lower birth weights, higher infant mortality, and a decreased lifespan. It is crucial to maintain genetic diversity within populations to ensure their overall health and vigor.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Microsatellite repeats, also known as short tandem repeats (STRs), are repetitive DNA sequences made up of units of 1-6 base pairs that are repeated in a head-to-tail manner. These repeats are spread throughout the human genome and are highly polymorphic, meaning they can have different numbers of repeat units in different individuals.

Microsatellites are useful as genetic markers because of their high degree of variability. They are commonly used in forensic science to identify individuals, in genealogy to trace ancestry, and in medical research to study genetic diseases and disorders. Mutations in microsatellite repeats have been associated with various neurological conditions, including Huntington's disease and fragile X syndrome.

Inheritance patterns refer to the way in which a particular genetic trait or disorder is passed down from one generation to the next, following the rules of Mendelian genetics. There are several different inheritance patterns, including:

1. Autosomal dominant: A single copy of the altered gene in each cell is sufficient to cause the disorder. An affected parent has a 50% chance of passing on the altered gene to each offspring.
2. Autosomal recessive: Two copies of the altered gene in each cell are necessary for the disorder to occur. Both parents must be carriers of the altered gene and have a 25% chance of passing on the altered gene to each offspring, who may then develop the disorder.
3. X-linked dominant: The altered gene is located on the X chromosome, and one copy of the altered gene in each cell is sufficient to cause the disorder. Females are more likely to be affected than males, and an affected female has a 50% chance of passing on the altered gene to each offspring.
4. X-linked recessive: The altered gene is located on the X chromosome, and two copies of the altered gene in each cell are necessary for the disorder to occur. Males are more likely to be affected than females, and an affected male will pass on the altered gene to all of his daughters (who will be carriers) but none of his sons.
5. Mitochondrial inheritance: The altered gene is located in the mitochondria, the energy-producing structures in cells. Both males and females can pass on mitochondrial genetic disorders, but only through the female line because offspring inherit their mother's mitochondria.

Understanding inheritance patterns helps medical professionals predict the likelihood of a genetic disorder occurring in families and provides information about how a disorder may be passed down through generations.

In medical terms, "breeding" is not a term that is commonly used. It is more frequently used in the context of animal husbandry to refer to the process of mating animals in order to produce offspring with specific desired traits or characteristics. In human medicine, the term is not typically applied to people and instead, related concepts such as reproduction, conception, or pregnancy are used.

An allele is a variant form of a gene that is located at a specific position on a specific chromosome. Alleles are alternative forms of the same gene that arise by mutation and are found at the same locus or position on homologous chromosomes.

Each person typically inherits two copies of each gene, one from each parent. If the two alleles are identical, a person is said to be homozygous for that trait. If the alleles are different, the person is heterozygous.

For example, the ABO blood group system has three alleles, A, B, and O, which determine a person's blood type. If a person inherits two A alleles, they will have type A blood; if they inherit one A and one B allele, they will have type AB blood; if they inherit two B alleles, they will have type B blood; and if they inherit two O alleles, they will have type O blood.

Alleles can also influence traits such as eye color, hair color, height, and other physical characteristics. Some alleles are dominant, meaning that only one copy of the allele is needed to express the trait, while others are recessive, meaning that two copies of the allele are needed to express the trait.

Quantitative Trait Loci (QTL) are regions of the genome that are associated with variation in quantitative traits, which are traits that vary continuously in a population and are influenced by multiple genes and environmental factors. QTLs can help to explain how genetic variations contribute to differences in complex traits such as height, blood pressure, or disease susceptibility.

Quantitative trait loci are identified through statistical analysis of genetic markers and trait values in experimental crosses between genetically distinct individuals, such as strains of mice or plants. The location of a QTL is inferred based on the pattern of linkage disequilibrium between genetic markers and the trait of interest. Once a QTL has been identified, further analysis can be conducted to identify the specific gene or genes responsible for the variation in the trait.

It's important to note that QTLs are not themselves genes, but rather genomic regions that contain one or more genes that contribute to the variation in a quantitative trait. Additionally, because QTLs are identified through statistical analysis, they represent probabilistic estimates of the location of genetic factors influencing a trait and may encompass large genomic regions containing multiple genes. Therefore, additional research is often required to fine-map and identify the specific genes responsible for the variation in the trait.

Penetrance, in medical genetics, refers to the proportion of individuals with a particular genetic variant or mutation who exhibit clinical features or symptoms of a resulting disease. It is often expressed as a percentage, with complete penetrance indicating that all individuals with the genetic change will develop the disease, and reduced or incomplete penetrance suggesting that not all individuals with the genetic change will necessarily develop the disease, even if they express some of its characteristics.

Penetrance can vary depending on various factors such as age, sex, environmental influences, and interactions with other genes. Incomplete penetrance is common in many genetic disorders, making it challenging to predict who will develop symptoms based solely on their genotype.

"Family Health" is not a term that has a single, widely accepted medical definition. However, in the context of healthcare and public health, "family health" often refers to the physical, mental, and social well-being of all members of a family unit. It includes the assessment, promotion, and prevention of health conditions that affect individual family members as well as the family as a whole.

Family health may also encompass interventions and programs that aim to strengthen family relationships, communication, and functioning, as these factors can have a significant impact on overall health outcomes. Additionally, family health may involve addressing social determinants of health, such as poverty, housing, and access to healthcare, which can affect the health of families and communities.

Overall, family health is a holistic approach to healthcare that recognizes the importance of considering the needs and experiences of all family members in promoting and maintaining good health.

A quantitative trait is a phenotypic characteristic that can be measured and displays continuous variation, meaning it can take on any value within a range. Examples include height, blood pressure, or biochemical measurements like cholesterol levels. These traits are usually influenced by the combined effects of multiple genes (polygenic inheritance) as well as environmental factors.

Heritability, in the context of genetics, refers to the proportion of variation in a trait that can be attributed to genetic differences among individuals in a population. It is estimated using statistical methods and ranges from 0 to 1, with higher values indicating a greater contribution of genetics to the observed phenotypic variance.

Therefore, a heritable quantitative trait would be a phenotype that shows continuous variation, influenced by multiple genes and environmental factors, and for which a significant portion of the observed variation can be attributed to genetic differences among individuals in a population.

Recessive genes refer to the alleles (versions of a gene) that will only be expressed when an individual has two copies of that particular allele, one inherited from each parent. If an individual inherits one recessive allele and one dominant allele for a particular gene, the dominant allele will be expressed and the recessive allele will have no effect on the individual's phenotype (observable traits).

Recessive genes can still play a role in determining an individual's genetic makeup and can be passed down through generations even if they are not expressed. If two carriers of a recessive gene have children, there is a 25% chance that their offspring will inherit two copies of the recessive allele and exhibit the associated recessive trait.

Examples of genetic disorders caused by recessive genes include cystic fibrosis, sickle cell anemia, and albinism.

"Likelihood functions" is a statistical concept that is used in medical research and other fields to estimate the probability of obtaining a given set of data, given a set of assumptions or parameters. In other words, it is a function that describes how likely it is to observe a particular outcome or result, based on a set of model parameters.

More formally, if we have a statistical model that depends on a set of parameters θ, and we observe some data x, then the likelihood function is defined as:

L(θ | x) = P(x | θ)

This means that the likelihood function describes the probability of observing the data x, given a particular value of the parameter vector θ. By convention, the likelihood function is often expressed as a function of the parameters, rather than the data, so we might instead write:

L(θ) = P(x | θ)

The likelihood function can be used to estimate the values of the model parameters that are most consistent with the observed data. This is typically done by finding the value of θ that maximizes the likelihood function, which is known as the maximum likelihood estimator (MLE). The MLE has many desirable statistical properties, including consistency, efficiency, and asymptotic normality.

In medical research, likelihood functions are often used in the context of Bayesian analysis, where they are combined with prior distributions over the model parameters to obtain posterior distributions that reflect both the observed data and prior knowledge or assumptions about the parameter values. This approach is particularly useful when there is uncertainty or ambiguity about the true value of the parameters, as it allows researchers to incorporate this uncertainty into their analyses in a principled way.

Genetic predisposition to disease refers to an increased susceptibility or vulnerability to develop a particular illness or condition due to inheriting specific genetic variations or mutations from one's parents. These genetic factors can make it more likely for an individual to develop a certain disease, but it does not guarantee that the person will definitely get the disease. Environmental factors, lifestyle choices, and interactions between genes also play crucial roles in determining if a genetically predisposed person will actually develop the disease. It is essential to understand that having a genetic predisposition only implies a higher risk, not an inevitable outcome.

A heterozygote is an individual who has inherited two different alleles (versions) of a particular gene, one from each parent. This means that the individual's genotype for that gene contains both a dominant and a recessive allele. The dominant allele will be expressed phenotypically (outwardly visible), while the recessive allele may or may not have any effect on the individual's observable traits, depending on the specific gene and its function. Heterozygotes are often represented as 'Aa', where 'A' is the dominant allele and 'a' is the recessive allele.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Linkage disequilibrium (LD) is a term used in genetics that refers to the non-random association of alleles at different loci (genetic locations) on a chromosome. This means that certain combinations of genetic variants, or alleles, at different loci occur more frequently together in a population than would be expected by chance.

Linkage disequilibrium can arise due to various factors such as genetic drift, selection, mutation, and population structure. It is often used in the context of genetic mapping studies to identify regions of the genome that are associated with particular traits or diseases. High levels of LD in a region of the genome suggest that the loci within that region are in linkage, meaning they tend to be inherited together.

The degree of LD between two loci can be measured using various statistical methods, such as D' and r-squared. These measures provide information about the strength and direction of the association between alleles at different loci, which can help researchers identify causal genetic variants underlying complex traits or diseases.

The Founder Effect is a concept in population genetics that refers to the loss of genetic variation that occurs when a new colony is established by a small number of individuals from a larger population. This decrease in genetic diversity can lead to an increase in homozygosity, which can in turn result in a higher frequency of certain genetic disorders or traits within the founding population and its descendants. The Founder Effect is named after the "founding" members of the new colony who carry and pass on their particular set of genes to the next generations. It is one of the mechanisms that can lead to the formation of distinct populations or even new species over time.

DNA Mutational Analysis is a laboratory test used to identify genetic variations or changes (mutations) in the DNA sequence of a gene. This type of analysis can be used to diagnose genetic disorders, predict the risk of developing certain diseases, determine the most effective treatment for cancer, or assess the likelihood of passing on an inherited condition to offspring.

The test involves extracting DNA from a patient's sample (such as blood, saliva, or tissue), amplifying specific regions of interest using polymerase chain reaction (PCR), and then sequencing those regions to determine the precise order of nucleotide bases in the DNA molecule. The resulting sequence is then compared to reference sequences to identify any variations or mutations that may be present.

DNA Mutational Analysis can detect a wide range of genetic changes, including single-nucleotide polymorphisms (SNPs), insertions, deletions, duplications, and rearrangements. The test is often used in conjunction with other diagnostic tests and clinical evaluations to provide a comprehensive assessment of a patient's genetic profile.

It is important to note that not all mutations are pathogenic or associated with disease, and the interpretation of DNA Mutational Analysis results requires careful consideration of the patient's medical history, family history, and other relevant factors.

I'm sorry for any confusion, but it seems there might be a misunderstanding in your question. Genealogy and heraldry are two distinct subjects, each with its own definition. I will provide you with their separate definitions:

1. Genealogy - This is the study of family history, lineages, and descent. It involves researching ancestral origins, relationships, and historical records to construct a family tree or pedigree. Genealogists use various resources like birth, marriage, and death certificates; census records; church records; and DNA testing to trace the connections between individuals and families over generations.

2. Heraldry - This is the study of armorial bearings, also known as coats of arms. Heraldry involves the design, description, and use of these symbols, which were historically used by nobility, knights, and other privileged classes to identify themselves in battle, on seals, and in civic life. The heraldic elements often include shields, helmets, crests, mottoes, and other insignia that convey information about the bearer's ancestry, rank, occupation, or achievements.

While genealogy and heraldry can sometimes intersect (e.g., when studying the historical records of noble families with coats of arms), they are not inherently related as subjects within the medical field.

A nuclear family, in medical and social sciences, refers to a family structure consisting of two married parents and their biological or adopted children living together in one household. It's the basic unit of a traditional family structure, typically comprising of a father (male parent), a mother (female parent) and their direct offspring. However, it's important to note that there are many different types of families and none is considered universally superior or normative. The concept of a nuclear family has evolved over time and varies across cultures and societies.

Single Nucleotide Polymorphism (SNP) is a type of genetic variation that occurs when a single nucleotide (A, T, C, or G) in the DNA sequence is altered. This alteration must occur in at least 1% of the population to be considered a SNP. These variations can help explain why some people are more susceptible to certain diseases than others and can also influence how an individual responds to certain medications. SNPs can serve as biological markers, helping scientists locate genes that are associated with disease. They can also provide information about an individual's ancestry and ethnic background.

A computer simulation is a process that involves creating a model of a real-world system or phenomenon on a computer and then using that model to run experiments and make predictions about how the system will behave under different conditions. In the medical field, computer simulations are used for a variety of purposes, including:

1. Training and education: Computer simulations can be used to create realistic virtual environments where medical students and professionals can practice their skills and learn new procedures without risk to actual patients. For example, surgeons may use simulation software to practice complex surgical techniques before performing them on real patients.
2. Research and development: Computer simulations can help medical researchers study the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone. By creating detailed models of cells, tissues, organs, or even entire organisms, researchers can use simulation software to explore how these systems function and how they respond to different stimuli.
3. Drug discovery and development: Computer simulations are an essential tool in modern drug discovery and development. By modeling the behavior of drugs at a molecular level, researchers can predict how they will interact with their targets in the body and identify potential side effects or toxicities. This information can help guide the design of new drugs and reduce the need for expensive and time-consuming clinical trials.
4. Personalized medicine: Computer simulations can be used to create personalized models of individual patients based on their unique genetic, physiological, and environmental characteristics. These models can then be used to predict how a patient will respond to different treatments and identify the most effective therapy for their specific condition.

Overall, computer simulations are a powerful tool in modern medicine, enabling researchers and clinicians to study complex systems and make predictions about how they will behave under a wide range of conditions. By providing insights into the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone, computer simulations are helping to advance our understanding of human health and disease.

Human chromosome pair 1 refers to the first pair of chromosomes in a set of 23 pairs found in the cells of the human body, excluding sex cells (sperm and eggs). Each cell in the human body, except for the gametes, contains 46 chromosomes arranged in 23 pairs. These chromosomes are rod-shaped structures that contain genetic information in the form of DNA.

Chromosome pair 1 is the largest pair, making up about 8% of the total DNA in a cell. Each chromosome in the pair consists of two arms - a shorter p arm and a longer q arm - connected at a centromere. Chromosome 1 carries an estimated 2,000-2,500 genes, which are segments of DNA that contain instructions for making proteins or regulating gene expression.

Defects or mutations in the genes located on chromosome 1 can lead to various genetic disorders and diseases, such as Charcot-Marie-Tooth disease type 1A, Huntington's disease, and certain types of cancer.

Canine hip dysplasia (CHD) is a common skeletal disorder in dogs, particularly in large and giant breeds, characterized by the abnormal development and degeneration of the coxofemoral joint - the joint where the head of the femur (thigh bone) meets the acetabulum (hip socket) of the pelvis. This condition is often caused by a combination of genetic and environmental factors that lead to laxity (looseness) of the joint, which can result in osteoarthritis (OA), pain, and decreased mobility over time.

In a healthy hip joint, the femoral head fits snugly into the acetabulum, allowing smooth and stable movement. However, in dogs with CHD, the following abnormalities may occur:

1. Shallow acetabulum: The hip socket may not be deep enough to provide adequate coverage of the femoral head, leading to joint instability.
2. Flared acetabulum: The rim of the acetabulum may become stretched and flared due to excessive forces exerted on it by the lax joint.
3. Misshapen or malformed femoral head: The femoral head may not have a normal round shape, further contributing to joint instability.
4. Laxity of the joint: The ligament that holds the femoral head in place within the acetabulum (ligamentum teres) can become stretched, allowing for excessive movement and abnormal wear of the joint surfaces.

These changes can lead to the development of osteoarthritis, which is characterized by the breakdown and loss of cartilage within the joint, as well as the formation of bone spurs (osteophytes) and thickening of the joint capsule. This results in pain, stiffness, and decreased range of motion, making it difficult for affected dogs to perform everyday activities such as walking, running, or climbing stairs.

Canine hip dysplasia is typically diagnosed through a combination of physical examination, medical history, and imaging techniques such as radiographs (X-rays). Treatment options may include conservative management, such as weight management, exercise modification, joint supplements, and pain medication, or surgical intervention, such as total hip replacement. The choice of treatment depends on the severity of the disease, the age and overall health of the dog, and the owner's financial resources.

Preventing canine hip dysplasia is best achieved through selective breeding practices that aim to eliminate affected animals from breeding populations. Additionally, maintaining a healthy weight, providing appropriate exercise, and ensuring proper nutrition throughout a dog's life can help reduce the risk of developing this debilitating condition.

Genetic testing is a type of medical test that identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. Genetic tests are performed on a sample of blood, hair, skin, amniotic fluid (the fluid that surrounds a fetus during pregnancy), or other tissue. For example, a physician may recommend genetic testing to help diagnose a genetic condition, confirm the presence of a gene mutation known to increase the risk of developing certain cancers, or determine the chance for a couple to have a child with a genetic disorder.

There are several types of genetic tests, including:

* Diagnostic testing: This type of test is used to identify or confirm a suspected genetic condition in an individual. It may be performed before birth (prenatal testing) or at any time during a person's life.
* Predictive testing: This type of test is used to determine the likelihood that a person will develop a genetic disorder. It is typically offered to individuals who have a family history of a genetic condition but do not show any symptoms themselves.
* Carrier testing: This type of test is used to determine whether a person carries a gene mutation for a genetic disorder. It is often offered to couples who are planning to have children and have a family history of a genetic condition or belong to a population that has an increased risk of certain genetic disorders.
* Preimplantation genetic testing: This type of test is used in conjunction with in vitro fertilization (IVF) to identify genetic changes in embryos before they are implanted in the uterus. It can help couples who have a family history of a genetic disorder or who are at risk of having a child with a genetic condition to conceive a child who is free of the genetic change in question.
* Pharmacogenetic testing: This type of test is used to determine how an individual's genes may affect their response to certain medications. It can help healthcare providers choose the most effective medication and dosage for a patient, reducing the risk of adverse drug reactions.

It is important to note that genetic testing should be performed under the guidance of a qualified healthcare professional who can interpret the results and provide appropriate counseling and support.

Genetic variation refers to the differences in DNA sequences among individuals and populations. These variations can result from mutations, genetic recombination, or gene flow between populations. Genetic variation is essential for evolution by providing the raw material upon which natural selection acts. It can occur within a single gene, between different genes, or at larger scales, such as differences in the number of chromosomes or entire sets of chromosomes. The study of genetic variation is crucial in understanding the genetic basis of diseases and traits, as well as the evolutionary history and relationships among species.

A human genome is the complete set of genetic information contained within the 23 pairs of chromosomes found in the nucleus of most human cells. It includes all of the genes, which are segments of DNA that contain the instructions for making proteins, as well as non-coding regions of DNA that regulate gene expression and provide structural support to the chromosomes.

The human genome contains approximately 3 billion base pairs of DNA and is estimated to contain around 20,000-25,000 protein-coding genes. The sequencing of the human genome was completed in 2003 as part of the Human Genome Project, which has had a profound impact on our understanding of human biology, disease, and evolution.

The term "family" in a medical context often refers to a group of individuals who are related by blood, marriage, or adoption and who consider themselves to be a single household. This can include spouses, parents, children, siblings, grandparents, and other extended family members. In some cases, the term may also be used more broadly to refer to any close-knit group of people who provide emotional and social support for one another, regardless of their biological or legal relationship.

In healthcare settings, understanding a patient's family dynamics can be important for providing effective care. Family members may be involved in decision-making about medical treatments, providing care and support at home, and communicating with healthcare providers. Additionally, cultural beliefs and values within families can influence health behaviors and attitudes towards medical care, making it essential for healthcare professionals to take a culturally sensitive approach when working with patients and their families.

Multifactorial inheritance is a type of genetic inheritance that involves the interaction of multiple genes (two or more) along with environmental factors in the development of a particular trait, disorder, or disease. Each gene can slightly increase or decrease the risk of developing the condition, and the combined effects of these genes, along with environmental influences, determine the ultimate outcome.

Examples of multifactorial inheritance include height, skin color, and many common diseases such as heart disease, diabetes, and mental disorders like schizophrenia and autism. These conditions tend to run in families but do not follow simple Mendelian patterns of inheritance (dominant or recessive). Instead, they show complex inheritance patterns that are influenced by multiple genetic and environmental factors.

It is important to note that having a family history of a multifactorial disorder does not guarantee that an individual will develop the condition. However, it does increase the likelihood, and the risk may be further modified by lifestyle choices, environmental exposures, and other health factors.

Paternity is the legal or biological relationship between a father and his child. Medical definitions of paternity often refer to the biological relationship, which is established through genetic testing to identify if a man has transmitted his genetic material to a child. This is typically determined by comparing the DNA of the alleged father and the child. In contrast, legal paternity refers to the establishment of a father-child relationship through court order or other legal means, whether or not the individual is the biological father.

Genetic heterogeneity is a phenomenon in genetics where different genetic variations or mutations in various genes can result in the same or similar phenotypic characteristics, disorders, or diseases. This means that multiple genetic alterations can lead to the same clinical presentation, making it challenging to identify the specific genetic cause based on the observed symptoms alone.

There are two main types of genetic heterogeneity:

1. Allelic heterogeneity: Different mutations in the same gene can cause the same or similar disorders. For example, various mutations in the CFTR gene can lead to cystic fibrosis, a genetic disorder affecting the respiratory and digestive systems.
2. Locus heterogeneity: Mutations in different genes can result in the same or similar disorders. For instance, mutations in several genes, such as BRCA1, BRCA2, and PALB2, are associated with an increased risk of developing breast cancer.

Genetic heterogeneity is essential to consider when diagnosing genetic conditions, evaluating recurrence risks, and providing genetic counseling. It highlights the importance of comprehensive genetic testing and interpretation for accurate diagnosis and appropriate management of genetic disorders.

Hereditary Optic Atrophy, Leber type (LOA) is a mitochondrial DNA-associated inherited condition that primarily affects the optic nerve and leads to vision loss. It is characterized by the degeneration of retinal ganglion cells and their axons, which make up the optic nerve. This results in bilateral, painless, and progressive visual deterioration, typically beginning in young adulthood (14-35 years).

Leber's hereditary optic atrophy is caused by mutations in the mitochondrial DNA (mtDNA) gene MT-ND4 or MT-ND6. The condition follows a maternal pattern of inheritance, meaning that it is passed down through the mother's lineage.

The onset of LOA usually occurs in one eye first, followed by the second eye within weeks to months. Central vision is initially affected, leading to blurriness and loss of visual acuity. Color vision may also be impaired. The progression of the condition generally stabilizes after a few months, but complete recovery of vision is unlikely.

Currently, there is no cure for Leber's hereditary optic atrophy. Treatment focuses on managing symptoms and providing visual rehabilitation to help affected individuals adapt to their visual impairment.

The "age of onset" is a medical term that refers to the age at which an individual first develops or displays symptoms of a particular disease, disorder, or condition. It can be used to describe various medical conditions, including both physical and mental health disorders. The age of onset can have implications for prognosis, treatment approaches, and potential causes of the condition. In some cases, early onset may indicate a more severe or progressive course of the disease, while late-onset symptoms might be associated with different underlying factors or etiologies. It is essential to provide accurate and precise information regarding the age of onset when discussing a patient's medical history and treatment plan.

Population Genetics is a subfield of genetics that deals with the genetic composition of populations and how this composition changes over time. It involves the study of the frequency and distribution of genes and genetic variations in populations, as well as the evolutionary forces that contribute to these patterns, such as mutation, gene flow, genetic drift, and natural selection.

Population genetics can provide insights into a wide range of topics, including the history and relationships between populations, the genetic basis of diseases and other traits, and the potential impacts of environmental changes on genetic diversity. This field is important for understanding evolutionary processes at the population level and has applications in areas such as conservation biology, medical genetics, and forensic science.

I am not aware of a widely accepted medical definition for the term "software," as it is more commonly used in the context of computer science and technology. Software refers to programs, data, and instructions that are used by computers to perform various tasks. It does not have direct relevance to medical fields such as anatomy, physiology, or clinical practice. If you have any questions related to medicine or healthcare, I would be happy to try to help with those instead!

Human chromosome pair 2 consists of two rod-shaped structures present in the nucleus of each cell of the human body. Each member of the pair contains thousands of genes and other genetic material, encoded in the form of DNA molecules. Chromosomes are the physical carriers of inheritance, and human cells typically contain 23 pairs of chromosomes for a total of 46 chromosomes.

Chromosome pair 2 is one of the autosomal pairs, meaning that it is not a sex chromosome (X or Y). Each member of chromosome pair 2 is approximately 247 million base pairs in length and contains an estimated 1,000-1,300 genes. These genes play crucial roles in various biological processes, including development, metabolism, and response to environmental stimuli.

Abnormalities in chromosome pair 2 can lead to genetic disorders, such as cat-eye syndrome (CES), which is characterized by iris abnormalities, anal atresia, hearing loss, and intellectual disability. This disorder arises from the presence of an extra copy of a small region on chromosome 2, resulting in partial trisomy of this region. Other genetic conditions associated with chromosome pair 2 include proximal 2q13.3 microdeletion syndrome and Potocki-Lupski syndrome (PTLS).

Heterozygote detection is a method used in genetics to identify individuals who carry one normal and one mutated copy of a gene. These individuals are known as heterozygotes and they do not typically show symptoms of the genetic disorder associated with the mutation, but they can pass the mutated gene on to their offspring, who may then be affected.

Heterozygote detection is often used in genetic counseling and screening programs for recessive disorders such as cystic fibrosis or sickle cell anemia. By identifying heterozygotes, individuals can be informed of their carrier status and the potential risks to their offspring. This information can help them make informed decisions about family planning and reproductive options.

Various methods can be used for heterozygote detection, including polymerase chain reaction (PCR) based tests, DNA sequencing, and genetic linkage analysis. The choice of method depends on the specific gene or mutation being tested, as well as the availability and cost of the testing technology.

Gene frequency, also known as allele frequency, is a measure in population genetics that reflects the proportion of a particular gene or allele (variant of a gene) in a given population. It is calculated as the number of copies of a specific allele divided by the total number of all alleles at that genetic locus in the population.

For example, if we consider a gene with two possible alleles, A and a, the gene frequency of allele A (denoted as p) can be calculated as follows:

p = (number of copies of allele A) / (total number of all alleles at that locus)

Similarly, the gene frequency of allele a (denoted as q) would be:

q = (number of copies of allele a) / (total number of all alleles at that locus)

Since there are only two possible alleles for this gene in this example, p + q = 1. These frequencies can help researchers understand genetic diversity and evolutionary processes within populations.

An algorithm is not a medical term, but rather a concept from computer science and mathematics. In the context of medicine, algorithms are often used to describe step-by-step procedures for diagnosing or managing medical conditions. These procedures typically involve a series of rules or decision points that help healthcare professionals make informed decisions about patient care.

For example, an algorithm for diagnosing a particular type of heart disease might involve taking a patient's medical history, performing a physical exam, ordering certain diagnostic tests, and interpreting the results in a specific way. By following this algorithm, healthcare professionals can ensure that they are using a consistent and evidence-based approach to making a diagnosis.

Algorithms can also be used to guide treatment decisions. For instance, an algorithm for managing diabetes might involve setting target blood sugar levels, recommending certain medications or lifestyle changes based on the patient's individual needs, and monitoring the patient's response to treatment over time.

Overall, algorithms are valuable tools in medicine because they help standardize clinical decision-making and ensure that patients receive high-quality care based on the latest scientific evidence.

Inborn genetic diseases, also known as inherited genetic disorders, are conditions caused by abnormalities in an individual's DNA that are present at conception. These abnormalities can include mutations, deletions, or rearrangements of genes or chromosomes. In many cases, these genetic changes are inherited from one or both parents and may be passed down through families.

Inborn genetic diseases can affect any part of the body and can cause a wide range of symptoms, which can vary in severity depending on the specific disorder. Some genetic disorders are caused by mutations in a single gene, while others are caused by changes in multiple genes or chromosomes. In some cases, environmental factors may also contribute to the development of these conditions.

Examples of inborn genetic diseases include cystic fibrosis, sickle cell anemia, Huntington's disease, Duchenne muscular dystrophy, and Down syndrome. These conditions can have significant impacts on an individual's health and quality of life, and many require ongoing medical management and treatment. In some cases, genetic counseling and testing may be recommended for individuals with a family history of a particular genetic disorder to help them make informed decisions about their reproductive options.

There is no medical definition for the term "Amish." The Amish are a group of traditional, Christian communities primarily located in North America, known for their simple living, plain dress, and reluctance to adopt modern technology. While there may be health studies or observations related to the Amish community due to their unique lifestyle, culture, or genetic characteristics, the term "Amish" itself does not have a medical definition.

A homozygote is an individual who has inherited the same allele (version of a gene) from both parents and therefore possesses two identical copies of that allele at a specific genetic locus. This can result in either having two dominant alleles (homozygous dominant) or two recessive alleles (homozygous recessive). In contrast, a heterozygote has inherited different alleles from each parent for a particular gene.

The term "homozygote" is used in genetics to describe the genetic makeup of an individual at a specific locus on their chromosomes. Homozygosity can play a significant role in determining an individual's phenotype (observable traits), as having two identical alleles can strengthen the expression of certain characteristics compared to having just one dominant and one recessive allele.

I'm sorry for any confusion, but "Palau" is not a medical term. It is the name of a country in the Western Pacific Ocean, consisting of around 340 islands. If you have any questions about medical terminology or health-related topics, please let me know and I would be happy to help.

I'm sorry for any confusion, but "Markov Chains" is a term from the field of mathematics and probability theory, not medicine. Markov Chains are mathematical systems that undergo transitions from one state to another according to certain probabilistic rules. They are named after Russian mathematician Andrey Markov. These chains are used in various fields, including computer science, physics, economics, and engineering, but not commonly in medical definitions or contexts.

Medical genetics is the branch of medicine that involves the study of inherited conditions and diseases, as well as the way they are passed down through families. It combines elements of clinical evaluation, laboratory testing, and genetic counseling to help diagnose, manage, and prevent genetic disorders. Medical genetics also includes the study of genetic variation and its role in contributing to both rare and common diseases. Additionally, it encompasses the use of genetic information for pharmacological decision making (pharmacogenomics) and reproductive decision making (preimplantation genetic diagnosis, prenatal testing).

Heredity, in medical terms, refers to the passing on of genetic characteristics from parents to their offspring through the transmission of genes. These genes carry the information that determines many traits, such as eye color, hair color, height, and certain health conditions. Heredity plays a significant role in understanding the causes of various diseases and disorders, as some are strongly influenced by genetic factors. However, it's important to note that environmental factors can also interact with genetic predispositions to influence the expression of these traits.

In the context of medicine and healthcare, 'probability' does not have a specific medical definition. However, in general terms, probability is a branch of mathematics that deals with the study of numerical quantities called probabilities, which are assigned to events or sets of events. Probability is a measure of the likelihood that an event will occur. It is usually expressed as a number between 0 and 1, where 0 indicates that the event is impossible and 1 indicates that the event is certain to occur.

In medical research and statistics, probability is often used to quantify the uncertainty associated with statistical estimates or hypotheses. For example, a p-value is a probability that measures the strength of evidence against a hypothesis. A small p-value (typically less than 0.05) suggests that the observed data are unlikely under the assumption of the null hypothesis, and therefore provides evidence in favor of an alternative hypothesis.

Probability theory is also used to model complex systems and processes in medicine, such as disease transmission dynamics or the effectiveness of medical interventions. By quantifying the uncertainty associated with these models, researchers can make more informed decisions about healthcare policies and practices.

Human chromosome pair 19 refers to a group of 19 identical chromosomes that are present in every cell of the human body, except for the sperm and egg cells which contain only 23 chromosomes. Chromosomes are thread-like structures that carry genetic information in the form of DNA (deoxyribonucleic acid) molecules.

Each chromosome is made up of two arms, a shorter p arm and a longer q arm, separated by a centromere. Human chromosome pair 19 is an acrocentric chromosome, which means that the centromere is located very close to the end of the short arm (p arm).

Chromosome pair 19 contains approximately 58 million base pairs of DNA and encodes for around 1,400 genes. It is one of the most gene-dense chromosomes in the human genome, with many genes involved in important biological processes such as metabolism, immunity, and neurological function.

Abnormalities in chromosome pair 19 have been associated with various genetic disorders, including Sotos syndrome, which is characterized by overgrowth, developmental delay, and distinctive facial features, and Smith-Magenis syndrome, which is marked by intellectual disability, behavioral problems, and distinct physical features.

Human chromosome pair 3 consists of two rod-shaped structures present in the nucleus of each cell in the human body. Each member of the pair is a single chromosome, and together they contain the genetic material that is inherited from both parents. Chromosomes are made up of DNA, which contains the instructions for the development and function of all living organisms.

Human chromosomes are numbered from 1 to 22, with an additional two sex chromosomes (X and Y) that determine biological sex. Chromosome pair 3 is one of the autosomal pairs, meaning it contains genes that are not related to sex determination. Each member of chromosome pair 3 is identical in size and shape and contains a single long DNA molecule that is coiled tightly around histone proteins to form a compact structure.

Chromosome pair 3 is associated with several genetic disorders, including Waardenburg syndrome, which affects pigmentation and hearing; Marfan syndrome, which affects the connective tissue; and some forms of retinoblastoma, a rare eye cancer that typically affects young children.

A syndrome, in medical terms, is a set of symptoms that collectively indicate or characterize a disease, disorder, or underlying pathological process. It's essentially a collection of signs and/or symptoms that frequently occur together and can suggest a particular cause or condition, even though the exact physiological mechanisms might not be fully understood.

For example, Down syndrome is characterized by specific physical features, cognitive delays, and other developmental issues resulting from an extra copy of chromosome 21. Similarly, metabolic syndromes like diabetes mellitus type 2 involve a group of risk factors such as obesity, high blood pressure, high blood sugar, and abnormal cholesterol or triglyceride levels that collectively increase the risk of heart disease, stroke, and diabetes.

It's important to note that a syndrome is not a specific diagnosis; rather, it's a pattern of symptoms that can help guide further diagnostic evaluation and management.

I'm sorry for any confusion, but the "Monte Carlo method" is actually a term from the field of mathematics and computer science, not medicine. It refers to a statistical technique that allows for the modeling of complex systems by running multiple simulations with random inputs. This method is widely used in various fields such as physics, engineering, and finance, but it is not a medical concept or term.

Human chromosome pair 13 consists of two rod-shaped structures present in the nucleus of each cell in the human body. Each chromosome is made up of DNA tightly coiled around histone proteins, forming a complex structure called a chromatin.

Chromosomes carry genetic information in the form of genes, which are sequences of DNA that code for specific traits and functions. Human cells typically have 23 pairs of chromosomes, for a total of 46 chromosomes. Chromosome pair 13 is one of the autosomal pairs, meaning it is not a sex chromosome (X or Y).

Chromosome pair 13 contains several important genes that are associated with various genetic disorders, such as cri-du-chat syndrome and Phelan-McDermid syndrome. Cri-du-chat syndrome is caused by a deletion of the short arm of chromosome 13 (13p), resulting in distinctive cat-like crying sounds in infants, developmental delays, and intellectual disabilities. Phelan-McDermid syndrome is caused by a deletion or mutation of the terminal end of the long arm of chromosome 13 (13q), leading to developmental delays, intellectual disability, absent or delayed speech, and autistic behaviors.

It's important to note that while some genetic disorders are associated with specific chromosomal abnormalities, many factors can contribute to the development and expression of these conditions, including environmental influences and interactions between multiple genes.

Human chromosome pair 5 consists of two rod-shaped structures present in the nucleus of human cells, which contain genetic material in the form of DNA and proteins. Each member of chromosome pair 5 is a single chromosome, and humans typically have 23 pairs of chromosomes for a total of 46 chromosomes in every cell of their body (except gametes or sex cells, which contain 23 chromosomes).

Chromosome pair 5 is one of the autosomal pairs, meaning it is not a sex chromosome. Each member of chromosome pair 5 is approximately 197 million base pairs in length and contains around 800-900 genes that provide instructions for making proteins and regulating various cellular processes.

Chromosome pair 5 is associated with several genetic disorders, including cri du chat syndrome (resulting from a deletion on the short arm of chromosome 5), Prader-Willi syndrome and Angelman syndrome (both resulting from abnormalities in gene expression on the long arm of chromosome 5).

I'm sorry for any confusion, but "siblings" is not a medical term. It is a term used in genealogy and sociology to refer to the brothers and sisters that someone has. Sibling relationships can have medical implications, such as when inherited genetic disorders are present in a family, but the term "siblings" itself does not have a specific medical definition.

The X chromosome is one of the two types of sex-determining chromosomes in humans (the other being the Y chromosome). It's one of the 23 pairs of chromosomes that make up a person's genetic material. Females typically have two copies of the X chromosome (XX), while males usually have one X and one Y chromosome (XY).

The X chromosome contains hundreds of genes that are responsible for the production of various proteins, many of which are essential for normal bodily functions. Some of the critical roles of the X chromosome include:

1. Sex Determination: The presence or absence of the Y chromosome determines whether an individual is male or female. If there is no Y chromosome, the individual will typically develop as a female.
2. Genetic Disorders: Since females have two copies of the X chromosome, they are less likely to be affected by X-linked genetic disorders than males. Males, having only one X chromosome, will express any recessive X-linked traits they inherit.
3. Dosage Compensation: To compensate for the difference in gene dosage between males and females, a process called X-inactivation occurs during female embryonic development. One of the two X chromosomes is randomly inactivated in each cell, resulting in a single functional copy per cell.

The X chromosome plays a crucial role in human genetics and development, contributing to various traits and characteristics, including sex determination and dosage compensation.

Human chromosome pair 10 refers to a group of genetic materials that are present in every cell of the human body. Chromosomes are thread-like structures that carry our genes and are located in the nucleus of most cells. They come in pairs, with one set inherited from each parent.

Chromosome pair 10 is one of the 22 autosomal chromosome pairs, meaning they contain genes that are not related to sex determination. Each member of chromosome pair 10 is a single, long DNA molecule that contains thousands of genes and other genetic material.

Chromosome pair 10 is responsible for carrying genetic information that influences various traits and functions in the human body. Some of the genes located on chromosome pair 10 are associated with certain medical conditions, such as hereditary breast and ovarian cancer syndrome, neurofibromatosis type 1, and Waardenburg syndrome type 2A.

It's important to note that while chromosomes carry genetic information, not all variations in the DNA sequence will result in a change in phenotype or function. Some variations may have no effect at all, while others may lead to changes in how proteins are made and function, potentially leading to disease or other health issues.

Exons are the coding regions of DNA that remain in the mature, processed mRNA after the removal of non-coding intronic sequences during RNA splicing. These exons contain the information necessary to encode proteins, as they specify the sequence of amino acids within a polypeptide chain. The arrangement and order of exons can vary between different genes and even between different versions of the same gene (alternative splicing), allowing for the generation of multiple protein isoforms from a single gene. This complexity in exon structure and usage significantly contributes to the diversity and functionality of the proteome.

Hereditary optic atrophies (HOAs) are a group of genetic disorders that cause degeneration of the optic nerve, leading to vision loss. The optic nerve is responsible for transmitting visual information from the eye to the brain. In HOAs, this nerve degenerates over time, resulting in decreased visual acuity, color vision deficits, and sometimes visual field defects.

There are several types of HOAs, including dominant optic atrophy (DOA), Leber hereditary optic neuropathy (LHON), autosomal recessive optic atrophy (AROA), and Wolfram syndrome. Each type has a different inheritance pattern and is caused by mutations in different genes.

DOA is the most common form of HOA and is characterized by progressive vision loss that typically begins in childhood or early adulthood. It is inherited in an autosomal dominant manner, meaning that a child has a 50% chance of inheriting the disease-causing mutation from an affected parent.

LHON is a mitochondrial disorder that primarily affects males and is characterized by sudden, severe vision loss that typically occurs in young adulthood. It is caused by mutations in the mitochondrial DNA and is inherited maternally.

AROA is a rare form of HOA that is inherited in an autosomal recessive manner, meaning that both copies of the gene must be mutated to cause the disease. It typically presents in infancy or early childhood with progressive vision loss.

Wolfram syndrome is a rare genetic disorder that affects multiple organs, including the eyes, ears, and endocrine system. It is characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and hearing loss. It is inherited in an autosomal recessive manner.

There is currently no cure for HOAs, but treatments such as low-vision aids and rehabilitation may help to manage the symptoms. Research is ongoing to develop new therapies for these disorders.

A missense mutation is a type of point mutation in which a single nucleotide change results in the substitution of a different amino acid in the protein that is encoded by the affected gene. This occurs when the altered codon (a sequence of three nucleotides that corresponds to a specific amino acid) specifies a different amino acid than the original one. The function and/or stability of the resulting protein may be affected, depending on the type and location of the missense mutation. Missense mutations can have various effects, ranging from benign to severe, depending on the importance of the changed amino acid for the protein's structure or function.

A Genome-Wide Association Study (GWAS) is an analytical approach used in genetic research to identify associations between genetic variants, typically Single Nucleotide Polymorphisms (SNPs), and specific traits or diseases across the entire genome. This method involves scanning the genomes of many individuals, usually thousands, to find genetic markers that occur more frequently in people with a particular disease or trait than in those without it.

The goal of a GWAS is to identify genetic loci (positions on chromosomes) associated with a trait or disease, which can help researchers understand the underlying genetic architecture and biological mechanisms contributing to the condition. It's important to note that while GWAS can identify associations between genetic variants and traits/diseases, these studies do not necessarily prove causation. Further functional validation studies are often required to confirm the role of identified genetic variants in the development or progression of a trait or disease.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Mitochondrial DNA (mtDNA) is the genetic material present in the mitochondria, which are specialized structures within cells that generate energy. Unlike nuclear DNA, which is present in the cell nucleus and inherited from both parents, mtDNA is inherited solely from the mother.

MtDNA is a circular molecule that contains 37 genes, including 13 genes that encode for proteins involved in oxidative phosphorylation, a process that generates energy in the form of ATP. The remaining genes encode for rRNAs and tRNAs, which are necessary for protein synthesis within the mitochondria.

Mutations in mtDNA can lead to a variety of genetic disorders, including mitochondrial diseases, which can affect any organ system in the body. These mutations can also be used in forensic science to identify individuals and establish biological relationships.

Genetic polymorphism refers to the occurrence of multiple forms (called alleles) of a particular gene within a population. These variations in the DNA sequence do not generally affect the function or survival of the organism, but they can contribute to differences in traits among individuals. Genetic polymorphisms can be caused by single nucleotide changes (SNPs), insertions or deletions of DNA segments, or other types of genetic rearrangements. They are important for understanding genetic diversity and evolution, as well as for identifying genetic factors that may contribute to disease susceptibility in humans.

Human chromosome pair 7 consists of two rod-shaped structures present in the nucleus of each cell in the human body. Each member of the pair is a single chromosome, and together they contain the genetic material that is inherited from both parents. They are identical in size, shape, and banding pattern and are therefore referred to as homologous chromosomes.

Chromosome 7 is one of the autosomal chromosomes, meaning it is not a sex chromosome (X or Y). It is composed of double-stranded DNA that contains approximately 159 million base pairs and around 1,200 genes. Chromosome 7 contains several important genes associated with human health and disease, including those involved in the development of certain types of cancer, such as colon cancer and lung cancer, as well as genetic disorders such as Williams-Beuren syndrome and Charcot-Marie-Tooth disease.

Abnormalities in chromosome 7 have been linked to various genetic conditions, including deletions, duplications, translocations, and other structural changes. These abnormalities can lead to developmental delays, intellectual disabilities, physical abnormalities, and increased risk of certain types of cancer.

Statistical models are mathematical representations that describe the relationship between variables in a given dataset. They are used to analyze and interpret data in order to make predictions or test hypotheses about a population. In the context of medicine, statistical models can be used for various purposes such as:

1. Disease risk prediction: By analyzing demographic, clinical, and genetic data using statistical models, researchers can identify factors that contribute to an individual's risk of developing certain diseases. This information can then be used to develop personalized prevention strategies or early detection methods.

2. Clinical trial design and analysis: Statistical models are essential tools for designing and analyzing clinical trials. They help determine sample size, allocate participants to treatment groups, and assess the effectiveness and safety of interventions.

3. Epidemiological studies: Researchers use statistical models to investigate the distribution and determinants of health-related events in populations. This includes studying patterns of disease transmission, evaluating public health interventions, and estimating the burden of diseases.

4. Health services research: Statistical models are employed to analyze healthcare utilization, costs, and outcomes. This helps inform decisions about resource allocation, policy development, and quality improvement initiatives.

5. Biostatistics and bioinformatics: In these fields, statistical models are used to analyze large-scale molecular data (e.g., genomics, proteomics) to understand biological processes and identify potential therapeutic targets.

In summary, statistical models in medicine provide a framework for understanding complex relationships between variables and making informed decisions based on data-driven insights.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

The term "Asian Continental Ancestry Group" is a medical/ethnic classification used to describe a person's genetic background and ancestry. According to this categorization, individuals with origins in the Asian continent are grouped together. This includes populations from regions such as East Asia (e.g., China, Japan, Korea), South Asia (e.g., India, Pakistan, Bangladesh), Southeast Asia (e.g., Philippines, Indonesia, Thailand), and Central Asia (e.g., Kazakhstan, Uzbekistan, Tajikistan). It is important to note that this broad categorization may not fully capture the genetic diversity within these regions or accurately reflect an individual's specific ancestral origins.

Retinitis pigmentosa (RP) is a group of rare, genetic disorders that involve a breakdown and loss of cells in the retina - a light-sensitive tissue located at the back of the eye. The retina converts light into electrical signals which are then sent to the brain and interpreted as visual images.

In RP, the cells that detect light (rods and cones) degenerate more slowly than other cells in the retina, leading to a progressive loss of vision. Symptoms typically begin in childhood with night blindness (difficulty seeing in low light), followed by a gradual narrowing of the visual field (tunnel vision). Over time, this can lead to significant vision loss and even blindness.

The condition is usually inherited and there are several different genes that have been associated with RP. The diagnosis is typically made based on a combination of genetic testing, family history, and clinical examination. Currently, there is no cure for RP, but researchers are actively working to develop new treatments that may help slow or stop the progression of the disease.

A point mutation is a type of genetic mutation where a single nucleotide base (A, T, C, or G) in DNA is altered, deleted, or substituted with another nucleotide. Point mutations can have various effects on the organism, depending on the location of the mutation and whether it affects the function of any genes. Some point mutations may not have any noticeable effect, while others might lead to changes in the amino acids that make up proteins, potentially causing diseases or altering traits. Point mutations can occur spontaneously due to errors during DNA replication or be inherited from parents.

Human chromosome pair 20 is one of the 23 pairs of human chromosomes present in every cell of the body, except for the sperm and egg cells which contain only 23 individual chromosomes. Chromosomes are thread-like structures that carry genetic information in the form of genes.

Human chromosome pair 20 is an acrocentric chromosome, meaning it has a short arm (p arm) and a long arm (q arm), with the centromere located near the junction of the two arms. The short arm of chromosome 20 is very small and contains few genes, while the long arm contains several hundred genes that play important roles in various biological processes.

Chromosome pair 20 is associated with several genetic disorders, including DiGeorge syndrome, which is caused by a deletion of a portion of the long arm of chromosome 20. This syndrome is characterized by birth defects affecting the heart, face, and immune system. Other conditions associated with abnormalities of chromosome pair 20 include some forms of intellectual disability, autism spectrum disorder, and cancer.

Restriction Fragment Length Polymorphism (RFLP) is a term used in molecular biology and genetics. It refers to the presence of variations in DNA sequences among individuals, which can be detected by restriction enzymes. These enzymes cut DNA at specific sites, creating fragments of different lengths.

In RFLP analysis, DNA is isolated from an individual and treated with a specific restriction enzyme that cuts the DNA at particular recognition sites. The resulting fragments are then separated by size using gel electrophoresis, creating a pattern unique to that individual's DNA. If there are variations in the DNA sequence between individuals, the restriction enzyme may cut the DNA at different sites, leading to differences in the length of the fragments and thus, a different pattern on the gel.

These variations can be used for various purposes, such as identifying individuals, diagnosing genetic diseases, or studying evolutionary relationships between species. However, RFLP analysis has largely been replaced by more modern techniques like polymerase chain reaction (PCR)-based methods and DNA sequencing, which offer higher resolution and throughput.

Human chromosome pair 6 consists of two rod-shaped structures present in the nucleus of each human cell. They are identical in size and shape and contain genetic material, made up of DNA and proteins, that is essential for the development and function of the human body.

Chromosome pair 6 is one of the 23 pairs of chromosomes found in humans, with one chromosome inherited from each parent. Each chromosome contains thousands of genes that provide instructions for the production of proteins and regulate various cellular processes.

Chromosome pair 6 contains several important genes, including those involved in the development and function of the immune system, such as the major histocompatibility complex (MHC) genes. It also contains genes associated with certain genetic disorders, such as hereditary neuropathy with liability to pressure palsies (HNPP), a condition that affects the nerves, and Waardenburg syndrome, a disorder that affects pigmentation and hearing.

Abnormalities in chromosome pair 6 can lead to various genetic disorders, including numerical abnormalities such as trisomy 6 (three copies of chromosome 6) or monosomy 6 (only one copy of chromosome 6), as well as structural abnormalities such as deletions, duplications, or translocations of parts of the chromosome.

Human chromosome pair 4 consists of two rod-shaped structures present in the nucleus of each cell in the human body. Each member of the pair is a single chromosome, and they are identical or very similar in length and gene content. Chromosomes are made up of DNA, which contains genetic information, and proteins that package and organize the DNA.

Human chromosomes are numbered from 1 to 22, with chromosome pair 4 being one of the autosomal pairs, meaning it is not a sex chromosome (X or Y). Chromosome pair 4 is a medium-sized pair and contains an estimated 1,800-2,000 genes. These genes provide instructions for making proteins that are essential for various functions in the body, such as development, growth, and metabolism.

Abnormalities in chromosome pair 4 can lead to genetic disorders, including Wolf-Hirschhorn syndrome, which is caused by a deletion of part of the short arm of chromosome 4, and 4p16.3 microdeletion syndrome, which is caused by a deletion of a specific region on the short arm of chromosome 4. These conditions can result in developmental delays, intellectual disability, physical abnormalities, and other health problems.

Human chromosome pair 12 consists of two rod-shaped structures present in the nucleus of each cell in the human body. Each chromosome is made up of DNA tightly coiled around histone proteins, forming a complex structure called a chromatin.

Chromosomes come in pairs, with one chromosome inherited from each parent. In humans, there are 23 pairs of chromosomes, for a total of 46 chromosomes in each cell. Chromosome pair 12 is the 12th pair of autosomal chromosomes, meaning they are not sex chromosomes (X or Y).

Chromosome 12 is a medium-sized chromosome and contains an estimated 130 million base pairs of DNA. It contains around 1,200 genes that provide instructions for making proteins and regulating various cellular processes. Some of the genes located on chromosome 12 include those involved in metabolism, development, and response to environmental stimuli.

Abnormalities in chromosome 12 can lead to genetic disorders, such as partial trisomy 12q, which is characterized by an extra copy of the long arm of chromosome 12, and Jacobsen syndrome, which is caused by a deletion of the distal end of the long arm of chromosome 12.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

"Adult children" is a term used to describe individuals who are typically adults in age, but who still have developmental or psychological dependencies on their parents or caregivers. This term is often used in the context of adult children of alcoholics or other dysfunctional families, where the adult child may exhibit behaviors such as:

* Difficulty setting boundaries
* Low self-esteem
* Fear of abandonment
* Difficulty with intimacy and commitment
* A tendency to assume responsibility for others' feelings and actions

These patterns often stem from childhood experiences in which the adult child took on a caretaking role or felt responsible for their parents' emotions. While "adult children" is not a formal medical term, it is widely used in psychology and social work to describe this population.

A genetic locus (plural: loci) is a specific location on a chromosome where a particular gene or DNA sequence is found. It is the precise position where a specific genetic element, such as a gene or marker, is located on a chromsomere. This location is defined in terms of its relationship to other genetic markers and features on the same chromosome. Genetic loci can be used in linkage and association studies to identify the inheritance patterns and potential relationships between genes and various traits or diseases.

"Genetic crosses" refer to the breeding of individuals with different genetic characteristics to produce offspring with specific combinations of traits. This process is commonly used in genetics research to study the inheritance patterns and function of specific genes.

There are several types of genetic crosses, including:

1. Monohybrid cross: A cross between two individuals that differ in the expression of a single gene or trait.
2. Dihybrid cross: A cross between two individuals that differ in the expression of two genes or traits.
3. Backcross: A cross between an individual from a hybrid population and one of its parental lines.
4. Testcross: A cross between an individual with unknown genotype and a homozygous recessive individual.
5. Reciprocal cross: A cross in which the male and female parents are reversed to determine if there is any effect of sex on the expression of the trait.

These genetic crosses help researchers to understand the mode of inheritance, linkage, recombination, and other genetic phenomena.

The exome is the part of the genome that contains all the protein-coding regions. It represents less than 2% of the human genome but accounts for about 85% of disease-causing mutations. Exome sequencing, therefore, is a cost-effective and efficient method to identify genetic variants associated with various diseases, including cancer, neurological disorders, and inherited genetic conditions.

Human chromosome pair 17 consists of two rod-shaped structures present in the nucleus of each human cell. Each chromosome is made up of DNA tightly coiled around histone proteins, forming a complex called chromatin. Chromosomes carry genetic information in the form of genes, which are segments of DNA that contain instructions for the development and function of an organism.

Human cells typically have 23 pairs of chromosomes, for a total of 46 chromosomes. Pair 17 is one of the autosomal pairs, meaning it is not a sex chromosome (X or Y). Chromosome 17 is a medium-sized chromosome and contains an estimated 800 million base pairs of DNA. It contains approximately 1,500 genes that provide instructions for making proteins and regulating various cellular processes.

Chromosome 17 is associated with several genetic disorders, including inherited cancer syndromes such as Li-Fraumeni syndrome and hereditary nonpolyposis colorectal cancer (HNPCC). Mutations in genes located on chromosome 17 can increase the risk of developing various types of cancer, including breast, ovarian, colon, and pancreatic cancer.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Corneal dystrophies, hereditary are a group of genetic disorders that affect the cornea, which is the clear, outermost layer at the front of the eye. These conditions are characterized by the buildup of abnormal material in the cornea, leading to decreased vision, pain, or cloudiness in the eye.

There are many different types of corneal dystrophies, each affecting a specific layer of the cornea and having its own pattern of inheritance. Some common types include:

1. Fuchs' endothelial dystrophy: This affects the inner lining of the cornea (endothelium) and causes swelling and cloudiness in the cornea. It is typically inherited in an autosomal dominant manner, meaning that a child has a 50% chance of inheriting the condition if one parent has it.
2. Granular dystrophy: This affects the stroma, which is the middle layer of the cornea. It causes the formation of opaque, grayish-white deposits in the cornea that can affect vision. It is typically inherited in an autosomal dominant or recessive manner.
3. Lattice dystrophy: This also affects the stroma and is characterized by the formation of a lattice-like pattern of fine, whitish lines in the cornea. It is typically inherited in an autosomal dominant manner.
4. Macular dystrophy: This affects the central part of the cornea (macula) and can cause cloudiness, leading to decreased vision. It is typically inherited in an autosomal recessive manner.

Treatment for corneal dystrophies may include eyedrops, medications, or surgery, depending on the severity of the condition and its impact on vision. In some cases, a corneal transplant may be necessary to restore vision.

Genetic anticipation is a phenomenon observed in certain genetic disorders where the severity and/or age of onset of the disease tend to worsen in successive generations. This occurs due to an expansion of triplet repeat sequences (sequences of three consecutive DNA base pairs) in the affected gene, which can lead to an increased production of abnormal proteins associated with the disorder. The expanded repeats are more likely to be inherited when the parent who carries them is a female. Examples of genetic disorders that exhibit anticipation include Huntington's disease, myotonic dystrophy, and fragile X syndrome.

Eye proteins, also known as ocular proteins, are specific proteins that are found within the eye and play crucial roles in maintaining proper eye function and health. These proteins can be found in various parts of the eye, including the cornea, iris, lens, retina, and other structures. They perform a wide range of functions, such as:

1. Structural support: Proteins like collagen and elastin provide strength and flexibility to the eye's tissues, enabling them to maintain their shape and withstand mechanical stress.
2. Light absorption and transmission: Proteins like opsins and crystallins are involved in capturing and transmitting light signals within the eye, which is essential for vision.
3. Protection against damage: Some eye proteins, such as antioxidant enzymes and heat shock proteins, help protect the eye from oxidative stress, UV radiation, and other environmental factors that can cause damage.
4. Regulation of eye growth and development: Various growth factors and signaling molecules, which are protein-based, contribute to the proper growth, differentiation, and maintenance of eye tissues during embryonic development and throughout adulthood.
5. Immune defense: Proteins involved in the immune response, such as complement components and immunoglobulins, help protect the eye from infection and inflammation.
6. Maintenance of transparency: Crystallin proteins in the lens maintain its transparency, allowing light to pass through unobstructed for clear vision.
7. Neuroprotection: Certain eye proteins, like brain-derived neurotrophic factor (BDNF), support the survival and function of neurons within the retina, helping to preserve vision.

Dysfunction or damage to these eye proteins can contribute to various eye disorders and diseases, such as cataracts, age-related macular degeneration, glaucoma, diabetic retinopathy, and others.

Human chromosome pair 16 consists of two rod-shaped structures present in the nucleus of each cell in the human body. Each chromosome is made up of DNA tightly coiled around histone proteins, forming a complex structure called a chromatin.

Chromosomes come in pairs, with one chromosome inherited from each parent. Chromosome pair 16 contains two homologous chromosomes, which are similar in size, shape, and genetic content but may have slight variations due to differences in the DNA sequences inherited from each parent.

Chromosome pair 16 is one of the 22 autosomal pairs, meaning it contains non-sex chromosomes that are present in both males and females. Chromosome 16 is a medium-sized chromosome, and it contains around 2,800 genes that provide instructions for making proteins and regulating various cellular processes.

Abnormalities in chromosome pair 16 can lead to genetic disorders such as chronic myeloid leukemia, some forms of mental retardation, and other developmental abnormalities.

"Larix" is not a medical term. It is the genus name for a group of trees commonly known as larches, which belong to the family Pinaceae. These deciduous conifers are native to the cooler temperate regions of the Northern Hemisphere. They are known for their needle-like leaves and cone-bearing fruits.

While not directly related to human health or medicine, certain compounds derived from plants in the Larix genus have been studied for potential medicinal properties. For example, extracts from larch bark have been investigated for their anti-inflammatory, antioxidant, and wound-healing effects. However, it is important to note that these studies are still in the preliminary stages, and more research is needed before any definitive conclusions can be drawn about the medicinal applications of Larix species.

Bayes' theorem, also known as Bayes' rule or Bayes' formula, is a fundamental principle in the field of statistics and probability theory. It describes how to update the probability of a hypothesis based on new evidence or data. The theorem is named after Reverend Thomas Bayes, who first formulated it in the 18th century.

In mathematical terms, Bayes' theorem states that the posterior probability of a hypothesis (H) given some observed evidence (E) is proportional to the product of the prior probability of the hypothesis (P(H)) and the likelihood of observing the evidence given the hypothesis (P(E|H)):

Posterior Probability = P(H|E) = [P(E|H) x P(H)] / P(E)

Where:

* P(H|E): The posterior probability of the hypothesis H after observing evidence E. This is the probability we want to calculate.
* P(E|H): The likelihood of observing evidence E given that the hypothesis H is true.
* P(H): The prior probability of the hypothesis H before observing any evidence.
* P(E): The marginal likelihood or probability of observing evidence E, regardless of whether the hypothesis H is true or not. This value can be calculated as the sum of the products of the likelihood and prior probability for all possible hypotheses: P(E) = Σ[P(E|Hi) x P(Hi)]

Bayes' theorem has many applications in various fields, including medicine, where it can be used to update the probability of a disease diagnosis based on test results or other clinical findings. It is also widely used in machine learning and artificial intelligence algorithms for probabilistic reasoning and decision making under uncertainty.

"Pinus taeda," also known as Loblolly Pine, is not a medical term. It is a species of tree in the family Pinaceae that is native to the southeastern United States. The tree is commonly used in the production of timber, paper, and pulp, and it has some medicinal uses as well.

The bark, leaves (needles), and sap of the Loblolly Pine have been used traditionally by indigenous peoples for various medicinal purposes, such as treating skin conditions, wounds, and respiratory ailments. However, there is limited scientific evidence to support these uses, and they should not be attempted without consulting a healthcare professional.

Human chromosome pair 9 consists of two rod-shaped structures present in the nucleus of each cell of the human body. Each member of the pair contains thousands of genes and other genetic material, encoded in the form of DNA molecules. The two chromosomes in a pair are identical or very similar to each other in terms of their size, shape, and genetic makeup.

Chromosome 9 is one of the autosomal chromosomes, meaning that it is not a sex chromosome (X or Y) and is present in two copies in all cells of the body, regardless of sex. Chromosome 9 is a medium-sized chromosome, and it is estimated to contain around 135 million base pairs of DNA and approximately 1200 genes.

Chromosome 9 contains several important genes that are associated with various human traits and diseases. For example, mutations in the gene that encodes the protein APOE on chromosome 9 have been linked to an increased risk of developing Alzheimer's disease. Additionally, variations in the gene that encodes the protein EGFR on chromosome 9 have been associated with an increased risk of developing certain types of cancer.

Overall, human chromosome pair 9 plays a critical role in the development and function of the human body, and variations in its genetic makeup can contribute to a wide range of traits and diseases.

Genetic recombination is the process by which genetic material is exchanged between two similar or identical molecules of DNA during meiosis, resulting in new combinations of genes on each chromosome. This exchange occurs during crossover, where segments of DNA are swapped between non-sister homologous chromatids, creating genetic diversity among the offspring. It is a crucial mechanism for generating genetic variability and facilitating evolutionary change within populations. Additionally, recombination also plays an essential role in DNA repair processes through mechanisms such as homologous recombinational repair (HRR) and non-homologous end joining (NHEJ).

Duane Retraction Syndrome (DRS) is a congenital eye movement disorder, characterized by limited abduction (lateral movement away from the nose) of the affected eye, and on attempted adduction (movement towards the nose), the eye retracts into the orbit and the lid narrows. It is often accompanied by other eye alignment or vision anomalies. The exact cause is not known, but it is believed to be a result of abnormal development of the cranial nerves that control eye movement during fetal development. DRS is usually idiopathic, but it can also be associated with other congenital anomalies. It is typically diagnosed in early childhood and managed with a combination of observation, prism glasses, and/or surgery, depending on the severity and impact on vision.

Brachial plexus neuritis, also known as Parsonage-Turner syndrome or neuralgic amyotrophy, is a medical condition characterized by inflammation and damage to the brachial plexus. The brachial plexus is a network of nerves that originates from the spinal cord in the neck and travels down the arm, controlling movement and sensation in the shoulder, arm, and hand.

In Brachial plexus neuritis, the insulating covering of the nerves (myelin sheath) is damaged or destroyed, leading to impaired nerve function. The exact cause of this condition is not fully understood, but it can be associated with viral infections, trauma, surgery, or immunological disorders.

Symptoms of Brachial plexus neuritis may include sudden onset of severe pain in the shoulder and arm, followed by weakness or paralysis of the affected muscles. There may also be numbness, tingling, or loss of sensation in the affected areas. In some cases, recovery can occur spontaneously within a few months, while others may experience persistent weakness or disability. Treatment typically involves pain management, physical therapy, and in some cases, corticosteroids or other medications to reduce inflammation.

Malignant hyperthermia (MH) is a rare, but potentially life-threatening genetic disorder that can occur in susceptible individuals as a reaction to certain anesthetic drugs or other triggers. The condition is characterized by a rapid and uncontrolled increase in body temperature (hyperthermia), muscle rigidity, and metabolic rate due to abnormal skeletal muscle calcium regulation.

MH can develop quickly during or after surgery, usually within the first hour of exposure to triggering anesthetics such as succinylcholine or volatile inhalational agents (e.g., halothane, sevoflurane, desflurane). The increased metabolic rate and muscle activity lead to excessive production of heat, carbon dioxide, lactic acid, and potassium, which can cause severe complications such as heart rhythm abnormalities, kidney failure, or multi-organ dysfunction if not promptly recognized and treated.

The primary treatment for MH involves discontinuing triggering anesthetics, providing supportive care (e.g., oxygen, fluid replacement), and administering medications to reduce body temperature, muscle rigidity, and metabolic rate. Dantrolene sodium is the specific antidote for MH, which works by inhibiting calcium release from the sarcoplasmic reticulum in skeletal muscle cells, thereby reducing muscle contractility and metabolism.

Individuals with a family history of MH or who have experienced an episode should undergo genetic testing and counseling to determine their susceptibility and take appropriate precautions when receiving anesthesia.

Single-Stranded Conformational Polymorphism (SSCP) is not a medical condition but rather a laboratory technique used in molecular biology and genetics. It refers to the phenomenon where a single-stranded DNA or RNA molecule can adopt different conformations or shapes based on its nucleotide sequence, even if the difference in the sequence is as small as a single base pair change. This property is used in SSCP analysis to detect mutations or variations in DNA or RNA sequences.

In SSCP analysis, the denatured single-stranded DNA or RNA sample is subjected to electrophoresis on a non-denaturing polyacrylamide gel. The different conformations of the single-stranded molecules migrate at different rates in the gel, creating multiple bands that can be visualized by staining or other detection methods. The presence of additional bands or shifts in band patterns can indicate the presence of a sequence variant or mutation.

SSCP analysis is often used as a screening tool for genetic diseases, cancer, and infectious diseases to identify genetic variations associated with these conditions. However, it has largely been replaced by more sensitive and accurate methods such as next-generation sequencing.

I'm not aware of any medical definitions for "Azores." The Azores is a group of nine volcanic islands in the Atlantic Ocean, located about 850 miles west of Portugal. They are an autonomous region of Portugal and have a population of around 250,000 people. The islands are known for their beautiful landscapes, mild climate, and unique flora and fauna.

If you have any specific questions related to the Azores or if there is something specific you would like to know about the region in a medical context, please let me know and I will do my best to help!

Sex chromosome aberrations refer to structural and numerical abnormalities in the sex chromosomes, which are typically represented as X and Y chromosomes in humans. These aberrations can result in variations in the number of sex chromosomes, such as Klinefelter syndrome (47,XXY), Turner syndrome (45,X), and Jacobs/XYY syndrome (47,XYY). They can also include structural changes, such as deletions, duplications, or translocations of sex chromosome material.

Sex chromosome aberrations may lead to a range of phenotypic effects, including differences in physical characteristics, cognitive development, fertility, and susceptibility to certain health conditions. The manifestation and severity of these impacts can vary widely depending on the specific type and extent of the aberration, as well as individual genetic factors and environmental influences.

It is important to note that while sex chromosome aberrations may pose challenges and require medical management, they do not inherently define or limit a person's potential, identity, or worth. Comprehensive care, support, and education can help individuals with sex chromosome aberrations lead fulfilling lives and reach their full potential.

Domestic animals, also known as domestic animals or pets, are species that have been tamed and kept by humans for various purposes. These purposes can include companionship, work, protection, or food production. Some common examples of domestic animals include dogs, cats, cows, sheep, goats, pigs, horses, and chickens.

Domestic animals are distinguished from wild animals in that they are dependent on humans for their survival and are able to live in close proximity to people. They have often been selectively bred over generations to possess certain traits or characteristics that make them more suitable for their intended uses. For example, dogs may be bred for their size, strength, agility, or temperament, while cats may be bred for their coat patterns or behaviors.

It is important to note that the term "domestic animal" does not necessarily mean that an animal is tame or safe to handle. Some domestic animals, such as certain breeds of dogs, can be aggressive or dangerous if not properly trained and managed. It is always important to approach and handle any animal, domestic or wild, with caution and respect.

A chromosome is a thread-like structure that contains genetic material, made up of DNA and proteins, in the nucleus of a cell. In humans, there are 23 pairs of chromosomes, for a total of 46 chromosomes, in each cell of the body, with the exception of the sperm and egg cells which contain only 23 chromosomes.

The X chromosome is one of the two sex-determining chromosomes in humans. Females typically have two X chromosomes (XX), while males have one X and one Y chromosome (XY). The X chromosome contains hundreds of genes that are responsible for various functions in the body, including some related to sexual development and reproduction.

Humans inherit one X chromosome from their mother and either an X or a Y chromosome from their father. In females, one of the two X chromosomes is randomly inactivated during embryonic development, resulting in each cell having only one active X chromosome. This process, known as X-inactivation, helps to ensure that females have roughly equal levels of gene expression from the X chromosome, despite having two copies.

Abnormalities in the number or structure of the X chromosome can lead to various genetic disorders, such as Turner syndrome (X0), Klinefelter syndrome (XXY), and fragile X syndrome (an X-linked disorder caused by a mutation in the FMR1 gene).

Human chromosome pair 11 consists of two rod-shaped structures present in the nucleus of each cell in the human body. Each member of the pair is a single chromosome, and together they contain the genetic material that is inherited from both parents. They are located on the eleventh position in the standard karyotype, which is a visual representation of the 23 pairs of human chromosomes.

Chromosome 11 is one of the largest human chromosomes and contains an estimated 135 million base pairs. It contains approximately 1,400 genes that provide instructions for making proteins, as well as many non-coding RNA molecules that play a role in regulating gene expression.

Chromosome 11 is known to contain several important genes and genetic regions associated with various human diseases and conditions. For example, it contains the Wilms' tumor 1 (WT1) gene, which is associated with kidney cancer in children, and the neurofibromatosis type 1 (NF1) gene, which is associated with a genetic disorder that causes benign tumors to grow on nerves throughout the body. Additionally, chromosome 11 contains the region where the ABO blood group genes are located, which determine a person's blood type.

It's worth noting that human chromosomes come in pairs because they contain two copies of each gene, one inherited from the mother and one from the father. This redundancy allows for genetic diversity and provides a backup copy of essential genes, ensuring their proper function and maintaining the stability of the genome.

Catatonic Schizophrenia is a subtype of Schizophrenia characterized by severe psychomotor disturbances such as stupor (reduced reaction to stimuli), mutism (inability to speak), negativism (resistance to instructions or movements), posturing (assuming and maintaining unusual poses), rigidity, agitation, or excitation. These symptoms can lead to significant impairment in daily functioning and quality of life. It is important to note that this subtype is less commonly used in current psychiatric classification systems, as the focus has shifted towards a more comprehensive description of symptom dimensions that cut across traditional diagnostic categories.

Bipolar disorder, also known as manic-depressive illness, is a mental health condition that causes extreme mood swings that include emotional highs (mania or hypomania) and lows (depression). When you become depressed, you may feel sad or hopeless and lose interest or pleasure in most activities. When your mood shifts to mania or hypomania (a less severe form of mania), you may feel euphoric, full of energy, or unusually irritable. These mood swings can significantly affect your job, school, relationships, and overall quality of life.

Bipolar disorder is typically characterized by the presence of one or more manic or hypomanic episodes, often accompanied by depressive episodes. The episodes may be separated by periods of normal mood, but in some cases, a person may experience rapid cycling between mania and depression.

There are several types of bipolar disorder, including:

* Bipolar I Disorder: This type is characterized by the occurrence of at least one manic episode, which may be preceded or followed by hypomanic or major depressive episodes.
* Bipolar II Disorder: This type involves the presence of at least one major depressive episode and at least one hypomanic episode, but no manic episodes.
* Cyclothymic Disorder: This type is characterized by numerous periods of hypomania and depression that are not severe enough to meet the criteria for a full manic or depressive episode.
* Other Specified and Unspecified Bipolar and Related Disorders: These categories include bipolar disorders that do not fit the criteria for any of the other types.

The exact cause of bipolar disorder is unknown, but it appears to be related to a combination of genetic, environmental, and neurochemical factors. Treatment typically involves a combination of medication, psychotherapy, and lifestyle changes to help manage symptoms and prevent relapses.

Look up pedigree or pedigrees in Wiktionary, the free dictionary. Pedigree may refer to: Pedigree chart, a document to record ... See in particular: Pedigree (dog), pertaining to a purebred domestic dog Pedigree (cat), pertaining to a purebred domestic cat ... a pedigree chart pertaining to a purebred animal; may also refer to such a purebred animal itself, e.g. "a pedigree dog" or "a ... an English ale Pedigree (novel), an autobiographical novel by Georges Simenon The Pedigree, a finishing maneuver in ...
Galante was a Jewish family which flourished at the beginning of the 16th century in Rome, and the head of which, Mordecai, was a Spanish exile of the Angel family. His courteous manners won for him from the Roman nobles the surname "Galantuomo" (gentleman), a name which the family retained. About this time the family settled in the Land of Israel, where it produced authors and other celebrities, among them the following: Abraham ben Mordecai Galante - (d. 1560, Italian kabbalist) Moses ben Mordecai Galante - (d. 1608, Safed) Jonathan ben Moses Galante - (17th-century rabbi at Safed) Moses ben Jonathan Galante - (1621 - 1689, Jerusalem), was the first Rishon LeZion (Sephardic chief Rabbi of Israel). Mordecai Galante - (d. 1781, chief rabbi of Damascus) Moses Galante - (d. 1806, chief rabbi of Damascus) This article incorporates text from a publication now in the public domain: Franco, M.; Kohler, Kaufmann; Broydé, Isaac; Deutsch, Gotthard (1903). "Galante". In Singer, Isidore; et al. (eds.). ...
... is the first album from the British ska punk band Spunge. It was released following the success of The Kicking ... No singles were released from Pedigree Chump. However, the song "Kicking Pigeons" can be found on The Kicking Pigeons EP and an ...
"Pedigree Foundation". "Pedigree Foundation FAQ". "Pedigree Foundation 2008 Annual Report" (PDF). Pedigree Petfoods UK Mars UK ... In the United States, its Pedigree Select brand became Cesar, used in Europe and Asia. Pedigree is now a subsidiary of Mars, ... In 1988, Kal Kan Foods changed the name of its dog food to Pedigree, the name Mars used to sell dog food outside the United ... Pedigree Petfoods is a subsidiary of the American group Mars, Incorporated specializing in pet food, with factories in England ...
"Definition of PEDIGREE". www.merriam-webster.com. Retrieved 2023-01-10. "pedigree - definition of pedigree in English , Oxford ... It was for this reason that pedigrees were recorded by the visitations. Pedigrees continue to be registered at the College of ... "HELP - Ancestral File - Pedigree Chart". familysearch.org. Retrieved 6 April 2018. Documenting Your Pedigree Chart By Melody ... resemble the thin leg and foot of a crane or because such a mark was used to denote succession in pedigree charts. A pedigree ...
The maximum pedigree collapse of 50% within a single generation is caused by procreation between full siblings; such children ... In genealogy, pedigree collapse describes how reproduction between two individuals who share an ancestor causes the number of ... The House of Habsburg gives a well-documented example of pedigree collapse. In the case of Charles II, the last Habsburg King ... This reduction in the number of ancestors is referred to as pedigree collapse. It collapses the ancestor tree into a directed ...
Pedigree is an autobiographical novel by the Belgian author Georges Simenon, first published in 1948. Simenon described the ...
... , also known as Pedigree Toys, is a toy company located in Exeter, England. Best known for launching the ... The Sindy doll was very popular from the 1960s to 1980s, and accounted for 80% of Pedigree's sales. Pedigree was a subsidiary ... In March 1982, Pedigree closed its factory in Wellingborough, Northamptonshire. After running at a loss in 1985, it was ... Instead, Hasbro bought the rights to the Sindy doll in 1986, but returned the rights to Pedigree in 1998 after sales of the ...
... at BBC Online Pedigree Dogs Exposed at Passionate Productions Kennel Club's response to the issue of ... "Questions about Pedigree dogs raised by the BBC Programme 'Pedigree Dogs Exposed'". The Kennel Club. 11 September 2008. ... "Programme information: Pedigree Dogs Exposed - Three Years On". BBC. Retrieved 22 July 2013. "Pedigree dogs plagued by disease ... how the pedigree of Crufts came under a shadow Extent of inbreeding in pedigree dogs revealed in new study Imperial College ...
SOUP stands for software of unknown (or uncertain) pedigree (or provenance), and is a term often used in the context of safety- ...
The Pedigree State Stop Race is a stage stop sled dog race that takes place annually in the US States of Wyoming and Idaho. The ... Davis, Taja (29 January 2017). "Pedigree Sled Dog Race has stage stop in Driggs". KIFI. Retrieved 20 December 2017. Official ...
... is a 2012 follow-up to the 2008 BBC One documentary, Pedigree Dogs Exposed (PDE). While ... All but two of the 30 cases had this dog's genes in their pedigree and other Walkon dogs have directly produced puppies with ... In January 2011, the Kennel Club registered a Dalmatian named Fiona, who had an English Pointer far back in its pedigree. Some ... This means that breeders can get away with breeding at the expense of welfare, be it pedigree or crossbreed breeders. It states ...
... is a 1913 American silent short comedy film starring William Garwood and Francelia Billington. Prints and ... William Garwood Francelia Billington Annie Drew A Mix-Up in Pedigrees at IMDb "The Orpheum". Lexington Herald. 15 Oct 1913. p. ...
His pedigree traces to major sires of significance, including his grandsire Storm Cat and his damsire Unbridled. He was named ... Pedigree and partial stats Shackleford at Daily Racing Form (Articles with short description, Short description matches ... Shackleford's pedigree chart is as follows: "Thoroughbred Database: Shackleford". Pedigreequery.com. Select Web Ventures, LLC. ... "Pedigree". Churchill Downs Incorporated. Retrieved May 22, 2011. Mihoces, Gary (May 21, 2011). "Shackleford holds off Animal ...
"Pedigree". Equineline. Retrieved 20 September 2020. "Honor A. P. Profile". Retrieved 5 July 2020. "Honor Code Profile". ...
pedigree". Equineline. (Articles with short description, Short description is different from Wikidata, 1930 racehorse births, ... "Brown Betty pedigree". Equineline. Mortimer, Roger; Onslow, Richard; Willett, Peter (1978). Biographical Encyclopedia of ... meaning that these stallions appear in both the third and fourth generations of her pedigree. She was also inbred 4 × 4 to St ...
"Pedigree". www.pedigreequery.com. Pretorius, Charl (26 August 2009). "Hear The Drums heads McLachlan honour roll". www.tabnews. ...
"PEDIGREE® Dog Adoptions. Adopt A Dog With PEDIGREE® Adoption Drive". Pedigree. September 21, 2011. Archived from the original ... In 2010, Underwood became the official spokesperson for the Pedigree adoption drive. On March 29, 2010, Underwood and Pedigree ... In 2010, Underwood became the spokesperson for the Pedigree adoption drive. In 2011, she became the first celebrity brand ...
"Tenterfield Terrier". Pedigree. Retrieved 2 October 2010. "AKC Meet the Breeds: Toy Fox Terrier". American Kennel Club. ... From 1870 onwards, a complete pedigree for Fox Terriers exists. Three dogs, known as Old Jock, Trap and Tartar, are the ...
"Pedigree". www.familysearch.org. Retrieved 2019-10-11. Biographical notes @ SPH Adopce. Wikimedia Commons has media related to ...
RIVERA, LAUREN A. (2016-03-22). Pedigree. Princeton University Press. doi:10.2307/j.ctv7h0sdf. ISBN 978-1-4008-8074-4. Domhoff ...
"Dealing With Your Dog's Energy Bursts". Pedigree. Waggener, Natalie (February 20, 2018). "Why Your Dog Gets "The Zoomies"". ...
"Pedigree". Standardbred Canada. Retrieved April 13, 2018. "1936 Hambletonian". Hambletonian Society. Retrieved April 13, 2018 ...
"Pedigree". Pedigreequery.com. 30 April 2007. Retrieved 6 May 2010. "Phar Lap Forever". The National Film and Sound Archive of ... Sydney trainer Harry Telford persuaded American businessman David J. Davis to buy the colt at auction, based on his pedigree. ...
"Brametot pedigree". Equineline. "Vente d'Elevage de Decembre lot 811". arqana.com. "Rajsaman - form". Racing Post. "Regulus ...
Pedigree Publications. pp. 37, 67, 139, 177. ISBN 9789988029210.[permanent dead link] "NUPS-G KNUST>>PCG>>History". www. ...
"Pedigree Query". www.pedigreequery.com. Retrieved 15 November 2017. (Articles with short description, Short description matches ...
"Intrepidity pedigree". Equineline. 2012-05-08. Retrieved 2012-08-22. (Articles with short description, Short description is ...
"Progeny Reports". Pedigree Query. Pedigree Query. Retrieved 23 April 2020. Stevens, Martin (9 March 2018). "Dr Devious stud ...
4 to Nasrullah meaning that this stallion appears in both the third and fourth generations of his pedigree. "Cacoethes pedigree ...
Look up pedigree or pedigrees in Wiktionary, the free dictionary. Pedigree may refer to: Pedigree chart, a document to record ... See in particular: Pedigree (dog), pertaining to a purebred domestic dog Pedigree (cat), pertaining to a purebred domestic cat ... a pedigree chart pertaining to a purebred animal; may also refer to such a purebred animal itself, e.g. "a pedigree dog" or "a ... an English ale Pedigree (novel), an autobiographical novel by Georges Simenon The Pedigree, a finishing maneuver in ...
Pedigree. Coefficients of inbreeding in %. of the queen: 0,0. of the workers: 0,0. ...
Pedigree. Coefficients of inbreeding in %. of the queen: 19,8. of the workers: 19,1. ...
Pedigree. Coefficients of inbreeding in %. of the queen: 1,3. of the workers: 2,3. ...
Use of this site is subject to terms and conditions as expressed on the home page. ? 1999-2018, K9data LLC ...
Use of this site is subject to terms and conditions as expressed on the home page. ? 1999-2018, K9data LLC ...
Pedigree:. Tramin Lavanda. INT CH(CIE),CH RKF,GRCH Rus,CH Rus,CH Balkan,CH Geo,CH Rks,CH Yug,CH Club,JCH Club,JCH Rus,JCH Blr. ...
Use of this site is subject to terms and conditions as expressed on the home page. ? 1999-2018, K9data LLC ...
This Guestbook is for comments from visitors. To contribute, click ,here,. ...
HomePedigree. Pedigree To download Pedigree products, please use your previous login/password on the Brisnet legacy site here. ... If you did not have an account with the legacy Brisnet site before December 2016, and you need to purchase pedigrees or data ...
The official site of the international governing body of football with news, national associations, competitions, results, fixtures, development, organisation, world rankings, statistics, the International Football Association Board, history, laws of the game, futsal, publications, downloads, and contact details.
... dog food and Pedigree® puppy food feature the tastes theyll love and the nutrition they need as a puppy or adult. Shop the ... Pedigree®Brand. Feed the good.™. PEDIGREE® Professional Nutrition. PEDIGREE® Complete Nutrition is perfect for your best bud. ... Give your dog the nutritional support they need at every age with Pedigree® dog food and Pedigree puppy food. All recipes are ... Pedigree dog food and Pedigree puppy food are available in formulas designed specifically for adults, puppies, small dogs and ...
Pedigree sued by dog owners. BARKING MAD If your beloved pet died of renal failure after eating tainted food, maybe you too ... Questionable Pedigree products processed from raw materials that were already moldy and unhealthy were sold in several Asian ... At a press conference, Shen said that component analysis of questionable Pedigree dog food done by experts for the Council of ... Shen said that US-based Mars, which sells numerous pet food products including Pedigree, had failed to control the quality of ...
... and female family reports from the Thoroughbred Horse Pedigree Query. ... Pedigree *Progeny *Siblings *Hypo Mating *Female Family *Tail Female *Linebreeding *Inbreeding *Equivalents *Common Ancestors * ... Pedigree *Edit Information *Progeny *Siblings *Female Family *Tail Female *Linebreeding *Stakes Results ...
... and female family reports from the Thoroughbred Horse Pedigree Query. ... Pedigree *Progeny *Siblings *Hypo Mating *Female Family *Tail Female *Linebreeding *Inbreeding *Equivalents *Common Ancestors * ... Pedigree *Edit Information *Progeny *Siblings *Female Family *Tail Female *Linebreeding *Stakes Results ...
Place + in front of a word which must be found and - in front of a word which must not be found. Put a list of words separated by , into brackets if only one of the words must be found. Use * as a wildcard for partial matches. ...
... si Whiskas doneaza 27 de tone de hrana pentru animale, in urma campaniei Ajuta! animalele din adaposturi ... Pedigree si Whiskas, in parteneriat cu Asociatia GIA, vor dona 100.000 de portii de mancare pentru cainii si pisicile fara ... Pedigree si Whiskas, prin campania Ajuta! Animalele din adaposturi, doneaza 80.000 de portii de hrana pentru animalele fara ... Pedigree si Whiskas deruleaza o campanie de CSR pentru ajutorarea cainilor si pisicilor fara stapan ...
Heres how to talk the talk and read pedigree charts. ... How to Read a Horses Pedigree. Often youll see pedigrees ... Pedigree Reports From AQHA and QData. The American Quarter Horse Association offers free pedigree records, as well as pedigree ... Horse Breeding Lingo: Pedigree Terminology. When youre talkin bloodstock pedigrees, theres a high-falutin lingo you should ... In a genetic pedigree, the first generation is considered the horses sire and dam, not the horse itself. For example, if you ...
Pedigree , 89 races , stats , 8 offspring , top_offspr , 2nd_offspring_female , top_2nd_off_female , 2nd_offspring_male , top_ ...
Get pedigrees reports and a free five generation pedigree chart. ... All Breed Pedigree Database containing more than 6.4 million ... Pedigree *Progeny *Siblings *Hypo Mating *Female Family *Tail Female *Linebreeding *Equivalents *Common Ancestors *Photos ...
Pedigree , 137 races , stats , no offspring , top_offspr , 2nd_offspring_female , top_2nd_off_female , 2nd_offspring_male , top ...
Get pedigrees reports and a free five generation pedigree chart. ... All Breed Pedigree Database containing more than 6.4 million ... Pedigree *Progeny *Siblings *Hypo Mating *Female Family *Tail Female *Linebreeding *Equivalents *Common Ancestors *Photos ... Were excited to announce the new All Breed Pedigree beta!. Please visit https://beta.allbreedpedigree.com/chickasha+bob and ...
Assuming unrelated pedigree founders, Pedigree F is the expected proportion of GWIBD given a specific inbreeding constellation ... and related pedigree founders systematically bias Pedigree F downward. Marker F is an estimate of the actual proportion of ... can be estimated from pedigrees (inbreeding coefficient Pedigree F) or molecular markers (Marker F), but both estimators ... and Pedigree F thus less precise than in humans, where crossovers are distributed more uniformly along chromosomes. Effects of ...
Random pedigree. Click ancestor to traverse. Double-click to view pedigree page. ... AKC Conditional Registration Certificate and Pedigree NOT ALLOWED ON THE PDB. 3 weeks ago. Main. ...
Thus Capo Kanes pedigree sports 4×4 inbreeding to both supersires, each a grandson of the great Native Dancer (Mr. Prospector ... An intriguing feature of Tuzlas pedigree is her dams inbreeding to Relko, a champion in both England and France in 1963-64. ... Pedigree fun facts: Capo Kane. Jan 02, 2021 Kellie Reilly/Brisnet.com. ... youll love the pedigree of 2021 hopeful Capo Kane. Sired by Street Sense and out of a daughter of Hard Spun, Capo Kane grafts ...
Pedigree , 116 races , stats , no offspring , top_offspr , 2nd_offspring_female , top_2nd_off_female , 2nd_offspring_male , top ...
Pedigree - DentaStix Medium - Original, 608 Gram. Add Pedigree - DentaStix Medium - Original to Favorites.. Add Pedigree - ... Pedigree - DentaStix Medium - Original, 608 Gram. Add Pedigree - DentaStix Medium - Original to Favorites.. Add Pedigree - ... Pedigree - DentaStix Medium - Original, 608 Gram. Add Pedigree - DentaStix Medium - Original to Favorites.. Add Pedigree - ... Add Pedigree - DentaStix Small, Original to Favorites.. Add Pedigree - DentaStix Small, Original to Favorites. ...

No FAQ available that match "pedigree"