A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates.
Two pairs of small oval-shaped glands located in the front and the base of the NECK and adjacent to the two lobes of THYROID GLAND. They secrete PARATHYROID HORMONE that regulates the balance of CALCIUM; PHOSPHORUS; and MAGNESIUM in the body.
A parathyroid hormone receptor subtype that recognizes both PARATHYROID HORMONE and PARATHYROID HORMONE-RELATED PROTEIN. It is a G-protein-coupled receptor that is expressed at high levels in BONE and in KIDNEY.
Tumors or cancer of the PARATHYROID GLANDS.
Cell surface proteins that bind PARATHYROID HORMONE with high affinity and trigger intracellular changes which influence the behavior of cells. Parathyroid hormone receptors on BONE; KIDNEY; and gastrointestinal cells mediate the hormone's role in calcium and phosphate homeostasis.
A ubiquitously expressed, secreted protein with bone resorption and renal calcium reabsorption activities that are similar to PARATHYROID HORMONE. It does not circulate in appreciable amounts in normal subjects, but rather exerts its biological actions locally. Overexpression of parathyroid hormone-related protein by tumor cells results in humoral calcemia of malignancy.
A condition of abnormally elevated output of PARATHYROID HORMONE (or PTH) triggering responses that increase blood CALCIUM. It is characterized by HYPERCALCEMIA and BONE RESORPTION, eventually leading to bone diseases. PRIMARY HYPERPARATHYROIDISM is caused by parathyroid HYPERPLASIA or PARATHYROID NEOPLASMS. SECONDARY HYPERPARATHYROIDISM is increased PTH secretion in response to HYPOCALCEMIA, usually caused by chronic KIDNEY DISEASES.
Pathological processes of the PARATHYROID GLANDS. They usually manifest as hypersecretion or hyposecretion of PARATHYROID HORMONE that regulates the balance of CALCIUM; PHOSPHORUS; and MAGNESIUM in the body.
A polypeptide that consists of the 1-34 amino-acid fragment of human PARATHYROID HORMONE, the biologically active N-terminal region. The acetate form is given by intravenous infusion in the differential diagnosis of HYPOPARATHYROIDISM and PSEUDOHYPOPARATHYROIDISM. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1995)
A parathyroid hormone receptor subtype found in the BRAIN and the PANCREAS. It is a G-protein-coupled receptor with a ligand specificity that varies between homologs from different species.
Excision of one or more of the parathyroid glands.
Abnormally elevated PARATHYROID HORMONE secretion as a response to HYPOCALCEMIA. It is caused by chronic KIDNEY FAILURE or other abnormalities in the controls of bone and mineral metabolism, leading to various BONE DISEASES, such as RENAL OSTEODYSTROPHY.
Abnormally high level of calcium in the blood.
Reduction of the blood calcium below normal. Manifestations include hyperactive deep tendon reflexes, Chvostek's sign, muscle and abdominal cramps, and carpopedal spasm. (Dorland, 27th ed)
A condition caused by a deficiency of PARATHYROID HORMONE (or PTH). It is characterized by HYPOCALCEMIA and hyperphosphatemia. Hypocalcemia leads to TETANY. The acquired form is due to removal or injuries to the PARATHYROID GLANDS. The congenital form is due to mutations of genes, such as TBX1; (see DIGEORGE SYNDROME); CASR encoding CALCIUM-SENSING RECEPTOR; or PTH encoding parathyroid hormone.
Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions.
A class of G-protein-coupled receptors that react to varying extracellular CALCIUM levels. Calcium-sensing receptors in the PARATHYROID GLANDS play an important role in the maintenance of calcium HOMEOSTASIS by regulating the release of PARATHYROID HORMONE. They differ from INTRACELLULAR CALCIUM-SENSING PROTEINS which sense intracellular calcium levels.
Inorganic salts of phosphoric acid.
A condition of abnormally elevated output of PARATHYROID HORMONE due to parathyroid HYPERPLASIA or PARATHYROID NEOPLASMS. It is characterized by the combination of HYPERCALCEMIA, phosphaturia, elevated renal 1,25-DIHYDROXYVITAMIN D3 synthesis, and increased BONE RESORPTION.
A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principle cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX.
The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption.
A vitamin that includes both CHOLECALCIFEROLS and ERGOCALCIFEROLS, which have the common effect of preventing or curing RICKETS in animals. It can also be viewed as a hormone since it can be formed in SKIN by action of ULTRAVIOLET RAYS upon the precursors, 7-dehydrocholesterol and ERGOSTEROL, and acts on VITAMIN D RECEPTORS to regulate CALCIUM in opposition to PARATHYROID HORMONE.
A peptide hormone that lowers calcium concentration in the blood. In humans, it is released by thyroid cells and acts to decrease the formation and absorptive activity of osteoclasts. Its role in regulating plasma calcium is much greater in children and in certain diseases than in normal adults.
A hereditary syndrome clinically similar to HYPOPARATHYROIDISM. It is characterized by HYPOCALCEMIA; HYPERPHOSPHATEMIA; and associated skeletal development impairment and caused by failure of response to PARATHYROID HORMONE rather than deficiencies. A severe form with resistance to multiple hormones is referred to as Type 1a and is associated with maternal mutant allele of the ALPHA CHAIN OF STIMULATORY G PROTEIN.
Natural hormones secreted by the THYROID GLAND, such as THYROXINE, and their synthetic analogs.
A benign epithelial tumor with a glandular organization.
Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone.
A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity.
Bone loss due to osteoclastic activity.
A clinical syndrome associated with the retention of renal waste products or uremic toxins in the blood. It is usually the result of RENAL INSUFFICIENCY. Most uremic toxins are end products of protein or nitrogen CATABOLISM, such as UREA or CREATININE. Severe uremia can lead to multiple organ dysfunctions with a constellation of symptoms.
The amount of mineral per square centimeter of BONE. This is the definition used in clinical practice. Actual bone density would be expressed in grams per milliliter. It is most frequently measured by X-RAY ABSORPTIOMETRY or TOMOGRAPHY, X RAY COMPUTED. Bone density is an important predictor for OSTEOPOROSIS.
The continuous turnover of BONE MATRIX and mineral that involves first an increase in BONE RESORPTION (osteoclastic activity) and later, reactive BONE FORMATION (osteoblastic activity). The process of bone remodeling takes place in the adult skeleton at discrete foci. The process ensures the mechanical integrity of the skeleton throughout life and plays an important role in calcium HOMEOSTASIS. An imbalance in the regulation of bone remodeling's two contrasting events, bone resorption and bone formation, results in many of the metabolic bone diseases, such as OSTEOPOROSIS.
A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity.
A nutritional condition produced by a deficiency of VITAMIN D in the diet, insufficient production of vitamin D in the skin, inadequate absorption of vitamin D from the diet, or abnormal conversion of vitamin D to its bioactive metabolites. It is manifested clinically as RICKETS in children and OSTEOMALACIA in adults. (From Cecil Textbook of Medicine, 19th ed, p1406)
The major circulating metabolite of VITAMIN D3. It is produced in the LIVER and is the best indicator of the body's vitamin D stores. It is effective in the treatment of RICKETS and OSTEOMALACIA, both in azotemic and non-azotemic patients. Calcifediol also has mineralizing properties.
An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH.
Decalcification of bone or abnormal bone development due to chronic KIDNEY DISEASES, in which 1,25-DIHYDROXYVITAMIN D3 synthesis by the kidneys is impaired, leading to reduced negative feedback on PARATHYROID HORMONE. The resulting SECONDARY HYPERPARATHYROIDISM eventually leads to bone disorders.
Surgical removal of the thyroid gland. (Dorland, 28th ed)
Vitamin K-dependent calcium-binding protein synthesized by OSTEOBLASTS and found primarily in BONES. Serum osteocalcin measurements provide a noninvasive specific marker of bone metabolism. The protein contains three residues of the amino acid gamma-carboxyglutamic acid (Gla), which, in the presence of CALCIUM, promotes binding to HYDROXYAPATITE and subsequent accumulation in BONE MATRIX.
The end-stage of CHRONIC RENAL INSUFFICIENCY. It is characterized by the severe irreversible kidney damage (as measured by the level of PROTEINURIA) and the reduction in GLOMERULAR FILTRATION RATE to less than 15 ml per min (Kidney Foundation: Kidney Disease Outcome Quality Initiative, 2002). These patients generally require HEMODIALYSIS or KIDNEY TRANSPLANTATION.
Derivatives of ERGOSTEROL formed by ULTRAVIOLET RAYS breaking of the C9-C10 bond. They differ from CHOLECALCIFEROL in having a double bond between C22 and C23 and a methyl group at C24.
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
Hydroxy analogs of vitamin D 3; (CHOLECALCIFEROL); including CALCIFEDIOL; CALCITRIOL; and 24,25-DIHYDROXYVITAMIN D 3.
Therapy for the insufficient cleansing of the BLOOD by the kidneys based on dialysis and including hemodialysis, PERITONEAL DIALYSIS, and HEMODIAFILTRATION.
Cholecalciferols substituted with two hydroxy groups in any position.
Calcium compounds used as food supplements or in food to supply the body with calcium. Dietary calcium is needed during growth for bone development and for maintenance of skeletal integrity later in life to prevent osteoporosis.
Steroid hormones produced by the GONADS. They stimulate reproductive organs, germ cell maturation, and the secondary sex characteristics in the males and the females. The major sex steroid hormones include ESTRADIOL; PROGESTERONE; and TESTOSTERONE.
A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND.
New World marsupials of the family Didelphidae. Opossums are omnivorous, largely nocturnal and arboreal MAMMALS, grow to about three feet in length, including the scaly prehensile tail, and have an abdominal pouch in which the young are carried at birth.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
Phosphorus used in foods or obtained from food. This element is a major intracellular component which plays an important role in many biochemical pathways relating to normal physiological functions. High concentrations of dietary phosphorus can cause nephrocalcinosis which is associated with impaired kidney function. Low concentrations of dietary phosphorus cause an increase in calcitriol in the blood and osteoporosis.
A condition of an abnormally low level of PHOSPHATES in the blood.
Derivative of 7-dehydroxycholesterol formed by ULTRAVIOLET RAYS breaking of the C9-C10 bond. It differs from ERGOCALCIFEROL in having a single bond between C22 and C23 and lacking a methyl group at C24.
Carbonic acid calcium salt (CaCO3). An odorless, tasteless powder or crystal that occurs in nature. It is used therapeutically as a phosphate buffer in hemodialysis patients and as a calcium supplement.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
A 191-amino acid polypeptide hormone secreted by the human adenohypophysis (PITUITARY GLAND, ANTERIOR), also known as GH or somatotropin. Synthetic growth hormone, termed somatropin, has replaced the natural form in therapeutic usage such as treatment of dwarfism in children with growth hormone deficiency.
The calcium salt of gluconic acid. The compound has a variety of uses, including its use as a calcium replenisher in hypocalcemic states.
An increase in the number of cells in a tissue or organ without tumor formation. It differs from HYPERTROPHY, which is an increase in bulk without an increase in the number of cells.
Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation.
Reduction of bone mass without alteration in the composition of bone, leading to fractures. Primary osteoporosis can be of two major types: postmenopausal osteoporosis (OSTEOPOROSIS, POSTMENOPAUSAL) and age-related or senile osteoporosis.
Metabolic bone diseases are a group of disorders that affect the bones' structure and strength, caused by disturbances in the normal metabolic processes involved in bone formation, resorption, or mineralization, including conditions like osteoporosis, osteomalacia, Paget's disease, and renal osteodystrophy.
Specific high affinity binding proteins for THYROID HORMONES in target cells. They are usually found in the nucleus and regulate DNA transcription. These receptors are activated by hormones that leads to transcription, cell differentiation, and growth suppression. Thyroid hormone receptors are encoded by two genes (GENES, ERBA): erbA-alpha and erbA-beta for alpha and beta thyroid hormone receptors, respectively.
Two-ring crystalline hydrocarbons isolated from coal tar. They are used as intermediates in chemical synthesis, as insect repellents, fungicides, lubricants, preservatives, and, formerly, as topical antiseptics.
A family of symporters that facilitate sodium-dependent membrane transport of phosphate.
A technetium imaging agent used to reveal blood-starved cardiac tissue during a heart attack.
An anterior pituitary hormone that stimulates the ADRENAL CORTEX and its production of CORTICOSTEROIDS. ACTH is a 39-amino acid polypeptide of which the N-terminal 24-amino acid segment is identical in all species and contains the adrenocorticotrophic activity. Upon further tissue-specific processing, ACTH can yield ALPHA-MSH and corticotrophin-like intermediate lobe peptide (CLIP).
A condition of abnormally high level of PHOSPHATES in the blood, usually significantly above the normal range of 0.84-1.58 mmol per liter of serum.
Elements of limited time intervals, contributing to particular results or situations.
The process of bone formation. Histogenesis of bone including ossification.
An electrogenic sodium-dependent phosphate transporter. It is present primarily in BRUSH BORDER membranes of PROXIMAL RENAL TUBULES.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Native, inorganic or fossilized organic substances having a definite chemical composition and formed by inorganic reactions. They may occur as individual crystals or may be disseminated in some other mineral or rock. (Grant & Hackh's Chemical Dictionary, 5th ed; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A nutritional condition produced by a deficiency of magnesium in the diet, characterized by anorexia, nausea, vomiting, lethargy, and weakness. Symptoms are paresthesias, muscle cramps, irritability, decreased attention span, and mental confusion, possibly requiring months to appear. Deficiency of body magnesium can exist even when serum values are normal. In addition, magnesium deficiency may be organ-selective, since certain tissues become deficient before others. (Harrison's Principles of Internal Medicine, 12th ed, p1936)
Diseases of BONES.
An enzyme of the lyase class that catalyzes the formation of CYCLIC AMP and pyrophosphate from ATP. EC 4.6.1.1.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
9,10-Secoergosta-5,7,10(19),22-tetraene-3,25-diol. Biologically active metabolite of vitamin D2 which is more active in curing rickets than its parent. The compound is believed to attach to the same receptor as vitamin D2 and 25-hydroxyvitamin D3.
Small organic molecules that act as allosteric activators of the calcium sensing receptor (CaSR) in the PARATHYROID GLANDS and other tissues. They lower the threshold for CaSR activation by extracellular calcium ions and diminish PARATHYROID HORMONE (PTH) release from parathyroid cells.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Form of radioimmunoassay in which excess specific labeled antibody is added directly to the test antigen being measured.
Hormones secreted by the PITUITARY GLAND including those from the anterior lobe (adenohypophysis), the posterior lobe (neurohypophysis), and the ill-defined intermediate lobe. Structurally, they include small peptides, proteins, and glycoproteins. They are under the regulation of neural signals (NEUROTRANSMITTERS) or neuroendocrine signals (HYPOTHALAMIC HORMONES) from the hypothalamus as well as feedback from their targets such as ADRENAL CORTEX HORMONES; ANDROGENS; ESTROGENS.
The growth and development of bones from fetus to adult. It includes two principal mechanisms of bone growth: growth in length of long bones at the epiphyseal cartilages and growth in thickness by depositing new bone (OSTEOGENESIS) with the actions of OSTEOBLASTS and OSTEOCLASTS.
Hormones synthesized from amino acids. They are distinguished from INTERCELLULAR SIGNALING PEPTIDES AND PROTEINS in that their actions are systemic.
The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL.
A mitochondrial cytochrome P450 enzyme that catalyzes the 1-alpha-hydroxylation of 25-hydroxyvitamin D3 (also known as 25-hydroxycholecalciferol) in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP27B1 gene, converts 25-hydroxyvitamin D3 to 1-alpha,25-dihydroxyvitamin D3 which is the active form of VITAMIN D in regulating bone growth and calcium metabolism. This enzyme is also active on plant 25-hydroxyvitamin D2 (ergocalciferol).
A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption.
Therapeutic use of hormones to alleviate the effects of hormone deficiency.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
Proteins, usually found in the cytoplasm, that specifically bind calcitriol, migrate to the nucleus, and regulate transcription of specific segments of DNA with the participation of D receptor interacting proteins (called DRIP). Vitamin D is converted in the liver and kidney to calcitriol and ultimately acts through these receptors.
A nonhormonal medication for the treatment of postmenopausal osteoporosis in women. This drug builds healthy bone, restoring some of the bone loss as a result of osteoporosis.
The longest and largest bone of the skeleton, it is situated between the hip and the knee.
These compounds stimulate anabolism and inhibit catabolism. They stimulate the development of muscle mass, strength, and power.
Mature osteoblasts that have become embedded in the BONE MATRIX. They occupy a small cavity, called lacuna, in the matrix and are connected to adjacent osteocytes via protoplasmic projections called canaliculi.
Agents that inhibit BONE RESORPTION and/or favor BONE MINERALIZATION and BONE REGENERATION. They are used to heal BONE FRACTURES and to treat METABOLIC BONE DISEASES such as OSTEOPOROSIS.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family.
A sarcoma originating in bone-forming cells, affecting the ends of long bones. It is the most common and most malignant of sarcomas of the bones, and occurs chiefly among 10- to 25-year-old youths. (From Stedman, 25th ed)
The relationship between the dose of an administered drug and the response of the organism to the drug.
A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
Established cell cultures that have the potential to propagate indefinitely.
A T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5' position of the outer ring of the iodothyronine nucleus. The hormone finally delivered and used by the tissues is mainly T3.
A fibrous degeneration, cyst formation, and the presence of fibrous nodules in bone, usually due to HYPERPARATHYROIDISM.
Metabolic disorder associated with fractures of the femoral neck, vertebrae, and distal forearm. It occurs commonly in women within 15-20 years after menopause, and is caused by factors associated with menopause including estrogen deficiency.
A family of sodium-phosphate cotransporter proteins with eight transmembrane domains. They are present primarily in the KIDNEY and SMALL INTESTINE and are responsible for renal and small intestinal epithelial transport of phosphate.
The major hormone derived from the thyroid gland. Thyroxine is synthesized via the iodination of tyrosines (MONOIODOTYROSINE) and the coupling of iodotyrosines (DIIODOTYROSINE) in the THYROGLOBULIN. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form TRIIODOTHYRONINE which exerts a broad spectrum of stimulatory effects on cell metabolism.
The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Compounds, either natural or synthetic, which block development of the growing insect.
A highly vascularized endocrine gland consisting of two lobes joined by a thin band of tissue with one lobe on each side of the TRACHEA. It secretes THYROID HORMONES from the follicular cells and CALCITONIN from the parafollicular cells thereby regulating METABOLISM and CALCIUM level in blood, respectively.
The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Syndromes resulting from inappropriate production of HORMONES or hormone-like materials by NEOPLASMS in non-endocrine tissues or not by the usual ENDOCRINE GLANDS. Such hormone outputs are called ectopic hormone (HORMONES, ECTOPIC) secretion.
Stable iodine atoms that have the same atomic number as the element iodine, but differ in atomic weight. I-127 is the only naturally occurring stable iodine isotope.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Disorder caused by an interruption of the mineralization of organic bone matrix leading to bone softening, bone pain, and weakness. It is the adult form of rickets resulting from disruption of VITAMIN D; PHOSPHORUS; or CALCIUM homeostasis.
A hydroxylated form of the imino acid proline. A deficiency in ASCORBIC ACID can result in impaired hydroxyproline formation.
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.
Disorders in the processing of calcium in the body: its absorption, transport, storage, and utilization.
Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER.
Decrease, loss, or removal of the mineral constituents of bones. Temporary loss of bone mineral content is especially associated with space flight, weightlessness, and extended immobilization. OSTEOPOROSIS is permanent, includes reduction of total bone mass, and is associated with increased rate of fractures. CALCIFICATION, PHYSIOLOGIC is the process of bone remineralizing. (From Dorland, 27th ed; Stedman, 25th ed; Nicogossian, Space Physiology and Medicine, 2d ed, pp327-33)
A form of multiple endocrine neoplasia that is characterized by the combined occurrence of tumors in the PARATHYROID GLANDS, the PITUITARY GLAND, and the PANCREATIC ISLETS. The resulting clinical signs include HYPERPARATHYROIDISM; HYPERCALCEMIA; HYPERPROLACTINEMIA; CUSHING DISEASE; GASTRINOMA; and ZOLLINGER-ELLISON SYNDROME. This disease is due to loss-of-function of the MEN1 gene, a tumor suppressor gene (GENES, TUMOR SUPPRESSOR) on CHROMOSOME 11 (Locus: 11q13).
Conditions in which the KIDNEYS perform below the normal level for more than three months. Chronic kidney insufficiency is classified by five stages according to the decline in GLOMERULAR FILTRATION RATE and the degree of kidney damage (as measured by the level of PROTEINURIA). The most severe form is the end-stage renal disease (CHRONIC KIDNEY FAILURE). (Kidney Foundation: Kidney Disease Outcome Quality Initiative, 2002)
The processes whereby the internal environment of an organism tends to remain balanced and stable.
Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin.
Pathological processes of the KIDNEY or its component tissues.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
A peptide of 44 amino acids in most species that stimulates the release and synthesis of GROWTH HORMONE. GHRF (or GRF) is synthesized by neurons in the ARCUATE NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, GHRF stimulates GH release by the SOMATOTROPHS in the PITUITARY GLAND.
Process by which organic tissue becomes hardened by the physiologic deposit of calcium salts.
A heterogeneous-nuclear ribonucleoprotein that has specificity for AU-rich elements found in the 3'-region of mRNA and may play a role in RNA stability. Several isoforms of hnRNP D protein have been found to occur due to alternative mRNA splicing (RNA SPLICING).
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A VITAMIN D that can be regarded as a reduction product of vitamin D2.
A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL.
A noninvasive method for assessing BODY COMPOSITION. It is based on the differential absorption of X-RAYS (or GAMMA RAYS) by different tissues such as bone, fat and other soft tissues. The source of (X-ray or gamma-ray) photon beam is generated either from radioisotopes such as GADOLINIUM 153, IODINE 125, or Americanium 241 which emit GAMMA RAYS in the appropriate range; or from an X-ray tube which produces X-RAYS in the desired range. It is primarily used for quantitating BONE MINERAL CONTENT, especially for the diagnosis of OSTEOPOROSIS, and also in measuring BONE MINERALIZATION.
The second longest bone of the skeleton. It is located on the medial side of the lower leg, articulating with the FIBULA laterally, the TALUS distally, and the FEMUR proximally.
A family of heterotrimeric GTP-binding protein alpha subunits that activate ADENYLYL CYCLASES.
The surgical removal of one or both ovaries.
A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM.
The period during a surgical operation.
A glycoprotein hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Thyrotropin stimulates THYROID GLAND by increasing the iodide transport, synthesis and release of thyroid hormones (THYROXINE and TRIIODOTHYRONINE). Thyrotropin consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the pituitary glycoprotein hormones (TSH; LUTEINIZING HORMONE and FSH), but the beta subunit is unique and confers its biological specificity.
The rate dynamics in chemical or physical systems.
Aniline compounds, also known as aromatic amines, are organic chemicals derived from aniline (aminobenzene), characterized by the substitution of hydrogen atoms in the benzene ring with amino groups (-NH2).
Pathologic deposition of calcium salts in tissues.
Disorders in the processing of phosphorus in the body: its absorption, transport, storage, and utilization.
A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS.
Disorders caused by interruption of BONE MINERALIZATION manifesting as OSTEOMALACIA in adults and characteristic deformities in infancy and childhood due to disturbances in normal BONE FORMATION. The mineralization process may be interrupted by disruption of VITAMIN D; PHOSPHORUS; or CALCIUM homeostasis, resulting from dietary deficiencies, or acquired, or inherited metabolic, or hormonal disturbances.
Creatinine is a waste product that's generated from muscle metabolism, typically filtered through the kidneys and released in urine, with increased levels in blood indicating impaired kidney function.
A plasma membrane exchange glycoprotein transporter that functions in intracellular pH regulation, cell volume regulation, and cellular response to many different hormones and mitogens.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Peptide hormones produced by NEURONS of various regions in the HYPOTHALAMUS. They are released into the pituitary portal circulation to stimulate or inhibit PITUITARY GLAND functions. VASOPRESSIN and OXYTOCIN, though produced in the hypothalamus, are not included here for they are transported down the AXONS to the POSTERIOR LOBE OF PITUITARY before being released into the portal circulation.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
A metallic element that has the atomic number 13, atomic symbol Al, and atomic weight 26.98.
The portion of renal tubule that begins from the enlarged segment of the ascending limb of the LOOP OF HENLE. It reenters the KIDNEY CORTEX and forms the convoluted segments of the distal tubule.
Excretion of abnormally high level of CALCIUM in the URINE, greater than 4 mg/kg/day.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Breaks in bones.
An inherited condition of abnormally low serum levels of PHOSPHATES (below 1 mg/liter) which can occur in a number of genetic diseases with defective reabsorption of inorganic phosphorus by the PROXIMAL RENAL TUBULES. This leads to phosphaturia, HYPOPHOSPHATEMIA, and disturbances of cellular and organ functions such as those in X-LINKED HYPOPHOSPHATEMIC RICKETS; OSTEOMALACIA; and FANCONI SYNDROME.
A secreted member of the TNF receptor superfamily that negatively regulates osteoclastogenesis. It is a soluble decoy receptor of RANK LIGAND that inhibits both CELL DIFFERENTIATION and function of OSTEOCLASTS by inhibiting the interaction between RANK LIGAND and RECEPTOR ACTIVATOR OF NUCLEAR FACTOR-KAPPA B.
A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate.
Organic compounds which contain P-C-P bonds, where P stands for phosphonates or phosphonic acids. These compounds affect calcium metabolism. They inhibit ectopic calcification and slow down bone resorption and bone turnover. Technetium complexes of diphosphonates have been used successfully as bone scanning agents.
A technique using antibodies for identifying or quantifying a substance. Usually the substance being studied serves as antigen both in antibody production and in measurement of antibody by the test substance.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
The area between the EPIPHYSIS and the DIAPHYSIS within which bone growth occurs.
A mass of histologically normal tissue present in an abnormal location.
A glycoprotein that causes regression of MULLERIAN DUCTS. It is produced by SERTOLI CELLS of the TESTES. In the absence of this hormone, the Mullerian ducts develop into structures of the female reproductive tract. In males, defects of this hormone result in persistent Mullerian duct, a form of MALE PSEUDOHERMAPHRODITISM.
Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds.
An abnormal hardening or increased density of bone tissue.
Hormones produced by the GONADS, including both steroid and peptide hormones. The major steroid hormones include ESTRADIOL and PROGESTERONE from the OVARY, and TESTOSTERONE from the TESTIS. The major peptide hormones include ACTIVINS and INHIBINS.
X-RAY COMPUTERIZED TOMOGRAPHY with resolution in the micrometer range.
A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor.
Preparations made from animal tissues or organs (ANIMAL STRUCTURES). They usually contain many components, any one of which may be pharmacologically or physiologically active. Tissue extracts may contain specific, but uncharacterized factors or proteins with specific actions.
High affinity receptors for THYROID HORMONES, especially TRIIODOTHYRONINE. These receptors are usually found in the nucleus where they regulate DNA transcription. They are encoded by the THRB gene (also known as NR1A2, THRB1, or ERBA2 gene) as several isoforms produced by alternative splicing. Mutations in the THRB gene cause THYROID HORMONE RESISTANCE SYNDROME.
Organic substances that are required in small amounts for maintenance and growth, but which cannot be manufactured by the human body.
A thiazide diuretic with properties similar to those of HYDROCHLOROTHIAZIDE. (From Martindale, The Extra Pharmacopoeia, 30th ed, p825)
A group of enzymes that are dependent on CYCLIC AMP and catalyze the phosphorylation of SERINE or THREONINE residues on proteins. Included under this category are two cyclic-AMP-dependent protein kinase subtypes, each of which is defined by its subunit composition.
The constricted portion of the thigh bone between the femur head and the trochanters.
Stable calcium atoms that have the same atomic number as the element calcium, but differ in atomic weight. Ca-42-44, 46, and 48 are stable calcium isotopes.
The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions.
Agents that increase calcium influx into calcium channels of excitable tissues. This causes vasoconstriction in VASCULAR SMOOTH MUSCLE and/or CARDIAC MUSCLE cells as well as stimulation of insulin release from pancreatic islets. Therefore, tissue-selective calcium agonists have the potential to combat cardiac failure and endocrinological disorders. They have been used primarily in experimental studies in cell and tissue culture.
A transmembrane protein belonging to the tumor necrosis factor superfamily that specifically binds RECEPTOR ACTIVATOR OF NUCLEAR FACTOR-KAPPA B and OSTEOPROTEGERIN. It plays an important role in regulating OSTEOCLAST differentiation and activation.
Hormones secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Structurally, they include polypeptide, protein, and glycoprotein molecules.
The largest of three bones that make up each half of the pelvic girdle.
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
The SKELETON of the HEAD including the FACIAL BONES and the bones enclosing the BRAIN.
A potent synthetic agonist of GONADOTROPIN-RELEASING HORMONE with 3-(2-naphthyl)-D-alanine substitution at residue 6. Nafarelin has been used in the treatments of central PRECOCIOUS PUBERTY and ENDOMETRIOSIS.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
The volume of water filtered out of plasma through glomerular capillary walls into Bowman's capsules per unit of time. It is considered to be equivalent to INULIN clearance.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
The most common form of fibrillar collagen. It is a major constituent of bone (BONE AND BONES) and SKIN and consists of a heterotrimer of two alpha1(I) and one alpha2(I) chains.
Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland.
A pathologic condition of acid accumulation or depletion of base in the body. The two main types are RESPIRATORY ACIDOSIS and metabolic acidosis, due to metabolic acid build up.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed)
The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS.
Excision of kidney.
HORMONES secreted by the gastrointestinal mucosa that affect the timing or the quality of secretion of digestive enzymes, and regulate the motor activity of the digestive system organs.
The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical.
A method of measuring the effects of a biologically active substance using an intermediate in vivo or in vitro tissue or cell model under controlled conditions. It includes virulence studies in animal fetuses in utero, mouse convulsion bioassay of insulin, quantitation of tumor-initiator systems in mouse skin, calculation of potentiating effects of a hormonal factor in an isolated strip of contracting stomach muscle, etc.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
A disorder characterized by muscle twitches, cramps, and carpopedal spasm, and when severe, laryngospasm and seizures. This condition is associated with unstable depolarization of axonal membranes, primarily in the peripheral nervous system. Tetany usually results from HYPOCALCEMIA or reduced serum levels of MAGNESIUM that may be associated with HYPERVENTILATION; HYPOPARATHYROIDISM; RICKETS; UREMIA; or other conditions. (From Adams et al., Principles of Neurology, 6th ed, p1490)

Bone resorption induced by parathyroid hormone is strikingly diminished in collagenase-resistant mutant mice. (1/3417)

Parathyroid hormone (PTH) stimulates bone resorption by acting directly on osteoblasts/stromal cells and then indirectly to increase differentiation and function of osteoclasts. PTH acting on osteoblasts/stromal cells increases collagenase gene transcription and synthesis. To assess the role of collagenase in the bone resorptive actions of PTH, we used mice homozygous (r/r) for a targeted mutation (r) in Col1a1 that are resistant to collagenase cleavage of type I collagen. Human PTH(1-34) was injected subcutaneously over the hemicalvariae in wild-type (+/+) or r/r mice four times daily for three days. Osteoclast numbers, the size of the bone marrow spaces and periosteal proliferation were increased in calvariae from PTH-treated +/+ mice, whereas in r/r mice, PTH-induced bone resorption responses were minimal. The r/r mice were not resistant to other skeletal effects of PTH because abundant interstitial collagenase mRNA was detected in the calvarial periosteum of PTH-treated, but not vehicle-treated, r/r and +/+ mice. Calcemic responses, 0.5-10 hours after intraperitoneal injection of PTH, were blunted in r/r mice versus +/+ mice. Thus, collagenase cleavage of type I collagen is necessary for PTH induction of osteoclastic bone resorption.  (+info)

Postoperative tetany in Graves disease: important role of vitamin D metabolites. (2/3417)

OBJECTIVE: To test the authors' hypothesis of the causal mechanism(s) of postoperative tetany in patients with Graves disease. SUMMARY BACKGROUND DATA: Previous studies by the authors suggested that postoperative tetany in patients with Graves disease occurs during the period of bone restoration and resulted from continuation of a calcium flux into bone concomitant with transient hypoparathyroidism induced by surgery. PATIENTS AND METHODS: A prospective study was carried out to investigate sequential changes in serum levels of intact parathyroid hormone (iPTH), calcium and other electrolytes, 25-hydroxyvitamin D (25OHD), 1,25-dihydroxyvitamin D (1,25(OH)2D), and bone metabolic markers in 109 consecutive patients with Graves disease who underwent subtotal thyroidectomy. RESULTS: Preoperative serum iPTH levels negatively correlated with ionized calcium levels and positively correlated with 1,25(OH)2D or 1,25(OH)2D/25OHD. After the operation, there was a significant decline in levels of ionized calcium, magnesium, and iPTH. Serum iPTH was not detected in 15 patients after surgery. Four of these 15 patients, and 1 patient whose iPTH level was below normal, developed tetany. Preoperative serum ionized calcium levels were significantly lower, and iPTH levels were higher, in the 5 patients with tetany than in the 11 patients who did not develop tetany despite undetectable iPTH levels. The tetany group had significantly lower serum 25OHD levels and higher 1,25(OH)2D levels, and had increased 1,25(OH)2D/25OHD as an index of the renal 25OHD-1-hydroxylase activity than those in the nontetany group. These results suggest that patients with a high serum level of iPTH as a result of low serum calcium levels (secondary hyperparathyroidism) are susceptible to tetany under conditions of hypoparathyroid function after surgery. CONCLUSIONS: Postoperative tetany occurs in patients with secondary hyperparathyroidism caused by a relative deficiency in calcium and vitamin D because of their increased demand for bone restoration after preoperative medical therapy concomitant with transient hypoparathyroidism after surgery. Calcium and vitamin D supplements may be recommended before and/or after surgery for patients in whom postoperative tetany is expected to develop.  (+info)

Megalin antagonizes activation of the parathyroid hormone receptor. (3/3417)

Parathyroid hormone (PTH) is predominantly cleared from the circulation by glomerular filtration and degradation in the renal proximal tubules. Here, we demonstrate that megalin, a multifunctional endocytic receptor in the proximal tubular epithelium, mediates the uptake and degradation of PTH. Megalin was purified from kidney membranes as the major PTH-binding protein and shown in BIAcore analysis to specifically bind full-length PTH and amino-terminal PTH fragments (Kd 0.5 microM). Absence of the receptor in megalin knockout mice resulted in 4-fold increased levels of amino-terminal PTH fragments in the urine. In F9 cells expressing both megalin and the PTH/PTH-related peptide receptor (PTH/PTHrP receptor), uptake and lysosomal degradation of the hormone was mediated through megalin. Blocking megalin-mediated clearance of PTH resulted in 3-fold increased stimulation of the PTH/PTHrP receptor. These data provide evidence that megalin is involved in the renal catabolism of PTH and potentially antagonizes PTH/PTHrP receptor activity in the proximal tubular epithelium.  (+info)

22-oxacalcitriol suppresses secondary hyperparathyroidism without inducing low bone turnover in dogs with renal failure. (4/3417)

BACKGROUND: Calcitriol therapy suppresses serum levels of parathyroid hormone (PTH) in patients with renal failure but has several drawbacks, including hypercalcemia and/or marked suppression of bone turnover, which may lead to adynamic bone disease. A new vitamin D analogue, 22-oxacalcitriol (OCT), has been shown to have promising characteristics. This study was undertaken to determine the effects of OCT on serum PTH levels and bone turnover in states of normal or impaired renal function. METHODS: Sixty dogs were either nephrectomized (Nx, N = 38) or sham-operated (Sham, N = 22). The animals received supplemental phosphate to enhance PTH secretion. Fourteen weeks after the start of phosphate supplementation, half of the Nx and Sham dogs received doses of OCT (three times per week); the other half were given vehicle for 60 weeks. Thereafter, the treatment modalities for a subset of animals were crossed over for an additional eight months. Biochemical and hormonal indices of calcium and bone metabolism were measured throughout the study, and bone biopsies were done at baseline, 60 weeks after OCT or vehicle treatment, and at the end of the crossover period. RESULTS: In Nx dogs, OCT significantly decreased serum PTH levels soon after the induction of renal insufficiency. In long-standing secondary hyperparathyroidism, OCT (0.03 microg/kg) stabilized serum PTH levels during the first months. Serum PTH levels rose thereafter, but the rise was less pronounced compared with baseline than the rise seen in Nx control. These effects were accompanied by episodes of hypercalcemia and hyperphosphatemia. In animals with normal renal function, OCT induced a transient decrease in serum PTH levels at a dose of 0.1 microg/kg, which was not sustained with lowering of the doses. In Nx dogs, OCT reversed abnormal bone formation, such as woven osteoid and fibrosis, but did not significantly alter the level of bone turnover. In addition, OCT improved mineralization lag time, (that is, the rate at which osteoid mineralizes) in both Nx and Sham dogs. CONCLUSIONS: These results indicate that even though OCT does not completely prevent the occurrence of hypercalcemia in experimental dogs with renal insufficiency, it may be of use in the management of secondary hyperparathyroidism because it does not induce low bone turnover and, therefore, does not increase the risk of adynamic bone disease.  (+info)

The structure of human parathyroid hormone-related protein(1-34) in near-physiological solution. (5/3417)

Parathyroid hormone-related protein plays a major role in the pathogenesis of humoral hypercalcemia of malignancy. Under normal physiological conditions, parathyroid hormone-related protein is produced in a wide variety of tissues and acts in an autocrine or paracrine fashion. Parathyroid hormone-related protein and parathyroid hormone bind to and activate the same G-protein-coupled receptor. Here we present the structure of the biologically active NH2-terminal domain of human parathyroid hormone-related protein(1-34) in near-physiological solution in the absence of crowding reagents as determined by two-dimensional proton magnetic resonance spectroscopy. An improved strategy for structure calculation revealed the presence of two helices, His-5-Leu-8 and Gln-16-Leu-27, connected by a flexible linker. The parathyroid hormone-related protein(1-34) structure and the structure of human parathyroid hormone(1-37) as well as human parathyroid hormone(1-34) are highly similar, except for the well defined turn, His-14-Ser-17, present in parathyroid hormone. Thus, the similarity of the binding affinities of parathyroid hormone and parathyroid hormone-related protein to their common receptor may be based on their structural similarity.  (+info)

Calcium absorption and kinetics are similar in 7- and 8-year-old Mexican-American and Caucasian girls despite hormonal differences. (6/3417)

To assess the possibility of ethnic differences in mineral metabolism in prepubertal children, we compared measures of calcium metabolism in 7- and 8-y-old Mexican-American (MA) and non-Hispanic Caucasian (CAU) girls (n = 38) living in southeastern Texas. We found similar fractional calcium absorption, urinary calcium excretion, calcium kinetic values and total-body bone mineral content in the MA and CAU girls. In contrast, parathyroid hormone (PTH) concentrations were greater in MA girls (4.01 +/- 0.47 vs. 1. 96 +/- 0.50 pmol/L, P = 0.005) than in CAU girls. Serum 25-hydroxyvitamin D concentrations were lower in MA girls (68.9 +/- 7.7 vs. 109.4 +/- 8.4 nmol/L, P = 0.001) than in CAU girls, but 1, 25-dihydroxyvitamin D concentrations did not differ between groups. Seasonal variability was seen for 25-hydroxyvitamin D concentrations in girls of both ethnic groups, but values in all of the girls were >30 nmol/L (12 ng/mL). We conclude the following: 1) greater PTH levels in MA girls than CAU girls are present without evidence of vitamin D deficiency; and 2) differences in 25-hydroxyvitamin D and PTH concentrations between MA and CAU girls do not have a large effect on calcium absorption, excretion or bone calcium kinetics. These data do not provide evidence for adjusting dietary recommendations for mineral or vitamin D intake by MA girls.  (+info)

Pregnancy decreases immunoreactive parathyroid hormone level in rats with chronic renal failure. (7/3417)

Normal pregnancy is associated with an increase in serum parathyroid hormone and 1,25-dihydroxyvitamin D3 (calcitriol). The effect of pregnancy on these hormones in chronic renal failure (CRF) is unknown. The present work was undertaken to study the changes of serum immunoreactive parathyroid hormone (iPTH) and calcitriol in pregnant rats with CRF. The following experimental groups were studied: CRF1 (5/6 nephrectomized virgin female rats), CRF2 (5/6 nephrectomized pregnant rats at day 20-21 of pregnancy), CRF3 (5/6 nephrectomized rats 2 weeks after delivery) and their respective sham-operated control groups: N1, N2 and N3. The 5/6 nephrectomy (CRF1) resulted in renal failure with very high serum iPTH (100+/-18 pg/ml) and low calcitriol levels (10.6+/-4.3 pg/ml) compared with normal rats [N1: 14+/-2.5 pg/ml (P<0.001) and 18.2+/-4.2 pg/ml (P<0.01) respectively]. The pregnancy in CRF rats (CRF2) resulted in normalization of serum iPTH levels (18.2+/-5.41 pg/ml), which was associated with a parallel increase in serum calcitriol (29.4+/-8.0 pg/ml) similar to that in pregnancy of normal rats (N2). Two weeks after delivery the CRF rats (CRF3) once again had high serum iPTH (87+/-17 pg/ml) and low calcitriol levels (9.3+/-1.2 pg/ml), similar to those observed in non-pregnant uraemic rats (CRF1). It is concluded that pregnancy decreases serum iPTH in 5/6 nephrectomized CRF rats most probably by the increased level of calcitriol synthesized by the feto-placental unit.  (+info)

Acute fasting diminishes the circadian rhythm of biochemical markers of bone resorption. (8/3417)

OBJECTIVE: Biochemical markers of bone turnover exhibit circadian rhythms with the peak during the night/early morning and the nadir in the late afternoon. The nocturnal increase in bone resorption could theoretically be caused by the absence of food consumption which brings about a decrease in net calcium absorption and an increase in parathyroid hormone (PTH), followed by increased bone resorption in response to the body's demand for calcium. The aim of the present study was to assess the influence of a 33-h fast on the circadian variation in biochemical markers of bone turnover. DESIGN: Eleven healthy premenopausal women (age: 24+/-5 years) participated in a randomised, cross-over study consisting of two periods: either 33h of fasting (fasting) followed 1 week later by a 33-h period with regular meals eaten at 0800-0830h, 1130-1230h and 1800-1900h (control) or vice versa. METHODS: Urinary CrossLaps (U-CL/Cr) corrected with creatinine, as a marker of bone resorption; serum osteocalcin (sOC) as a marker of bone formation; serum intact PTH (iPTH); serum phosphate; and serum calcium corrected with albumin. RESULTS: Both the fasting and the control periods showed a significant circadian rhythm in U-CL/Cr (P<0.001), but the decrease was significantly less pronounced in the morning hours during the fasting period. Fasting resulted in a significant decrease in serum iPTH (throughout the study period) as compared with the control period (P<0.05-0.001). No change was observed in sOC by fasting. CONCLUSION: Food consumption has a small influence on the circadian variation in bone resorption, independent of PTH. The fall in iPTH during fasting may be secondary to an increased bone resorption produced by fasting.  (+info)

Parathyroid hormone (PTH) is a polypeptide hormone that plays a crucial role in the regulation of calcium and phosphate levels in the body. It is produced and secreted by the parathyroid glands, which are four small endocrine glands located on the back surface of the thyroid gland.

The primary function of PTH is to maintain normal calcium levels in the blood by increasing calcium absorption from the gut, mobilizing calcium from bones, and decreasing calcium excretion by the kidneys. PTH also increases phosphate excretion by the kidneys, which helps to lower serum phosphate levels.

In addition to its role in calcium and phosphate homeostasis, PTH has been shown to have anabolic effects on bone tissue, stimulating bone formation and preventing bone loss. However, chronic elevations in PTH levels can lead to excessive bone resorption and osteoporosis.

Overall, Parathyroid Hormone is a critical hormone that helps maintain mineral homeostasis and supports healthy bone metabolism.

The parathyroid glands are four small endocrine glands located in the neck, usually near or behind the thyroid gland. They secrete parathyroid hormone (PTH), which plays a critical role in regulating calcium and phosphate levels in the blood and bones. PTH helps maintain the balance of these minerals by increasing the absorption of calcium from food in the intestines, promoting reabsorption of calcium in the kidneys, and stimulating the release of calcium from bones when needed. Additionally, PTH decreases the excretion of calcium through urine and reduces phosphate reabsorption in the kidneys, leading to increased phosphate excretion. Disorders of the parathyroid glands can result in conditions such as hyperparathyroidism (overactive glands) or hypoparathyroidism (underactive glands), which can have significant impacts on calcium and phosphate homeostasis and overall health.

Parathyroid Hormone Receptor Type 1 (PTH1R) is a type of G protein-coupled receptor that binds to parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP). It is primarily found in bone and kidney cells.

The activation of PTH1R by PTH or PTHrP leads to a series of intracellular signaling events that regulate calcium homeostasis, bone metabolism, and renal function. In the bone, PTH1R stimulates the release of calcium from bone matrix into the bloodstream, while in the kidney, it increases the reabsorption of calcium in the distal tubule and inhibits phosphate reabsorption.

Mutations in the gene encoding PTH1R can lead to several genetic disorders, such as Blomstrand chondrodysplasia, Jansen metaphyseal chondrodysplasia, and hypoparathyroidism type 1B. These conditions are characterized by abnormalities in bone development, growth, and mineralization.

Parathyroid neoplasms refer to abnormal growths in the parathyroid glands, which are small endocrine glands located in the neck, near or within the thyroid gland. These neoplasms can be benign (non-cancerous) or malignant (cancerous).

Benign parathyroid neoplasms are typically called parathyroid adenomas and are the most common type of parathyroid disorder. They result in overproduction of parathyroid hormone (PTH), leading to a condition known as primary hyperparathyroidism. Symptoms may include kidney stones, osteoporosis, fatigue, depression, and abdominal pain.

Malignant parathyroid neoplasms are called parathyroid carcinomas. They are rare but more aggressive than adenomas, with a higher risk of recurrence and metastasis. Symptoms are similar to those of benign neoplasms but may also include hoarseness, difficulty swallowing, and enlarged lymph nodes in the neck.

It is important to note that parathyroid neoplasms can only be definitively diagnosed through biopsy or surgical removal and subsequent histopathological examination.

Parathyroid hormone (PTH) receptors are a type of cell surface receptor that bind to and respond to parathyroid hormone, a hormone secreted by the parathyroid glands. These receptors are found in various tissues throughout the body, including bone, kidney, and intestine.

The PTH receptor is a member of the G protein-coupled receptor (GPCR) family, which consists of seven transmembrane domains. When PTH binds to the receptor, it activates a signaling pathway that leads to increased calcium levels in the blood. In bone, activation of PTH receptors stimulates the release of calcium from bone matrix, while in the kidney, it increases the reabsorption of calcium from the urine and decreases the excretion of phosphate.

In the intestine, PTH receptors play a role in the regulation of vitamin D metabolism, which is important for calcium absorption. Overall, the activation of PTH receptors helps to maintain normal calcium levels in the blood and regulate bone metabolism.

Parathyroid Hormone-Related Protein (PTHrP) is a protein that is encoded by the PTHLH gene in humans. It is structurally similar to parathyroid hormone (PTH) and was initially identified due to its role in humoral hypercalcemia of malignancy, a condition characterized by high levels of calcium in the blood caused by certain types of cancer.

PTHrP has a variety of functions in the body, including regulation of calcium and phosphate homeostasis, cell growth and differentiation, and bone metabolism. It acts through a specific G protein-coupled receptor called the PTH/PTHrP receptor, which is found in many tissues throughout the body, including bone, kidney, and cartilage.

In contrast to PTH, which is primarily produced by the parathyroid glands and regulates calcium levels in the blood, PTHrP is produced by many different types of cells throughout the body. Its expression is regulated in a tissue-specific manner, and its functions can vary depending on the context in which it is produced.

Overall, PTHrP plays important roles in normal physiology as well as in various disease states, including cancer, bone disorders, and developmental abnormalities.

Hyperparathyroidism is a condition in which the parathyroid glands produce excessive amounts of parathyroid hormone (PTH). There are four small parathyroid glands located in the neck, near or within the thyroid gland. They release PTH into the bloodstream to help regulate the levels of calcium and phosphorus in the body.

In hyperparathyroidism, overproduction of PTH can lead to an imbalance in these minerals, causing high blood calcium levels (hypercalcemia) and low phosphate levels (hypophosphatemia). This can result in various symptoms such as fatigue, weakness, bone pain, kidney stones, and cognitive issues.

There are two types of hyperparathyroidism: primary and secondary. Primary hyperparathyroidism occurs when there is a problem with one or more of the parathyroid glands, causing them to become overactive and produce too much PTH. Secondary hyperparathyroidism develops as a response to low calcium levels in the body due to conditions like vitamin D deficiency, chronic kidney disease, or malabsorption syndromes.

Treatment for hyperparathyroidism depends on the underlying cause and severity of symptoms. In primary hyperparathyroidism, surgery to remove the overactive parathyroid gland(s) is often recommended. For secondary hyperparathyroidism, treating the underlying condition and managing calcium levels with medications or dietary changes may be sufficient.

Parathyroid diseases refer to conditions that affect the parathyroid glands, which are small endocrine glands located in the neck, near or attached to the back surface of the thyroid gland. The primary function of the parathyroid glands is to produce and secrete parathyroid hormone (PTH), a crucial hormone that helps regulate calcium and phosphorus levels in the blood and bones.

There are four parathyroid glands, and they can develop various diseases, including:

1. Hyperparathyroidism: A condition where one or more parathyroid glands produce excessive amounts of PTH. This can lead to an imbalance in calcium and phosphorus levels, resulting in symptoms such as fatigue, weakness, bone pain, kidney stones, and increased risk of osteoporosis. Hyperparathyroidism can be primary (caused by a benign or malignant tumor in the parathyroid gland), secondary (due to chronic kidney disease or vitamin D deficiency), or tertiary (when secondary hyperparathyroidism becomes autonomous and continues even after correcting the underlying cause).
2. Hypoparathyroidism: A condition where the parathyroid glands do not produce enough PTH, leading to low calcium levels in the blood (hypocalcemia) and high phosphorus levels (hyperphosphatemia). Symptoms of hypoparathyroidism may include muscle spasms, tingling sensations in the fingers, toes, or lips, anxiety, cataracts, and seizures. Hypoparathyroidism can be caused by surgical removal of the parathyroid glands, autoimmune disorders, radiation therapy, or genetic conditions.
3. Parathyroid tumors: Abnormal growths in the parathyroid glands can lead to hyperparathyroidism. Benign tumors (adenomas) are the most common cause of primary hyperparathyroidism. Malignant tumors (carcinomas) are rare but can also occur, leading to more severe symptoms and a worse prognosis.
4. Parathyroid dysfunction in genetic disorders: Some genetic syndromes, such as multiple endocrine neoplasia type 1 (MEN1), multiple endocrine neoplasia type 2A (MEN2A), and hyperparathyroidism-jaw tumor syndrome (HPT-JT), can involve parathyroid gland abnormalities, leading to hyperparathyroidism or other related conditions.

Proper diagnosis and management of parathyroid disorders are crucial for maintaining optimal calcium homeostasis and preventing complications associated with hypocalcemia or hypercalcemia. Treatment options may include surgery, medication, dietary modifications, and monitoring hormone levels.

Teriparatide is a synthetic form of parathyroid hormone (PTH), which is a natural hormone produced by the parathyroid glands in the body. The medication contains the active fragment of PTH, known as 1-34 PTH, and it is used in medical treatment to stimulate new bone formation and increase bone density.

Teriparatide is primarily prescribed for the management of osteoporosis in postmenopausal women and men with a high risk of fractures who have not responded well to other osteoporosis therapies, such as bisphosphonates. It is administered via subcutaneous injection, typically once daily.

By increasing bone formation and reducing bone resorption, teriparatide helps improve bone strength and structure, ultimately decreasing the risk of fractures in treated individuals. The medication's effects on bone metabolism can lead to improvements in bone mineral density (BMD) and microarchitecture, making it an essential tool for managing severe osteoporosis and reducing fracture risk.

The parathyroid hormone type 2 receptor (PTH2R) is a gene that encodes for a G protein-coupled receptor found primarily in the central nervous system. It is a receptor for parathyroid hormone-related peptide (PTHrP), a hormone involved in calcium homeostasis, and tuberoinfundibular peptide of 39 residues (TIP39), a neuropeptide involved in pain regulation.

Unlike the parathyroid hormone type 1 receptor (PTH1R), which is widely expressed and mediates the actions of PTH on bone and kidney, PTH2R has a more limited distribution and its physiological role is not as well understood. However, it is known to play a role in regulating pain sensitivity, anxiety, and food intake.

It's important to note that while PTH and PTHrP can bind to both PTH1R and PTH2R, they have different affinities and elicit distinct signaling pathways depending on the receptor they bind to.

Parathyroidectomy is a surgical procedure for the removal of one or more of the parathyroid glands. These glands are located in the neck and are responsible for producing parathyroid hormone (PTH), which helps regulate the levels of calcium and phosphorus in the body.

Parathyroidectomy is typically performed to treat conditions such as hyperparathyroidism, where one or more of the parathyroid glands become overactive and produce too much PTH. This can lead to high levels of calcium in the blood, which can cause symptoms such as weakness, fatigue, bone pain, kidney stones, and mental confusion.

There are different types of parathyroidectomy procedures, including:

* Partial parathyroidectomy: removal of one or more, but not all, of the parathyroid glands.
* Total parathyroidectomy: removal of all four parathyroid glands.
* Subtotal parathyroidectomy: removal of three and a half of the four parathyroid glands, leaving a small portion of one gland to prevent hypoparathyroidism (a condition where the body produces too little PTH).

The choice of procedure depends on the underlying condition and its severity. After the surgery, patients may need to have their calcium levels monitored and may require calcium and vitamin D supplements to maintain normal calcium levels in the blood.

Secondary hyperparathyroidism is a condition characterized by an overproduction of parathyroid hormone (PTH) from the parathyroid glands due to hypocalcemia (low levels of calcium in the blood). This condition is usually a result of chronic kidney disease, where the kidneys fail to convert vitamin D into its active form, leading to decreased absorption of calcium in the intestines. The body responds by increasing PTH production to maintain normal calcium levels, but over time, this results in high PTH levels and associated complications such as bone disease, kidney stones, and cardiovascular calcification.

Hypercalcemia is a medical condition characterized by an excess of calcium ( Ca2+ ) in the blood. While the normal range for serum calcium levels is typically between 8.5 to 10.2 mg/dL (milligrams per deciliter) or 2.14 to 2.55 mmol/L (millimoles per liter), hypercalcemia is generally defined as a serum calcium level greater than 10.5 mg/dL or 2.6 mmol/L.

Hypercalcemia can result from various underlying medical disorders, including primary hyperparathyroidism, malignancy (cancer), certain medications, granulomatous diseases, and excessive vitamin D intake or production. Symptoms of hypercalcemia may include fatigue, weakness, confusion, memory loss, depression, constipation, nausea, vomiting, increased thirst, frequent urination, bone pain, and kidney stones. Severe or prolonged hypercalcemia can lead to serious complications such as kidney failure, cardiac arrhythmias, and calcification of soft tissues. Treatment depends on the underlying cause and severity of the condition.

Hypocalcemia is a medical condition characterized by an abnormally low level of calcium in the blood. Calcium is a vital mineral that plays a crucial role in various bodily functions, including muscle contraction, nerve impulse transmission, and bone formation. Normal calcium levels in the blood usually range from 8.5 to 10.2 milligrams per deciliter (mg/dL). Hypocalcemia is typically defined as a serum calcium level below 8.5 mg/dL or, when adjusted for albumin (a protein that binds to calcium), below 8.4 mg/dL (ionized calcium).

Hypocalcemia can result from several factors, such as vitamin D deficiency, hypoparathyroidism (underactive parathyroid glands), kidney dysfunction, certain medications, and severe magnesium deficiency. Symptoms of hypocalcemia may include numbness or tingling in the fingers, toes, or lips; muscle cramps or spasms; seizures; and, in severe cases, cognitive impairment or cardiac arrhythmias. Treatment typically involves correcting the underlying cause and administering calcium and vitamin D supplements to restore normal calcium levels in the blood.

Hypoparathyroidism is a medical condition characterized by decreased levels or insufficient function of parathyroid hormone (PTH), which is produced and released by the parathyroid glands. These glands are located in the neck, near the thyroid gland, and play a crucial role in regulating calcium and phosphorus levels in the body.

In hypoparathyroidism, low PTH levels result in decreased absorption of calcium from the gut, increased excretion of calcium through the kidneys, and impaired regulation of bone metabolism. This leads to low serum calcium levels (hypocalcemia) and high serum phosphorus levels (hyperphosphatemia).

Symptoms of hypoparathyroidism can include muscle cramps, spasms, or tetany (involuntary muscle contractions), numbness or tingling sensations in the fingers, toes, and around the mouth, fatigue, weakness, anxiety, cognitive impairment, and in severe cases, seizures. Hypoparathyroidism can be caused by various factors, including surgical removal or damage to the parathyroid glands, autoimmune disorders, radiation therapy, genetic defects, or low magnesium levels. Treatment typically involves calcium and vitamin D supplementation to maintain normal serum calcium levels and alleviate symptoms. In some cases, recombinant PTH (Natpara) may be prescribed as well.

Hormones are defined as chemical messengers that are produced by endocrine glands or specialized cells and are transported through the bloodstream to tissues and organs, where they elicit specific responses. They play crucial roles in regulating various physiological processes such as growth, development, metabolism, reproduction, and mood. Examples of hormones include insulin, estrogen, testosterone, adrenaline, and thyroxine.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Phosphorus is an essential mineral that is required by every cell in the body for normal functioning. It is a key component of several important biomolecules, including adenosine triphosphate (ATP), which is the primary source of energy for cells, and deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), which are the genetic materials in cells.

Phosphorus is also a major constituent of bones and teeth, where it combines with calcium to provide strength and structure. In addition, phosphorus plays a critical role in various metabolic processes, including energy production, nerve impulse transmission, and pH regulation.

The medical definition of phosphorus refers to the chemical element with the atomic number 15 and the symbol P. It is a highly reactive non-metal that exists in several forms, including white phosphorus, red phosphorus, and black phosphorus. In the body, phosphorus is primarily found in the form of organic compounds, such as phospholipids, phosphoproteins, and nucleic acids.

Abnormal levels of phosphorus in the body can lead to various health problems. For example, high levels of phosphorus (hyperphosphatemia) can occur in patients with kidney disease or those who consume large amounts of phosphorus-rich foods, and can contribute to the development of calcification of soft tissues and cardiovascular disease. On the other hand, low levels of phosphorus (hypophosphatemia) can occur in patients with malnutrition, vitamin D deficiency, or alcoholism, and can lead to muscle weakness, bone pain, and an increased risk of infection.

Calcium-sensing receptors (CaSR) are a type of G protein-coupled receptor that play a crucial role in the regulation of extracellular calcium homeostasis. They are widely expressed in various tissues, including the parathyroid gland, kidney, and bone.

The primary function of CaSR is to detect changes in extracellular calcium concentrations and transmit signals to regulate the release of parathyroid hormone (PTH) from the parathyroid gland. When the concentration of extracellular calcium increases, CaSR is activated, which leads to a decrease in PTH secretion, thereby preventing further elevation of calcium levels. Conversely, when calcium levels decrease, CaSR is inhibited, leading to an increase in PTH release and restoration of normal calcium levels.

In addition to regulating calcium homeostasis, CaSR also plays a role in other physiological processes, including cell proliferation, differentiation, and apoptosis. Dysregulation of CaSR has been implicated in various diseases, such as hyperparathyroidism, hypoparathyroidism, and cancer. Therefore, understanding the function and regulation of CaSR is essential for developing new therapeutic strategies to treat these conditions.

Phosphates, in a medical context, refer to the salts or esters of phosphoric acid. Phosphates play crucial roles in various biological processes within the human body. They are essential components of bones and teeth, where they combine with calcium to form hydroxyapatite crystals. Phosphates also participate in energy transfer reactions as phosphate groups attached to adenosine diphosphate (ADP) and adenosine triphosphate (ATP). Additionally, they contribute to buffer systems that help maintain normal pH levels in the body.

Abnormal levels of phosphates in the blood can indicate certain medical conditions. High phosphate levels (hyperphosphatemia) may be associated with kidney dysfunction, hyperparathyroidism, or excessive intake of phosphate-containing products. Low phosphate levels (hypophosphatemia) might result from malnutrition, vitamin D deficiency, or certain diseases affecting the small intestine or kidneys. Both hypophosphatemia and hyperphosphatemia can have significant impacts on various organ systems and may require medical intervention.

Primary hyperparathyroidism is a medical condition characterized by excessive secretion of parathyroid hormone (PTH) from one or more of the parathyroid glands in the neck. These glands are normally responsible for regulating calcium levels in the body by releasing PTH, which helps to maintain an appropriate balance of calcium and phosphate in the bloodstream.

In primary hyperparathyroidism, the parathyroid gland(s) become overactive and produce too much PTH, leading to elevated calcium levels (hypercalcemia) in the blood. This can result in a variety of symptoms, such as fatigue, weakness, bone pain, kidney stones, and cognitive impairment, although some individuals may not experience any symptoms at all.

The most common cause of primary hyperparathyroidism is a benign tumor called an adenoma that develops in one or more of the parathyroid glands. In rare cases, primary hyperparathyroidism can be caused by cancer of the parathyroid gland(s) or by enlargement of all four glands (four-gland hyperplasia). Treatment typically involves surgical removal of the affected parathyroid gland(s), which is usually curative.

"Bone" is the hard, dense connective tissue that makes up the skeleton of vertebrate animals. It provides support and protection for the body's internal organs, and serves as a attachment site for muscles, tendons, and ligaments. Bone is composed of cells called osteoblasts and osteoclasts, which are responsible for bone formation and resorption, respectively, and an extracellular matrix made up of collagen fibers and mineral crystals.

Bones can be classified into two main types: compact bone and spongy bone. Compact bone is dense and hard, and makes up the outer layer of all bones and the shafts of long bones. Spongy bone is less dense and contains large spaces, and makes up the ends of long bones and the interior of flat and irregular bones.

The human body has 206 bones in total. They can be further classified into five categories based on their shape: long bones, short bones, flat bones, irregular bones, and sesamoid bones.

Calcitriol is the active form of vitamin D, also known as 1,25-dihydroxyvitamin D. It is a steroid hormone that plays a crucial role in regulating calcium and phosphate levels in the body to maintain healthy bones. Calcitriol is produced in the kidneys from its precursor, calcidiol (25-hydroxyvitamin D), which is derived from dietary sources or synthesized in the skin upon exposure to sunlight.

Calcitriol promotes calcium absorption in the intestines, helps regulate calcium and phosphate levels in the kidneys, and stimulates bone cells (osteoblasts) to form new bone tissue while inhibiting the activity of osteoclasts, which resorb bone. This hormone is essential for normal bone mineralization and growth, as well as for preventing hypocalcemia (low calcium levels).

In addition to its role in bone health, calcitriol has various other physiological functions, including modulating immune responses, cell proliferation, differentiation, and apoptosis. Calcitriol deficiency or resistance can lead to conditions such as rickets in children and osteomalacia or osteoporosis in adults.

Vitamin D is a fat-soluble secosteroid that is crucial for the regulation of calcium and phosphate levels in the body, which are essential for maintaining healthy bones and teeth. It can be synthesized by the human body when skin is exposed to ultraviolet-B (UVB) rays from sunlight, or it can be obtained through dietary sources such as fatty fish, fortified dairy products, and supplements. There are two major forms of vitamin D: vitamin D2 (ergocalciferol), which is found in some plants and fungi, and vitamin D3 (cholecalciferol), which is produced in the skin or obtained from animal-derived foods. Both forms need to undergo two hydroxylations in the body to become biologically active as calcitriol (1,25-dihydroxyvitamin D3), the hormonally active form of vitamin D. This activated form exerts its effects by binding to the vitamin D receptor (VDR) found in various tissues, including the small intestine, bone, kidney, and immune cells, thereby influencing numerous physiological processes such as calcium homeostasis, bone metabolism, cell growth, and immune function.

Calcitonin is a hormone that is produced and released by the parafollicular cells (also known as C cells) of the thyroid gland. It plays a crucial role in regulating calcium homeostasis in the body. Specifically, it helps to lower elevated levels of calcium in the blood by inhibiting the activity of osteoclasts, which are bone cells that break down bone tissue and release calcium into the bloodstream. Calcitonin also promotes the uptake of calcium in the bones and increases the excretion of calcium in the urine.

Calcitonin is typically released in response to high levels of calcium in the blood, and its effects help to bring calcium levels back into balance. In addition to its role in calcium regulation, calcitonin may also have other functions in the body, such as modulating immune function and reducing inflammation.

Clinically, synthetic forms of calcitonin are sometimes used as a medication to treat conditions related to abnormal calcium levels, such as hypercalcemia (high blood calcium) or osteoporosis. Calcitonin can be administered as an injection, nasal spray, or oral tablet, depending on the specific formulation and intended use.

Pseudohypoparathyroidism (PHP) is a rare genetic disorder characterized by the body's resistance to the action of parathyroid hormone (PTH), leading to hypocalcemia (low serum calcium levels) and hyperphosphatemia (high serum phosphate levels). Despite normal or elevated PTH levels, target organs such as the kidneys and bones do not respond appropriately to its actions.

There are several types of PHP, with the most common being type Ia, which is caused by mutations in the GNAS gene. This gene provides instructions for making a protein called the alpha-subunit of the stimulatory G protein (Gs-alpha), which plays a crucial role in transmitting signals within cells. In PHP type Ia, there is a reduced amount or functionally impaired Gs-alpha protein, leading to resistance to PTH and other hormones that use this signaling pathway, such as thyroid-stimulating hormone (TSH) and gonadotropins.

PHP type Ia patients often exhibit physical features known as Albright's hereditary osteodystrophy (AHO), including short stature, round face, obesity, brachydactyly (shortened fingers and toes), and ectopic ossifications (formation of bone in abnormal places). However, it is important to note that not all individuals with AHO have PHP, and not all PHP patients display AHO features.

PHP type Ib is another common form of the disorder, characterized by PTH resistance without the physical manifestations of AHO. This type is caused by mutations in the STX16 gene or other genes involved in the intracellular trafficking of Gs-alpha protein.

Pseudohypoparathyroidism should be differentiated from hypoparathyroidism, a condition where there is an insufficient production or secretion of PTH by the parathyroid glands, leading to similar biochemical abnormalities but without resistance to PTH action.

Thyroid hormones are hormones produced and released by the thyroid gland, a small endocrine gland located in the neck that helps regulate metabolism, growth, and development in the human body. The two main thyroid hormones are triiodothyronine (T3) and thyroxine (T4), which contain iodine atoms. These hormones play a crucial role in various bodily functions, including heart rate, body temperature, digestion, and brain development. They help regulate the rate at which your body uses energy, affects how sensitive your body is to other hormones, and plays a vital role in the development and differentiation of all cells of the human body. Thyroid hormone levels are regulated by the hypothalamus and pituitary gland through a feedback mechanism that helps maintain proper balance.

An adenoma is a benign (noncancerous) tumor that develops from glandular epithelial cells. These types of cells are responsible for producing and releasing fluids, such as hormones or digestive enzymes, into the surrounding tissues. Adenomas can occur in various organs and glands throughout the body, including the thyroid, pituitary, adrenal, and digestive systems.

Depending on their location, adenomas may cause different symptoms or remain asymptomatic. Some common examples of adenomas include:

1. Colorectal adenoma (also known as a polyp): These growths occur in the lining of the colon or rectum and can develop into colorectal cancer if left untreated. Regular screenings, such as colonoscopies, are essential for early detection and removal of these polyps.
2. Thyroid adenoma: This type of adenoma affects the thyroid gland and may result in an overproduction or underproduction of hormones, leading to conditions like hyperthyroidism (overactive thyroid) or hypothyroidism (underactive thyroid).
3. Pituitary adenoma: These growths occur in the pituitary gland, which is located at the base of the brain and controls various hormonal functions. Depending on their size and location, pituitary adenomas can cause vision problems, headaches, or hormonal imbalances that affect growth, reproduction, and metabolism.
4. Liver adenoma: These rare benign tumors develop in the liver and may not cause any symptoms unless they become large enough to press on surrounding organs or structures. In some cases, liver adenomas can rupture and cause internal bleeding.
5. Adrenal adenoma: These growths occur in the adrenal glands, which are located above the kidneys and produce hormones that regulate stress responses, metabolism, and blood pressure. Most adrenal adenomas are nonfunctioning, meaning they do not secrete excess hormones. However, functioning adrenal adenomas can lead to conditions like Cushing's syndrome or Conn's syndrome, depending on the type of hormone being overproduced.

It is essential to monitor and manage benign tumors like adenomas to prevent potential complications, such as rupture, bleeding, or hormonal imbalances. Treatment options may include surveillance with imaging studies, medication to manage hormonal issues, or surgical removal of the tumor in certain cases.

Osteoblasts are specialized bone-forming cells that are derived from mesenchymal stem cells. They play a crucial role in the process of bone formation and remodeling. Osteoblasts synthesize, secrete, and mineralize the organic matrix of bones, which is mainly composed of type I collagen.

These cells have receptors for various hormones and growth factors that regulate their activity, such as parathyroid hormone, vitamin D, and transforming growth factor-beta. When osteoblasts are not actively producing bone matrix, they can become trapped within the matrix they produce, where they differentiate into osteocytes, which are mature bone cells that play a role in maintaining bone structure and responding to mechanical stress.

Abnormalities in osteoblast function can lead to various bone diseases, such as osteoporosis, osteogenesis imperfecta, and Paget's disease of bone.

Follicle-Stimulating Hormone (FSH) is a glycoprotein hormone secreted and released by the anterior pituitary gland. In females, it promotes the growth and development of ovarian follicles in the ovary, which ultimately leads to the maturation and release of an egg (ovulation). In males, FSH stimulates the testes to produce sperm. It works in conjunction with luteinizing hormone (LH) to regulate reproductive processes. The secretion of FSH is controlled by the hypothalamic-pituitary-gonadal axis and its release is influenced by the levels of gonadotropin-releasing hormone (GnRH), estrogen, inhibin, and androgens.

Bone resorption is the process by which bone tissue is broken down and absorbed into the body. It is a normal part of bone remodeling, in which old or damaged bone tissue is removed and new tissue is formed. However, excessive bone resorption can lead to conditions such as osteoporosis, in which bones become weak and fragile due to a loss of density. This process is carried out by cells called osteoclasts, which break down the bone tissue and release minerals such as calcium into the bloodstream.

Uremia is not a disease itself, but rather it's a condition that results from the buildup of waste products in the blood due to kidney failure. The term "uremia" comes from the word "urea," which is one of the waste products that accumulate when the kidneys are not functioning properly.

In uremia, the kidneys are unable to effectively filter waste and excess fluids from the blood, leading to a variety of symptoms such as nausea, vomiting, fatigue, itching, mental confusion, and ultimately, if left untreated, can lead to coma and death. It is a serious condition that requires immediate medical attention, often involving dialysis or a kidney transplant to manage the underlying kidney dysfunction.

Bone density refers to the amount of bone mineral content (usually measured in grams) in a given volume of bone (usually measured in cubic centimeters). It is often used as an indicator of bone strength and fracture risk. Bone density is typically measured using dual-energy X-ray absorptiometry (DXA) scans, which provide a T-score that compares the patient's bone density to that of a young adult reference population. A T-score of -1 or above is considered normal, while a T-score between -1 and -2.5 indicates osteopenia (low bone mass), and a T-score below -2.5 indicates osteoporosis (porous bones). Regular exercise, adequate calcium and vitamin D intake, and medication (if necessary) can help maintain or improve bone density and prevent fractures.

Bone remodeling is the normal and continuous process by which bone tissue is removed from the skeleton (a process called resorption) and new bone tissue is formed (a process called formation). This ongoing cycle allows bones to repair microdamage, adjust their size and shape in response to mechanical stress, and maintain mineral homeostasis. The cells responsible for bone resorption are osteoclasts, while the cells responsible for bone formation are osteoblasts. These two cell types work together to maintain the structural integrity and health of bones throughout an individual's life.

During bone remodeling, the process can be divided into several stages:

1. Activation: The initiation of bone remodeling is triggered by various factors such as microdamage, hormonal changes, or mechanical stress. This leads to the recruitment and activation of osteoclast precursor cells.
2. Resorption: Osteoclasts attach to the bone surface and create a sealed compartment called a resorption lacuna. They then secrete acid and enzymes that dissolve and digest the mineralized matrix, creating pits or cavities on the bone surface. This process helps remove old or damaged bone tissue and releases calcium and phosphate ions into the bloodstream.
3. Reversal: After resorption is complete, the osteoclasts undergo apoptosis (programmed cell death), and mononuclear cells called reversal cells appear on the resorbed surface. These cells prepare the bone surface for the next stage by cleaning up debris and releasing signals that attract osteoblast precursors.
4. Formation: Osteoblasts, derived from mesenchymal stem cells, migrate to the resorbed surface and begin producing a new organic matrix called osteoid. As the osteoid mineralizes, it forms a hard, calcified structure that gradually replaces the resorbed bone tissue. The osteoblasts may become embedded within this newly formed bone as they differentiate into osteocytes, which are mature bone cells responsible for maintaining bone homeostasis and responding to mechanical stress.
5. Mineralization: Over time, the newly formed bone continues to mineralize, becoming stronger and more dense. This process helps maintain the structural integrity of the skeleton and ensures adequate calcium storage.

Throughout this continuous cycle of bone remodeling, hormones, growth factors, and mechanical stress play crucial roles in regulating the balance between resorption and formation. Disruptions to this delicate equilibrium can lead to various bone diseases, such as osteoporosis, where excessive resorption results in weakened bones and increased fracture risk.

Luteinizing Hormone (LH) is a glycoprotein hormone, which is primarily produced and released by the anterior pituitary gland. In women, a surge of LH triggers ovulation, the release of an egg from the ovaries during the menstrual cycle. During pregnancy, LH stimulates the corpus luteum to produce progesterone. In men, LH stimulates the testes to produce testosterone. It plays a crucial role in sexual development, reproduction, and maintaining the reproductive system.

Vitamin D deficiency is a condition characterized by insufficient levels of vitamin D in the body, typically defined as a serum 25-hydroxyvitamin D level below 20 nanograms per milliliter (ng/mL) or 50 nanomoles per liter (nmol/L). Vitamin D is an essential fat-soluble vitamin that plays a crucial role in maintaining healthy bones and teeth by regulating the absorption of calcium and phosphorus. It also has various other functions in the body, including modulation of cell growth, immune function, and neuromuscular activity.

Vitamin D can be obtained through dietary sources such as fatty fish, fortified dairy products, and supplements, but the majority of vitamin D is produced in the skin upon exposure to sunlight. Deficiency can occur due to inadequate dietary intake, insufficient sun exposure, or impaired absorption or metabolism of vitamin D.

Risk factors for vitamin D deficiency include older age, darker skin tone, obesity, malabsorption syndromes, liver or kidney disease, and certain medications. Symptoms of vitamin D deficiency can be subtle and nonspecific, such as fatigue, bone pain, muscle weakness, and mood changes. However, prolonged deficiency can lead to more severe health consequences, including osteoporosis, osteomalacia, and increased risk of fractures.

Calcifediol is the medical term for 25-hydroxyvitamin D, which is a form of vitamin D that is produced in the liver when it processes vitamin D from sunlight or from dietary sources. It is an important precursor to the active form of vitamin D, calcitriol, and is often used as a supplement for people who have low levels of vitamin D. Calcifediol is converted to calcitriol in the kidneys, where it plays a role in regulating calcium and phosphate levels in the body, which are important for maintaining healthy bones and teeth.

Cyclic adenosine monophosphate (cAMP) is a key secondary messenger in many biological processes, including the regulation of metabolism, gene expression, and cellular excitability. It is synthesized from adenosine triphosphate (ATP) by the enzyme adenylyl cyclase and is degraded by the enzyme phosphodiesterase.

In the body, cAMP plays a crucial role in mediating the effects of hormones and neurotransmitters on target cells. For example, when a hormone binds to its receptor on the surface of a cell, it can activate a G protein, which in turn activates adenylyl cyclase to produce cAMP. The increased levels of cAMP then activate various effector proteins, such as protein kinases, which go on to regulate various cellular processes.

Overall, the regulation of cAMP levels is critical for maintaining proper cellular function and homeostasis, and abnormalities in cAMP signaling have been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Renal osteodystrophy is a bone disease that occurs in individuals with chronic kidney disease (CKD). It is characterized by abnormalities in the bones' structure and mineral composition due to disturbances in the metabolism of calcium, phosphorus, and vitamin D. These metabolic disturbances result from the kidneys' decreased ability to maintain balance in the levels of these minerals and hormones.

Renal osteodystrophy can manifest as several bone disorders, including:

1. Osteitis fibrosa cystica: Increased bone turnover due to excessive parathyroid hormone (PTH) production, leading to high levels of alkaline phosphatase and increased resorption of bones.
2. Adynamic bone disease: Decreased bone turnover due to reduced PTH levels, resulting in low bone formation rates and increased fracture risk.
3. Mixed uremic osteodystrophy: A combination of high and low bone turnover, with varying degrees of mineralization defects.
4. Osteomalacia: Defective mineralization of bones due to vitamin D deficiency or resistance, leading to soft and weak bones.

Symptoms of renal osteodystrophy may include bone pain, muscle weakness, fractures, deformities, and growth retardation in children. Diagnosis typically involves laboratory tests, imaging studies, and sometimes bone biopsies. Treatment focuses on correcting the metabolic imbalances through dietary modifications, medications (such as phosphate binders, vitamin D analogs, and calcimimetics), and addressing any secondary hyperparathyroidism if present.

Thyroidectomy is a surgical procedure where all or part of the thyroid gland is removed. The thyroid gland is a butterfly-shaped endocrine gland located in the neck, responsible for producing hormones that regulate metabolism, growth, and development.

There are different types of thyroidectomy procedures, including:

1. Total thyroidectomy: Removal of the entire thyroid gland.
2. Partial (or subtotal) thyroidectomy: Removal of a portion of the thyroid gland.
3. Hemithyroidectomy: Removal of one lobe of the thyroid gland, often performed to treat benign solitary nodules or differentiated thyroid cancer.

Thyroidectomy may be recommended for various reasons, such as treating thyroid nodules, goiter, hyperthyroidism (overactive thyroid), or thyroid cancer. Potential risks and complications of the procedure include bleeding, infection, damage to nearby structures like the parathyroid glands and recurrent laryngeal nerve, and hypoparathyroidism or hypothyroidism due to removal of or damage to the parathyroid glands or thyroid gland, respectively. Close postoperative monitoring and management are essential to minimize these risks and ensure optimal patient outcomes.

Osteocalcin is a protein that is produced by osteoblasts, which are the cells responsible for bone formation. It is one of the most abundant non-collagenous proteins found in bones and plays a crucial role in the regulation of bone metabolism. Osteocalcin contains a high affinity for calcium ions, making it essential for the mineralization of the bone matrix.

Once synthesized, osteocalcin is secreted into the extracellular matrix, where it binds to hydroxyapatite crystals, helping to regulate their growth and contributing to the overall strength and integrity of the bones. Osteocalcin also has been found to play a role in other physiological processes outside of bone metabolism, such as modulating insulin sensitivity, energy metabolism, and male fertility.

In summary, osteocalcin is a protein produced by osteoblasts that plays a critical role in bone formation, mineralization, and turnover, and has been implicated in various other physiological processes.

Chronic kidney failure, also known as chronic kidney disease (CKD) stage 5 or end-stage renal disease (ESRD), is a permanent loss of kidney function that occurs gradually over a period of months to years. It is defined as a glomerular filtration rate (GFR) of less than 15 ml/min, which means the kidneys are filtering waste and excess fluids at less than 15% of their normal capacity.

CKD can be caused by various underlying conditions such as diabetes, hypertension, glomerulonephritis, polycystic kidney disease, and recurrent kidney infections. Over time, the damage to the kidneys can lead to a buildup of waste products and fluids in the body, which can cause a range of symptoms including fatigue, weakness, shortness of breath, nausea, vomiting, and confusion.

Treatment for chronic kidney failure typically involves managing the underlying condition, making lifestyle changes such as following a healthy diet, and receiving supportive care such as dialysis or a kidney transplant to replace lost kidney function.

Ergocalciferols are a form of vitamin D, specifically vitamin D2, that is found in some plants. They are not produced by the human body and must be obtained through diet or supplementation. Ergocalciferols can be converted into an active form of vitamin D in the body, which is important for maintaining healthy bones and calcium levels. However, vitamin D3 (cholecalciferol), which is produced by the body in response to sunlight exposure, is generally considered to be more effective at raising and maintaining vitamin D levels in the body than ergocalciferols.

Alkaline phosphatase (ALP) is an enzyme found in various body tissues, including the liver, bile ducts, digestive system, bones, and kidneys. It plays a role in breaking down proteins and minerals, such as phosphate, in the body.

The medical definition of alkaline phosphatase refers to its function as a hydrolase enzyme that removes phosphate groups from molecules at an alkaline pH level. In clinical settings, ALP is often measured through blood tests as a biomarker for various health conditions.

Elevated levels of ALP in the blood may indicate liver or bone diseases, such as hepatitis, cirrhosis, bone fractures, or cancer. Therefore, physicians may order an alkaline phosphatase test to help diagnose and monitor these conditions. However, it is essential to interpret ALP results in conjunction with other diagnostic tests and clinical findings for accurate diagnosis and treatment.

Hydroxycholecalciferols are metabolites of vitamin D that are formed in the liver and kidneys. They are important for maintaining calcium homeostasis in the body by promoting the absorption of calcium from the gut and reabsorption of calcium from the kidneys.

The two main forms of hydroxycholecalciferols are 25-hydroxyvitamin D (25(OH)D) and 1,25-dihydroxyvitamin D (1,25(OH)2D). 25-hydroxyvitamin D is the major circulating form of vitamin D in the body and is used as a clinical measure of vitamin D status. It is converted to 1,25-dihydroxyvitamin D in the kidneys by the enzyme 1α-hydroxylase, which is activated in response to low serum calcium or high phosphate levels.

1,25-dihydroxyvitamin D is the biologically active form of vitamin D and plays a critical role in regulating calcium homeostasis by increasing intestinal calcium absorption and promoting bone health. Deficiency in hydroxycholecalciferols can lead to rickets in children and osteomalacia or osteoporosis in adults, characterized by weakened bones and increased risk of fractures.

Renal dialysis is a medical procedure that is used to artificially remove waste products, toxins, and excess fluids from the blood when the kidneys are no longer able to perform these functions effectively. This process is also known as hemodialysis.

During renal dialysis, the patient's blood is circulated through a special machine called a dialyzer or an artificial kidney, which contains a semi-permeable membrane that filters out waste products and excess fluids from the blood. The cleaned blood is then returned to the patient's body.

Renal dialysis is typically recommended for patients with advanced kidney disease or kidney failure, such as those with end-stage renal disease (ESRD). It is a life-sustaining treatment that helps to maintain the balance of fluids and electrolytes in the body, prevent the buildup of waste products and toxins, and control blood pressure.

There are two main types of renal dialysis: hemodialysis and peritoneal dialysis. Hemodialysis is the most common type and involves using a dialyzer to filter the blood outside the body. Peritoneal dialysis, on the other hand, involves placing a catheter in the abdomen and using the lining of the abdomen (peritoneum) as a natural filter to remove waste products and excess fluids from the body.

Overall, renal dialysis is an essential treatment option for patients with kidney failure, helping them to maintain their quality of life and prolong their survival.

Dihydroxycholecalciferols are a form of calcifediol, which is a type of secosteroid hormone that is produced in the body as a result of the exposure to sunlight and the dietary intake of vitamin D. The term "dihydroxycholecalciferols" specifically refers to the compounds 1,25-dihydroxycholecalciferol (calcitriol) and 24,25-dihydroxycholecalciferol. These compounds are produced in the body through a series of chemical reactions involving enzymes that convert vitamin D into its active forms.

Calcitriol is the biologically active form of vitamin D and plays an important role in regulating the levels of calcium and phosphorus in the blood, as well as promoting the absorption of these minerals from the gut. It also has other functions, such as modulating cell growth and immune function.

24,25-dihydroxycholecalciferol is a less active form of vitamin D that is produced in larger quantities than calcitriol. Its exact role in the body is not well understood, but it is thought to have some effects on calcium metabolism and may play a role in regulating the levels of other hormones in the body.

Dihydroxycholecalciferols are typically measured in the blood as part of an evaluation for vitamin D deficiency or to monitor treatment with vitamin D supplements. Low levels of these compounds can indicate a deficiency, while high levels may indicate excessive intake or impaired metabolism.

Dietary calcium is a type of calcium that is obtained through food sources. Calcium is an essential mineral that is necessary for many bodily functions, including bone formation and maintenance, muscle contraction, nerve impulse transmission, and blood clotting.

The recommended daily intake of dietary calcium varies depending on age, sex, and other factors. For example, the recommended daily intake for adults aged 19-50 is 1000 mg, while women over 50 and men over 70 require 1200 mg per day.

Good dietary sources of calcium include dairy products such as milk, cheese, and yogurt; leafy green vegetables like broccoli and kale; fortified cereals and juices; and certain types of fish, such as salmon and sardines. It is important to note that some foods can inhibit the absorption of calcium, including oxalates found in spinach and rhubarb, and phytates found in whole grains and legumes.

If a person is unable to get enough calcium through their diet, they may need to take calcium supplements. However, it is important to talk to a healthcare provider before starting any new supplement regimen, as excessive intake of calcium can lead to negative health effects.

Gonadal steroid hormones, also known as gonadal sex steroids, are hormones that are produced and released by the gonads (i.e., ovaries in women and testes in men). These hormones play a critical role in the development and maintenance of secondary sexual characteristics, reproductive function, and overall health.

The three main classes of gonadal steroid hormones are:

1. Androgens: These are male sex hormones that are primarily produced by the testes but also produced in smaller amounts by the ovaries and adrenal glands. The most well-known androgen is testosterone, which plays a key role in the development of male secondary sexual characteristics such as facial hair, deepening of the voice, and increased muscle mass.
2. Estrogens: These are female sex hormones that are primarily produced by the ovaries but also produced in smaller amounts by the adrenal glands. The most well-known estrogen is estradiol, which plays a key role in the development of female secondary sexual characteristics such as breast development and the menstrual cycle.
3. Progestogens: These are hormones that are produced by the ovaries during the second half of the menstrual cycle and play a key role in preparing the uterus for pregnancy. The most well-known progestogen is progesterone, which also plays a role in maintaining pregnancy and regulating the menstrual cycle.

Gonadal steroid hormones can have significant effects on various physiological processes, including bone density, cognitive function, mood, and sexual behavior. Disorders of gonadal steroid hormone production or action can lead to a range of health problems, including infertility, osteoporosis, and sexual dysfunction.

Gonadotropin-Releasing Hormone (GnRH), also known as Luteinizing Hormone-Releasing Hormone (LHRH), is a hormonal peptide consisting of 10 amino acids. It is produced and released by the hypothalamus, an area in the brain that links the nervous system to the endocrine system via the pituitary gland.

GnRH plays a crucial role in regulating reproduction and sexual development through its control of two gonadotropins: follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These gonadotropins, in turn, stimulate the gonads (ovaries or testes) to produce sex steroids and eggs or sperm.

GnRH acts on the anterior pituitary gland by binding to its specific receptors, leading to the release of FSH and LH. The hypothalamic-pituitary-gonadal axis is under negative feedback control, meaning that when sex steroid levels are high, they inhibit the release of GnRH, which subsequently decreases FSH and LH secretion.

GnRH agonists and antagonists have clinical applications in various medical conditions, such as infertility treatments, precocious puberty, endometriosis, uterine fibroids, prostate cancer, and hormone-responsive breast cancer.

I'm sorry for any confusion, but "opossums" are not a medical term or a medical condition. Opossums are actually marsupials (pouched mammals) that are native to the Americas. They are often known for their "playing dead" behavior as a defense mechanism when threatened. If you have any questions about medical terminology or health-related topics, I'd be happy to help with those!

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Dietary Phosphorus is a mineral that is an essential nutrient for human health. It is required for the growth, maintenance, and repair of body tissues, including bones and teeth. Phosphorus is also necessary for the production of energy, the formation of DNA and RNA, and the regulation of various physiological processes.

In the diet, phosphorus is primarily found in protein-containing foods such as meat, poultry, fish, dairy products, legumes, and nuts. It can also be found in processed foods that contain additives such as phosphoric acid, which is used to enhance flavor or as a preservative.

The recommended daily intake of phosphorus for adults is 700 milligrams (mg) per day. However, it's important to note that excessive intake of phosphorus, particularly from supplements and fortified foods, can lead to health problems such as kidney damage and calcification of soft tissues. Therefore, it's recommended to obtain phosphorus primarily from whole foods rather than supplements.

Hypophosphatemia is a medical condition characterized by abnormally low levels of phosphate (phosphorus) in the blood, specifically below 2.5 mg/dL. Phosphate is an essential electrolyte that plays a crucial role in various bodily functions such as energy production, bone formation, and maintaining acid-base balance.

Hypophosphatemia can result from several factors, including malnutrition, vitamin D deficiency, alcoholism, hormonal imbalances, and certain medications. Symptoms of hypophosphatemia may include muscle weakness, fatigue, bone pain, confusion, and respiratory failure in severe cases. Treatment typically involves correcting the underlying cause and administering phosphate supplements to restore normal levels.

Cholecalciferol is the chemical name for Vitamin D3. It is a fat-soluble vitamin that is essential for the regulation of calcium and phosphate levels in the body, which helps to maintain healthy bones and teeth. Cholecalciferol can be synthesized by the skin upon exposure to sunlight or obtained through dietary sources such as fatty fish, liver, and fortified foods. It is also available as a dietary supplement.

Calcium carbonate is a chemical compound with the formula CaCO3. It is a common substance found in rocks and in the shells of many marine animals. As a mineral, it is known as calcite or aragonite.

In the medical field, calcium carbonate is often used as a dietary supplement to prevent or treat calcium deficiency. It is also commonly used as an antacid to neutralize stomach acid and relieve symptoms of heartburn, acid reflux, and indigestion.

Calcium carbonate works by reacting with hydrochloric acid in the stomach to form water, carbon dioxide, and calcium chloride. This reaction helps to raise the pH level in the stomach and neutralize excess acid.

It is important to note that excessive use of calcium carbonate can lead to hypercalcemia, a condition characterized by high levels of calcium in the blood, which can cause symptoms such as nausea, vomiting, constipation, confusion, and muscle weakness. Therefore, it is recommended to consult with a healthcare provider before starting any new supplement regimen.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Human Growth Hormone (HGH), also known as somatotropin, is a peptide hormone produced in the pituitary gland. It plays a crucial role in human development and growth by stimulating the production of another hormone called insulin-like growth factor 1 (IGF-1). IGF-1 promotes the growth and reproduction of cells throughout the body, particularly in bones and other tissues. HGH also helps regulate body composition, body fluids, muscle and bone growth, sugar and fat metabolism, and possibly heart function. It is essential for human development and continues to have important effects throughout life. The secretion of HGH decreases with age, which is thought to contribute to the aging process.

Calcium gluconate is a medical compound that is used primarily as a medication to treat conditions related to low calcium levels in the body (hypocalcemia) or to prevent calcium deficiency. It is also used as an antidote for treating poisoning from certain chemicals, such as beta-blockers and fluoride.

Calcium gluconate is a form of calcium salt, which is combined with gluconic acid, a natural organic acid found in various fruits and honey. This compound has a high concentration of calcium, making it an effective supplement for increasing calcium levels in the body.

In medical settings, calcium gluconate can be administered orally as a tablet or liquid solution, or it can be given intravenously (directly into a vein) by a healthcare professional. The intravenous route is typically used in emergency situations to quickly raise calcium levels and treat symptoms of hypocalcemia, such as muscle cramps, spasms, or seizures.

It's important to note that while calcium gluconate can be beneficial for treating low calcium levels, it should only be used under the guidance of a healthcare provider, as improper use or overdose can lead to serious side effects, including kidney damage and heart problems.

Hyperplasia is a medical term that refers to an abnormal increase in the number of cells in an organ or tissue, leading to an enlargement of the affected area. It's a response to various stimuli such as hormones, chronic irritation, or inflammation. Hyperplasia can be physiological, like the growth of breast tissue during pregnancy, or pathological, like in the case of benign or malignant tumors. The process is generally reversible if the stimulus is removed. It's important to note that hyperplasia itself is not cancerous, but some forms of hyperplasia can increase the risk of developing cancer over time.

Radioimmunoassay (RIA) is a highly sensitive analytical technique used in clinical and research laboratories to measure concentrations of various substances, such as hormones, vitamins, drugs, or tumor markers, in biological samples like blood, urine, or tissues. The method relies on the specific interaction between an antibody and its corresponding antigen, combined with the use of radioisotopes to quantify the amount of bound antigen.

In a typical RIA procedure, a known quantity of a radiolabeled antigen (also called tracer) is added to a sample containing an unknown concentration of the same unlabeled antigen. The mixture is then incubated with a specific antibody that binds to the antigen. During the incubation period, the antibody forms complexes with both the radiolabeled and unlabeled antigens.

After the incubation, the unbound (free) radiolabeled antigen is separated from the antibody-antigen complexes, usually through a precipitation or separation step involving centrifugation, filtration, or chromatography. The amount of radioactivity in the pellet (containing the antibody-antigen complexes) is then measured using a gamma counter or other suitable radiation detection device.

The concentration of the unlabeled antigen in the sample can be determined by comparing the ratio of bound to free radiolabeled antigen in the sample to a standard curve generated from known concentrations of unlabeled antigen and their corresponding bound/free ratios. The higher the concentration of unlabeled antigen in the sample, the lower the amount of radiolabeled antigen that will bind to the antibody, resulting in a lower bound/free ratio.

Radioimmunoassays offer high sensitivity, specificity, and accuracy, making them valuable tools for detecting and quantifying low levels of various substances in biological samples. However, due to concerns about radiation safety and waste disposal, alternative non-isotopic immunoassay techniques like enzyme-linked immunosorbent assays (ELISAs) have become more popular in recent years.

Osteoporosis is a systemic skeletal disease characterized by low bone mass, deterioration of bone tissue, and disruption of bone architecture, leading to increased risk of fractures, particularly in the spine, wrist, and hip. It mainly affects older people, especially postmenopausal women, due to hormonal changes that reduce bone density. Osteoporosis can also be caused by certain medications, medical conditions, or lifestyle factors such as smoking, alcohol abuse, and a lack of calcium and vitamin D in the diet. The diagnosis is often made using bone mineral density testing, and treatment may include medication to slow bone loss, promote bone formation, and prevent fractures.

Metabolic bone diseases are a group of conditions that affect the bones and are caused by disorders in the body's metabolism. These disorders can result in changes to the bone structure, density, and strength, leading to an increased risk of fractures and other complications. Some common examples of metabolic bone diseases include:

1. Osteoporosis: a condition characterized by weak and brittle bones that are more likely to break, often as a result of age-related bone loss or hormonal changes.
2. Paget's disease of bone: a chronic disorder that causes abnormal bone growth and deformities, leading to fragile and enlarged bones.
3. Osteomalacia: a condition caused by a lack of vitamin D or problems with the body's ability to absorb it, resulting in weak and soft bones.
4. Hyperparathyroidism: a hormonal disorder that causes too much parathyroid hormone to be produced, leading to bone loss and other complications.
5. Hypoparathyroidism: a hormonal disorder that results in low levels of parathyroid hormone, causing weak and brittle bones.
6. Renal osteodystrophy: a group of bone disorders that occur as a result of chronic kidney disease, including osteomalacia, osteoporosis, and high turnover bone disease.

Treatment for metabolic bone diseases may include medications to improve bone density and strength, dietary changes, exercise, and lifestyle modifications. In some cases, surgery may be necessary to correct bone deformities or fractures.

Thyroid hormone receptors (THRs) are nuclear receptor proteins that bind to thyroid hormones, triiodothyronine (T3) and thyroxine (T4), and regulate gene transcription in target cells. These receptors play a crucial role in the development, growth, and metabolism of an organism by mediating the actions of thyroid hormones. THRs are encoded by genes THRA and THRB, which give rise to two major isoforms: TRα1 and TRβ1. Additionally, alternative splicing results in other isoforms with distinct tissue distributions and functions. THRs function as heterodimers with retinoid X receptors (RXRs) and bind to thyroid hormone response elements (TREs) in the regulatory regions of target genes. The binding of T3 or T4 to THRs triggers a conformational change, which leads to recruitment of coactivators or corepressors, ultimately resulting in activation or repression of gene transcription.

Naphthalene is not typically referred to as a medical term, but it is a chemical compound with the formula C10H8. It is a white crystalline solid that is aromatic and volatile, and it is known for its distinctive mothball smell. In a medical context, naphthalene is primarily relevant as a potential toxin or irritant.

Naphthalene can be found in some chemical products, such as mothballs and toilet deodorant blocks. Exposure to high levels of naphthalene can cause symptoms such as nausea, vomiting, diarrhea, and headaches. Long-term exposure has been linked to anemia and damage to the liver and nervous system.

In addition, naphthalene is a known environmental pollutant that can be found in air, water, and soil. It is produced by the combustion of fossil fuels and is also released from some industrial processes. Naphthalene has been shown to have toxic effects on aquatic life and may pose a risk to human health if exposure levels are high enough.

Sodium-phosphate cotransporter proteins are membrane transport proteins that facilitate the active transport of sodium and inorganic phosphate ions across biological membranes. These proteins play a crucial role in maintaining phosphate homeostasis within the body by regulating the absorption and excretion of phosphate in the kidneys and intestines. They exist in two major types, type I (NaPi-I) and type II (NaPi-II), each having multiple subtypes with distinct tissue distributions and regulatory mechanisms.

Type I sodium-phosphate cotransporters are primarily expressed in the kidney's proximal tubules and play a significant role in reabsorbing phosphate from the primary urine back into the bloodstream. Type II sodium-phosphate cotransporters, on the other hand, are found in both the kidneys and intestines. In the kidneys, they contribute to phosphate reabsorption, while in the intestines, they facilitate phosphate absorption from food.

These proteins function by coupling the passive downhill movement of sodium ions (driven by the electrochemical gradient) with the active uphill transport of phosphate ions against their concentration gradient. This coupled transport process enables cells to maintain intracellular phosphate concentrations within a narrow range, despite fluctuations in dietary intake and renal function.

Dysregulation of sodium-phosphate cotransporter proteins has been implicated in various pathological conditions, such as chronic kidney disease (CKD), tumoral calcinosis, and certain genetic disorders affecting phosphate homeostasis.

Technetium Tc 99m Sestamibi is a radiopharmaceutical compound used in medical imaging, specifically in myocardial perfusion scintigraphy. It is a technetium-labeled isonitrile chelate that is taken up by mitochondria in cells with high metabolic activity, such as cardiomyocytes (heart muscle cells).

Once injected into the patient's body, Technetium Tc 99m Sestamibi emits gamma rays, which can be detected by a gamma camera. This allows for the creation of images that reflect the distribution and function of the radiopharmaceutical within the heart muscle. The images can help identify areas of reduced blood flow or ischemia, which may indicate coronary artery disease.

The uptake of Technetium Tc 99m Sestamibi in other organs, such as the breast and thyroid, can also be used for imaging purposes, although its primary use remains in cardiac imaging.

Adrenocorticotropic Hormone (ACTH) is a hormone produced and released by the anterior pituitary gland, a small endocrine gland located at the base of the brain. ACTH plays a crucial role in the regulation of the body's stress response and has significant effects on various physiological processes.

The primary function of ACTH is to stimulate the adrenal glands, which are triangular-shaped glands situated on top of the kidneys. The adrenal glands consist of two parts: the outer cortex and the inner medulla. ACTH specifically targets the adrenal cortex, where it binds to specific receptors and initiates a series of biochemical reactions leading to the production and release of steroid hormones, primarily cortisol (a glucocorticoid) and aldosterone (a mineralocorticoid).

Cortisol is involved in various metabolic processes, such as regulating blood sugar levels, modulating the immune response, and helping the body respond to stress. Aldosterone plays a vital role in maintaining electrolyte and fluid balance by promoting sodium reabsorption and potassium excretion in the kidneys.

ACTH release is controlled by the hypothalamus, another part of the brain, which produces corticotropin-releasing hormone (CRH). CRH stimulates the anterior pituitary gland to secrete ACTH, which in turn triggers cortisol production in the adrenal glands. This complex feedback system helps maintain homeostasis and ensures that appropriate amounts of cortisol are released in response to various physiological and psychological stressors.

Disorders related to ACTH can lead to hormonal imbalances, resulting in conditions such as Cushing's syndrome (excessive cortisol production) or Addison's disease (insufficient cortisol production). Proper diagnosis and management of these disorders typically involve assessing the function of the hypothalamic-pituitary-adrenal axis and addressing any underlying issues affecting ACTH secretion.

Hyperphosphatemia is a medical condition characterized by an excessively high level of phosphate (a form of the chemical element phosphorus) in the blood. Phosphate is an important component of various biological molecules, such as DNA, RNA, and ATP, and it plays a crucial role in many cellular processes, including energy metabolism and signal transduction.

In healthy individuals, the concentration of phosphate in the blood is tightly regulated within a narrow range to maintain normal physiological functions. However, when the phosphate level rises above this range (typically defined as a serum phosphate level greater than 4.5 mg/dL or 1.46 mmol/L), it can lead to hyperphosphatemia.

Hyperphosphatemia can result from various underlying medical conditions, including:

* Kidney dysfunction: The kidneys are responsible for filtering excess phosphate out of the blood and excreting it in the urine. When the kidneys fail to function properly, they may be unable to remove enough phosphate, leading to its accumulation in the blood.
* Hypoparathyroidism: The parathyroid glands produce a hormone called parathyroid hormone (PTH), which helps regulate calcium and phosphate levels in the body. In hypoparathyroidism, the production of PTH is insufficient, leading to an increase in phosphate levels.
* Hyperparathyroidism: In contrast, excessive production of PTH can also lead to hyperphosphatemia by increasing the release of phosphate from bones and decreasing its reabsorption in the kidneys.
* Excessive intake of phosphate-rich foods or supplements: Consuming large amounts of phosphate-rich foods, such as dairy products, nuts, and legumes, or taking phosphate supplements can raise blood phosphate levels.
* Tumor lysis syndrome: This is a complication that can occur after the treatment of certain types of cancer, particularly hematological malignancies. The rapid destruction of cancer cells releases large amounts of intracellular contents, including phosphate, into the bloodstream, leading to hyperphosphatemia.
* Rhabdomyolysis: This is a condition in which muscle tissue breaks down, releasing its contents, including phosphate, into the bloodstream. It can be caused by various factors, such as trauma, infection, or drug toxicity.

Hyperphosphatemia can have several adverse effects on the body, including calcification of soft tissues, kidney damage, and metabolic disturbances. Therefore, it is essential to diagnose and manage hyperphosphatemia promptly to prevent complications. Treatment options may include dietary modifications, medications that bind phosphate in the gastrointestinal tract, and dialysis in severe cases.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Osteogenesis is the process of bone formation or development. It involves the differentiation and maturation of osteoblasts, which are bone-forming cells that synthesize and deposit the organic matrix of bone tissue, composed mainly of type I collagen. This organic matrix later mineralizes to form the inorganic crystalline component of bone, primarily hydroxyapatite.

There are two primary types of osteogenesis: intramembranous and endochondral. Intramembranous osteogenesis occurs directly within connective tissue, where mesenchymal stem cells differentiate into osteoblasts and form bone tissue without an intervening cartilage template. This process is responsible for the formation of flat bones like the skull and clavicles.

Endochondral osteogenesis, on the other hand, involves the initial development of a cartilaginous model or template, which is later replaced by bone tissue. This process forms long bones, such as those in the limbs, and occurs through several stages involving chondrocyte proliferation, hypertrophy, and calcification, followed by invasion of blood vessels and osteoblasts to replace the cartilage with bone tissue.

Abnormalities in osteogenesis can lead to various skeletal disorders and diseases, such as osteogenesis imperfecta (brittle bone disease), achondroplasia (a form of dwarfism), and cleidocranial dysplasia (a disorder affecting skull and collarbone development).

Sodium-phosphate cotransporter proteins, type IIa (NaPi-IIa), are a subtype of membrane transport proteins that facilitate the active transport of sodium and phosphate ions across the cell membrane. They play a crucial role in maintaining phosphate homeostasis within the body by regulating the reabsorption of phosphate in the kidney's proximal tubules.

NaPi-IIa proteins are located on the brush border membrane of the proximal tubule cells and function to couple the movement of sodium ions down its electrochemical gradient into the cell with the influx of phosphate ions against its concentration gradient, from the lumen into the cell. This process is driven by the sodium-potassium ATPase pump, which maintains a low intracellular sodium concentration and a negative membrane potential.

NaPi-IIa proteins are encoded by the SLC34A1 gene in humans and are subject to regulation by various hormonal and physiological factors, such as parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and dietary phosphate intake. Dysregulation of NaPi-IIa function has been implicated in several kidney diseases and disorders of phosphate homeostasis, such as hyperphosphatemia and hypophosphatemic rickets.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

In the context of nutrition and health, minerals are inorganic elements that are essential for various bodily functions, such as nerve impulse transmission, muscle contraction, maintaining fluid and electrolyte balance, and bone structure. They are required in small amounts compared to macronutrients (carbohydrates, proteins, and fats) and are obtained from food and water.

Some of the major minerals include calcium, phosphorus, magnesium, sodium, potassium, and chloride, while trace minerals or microminerals are required in even smaller amounts and include iron, zinc, copper, manganese, iodine, selenium, and fluoride.

It's worth noting that the term "minerals" can also refer to geological substances found in the earth, but in medical terminology, it specifically refers to the essential inorganic elements required for human health.

Magnesium deficiency, also known as hypomagnesemia, is a condition characterized by low levels of magnesium in the blood. Magnesium is an essential mineral that plays a crucial role in many bodily functions, including muscle and nerve function, heart rhythm, bone strength, and immune system regulation.

Hypomagnesemia can occur due to various factors, such as poor dietary intake, malabsorption syndromes, chronic alcoholism, diabetes, certain medications (such as diuretics), and excessive sweating or urination. Symptoms of magnesium deficiency may include muscle cramps, tremors, weakness, heart rhythm abnormalities, seizures, and mental status changes.

It is important to note that mild magnesium deficiency may not cause any symptoms, and the diagnosis typically requires blood tests to measure magnesium levels. Treatment for hypomagnesemia usually involves oral or intravenous magnesium supplementation, along with addressing the underlying causes of the deficiency.

Bone diseases is a broad term that refers to various medical conditions that affect the bones. These conditions can be categorized into several groups, including:

1. Developmental and congenital bone diseases: These are conditions that affect bone growth and development before or at birth. Examples include osteogenesis imperfecta (brittle bone disease), achondroplasia (dwarfism), and cleidocranial dysostosis.
2. Metabolic bone diseases: These are conditions that affect the body's ability to maintain healthy bones. They are often caused by hormonal imbalances, vitamin deficiencies, or problems with mineral metabolism. Examples include osteoporosis, osteomalacia, and Paget's disease of bone.
3. Inflammatory bone diseases: These are conditions that cause inflammation in the bones. They can be caused by infections, autoimmune disorders, or other medical conditions. Examples include osteomyelitis, rheumatoid arthritis, and ankylosing spondylitis.
4. Degenerative bone diseases: These are conditions that cause the bones to break down over time. They can be caused by aging, injury, or disease. Examples include osteoarthritis, avascular necrosis, and diffuse idiopathic skeletal hyperostosis (DISH).
5. Tumors and cancers of the bone: These are conditions that involve abnormal growths in the bones. They can be benign or malignant. Examples include osteosarcoma, chondrosarcoma, and Ewing sarcoma.
6. Fractures and injuries: While not strictly a "disease," fractures and injuries are common conditions that affect the bones. They can result from trauma, overuse, or weakened bones. Examples include stress fractures, compound fractures, and dislocations.

Overall, bone diseases can cause a wide range of symptoms, including pain, stiffness, deformity, and decreased mobility. Treatment for these conditions varies depending on the specific diagnosis but may include medication, surgery, physical therapy, or lifestyle changes.

Adenylate cyclase is an enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP). It plays a crucial role in various cellular processes, including signal transduction and metabolism. Adenylate cyclase is activated by hormones and neurotransmitters that bind to G-protein-coupled receptors on the cell membrane, leading to the production of cAMP, which then acts as a second messenger to regulate various intracellular responses. There are several isoforms of adenylate cyclase, each with distinct regulatory properties and subcellular localization.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

25-Hydroxyvitamin D 2 (25(OH)D2) is a form of vitamin D that is produced in the body as a result of the metabolism of ergocalciferol, also known as vitamin D2. Vitamin D2 is found in some plant-based foods and is sometimes used as a dietary supplement.

When vitamin D2 is ingested or absorbed through the skin after exposure to sunlight, it is converted in the liver to 25(OH)D2. This form of vitamin D is then further metabolized in the kidneys to the active form of vitamin D, calcitriol (1,25-dihydroxyvitamin D).

Like other forms of vitamin D, 25(OH)D2 is important for maintaining healthy bones and muscles by regulating the absorption of calcium and phosphorus from the diet. It may also have other health benefits, such as reducing the risk of certain cancers and autoimmune disorders.

It's worth noting that 25-Hydroxyvitamin D2 is not usually measured in clinical settings, as it is converted to 25-Hydroxyvitamin D3 (25(OH)D3) in the body, and total 25(OH)D (which includes both 25(OH)D2 and 25(OH)D3) is typically measured to assess vitamin D status.

Calcimimetic agents are a type of medication that mimic the action of calcium on the calcium-sensing receptor (CaSR) in the parathyroid gland. These agents enhance the sensitivity of the CaSR to extracellular calcium, which leads to a decrease in parathyroid hormone (PTH) secretion.

Calcimimetics are primarily used in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease (CKD) on dialysis. By decreasing PTH levels, calcimimetics can help to prevent the development of bone disease, reduce the risk of cardiovascular calcification, and improve overall clinical outcomes in these patients.

The most commonly prescribed calcimimetic agent is cinacalcet (Sensipar/Mimpara), which has been shown to effectively lower PTH levels, as well as serum calcium and phosphorus levels, in patients with CKD on dialysis. Other calcimimetic agents include etelcalcetide (Parsabiv) and evocalcet (Rocaltrol).

It is important to note that calcimimetics should be used with caution in patients with hypocalcemia, as they can further lower serum calcium levels. Close monitoring of calcium, phosphorus, and PTH levels is necessary during treatment with these agents.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

An Immunoradiometric Assay (IRMA) is a type of radioimmunoassay (RIA), which is a technique used in clinical laboratories to measure the concentration of specific analytes, such as hormones, drugs, or vitamins, in biological samples. In an IRMA, the sample containing the unknown amount of the analyte is incubated with a known quantity of a labeled antibody that specifically binds to the analyte.

The labeled antibody is usually radiolabeled with a radioisotope such as iodine-125 (^125^I) or tritium (^3^H). During the incubation, the labeled antibody binds to the analyte in the sample, forming an immune complex. The unbound labeled antibody is then separated from the immune complex by a variety of methods such as precipitation, centrifugation, or chromatography.

The amount of radioactivity in the pellet (immune complex) is measured using a gamma counter (for ^125^I) or liquid scintillation counter (for ^3^H). The amount of radioactivity is directly proportional to the amount of analyte present in the sample. By comparing the radioactivity in the sample to a standard curve prepared with known concentrations of the analyte, the concentration of the analyte in the sample can be determined.

IRMAs are highly sensitive and specific assays that can detect very low levels of analytes in biological samples. However, they require specialized equipment and handling procedures due to the use of radioisotopes.

Pituitary hormones are chemical messengers produced and released by the pituitary gland, a small endocrine gland located at the base of the brain. The pituitary gland is often referred to as the "master gland" because it controls several other endocrine glands and regulates various bodily functions.

There are two main types of pituitary hormones: anterior pituitary hormones and posterior pituitary hormones, which are produced in different parts of the pituitary gland and have distinct functions.

Anterior pituitary hormones include:

1. Growth hormone (GH): regulates growth and metabolism.
2. Thyroid-stimulating hormone (TSH): stimulates the thyroid gland to produce thyroid hormones.
3. Adrenocorticotropic hormone (ACTH): stimulates the adrenal glands to produce cortisol and other steroid hormones.
4. Follicle-stimulating hormone (FSH) and luteinizing hormone (LH): regulate reproductive function in both males and females.
5. Prolactin: stimulates milk production in lactating women.
6. Melanocyte-stimulating hormone (MSH): regulates skin pigmentation and appetite.

Posterior pituitary hormones include:

1. Oxytocin: stimulates uterine contractions during childbirth and milk ejection during lactation.
2. Vasopressin (antidiuretic hormone, ADH): regulates water balance in the body by controlling urine production in the kidneys.

Overall, pituitary hormones play crucial roles in regulating growth, development, metabolism, reproductive function, and various other bodily functions. Abnormalities in pituitary hormone levels can lead to a range of medical conditions, such as dwarfism, acromegaly, Cushing's disease, infertility, and diabetes insipidus.

Bone development, also known as ossification, is the process by which bone tissue is formed and grows. This complex process involves several different types of cells, including osteoblasts, which produce new bone matrix, and osteoclasts, which break down and resorb existing bone tissue.

There are two main types of bone development: intramembranous and endochondral ossification. Intramembranous ossification occurs when bone tissue forms directly from connective tissue, while endochondral ossification involves the formation of a cartilage model that is later replaced by bone.

During fetal development, most bones develop through endochondral ossification, starting as a cartilage template that is gradually replaced by bone tissue. However, some bones, such as those in the skull and clavicles, develop through intramembranous ossification.

Bone development continues after birth, with new bone tissue being laid down and existing tissue being remodeled throughout life. This ongoing process helps to maintain the strength and integrity of the skeleton, allowing it to adapt to changing mechanical forces and repair any damage that may occur.

Peptide hormones are a type of hormone consisting of short chains of amino acids known as peptides. They are produced and released by various endocrine glands and play crucial roles in regulating many physiological processes in the body, including growth and development, metabolism, stress response, and reproductive functions.

Peptide hormones exert their effects by binding to specific receptors on the surface of target cells, which triggers a series of intracellular signaling events that ultimately lead to changes in cell behavior or function. Some examples of peptide hormones include insulin, glucagon, growth hormone, prolactin, oxytocin, and vasopressin.

Peptide hormones are synthesized as larger precursor proteins called prohormones, which are cleaved by enzymes to release the active peptide hormone. They are water-soluble and cannot pass through the cell membrane, so they exert their effects through autocrine, paracrine, or endocrine mechanisms. Autocrine signaling occurs when a cell releases a hormone that binds to receptors on the same cell, while paracrine signaling involves the release of a hormone that acts on nearby cells. Endocrine signaling, on the other hand, involves the release of a hormone into the bloodstream, which then travels to distant target cells to exert its effects.

The kidney cortex is the outer region of the kidney where most of the functional units called nephrons are located. It plays a crucial role in filtering blood and regulating water, electrolyte, and acid-base balance in the body. The kidney cortex contains the glomeruli, proximal tubules, loop of Henle, and distal tubules, which work together to reabsorb necessary substances and excrete waste products into the urine.

25-Hydroxyvitamin D3 1-alpha-Hydroxylase is an enzyme that is responsible for converting 25-hydroxyvitamin D3 (a precursor form of vitamin D) to its active form, 1,25-dihydroxyvitamin D3. This activation process occurs primarily in the kidneys and is tightly regulated by various factors such as calcium levels, parathyroid hormone, and vitamin D status.

The activated form of vitamin D, 1,25-dihydroxyvitamin D3, plays a crucial role in maintaining calcium homeostasis by increasing the absorption of calcium from the gut and promoting bone health. It also has various other functions, including modulation of immune function, cell growth regulation, and protection against cancer.

Deficiencies in 25-Hydroxyvitamin D3 1-alpha-Hydroxylase can lead to vitamin D deficiency and its associated symptoms, such as osteomalacia (softening of the bones) and osteoporosis (brittle bones). Conversely, overactivity of this enzyme can result in hypercalcemia (elevated levels of calcium in the blood), which can cause a range of symptoms including kidney stones, abdominal pain, nausea, and vomiting.

Osteoclasts are large, multinucleated cells that are primarily responsible for bone resorption, a process in which they break down and dissolve the mineralized matrix of bones. They are derived from monocyte-macrophage precursor cells of hematopoietic origin and play a crucial role in maintaining bone homeostasis by balancing bone formation and bone resorption.

Osteoclasts adhere to the bone surface and create an isolated microenvironment, called the "resorption lacuna," between their cell membrane and the bone surface. Here, they release hydrogen ions into the lacuna through a process called proton pumping, which lowers the pH and dissolves the mineral component of the bone matrix. Additionally, osteoclasts secrete proteolytic enzymes, such as cathepsin K, that degrade the organic components, like collagen, in the bone matrix.

An imbalance in osteoclast activity can lead to various bone diseases, including osteoporosis and Paget's disease, where excessive bone resorption results in weakened and fragile bones.

Hormone Replacement Therapy (HRT) is a medical treatment that involves the use of hormones to replace or supplement those that the body is no longer producing or no longer producing in sufficient quantities. It is most commonly used to help manage symptoms associated with menopause and conditions related to hormonal imbalances.

In women, HRT typically involves the use of estrogen and/or progesterone to alleviate hot flashes, night sweats, vaginal dryness, and mood changes that can occur during menopause. In some cases, testosterone may also be prescribed to help improve energy levels, sex drive, and overall sense of well-being.

In men, HRT is often used to treat low testosterone levels (hypogonadism) and related symptoms such as fatigue, decreased muscle mass, and reduced sex drive.

It's important to note that while HRT can be effective in managing certain symptoms, it also carries potential risks, including an increased risk of blood clots, stroke, breast cancer (in women), and cardiovascular disease. Therefore, the decision to undergo HRT should be made carefully and discussed thoroughly with a healthcare provider.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

Calcitriol receptors, also known as Vitamin D receptors (VDR), are nuclear receptor proteins that bind to calcitriol (1,25-dihydroxyvitamin D3), the active form of vitamin D. These receptors are found in various tissues and cells throughout the body, including the small intestine, bone, kidney, and parathyroid gland.

When calcitriol binds to its receptor, it forms a complex that regulates the expression of genes involved in calcium and phosphate homeostasis, cell growth, differentiation, and immune function. Calcitriol receptors play a critical role in maintaining normal levels of calcium and phosphate in the blood by increasing the absorption of these minerals from the gut, promoting bone mineralization, and regulating the production of parathyroid hormone (PTH).

Calcitriol receptors have also been implicated in various disease processes, including cancer, autoimmune disorders, and infectious diseases. Modulation of calcitriol receptor activity has emerged as a potential therapeutic strategy for the treatment of these conditions.

Alendronate is a medication that falls under the class of bisphosphonates. It is commonly used in the treatment and prevention of osteoporosis in postmenopausal women and men, as well as in the management of glucocorticoid-induced osteoporosis and Paget's disease of bone.

Alendronate works by inhibiting the activity of osteoclasts, which are cells responsible for breaking down and reabsorbing bone tissue. By reducing the activity of osteoclasts, alendronate helps to slow down bone loss and increase bone density, thereby reducing the risk of fractures.

The medication is available in several forms, including tablets and oral solutions, and is typically taken once a week for osteoporosis prevention and treatment. It is important to follow the dosing instructions carefully, as improper administration can reduce the drug's effectiveness or increase the risk of side effects. Common side effects of alendronate include gastrointestinal symptoms such as heartburn, stomach pain, and nausea.

The femur is the medical term for the thigh bone, which is the longest and strongest bone in the human body. It connects the hip bone to the knee joint and plays a crucial role in supporting the weight of the body and allowing movement during activities such as walking, running, and jumping. The femur is composed of a rounded head, a long shaft, and two condyles at the lower end that articulate with the tibia and patella to form the knee joint.

Anabolic agents are a class of drugs that promote anabolism, the building up of body tissues. These agents are often used medically to help people with certain medical conditions such as muscle wasting diseases, osteoporosis, and delayed puberty. Anabolic steroids are one type of anabolic agent. They mimic the effects of testosterone, the male sex hormone, leading to increased muscle mass and strength. However, anabolic steroids also have significant side effects and can be addictive. Therefore, their use is regulated and they are only available by prescription in many countries. Abuse of anabolic steroids for non-medical purposes, such as to improve athletic performance or appearance, is illegal and can lead to serious health consequences.

Osteocytes are the most abundant cell type in mature bone tissue. They are star-shaped cells that are located inside the mineralized matrix of bones, with their processes extending into small spaces called lacunae and canaliculi. Osteocytes are derived from osteoblasts, which are bone-forming cells that become trapped within the matrix they produce.

Osteocytes play a crucial role in maintaining bone homeostasis by regulating bone remodeling, sensing mechanical stress, and modulating mineralization. They communicate with each other and with osteoblasts and osteoclasts (bone-resorbing cells) through a network of interconnected processes and via the release of signaling molecules. Osteocytes can also respond to changes in their environment, such as hormonal signals or mechanical loading, by altering their gene expression and releasing factors that regulate bone metabolism.

Dysfunction of osteocytes has been implicated in various bone diseases, including osteoporosis, osteogenesis imperfecta, and Paget's disease of bone.

Bone density conservation agents, also known as anti-resorptive agents or bone-sparing drugs, are a class of medications that help to prevent the loss of bone mass and reduce the risk of fractures. They work by inhibiting the activity of osteoclasts, the cells responsible for breaking down and reabsorbing bone tissue during the natural remodeling process.

Examples of bone density conservation agents include:

1. Bisphosphonates (e.g., alendronate, risedronate, ibandronate, zoledronic acid) - These are the most commonly prescribed class of bone density conservation agents. They bind to hydroxyapatite crystals in bone tissue and inhibit osteoclast activity, thereby reducing bone resorption.
2. Denosumab (Prolia) - This is a monoclonal antibody that targets RANKL (Receptor Activator of Nuclear Factor-κB Ligand), a key signaling molecule involved in osteoclast differentiation and activation. By inhibiting RANKL, denosumab reduces osteoclast activity and bone resorption.
3. Selective estrogen receptor modulators (SERMs) (e.g., raloxifene) - These medications act as estrogen agonists or antagonists in different tissues. In bone tissue, SERMs mimic the bone-preserving effects of estrogen by inhibiting osteoclast activity and reducing bone resorption.
4. Hormone replacement therapy (HRT) - Estrogen hormone replacement therapy has been shown to preserve bone density in postmenopausal women; however, its use is limited due to increased risks of breast cancer, cardiovascular disease, and thromboembolic events.
5. Calcitonin - This hormone, secreted by the thyroid gland, inhibits osteoclast activity and reduces bone resorption. However, it has largely been replaced by other more effective bone density conservation agents.

These medications are often prescribed for individuals at high risk of fractures due to conditions such as osteoporosis or metabolic disorders that affect bone health. It is essential to follow the recommended dosage and administration guidelines to maximize their benefits while minimizing potential side effects. Regular monitoring of bone density, blood calcium levels, and other relevant parameters is also necessary during treatment with these medications.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Fibroblast Growth Factors (FGFs) are a family of growth factors that play crucial roles in various biological processes, including cell survival, proliferation, migration, and differentiation. They bind to specific tyrosine kinase receptors (FGFRs) on the cell surface, leading to intracellular signaling cascades that regulate gene expression and downstream cellular responses. FGFs are involved in embryonic development, tissue repair, and angiogenesis (the formation of new blood vessels). There are at least 22 distinct FGFs identified in humans, each with unique functions and patterns of expression. Some FGFs, like FGF1 and FGF2, have mitogenic effects on fibroblasts and other cell types, while others, such as FGF7 and FGF10, are essential for epithelial-mesenchymal interactions during organ development. Dysregulation of FGF signaling has been implicated in various pathological conditions, including cancer, fibrosis, and developmental disorders.

Osteosarcoma is defined as a type of cancerous tumor that arises from the cells that form bones (osteoblasts). It's the most common primary bone cancer, and it typically develops in the long bones of the body, such as the arms or legs, near the growth plates. Osteosarcoma can metastasize (spread) to other parts of the body, including the lungs, making it a highly malignant form of cancer. Symptoms may include bone pain, swelling, and fractures. Treatment usually involves a combination of surgery, chemotherapy, and/or radiation therapy.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Magnesium is an essential mineral that plays a crucial role in various biological processes in the human body. It is the fourth most abundant cation in the body and is involved in over 300 enzymatic reactions, including protein synthesis, muscle and nerve function, blood glucose control, and blood pressure regulation. Magnesium also contributes to the structural development of bones and teeth.

In medical terms, magnesium deficiency can lead to several health issues, such as muscle cramps, weakness, heart arrhythmias, and seizures. On the other hand, excessive magnesium levels can cause symptoms like diarrhea, nausea, and muscle weakness. Magnesium supplements or magnesium-rich foods are often recommended to maintain optimal magnesium levels in the body.

Some common dietary sources of magnesium include leafy green vegetables, nuts, seeds, legumes, whole grains, and dairy products. Magnesium is also available in various forms as a dietary supplement, including magnesium oxide, magnesium citrate, magnesium chloride, and magnesium glycinate.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Triiodothyronine (T3) is a thyroid hormone, specifically the active form of thyroid hormone, that plays a critical role in the regulation of metabolism, growth, and development in the human body. It is produced by the thyroid gland through the iodination and coupling of the amino acid tyrosine with three atoms of iodine. T3 is more potent than its precursor, thyroxine (T4), which has four iodine atoms, as T3 binds more strongly to thyroid hormone receptors and accelerates metabolic processes at the cellular level.

In circulation, about 80% of T3 is bound to plasma proteins, while the remaining 20% is unbound or free, allowing it to enter cells and exert its biological effects. The primary functions of T3 include increasing the rate of metabolic reactions, promoting protein synthesis, enhancing sensitivity to catecholamines (e.g., adrenaline), and supporting normal brain development during fetal growth and early infancy. Imbalances in T3 levels can lead to various medical conditions, such as hypothyroidism or hyperthyroidism, which may require clinical intervention and management.

Osteitis fibrosa cystica is a medical condition that refers to the abnormal bone remodeling process characterized by increased bone resorption and formation, leading to bone thickening and weakening. It is also known as "von Recklinghausen's disease of bone" or "monostotic fibrous dysplasia."

This condition is typically caused by excessive production of parathyroid hormone (PTH) due to a benign or malignant tumor of the parathyroid gland, known as hyperparathyroidism. The overproduction of PTH leads to an imbalance in calcium and phosphorus metabolism, resulting in increased bone resorption and fibrous tissue deposition within the bone marrow.

The clinical features of osteitis fibrosa cystica include bone pain, fractures, bone deformities, and elevated levels of calcium and alkaline phosphatase in the blood. Radiographic findings may show characteristic "rugger jersey" or "salt and pepper" patterns of alternating areas of increased and decreased bone density.

Treatment typically involves surgical removal of the abnormal parathyroid gland tissue, followed by medical management to prevent further bone loss and promote healing.

Postmenopausal osteoporosis is a specific type of osteoporosis that occurs in women after they have gone through menopause. It is defined as a skeletal disorder characterized by compromised bone strength, leading to an increased risk of fractures. In this condition, the decline in estrogen levels that occurs during menopause accelerates bone loss, resulting in a decrease in bone density and quality, which can lead to fragility fractures, particularly in the hips, wrists, and spine.

It's important to note that while postmenopausal osteoporosis is more common in women, men can also develop osteoporosis due to other factors such as aging, lifestyle choices, and medical conditions.

Sodium-phosphate cotransporter proteins, type II (NPTII), are a group of membrane transport proteins that facilitate the active transport of inorganic phosphate (Pi) and sodium ions (Na+) across the cell membrane. They play a crucial role in maintaining intracellular phosphate homeostasis and regulating various physiological processes, including energy metabolism, signal transduction, and bone mineralization.

The type II sodium-phosphate cotransporters are further divided into three subtypes: NPT2a, NPT2b, and NPT2c. These subtypes differ in their tissue distribution, substrate affinity, and regulatory mechanisms. NPT2a is primarily expressed in the kidney proximal tubules and plays a major role in reabsorbing phosphate from the glomerular filtrate. NPT2b is predominantly found in the small intestine and contributes to phosphate absorption from the diet. NPT2c is widely distributed, with significant expression in the kidney, brain, and testis, although its specific functions are not as well understood as those of NPT2a and NPT2b.

Dysregulation of sodium-phosphate cotransporter proteins, type II, has been implicated in several pathological conditions, such as renal phosphate wasting disorders, tumoral calcinosis, and certain forms of hyperparathyroidism.

Thyroxine (T4) is a type of hormone produced and released by the thyroid gland, a small butterfly-shaped endocrine gland located in the front of your neck. It is one of two major hormones produced by the thyroid gland, with the other being triiodothyronine (T3).

Thyroxine plays a crucial role in regulating various metabolic processes in the body, including growth, development, and energy expenditure. Specifically, T4 helps to control the rate at which your body burns calories for energy, regulates protein, fat, and carbohydrate metabolism, and influences the body's sensitivity to other hormones.

T4 is produced by combining iodine and tyrosine, an amino acid found in many foods. Once produced, T4 circulates in the bloodstream and gets converted into its active form, T3, in various tissues throughout the body. Thyroxine has a longer half-life than T3, which means it remains active in the body for a more extended period.

Abnormal levels of thyroxine can lead to various medical conditions, such as hypothyroidism (underactive thyroid) or hyperthyroidism (overactive thyroid). These conditions can cause a range of symptoms, including weight gain or loss, fatigue, mood changes, and changes in heart rate and blood pressure.

Estradiol is a type of estrogen, which is a female sex hormone. It is the most potent and dominant form of estrogen in humans. Estradiol plays a crucial role in the development and maintenance of secondary sexual characteristics in women, such as breast development and regulation of the menstrual cycle. It also helps maintain bone density, protect the lining of the uterus, and is involved in cognition and mood regulation.

Estradiol is produced primarily by the ovaries, but it can also be synthesized in smaller amounts by the adrenal glands and fat cells. In men, estradiol is produced from testosterone through a process called aromatization. Abnormal levels of estradiol can contribute to various health issues, such as hormonal imbalances, infertility, osteoporosis, and certain types of cancer.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Juvenile hormones (JHs) are a class of sesquiterpenoid compounds that play a crucial role in the regulation of insect development, reproduction, and other physiological processes. They are primarily produced by the corpora allata, a pair of endocrine glands located in the head of insects.

JHs are essential for maintaining the larval or nymphal stage of insects, preventing the expression of adult characteristics during molting. As the concentration of JH decreases in the hemolymph (insect blood), a molt to the next developmental stage occurs, and if the insect has reached its final instar, it will metamorphose into an adult.

In addition to their role in development, JHs also influence various aspects of insect reproductive physiology, such as vitellogenesis (yolk protein synthesis), oocyte maturation, and spermatogenesis. Furthermore, JHs have been implicated in regulating diapause (a period of suspended development during unfavorable environmental conditions) and caste determination in social insects like bees and ants.

Overall, juvenile hormones are vital regulators of growth, development, and reproduction in insects, making them attractive targets for the development of novel pest management strategies.

The thyroid gland is a major endocrine gland located in the neck, anterior to the trachea and extends from the lower third of the Adams apple to the suprasternal notch. It has two lateral lobes, connected by an isthmus, and sometimes a pyramidal lobe. This gland plays a crucial role in the metabolism, growth, and development of the human body through the production of thyroid hormones (triiodothyronine/T3 and thyroxine/T4) and calcitonin. The thyroid hormones regulate body temperature, heart rate, and the production of protein, while calcitonin helps in controlling calcium levels in the blood. The function of the thyroid gland is controlled by the hypothalamus and pituitary gland through the thyroid-stimulating hormone (TSH).

The proximal kidney tubule is the initial portion of the renal tubule in the nephron of the kidney. It is located in the renal cortex and is called "proximal" because it is closer to the glomerulus, compared to the distal tubule. The proximal tubule plays a crucial role in the reabsorption of water, electrolytes, and nutrients from the filtrate that has been formed by the glomerulus. It also helps in the secretion of waste products and other substances into the urine.

The proximal tubule is divided into two segments: the pars convoluta and the pars recta. The pars convoluta is the curved portion that receives filtrate from the Bowman's capsule, while the pars recta is the straight portion that extends deeper into the renal cortex.

The proximal tubule is lined with a simple cuboidal epithelium, and its cells are characterized by numerous mitochondria, which provide energy for active transport processes. The apical surface of the proximal tubular cells has numerous microvilli, forming a brush border that increases the surface area for reabsorption.

In summary, the proximal kidney tubule is a critical site for the reabsorption of water, electrolytes, and nutrients from the glomerular filtrate, contributing to the maintenance of fluid and electrolyte balance in the body.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Paraneoplastic endocrine syndromes refer to a group of hormonal and related disorders that occur as remote effects of cancer. They are caused by substances (like hormones, peptides, or antibodies) produced by the tumor, which may be benign or malignant, and can affect various organs and systems in the body. These syndromes can occur before the cancer is diagnosed, making them an important consideration for early detection and treatment of the underlying malignancy.

Examples of paraneoplastic endocrine syndromes include:

1. Syndrome of Inappropriate Antidiuretic Hormone (SIADH): This occurs when a tumor, often small cell lung cancer, produces antidiuretic hormone (ADH), leading to excessive water retention and low sodium levels in the blood.
2. Cushing's Syndrome: Excessive production of adrenocorticotropic hormone (ACTH) by a tumor, often a small cell lung cancer or pancreatic neuroendocrine tumor, can lead to increased cortisol levels and symptoms such as weight gain, muscle weakness, and mood changes.
3. Ectopic Production of Parathyroid Hormone-Related Peptide (PTHrP): This occurs when a tumor, often a squamous cell carcinoma, produces PTHrP, leading to increased calcium levels in the blood and symptoms such as bone pain, kidney stones, and confusion.
4. Hypercalcemia of Malignancy: Excessive production of calcitriol (active vitamin D) by a tumor, often a lymphoma or myeloma, can lead to increased calcium levels in the blood and symptoms such as bone pain, kidney stones, and confusion.
5. Carcinoid Syndrome: This occurs when a neuroendocrine tumor, often in the gastrointestinal tract, produces serotonin and other substances, leading to symptoms such as flushing, diarrhea, and heart problems.

It is important to note that these syndromes can also be caused by non-cancerous conditions, so a thorough evaluation is necessary to make an accurate diagnosis.

Iodine isotopes are different forms of the chemical element iodine, which have different numbers of neutrons in their nuclei. Iodine has a total of 53 protons in its nucleus, and its stable isotope, iodine-127, has 74 neutrons, giving it a mass number of 127. However, there are also radioactive isotopes of iodine, which have different numbers of neutrons and are therefore unstable.

Radioactive isotopes of iodine emit radiation as they decay towards a stable state. For example, iodine-131 is a commonly used isotope in medical imaging and therapy, with a half-life of about 8 days. It decays by emitting beta particles and gamma rays, making it useful for treating thyroid cancer and other conditions that involve overactive thyroid glands.

Other radioactive iodine isotopes include iodine-123, which has a half-life of about 13 hours and is used in medical imaging, and iodine-125, which has a half-life of about 60 days and is used in brachytherapy (a type of radiation therapy that involves placing radioactive sources directly into or near tumors).

It's important to note that exposure to radioactive iodine isotopes can be harmful, especially if it occurs through inhalation or ingestion. This is because the iodine can accumulate in the thyroid gland and cause damage over time. Therefore, appropriate safety measures must be taken when handling or working with radioactive iodine isotopes.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Osteomalacia is a medical condition characterized by the softening of bones due to defective bone mineralization, resulting from inadequate vitamin D, phosphate, or calcium. It mainly affects adults and is different from rickets, which occurs in children. The primary symptom is bone pain, but muscle weakness can also occur. Prolonged osteomalacia may lead to skeletal deformities and an increased risk of fractures. Treatment typically involves supplementation with vitamin D, calcium, and sometimes phosphate.

Hydroxyproline is not a medical term per se, but it is a significant component in the medical field, particularly in the study of connective tissues and collagen. Here's a scientific definition:

Hydroxyproline is a modified amino acid that is formed by the post-translational modification of the amino acid proline in collagen and some other proteins. This process involves the addition of a hydroxyl group (-OH) to the proline residue, which alters its chemical properties and contributes to the stability and structure of collagen fibers. Collagen is the most abundant protein in the human body and is a crucial component of connective tissues such as tendons, ligaments, skin, and bones. The presence and quantity of hydroxyproline can serve as a marker for collagen turnover and degradation, making it relevant to various medical and research contexts, including the study of diseases affecting connective tissues like osteoarthritis, rheumatoid arthritis, and Ehlers-Danlos syndrome.

Cell surface receptors, also known as membrane receptors, are proteins located on the cell membrane that bind to specific molecules outside the cell, known as ligands. These receptors play a crucial role in signal transduction, which is the process of converting an extracellular signal into an intracellular response.

Cell surface receptors can be classified into several categories based on their structure and mechanism of action, including:

1. Ion channel receptors: These receptors contain a pore that opens to allow ions to flow across the cell membrane when they bind to their ligands. This ion flux can directly activate or inhibit various cellular processes.
2. G protein-coupled receptors (GPCRs): These receptors consist of seven transmembrane domains and are associated with heterotrimeric G proteins that modulate intracellular signaling pathways upon ligand binding.
3. Enzyme-linked receptors: These receptors possess an intrinsic enzymatic activity or are linked to an enzyme, which becomes activated when the receptor binds to its ligand. This activation can lead to the initiation of various signaling cascades within the cell.
4. Receptor tyrosine kinases (RTKs): These receptors contain intracellular tyrosine kinase domains that become activated upon ligand binding, leading to the phosphorylation and activation of downstream signaling molecules.
5. Integrins: These receptors are transmembrane proteins that mediate cell-cell or cell-matrix interactions by binding to extracellular matrix proteins or counter-receptors on adjacent cells. They play essential roles in cell adhesion, migration, and survival.

Cell surface receptors are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and cell growth and differentiation. Dysregulation of these receptors can contribute to the development of numerous diseases, such as cancer, diabetes, and neurological disorders.

Calcium metabolism disorders refer to a group of medical conditions that affect the body's ability to properly regulate the levels of calcium in the blood and tissues. Calcium is an essential mineral that plays a critical role in many bodily functions, including bone health, muscle contraction, nerve function, and blood clotting.

There are several types of calcium metabolism disorders, including:

1. Hypocalcemia: This is a condition characterized by low levels of calcium in the blood. It can be caused by various factors such as vitamin D deficiency, hypoparathyroidism, and certain medications. Symptoms may include muscle cramps, spasms, and tingling sensations in the fingers and toes.
2. Hypercalcemia: This is a condition characterized by high levels of calcium in the blood. It can be caused by various factors such as hyperparathyroidism, cancer, and certain medications. Symptoms may include fatigue, weakness, confusion, and kidney stones.
3. Osteoporosis: This is a condition characterized by weak and brittle bones due to low calcium levels in the bones. It can be caused by various factors such as aging, menopause, vitamin D deficiency, and certain medications. Symptoms may include bone fractures and loss of height.
4. Paget's disease: This is a condition characterized by abnormal bone growth and deformities due to disordered calcium metabolism. It can be caused by various factors such as genetics, age, and certain medications. Symptoms may include bone pain, fractures, and deformities.

Treatment for calcium metabolism disorders depends on the underlying cause of the condition. It may involve supplements, medication, dietary changes, or surgery. Proper diagnosis and management are essential to prevent complications such as kidney stones, bone fractures, and neurological damage.

Kidney tubules are the structural and functional units of the kidney responsible for reabsorption, secretion, and excretion of various substances. They are part of the nephron, which is the basic unit of the kidney's filtration and reabsorption process.

There are three main types of kidney tubules:

1. Proximal tubule: This is the initial segment of the kidney tubule that receives the filtrate from the glomerulus. It is responsible for reabsorbing approximately 65% of the filtrate, including water, glucose, amino acids, and electrolytes.
2. Loop of Henle: This U-shaped segment of the tubule consists of a thin descending limb, a thin ascending limb, and a thick ascending limb. The loop of Henle helps to concentrate urine by creating an osmotic gradient that allows water to be reabsorbed in the collecting ducts.
3. Distal tubule: This is the final segment of the kidney tubule before it empties into the collecting duct. It is responsible for fine-tuning the concentration of electrolytes and pH balance in the urine by selectively reabsorbing or secreting substances such as sodium, potassium, chloride, and hydrogen ions.

Overall, kidney tubules play a critical role in maintaining fluid and electrolyte balance, regulating acid-base balance, and removing waste products from the body.

Pathologic bone demineralization is a condition characterized by the loss of minerals, such as calcium and phosphate, from the bones. This process makes the bones more porous, weaker, and more susceptible to fractures. It can occur due to various medical conditions, including osteoporosis, hyperparathyroidism, Paget's disease of bone, and cancer that has spread to the bones (metastatic cancer).

In a healthy individual, the body constantly remodels the bones by removing old bone tissue (resorption) and replacing it with new tissue. This process is regulated by two types of cells: osteoclasts, which are responsible for bone resorption, and osteoblasts, which produce new bone tissue. In pathologic bone demineralization, there is an imbalance between the activity of these two cell types, with excessive resorption and inadequate formation of new bone tissue.

Pathologic bone demineralization can lead to a range of symptoms, including bone pain, fractures, loss of height, and a decreased ability to perform daily activities. Treatment for this condition depends on the underlying cause but may include medications that slow down bone resorption or promote bone formation, as well as lifestyle changes such as exercise and dietary modifications.

Multiple Endocrine Neoplasia Type 1 (MEN1) is a rare inherited disorder characterized by the development of tumors in various endocrine glands. These tumors can be benign or malignant and may lead to overproduction of hormones, causing a variety of symptoms. The three main endocrine glands affected in MEN1 are:

1. Parathyroid glands: Over 90% of individuals with MEN1 develop multiple parathyroid tumors (parathyroid hyperplasia), leading to primary hyperparathyroidism, which results in high levels of calcium in the blood.
2. Pancreas: Up to 80% of individuals with MEN1 develop pancreatic neuroendocrine tumors (PNETs). These tumors can produce and release various hormones, such as gastrin, insulin, glucagon, and vasoactive intestinal peptide (VIP), leading to specific clinical syndromes like Zollinger-Ellison syndrome, hypoglycemia, or watery diarrhea.
3. Pituitary gland: Approximately 30-40% of individuals with MEN1 develop pituitary tumors, most commonly prolactinomas, which can cause menstrual irregularities, galactorrhea (milk production), and visual field defects.

MEN1 is caused by mutations in the MEN1 gene, located on chromosome 11, and it is inherited in an autosomal dominant manner. This means that a person has a 50% chance of inheriting the disease-causing mutation from an affected parent. The diagnosis of MEN1 typically requires meeting specific clinical criteria or having a positive genetic test for a pathogenic MEN1 gene variant. Regular monitoring and early intervention are crucial in managing this condition to prevent complications and improve outcomes.

Chronic Renal Insufficiency (CRI) is a medical condition characterized by a gradual and progressive loss of kidney function over a period of months or years. It is also known as Chronic Kidney Disease (CKD). The main function of the kidneys is to filter waste products and excess fluids from the blood, which are then excreted in the urine. When the kidneys become insufficient, these waste products and fluids accumulate in the body, leading to various complications.

CRI is defined as a glomerular filtration rate (GFR) of less than 60 ml/min/1.73m2 for three months or more, regardless of cause. GFR is a measure of kidney function that estimates how well the kidneys are filtering waste products from the blood. The condition is classified into five stages based on the severity of the disease and the GFR value.

Stage 1: GFR greater than or equal to 90 ml/min/1.73m2
Stage 2: GFR between 60-89 ml/min/1.73m2
Stage 3: GFR between 30-59 ml/min/1.73m2
Stage 4: GFR between 15-29 ml/min/1.73m2
Stage 5: GFR less than 15 ml/min/1.73m2 or dialysis

CRI can be caused by various underlying conditions such as diabetes, hypertension, glomerulonephritis, polycystic kidney disease, and other genetic or acquired disorders. Symptoms of CRI may include fatigue, weakness, loss of appetite, swelling in the legs and ankles, shortness of breath, and changes in urination patterns. Treatment for CRI focuses on slowing down the progression of the disease, managing symptoms, and preventing complications. This may involve lifestyle modifications, medication, dialysis, or kidney transplantation.

Homeostasis is a fundamental concept in the field of medicine and physiology, referring to the body's ability to maintain a stable internal environment, despite changes in external conditions. It is the process by which biological systems regulate their internal environment to remain in a state of dynamic equilibrium. This is achieved through various feedback mechanisms that involve sensors, control centers, and effectors, working together to detect, interpret, and respond to disturbances in the system.

For example, the body maintains homeostasis through mechanisms such as temperature regulation (through sweating or shivering), fluid balance (through kidney function and thirst), and blood glucose levels (through insulin and glucagon secretion). When homeostasis is disrupted, it can lead to disease or dysfunction in the body.

In summary, homeostasis is the maintenance of a stable internal environment within biological systems, through various regulatory mechanisms that respond to changes in external conditions.

Subcutaneous injection is a route of administration where a medication or vaccine is delivered into the subcutaneous tissue, which lies between the skin and the muscle. This layer contains small blood vessels, nerves, and connective tissues that help to absorb the medication slowly and steadily over a period of time. Subcutaneous injections are typically administered using a short needle, at an angle of 45-90 degrees, and the dose is injected slowly to minimize discomfort and ensure proper absorption. Common sites for subcutaneous injections include the abdomen, thigh, or upper arm. Examples of medications that may be given via subcutaneous injection include insulin, heparin, and some vaccines.

Kidney disease, also known as nephropathy or renal disease, refers to any functional or structural damage to the kidneys that impairs their ability to filter blood, regulate electrolytes, produce hormones, and maintain fluid balance. This damage can result from a wide range of causes, including diabetes, hypertension, glomerulonephritis, polycystic kidney disease, lupus, infections, drugs, toxins, and congenital or inherited disorders.

Depending on the severity and progression of the kidney damage, kidney diseases can be classified into two main categories: acute kidney injury (AKI) and chronic kidney disease (CKD). AKI is a sudden and often reversible loss of kidney function that occurs over hours to days, while CKD is a progressive and irreversible decline in kidney function that develops over months or years.

Symptoms of kidney diseases may include edema, proteinuria, hematuria, hypertension, electrolyte imbalances, metabolic acidosis, anemia, and decreased urine output. Treatment options depend on the underlying cause and severity of the disease and may include medications, dietary modifications, dialysis, or kidney transplantation.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Growth Hormone-Releasing Hormone (GHRH) is a hormone that is produced and released by the hypothalamus, a small gland located in the brain. Its primary function is to stimulate the anterior pituitary gland to release growth hormone (GH) into the bloodstream. GH plays a crucial role in growth and development, particularly during childhood and adolescence, by promoting the growth of bones and muscles.

GHRH is a 44-amino acid peptide that binds to specific receptors on the surface of pituitary cells, triggering a series of intracellular signals that ultimately lead to the release of GH. The production and release of GHRH are regulated by various factors, including sleep, stress, exercise, and nutrition.

Abnormalities in the production or function of GHRH can lead to growth disorders, such as dwarfism or gigantism, as well as other hormonal imbalances. Therefore, understanding the role of GHRH in regulating GH release is essential for diagnosing and treating these conditions.

Physiologic calcification is the normal deposit of calcium salts in body tissues and organs. It is a natural process that occurs as part of the growth and development of the human body, as well as during the repair and remodeling of tissues.

Calcium is an essential mineral that plays a critical role in many bodily functions, including bone formation, muscle contraction, nerve impulse transmission, and blood clotting. In order to maintain proper levels of calcium in the body, excess calcium that is not needed for these functions may be deposited in various tissues as a normal part of the aging process.

Physiologic calcification typically occurs in areas such as the walls of blood vessels, the lungs, and the heart valves. While these calcifications are generally harmless, they can sometimes lead to complications, particularly if they occur in large amounts or in sensitive areas. For example, calcification of the coronary arteries can increase the risk of heart disease, while calcification of the lung tissue can cause respiratory symptoms.

It is important to note that pathologic calcification, on the other hand, refers to the abnormal deposit of calcium salts in tissues and organs, which can be caused by various medical conditions such as chronic kidney disease, hyperparathyroidism, and certain infections. Pathologic calcification is not a normal process and can lead to serious health complications if left untreated.

Heterogeneous Nuclear Ribonucleoprotein D (hnRNP D) is a member of the family of heterogeneous nuclear ribonucleoproteins (hnRNPs). These proteins are involved in various aspects of RNA metabolism, such as processing, transport, and stability. Specifically, hnRNP D, also known as AU-rich element RNA-binding protein 1 (AUF1), is a single-stranded nucleic acid-binding protein that binds to specific sequences in the 3' untranslated region of certain mRNAs, including those that are involved in inflammatory responses and oncogenesis. By binding to these sequences, hnRNP D can regulate the stability, translation, and localization of target mRNAs. It is a shuttling protein that can be found both in the nucleus and cytoplasm. Mutations in the gene encoding hnRNP D have been associated with several human diseases, including cancer and neurological disorders.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Dihydrotachysterol is a synthetic form of vitamin D that is used as a medication to treat hypocalcemia (low levels of calcium in the blood) in people with certain medical conditions, such as hypoparathyroidism and vitamin D deficiency. It works by increasing the absorption of calcium from the gut and promoting the release of calcium from bones into the bloodstream.

Dihydrotachysterol is available in tablet form and is typically taken once or twice a day, with the dosage adjusted based on the individual's response to treatment and serum calcium levels. Common side effects of dihydrotachysterol include hypercalcemia (high levels of calcium in the blood), nausea, vomiting, and constipation. It is important to monitor serum calcium levels regularly while taking this medication to prevent toxicity.

Testosterone is a steroid hormone that belongs to androsten class of hormones. It is primarily secreted by the Leydig cells in the testes of males and, to a lesser extent, by the ovaries and adrenal glands in females. Testosterone is the main male sex hormone and anabolic steroid. It plays a key role in the development of masculine characteristics, such as body hair and muscle mass, and contributes to bone density, fat distribution, red cell production, and sex drive. In females, testosterone contributes to sexual desire and bone health. Testosterone is synthesized from cholesterol and its production is regulated by luteinizing hormone (LH) and follicle-stimulating hormone (FSH).

Photon Absorptiometry is a medical technique used to measure the absorption of photons (light particles) by tissues or materials. In clinical practice, it is often used as a non-invasive method for measuring bone mineral density (BMD). This technique uses a low-energy X-ray beam or gamma ray to penetrate the tissue and then measures the amount of radiation absorbed by the bone. The amount of absorption is related to the density and thickness of the bone, allowing for an assessment of BMD. It can be used to diagnose osteoporosis and monitor treatment response in patients with bone diseases. There are two types of photon absorptiometry: single-photon absorptiometry (SPA) and dual-photon absorptiometry (DPA). SPA uses one energy level, while DPA uses two different energy levels to measure BMD, providing more precise measurements.

The tibia, also known as the shin bone, is the larger of the two bones in the lower leg and part of the knee joint. It supports most of the body's weight and is a major insertion point for muscles that flex the foot and bend the leg. The tibia articulates with the femur at the knee joint and with the fibula and talus bone at the ankle joint. Injuries to the tibia, such as fractures, are common in sports and other activities that put stress on the lower leg.

GTP-binding protein alpha subunits, Gs, are a type of heterotrimeric G proteins that play a crucial role in the transmission of signals within cells. These proteins are composed of three subunits: alpha, beta, and gamma. The alpha subunit of Gs proteins (Gs-alpha) is responsible for activating adenylyl cyclase, an enzyme that converts ATP to cyclic AMP (cAMP), a secondary messenger involved in various cellular processes.

When a G protein-coupled receptor (GPCR) is activated by an extracellular signal, it interacts with and activates the Gs protein. This activation causes the exchange of guanosine diphosphate (GDP) bound to the alpha subunit with guanosine triphosphate (GTP). The GTP-bound Gs-alpha then dissociates from the beta-gamma subunits and interacts with adenylyl cyclase, activating it and leading to an increase in cAMP levels. This signaling cascade ultimately results in various cellular responses, such as changes in gene expression, metabolism, or cell growth and differentiation.

It is important to note that mutations in the GNAS gene, which encodes the Gs-alpha subunit, can lead to several endocrine and non-endocrine disorders, such as McCune-Albright syndrome, fibrous dysplasia, and various hormone-related diseases.

Ovariectomy is a surgical procedure in which one or both ovaries are removed. It is also known as "ovary removal" or "oophorectomy." This procedure is often performed as a treatment for various medical conditions, including ovarian cancer, endometriosis, uterine fibroids, and pelvic pain. Ovariectomy can also be part of a larger surgical procedure called an hysterectomy, in which the uterus is also removed.

In some cases, an ovariectomy may be performed as a preventative measure for individuals at high risk of developing ovarian cancer. This is known as a prophylactic ovariectomy. After an ovariectomy, a person will no longer have menstrual periods and will be unable to become pregnant naturally. Hormone replacement therapy may be recommended in some cases to help manage symptoms associated with the loss of hormones produced by the ovaries.

The pituitary gland is a small, endocrine gland located at the base of the brain, in the sella turcica of the sphenoid bone. It is often called the "master gland" because it controls other glands and makes the hormones that trigger many body functions. The pituitary gland measures about 0.5 cm in height and 1 cm in width, and it weighs approximately 0.5 grams.

The pituitary gland is divided into two main parts: the anterior lobe (adenohypophysis) and the posterior lobe (neurohypophysis). The anterior lobe is further divided into three zones: the pars distalis, pars intermedia, and pars tuberalis. Each part of the pituitary gland has distinct functions and produces different hormones.

The anterior pituitary gland produces and releases several important hormones, including:

* Growth hormone (GH), which regulates growth and development in children and helps maintain muscle mass and bone strength in adults.
* Thyroid-stimulating hormone (TSH), which controls the production of thyroid hormones by the thyroid gland.
* Adrenocorticotropic hormone (ACTH), which stimulates the adrenal glands to produce cortisol and other steroid hormones.
* Follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which regulate reproductive function in both males and females.
* Prolactin, which stimulates milk production in pregnant and lactating women.

The posterior pituitary gland stores and releases two hormones that are produced by the hypothalamus:

* Antidiuretic hormone (ADH), which helps regulate water balance in the body by controlling urine production.
* Oxytocin, which stimulates uterine contractions during childbirth and milk release during breastfeeding.

Overall, the pituitary gland plays a critical role in maintaining homeostasis and regulating various bodily functions, including growth, development, metabolism, and reproductive function.

The intraoperative period is the phase of surgical treatment that refers to the time during which the surgery is being performed. It begins when the anesthesia is administered and the patient is prepared for the operation, and it ends when the surgery is completed, the anesthesia is discontinued, and the patient is transferred to the recovery room or intensive care unit (ICU).

During the intraoperative period, the surgical team, including surgeons, anesthesiologists, nurses, and other healthcare professionals, work together to carry out the surgical procedure safely and effectively. The anesthesiologist monitors the patient's vital signs, such as heart rate, blood pressure, oxygen saturation, and body temperature, throughout the surgery to ensure that the patient remains stable and does not experience any complications.

The surgeon performs the operation, using various surgical techniques and instruments to achieve the desired outcome. The surgical team also takes measures to prevent infection, control bleeding, and manage pain during and after the surgery.

Overall, the intraoperative period is a critical phase of surgical treatment that requires close collaboration and communication among members of the healthcare team to ensure the best possible outcomes for the patient.

Thyrotropin, also known as thyroid-stimulating hormone (TSH), is a hormone secreted by the anterior pituitary gland. Its primary function is to regulate the production and release of thyroxine (T4) and triiodothyronine (T3) hormones from the thyroid gland. Thyrotropin binds to receptors on the surface of thyroid follicular cells, stimulating the uptake of iodide and the synthesis and release of T4 and T3. The secretion of thyrotropin is controlled by the hypothalamic-pituitary-thyroid axis: thyrotropin-releasing hormone (TRH) from the hypothalamus stimulates the release of thyrotropin, while T3 and T4 inhibit its release through a negative feedback mechanism.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Aniline compounds, also known as aromatic amines, are organic compounds that contain a benzene ring substituted with an amino group (-NH2). Aniline itself is the simplest and most common aniline compound, with the formula C6H5NH2.

Aniline compounds are important in the chemical industry and are used in the synthesis of a wide range of products, including dyes, pharmaceuticals, and rubber chemicals. They can be produced by reducing nitrobenzene or by directly substituting ammonia onto benzene in a process called amination.

It is important to note that aniline compounds are toxic and can cause serious health effects, including damage to the liver, kidneys, and central nervous system. They can also be absorbed through the skin and are known to have carcinogenic properties. Therefore, appropriate safety measures must be taken when handling aniline compounds.

Calcinosis is a medical condition characterized by the abnormal deposit of calcium salts in various tissues of the body, commonly under the skin or in the muscles and tendons. These calcium deposits can form hard lumps or nodules that can cause pain, inflammation, and restricted mobility. Calcinosis can occur as a complication of other medical conditions, such as autoimmune disorders, kidney disease, and hypercalcemia (high levels of calcium in the blood). In some cases, the cause of calcinosis may be unknown. Treatment for calcinosis depends on the underlying cause and may include medications to manage calcium levels, physical therapy, and surgical removal of large deposits.

Phosphorus metabolism disorders refer to a group of conditions that affect the body's ability to properly regulate the levels and utilization of phosphorus. Phosphorus is an essential mineral that plays a critical role in many biological processes, including energy production, bone formation, and nerve function.

Disorders of phosphorus metabolism can result from genetic defects, kidney dysfunction, vitamin D deficiency, or other medical conditions. These disorders can lead to abnormal levels of phosphorus in the blood, which can cause a range of symptoms, including muscle weakness, bone pain, seizures, and respiratory failure.

Examples of phosphorus metabolism disorders include:

1. Hypophosphatemia: This is a condition characterized by low levels of phosphorus in the blood. It can be caused by various factors, such as malnutrition, vitamin D deficiency, and kidney dysfunction.
2. Hyperphosphatemia: This is a condition characterized by high levels of phosphorus in the blood. It can be caused by kidney failure, tumor lysis syndrome, and certain medications.
3. Hereditary hypophosphatemic rickets: This is a genetic disorder that affects the body's ability to regulate vitamin D and phosphorus metabolism. It can lead to weakened bones and skeletal deformities.
4. Oncogenic osteomalacia: This is a rare condition that occurs when tumors produce substances that interfere with phosphorus metabolism, leading to bone pain and weakness.

Treatment for phosphorus metabolism disorders depends on the underlying cause of the disorder and may include dietary changes, supplements, medications, or surgery.

Corticotropin-Releasing Hormone (CRH) is a hormone that is produced and released by the hypothalamus, a small gland located in the brain. CRH plays a critical role in the body's stress response system.

When the body experiences stress, the hypothalamus releases CRH, which then travels to the pituitary gland, another small gland located at the base of the brain. Once there, CRH stimulates the release of adrenocorticotropic hormone (ACTH) from the pituitary gland.

ACTH then travels through the bloodstream to the adrenal glands, which are located on top of the kidneys. ACTH stimulates the adrenal glands to produce and release cortisol, a hormone that helps the body respond to stress by regulating metabolism, immune function, and blood pressure, among other things.

Overall, CRH is an important part of the hypothalamic-pituitary-adrenal (HPA) axis, which regulates many bodily functions related to stress response, mood, and cognition. Dysregulation of the HPA axis and abnormal levels of CRH have been implicated in various psychiatric and medical conditions, including depression, anxiety disorders, post-traumatic stress disorder (PTSD), and Cushing's syndrome.

Rickets is a medical condition characterized by the softening and weakening of bones in children, primarily caused by deficiency of vitamin D, calcium, or phosphate. It leads to skeletal deformities, bone pain, and growth retardation. Prolonged lack of sunlight exposure, inadequate intake of vitamin D-rich foods, or impaired absorption or utilization of vitamin D can contribute to the development of rickets.

Creatinine is a waste product that's produced by your muscles and removed from your body by your kidneys. Creatinine is a breakdown product of creatine, a compound found in meat and fish, as well as in the muscles of vertebrates, including humans.

In healthy individuals, the kidneys filter out most of the creatinine and eliminate it through urine. However, when the kidneys are not functioning properly, creatinine levels in the blood can rise. Therefore, measuring the amount of creatinine in the blood or urine is a common way to test how well the kidneys are working. High creatinine levels in the blood may indicate kidney damage or kidney disease.

A Sodium-Hydrogen Antiporter (NHA) is a type of membrane transport protein that exchanges sodium ions (Na+) and protons (H+) across a biological membrane. It is also known as a Na+/H+ antiporter or exchanger. This exchange mechanism plays a crucial role in regulating pH, cell volume, and intracellular sodium concentration within various cells and organelles, including the kidney, brain, heart, and mitochondria.

In general, NHA transporters utilize the energy generated by the electrochemical gradient of sodium ions across a membrane to drive the uphill transport of protons from inside to outside the cell or organelle. This process helps maintain an optimal intracellular pH and volume, which is essential for proper cellular function and homeostasis.

There are several isoforms of Sodium-Hydrogen Antiporters found in different tissues and organelles, each with distinct physiological roles and regulatory mechanisms. Dysfunction or alterations in NHA activity have been implicated in various pathophysiological conditions, such as hypertension, heart failure, neurological disorders, and cancer.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Hypothalamic hormones are a group of hormones that are produced and released by the hypothalamus, a small region at the base of the brain. These hormones play a crucial role in regulating various bodily functions, including temperature, hunger, thirst, sleep, and emotional behavior.

The hypothalamus produces two main types of hormones: releasing hormones and inhibiting hormones. Releasing hormones stimulate the pituitary gland to release its own hormones, while inhibiting hormones prevent the pituitary gland from releasing hormones.

Some examples of hypothalamic hormones include:

* Thyroid-releasing hormone (TRH), which stimulates the release of thyroid-stimulating hormone (TSH) from the pituitary gland.
* Growth hormone-releasing hormone (GHRH) and somatostatin, which regulate the release of growth hormone (GH) from the pituitary gland.
* Gonadotropin-releasing hormone (GnRH), which stimulates the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland, which in turn regulate reproductive function.
* Corticotropin-releasing hormone (CRH), which stimulates the release of adrenocorticotropic hormone (ACTH) from the pituitary gland, which regulates the stress response.
* Prolactin-inhibiting hormone (PIH) and prolactin-releasing hormone (PRH), which regulate the release of prolactin from the pituitary gland, which is involved in lactation.

Overall, hypothalamic hormones play a critical role in maintaining homeostasis in the body by regulating various physiological processes.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

The chemical element aluminum (or aluminium in British English) is a silvery-white, soft, non-magnetic, ductile metal. The atomic number of aluminum is 13 and its symbol on the periodic table is Al. It is the most abundant metallic element in the Earth's crust and is found in a variety of minerals such as bauxite.

Aluminum is resistant to corrosion due to the formation of a thin layer of aluminum oxide on its surface that protects it from further oxidation. It is lightweight, has good thermal and electrical conductivity, and can be easily formed and machined. These properties make aluminum a widely used metal in various industries such as construction, packaging, transportation, and electronics.

In the medical field, aluminum is used in some medications and medical devices. For example, aluminum hydroxide is commonly used as an antacid to neutralize stomach acid and treat heartburn, while aluminum salts are used as adjuvants in vaccines to enhance the immune response. However, excessive exposure to aluminum can be harmful and has been linked to neurological disorders such as Alzheimer's disease, although the exact relationship between aluminum and these conditions is not fully understood.

Distal kidney tubules are the final segment of the renal tubule in the nephron of the kidney. The nephron is the basic unit of the kidney that filters blood and produces urine. After the filtrate leaves the glomerulus, it enters the proximal tubule where most of the reabsorption of water, electrolytes, and nutrients occurs.

The filtrate then moves into the loop of Henle, which is divided into a thin and thick descending limb and a thin and thick ascending limb. The loop of Henle helps to establish a concentration gradient in the medullary interstitium, allowing for the reabsorption of water in the collecting ducts.

The distal tubule is the last segment of the renal tubule before the filtrate enters the collecting duct. It is a relatively short structure that receives filtrate from the thick ascending limb of the loop of Henle. The distal tubule plays an important role in regulating electrolyte and water balance by actively transporting ions such as sodium, potassium, and chloride.

The distal tubule also contains specialized cells called principal cells and intercalated cells that are responsible for secreting or reabsorbing hydrogen and potassium ions to maintain acid-base balance. Additionally, the distal tubule is a site of action for several hormones, including aldosterone, which stimulates sodium reabsorption and potassium excretion, and vasopressin (antidiuretic hormone), which promotes water reabsorption in the collecting ducts.

Hypercalciuria is a medical condition characterized by an excessive amount of calcium in the urine. It can occur when the body absorbs too much calcium from food, or when the bones release more calcium than usual. In some cases, it may be caused by certain medications, kidney disorders, or genetic factors.

Hypercalciuria can increase the risk of developing kidney stones and other kidney problems. It is often diagnosed through a 24-hour urine collection test that measures the amount of calcium in the urine. Treatment may include changes in diet, increased fluid intake, and medications to help reduce the amount of calcium in the urine.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

A bone fracture is a medical condition in which there is a partial or complete break in the continuity of a bone due to external or internal forces. Fractures can occur in any bone in the body and can vary in severity from a small crack to a shattered bone. The symptoms of a bone fracture typically include pain, swelling, bruising, deformity, and difficulty moving the affected limb. Treatment for a bone fracture may involve immobilization with a cast or splint, surgery to realign and stabilize the bone, or medication to manage pain and prevent infection. The specific treatment approach will depend on the location, type, and severity of the fracture.

Familial Hypophosphatemia is a genetic disorder characterized by low levels of phosphate in the blood (hypophosphatemia) due to impaired absorption of phosphates in the gut. This condition results from mutations in the SLC34A3 gene, which provides instructions for making a protein called NaPi-IIc, responsible for reabsorbing phosphates from the filtrate in the kidney tubules back into the bloodstream.

In familial hypophosphatemia, the impaired function of NaPi-IIc leads to excessive loss of phosphate through urine, resulting in hypophosphatemia. This condition can cause rickets (a softening and weakening of bones) in children and osteomalacia (softening of bones) in adults. Symptoms may include bowed legs, bone pain, muscle weakness, and short stature.

Familial Hypophosphatemia is inherited as an autosomal recessive trait, meaning that an individual must inherit two copies of the mutated gene (one from each parent) to develop the condition.

Osteoprotegerin (OPG) is a soluble decoy receptor for the receptor activator of nuclear factor kappa-B ligand (RANKL). It is a member of the tumor necrosis factor (TNF) receptor superfamily and plays a crucial role in regulating bone metabolism. By binding to RANKL, OPG prevents it from interacting with its signaling receptor RANK on the surface of osteoclast precursor cells, thereby inhibiting osteoclast differentiation, activation, and survival. This results in reduced bone resorption and increased bone mass.

In addition to its role in bone homeostasis, OPG has also been implicated in various physiological and pathological processes, including immune regulation, cancer progression, and cardiovascular disease.

Prolactin is a hormone produced by the pituitary gland, a small gland located at the base of the brain. Its primary function is to stimulate milk production in women after childbirth, a process known as lactation. However, prolactin also plays other roles in the body, including regulating immune responses, metabolism, and behavior. In men, prolactin helps maintain the sexual glands and contributes to paternal behaviors.

Prolactin levels are usually low in both men and non-pregnant women but increase significantly during pregnancy and after childbirth. Various factors can affect prolactin levels, including stress, sleep, exercise, and certain medications. High prolactin levels can lead to medical conditions such as amenorrhea (absence of menstruation), galactorrhea (spontaneous milk production not related to childbirth), infertility, and reduced sexual desire in both men and women.

Diphosphonates are a class of medications that are used to treat bone diseases, such as osteoporosis and Paget's disease. They work by binding to the surface of bones and inhibiting the activity of bone-resorbing cells called osteoclasts. This helps to slow down the breakdown and loss of bone tissue, which can help to reduce the risk of fractures.

Diphosphonates are typically taken orally in the form of tablets, but some forms may be given by injection. Commonly prescribed diphosphonates include alendronate (Fosamax), risedronate (Actonel), and ibandronate (Boniva). Side effects of diphosphonates can include gastrointestinal symptoms such as nausea, heartburn, and abdominal pain. In rare cases, they may also cause esophageal ulcers or osteonecrosis of the jaw.

It is important to follow the instructions for taking diphosphonates carefully, as they must be taken on an empty stomach with a full glass of water and the patient must remain upright for at least 30 minutes after taking the medication to reduce the risk of esophageal irritation. Regular monitoring of bone density and kidney function is also recommended while taking these medications.

An immunoassay is a biochemical test that measures the presence or concentration of a specific protein, antibody, or antigen in a sample using the principles of antibody-antigen reactions. It is commonly used in clinical laboratories to diagnose and monitor various medical conditions such as infections, hormonal disorders, allergies, and cancer.

Immunoassays typically involve the use of labeled reagents, such as enzymes, radioisotopes, or fluorescent dyes, that bind specifically to the target molecule. The amount of label detected is proportional to the concentration of the target molecule in the sample, allowing for quantitative analysis.

There are several types of immunoassays, including enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), fluorescence immunoassay (FIA), and chemiluminescent immunoassay (CLIA). Each type has its own advantages and limitations, depending on the sensitivity, specificity, and throughput required for a particular application.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

A growth plate, also known as an epiphyseal plate or physis, is a layer of cartilaginous tissue found near the ends of long bones in children and adolescents. This region is responsible for the longitudinal growth of bones during development. The growth plate contains actively dividing cells that differentiate into chondrocytes, which produce and deposit new matrix, leading to bone elongation. Once growth is complete, usually in late adolescence or early adulthood, the growth plates ossify (harden) and are replaced by solid bone, transforming into the epiphyseal line.

A choristoma is a type of growth that occurs when normally functioning tissue is found in an abnormal location within the body. It is not cancerous or harmful, but it can cause problems if it presses on surrounding structures or causes symptoms. Choristomas are typically congenital, meaning they are present at birth, and are thought to occur due to developmental errors during embryonic growth. They can be found in various organs and tissues throughout the body, including the brain, eye, skin, and gastrointestinal tract.

Anti-Mullerian Hormone (AMH) is a glycoprotein hormone that belongs to the transforming growth factor-beta (TGF-β) family. It is primarily produced by the granulosa cells of developing follicles in the ovaries of females. AMH plays an essential role in female reproductive physiology, as it inhibits the recruitment and further development of primordial follicles, thereby regulating the size of the primordial follicle pool and the onset of puberty.

AMH levels are often used as a biomarker for ovarian reserve assessment in women. High AMH levels indicate a larger ovarian reserve, while low levels suggest a decreased reserve, which may be associated with reduced fertility or an earlier onset of menopause. Additionally, measuring AMH levels can help predict the response to ovarian stimulation during assisted reproductive technologies (ART) such as in vitro fertilization (IVF).

Estrogens are a group of steroid hormones that are primarily responsible for the development and regulation of female sexual characteristics and reproductive functions. They are also present in lower levels in males. The main estrogen hormone is estradiol, which plays a key role in promoting the growth and development of the female reproductive system, including the uterus, fallopian tubes, and breasts. Estrogens also help regulate the menstrual cycle, maintain bone density, and have important effects on the cardiovascular system, skin, hair, and cognitive function.

Estrogens are produced primarily by the ovaries in women, but they can also be produced in smaller amounts by the adrenal glands and fat cells. In men, estrogens are produced from the conversion of testosterone, the primary male sex hormone, through a process called aromatization.

Estrogen levels vary throughout a woman's life, with higher levels during reproductive years and lower levels after menopause. Estrogen therapy is sometimes used to treat symptoms of menopause, such as hot flashes and vaginal dryness, or to prevent osteoporosis in postmenopausal women. However, estrogen therapy also carries risks, including an increased risk of certain cancers, blood clots, and stroke, so it is typically recommended only for women who have a high risk of these conditions.

Osteosclerosis is a medical term that refers to an abnormal thickening and increased density of bone tissue. This condition can occur as a result of various diseases or conditions, such as certain types of bone cancer, Paget's disease of bone, fluoride poisoning, or chronic infection of the bone. Osteosclerosis can also be seen in some benign conditions, such as osteopetrosis, which is a rare genetic disorder characterized by an excessively hard and dense skeleton.

In some cases, osteosclerosis may not cause any symptoms and may only be discovered on X-rays or other imaging studies. However, in other cases, it can lead to complications such as bone pain, fractures, or deformities. Treatment for osteosclerosis depends on the underlying cause of the condition and may include medications, surgery, or other therapies.

Gonadal hormones, also known as sex hormones, are steroid hormones that are primarily produced by the gonads (ovaries in females and testes in males). They play crucial roles in the development and regulation of sexual characteristics and reproductive functions. The three main types of gonadal hormones are:

1. Estrogens - predominantly produced by ovaries, they are essential for female sexual development and reproduction. The most common estrogen is estradiol, which supports the growth and maintenance of secondary sexual characteristics in women, such as breast development and wider hips. Estrogens also play a role in regulating the menstrual cycle and maintaining bone health.

2. Progesterone - primarily produced by ovaries during the menstrual cycle and pregnancy, progesterone prepares the uterus for implantation of a fertilized egg and supports the growth and development of the fetus during pregnancy. It also plays a role in regulating the menstrual cycle.

3. Androgens - produced by both ovaries and testes, but primarily by testes in males. The most common androgen is testosterone, which is essential for male sexual development and reproduction. Testosterone supports the growth and maintenance of secondary sexual characteristics in men, such as facial hair, a deeper voice, and increased muscle mass. It also plays a role in regulating sex drive (libido) and bone health in both males and females.

In summary, gonadal hormones are steroid hormones produced by the gonads that play essential roles in sexual development, reproduction, and maintaining secondary sexual characteristics.

X-ray microtomography, often referred to as micro-CT, is a non-destructive imaging technique used to visualize and analyze the internal structure of objects with high spatial resolution. It is based on the principles of computed tomography (CT), where multiple X-ray images are acquired at different angles and then reconstructed into cross-sectional slices using specialized software. These slices can be further processed to create 3D visualizations, allowing researchers and clinicians to examine the internal structure and composition of samples in great detail. Micro-CT is widely used in materials science, biology, medicine, and engineering for various applications such as material characterization, bone analysis, and defect inspection.

Insulin-like growth factor I (IGF-I) is a hormone that plays a crucial role in growth and development. It is a small protein with structural and functional similarity to insulin, hence the name "insulin-like." IGF-I is primarily produced in the liver under the regulation of growth hormone (GH).

IGF-I binds to its specific receptor, the IGF-1 receptor, which is widely expressed throughout the body. This binding activates a signaling cascade that promotes cell proliferation, differentiation, and survival. In addition, IGF-I has anabolic effects on various tissues, including muscle, bone, and cartilage, contributing to their growth and maintenance.

IGF-I is essential for normal growth during childhood and adolescence, and it continues to play a role in maintaining tissue homeostasis throughout adulthood. Abnormal levels of IGF-I have been associated with various medical conditions, such as growth disorders, diabetes, and certain types of cancer.

Tissue extracts refer to the substances or compounds that are extracted from various types of biological tissues, such as plants, animals, or microorganisms. These extracts contain bioactive molecules, including proteins, peptides, lipids, carbohydrates, nucleic acids, and other small molecules, which can have therapeutic or diagnostic potential. The process of tissue extraction involves homogenizing the tissue, followed by separation and purification of the desired components using various techniques such as centrifugation, filtration, chromatography, or precipitation.

In medical research and clinical settings, tissue extracts are often used to study the biochemical and molecular properties of cells and tissues, investigate disease mechanisms, develop diagnostic tests, and identify potential drug targets. Examples of tissue extracts include cell lysates, subcellular fractions, organelle preparations, plasma membrane extracts, nuclear extracts, and various types of protein or nucleic acid extracts. It is important to note that the quality and purity of tissue extracts can significantly impact the accuracy and reproducibility of experimental results, and appropriate controls and validation methods should be employed to ensure their proper use.

Thyroid hormone receptors (THRs) are nuclear receptor proteins that bind to thyroid hormones and mediate their effects in target cells. There are two main types of THRs, referred to as THR alpha and THR beta. THR beta is further divided into two subtypes, THR beta1 and THR beta2.

THR beta is a type of nuclear receptor that is primarily expressed in the liver, kidney, and heart, as well as in the central nervous system. It plays an important role in regulating the metabolism of carbohydrates, lipids, and proteins, as well as in the development and function of the heart. THR beta is also involved in the regulation of body weight and energy expenditure.

THR beta1 is the predominant subtype expressed in the liver and is responsible for many of the metabolic effects of thyroid hormones in this organ. THR beta2, on the other hand, is primarily expressed in the heart and plays a role in regulating cardiac function.

Abnormalities in THR beta function can lead to various diseases, including thyroid hormone resistance, a condition in which the body's cells are unable to respond properly to thyroid hormones. This can result in symptoms such as weight gain, fatigue, and cold intolerance.

Vitamins are organic substances that are essential in small quantities for the normal growth, development, and maintenance of life in humans. They are required for various biochemical functions in the body such as energy production, blood clotting, immune function, and making DNA.

Unlike macronutrients (carbohydrates, proteins, and fats), vitamins do not provide energy but they play a crucial role in energy metabolism. Humans require 13 essential vitamins, which can be divided into two categories: fat-soluble and water-soluble.

Fat-soluble vitamins (A, D, E, and K) are stored in the body's fat tissues and liver, and can stay in the body for a longer period of time. Water-soluble vitamins (B-complex vitamins and vitamin C) are not stored in the body and need to be replenished regularly through diet or supplementation.

Deficiency of vitamins can lead to various health problems, while excessive intake of certain fat-soluble vitamins can also be harmful due to toxicity. Therefore, it is important to maintain a balanced diet that provides all the essential vitamins in adequate amounts.

Methyclothiazide is a diuretic drug, which is a type of medication that helps the body get rid of excess salt and water by increasing urine production. It is a synthetic derivative of chlorothiazide, another thiazide diuretic. Methyclothiazide works by inhibiting the reabsorption of sodium and chloride ions in the distal convoluted tubule of the nephron in the kidney, which promotes water excretion.

Methyclothiazide is primarily used to treat hypertension (high blood pressure) and edema (swelling) associated with heart failure, liver cirrhosis, or kidney disease. It may also be used for other conditions such as diabetes insipidus and renal tubular acidosis.

Like all medications, methyclothiazide can have side effects, including electrolyte imbalances, dehydration, dizziness, headache, muscle cramps, and gastrointestinal disturbances. It is essential to take this medication as directed by a healthcare provider and to report any unusual symptoms or concerns promptly.

Cyclic AMP (cAMP)-dependent protein kinases, also known as protein kinase A (PKA), are a family of enzymes that play a crucial role in intracellular signaling pathways. These enzymes are responsible for the regulation of various cellular processes, including metabolism, gene expression, and cell growth and differentiation.

PKA is composed of two regulatory subunits and two catalytic subunits. When cAMP binds to the regulatory subunits, it causes a conformational change that leads to the dissociation of the catalytic subunits. The freed catalytic subunits then phosphorylate specific serine and threonine residues on target proteins, thereby modulating their activity.

The cAMP-dependent protein kinases are activated in response to a variety of extracellular signals, such as hormones and neurotransmitters, that bind to G protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs). These signals lead to the activation of adenylyl cyclase, which catalyzes the conversion of ATP to cAMP. The resulting increase in intracellular cAMP levels triggers the activation of PKA and the downstream phosphorylation of target proteins.

Overall, cAMP-dependent protein kinases are essential regulators of many fundamental cellular processes and play a critical role in maintaining normal physiology and homeostasis. Dysregulation of these enzymes has been implicated in various diseases, including cancer, diabetes, and neurological disorders.

The "femur neck" is the narrow, upper part of the femur (thigh bone) where it connects to the pelvis. It is the region through which the femoral head articulates with the acetabulum to form the hip joint. The femur neck is a common site for fractures, especially in older adults with osteoporosis.

Calcium isotopes refer to variants of the chemical element calcium (ca) that have different numbers of neutrons in their atomic nuclei, and therefore differ in their atomic masses while having the same number of protons. The most common and stable calcium isotope is Calcium-40, which contains 20 protons and 20 neutrons. However, calcium has several other isotopes, including Calcium-42, Calcium-43, Calcium-44, and Calcium-46 to -52, each with different numbers of neutrons. Some of these isotopes are radioactive and decay over time. The relative abundances of calcium isotopes can vary in different environments and can provide information about geological and biological processes.

Hydrocortisone is a synthetic glucocorticoid, which is a class of steroid hormones. It is identical to the naturally occurring cortisol, a hormone produced by the adrenal gland that helps regulate metabolism and helps your body respond to stress. Hydrocortisone has anti-inflammatory effects and is used to treat various inflammatory conditions such as allergies, skin disorders, and autoimmune diseases. It works by suppressing the immune system's response to reduce swelling, redness, itching, and other symptoms caused by inflammation.

Hydrocortisone is available in different forms, including oral tablets, topical creams, lotions, gels, and ointments, as well as injectable solutions. The specific use and dosage depend on the condition being treated and the individual patient's medical history and current health status.

As with any medication, hydrocortisone can have side effects, especially when used in high doses or for extended periods. Common side effects include increased appetite, weight gain, mood changes, insomnia, and skin thinning. Long-term use of hydrocortisone may also increase the risk of developing osteoporosis, diabetes, cataracts, and other health problems. Therefore, it is essential to follow your healthcare provider's instructions carefully when using this medication.

Calcium channel agonists are substances that increase the activity or function of calcium channels. Calcium channels are specialized proteins in cell membranes that regulate the flow of calcium ions into and out of cells. They play a crucial role in various physiological processes, including muscle contraction, hormone secretion, and nerve impulse transmission.

Calcium channel agonists can enhance the opening of these channels, leading to an increased influx of calcium ions into the cells. This can result in various pharmacological effects, depending on the type of cell and tissue involved. For example, calcium channel agonists may be used to treat conditions such as hypotension (low blood pressure) or heart block by increasing cardiac contractility and heart rate. However, these agents should be used with caution due to their potential to cause adverse effects, including increased heart rate, hypertension, and arrhythmias.

Examples of calcium channel agonists include drugs such as Bay K 8644, FPL 64176, and A23187. It's important to note that some substances can act as both calcium channel agonists and antagonists, depending on the dose, concentration, or duration of exposure.

REceptor Activator of NF-kB (RANK) Ligand is a type of protein that plays a crucial role in the immune system and bone metabolism. It belongs to the tumor necrosis factor (TNF) superfamily and is primarily produced by osteoblasts, which are cells responsible for bone formation.

RANK Ligand binds to its receptor RANK, which is found on the surface of osteoclasts, a type of cell involved in bone resorption or breakdown. The binding of RANK Ligand to RANK activates signaling pathways that promote the differentiation, activation, and survival of osteoclasts, thereby increasing bone resorption.

Abnormalities in the RANKL-RANK signaling pathway have been implicated in various bone diseases, such as osteoporosis, rheumatoid arthritis, and certain types of cancer that metastasize to bones. Therefore, targeting this pathway with therapeutic agents has emerged as a promising approach for the treatment of these conditions.

Anterior pituitary hormones are a group of six major hormones that are produced and released by the anterior portion (lobe) of the pituitary gland, a small endocrine gland located at the base of the brain. These hormones play crucial roles in regulating various bodily functions and activities. The six main anterior pituitary hormones are:

1. Growth Hormone (GH): Also known as somatotropin, GH is essential for normal growth and development in children and adolescents. It helps regulate body composition, metabolism, and bone density in adults.
2. Prolactin (PRL): A hormone that stimulates milk production in females after childbirth and is also involved in various reproductive and immune functions in both sexes.
3. Follicle-Stimulating Hormone (FSH): FSH regulates the development, growth, and maturation of follicles in the ovaries (in females) and sperm production in the testes (in males).
4. Luteinizing Hormone (LH): LH plays a key role in triggering ovulation in females and stimulating testosterone production in males.
5. Thyroid-Stimulating Hormone (TSH): TSH regulates the function of the thyroid gland, which is responsible for producing and releasing thyroid hormones that control metabolism and growth.
6. Adrenocorticotropic Hormone (ACTH): ACTH stimulates the adrenal glands to produce cortisol, a steroid hormone involved in stress response, metabolism, and immune function.

These anterior pituitary hormones are regulated by the hypothalamus, which is located above the pituitary gland. The hypothalamus releases releasing and inhibiting factors that control the synthesis and secretion of anterior pituitary hormones, creating a complex feedback system to maintain homeostasis in the body.

The ilium is the largest and broadest of the three parts that make up the hip bone or coxal bone. It is the uppermost portion of the pelvis and forms the side of the waist. The ilium has a curved, fan-like shape and articulates with the sacrum at the back to form the sacroiliac joint. The large, concave surface on the top of the ilium is called the iliac crest, which can be felt as a prominent ridge extending from the front of the hip to the lower back. This region is significant in orthopedics and physical examinations for its use in assessing various medical conditions and performing certain maneuvers during the physical examination.

Reference values, also known as reference ranges or reference intervals, are the set of values that are considered normal or typical for a particular population or group of people. These values are often used in laboratory tests to help interpret test results and determine whether a patient's value falls within the expected range.

The process of establishing reference values typically involves measuring a particular biomarker or parameter in a large, healthy population and then calculating the mean and standard deviation of the measurements. Based on these statistics, a range is established that includes a certain percentage of the population (often 95%) and excludes extreme outliers.

It's important to note that reference values can vary depending on factors such as age, sex, race, and other demographic characteristics. Therefore, it's essential to use reference values that are specific to the relevant population when interpreting laboratory test results. Additionally, reference values may change over time due to advances in measurement technology or changes in the population being studied.

The skull is the bony structure that encloses and protects the brain, the eyes, and the ears. It is composed of two main parts: the cranium, which contains the brain, and the facial bones. The cranium is made up of several fused flat bones, while the facial bones include the upper jaw (maxilla), lower jaw (mandible), cheekbones, nose bones, and eye sockets (orbits).

The skull also provides attachment points for various muscles that control chewing, moving the head, and facial expressions. Additionally, it contains openings for blood vessels, nerves, and the spinal cord to pass through. The skull's primary function is to protect the delicate and vital structures within it from injury and trauma.

Nafarelin is a synthetic decapeptide analog of the natural gonadotropin-releasing hormone (GnRH). It is primarily used as a nasal spray for the treatment of central precocious puberty in children and endometriosis in adults.

In medical terms, Nafarelin is defined as:

A synthetic decapeptide analog of gonadotropin-releasing hormone (GnRH) used in the treatment of central precocious puberty and endometriosis. It acts as a potent agonist of GnRH receptors, leading to an initial increase in the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), followed by downregulation of these receptors and a decrease in FSH and LH secretion. This results in decreased gonadal steroid production, including estrogen and testosterone, which helps to control the symptoms of central precocious puberty and endometriosis.

Nafarelin is available under the brand name Synarel and is administered as a nasal spray. It is important to note that Nafarelin can cause side effects such as hot flashes, headaches, and mood changes, and it may also affect bone growth in children with central precocious puberty. Therefore, it should be used under the close supervision of a healthcare provider.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

Glomerular filtration rate (GFR) is a test used to check how well the kidneys are working. Specifically, it estimates how much blood passes through the glomeruli each minute. The glomeruli are the tiny fibers in the kidneys that filter waste from the blood. A lower GFR number means that the kidneys aren't working properly and may indicate kidney disease.

The GFR is typically calculated using a formula that takes into account the patient's serum creatinine level, age, sex, and race. The most commonly used formula is the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equation. A normal GFR is usually above 90 mL/min/1.73m2, but this can vary depending on the individual's age and other factors.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

Collagen Type I is the most abundant form of collagen in the human body, found in various connective tissues such as tendons, ligaments, skin, and bones. It is a structural protein that provides strength and integrity to these tissues. Collagen Type I is composed of three alpha chains, two alpha-1(I) chains, and one alpha-2(I) chain, arranged in a triple helix structure. This type of collagen is often used in medical research and clinical applications, such as tissue engineering and regenerative medicine, due to its excellent mechanical properties and biocompatibility.

Colforsin is a drug that belongs to a class of medications called phosphodiesterase inhibitors. It works by increasing the levels of a chemical called cyclic AMP (cyclic adenosine monophosphate) in the body, which helps to relax and widen blood vessels.

Colforsin is not approved for use in humans in many countries, including the United States. However, it has been used in research settings to study its potential effects on heart function and other physiological processes. In animals, colforsin has been shown to have positive inotropic (contractility-enhancing) and lusitropic (relaxation-enhancing) effects on the heart, making it a potential therapeutic option for heart failure and other cardiovascular conditions.

It is important to note that while colforsin has shown promise in preclinical studies, more research is needed to establish its safety and efficacy in humans. Therefore, it should only be used under the supervision of a qualified healthcare professional and in the context of a clinical trial or research study.

Acidosis is a medical condition that occurs when there is an excess accumulation of acid in the body or when the body loses its ability to effectively regulate the pH level of the blood. The normal pH range of the blood is slightly alkaline, between 7.35 and 7.45. When the pH falls below 7.35, it is called acidosis.

Acidosis can be caused by various factors, including impaired kidney function, respiratory problems, diabetes, severe dehydration, alcoholism, and certain medications or toxins. There are two main types of acidosis: metabolic acidosis and respiratory acidosis.

Metabolic acidosis occurs when the body produces too much acid or is unable to eliminate it effectively. This can be caused by conditions such as diabetic ketoacidosis, lactic acidosis, kidney failure, and ingestion of certain toxins.

Respiratory acidosis, on the other hand, occurs when the lungs are unable to remove enough carbon dioxide from the body, leading to an accumulation of acid. This can be caused by conditions such as chronic obstructive pulmonary disease (COPD), asthma, and sedative overdose.

Symptoms of acidosis may include fatigue, shortness of breath, confusion, headache, rapid heartbeat, and in severe cases, coma or even death. Treatment for acidosis depends on the underlying cause and may include medications, oxygen therapy, fluid replacement, and dialysis.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

I apologize for the confusion, but "Bucladesine" is not a recognized medical term or a medication in current use in medicine. It's possible that there may be some mistake or typo in the spelling. If you have any more context about where you encountered this term, I might be able to provide a more accurate and helpful response.

Progesterone is a steroid hormone that is primarily produced in the ovaries during the menstrual cycle and in pregnancy. It plays an essential role in preparing the uterus for implantation of a fertilized egg and maintaining the early stages of pregnancy. Progesterone works to thicken the lining of the uterus, creating a nurturing environment for the developing embryo.

During the menstrual cycle, progesterone is produced by the corpus luteum, a temporary structure formed in the ovary after an egg has been released from a follicle during ovulation. If pregnancy does not occur, the levels of progesterone will decrease, leading to the shedding of the uterine lining and menstruation.

In addition to its reproductive functions, progesterone also has various other effects on the body, such as helping to regulate the immune system, supporting bone health, and potentially influencing mood and cognition. Progesterone can be administered medically in the form of oral pills, intramuscular injections, or vaginal suppositories for various purposes, including hormone replacement therapy, contraception, and managing certain gynecological conditions.

Nephrectomy is a surgical procedure in which all or part of a kidney is removed. It may be performed due to various reasons such as severe kidney damage, kidney cancer, or living donor transplantation. The type of nephrectomy depends on the reason for the surgery - a simple nephrectomy involves removing only the affected portion of the kidney, while a radical nephrectomy includes removal of the whole kidney along with its surrounding tissues like the adrenal gland and lymph nodes.

Gastrointestinal (GI) hormones are a group of hormones that are secreted by cells in the gastrointestinal tract in response to food intake and digestion. They play crucial roles in regulating various physiological processes, including appetite regulation, gastric acid secretion, motility of the gastrointestinal tract, insulin secretion, and pancreatic enzyme release.

Examples of GI hormones include:

* Gastrin: Secreted by G cells in the stomach, gastrin stimulates the release of hydrochloric acid from parietal cells in the stomach lining.
* Ghrelin: Produced by the stomach, ghrelin is often referred to as the "hunger hormone" because it stimulates appetite and food intake.
* Cholecystokinin (CCK): Secreted by I cells in the small intestine, CCK promotes digestion by stimulating the release of pancreatic enzymes and bile from the liver. It also inhibits gastric emptying and reduces appetite.
* Gastric inhibitory peptide (GIP): Produced by K cells in the small intestine, GIP promotes insulin secretion and inhibits glucagon release.
* Secretin: Released by S cells in the small intestine, secretin stimulates the pancreas to produce bicarbonate-rich fluid that neutralizes stomach acid in the duodenum.
* Motilin: Secreted by MO cells in the small intestine, motilin promotes gastrointestinal motility and regulates the migrating motor complex (MMC), which is responsible for cleaning out the small intestine between meals.

These hormones work together to regulate digestion and maintain homeostasis in the body. Dysregulation of GI hormones can contribute to various gastrointestinal disorders, such as gastroparesis, irritable bowel syndrome (IBS), and diabetes.

A chemical stimulation in a medical context refers to the process of activating or enhancing physiological or psychological responses in the body using chemical substances. These chemicals can interact with receptors on cells to trigger specific reactions, such as neurotransmitters and hormones that transmit signals within the nervous system and endocrine system.

Examples of chemical stimulation include the use of medications, drugs, or supplements that affect mood, alertness, pain perception, or other bodily functions. For instance, caffeine can chemically stimulate the central nervous system to increase alertness and decrease feelings of fatigue. Similarly, certain painkillers can chemically stimulate opioid receptors in the brain to reduce the perception of pain.

It's important to note that while chemical stimulation can have therapeutic benefits, it can also have adverse effects if used improperly or in excessive amounts. Therefore, it's essential to follow proper dosing instructions and consult with a healthcare provider before using any chemical substances for stimulation purposes.

A biological assay is a method used in biology and biochemistry to measure the concentration or potency of a substance (like a drug, hormone, or enzyme) by observing its effect on living cells or tissues. This type of assay can be performed using various techniques such as:

1. Cell-based assays: These involve measuring changes in cell behavior, growth, or viability after exposure to the substance being tested. Examples include proliferation assays, apoptosis assays, and cytotoxicity assays.
2. Protein-based assays: These focus on measuring the interaction between the substance and specific proteins, such as enzymes or receptors. Examples include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and pull-down assays.
3. Genetic-based assays: These involve analyzing the effects of the substance on gene expression, DNA structure, or protein synthesis. Examples include quantitative polymerase chain reaction (qPCR) assays, reporter gene assays, and northern blotting.

Biological assays are essential tools in research, drug development, and diagnostic applications to understand biological processes and evaluate the potential therapeutic efficacy or toxicity of various substances.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Tetany is a medical condition characterized by involuntary muscle spasms and cramps, often starting in the hands and feet and can spread to other parts of the body. It is typically caused by an imbalance of minerals such as calcium and magnesium in the blood, which can be due to various underlying medical conditions such as hypoparathyroidism, hypocalcemia, or alkalosis. Tetany can also occur after surgical removal of the parathyroid glands (a procedure called parathyroidectomy). In some cases, tetany can be a symptom of other neuromuscular disorders.

The muscle spasms associated with tetany can be painful and can interfere with normal functioning. They are often triggered by sensory stimuli such as touch, sound, or temperature changes. Tetany can also cause numbness, tingling, or a crawling sensation in the skin (paresthesia). In severe cases, it can lead to seizures, difficulty breathing, and cardiac arrhythmias.

Treatment of tetany typically involves addressing the underlying medical condition causing the imbalance of minerals in the blood. This may involve supplementation with calcium or magnesium, medication to regulate parathyroid hormone levels, or other treatments depending on the specific cause.

... receptor agonists, Peptide hormones, Hormones of the parathyroid glands, Hormones of calcium metabolism). ... Parathyroid hormone (PTH), also called parathormone or parathyrin, is a peptide hormone secreted by the parathyroid glands that ... Media related to Parathyroid hormone at Wikimedia Commons Parathyroid hormone: analyte monograph - the Association for Clinical ... In-depth immunological phenotyping Disorders of calcium metabolism Parathyroid hormone family Parathyroid hormone-related ...
These receptors bind parathyroid hormone and are members of the GPCR family of transmembrane proteins. parathyroid hormone 1 ... Parathyroid+Hormone+Receptors at the U.S. National Library of Medicine Medical Subject Headings (MeSH) "Parathyroid Hormone ... Jüppner H (1994). "Molecular cloning and characterization of a parathyroid hormone/parathyroid hormone-related peptide receptor ... Offermanns S, Iida-Klein A, Segre GV, Simon MI (1996). "G alpha q family members couple parathyroid hormone (PTH)/PTH-related ...
Parathyroid hormone (PTH) is a polypeptidic hormone primarily involved in calcium metabolism. The parathyroid hormone-related ... The parathyroid hormone family is a family of structurally and functionally related proteins. ... Guerreiro PM, Renfro JL, Power DM, Canario AV (February 2007). "The parathyroid hormone family of peptides: structure, tissue ... "Parathyroid hormone-related protein: isolation, molecular cloning, and mechanism of action". Recent Prog. Horm. Res. 45: 467- ...
It is activated by PTH but not by parathyroid hormone-like hormone (PTHLH) and is particularly abundant in the brain and ... Parathyroid hormone 2 receptor is a protein that in humans is encoded by the PTH2R gene. The protein encoded by this gene is a ... Receptor,+Parathyroid+Hormone,+Type+2 at the U.S. National Library of Medicine Medical Subject Headings (MeSH) This article ... "Entrez Gene: PTH2R parathyroid hormone 2 receptor". Weaver RE, Mobarec JC, Wigglesworth MJ, Reynolds CA, Donnelly D (2017). " ...
Teriparatide, another parathyroid hormone "Natpara (parathyroid hormone)- parathyroid hormone injection, powder, lyophilized, ... Subcutaneous administration of parathyroid hormone into the abdomen produces a rapid increase in plasma parathyroid hormone ... The skeletal effects of parathyroid hormone depend upon the pattern of systemic exposure. Transient elevations in parathyroid ... Hormones of calcium metabolism, Parathyroid hormone receptor agonists, Takeda Pharmaceutical Company brands, Drugs acting on ...
Parathyroid hormone/parathyroid hormone-related peptide receptor, also known as parathyroid hormone 1 receptor (PTH1R), is a ... and for parathyroid hormone-related protein (PTHrP), also called parathyroid hormone-like hormone (PTHLH). This "classical" PTH ... "Cloning of a parathyroid hormone/parathyroid hormone-related peptide receptor (PTHR) cDNA from a rat osteosarcoma (UMR 106) ... "Direct mapping of an agonist-binding domain within the parathyroid hormone/parathyroid hormone-related protein receptor by ...
... (PTHrP) is a proteinaceous hormone and a member of the parathyroid hormone family secreted ... "Entrez Gene: PTHLH parathyroid hormone-like hormone". Martin TJ, Moseley JM, Gillespie MT (1991). "Parathyroid hormone-related ... November 1991). "A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide". Science. 254 ( ... "Parathyroid hormone-related peptide is required for increased trabecular bone volume in parathyroid hormone-null mice". ...
Too much of either hormone can be an indicator of disease. The secretion of parathyroid hormone (PTH) is regulated by the ... Parathyroid chief cells (also called parathyroid principal cells or simply parathyroid cells) are one of the two cell types of ... and release the calcium-increasing hormone parathyroid hormone (PTH) accordingly to correct or maintain normal blood calcium ... While their parathyroid gland is functional, it senses a very low level of calcium in the blood and constantly secretes hormone ...
Hectorol (Doxercalciferol), for parathyroid hormone. Insuman (Human insulin), for type 1 and type 2 diabetes mellitus. Lantus ( ... Thyrogen (Thyroid-stimulating hormone), for thyroid cancer. - Over the counter Allegra (Fexofenadine), for allergic rhinitis. ...
For example, on a certain monitor, the horizontal distance between the upper limits for parathyroid hormone in pmol/L and pg/mL ... New Assays for Aldosterone, Renin and Parathyroid Hormone Archived 2011-10-27 at the Wayback Machine University of Washington, ... Häggström, Mikael (2014). "Reference ranges for estradiol, progesterone, luteinizing hormone and follicle-stimulating hormone ... Renin and Parathyroid Hormone Archived 2011-10-27 at the Wayback Machine University of Washington, Department of Laboratory ...
"TransCon Parathyroid Hormone (mPEG conjugated parathyroid hormone 1-34) Orphan Drug Designations and Approvals". U.S. Food and ... It is a transiently pegylated parathyroid hormone. Palopegteriparatide is the international nonproprietary name. On 14 ...
Schäffler A (November 2010). "Hormone replacement after thyroid and parathyroid surgery". Deutsches Ärzteblatt International. ... the receptor for thyroid-stimulating hormone. (Antibodies to thyroglobulin and to the thyroid hormones T3 and T4 may also be ... The result is very high levels of circulating thyroid hormones and a low TSH level.[citation needed] Graves' disease is an ... The TSHr is expressed on the thyroid follicular cells of the thyroid gland (the cells that produce thyroid hormone), and the ...
... , sold under the brand name Forteo, is a form of parathyroid hormone (PTH) consisting of the first (N-terminus) 34 ... Teriparatide is a recombinant human parathyroid hormone analog (PTH 1-34). It has an identical sequence to the 34 N-terminal ... Dempster DW, Cosman F, Parisien M, Shen V, Lindsay R (December 1993). "Anabolic actions of parathyroid hormone on bone". ... Teriparatide is a portion of human parathyroid hormone (PTH), amino acid sequence 1 through 34, of the complete molecule ( ...
... is related to parathyroid hormone (PTH; MIM 168450) and PTH-related protein (PTHRP; MIM 168470) and is a ligand for PTH ... Misiano P, Scott BB, Scheideler MA, Garnier M (2004). "PTH2 receptor-mediated inhibitory effect of parathyroid hormone and ... Gellén B, Zelena D, Usdin TB, Dobolyi A (2017). "The parathyroid hormone 2 receptor participates in physiological and ... 2004). "Agonist-specific regulation of parathyroid hormone (PTH) receptor type 2 activity: structural and functional analysis ...
Parathyroid hormone is required for tooth eruption. The following tables present the development timeline of human teeth. Times ... Philbrick WM, Dreyer BE, Nakchbandi IA, Karaplis AC (September 1998). "Parathyroid hormone-related protein is required for ... Bisphenol A (BPA) is a hormone-disrupting chemical that has been implicated in having negative effects on human health, ... Researchers theorize that the delay is a manifestation of fluoride's depressing impact on thyroid hormones. The delay in ...
... the parathyroid glands are underdeveloped and therefore do not produce enough parathyroid hormone. This is caused by a mutation ... Supplementation with parathyroid hormone is another treatment option. "Hypoparathyroidism". www.socialstyrelsen.se. Retrieved ...
Another hypothesis includes impaired secretion of parathyroid hormone. Risk factors of early neonatal hypocalcemia Prematurity ...
As a result of the receptor "thinking" there is sufficient calcium, parathyroid hormone (PTH) secretion will be reduced. Lower ... Cinacalcet mimics calcium at the parathyroid hormone receptor. This binding will increase the sensitivity of calcium-sensing ... Common side effects include: nausea and vomiting, hypocalcemia, and adynamic bone disease if intact parathyroid hormone (iPTH) ... Etelcalcetide binds to the CaSR on the parathyroid gland, which results in receptor activation and ultimately reduction in PTH ...
Poole KE, Reeve J (December 2005). "Parathyroid hormone - a bone anabolic and catabolic agent". Current Opinion in Pharmacology ... "Role of inorganic pyrophosphatase in the mechanism of action of parathyroid hormone and calcitonin". Endocrinology. 89 (3): 852 ...
The parathyroid glands do this by secreting parathyroid hormone (PTH). Parathyroid hormone (also known as parathormone) is a ... Parathyroid hormone was isolated in 1923 by Adolph M. Hanson and 1925 by James B. Collip. Studies of parathyroid hormone levels ... and parathyroid hormone is released. The glands hypertrophy to synthesise more parathyroid hormone. This is known as secondary ... which synthesize and release parathyroid hormone. These cells are small, and appear dark when loaded with parathyroid hormone, ...
The NaPi channels are regulated by parathyroid hormone (PTH). PTH acts to decrease phosphate reabsorption from the renal ...
May 1, 2002). "Parathyroid hormone is essential for normal fetal bone formation". J Clin Invest. 109 (9): 1173-1182. doi: ... The Sertoli cells are the point of origin for anti-Müllerian hormone. Once synthesized, the anti-Müllerian hormone initiates ... At 10 weeks of gestation, the Leydig cells begin to produce androgen hormones. The androgen hormone dihydrotestosterone is ... The genes, TBX1, CRKL, GATA3, GCM2, and SOX3 have also been shown to play a crucial role in the formation of the parathyroid ...
Calcium is tightly regulated by the parathyroid hormone (PTH). In response to low calcium levels, PTH levels rise, and ... body's own immune system mistakenly attacks parathyroid tissue and leads to the loss of the secretion of parathyroid hormone. ... However, in the setting of absent, decreased, or ineffective PTH hormone, the body loses this regulatory function, and ... Parathyroid symptoms and disease , Patient". Patient. Retrieved 2015-09-05. "Hypoparathyroidism". NORD (National Organization ...
Secretion of parathyroid hormone-related protein by certain tumors. Resorption of bone due to Primary bone marrow tumors (e.g. ... Hypercalcemia, elevated blood calcium, has numerous causes, including Elevated levels of parathyroid hormone due to ...
Hamilton, Bengt; Dasef, Laura; Highman, Walter J.; Schwartz, Charles (1936). "Parathyroid Hormone in the Blood of Pregnant ... "Parathyroid Hormone in the Blood of Pregnant Women, " "The Changes in Total Calcium Content of the Bones During the Development ...
... the uses of calcium and active vitamin D or recombinant human parathyroid hormone treatment are viable since there were many ... "Use of recombinant human parathyroid hormone in hypocalcemic cardiomyopathy". European Journal of Endocrinology. 166 (6): 1113- ...
He did pioneering work with the parathyroid hormone (PTH). He died on June 19, 1965, at the age of 72. Fellow of the Royal ... and to pursue his own studies on hormone research. In 1928 he was recruited to McGill University in Montreal by his former ...
When a parathyroid adenoma causes hyperparathyroidism, more parathyroid hormone is secreted, causing the calcium concentration ... In order to maintain calcium metabolism, the parathyroid glands secrete parathyroid hormone (PTH) which stimulates the bones to ... Felsenfeld AJ, Rodríguez M, Aguilera-Tejero E (November 2007). "Dynamics of parathyroid hormone secretion in health and ... A parathyroid adenoma is a benign tumor of the parathyroid gland. It generally causes hyperparathyroidism; there are very few ...
Sclerostin is inhibited by parathyroid hormone (PTH) and mechanical loading. Sclerostin antagonizes the activity of BMP (bone ...
... s are regulated by several hormones, including parathyroid hormone (PTH) from the parathyroid gland, calcitonin from ... The osteoclasts do not have receptors for parathyroid hormone (PTH). However, PTH stimulates the osteoblasts to secrete the ... The activity of osteoclasts is controlled by hormones and cytokines. Calcitonin, a hormone of thyroid gland, suppresses the ... the thyroid gland, and growth factor interleukin 6 (IL-6). This last hormone, IL-6, is one of the factors in the disease ...
Parathyroid hormone receptor agonists, Peptide hormones, Hormones of the parathyroid glands, Hormones of calcium metabolism). ... Parathyroid hormone (PTH), also called parathormone or parathyrin, is a peptide hormone secreted by the parathyroid glands that ... Media related to Parathyroid hormone at Wikimedia Commons Parathyroid hormone: analyte monograph - the Association for Clinical ... In-depth immunological phenotyping Disorders of calcium metabolism Parathyroid hormone family Parathyroid hormone-related ...
Parathyroid Hormone Injection: learn about side effects, dosage, special precautions, and more on MedlinePlus ... Before using parathyroid hormone injection,. *tell your doctor and pharmacist if you are allergic to parathyroid hormone, any ... Continue to use parathyroid hormone injection even if you feel well. Do not stop using parathyroid hormone injection without ... Parathyroid hormone injection may cause osteosarcoma (bone cancer) in laboratory rats. It is possible that parathyroid hormone ...
LBXPT21 - Parathyroid Hormone(Elecys method) pg/mL. Variable Name: LBXPT21. SAS Label: Parathyroid Hormone(Elecys method) pg/mL ... Parathyroid hormone (PTH) is an 84 amino acid peptide produced by the parathyroid gland. Since the PTH molecule undergoes ... intact parathyroid hormone. This Elecsys 1010 method is for the in vitro quantitative determination of intact parathyroid ... Parathyroid Hormone(Elecys method) pg/mL. Target: Both males and females 6 YEARS - 150 YEARS. Code or Value. Value Description ...
... is produced by the 4 parathyroid glands, which reside behind the thyroid gland in the anterior neck. The release of PTH is ... encoded search term (Parathyroid Hormone) and Parathyroid Hormone What to Read Next on Medscape ... Parathyroid hormone (PTH) is produced by the 4 parathyroid glands, which reside behind the thyroid gland in the anterior neck. ... Parathyroid hormone (PTH) is produced by the 4 parathyroid glands, which reside behind the thyroid gland in the anterior neck. ...
... PDB rendering based on 1bwx. Available structures: 1bwx, 1et1, 1fvy, 1hph, 1hpy, 1zwa, ... Endocrine system: hormones/endocrine glands (Peptide hormones, Steroid hormones). Hypothalamic-pituitary. Hypothalamus: TRH, ... Parathyroid hormone (PTH), or parathormone, is secreted by the parathyroid glands as a polypeptide containing 84 amino acids. ... Hendy GN, Bennett HP, Gibbs BF, et al. (1995). "Proparathyroid hormone is preferentially cleaved to parathyroid hormone by the ...
Parathyroid hormone (PTH) is a calciotrophic hormone produced by the parathyroid glands. PTH is a critical regulator of ... Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH. Proc Natl Acad Sci U S A ... Parathyroid hormone-dependent bone formation requires butyrate production by intestinal microbiota. Jau-Yi Li,1,2 Mingcan Yu,1, ... Effects of intermittent parathyroid hormone (PTH) administration on SOST mRNA and protein in rat bone. J Mol Histol. 2007;38(4 ...
Antigenic recognition of four anti-bovine parathyroid hormone antisera was characterized by their reactivity with bovine ... and human hormone extracted from parathyroid adenomas. All antisera were found to have antibody populations which recognized ... one antigenic determinant and all antisera differed in their specificity and reactivity for the fragments of bovine hormone. By ...
Assessment report for Natpar (parathyroid hormone) 23 February 2017, EMA/180882/2017. ... Natpar is a protein and has an identical in structure to the endogenous human 84-amino-acid hormone. It is therefore exempted ... from the need to provide an environmental risk assessment as this naturally occurring hormone is unlikely to result in ...
Brought to you by Merck & Co, Inc., Rahway, NJ, USA (known as MSD outside the US and Canada)-dedicated to using leading-edge science to save and improve lives around the world. Learn more about the Merck Manuals and our commitment to Global Medical Knowledge.. ...
Which is the target tissue for the parathyroid hormone quizlet?. The target tissue of the parathyroid hormone is the intestines ... What are 3 target organs of the parathyroid hormone?. The main target organs where parathyroid hormone exerts its effects are ... Parathyroids. PTH (parathyroid hormone). Bone, kidneys, intestine. Thymus (regresses in adulthood). Thymopoetin. T-lymphocyte ... is a condition that causes one or more parathyroid glands to produce an excess amount of parathyroid hormone (PTH). This ...
Parathyroid hormone: a neglected biomarker of exacerbations and hospitalizations in patients with COPD and hypovitaminosis D. ... As a response to low levels of vitamin D serum Parathyroid Hormone (iPTH) is increased in some, but not all, patients. The aim ... Parathyroid hormone: a neglected biomarker of exacerbations and hospitalizations in patients with COPD and hypovitaminosis D ... Parathyroid hormone: a neglected biomarker of exacerbations and hospitalizations in patients with COPD and hypovitaminosis D ...
Hypercalcemia and high serum parathyroid hormone-related protein concentration in a horse with multiple myeloma published on ... Hypercalcemia and high serum parathyroid hormone-related protein concentration in a horse with multiple myeloma ...
... human parathyroid hormone, recombinant), frequency-based adverse effects, comprehensive interactions, contraindications, ... Bioengineered replica of human parathyroid hormone 1-84 (rhPTH 1-84). Parathyroid hormone raises serum calcium by increasing ... encoded search term (human parathyroid hormone%2C recombinant (Natpara)) and human parathyroid hormone, recombinant (Natpara) ... Infants exposed to parathyroid hormone through breast milk should be monitored for signs and symptoms of hypercalcemia or ...
Graft survival, Hyperparathyroidism, Parathyroid hormone, Renal transplantation, Therapy compliance Persistent URL doi.org/ ... High pretransplant parathyroid hormone levels increase the risk for graft failure after renal transplantation. Publication. ... Calcium (Ca), phosphate (P), and parathyroid hormone (PTH) are important variables influencing the risk for cardiovascular ...
The production and purification of gilthead sea bream recombinant parathyroid hormone related protein [sbPTHrP(1-125)] using an ... Production and characterisation of gilthead sea bream (Sparus auratus) recombinant parathyroid hormone related protein.. ... Parathyroid Hormone-Related Protein, Recombinant Proteins, Sea Bream, Sequence Alignment. Abstract. ...
In previous in vitro studies, we have shown that the N-terminal region of parathyroid hormone-related protein (PTHrP) can ... Cortisol and parathyroid hormone-related peptide are reciprocally modulated by negative feedback.. ... Parathyroid Hormone-Related Protein, Sea Bream, Time Factors. Abstract. ... between the plasma levels of the two hormones. Although the underlying mechanism of the interaction still has to be determined ...
Parathyroid hormone (PTH) regulates calcium homeostasis via the type I PTH/PTH-related peptide (PTH/PTHrP) receptor (PTH1R). ... "Distinct beta-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation." J Biol ... "Distinct beta-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation." J Biol ... Distinct beta-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation.. ...
The Parathyroid hormone is considered to be the most important endocrine regulator. It basically regulates the calcium and ... Ones parathyroid hormone level can be checked through a parathyroid hormone test. The parathyroid hormone test is done to ... Parathyroid Hormone Levels. Ones parathyroid hormone level can be checked in ones body through parathyroid hormone test or ... which are overproducing parathyroid hormones.. Parathyroid Adenoma. Parathyroid adenoma is a small tumor of the parathyroid ...
This is a condition where the parathyroid glands will produce too much of the parathyroid hormone. This hormone is responsible ... The parathyroid hormone is produced by the parathyroid glands. Some people develop hyperparathyroidism. ... If your parathyroid hormone is too high, it can cause your body to lose calcium, which can lead to bone loss and other health ... If there is too much parathyroid hormone being released, the levels of calcium in the urine and blood will go up and bones ...
in low pH settings, an excess of hydrogen ions bind to protein, displacing calcium ions leading to an increase in ionized calcium and vice versa in high pH settings ...
Parathyroid Hormone (Whole). Parathyroid Hormone (Whole) Contents:. Parathyroid Hormone (Whole) Results received in:. 1 working ...
Silver J, Yalcindag C, Sela-Brown A, Kilav R, Naveh-Many T. Regulation of the parathyroid hormone gene by vitamin D, calcium ... Parathyroid hormone raises serum calcium by increasing renal tubular calcium reabsorption, increasing intestinal calcium ... Patients with hypocalcemia due to resistance to parathyroid hormone (PTH) generally will require long-term therapy with vitamin ... Efficacy and safety of recombinant human parathyroid hormone (1-84) in hypoparathyroidism (REPLACE): a double-blind, placebo- ...
... is produced by the 4 parathyroid glands, which reside behind the thyroid gland in the anterior neck. The release of PTH is ... encoded search term (Parathyroid Hormone) and Parathyroid Hormone What to Read Next on Medscape ... Parathyroid hormone (PTH) is produced by the 4 parathyroid glands, which reside behind the thyroid gland in the anterior neck. ... Parathyroid hormone (PTH) is produced by the 4 parathyroid glands, which reside behind the thyroid gland in the anterior neck. ...
The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med. 2003 Sep 25. 349(13):1216-26. ... Hormonal/endocrine therapies: gonadotropin-releasing hormone (GnRH) agonists, luteinizing hormone-releasing hormone (LHRH) ... Parathyroid hormone (PTH) level. An intact PTH result is essential in ruling out hyperparathyroidism; an elevated PTH level may ... Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J ...
is an integrated model and offers facilities for Specialist Consultation, Diagnostics, Preventive Health Checks, Free Home Sample Collections, Dentistry, Physiotherapy, Apollo Hospitals Information Center, Tele-medicine, Day Care, etc. all under one roof.. ...
Body Fluid (refer to Parathyroid Hormone, FNA, ARUP test code 2001491); Urine. Rapid Serum Tubes (RST). Hemolyzed samples. ...
Parathyroid Hormone (PTH) Level. CPT Code 83970 A blood test that measures the amount of parathyroid hormone (PTH) to assess ... the level of calcium and evaluate the parathyroid function.. Show Related Procedures Related Procedures. Related procedures are ...
Parathyroid Hormone. The USPSTF reviewed evidence from two trials on parathyroid hormone. One trial (n=2,532) was conducted in ... Parathyroid Hormone. A single study of parathyroid hormone therapy in women (n=2,532) reported a higher risk of discontinuation ... Treatment of Osteoporosis with Parathyroid Hormone Study Group. Effect of recombinant human parathyroid homone (1-84) on ... The harms of treatment range from no greater than small for bisphosphonates and parathyroid hormone to small to moderate for ...
Intact Parathyroid Hormone Parathyroid hormone (PTH) helps the body maintain stable le… ... Symptoms of high parathyroid hormone levels:. Since parathyroid hormone (PTH) mainly controls the amount of calcium in your ... Other names: Parathormone, Intact Parathyroid Hormone. Parathyroid hormone (PTH) helps the body maintain stable levels of ... The parathyroid glands produce parathyroid hormone, which helps maintain an appropriate balance of calcium in the bloodstream ...
The latest and most important Parathyroid Hormone research. Expert analysis on achieving goals, living with health conditions, ... Parathyroid hormone (PTH) is a hormone secreted from the parathyroid that negatively influences the actions of Vitamin D and ... Parathyroid hormone (PTH) is a hormone secreted from the parathyroid that negatively influences the actions of Vitamin D and ...
  • Parathyroid hormone (PTH), also called parathormone or parathyrin, is a peptide hormone secreted by the parathyroid glands that regulates the serum calcium concentration through its effects on bone, kidney, and intestine. (wikipedia.org)
  • Parathyroid hormone (PTH) , or parathormone , is secreted by the parathyroid glands as a polypeptide containing 84 amino acids. (bionity.com)
  • The ratios of intact hormone to peptide fragments may vary from individual to individual as well as between patients with hyperparathyroidism or chronic renal failure. (cdc.gov)
  • Parathyroid hormone (PTH) levels in the blood may be analyzed to determine the presence of hyperparathyroidism and its possible role in abnormal calcium levels. (medscape.com)
  • This may delineate hyperparathyroidism, parathyroid tumors, vitamin D deficiency, renal disease, and some tumors that produce the hormone. (medscape.com)
  • If the cause is in the parathyroid gland it is called primary hyperparathyroidism . (bionity.com)
  • Hyperparathyroidism (HPT) is a condition that causes one or more parathyroid glands to produce an excess amount of parathyroid hormone (PTH). (handlebar-online.com)
  • Hyperparathyroidism is an excess of parathyroid hormone in the bloodstream due to overactivity of one or more of the body's four parathyroid glands. (healthmatters.io)
  • In primary hyperparathyroidism, an enlargement of one or more of the parathyroid glands causes overproduction of the hormone, resulting in high levels of calcium in the blood (hypercalcemia), which can cause a variety of health problems. (healthmatters.io)
  • Secondary hyperparathyroidism occurs as a result of another disease that initially causes low levels of calcium in the body and over time, increased parathyroid hormone levels occur. (healthmatters.io)
  • Parathyroid carcinoma is a malignant neoplasm affecting 0.5 to 5.0% of all patients suffering from primary hyperparathyroidism. (nih.gov)
  • Researchers studied all types of thyroid disease, as well as a disease of the parathyroid glands called hyperparathyroidism, and abnormalities of the thyroid gland that can be seen only on ultrasound examinations. (cdc.gov)
  • Parathyroid hormone influences the levels of both calcium and phosphorus in the body. (medscape.com)
  • The parathyroid hormones or PTH are the ones responsible in controlling calcium and phosphorus in the body. (crank-it.com)
  • This hormone is responsible for regulating the amount of phosphorus and calcium in the body, both of which are important for strong teeth and bones. (simplyhealth.today)
  • Effective clinical management includes measures to control phosphorus retention and prevent hyperphosphataemia, to maintain serum calcium concentrations within the normal range and to prevent excess parathyroid hormone (PTH) secretion by the judicious use of vitamin D sterols. (nih.gov)
  • Parathyroid hormone (PTH), calcium, phosphorus and urea measurements, as well as panoramic radiographs, were obtained from all patients. (bvsalud.org)
  • Hypoparathyroidism (HP) is a rare endocrine disorder caused by a deficiency of parathyroid hormone that results in decreased calcium and increased phosphorus levels in the blood. (biotechwinners.com)
  • Parathyroid hormone (PTH) is an 84 amino acid peptide produced by the parathyroid gland. (cdc.gov)
  • The secretory activity of the parathyroid gland can be determined by the selective measurement of the (mainly) intact parathyroid hormone. (cdc.gov)
  • Parathyroid hormone (PTH) is produced by the 4 parathyroid glands , which reside behind the thyroid gland in the anterior neck. (medscape.com)
  • A portion of PTH is split into 3 fragments in the parathyroid gland before systemic release. (medscape.com)
  • It acts to increase the concentration of calcium (Ca 2+ ) in the blood , whereas calcitonin (a hormone produced by the parafollicular cells (C cells) of the thyroid gland ) acts to decrease calcium concentration. (bionity.com)
  • chief (principal) cells of the parathyroid gland secrete PTH. (handlebar-online.com)
  • As serum calcium levels drop, the secretion of PTH by the parathyroid gland increases. (handlebar-online.com)
  • These hormones are secreted from the cells of the parathyroid gland. (crank-it.com)
  • The parathyroid gland is the small endocrine glands found in an individual's neck just behind the thyroid gland. (crank-it.com)
  • Parathyroid glands are pea-sized glands that can be found just at the back of the thyroid gland. (crank-it.com)
  • We conclude that I-131 treatment for hyperthyroidism due to Graves' disease had no effect on the parathyroid gland secretory reserve of the patients studied. (unifesp.br)
  • Calcium levels in the blood are regulated by two hormones produced by the four parathyroid glands, glands located adjacent to the thyroid gland in the neck. (childrensnational.org)
  • The parathyroid glands are four tiny glands located on the back of the thyroid gland, which is in the neck. (bcm.edu)
  • These hormones then act on the pituitary gland, which in turn directs the actions of several other glands in the body. (medicalnewstoday.com)
  • The pituitary gland releases hormones that travel throughout the body. (medicalnewstoday.com)
  • This hormone causes the adrenal gland to produce cortisol. (medicalnewstoday.com)
  • This hormone causes the thyroid gland to produce hormones that regulate the body's metabolism, energy balance, growth, and nervous system activity. (medicalnewstoday.com)
  • This hormone is made in the hypothalamus but stored and released from the posterior pituitary gland. (medicalnewstoday.com)
  • The parathyroid glands are four pea-sized glands located behind or near the thyroid gland in the neck. (radiologyinfo.org)
  • Parathyroid hormone (PTH) regulates calcium homeostasis via the type I PTH/PTH-related peptide (PTH/PTHrP) receptor (PTH1R). (duke.edu)
  • Parathyroid hormone-like peptide (PLP) is thought to be a mediator of hypercalcemia in both human and rodent malignancies. (uthscsa.edu)
  • MBX 2109, the company's lead investigational drug, is a long-acting parathyroid hormone (PTH) peptide prodrug in development for the treatment of hypoparathyroidism. (biotechwinners.com)
  • MBX 2109 is an investigational long-acting parathyroid hormone peptide prodrug in development as a PTH replacement therapy. (biotechwinners.com)
  • Increased calcium concentration in the blood acts (via feedback inhibition ) to decrease PTH secretion by the parathyroid glands. (bionity.com)
  • Changes in ionized Ca ++ concentration are thought to be the main factor in the control of parathyroid hormone (PTH) secretion from the parathyroid cell. (wustl.edu)
  • Incubations were carried out at 37 C for 180 min, and under the conditions used, hormone secretion was linear for at least 240 min. (wustl.edu)
  • This inhibition of hormone secretion in potassium-deficient medium was overcome when the potassium ion concentration was restored to 5 mM. (wustl.edu)
  • Harmaline concentrations of 1-20 mM inhibited hormone secretion an average of 46 ± 5% in low calcium medium. (wustl.edu)
  • None of these experimental conditions decreased hormone secretion significantly below the basal rate of secretion imposed by a high (3.0 mM) medium calcium concentration. (wustl.edu)
  • 3) The restoration of hormone secretion by the readdition of potassium to parathyroid cells incubated in a potassium-free medium suggests that an irreversible toxic effect to the cells does not account for the results observed. (wustl.edu)
  • Parathyroid Hormone Secretion and Receptor Expression Determine the Age-Related Degree of Osteogenic Differentiation in Dental Pulp Stem Cells. (bvsalud.org)
  • To demonstrate the levels of parathyroid hormone secretion and genetic expressions of parathyroid hormone (PTH) and PTH1 receptor (PTH1R) genes in the dental pulp stem cells (DPSCs) from different age groups before and after induction of osteogenic differentiation. (bvsalud.org)
  • Production and characterisation of gilthead sea bream (Sparus auratus) recombinant parathyroid hormone related protein. (ualg.pt)
  • The production and purification of gilthead sea bream recombinant parathyroid hormone related protein [sbPTHrP(1-125)] using an Escherichia coli system and one step purification process with continuous elution gel electrophoresis is reported. (ualg.pt)
  • etidronate decreases effects of human parathyroid hormone, recombinant by Other (see comment). (medscape.com)
  • Parathyroid hormone 1 receptors, activated by the 34 N-terminal amino acids of PTH, are present at high levels on the cells of bone and kidney. (wikipedia.org)
  • Parathyroid hormone regulates serum calcium through its effects on bone, kidney, and the intestine: In bone, PTH enhances the release of calcium from the large reservoir contained in the bones. (wikipedia.org)
  • Parathyroid hormone injection may cause osteosarcoma (bone cancer) in laboratory rats. (medlineplus.gov)
  • Evaluation of bone mineral status will utilize an evaluation of vitamin D status based on two analytes: serum 25-hydroxyvitamin D and parathyroid hormone (PTH). (cdc.gov)
  • The classical target organs for parathyroid hormone (PTH) are the bone and kidneys. (handlebar-online.com)
  • If your parathyroid hormone is too high, it can cause your body to lose calcium, which can lead to bone loss and other health issues. (simplyhealth.today)
  • Parathyroid hormone raises serum calcium by increasing renal tubular calcium reabsorption, increasing intestinal calcium absorption, and increasing bone turnover. (medscape.com)
  • Calcium and vitamin D can help maintain calcium balance and normal parathyroid hormone levels, and can even preserve bone mass in some patients on low-dose steroid therapy. (hygge-xpress.com)
  • SGLT2i may alter renal tubular phosphate reabsorption and are associated with increased serum concentrations of phosphate, fibroblast growth factor-23 (FGF-23), parathyroid hormone (PTH), decreased 1,25-hydroxyvitamin D levels, as well as increased bone turnover. (lww.com)
  • Vitamin D metabolites and parathyroid hormone (PTH) participate in the regulation of calcium homeostasis and bone metabolism. (who.int)
  • These deficits lead to compensatory hypersecretion of parathyroid hormone, which results in bone loss [2,3]. (who.int)
  • Knowledge of these relationships is vital to understanding changes in the levels of the bone mineral-regulating hormones and other related homeostatic variations. (who.int)
  • PTH1R (parathyroid receptor-1) is a 7-transmembrane receptor that expressed in bone, kidney and other tissues where its ligands, PTH (parathyroid hormone) and PTHrP (PTH-related protein), are found. (rndsystems.com)
  • Serum calcium, phosphate, bone alkaline phosphatase (BAP), C-telopeptide (CTX), 25OHD, mid-molecule parathyroid hormone (mmPTH), daily urinary calcium and creatinine excretion were determined at baseline and monthly. (nature.com)
  • Parathyroid hormone (PTH) is known to have both catabolic and anabolic effects on bone. (nyu.edu)
  • This Elecsys 1010 method is for the in vitro quantitative determination of intact parathyroid hormone in human serum and plasma. (cdc.gov)
  • Scholars@Duke publication: Distinct beta-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. (duke.edu)
  • When a hormone binds to a receptor, the receptor then carries out the hormone's instructions. (medicalnewstoday.com)
  • The body needs just enough parathyroid hormones. (crank-it.com)
  • If one's parathyroid glands do not produce or secrete enough parathyroid hormones, this may cause one's calcium level to drop. (crank-it.com)
  • The parathyroid glands should just release enough parathyroid hormones needed by the body. (crank-it.com)
  • Its action is opposed by the hormone calcitonin. (wikipedia.org)
  • What are the primary target tissues for PTH parathyroid hormone calcitonin and calcitriol? (handlebar-online.com)
  • Calcitonin, which is produced by the parathyroid glands, thyroid, and thymus glands, is responsible for lowering calcium levels by moving calcium into the bones for storage. (childrensnational.org)
  • Parathyroid hormones are considered to be the most important endocrine regulator. (crank-it.com)
  • The endocrine system is the name for the glands that produce hormones in a person's body. (medicalnewstoday.com)
  • The endocrine system produces and secretes a number of hormones in the body. (medicalnewstoday.com)
  • If the glands do not function properly and produce incorrect amounts of hormones, a person can develop certain disorders of the endocrine system. (medicalnewstoday.com)
  • Parathyroid hormone tests may also help in finding the cause why an individual's calcium level is abnormal. (crank-it.com)
  • It may also help physicians to check if the parathyroid glands are the ones causing the abnormal calcium level. (crank-it.com)
  • Natpar is a protein and has an identical in structure to the endogenous human 84-amino-acid hormone. (janusinfo.se)
  • Measurements of parathyroid hormone levels are used in the differential diagnosis of hypercalcemia (abnormally high levels of calcium in the blood) and hypocalcemia (abnormally low levels of calcium in the blood) resulting from disorders of calcium metabolism. (fda.gov)
  • Parathyroid hormone 2 receptors are present at high levels on the cells of central nervous system, pancreas, testes, and placenta. (wikipedia.org)
  • This is achieved by the activation of calcium-sensing receptors located on parathyroid cells. (bionity.com)
  • Hormones act by binding to certain receptors within cells. (medicalnewstoday.com)
  • Birth defects which have been documented following isotretinoin capsules exposure include abnormalities of the face, eyes, ears, skull, central nervous system, cardiovascular system, and thymus and parathyroid glands. (nih.gov)
  • Circulating parathyroid hormone only influences the reabsorption that occurs in the distal tubules and the renal collecting ducts (but see Footnote). (wikipedia.org)
  • In the instance of renal disease or parathyroid disease, this normal mechanism runs awry and the result can be injurious to multiple body systems, including the bones, muscles, kidneys, and brain function. (medscape.com)
  • The primary response to parathyroid hormone (PTH) by the kidney is to increase renal calcium resorption and phosphate excretion. (handlebar-online.com)
  • Current standard of care consists of high doses of calcium supplements and active vitamin D, which may contribute to the risk of renal disease and does not address the underlying pathophysiology which is to restore the missing hormone. (biotechwinners.com)
  • These hormones either direct certain processes within the body or stimulate other glands to produce other hormones. (medicalnewstoday.com)
  • In other secretory cells, functional Na + channels and a Na + -Ca ++ exchange have been shown to play a role in the regulation of hormone excretion. (wustl.edu)
  • Calcium (Ca), phosphate (P), and parathyroid hormone (PTH) are important variables influencing the risk for cardiovascular disease in dialysis patients. (eur.nl)
  • Silver J, Yalcindag C, Sela-Brown A, Kilav R, Naveh-Many T. Regulation of the parathyroid hormone gene by vitamin D, calcium and phosphate. (medscape.com)
  • Because of the risk of osteosarcoma with this medication, parathyroid hormone injection is only available through a special program called Natpara REMS. (medlineplus.gov)
  • All people who are prescribed parathyroid hormone injection must have a prescription from a doctor who is registered with Natpara REMS and have the prescription filled at a pharmacy that is registered with Natpara REMS in order to receive this medication. (medlineplus.gov)
  • ENDO 2019 T4 Doesn't Prevent Miscarriages in Antibody-Positive Women Giving thyroid hormone replacement before conception didn't prevent miscarriages or other adverse pregnancy outcomes in euthyroid women with thyroid peroxidase antibodies, shows the TABLET trial. (medscape.com)
  • Assessment report for Natpar (parathyroid hormone) 23 February 2017, EMA/180882/2017. (janusinfo.se)
  • Intraoperative PTH assays may be performed during parathyroid tumor surgery to help determine if the PTH-producing adenoma was correctly removed. (medscape.com)
  • PTH is secreted primarily by the chief cells of the parathyroid glands. (wikipedia.org)
  • Growth hormone acts on all body cells. (handlebar-online.com)
  • These hormones then act on an organ or other cells in order to play a role in certain bodily functions. (medicalnewstoday.com)
  • These cells are equipped to respond to the hormone and carry out certain functions when they come in contact with the hormone. (medicalnewstoday.com)
  • The parathyroid glands produce parathyroid hormone, which helps maintain an appropriate balance of calcium in the bloodstream and in tissues that depend on calcium for proper functioning. (healthmatters.io)
  • These glands produce and send hormones into the bloodstream, where they travel to different tissues in the body. (medicalnewstoday.com)
  • PTH is made by four tiny parathyroid glands in your neck. (healthmatters.io)
  • Open: Open Parathyroidectomy is the standard removal of one or more of the four parathyroid glands in the neck. (bcm.edu)
  • Scarless: Transoral Thyroidectomy or Transoral Vestibular approach (TOVA) allows for the safe and total removal of the thyroid or parathyroid glands with absolutely no external scarring to the neck. (bcm.edu)
  • Parathyroid four-dimensional computed tomography (4DCT) is a technique that uses sophisticated x-ray technology to locate the parathyroid glands in the neck. (radiologyinfo.org)
  • Four-dimensional parathyroid computed tomography (4DCT) is an advanced method for detecting enlarged parathyroid glands in the neck. (radiologyinfo.org)
  • Serum concentrations of total calcium, ionic calcium, parathyroid hormone (PTH), 25-hydroxyvitamin-D3, and 1,25-dihydroxyvitamin-D3 were measured to monitor calcium homeostasis. (cdc.gov)
  • The single-copy gene for PLP was assigned to rat chromosome 2, whereas the rat parathyroid hormone (PTH) gene has previously been assigned to rat chromosome 1. (uthscsa.edu)
  • parathyroid hormone deficiency. (nih.gov)
  • This cancer continues to cause challenges for diagnosis and treatment because of its rarity, overlapping features with benign parathyroid disease, and lack of distinct characteristics. (nih.gov)
  • The third/second generation PTH assay ratio provides valuable information to distinguish between benign parathyroid disease and parathyroid carcinoma. (nih.gov)
  • Antigenic recognition of four anti-bovine parathyroid hormone antisera was characterized by their reactivity with bovine hormonal fragments (1-34, 1-13, 14-34, 19-34, 53-84) and human hormone extracted from parathyroid adenomas. (jci.org)
  • All antisera were found to have antibody populations which recognized more than one antigenic determinant and all antisera differed in their specificity and reactivity for the fragments of bovine hormone. (jci.org)
  • Hypoparathyroidism after I-131 therapy with subsequent return of parathyroid function. (medscape.com)
  • If the body has too high or too low in parathyroid hormones, it may cause problems with the kidneys. (crank-it.com)
  • What does it mean if your Parathyroid Hormone (PTH), Serum result is too high? (healthmatters.io)
  • Since parathyroid hormone (PTH) mainly controls the amount of calcium in your blood, which has several important functions, the symptoms you'll experience from high PTH levels are actually symptoms of high blood calcium levels. (healthmatters.io)
  • Testosterone Replacement Hormone Injection One of the most reliable methods of taking high enough testosterone to have normal hormone levels in adults is to inject it, although the injection method can be slow-acting and takes a minimum of 4-6 weeks, role of steroids in nerve injury. (hygge-xpress.com)
  • High levels of prolactin can affect hormones that control the ovaries in females and the testes in males. (medicalnewstoday.com)
  • This disease occurs when the parathyroid glands produce too much parathyroid hormone, resulting in high calcium levels in the body. (cdc.gov)
  • When the parathyroid glands release more parathyroid hormones, it causes the bones to release more calcium into the blood and reduces the amount of calcium released by the kidneys. (crank-it.com)
  • The hormone works by controlling the amount of calcium that is taken from the bones, lost in the urine, and absorbed into the intestines. (simplyhealth.today)
  • Hypothyroidism happens when the thyroid glands fail to produce enough thyroid hormones. (crank-it.com)
  • This is a condition where the parathyroid glands will produce too much of the parathyroid hormone. (simplyhealth.today)
  • Different glands within the body produce different hormones. (medicalnewstoday.com)
  • The glands produce parathyroid hormone (PTH). (radiologyinfo.org)
  • A parathyroid hormone test system is a device intended to measure the levels of parathyroid hormone in serum and plasma. (fda.gov)
  • This latter form of vitamin D is the active hormone which stimulates calcium uptake from the intestine. (wikipedia.org)
  • The major target end organs for parathyroid hormone (PTH) action are the kidneys, skeletal system, and intestine. (handlebar-online.com)
  • Radioimmunoassay of human parathyroid hormone in serum. (nature.com)
  • Patients with hypocalcemia due to resistance to parathyroid hormone (PTH) generally will require long-term therapy with vitamin D and calcium supplementation. (medscape.com)
  • Basal values for calcium (1.22 +/- 0.03 vs 1.23 +/- 0.03 pmol/l, mean +/- SD, controls vs patients) and parathyroid hormone (3.3 +/- 0.65 vs 5.1 +/- 2.32 pmol/l) as well as maximum response during infusion (1.01 +/- 0.04 vs 1.01 +/- 0.05 for calcium and 12.0 +/- 2.2 vs 13.1 +/- 3.7 for parathyroid hormone) were not significantly different. (unifesp.br)
  • Serum parathyroid hormone (PTH) increased significantly over the age span in premenopausal women (r = 0.13, P = 0.02). (who.int)
  • Serum para- thyroid hormone (PTH) increased significantly over the age span in premenopausal women ( r = 0.13, P = 0.02). (who.int)
  • Parathyroid hormone injection should not be used to treat low levels of calcium in the blood in people whose condition can be controlled by calcium and vitamin D alone. (medlineplus.gov)
  • If there is too much parathyroid hormone being released, the levels of calcium in the urine and blood will go up and bones might start to lose calcium, which can lead to osteoporosis. (simplyhealth.today)
  • Parathyroid hormone (PTH) helps the body maintain stable levels of calcium in the blood. (healthmatters.io)
  • Hormones are chemical messengers that enter the bloodstream and travel to specific areas of the body. (medicalnewstoday.com)
  • This hormone helps maintain the correct balance of calcium in the body. (radiologyinfo.org)