A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
The major component (about 80%) of the PANCREAS composed of acinar functional units of tubular and spherical cells. The acinar cells synthesize and secrete several digestive enzymes such as TRYPSINOGEN; LIPASE; AMYLASE; and RIBONUCLEASE. Secretion from the exocrine pancreas drains into the pancreatic ductal system and empties into the DUODENUM.
Glands of external secretion that release its secretions to the body's cavities, organs, or surface, through a duct.
A malabsorption condition resulting from greater than 10% reduction in the secretion of pancreatic digestive enzymes (LIPASE; PROTEASES; and AMYLASE) by the EXOCRINE PANCREAS into the DUODENUM. This condition is often associated with CYSTIC FIBROSIS and with chronic PANCREATITIS.
The transference of a pancreas from one human or animal to another.
The fluid containing digestive enzymes secreted by the pancreas in response to food in the duodenum.
A group of amylolytic enzymes that cleave starch, glycogen, and related alpha-1,4-glucans. (Stedman, 25th ed) EC 3.2.1.-.
Pathological processes of the PANCREAS.
Tumors or cancer of the PANCREAS. Depending on the types of ISLET CELLS present in the tumors, various hormones can be secreted: GLUCAGON from PANCREATIC ALPHA CELLS; INSULIN from PANCREATIC BETA CELLS; and SOMATOSTATIN from the SOMATOSTATIN-SECRETING CELLS. Most are malignant except the insulin-producing tumors (INSULINOMA).
Ducts that collect PANCREATIC JUICE from the PANCREAS and supply it to the DUODENUM.
A peptide hormone of about 27 amino acids from the duodenal mucosa that activates pancreatic secretion and lowers the blood sugar level. (USAN and the USP Dictionary of Drug Names, 1994, p597)
INFLAMMATION of the PANCREAS. Pancreatitis is classified as acute unless there are computed tomographic or endoscopic retrograde cholangiopancreatographic findings of CHRONIC PANCREATITIS (International Symposium on Acute Pancreatitis, Atlanta, 1992). The two most common forms of acute pancreatitis are ALCOHOLIC PANCREATITIS and gallstone pancreatitis.
Tests based on the biochemistry and physiology of the exocrine pancreas and involving analysis of blood, duodenal contents, feces, or urine for products of pancreatic secretion.
Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN.
A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety.
A specific decapeptide obtained from the skin of Hila caerulea, an Australian amphibian. Caerulein is similar in action and composition to CHOLECYSTOKININ. It stimulates gastric, biliary, and pancreatic secretion; and certain smooth muscle. It is used in paralytic ileus and as diagnostic aid in pancreatic malfunction.
Cells lining the saclike dilatations known as acini of various glands or the lungs.
Surgical removal of the pancreas. (Dorland, 28th ed)
Chymotrypsinogen is a zymogen, specifically an inactive precursor form of the enzyme chymotrypsin, which is produced in the pancreas and activated in the small intestine to help digest proteins by cleaving specific peptide bonds.
A mammalian pancreatic extract composed of enzymes with protease, amylase and lipase activities. It is used as a digestant in pancreatic malfunction.
Devices for simulating the activity of the pancreas. They can be either electromechanical, consisting of a glucose sensor, computer, and insulin pump or bioartificial, consisting of isolated islets of Langerhans in an artificial membrane.
INFLAMMATION of the PANCREAS that is characterized by recurring or persistent ABDOMINAL PAIN with or without STEATORRHEA or DIABETES MELLITUS. It is characterized by the irregular destruction of the pancreatic parenchyma which may be focal, segmental, or diffuse.
A 36-amino acid pancreatic hormone that is secreted mainly by endocrine cells found at the periphery of the ISLETS OF LANGERHANS and adjacent to cells containing SOMATOSTATIN and GLUCAGON. Pancreatic polypeptide (PP), when administered peripherally, can suppress gastric secretion, gastric emptying, pancreatic enzyme secretion, and appetite. A lack of pancreatic polypeptide (PP) has been associated with OBESITY in rats and mice.
The shortest and widest portion of the SMALL INTESTINE adjacent to the PYLORUS of the STOMACH. It is named for having the length equal to about the width of 12 fingers.
A preparation of hog pancreatic enzymes standardized for lipase content.
An octapeptide hormone present in the intestine and brain. When secreted from the gastric mucosa, it stimulates the release of bile from the gallbladder and digestive enzymes from the pancreas.
The inactive proenzyme of trypsin secreted by the pancreas, activated in the duodenum via cleavage by enteropeptidase. (Stedman, 25th ed)
A malignant tumor arising from secreting cells of a racemose gland, particularly the salivary glands. Racemose (Latin racemosus, full of clusters) refers, as does acinar (Latin acinus, grape), to small saclike dilatations in various glands. Acinar cell carcinomas are usually well differentiated and account for about 13% of the cancers arising in the parotid gland. Lymph node metastasis occurs in about 16% of cases. Local recurrences and distant metastases many years after treatment are common. This tumor appears in all age groups and is most common in women. (Stedman, 25th ed; Holland et al., Cancer Medicine, 3d ed, p1240; from DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p575)
An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. It is produced by glands on the tongue and by the pancreas and initiates the digestion of dietary fats. (From Dorland, 27th ed) EC 3.1.1.3.
A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511)
A mass of histologically normal tissue present in an abnormal location.
Carcinoma that arises from the PANCREATIC DUCTS. It accounts for the majority of cancers derived from the PANCREAS.
A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).
Peptide hormones secreted into the blood by cells in the ISLETS OF LANGERHANS of the pancreas. The alpha cells secrete glucagon; the beta cells secrete insulin; the delta cells secrete somatostatin; and the PP cells secrete pancreatic polypeptide.
A type of pancreatic cell representing about 50-80% of the islet cells. Beta cells secrete INSULIN.
An aminobenzoic acid isomer that combines with pteridine and GLUTAMIC ACID to form FOLIC ACID. The fact that 4-aminobenzoic acid absorbs light throughout the UVB range has also resulted in its use as an ingredient in SUNSCREENS.
The largest of the three pairs of SALIVARY GLANDS. They lie on the sides of the FACE immediately below and in front of the EAR.
A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal.
A true cyst of the PANCREAS, distinguished from the much more common PANCREATIC PSEUDOCYST by possessing a lining of mucous EPITHELIUM. Pancreatic cysts are categorized as congenital, retention, neoplastic, parasitic, enterogenous, or dermoid. Congenital cysts occur more frequently as solitary cysts but may be multiple. Retention cysts are gross enlargements of PANCREATIC DUCTS secondary to ductal obstruction. (From Bockus Gastroenterology, 4th ed, p4145)
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
The tear-forming and tear-conducting system which includes the lacrimal glands, eyelid margins, conjunctival sac, and the tear drainage system.
A protease of broad specificity, obtained from dried pancreas. Molecular weight is approximately 25,000. The enzyme breaks down elastin, the specific protein of elastic fibers, and digests other proteins such as fibrin, hemoglobin, and albumin. EC 3.4.21.36.
Condensed areas of cellular material that may be bounded by a membrane.
The excision of the head of the pancreas and the encircling loop of the duodenum to which it is connected.
Glands that secrete SALIVA in the MOUTH. There are three pairs of salivary glands (PAROTID GLAND; SUBLINGUAL GLAND; SUBMANDIBULAR GLAND).
Acute or chronic INFLAMMATION of the PANCREAS due to excessive ALCOHOL DRINKING. Alcoholic pancreatitis usually presents as an acute episode but it is a chronic progressive disease in alcoholics.
Surgical anastomosis of the pancreatic duct, or the divided end of the transected pancreas, with the jejunum. (Dorland, 28th ed)
A benign tumor of the pancreatic ISLET CELLS. Usually it involves the INSULIN-producing PANCREATIC BETA CELLS, as in INSULINOMA, resulting in HYPERINSULINISM.
A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence.
A condition that is characterized by chronic fatty DIARRHEA, a result of abnormal DIGESTION and/or INTESTINAL ABSORPTION of FATS.
Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL).
Ductless glands that secrete HORMONES directly into the BLOOD CIRCULATION. These hormones influence the METABOLISM and other functions of cells in the body.
An adenocarcinoma producing mucin in significant amounts. (From Dorland, 27th ed)
A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side.
The amount of a substance secreted by cells or by a specific organ or organism over a given period of time; usually applies to those substances which are formed by glandular tissues and are released by them into biological fluids, e.g., secretory rate of corticosteroids by the adrenal cortex, secretory rate of gastric acid by the gastric mucosa.
Extracts prepared from pancreatic tissue that may contain the pancreatic enzymes or other specific uncharacterized factors or proteins with specific activities. PANCREATIN is a specific extract containing digestive enzymes and used to treat pancreatic insufficiency.
Fluids originating from the epithelial lining of the intestines, adjoining exocrine glands and from organs such as the liver, which empty into the cavity of the intestines.
The proteinaceous component of the pancreatic stone in patients with PANCREATITIS.
Benzoic acids, salts, or esters that contain an amino group attached to carbon number 4 of the benzene ring structure.
Cell surface proteins that bind cholecystokinin (CCK) with high affinity and trigger intracellular changes influencing the behavior of cells. Cholecystokinin receptors are activated by GASTRIN as well as by CCK-4; CCK-8; and CCK-33. Activation of these receptors evokes secretion of AMYLASE by pancreatic acinar cells, acid and PEPSIN by stomach mucosal cells, and contraction of the PYLORUS and GALLBLADDER. The role of the widespread CCK receptors in the central nervous system is not well understood.
Formation of differentiated cells and complicated tissue organization to provide specialized functions.
A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4.
A drug that exerts an inhibitory effect on gastric secretion and reduces gastrointestinal motility. It is used clinically in the drug therapy of gastrointestinal ulcers.
Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity.
Derivatives of BENZOIC ACID that contain one or more amino groups attached to the benzene ring structure. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the aminobenzoate structure.
Antibiotic substance produced by various Streptomyces species. It is an inhibitor of enzymatic activities that involve glutamine and is used as an antineoplastic and immunosuppressive agent.
The transference of pancreatic islets within an individual, between individuals of the same species, or between individuals of different species.
Non-invasive diagnostic technique for visualizing the PANCREATIC DUCTS and BILE DUCTS without the use of injected CONTRAST MEDIA or x-ray. MRI scans provide excellent sensitivity for duct dilatation, biliary stricture, and intraductal abnormalities.
A serine proteinase inhibitor used therapeutically in the treatment of pancreatitis, disseminated intravascular coagulation (DIC), and as a regional anticoagulant for hemodialysis. The drug inhibits the hydrolytic effects of thrombin, plasmin, and kallikrein, but not of chymotrypsin and aprotinin.
A type of pancreatic cell representing about 5-20% of the islet cells. Alpha cells secrete GLUCAGON.
A multilocular tumor with mucin secreting epithelium. They are most often found in the ovary, but are also found in the pancreas, appendix, and rarely, retroperitoneal and in the urinary bladder. They are considered to have low-grade malignant potential.
A primary malignant neoplasm of the pancreatic ISLET CELLS. Usually it involves the non-INSULIN-producing cell types, the PANCREATIC ALPHA CELLS and the pancreatic delta cells (SOMATOSTATIN-SECRETING CELLS) in GLUCAGONOMA and SOMATOSTATINOMA, respectively.
Vesicles derived from the GOLGI APPARATUS containing material to be released at the cell surface.
A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods.
A severe form of acute INFLAMMATION of the PANCREAS characterized by one or more areas of NECROSIS in the pancreas with varying degree of involvement of the surrounding tissues or organ systems. Massive pancreatic necrosis may lead to DIABETES MELLITUS, and malabsorption.
The inner of the three germ layers of an embryo.
Secretory cells of the ductless glands. They secrete HORMONES directly into the blood circulation (internal secretion) to be carried to the target cells. The secreted chemicals can be PEPTIDES; STEROIDS; NEUROPEPTIDES; or BIOGENIC AMINES.
Elements of limited time intervals, contributing to particular results or situations.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
Colipase I and II, consisting of 94-95 and 84-85 amino acid residues, respectively, have been isolated from porcine pancreas. Their role is to prevent the inhibitory effect of bile salts on the lipase-catalyzed intraduodenal hydrolysis of dietary long-chain triglycerides.
One of two salivary glands in the neck, located in the space bound by the two bellies of the digastric muscle and the angle of the mandible. It discharges through the submandibular duct. The secretory units are predominantly serous although a few mucous alveoli, some with serous demilunes, occur. (Stedman, 25th ed)
A cystic tumor of the ovary, containing thin, clear, yellow serous fluid and varying amounts of solid tissue, with a malignant potential several times greater than that of mucinous cystadenoma (CYSTADENOMA, MUCINOUS). It can be unilocular, parvilocular, or multilocular. It is often bilateral and papillary. The cysts may vary greatly in size. (Dorland, 27th ed; from Hughes, Obstetric-Gynecologic Terminology, 1972)
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
Fiberoptic endoscopy designed for duodenal observation and cannulation of VATER'S AMPULLA, in order to visualize the pancreatic and biliary duct system by retrograde injection of contrast media. Endoscopic (Vater) papillotomy (SPHINCTEROTOMY, ENDOSCOPIC) may be performed during this procedure.
Chronic inflammatory and autoimmune disease in which the salivary and lacrimal glands undergo progressive destruction by lymphocytes and plasma cells resulting in decreased production of saliva and tears. The primary form, often called sicca syndrome, involves both KERATOCONJUNCTIVITIS SICCA and XEROSTOMIA. The secondary form includes, in addition, the presence of a connective tissue disease, usually rheumatoid arthritis.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A benign tumor of the PANCREATIC BETA CELLS. Insulinoma secretes excess INSULIN resulting in HYPOGLYCEMIA.
Physiologically inactive substances that can be converted to active enzymes.
A group of organs stretching from the MOUTH to the ANUS, serving to breakdown foods, assimilate nutrients, and eliminate waste. In humans, the digestive system includes the GASTROINTESTINAL TRACT and the accessory glands (LIVER; BILIARY TRACT; PANCREAS).
A subclass of alpha-amylase ISOENZYMES that are secreted into PANCREATIC JUICE.
Glucose in blood.
A family of DNA-binding transcription factors that contain a basic HELIX-LOOP-HELIX MOTIF.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
A malignant epithelial tumor with a glandular organization.
Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios.
Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen.
Abnormal passage communicating with the PANCREAS.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.
Star-shaped, myofibroblast-like cells located in the periacinar, perivascular, and periductal regions of the EXOCRINE PANCREAS. They play a key role in the pathobiology of FIBROSIS; PANCREATITIS; and PANCREATIC CANCER.
Cyst-like space not lined by EPITHELIUM and contained within the PANCREAS. Pancreatic pseudocysts account for most of the cystic collections in the pancreas and are often associated with chronic PANCREATITIS.
Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY.
A dilation of the duodenal papilla that is the opening of the juncture of the COMMON BILE DUCT and the MAIN PANCREATIC DUCT, also known as the hepatopancreatic ampulla.
A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A heterogeneous group of disorders characterized by HYPERGLYCEMIA and GLUCOSE INTOLERANCE.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
HORMONES secreted by the gastrointestinal mucosa that affect the timing or the quality of secretion of digestive enzymes, and regulate the motor activity of the digestive system organs.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Abnormal passage communicating with the STOMACH.
Carboxylesterase is a serine-dependent esterase with wide substrate specificity. The enzyme is involved in the detoxification of XENOBIOTICS and the activation of ester and of amide PRODRUGS.
An exotic species of the family CYPRINIDAE, originally from Asia, that has been introduced in North America. They are used in embryological studies and to study the effects of certain chemicals on development.
Tumors or cancer of the ENDOCRINE GLANDS.
The measurement of an organ in volume, mass, or heaviness.
Carboxypeptidases that are primarily found the DIGESTIVE SYSTEM that catalyze the release of C-terminal amino acids. Carboxypeptidases A have little or no activity for hydrolysis of C-terminal ASPARTIC ACID; GLUTAMIC ACID; ARGININE; LYSINE; or PROLINE. This enzyme requires ZINC as a cofactor and was formerly listed as EC 3.4.2.1 and EC 3.4.12.2.
The system of glands that release their secretions (hormones) directly into the circulatory system. In addition to the ENDOCRINE GLANDS, included are the CHROMAFFIN SYSTEM and the NEUROSECRETORY SYSTEMS.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
A disorder characterized by the accumulation of encapsulated or unencapsulated tumor-like fatty tissue resembling LIPOMA.
Bethanechol compounds are parasympathomimetic agents that directly stimulate muscarinic receptors, primarily used to treat urinary retention and nonobstructive bladder dysfunction by increasing bladder contractility and decreasing post-void residual volume.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
The removal of fluids or discharges from the body, such as from a wound, sore, or cavity.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
A family of gastrointestinal peptide hormones that excite the secretion of GASTRIC JUICE. They may also occur in the central nervous system where they are presumed to be neurotransmitters.
Disease having a short and relatively severe course.
An enzyme that hydrolyzes 1,6-alpha-glucosidic branch linkages in glycogen, amylopectin, and their beta-limit dextrins. It is distinguished from pullulanase (EC 3.2.1.41) by its inability to attack pullulan and by the feeble action of alpha-limit dextrins. It is distinguished from amylopectin 6-glucanohydrolase (EC 3.2.1.69) by its action on glycogen. With EC 3.2.1.69, it produces the activity called "debranching enzyme". EC 3.2.1.68.
A malignant cystic or semisolid tumor most often occurring in the ovary. Rarely, one is solid. This tumor may develop from a mucinous cystadenoma, or it may be malignant at the onset. The cysts are lined with tall columnar epithelial cells; in others, the epithelium consists of many layers of cells that have lost normal structure entirely. In the more undifferentiated tumors, one may see sheets and nests of tumor cells that have very little resemblance to the parent structure. (Hughes, Obstetric-Gynecologic Terminology, 1972, p184)
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Ultrasonography of internal organs using an ultrasound transducer sometimes mounted on a fiberoptic endoscope. In endosonography the transducer converts electronic signals into acoustic pulses or continuous waves and acts also as a receiver to detect reflected pulses from within the organ. An audiovisual-electronic interface converts the detected or processed echo signals, which pass through the electronics of the instrument, into a form that the technologist can evaluate. The procedure should not be confused with ENDOSCOPY which employs a special instrument called an endoscope. The "endo-" of endosonography refers to the examination of tissue within hollow organs, with reference to the usual ultrasonography procedure which is performed externally or transcutaneously.
An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine.
Enzymes that catalyze the endohydrolysis of 1,4-alpha-glycosidic linkages in STARCH; GLYCOGEN; and related POLYSACCHARIDES and OLIGOSACCHARIDES containing 3 or more 1,4-alpha-linked D-glucose units.
A malignant neoplasm characterized by the formation of numerous, irregular, finger-like projections of fibrous stroma that is covered with a surface layer of neoplastic epithelial cells. (Stedman, 25th ed)
A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
A benign neoplasm of the ovary.
The physiological renewal, repair, or replacement of tissue.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Poisonous animal secretions forming fluid mixtures of many different enzymes, toxins, and other substances. These substances are produced in specialized glands and secreted through specialized delivery systems (nematocysts, spines, fangs, etc.) for disabling prey or predator.
A genetically related subfamily of RAB GTP-BINDING PROTEINS involved in calcium-dependent EXOCYTOSIS. This enzyme was formerly listed as EC 3.6.1.47.
Drugs used for their effects on the gastrointestinal system, as to control gastric acidity, regulate gastrointestinal motility and water flow, and improve digestion.
Food BEVERAGES that are used as nutritional substitutes for MILK.
Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
An autosomal recessive genetic disease of the EXOCRINE GLANDS. It is caused by mutations in the gene encoding the CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR expressed in several organs including the LUNG, the PANCREAS, the BILIARY SYSTEM, and the SWEAT GLANDS. Cystic fibrosis is characterized by epithelial secretory dysfunction associated with ductal obstruction resulting in AIRWAY OBSTRUCTION; chronic RESPIRATORY INFECTIONS; PANCREATIC INSUFFICIENCY; maldigestion; salt depletion; and HEAT PROSTRATION.
A potent mutagen and carcinogen. It is a reduction product of 4-NITROQUINOLINE-1-OXIDE. It binds with nucleic acids and inactivates both bacteria and bacteriophage.
Enzymes that act at a free C-terminus of a polypeptide to liberate a single amino acid residue.
Diseases which have one or more of the following characteristics: they are permanent, leave residual disability, are caused by nonreversible pathological alteration, require special training of the patient for rehabilitation, or may be expected to require a long period of supervision, observation, or care. (Dictionary of Health Services Management, 2d ed)
An organ of digestion situated in the left upper quadrant of the abdomen between the termination of the ESOPHAGUS and the beginning of the DUODENUM.
A benign neoplasm derived from glandular epithelium, in which cystic accumulations of retained secretions are formed. In some instances, considerable portions of the neoplasm, or even the entire mass, may be cystic. (Stedman, 25th ed)
'Nerve tissue proteins' are specialized proteins found within the nervous system's biological tissue, including neurofilaments, neuronal cytoskeletal proteins, and neural cell adhesion molecules, which facilitate structural support, intracellular communication, and synaptic connectivity essential for proper neurological function.
A test to determine the ability of an individual to maintain HOMEOSTASIS of BLOOD GLUCOSE. It includes measuring blood glucose levels in a fasting state, and at prescribed intervals before and after oral glucose intake (75 or 100 g) or intravenous infusion (0.5 g/kg).
Tumors or cancer of the DUODENUM.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
An antibiotic that is produced by Stretomyces achromogenes. It is used as an antineoplastic agent and to induce diabetes in experimental animals.
A condition in which there is a change of one adult cell type to another similar adult cell type.
Tumor or cancer of the COMMON BILE DUCT including the AMPULLA OF VATER and the SPHINCTER OF ODDI.
The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE.
Neoplasms containing cyst-like formations or producing mucin or serum.
A slowly hydrolyzing muscarinic agonist with no nicotinic effects. Bethanechol is generally used to increase smooth muscle tone, as in the GI tract following abdominal surgery or in urinary retention in the absence of obstruction. It may cause hypotension, HEART RATE changes, and BRONCHIAL SPASM.
A group of acidic proteins that are major components of SECRETORY GRANULES in the endocrine and neuroendocrine cells. They play important roles in the aggregation, packaging, sorting, and processing of secretory protein prior to secretion. They are cleaved to release biologically active peptides. There are various types of granins, usually classified by their sources.
The developmental history of specific differentiated cell types as traced back to the original STEM CELLS in the embryo.
Cells found throughout the lining of the GASTROINTESTINAL TRACT that contain and secrete regulatory PEPTIDE HORMONES and/or BIOGENIC AMINES.
The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed)
Nerve fibers which project from parasympathetic ganglia to synapses on target organs. Parasympathetic postganglionic fibers use acetylcholine as transmitter. They may also release peptide cotransmitters.
One or more layers of EPITHELIAL CELLS, supported by the basal lamina, which covers the inner or outer surfaces of the body.
A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990)
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
The transference of a kidney from one human or animal to another.
Hindrance of the passage of luminal contents in the DUODENUM. Duodenal obstruction can be partial or complete, and caused by intrinsic or extrinsic factors. Simple obstruction is associated with diminished or stopped flow of luminal contents. Strangulating obstruction is associated with impaired blood flow to the duodenum in addition to obstructed flow of luminal contents.
The relationship between the dose of an administered drug and the response of the organism to the drug.
A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research.
A type of chromogranin which was first isolated from CHROMAFFIN CELLS of the ADRENAL MEDULLA but is also found in other tissues and in many species including human, bovine, rat, mouse, and others. It is an acidic protein with 431 to 445 amino acid residues. It contains fragments that inhibit vasoconstriction or release of hormones and neurotransmitter, while other fragments exert antimicrobial actions.
A strain of non-obese diabetic mice developed in Japan that has been widely studied as a model for T-cell-dependent autoimmune insulin-dependent diabetes mellitus in which insulitis is a major histopathologic feature, and in which genetic susceptibility is strongly MHC-linked.
The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms.
2-Amino-4-(ethylthio)butyric acid. An antimetabolite and methionine antagonist that interferes with amino acid incorporation into proteins and with cellular ATP utilization. It also produces liver neoplasms.
Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells.
A type VI intermediate filament protein expressed mostly in nerve cells where it is associated with the survival, renewal and mitogen-stimulated proliferation of neural progenitor cells.
Solutions used to store organs and minimize tissue damage, particularly while awaiting implantation.
A genus of the family Muridae having three species. The present domesticated strains were developed from individuals brought from Syria. They are widely used in biomedical research.
The 10th cranial nerve. The vagus is a mixed nerve which contains somatic afferents (from skin in back of the ear and the external auditory meatus), visceral afferents (from the pharynx, larynx, thorax, and abdomen), parasympathetic efferents (to the thorax and abdomen), and efferents to striated muscle (of the larynx and pharynx).
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed)
A tetradecapeptide originally obtained from the skins of toads Bombina bombina and B. variegata. It is also an endogenous neurotransmitter in many animals including mammals. Bombesin affects vascular and other smooth muscle, gastric secretion, and renal circulation and function.
Sialylated Lewis blood group carbohydrate antigen found in many adenocarcinomas of the digestive tract, especially pancreatic tumors.
Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells.
Abnormal communication most commonly seen between two internal organs, or between an internal organ and the surface of the body.
The immediate precursor in the biosynthesis of SEROTONIN from tryptophan. It is used as an antiepileptic and antidepressant.
A highly basic, 28 amino acid neuropeptide released from intestinal mucosa. It has a wide range of biological actions affecting the cardiovascular, gastrointestinal, and respiratory systems and is neuroprotective. It binds special receptors (RECEPTORS, VASOACTIVE INTESTINAL PEPTIDE).
A class of compounds that contain a -NH2 and a -NO radical. Many members of this group have carcinogenic and mutagenic properties.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
An increase in the number of cells in a tissue or organ without tumor formation. It differs from HYPERTROPHY, which is an increase in bulk without an increase in the number of cells.
Neuropeptide and gut hormone that helps regulate GASTRIC ACID secretion and motor function. Once released from nerves in the antrum of the STOMACH, the neuropeptide stimulates release of GASTRIN from the GASTRIN-SECRETING CELLS.
A malignant neoplasm derived from glandular epithelium, in which cystic accumulations of retained secretions are formed. The neoplastic cells manifest varying degrees of anaplasia and invasiveness, and local extension and metastases occur. Cystadenocarcinomas develop frequently in the ovaries, where pseudomucinous and serous types are recognized. (Stedman, 25th ed)
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.

The ultrastructure of periductal connective tissue and distinctive populations of collagen fibrils associated with ductal epithelia of exocrine glands. (1/265)

The ultrastructure of the connective tissue around the intraglandular ducts was observed in rat exocrine glands. Connective tissue with a dense population of collagen fibrils was found either around the ducts and blood vessels (perivasculoductal connective tissue; PVDCT) as in the lacrimal and salivary glands and liver, or solely surrounding the ducts (periductal connective tissue; PDCT) as in the exocrine pancreas, whereas the interlobular and intralobular interstitium of the glands-except for the liver-contained substantially fluid-filled spaces without collagen fibrils. The PVDCT and PDCT of these glands contained two populations of collagen fibrils-fibroblast-associated and epithelium-associated-although the development and density of these fibrils varied considerably in individual glands. Both populations of collagen fibrils were most developed in the lacrimal glands, in which the basal aspects of the ductal epithelium and the basement membrane showed considerable undulation associated with a distinctive peribasement membrane zone with amorphous matter and a small population of the fibrils. In the parotid and submandibular glands, both populations were distinct, though poorly developed. In the exocrine pancreas and hepatic Glisson's sheath, the two populations of collagen fibrils were moderately developed, and the basal aspects of the ductal epithelium were characterized by prominent invaginations in which the multilaminar basement membranes and the epithelium-associated collagen fibrils were frequently engulfed. These observations provide evidence that the two populations of collagen fibrils around the ducts are found universally in exocrine glands, and support the hypothesis of the collagen fibril-synthesizing and -secreting ability of ductal epithelial cells.  (+info)

Luminal CCK and its neuronal action on exocrine pancreatic secretion. (2/265)

Gut regulatory peptides are produced by mucosal endocrine cells and released both into the circulation as well as into the gut lumen. Following stimulation the distribution between the circulation and gut lumen changes in favor of the gut lumen. In the blood plasma, the biological half-life of gut regulatory peptides is counted in single minutes due to high aminopeptidase activity and liver extraction. In the gut lumen, however, regulatory peptides retain their biological activity much longer, especially in newborn and young animals. A series of studies was performed in neonatal calves and pigs to explore the role of luminal cholecystokinin (CCK) on the regulation of exocrine pancreatic secretion. In anaesthetized neonatal calves, CCK was secreted into the duodenal lumen, and electrical vagal stimulation increased CCK release into the duodenal lumen but not into the circulating blood. In conscious calves, luminal CCK-8 stimulated pancreatic protein secretion by a neurohormonal mechanism dependent on a duodenal mucosal CCK1 receptor and vagal nerve activity. Immunocytochemistry pointed to an association of mucosal CCK1 and CCK2 receptors with neuronal components in the small intestine of neonatal calves. Experiments in calves and pigs with CCK-8 infusions into the duodenal branches of the right gastroepiploic artery confirmed the results of luminal CCK-8 and questioned the physiological relevance of a direct mechanism of CCK on the pancreatic acini.  (+info)

Exocrine pancreas; molecular basis for intracellular signaling, damage and protection--Polish experience. (3/265)

Polish experience in molecular pancreatology mostly involves experimental work on intracellular signal transduction mechanisms in pancreatic acinar cells. It was found that stimulation with cholecystokinin (CCK) or exposure of pancreatic acini to reactive oxygen species induces three separate signaling cascades leading to activation of ERKs, JNK/SAPKs and p38 MAPK. In pancreatic acini, ERK cascade is also activated by epidermal growth factor (EGF). However, CCK and EGF activate this cascade by different mechanisms. EGF activates the cascade in a classical Ras-dependent manner, while CCK-induced activation of the ERK cascade is Ras-independent. Furthermore, stimulation with CCK leads to a rapid activation of PKC, which in turn may directly activate Raf family of kinases. Freshly isolated pancreatic acini contain pancreatic stellate cells which respond to EGF by activation of ERK cascade. It is possible that stimulation with CCK and EGF induces a cross-talk between acinar and stellate cells. Isolated pancreatic acinar cells irradiated with UV-B die predominantly by apoptosis while necrosis predominates among the cells subjected to supraphysiological concentrations of CCK. In pancreatic acini subjected to stressful stimuli the regulation of apoptosis may involve interaction between ERK and p38 MAPK signaling pathways. Acute pancreatitis in rats and in humans is associated with a marked increase in the plasma level of leptin which is caused by increased production of this peptide in the inflamed pancreas. It is possible that exogenous leptin protects the pancreas against development of acute pancreatitis by the activation of nitric oxide pathway.  (+info)

Pancreatic exocrine secretion and plasma concentration of some gastrointestinal hormones in response to abomasal infusion of starch hydrolyzate and/or casein. (4/265)

Eight Angus steers (290 +/- 8 kg), surgically prepared with pancreatic pouch-duodenal reentrant cannulas and abomasal infusion catheters were used in a replicated 4 x 4 Latin square experiment to investigate the effects of abomasal infusion of starch hydrolyzate (SH) and/or casein on pancreatic exocrine secretion and plasma concentration of hormones. Steers were fed a basal diet of alfalfa (1.2 x NEm) in 12 equal portions daily. Abomasal infusion treatments (6-L total volume infused per day) were water (control), SH [2.7 g/(kg BW x d)], casein [0.6 g/(kg BW x d)], and SH + casein. Periods were 3 d for adaptation and 8 d of full infusion. Pancreatic juice and jugular blood samples were collected over 30-min intervals for 6 h on d 11. Weight and pH of pancreatic samples were measured, and a 10% subsample was composited and frozen until analysis of total protein and pancreatic enzyme activities. The remaining sample was returned to the duodenum. Plasma was harvested and frozen until analyzed. Pancreatic juice (67 mL/h) and protein (1.8 g/h) secretion rates were not affected by nutrient infusion. There were SH x casein interactions for all pancreatic enzyme secretions (U/h; alpha-amylase, P < 0.03; trypsin, P < 0.08; and chymotrypsin, P < 0.03) and plasma insulin concentration (P < 0.10). Secretion of pancreatic enzymes was increased by SH (trypsin) and casein (alpha-amylase, trypsin, and chymotrypsin) but not when SH + casein were infused together. Glucose (P < 0.10) and cholecystokinin octapeptide concentrations (CCK-8; P < 0.05) were increased by SH, but glucagon was decreased (P < 0.10). Casein decreased (P < 0.10) plasma CCK-8 concentrations. These data indicate that positive effects of postruminal casein on enzyme secretion were inhibited by SH, emphasizing the complexity of the regulatory mechanisms involved in dietary adaptation of pancreatic exocrine secretion. Changes in hormone concentration may not relate directly to changes in enzyme secretion.  (+info)

Cleavage of SNAP-25 and VAMP-2 impairs store-operated Ca2+ entry in mouse pancreatic acinar cells. (5/265)

We recently reported that store-operated Ca(2+) entry (SOCE) in nonexcitable cells is likely to be mediated by a reversible interaction between Ca(2+) channels in the plasma membrane and the endoplasmic reticulum, a mechanism known as "secretion-like coupling." As for secretion, in this model the actin cytoskeleton plays a key regulatory role. In the present study we have explored the involvement of the secretory proteins synaptosome-associated protein (SNAP-25) and vesicle-associated membrane protein (VAMP) in SOCE in pancreatic acinar cells. Cleavage of SNAP-25 and VAMPs by treatment with botulinum toxin A (BoNT A) and tetanus toxin (TeTx), respectively, effectively inhibited amylase secretion stimulated by the physiological agonist CCK-8. BoNT A significantly reduced Ca(2+) entry induced by store depletion using thapsigargin or CCK-8. In addition, treatment with BoNT A once SOCE had been activated reduced Ca(2+) influx, indicating that SNAP-25 is needed for both the activation and maintenance of SOCE in pancreatic acinar cells. VAMP-2 and VAMP-3 are expressed in mouse pancreatic acinar cells. Both proteins associate with the cytoskeleton upon Ca(2+) store depletion, although only VAMP-2 seems to be sensitive to TeTx. Treatment of pancreatic acinar cells with TeTx reduced the activation of SOCE without affecting its maintenance. These findings support a role for SNAP-25 and VAMP-2 in the activation of SOCE in pancreatic acinar cells and show parallels between this process and secretion in a specialized secretory cell type.  (+info)

Effects of increased intracellular cAMP on carbachol-stimulated zymogen activation, secretion, and injury in the pancreatic acinar cell. (6/265)

A characteristic of acute pancreatitis is the premature activation and retention of enzymes within the pancreatic acinar cell. Because ligands linked to cAMP production may prevent some forms of pancreatitis, we evaluated the effects of increased intracellular cAMP in the rat pancreatic acinar cell. Specifically, this study examined the effects of the cholinergic agonist carbachol and agents that increase cAMP [secretin and 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP)] on zymogen activation (trypsin and chymotrypsin), enzyme secretion, and cellular injury in isolated pancreatic acini. Although cAMP agonists affected the responses to physiological concentrations of carbachol (1 microM), their most prominent effects were observed with supraphysiological concentrations (1 mM). When secretin was added to 1 mM carbachol, there was a slight increase in zymogen activation, but no change in the secretion of amylase or chymotrypsin. Furthermore, coaddition of secretin increased parameters of cell injury (trypan blue exclusion, lactic dehydrogenase release, and morphological markers) compared with carbachol (1 mM) alone. Although directly increasing cellular cAMP by 8-Br-cAMP caused much greater zymogen activation than carbachol (1 mM) alone or with secretin, 8-Br-cAMP cotreatment reduced all parameters of injury to the level of unstimulated acini. Furthermore, 8-Br-cAMP dramatically enhanced the secretion of amylase and chymotrypsin from the acinar cell. This study demonstrates that increasing acinar cell cAMP can overcome the inhibition of enzyme secretion caused by high concentrations of carbachol and eliminate acinar cell injury.  (+info)

Fat absorption in cystic fibrosis mice is impeded by defective lipolysis and post-lipolytic events. (7/265)

Cystic fibrosis (CF) is frequently associated with progressive loss of exocrine pancreas function, leading to incomplete digestion and absorption of dietary fat. Supplementing patients with pancreatic lipase reduces fat excretion, but it does not completely correct fat malabsorption, indicating that additional pathological processes affect lipolysis and/or uptake of lipolytic products. To delineate the role of such (post) lipolytic processes in CF-related fat malabsorption, we assessed fat absorption, lipolysis, and fatty acid uptake in two murine CF models by measuring fecal fat excretion and uptake of oleate- and triolein-derived lipid. Pancreatic and biliary function was investigated by determining lipase secretion and biliary bile salt (BS) secretion, respectively. A marked increase in fecal fat excretion was observed in cftr null mice but not in homozygous DeltaF508 mice. Fecal BS loss was enhanced in both CF models, but biliary BS secretion rates were similar. Uptake of free fatty acid was delayed in both CF models, but only in null mice was a specific reduction in lipolytic activity apparent, characterized by strongly reduced triglyceride absorption. Impaired lipolysis was not due to reduced pancreatic lipase secretion. Suppression of gastric acid secretion partially restored lipolytic activity and lipid uptake, indicating that incomplete neutralization of gastric acid impedes fat absorption. We conclude that fat malabsorption in cftr null mice is caused by impairment of lipolysis, which may result from aberrant duodenal pH regulation.  (+info)

Genetic alterations and reduced expression of tumor suppressor p33(ING1b) in human exocrine pancreatic carcinoma. (8/265)

AIM: To detect the expression of p33(ING1b) protein and the change of p33(ING1b) gene in pancreatic carcinoma and to evaluate the significance of p33(ING1b) in pancreatic cell carcinogenesis. METHODS: Pathological specimens from pancreatic carcinoma and matched non-tumor pancreatic tissues were examined for p33(ING1b) expression and mutation by immunohistochemistry, polymerase chain reaction single-strand conformation polymorphisms (PCR-SSCP) and loss of heterozygosity (LOH). RESULTS: The rate of p33(ING1b) protein expression was 85% (34/40). A single germline missense mutation was detected in 1 of 40 tumors located at codon 215:TGC-TCC (Cys-Ser). Fourteen (60.9%) of 23 tumor samples showed LOH in all of the informative markers tested, but no mutation was detected in these tumors and only two of the informative tumors lacked expressions of p33(ING1b) protein. CONCLUSION: Mutation and loss of expression are not the main reasons for the disfunction of p33(ING1b) in pancreatic carcinoma, an abnormality at the level of chromosome and/or transcription may inhibit their normal functions, potentially contributing to pancreatic cell carcinogenesis.  (+info)

The pancreas is a glandular organ located in the abdomen, posterior to the stomach. It has both exocrine and endocrine functions. The exocrine portion of the pancreas consists of acinar cells that produce and secrete digestive enzymes into the duodenum via the pancreatic duct. These enzymes help in the breakdown of proteins, carbohydrates, and fats in food.

The endocrine portion of the pancreas consists of clusters of cells called islets of Langerhans, which include alpha, beta, delta, and F cells. These cells produce and secrete hormones directly into the bloodstream, including insulin, glucagon, somatostatin, and pancreatic polypeptide. Insulin and glucagon are critical regulators of blood sugar levels, with insulin promoting glucose uptake and storage in tissues and glucagon stimulating glycogenolysis and gluconeogenesis to raise blood glucose when it is low.

The exocrine portion of the pancreas refers to the part that releases digestive enzymes into the duodenum, which is the first section of the small intestine. These enzymes help in the breakdown of proteins, fats, and carbohydrates in food, enabling their absorption and utilization by the body.

The exocrine pancreas is made up of acinar cells that cluster together to form acini (singular: acinus), which are small sac-like structures. When stimulated by hormones such as secretin and cholecystokinin, these acinar cells release digestive enzymes like amylase, lipase, and trypsin into a network of ducts that ultimately merge into the main pancreatic duct. This duct then joins the common bile duct, which carries bile from the liver and gallbladder, before emptying into the duodenum.

It is important to note that the pancreas has both exocrine and endocrine functions. The endocrine portion of the pancreas consists of the islets of Langerhans, which release hormones like insulin and glucagon directly into the bloodstream, regulating blood sugar levels.

Exocrine glands are a type of gland in the human body that produce and release substances through ducts onto an external or internal surface. These glands are responsible for secreting various substances such as enzymes, hormones, and lubricants that help in digestion, protection, and other bodily functions.

Exocrine glands can be further classified into three types based on their mode of secretion:

1. Merocrine glands: These glands release their secretions by exocytosis, where the secretory product is enclosed in a vesicle that fuses with the cell membrane and releases its contents outside the cell. Examples include sweat glands and mucous glands.
2. Apocrine glands: These glands release their secretions by pinching off a portion of the cytoplasm along with the secretory product. An example is the apocrine sweat gland found in the armpits and genital area.
3. Holocrine glands: These glands release their secretions by disintegrating and releasing the entire cell, including its organelles and secretory products. An example is the sebaceous gland found in the skin, which releases an oily substance called sebum.

Exocrine pancreatic insufficiency (EPI) is a condition characterized by the reduced ability to digest and absorb nutrients due to a lack of digestive enzymes produced by the exocrine glands in the pancreas. These enzymes, including lipases, amylases, and proteases, are necessary for breaking down fats, carbohydrates, and proteins in food during the digestion process.

When EPI occurs, undigested food passes through the gastrointestinal tract, leading to malabsorption of nutrients, which can result in various symptoms such as abdominal pain, bloating, diarrhea, weight loss, and steatorrhea (fatty stools). EPI is often associated with chronic pancreatitis, cystic fibrosis, pancreatic cancer, or other conditions that damage the exocrine glands in the pancreas.

EPI can be diagnosed through various tests, including fecal elastase testing, fecal fat quantification, and imaging studies to assess the structure and function of the pancreas. Treatment typically involves replacing the missing enzymes with oral supplements taken with meals and snacks to improve digestion and absorption of nutrients. In addition, dietary modifications and management of underlying conditions are essential for optimal outcomes.

Pancreas transplantation is a surgical procedure that involves implanting a healthy pancreas from a deceased donor into a recipient with diabetes. The primary goal of this procedure is to restore the recipient's insulin production and eliminate the need for insulin injections, thereby improving their quality of life and reducing the risk of long-term complications associated with diabetes.

There are three main types of pancreas transplantation:

1. Simultaneous pancreas-kidney (SPK) transplantation: This is the most common type of pancreas transplant, performed simultaneously with a kidney transplant in patients with diabetes and end-stage renal disease (ESRD). The new pancreas not only restores insulin production but also helps prevent further kidney damage.
2. Pancreas after kidney (PAK) transplantation: In this procedure, a patient receives a kidney transplant first, followed by a pancreas transplant at a later time. This is typically performed in patients who have already undergone a successful kidney transplant and wish to improve their diabetes management.
3. Pancreas transplantation alone (PTA): In rare cases, a pancreas transplant may be performed without a concurrent kidney transplant. This is usually considered for patients with brittle diabetes who experience severe hypoglycemic episodes despite optimal medical management and lifestyle modifications.

The success of pancreas transplantation has significantly improved over the years, thanks to advancements in surgical techniques, immunosuppressive medications, and post-transplant care. However, it is essential to weigh the benefits against the risks, such as potential complications related to surgery, infection, rejection, and long-term use of immunosuppressive drugs. Ultimately, the decision to undergo pancreas transplantation should be made in consultation with a multidisciplinary team of healthcare professionals, considering each patient's unique medical history and personal circumstances.

Pancreatic juice is an alkaline fluid secreted by the exocrine component of the pancreas, primarily containing digestive enzymes such as amylase, lipase, and trypsin. These enzymes aid in the breakdown of carbohydrates, fats, and proteins, respectively, in the small intestine during the digestion process. The bicarbonate ions present in pancreatic juice help neutralize the acidic chyme that enters the duodenum from the stomach, creating an optimal environment for enzymatic activity.

Amylases are enzymes that break down complex carbohydrates, such as starch and glycogen, into simpler sugars like maltose, glucose, and maltotriose. There are several types of amylases found in various organisms, including humans.

In humans, amylases are produced by the pancreas and salivary glands. Pancreatic amylase is released into the small intestine where it helps to digest dietary carbohydrates. Salivary amylase, also known as alpha-amylase, is secreted into the mouth and begins breaking down starches in food during chewing.

Deficiency or absence of amylases can lead to difficulties in digesting carbohydrates and may cause symptoms such as bloating, diarrhea, and abdominal pain. Elevated levels of amylase in the blood may indicate conditions such as pancreatitis, pancreatic cancer, or other disorders affecting the pancreas.

Pancreatic diseases refer to a group of medical conditions that affect the structure and function of the pancreas, a vital organ located in the abdomen. The pancreas has two main functions: an exocrine function, which involves the production of digestive enzymes that help break down food in the small intestine, and an endocrine function, which involves the production of hormones such as insulin and glucagon that regulate blood sugar levels.

Pancreatic diseases can be broadly classified into two categories: inflammatory and non-inflammatory. Inflammatory pancreatic diseases include conditions such as acute pancreatitis, which is characterized by sudden inflammation of the pancreas, and chronic pancreatitis, which is a long-term inflammation that can lead to scarring and loss of function.

Non-inflammatory pancreatic diseases include conditions such as pancreatic cancer, which is a malignant tumor that can arise from the cells of the pancreas, and benign tumors such as cysts or adenomas. Other non-inflammatory conditions include pancreatic insufficiency, which can occur when the pancreas does not produce enough digestive enzymes, and diabetes mellitus, which can result from impaired insulin production or action.

Overall, pancreatic diseases can have serious consequences on a person's health and quality of life, and early diagnosis and treatment are essential for optimal outcomes.

Pancreatic neoplasms refer to abnormal growths in the pancreas that can be benign or malignant. The pancreas is a gland located behind the stomach that produces hormones and digestive enzymes. Pancreatic neoplasms can interfere with the normal functioning of the pancreas, leading to various health complications.

Benign pancreatic neoplasms are non-cancerous growths that do not spread to other parts of the body. They are usually removed through surgery to prevent any potential complications, such as blocking the bile duct or causing pain.

Malignant pancreatic neoplasms, also known as pancreatic cancer, are cancerous growths that can invade and destroy surrounding tissues and organs. They can also spread (metastasize) to other parts of the body, such as the liver, lungs, or bones. Pancreatic cancer is often aggressive and difficult to treat, with a poor prognosis.

There are several types of pancreatic neoplasms, including adenocarcinomas, neuroendocrine tumors, solid pseudopapillary neoplasms, and cystic neoplasms. The specific type of neoplasm is determined through various diagnostic tests, such as imaging studies, biopsies, and blood tests. Treatment options depend on the type, stage, and location of the neoplasm, as well as the patient's overall health and preferences.

The pancreatic ducts are a set of tubular structures within the pancreas that play a crucial role in the digestive system. The main pancreatic duct, also known as the duct of Wirsung, is responsible for transporting pancreatic enzymes and bicarbonate-rich fluid from the pancreas to the duodenum, which is the first part of the small intestine.

The exocrine portion of the pancreas contains numerous smaller ducts called interlobular ducts and intralobular ducts that merge and ultimately join the main pancreatic duct. This system ensures that the digestive enzymes and fluids produced by the pancreas are effectively delivered to the small intestine, where they aid in the breakdown and absorption of nutrients from food.

In addition to the main pancreatic duct, there is an accessory pancreatic duct, also known as Santorini's duct, which can sometimes join the common bile duct before emptying into the duodenum through a shared opening called the ampulla of Vater. However, in most individuals, the accessory pancreatic duct usually drains into the main pancreatic duct before entering the duodenum.

Secretin is a hormone that is produced and released by the S cells in the duodenum, which is the first part of the small intestine. It is released in response to the presence of acidic chyme (partially digested food) entering the duodenum from the stomach. Secretin stimulates the pancreas to produce bicarbonate-rich alkaline secretions, which help neutralize the acidity of the chyme and create an optimal environment for enzymatic digestion in the small intestine.

Additionally, secretin also promotes the production of watery fluids from the liver, which aids in the digestion process. Overall, secretin plays a crucial role in maintaining the pH balance and facilitating proper nutrient absorption in the gastrointestinal tract.

Pancreatitis is a medical condition characterized by inflammation of the pancreas, a gland located in the abdomen that plays a crucial role in digestion and regulating blood sugar levels. The inflammation can be acute (sudden and severe) or chronic (persistent and recurring), and it can lead to various complications if left untreated.

Acute pancreatitis often results from gallstones or excessive alcohol consumption, while chronic pancreatitis may be caused by long-term alcohol abuse, genetic factors, autoimmune conditions, or metabolic disorders like high triglyceride levels. Symptoms of acute pancreatitis include severe abdominal pain, nausea, vomiting, fever, and increased heart rate, while chronic pancreatitis may present with ongoing abdominal pain, weight loss, diarrhea, and malabsorption issues due to impaired digestive enzyme production. Treatment typically involves supportive care, such as intravenous fluids, pain management, and addressing the underlying cause. In severe cases, hospitalization and surgery may be necessary.

Pancreatic function tests are a group of medical tests that are used to assess the functionality and health of the pancreas. The pancreas is a vital organ located in the abdomen, which has two main functions: an exocrine function, where it releases digestive enzymes into the small intestine to help break down food; and an endocrine function, where it produces hormones such as insulin and glucagon that regulate blood sugar levels.

Pancreatic function tests typically involve measuring the levels of digestive enzymes in the blood or stool, or assessing the body's ability to digest and absorb certain nutrients. Some common pancreatic function tests include:

1. Serum amylase and lipase tests: These tests measure the levels of digestive enzymes called amylase and lipase in the blood. Elevated levels of these enzymes may indicate pancreatitis or other conditions affecting the pancreas.
2. Fecal elastase test: This test measures the level of elastase, an enzyme produced by the pancreas, in a stool sample. Low levels of elastase may indicate exocrine pancreatic insufficiency (EPI), a condition where the pancreas is not producing enough digestive enzymes.
3. Secretin stimulation test: This test involves administering a medication called secretin, which stimulates the pancreas to release digestive enzymes. The levels of these enzymes are then measured in the blood or duodenum (the first part of the small intestine).
4. Fat absorption tests: These tests involve measuring the amount of fat that is absorbed from a meal. High levels of fat in the stool may indicate EPI.
5. Glucose tolerance test: This test involves measuring blood sugar levels after consuming a sugary drink. Low levels of insulin or high levels of glucose may indicate diabetes or other endocrine disorders affecting the pancreas.

Overall, pancreatic function tests are important tools for diagnosing and monitoring conditions that affect the pancreas, such as pancreatitis, EPI, and diabetes.

The Islets of Langerhans are clusters of specialized cells within the pancreas, an organ located behind the stomach. These islets are named after Paul Langerhans, who first identified them in 1869. They constitute around 1-2% of the total mass of the pancreas and are distributed throughout its substance.

The Islets of Langerhans contain several types of cells, including:

1. Alpha (α) cells: These produce and release glucagon, a hormone that helps to regulate blood sugar levels by promoting the conversion of glycogen to glucose in the liver when blood sugar levels are low.
2. Beta (β) cells: These produce and release insulin, a hormone that promotes the uptake and utilization of glucose by cells throughout the body, thereby lowering blood sugar levels.
3. Delta (δ) cells: These produce and release somatostatin, a hormone that inhibits the release of both insulin and glucagon and helps regulate their secretion in response to changing blood sugar levels.
4. PP cells (gamma or γ cells): These produce and release pancreatic polypeptide, which plays a role in regulating digestive enzyme secretion and gastrointestinal motility.

Dysfunction of the Islets of Langerhans can lead to various endocrine disorders, such as diabetes mellitus, where insulin-producing beta cells are damaged or destroyed, leading to impaired blood sugar regulation.

Cholecystokinin (CCK) is a hormone that is produced in the duodenum (the first part of the small intestine) and in the brain. It is released into the bloodstream in response to food, particularly fatty foods, and plays several roles in the digestive process.

In the digestive system, CCK stimulates the contraction of the gallbladder, which releases bile into the small intestine to help digest fats. It also inhibits the release of acid from the stomach and slows down the movement of food through the intestines.

In the brain, CCK acts as a neurotransmitter and has been shown to have effects on appetite regulation, mood, and memory. It may play a role in the feeling of fullness or satiety after eating, and may also be involved in anxiety and panic disorders.

CCK is sometimes referred to as "gallbladder-stimulating hormone" or "pancreozymin," although these terms are less commonly used than "cholecystokinin."

Ceruletide is a synthetic analog of the natural hormone cholecystokinin (CCK). It is a decapeptide with the following sequence: cyclo(D-Asp-Tic-Phe-Ser-Leu-Hand-Ala-Lys-Thr-Nle-NH2).

Ceruletide has several pharmacological actions, including stimulation of the release of digestive enzymes from the pancreas, contraction of the gallbladder and sphincter of Oddi, and inhibition of gastric acid secretion. It is used in clinical medicine for diagnostic purposes to test the motor function of the biliary tract and to diagnose gastrointestinal motility disorders.

Ceruletide has also been investigated as a potential treatment for certain conditions such as pancreatitis, gallstones, and intestinal obstruction, but its use is limited due to its side effects, which include nausea, vomiting, abdominal cramps, and diarrhea.

Acinar cells are the type of exocrine gland cells that produce and release enzymes or other secretory products into a lumen or duct. These cells are most commonly found in the acini (plural of acinus) of the pancreas, where they produce digestive enzymes that are released into the small intestine to help break down food.

The acinar cells in the pancreas are arranged in clusters called acini, which are surrounded by a network of ducts that transport the secreted enzymes to the duodenum. Each acinus contains a central lumen, into which the digestive enzymes are released by the acinar cells.

Acinar cells have a distinctive morphology, with a large, centrally located nucleus and abundant cytoplasm that contains numerous secretory granules. These granules contain the enzymes that are synthesized and stored within the acinar cells until they are released in response to hormonal or neural signals.

In addition to their role in digestion, acinar cells can also be found in other exocrine glands, such as the salivary glands, where they produce and release enzymes that help to break down food in the mouth.

A pancreatectomy is a surgical procedure in which all or part of the pancreas is removed. There are several types of pancreatectomies, including:

* **Total pancreatectomy:** Removal of the entire pancreas, as well as the spleen and nearby lymph nodes. This type of pancreatectomy is usually done for patients with cancer that has spread throughout the pancreas or for those who have had multiple surgeries to remove pancreatic tumors.
* **Distal pancreatectomy:** Removal of the body and tail of the pancreas, as well as nearby lymph nodes. This type of pancreatectomy is often done for patients with tumors in the body or tail of the pancreas.
* **Partial (or segmental) pancreatectomy:** Removal of a portion of the head or body of the pancreas, as well as nearby lymph nodes. This type of pancreatectomy is often done for patients with tumors in the head or body of the pancreas that can be removed without removing the entire organ.
* **Pylorus-preserving pancreaticoduodenectomy (PPPD):** A type of surgery used to treat tumors in the head of the pancreas, as well as other conditions such as chronic pancreatitis. In this procedure, the head of the pancreas, duodenum, gallbladder, and bile duct are removed, but the stomach and lower portion of the esophagus (pylorus) are left in place.

After a pancreatectomy, patients may experience problems with digestion and blood sugar regulation, as the pancreas plays an important role in these functions. Patients may need to take enzyme supplements to help with digestion and may require insulin therapy to manage their blood sugar levels.

Chymotrypsinogen is the inactive precursor form of the enzyme chymotrypsin, which is produced in the pancreas and plays a crucial role in digesting proteins in the small intestine. This zymogen is activated when it is cleaved by another protease called trypsin, resulting in the formation of the active enzyme chymotrypsin. Chymotrypsinogen is synthesized and stored in the pancreas as a proenzyme to prevent premature activation and potential damage to the pancreatic tissue. Once released into the small intestine, trypsin-mediated cleavage of chymotrypsinogen leads to the formation of chymotrypsin, which then contributes to protein breakdown and absorption in the gut.

Pancreatin is a mixture of digestive enzymes, including amylase, lipase, and proteases, naturally produced by the pancreas in humans and other mammals. These enzymes aid in the digestion of carbohydrates, fats, and proteins, respectively, in the small intestine. Pancreatin is often used as a replacement therapy for individuals with conditions like cystic fibrosis, chronic pancreatitis, or pancreatectomy, who have impaired pancreatic function and struggle to digest food properly. It can be obtained from animal pancreases, typically from pigs, and is available in various forms such as tablets, capsules, or powders for medical use.

An artificial pancreas is not a literal organ like a biological pancreas. Instead, it refers to a closed-loop system that integrates a continuous glucose monitor (CGM) with an insulin pump to automatically regulate blood glucose levels in individuals with diabetes. This system mimics the functions of a healthy pancreas by constantly monitoring blood sugar levels and delivering the appropriate amount of insulin as needed, without requiring manual input from the user.

The artificial pancreas is still an area of active research and development, and various prototypes and systems are being tested in clinical trials to improve their accuracy, safety, and effectiveness. The ultimate goal of developing an artificial pancreas is to provide a more effective and convenient way to manage diabetes, reduce the risk of complications, and improve quality of life for people with diabetes.

Chronic pancreatitis is a long-standing inflammation of the pancreas that leads to irreversible structural changes and impaired function of the pancreas. It is characterized by recurrent or persistent abdominal pain, often radiating to the back, and maldigestion with steatorrhea (fatty stools) due to exocrine insufficiency. The pancreatic damage results from repeated episodes of acute pancreatitis, alcohol abuse, genetic predisposition, or autoimmune processes. Over time, the pancreas may lose its ability to produce enough digestive enzymes and hormones like insulin, which can result in diabetes mellitus. Chronic pancreatitis also increases the risk of developing pancreatic cancer.

Pancreatic polypeptide (PP) is a hormone that is produced and released by the pancreas, specifically by the F cells located in the islets of Langerhans. It is a small protein consisting of 36 amino acids, and it plays a role in regulating digestive functions, particularly by inhibiting pancreatic enzyme secretion and gastric acid secretion.

PP is released into the bloodstream in response to food intake, especially when nutrients such as proteins and fats are present in the stomach. It acts on the brain to produce a feeling of fullness or satiety, which helps to regulate appetite and eating behavior. Additionally, PP has been shown to have effects on glucose metabolism, insulin secretion, and energy balance.

In recent years, there has been growing interest in the potential therapeutic uses of PP for a variety of conditions, including obesity, diabetes, and gastrointestinal disorders. However, more research is needed to fully understand its mechanisms of action and clinical applications.

The duodenum is the first part of the small intestine, immediately following the stomach. It is a C-shaped structure that is about 10-12 inches long and is responsible for continuing the digestion process that begins in the stomach. The duodenum receives partially digested food from the stomach through the pyloric valve and mixes it with digestive enzymes and bile produced by the pancreas and liver, respectively. These enzymes help break down proteins, fats, and carbohydrates into smaller molecules, allowing for efficient absorption in the remaining sections of the small intestine.

Pancrelipase is a prescription medication that contains a combination of three enzymes (lipases, proteases, and amylases) that are normally produced by the pancreas. These enzymes help break down fats, proteins, and carbohydrates in food so that they can be absorbed into the intestines.

Pancrelipase is used to replace these enzymes when a person's pancreas is not able to produce enough of them due to conditions such as cystic fibrosis, chronic pancreatitis, or pancreatectomy. By taking pancrelipase with meals and snacks, people with these conditions can improve their digestion and absorption of nutrients from food.

It is important to note that pancrelipase should be taken under the guidance of a healthcare professional, as improper use or dosage can lead to serious side effects such as nausea, vomiting, diarrhea, abdominal pain, and constipation.

Sincalide is a synthetic hormone that stimulates the contraction of the gallbladder and the release of digestive enzymes from the pancreas. It is used in diagnostic procedures to help diagnose conditions such as gallstones or obstructions of the bile ducts.

Sincalide is a synthetic form of cholecystokinin (CCK), a hormone that is naturally produced in the body and stimulates the contraction of the gallbladder and the release of digestive enzymes from the pancreas. When sincalide is administered, it mimics the effects of CCK and causes the gallbladder to contract and release bile into the small intestine. This can help doctors see if there are any obstructions or abnormalities in the bile ducts or gallbladder.

Sincalide is usually given as an injection, and its effects can be monitored through imaging tests such as ultrasound or CT scans. It is important to note that sincalide should only be used under the supervision of a healthcare professional, as it can cause side effects such as abdominal pain, nausea, and vomiting.

Trypsinogen is a precursor protein that is converted into the enzyme trypsin in the small intestine. It is produced by the pancreas and released into the duodenum, where it is activated by enterokinase, an enzyme produced by the intestinal mucosa. Trypsinogen plays a crucial role in digestion by helping to break down proteins into smaller peptides and individual amino acids.

In medical terms, an elevated level of trypsinogen in the blood may indicate pancreatic disease or injury, such as pancreatitis or pancreatic cancer. Therefore, measuring trypsinogen levels in the blood is sometimes used as a diagnostic tool to help identify these conditions.

Carcinoma, acinar cell is a type of pancreatic cancer that originates in the acinar cells of the pancreas. The acinar cells are responsible for producing digestive enzymes. This type of cancer is relatively rare and accounts for less than 5% of all pancreatic cancers. It typically presents with symptoms such as abdominal pain, weight loss, and jaundice. Treatment options may include surgery, chemotherapy, and radiation therapy.

Lipase is an enzyme that is produced by the pancreas and found in the digestive system of most organisms. Its primary function is to catalyze the hydrolysis of fats (triglycerides) into smaller molecules, such as fatty acids and glycerol, which can then be absorbed by the intestines and utilized for energy or stored for later use.

In medical terms, lipase levels in the blood are often measured to diagnose or monitor conditions that affect the pancreas, such as pancreatitis (inflammation of the pancreas), pancreatic cancer, or cystic fibrosis. Elevated lipase levels may indicate damage to the pancreas and its ability to produce digestive enzymes.

Glucagon is a hormone produced by the alpha cells of the pancreas. Its main function is to regulate glucose levels in the blood by stimulating the liver to convert stored glycogen into glucose, which can then be released into the bloodstream. This process helps to raise blood sugar levels when they are too low, such as during hypoglycemia.

Glucagon is a 29-amino acid polypeptide that is derived from the preproglucagon protein. It works by binding to glucagon receptors on liver cells, which triggers a series of intracellular signaling events that lead to the activation of enzymes involved in glycogen breakdown.

In addition to its role in glucose regulation, glucagon has also been shown to have other physiological effects, such as promoting lipolysis (the breakdown of fat) and inhibiting gastric acid secretion. Glucagon is often used clinically in the treatment of hypoglycemia, as well as in diagnostic tests to assess pancreatic function.

A choristoma is a type of growth that occurs when normally functioning tissue is found in an abnormal location within the body. It is not cancerous or harmful, but it can cause problems if it presses on surrounding structures or causes symptoms. Choristomas are typically congenital, meaning they are present at birth, and are thought to occur due to developmental errors during embryonic growth. They can be found in various organs and tissues throughout the body, including the brain, eye, skin, and gastrointestinal tract.

Pancreatic ductal carcinoma (PDC) is a specific type of cancer that forms in the ducts that carry digestive enzymes out of the pancreas. It's the most common form of exocrine pancreatic cancer, making up about 90% of all cases.

The symptoms of PDC are often vague and can include abdominal pain, jaundice (yellowing of the skin and eyes), unexplained weight loss, and changes in bowel movements. These symptoms can be similar to those caused by other less serious conditions, which can make diagnosis difficult.

Pancreatic ductal carcinoma is often aggressive and difficult to treat. The prognosis for PDC is generally poor, with a five-year survival rate of only about 9%. Treatment options may include surgery, chemotherapy, radiation therapy, or a combination of these approaches. However, because PDC is often not detected until it has advanced, treatment is frequently focused on palliative care to relieve symptoms and improve quality of life.

Insulin is a hormone produced by the beta cells of the pancreatic islets, primarily in response to elevated levels of glucose in the circulating blood. It plays a crucial role in regulating blood glucose levels and facilitating the uptake and utilization of glucose by peripheral tissues, such as muscle and adipose tissue, for energy production and storage. Insulin also inhibits glucose production in the liver and promotes the storage of excess glucose as glycogen or triglycerides.

Deficiency in insulin secretion or action leads to impaired glucose regulation and can result in conditions such as diabetes mellitus, characterized by chronic hyperglycemia and associated complications. Exogenous insulin is used as a replacement therapy in individuals with diabetes to help manage their blood glucose levels and prevent long-term complications.

Pancreatic hormones are chemical messengers produced and released by the pancreas, a gland located in the abdomen. The two main types of pancreatic hormones are insulin and glucagon, which are released by specialized cells called islets of Langerhans.

Insulin is produced by beta cells and helps regulate blood sugar levels by allowing cells in the body to take in sugar (glucose) from the bloodstream. It also helps the body store excess glucose in the liver for later use.

Glucagon is produced by alpha cells and has the opposite effect of insulin. When blood sugar levels are low, glucagon stimulates the release of stored glucose from the liver to raise blood sugar levels.

Together, insulin and glucagon help maintain balanced blood sugar levels and are essential for the proper functioning of the body's metabolism. Other hormones produced by the pancreas include somatostatin, which regulates the release of insulin and glucagon, and gastrin, which stimulates the production of digestive enzymes in the stomach.

Insulin-secreting cells, also known as beta cells, are a type of cell found in the pancreas. They are responsible for producing and releasing insulin, a hormone that regulates blood glucose levels by allowing cells in the body to take in glucose from the bloodstream. Insulin-secreting cells are clustered together in the pancreatic islets, along with other types of cells that produce other hormones such as glucagon and somatostatin. In people with diabetes, these cells may not function properly, leading to an impaired ability to regulate blood sugar levels.

4-Aminobenzoic acid, also known as PABA or para-aminobenzoic acid, is an organic compound that is a type of aromatic amino carboxylic acid. It is a white, crystalline powder that is slightly soluble in water and more soluble in alcohol.

4-Aminobenzoic acid is not an essential amino acid for humans, but it is a component of the vitamin folic acid and is found in various foods such as meat, whole grains, and molasses. It has been used as a topical sunscreen due to its ability to absorb ultraviolet (UV) radiation, although its effectiveness as a sunscreen ingredient has been called into question in recent years.

In addition to its use in sunscreens, 4-aminobenzoic acid has been studied for its potential health benefits, including its possible role in protecting against UV-induced skin damage and its potential anti-inflammatory and analgesic effects. However, more research is needed to confirm these potential benefits and to determine the safety and effectiveness of 4-aminobenzoic acid as a dietary supplement or topical treatment.

The parotid gland is the largest of the major salivary glands. It is a bilobed, accessory digestive organ that secretes serous saliva into the mouth via the parotid duct (Stensen's duct), located near the upper second molar tooth. The parotid gland is primarily responsible for moistening and lubricating food to aid in swallowing and digestion.

Anatomically, the parotid gland is located in the preauricular region, extending from the zygomatic arch superiorly to the angle of the mandible inferiorly, and from the masseter muscle anteriorly to the sternocleidomastoid muscle posteriorly. It is enclosed within a fascial capsule and has a rich blood supply from the external carotid artery and a complex innervation pattern involving both parasympathetic and sympathetic fibers.

Parotid gland disorders can include salivary gland stones (sialolithiasis), infections, inflammatory conditions, benign or malignant tumors, and autoimmune diseases such as Sjögren's syndrome.

Somatostatin is a hormone that inhibits the release of several hormones and also has a role in slowing down digestion. It is produced by the body in various parts of the body, including the hypothalamus (a part of the brain), the pancreas, and the gastrointestinal tract.

Somatostatin exists in two forms: somatostatin-14 and somatostatin-28, which differ in their length. Somatostatin-14 is the predominant form found in the brain, while somatostatin-28 is the major form found in the gastrointestinal tract.

Somatostatin has a wide range of effects on various physiological processes, including:

* Inhibiting the release of several hormones such as growth hormone, insulin, glucagon, and gastrin
* Slowing down digestion by inhibiting the release of digestive enzymes from the pancreas and reducing blood flow to the gastrointestinal tract
* Regulating neurotransmission in the brain

Somatostatin is used clinically as a diagnostic tool for detecting certain types of tumors that overproduce growth hormone or other hormones, and it is also used as a treatment for some conditions such as acromegaly (a condition characterized by excessive growth hormone production) and gastrointestinal disorders.

A pancreatic cyst is a fluid-filled sac that forms in the pancreas, a gland located behind the stomach that produces enzymes to help with digestion and hormones to regulate blood sugar levels. Pancreatic cysts can be classified into several types, including congenital (present at birth), retention (formed due to blockage of pancreatic ducts), and pseudocysts (formed as a result of injury or inflammation).

While some pancreatic cysts may not cause any symptoms, others can lead to abdominal pain, bloating, nausea, vomiting, or jaundice. Some cysts may also have the potential to become cancerous over time. Therefore, it is essential to monitor and evaluate pancreatic cysts through imaging tests such as ultrasound, CT scan, or MRI, and in some cases, endoscopic ultrasound (EUS) with fine-needle aspiration (FNA) may be necessary for further evaluation.

Treatment options for pancreatic cysts depend on the type, size, location, and symptoms of the cyst, as well as the patient's overall health condition. Some cysts may require surgical removal, while others can be managed with regular monitoring and follow-up care. It is essential to consult a healthcare provider for proper evaluation and management of pancreatic cysts.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

The lacrimal apparatus is a complex system in the eye that produces, stores, and drains tears. It consists of several components including:

1. Lacrimal glands: These are located in the upper outer part of the eyelid and produce tears to keep the eye surface moist and protected from external agents.
2. Tear ducts (lacrimal canaliculi): These are small tubes that drain tears from the surface of the eye into the lacrimal sac.
3. Lacrimal sac: This is a small pouch-like structure located in the inner part of the eyelid, which collects tears from the tear ducts and drains them into the nasolacrimal duct.
4. Nasolacrimal duct: This is a tube that runs from the lacrimal sac to the nose and drains tears into the nasal cavity.

The lacrimal apparatus helps maintain the health and comfort of the eye by keeping it lubricated, protecting it from infection, and removing any foreign particles or debris.

Pancreatic elastase is a type of elastase that is specifically produced by the pancreas. It is an enzyme that helps in digesting proteins found in the food we eat. Pancreatic elastase breaks down elastin, a protein that provides elasticity to tissues and organs in the body.

In clinical practice, pancreatic elastase is often measured in stool samples as a diagnostic tool to assess exocrine pancreatic function. Low levels of pancreatic elastase in stool may indicate malabsorption or exocrine pancreatic insufficiency, which can be caused by various conditions such as chronic pancreatitis, cystic fibrosis, or pancreatic cancer.

Cytoplasmic granules are small, membrane-bound organelles or inclusions found within the cytoplasm of cells. They contain various substances such as proteins, lipids, carbohydrates, and genetic material. Cytoplasmic granules have diverse functions depending on their specific composition and cellular location. Some examples include:

1. Secretory granules: These are found in secretory cells and store hormones, neurotransmitters, or enzymes before they are released by exocytosis.
2. Lysosomes: These are membrane-bound organelles that contain hydrolytic enzymes for intracellular digestion of waste materials, foreign substances, and damaged organelles.
3. Melanosomes: Found in melanocytes, these granules produce and store the pigment melanin, which is responsible for skin, hair, and eye color.
4. Weibel-Palade bodies: These are found in endothelial cells and store von Willebrand factor and P-selectin, which play roles in hemostasis and inflammation.
5. Peroxisomes: These are single-membrane organelles that contain enzymes for various metabolic processes, such as β-oxidation of fatty acids and detoxification of harmful substances.
6. Lipid bodies (also called lipid droplets): These are cytoplasmic granules that store neutral lipids, such as triglycerides and cholesteryl esters. They play a role in energy metabolism and intracellular signaling.
7. Glycogen granules: These are cytoplasmic inclusions that store glycogen, a polysaccharide used for energy storage in animals.
8. Protein bodies: Found in plants, these granules store excess proteins and help regulate protein homeostasis within the cell.
9. Electron-dense granules: These are found in certain immune cells, such as mast cells and basophils, and release mediators like histamine during an allergic response.
10. Granules of unknown composition or function may also be present in various cell types.

Pancreaticoduodenectomy, also known as the Whipple procedure, is a complex surgical operation that involves the removal of the head of the pancreas, the duodenum (the first part of the small intestine), the gallbladder, and the distal common bile duct. In some cases, a portion of the stomach may also be removed. The remaining parts of the pancreas, bile duct, and intestines are then reconnected to allow for the digestion of food and drainage of bile.

This procedure is typically performed as a treatment for various conditions affecting the pancreas, such as tumors (including pancreatic cancer), chronic pancreatitis, or traumatic injuries. It is a major surgical operation that requires significant expertise and experience to perform safely and effectively.

Salivary glands are exocrine glands that produce saliva, which is secreted into the oral cavity to keep the mouth and throat moist, aid in digestion by initiating food breakdown, and help maintain dental health. There are three major pairs of salivary glands: the parotid glands located in the cheeks, the submandibular glands found beneath the jaw, and the sublingual glands situated under the tongue. Additionally, there are numerous minor salivary glands distributed throughout the oral cavity lining. These glands release their secretions through a system of ducts into the mouth.

Alcoholic pancreatitis is a specific type of pancreatitis, which is inflammation of the pancreas. This condition is caused by excessive and prolonged consumption of alcohol. The exact mechanism by which alcohol induces pancreatitis is not fully understood, but it is believed that alcohol causes damage to the cells of the pancreas, leading to inflammation. This can result in abdominal pain, nausea, vomiting, fever, and increased heart rate. Chronic alcoholic pancreatitis can also lead to serious complications such as diabetes, malnutrition, and pancreatic cancer. Treatment typically involves supportive care, such as hydration, pain management, and nutritional support, along with abstinence from alcohol. In severe cases, surgery may be necessary to remove damaged tissue or to relieve blockages in the pancreas.

Pancreaticojejunostomy is a surgical procedure that involves connecting the pancreas to a portion of the small intestine called the jejunum. This connection is typically created after the head of the pancreas has been removed, as in the case of a pancreaticoduodenectomy (or "Whipple") procedure. The purpose of this anastomosis is to allow digestive enzymes from the pancreas to flow into the small intestine, where they can aid in the digestion of food.

The connection between the pancreas and jejunum can be created using several different techniques, including a hand-sewn anastomosis or a stapled anastomosis. The choice of technique may depend on various factors, such as the patient's individual anatomy, the surgeon's preference, and the reason for the surgery.

Pancreaticojejunostomy is a complex surgical procedure that requires significant skill and expertise to perform. It carries risks such as leakage of pancreatic enzymes into the abdominal cavity, which can lead to serious complications such as infection, bleeding, or even organ failure. As such, it is typically performed by experienced surgeons in specialized medical centers.

An islet cell adenoma is a rare, typically benign tumor that develops in the islets of Langerhans, which are clusters of hormone-producing cells in the pancreas. The islets of Langerhans contain several types of cells, including beta cells that produce insulin, alpha cells that produce glucagon, and delta cells that produce somatostatin.

Islet cell adenomas can cause various endocrine disorders depending on the type of hormone-producing cells involved. For example, if the tumor consists mainly of beta cells, it may secrete excessive amounts of insulin, leading to hypoglycemia (low blood sugar). Conversely, if the tumor is composed primarily of alpha cells, it may produce too much glucagon, resulting in hyperglycemia (high blood sugar) and a condition known as glucagonoma.

Islet cell adenomas are usually slow-growing and small but can become quite large in some cases. They are typically diagnosed through imaging tests such as CT scans or MRI, and hormone levels may be measured to determine the type of cells involved. Treatment options include surgical removal of the tumor, medication to manage hormonal imbalances, and, in rare cases, radiofrequency ablation or embolization.

Diabetes Mellitus, Type 1 is a chronic autoimmune disease characterized by the destruction of insulin-producing beta cells in the pancreas, leading to an absolute deficiency of insulin. This results in an inability to regulate blood glucose levels, causing hyperglycemia (high blood sugar). Type 1 diabetes typically presents in childhood or early adulthood, although it can develop at any age. It is usually managed with regular insulin injections or the use of an insulin pump, along with monitoring of blood glucose levels and adjustments to diet and physical activity. Uncontrolled type 1 diabetes can lead to serious complications such as kidney damage, nerve damage, blindness, and cardiovascular disease.

Steatorrhea is a medical condition characterized by the excessive amount of fat in stools, which can make them appear greasy, frothy, and foul-smelling. This occurs due to poor absorption of dietary fats in the intestines, a process called malabsorption. The most common causes of steatorrhea include conditions that affect the pancreas, such as cystic fibrosis or chronic pancreatitis, celiac disease, and other gastrointestinal disorders. Symptoms associated with steatorrhea may include abdominal pain, bloating, diarrhea, weight loss, and vitamin deficiencies due to malabsorption of fat-soluble vitamins (A, D, E, K). The diagnosis typically involves testing stool samples for fat content and further investigations to determine the underlying cause. Treatment is focused on addressing the underlying condition and providing dietary modifications to manage symptoms.

Homeodomain proteins are a group of transcription factors that play crucial roles in the development and differentiation of cells in animals and plants. They are characterized by the presence of a highly conserved DNA-binding domain called the homeodomain, which is typically about 60 amino acids long. The homeodomain consists of three helices, with the third helix responsible for recognizing and binding to specific DNA sequences.

Homeodomain proteins are involved in regulating gene expression during embryonic development, tissue maintenance, and organismal growth. They can act as activators or repressors of transcription, depending on the context and the presence of cofactors. Mutations in homeodomain proteins have been associated with various human diseases, including cancer, congenital abnormalities, and neurological disorders.

Some examples of homeodomain proteins include PAX6, which is essential for eye development, HOX genes, which are involved in body patterning, and NANOG, which plays a role in maintaining pluripotency in stem cells.

Endocrine glands are ductless glands in the human body that release hormones directly into the bloodstream, which then carry the hormones to various tissues and organs in the body. These glands play a crucial role in regulating many of the body's functions, including metabolism, growth and development, tissue function, sexual function, reproduction, sleep, and mood.

Examples of endocrine glands include the pituitary gland, thyroid gland, parathyroid glands, adrenal glands, pineal gland, pancreas, ovaries, and testes. Each of these glands produces specific hormones that have unique effects on various target tissues in the body.

The endocrine system works closely with the nervous system to regulate many bodily functions through a complex network of feedback mechanisms. Disorders of the endocrine system can result in a wide range of symptoms and health problems, including diabetes, thyroid disease, growth disorders, and sexual dysfunction.

Adenocarcinoma, mucinous is a type of cancer that begins in the glandular cells that line certain organs and produce mucin, a substance that lubricates and protects tissues. This type of cancer is characterized by the presence of abundant pools of mucin within the tumor. It typically develops in organs such as the colon, rectum, lungs, pancreas, and ovaries.

Mucinous adenocarcinomas tend to have a distinct appearance under the microscope, with large pools of mucin pushing aside the cancer cells. They may also have a different clinical behavior compared to other types of adenocarcinomas, such as being more aggressive or having a worse prognosis in some cases.

It is important to note that while a diagnosis of adenocarcinoma, mucinous can be serious, the prognosis and treatment options may vary depending on several factors, including the location of the cancer, the stage at which it was diagnosed, and the individual's overall health.

Chymotrypsin is a proteolytic enzyme, specifically a serine protease, that is produced in the pancreas and secreted into the small intestine as an inactive precursor called chymotrypsinogen. Once activated, chymotrypsin helps to digest proteins in food by breaking down specific peptide bonds in protein molecules. Its activity is based on the recognition of large hydrophobic side chains in amino acids like phenylalanine, tryptophan, and tyrosine. Chymotrypsin plays a crucial role in maintaining normal digestion and absorption processes in the human body.

Secretory rate refers to the amount or volume of a secretion produced by a gland or an organ over a given period of time. It is a measure of the productivity or activity level of the secreting structure. The secretory rate can be quantified for various bodily fluids, such as saliva, sweat, digestive enzymes, hormones, or milk, depending on the context and the specific gland or organ being studied.

In clinical settings, measuring the secretory rate might involve collecting and analyzing samples over a certain duration to estimate the production rate of the substance in question. This information can be helpful in diagnosing conditions related to impaired secretion, monitoring treatment responses, or understanding the physiological adaptations of the body under different circumstances.

Pancreatic extracts are preparations that contain digestive enzymes derived from the pancreas. These enzymes, including amylase, lipase, and trypsin, help in the breakdown of carbohydrates, fats, and proteins, respectively, during the digestion process. Pancreatic extracts are often used in medical treatments, such as replacing deficient pancreatic enzymes in individuals with conditions like cystic fibrosis or chronic pancreatitis to improve their nutrient absorption and overall digestive health.

Intestinal secretions refer to the fluids and electrolytes that are released by the cells lining the small intestine in response to various stimuli. These secretions play a crucial role in the digestion and absorption of nutrients from food. The major components of intestinal secretions include water, electrolytes (such as sodium, chloride, bicarbonate, and potassium), and enzymes that help break down carbohydrates, proteins, and fats.

The small intestine secretes these substances in response to hormonal signals, neural stimulation, and the presence of food in the lumen of the intestine. The secretion of water and electrolytes helps maintain the proper hydration and pH of the intestinal contents, while the enzymes facilitate the breakdown of nutrients into smaller molecules that can be absorbed across the intestinal wall.

Abnormalities in intestinal secretions can lead to various gastrointestinal disorders, such as diarrhea, malabsorption, and inflammatory bowel disease.

Lithostathine is a protein that is primarily produced in the pancreas. It is a component of pancreatic stones or calculi, also known as pancreatic lithiasis. These stones can cause blockages in the pancreatic ducts, leading to inflammation (pancreatitis) and damage to the pancreas. Lithostathine is believed to play a role in the formation of these stones, although the exact mechanisms are not fully understood. It's worth noting that the medical literature might use the term "lithostathine" or "pancreatic lithostathine" to refer to this protein.

Para-aminobenzoates are a group of compounds that contain a para-aminobenzoic acid (PABA) molecule. PABA is an organic compound that is related to benzoic acid and aminobenzoic acid. It is not an essential nutrient for humans, but it does play a role in the metabolism of certain bacteria.

Para-aminobenzoates are often used as ingredients in sunscreens because PABA absorbs ultraviolet (UV) light and can help protect the skin from sun damage. However, para-aminobenzoates can cause skin irritation and allergic reactions in some people, so they have largely been replaced by other UV-absorbing compounds in modern sunscreens.

In addition to their use in sunscreens, para-aminobenzoates are also used in the treatment of various medical conditions. For example, they may be used as a topical agent to treat fungal infections or as a systemic therapy to treat rheumatoid arthritis and other inflammatory conditions.

It is important to note that para-aminobenzoates should not be confused with paracetamol (also known as acetaminophen), which is a commonly used pain reliever and fever reducer. While both compounds contain the word "para," they are chemically distinct and have different uses in medicine.

Cholecystokinin (CCK) receptors are a type of G protein-coupled receptor that bind to and are activated by the hormone cholecystokinin. CCK is a peptide hormone that is released by cells in the duodenum in response to the presence of nutrients, particularly fat and protein. It has several physiological roles, including stimulating the release of digestive enzymes from the pancreas, promoting the contraction of the gallbladder and relaxation of the sphincter of Oddi (which controls the flow of bile and pancreatic juice into the duodenum), and inhibiting gastric emptying.

There are two main types of CCK receptors, known as CCK-A and CCK-B receptors. CCK-A receptors are found in the pancreas, gallbladder, and gastrointestinal tract, where they mediate the effects of CCK on digestive enzyme secretion, gallbladder contraction, and gastric emptying. CCK-B receptors are found primarily in the brain, where they play a role in regulating appetite and satiety.

CCK receptors have been studied as potential targets for the development of drugs to treat various gastrointestinal disorders, such as pancreatitis, gallstones, and obesity. However, more research is needed to fully understand their roles and therapeutic potential.

Organogenesis is the process of formation and development of organs during embryonic growth. It involves the complex interactions of cells, tissues, and signaling molecules that lead to the creation of specialized structures in the body. This process begins in the early stages of embryonic development, around week 4-8, and continues until birth. During organogenesis, the three primary germ layers (ectoderm, mesoderm, and endoderm) differentiate into various cell types and organize themselves into specific structures that will eventually form the functional organs of the body. Abnormalities in organogenesis can result in congenital disorders or birth defects.

Trypsin is a proteolytic enzyme, specifically a serine protease, that is secreted by the pancreas as an inactive precursor, trypsinogen. Trypsinogen is converted into its active form, trypsin, in the small intestine by enterokinase, which is produced by the intestinal mucosa.

Trypsin plays a crucial role in digestion by cleaving proteins into smaller peptides at specific arginine and lysine residues. This enzyme helps to break down dietary proteins into amino acids, allowing for their absorption and utilization by the body. Additionally, trypsin can activate other zymogenic pancreatic enzymes, such as chymotrypsinogen and procarboxypeptidases, thereby contributing to overall protein digestion.

Proglumide is not a medication that has a widely accepted or commonly used medical definition in current clinical practice. However, historically, it has been described as a synthetic benzamide derivative with antidomaminergic and gastrointestinal properties. It was initially investigated as a potential treatment for various gastrointestinal disorders, such as gastric ulcers, due to its ability to inhibit gastric acid secretion.

Proglumide has been found to act as an antagonist at certain dopamine receptors (D2 and D3) and serotonin receptors (5-HT3), which may contribute to its effects on gastrointestinal motility and gastric acid secretion. However, due to the development of more effective treatments and some uncertainty regarding its efficacy, proglumide is not widely used in modern medical practice.

It is important to note that this information might not be comprehensive or entirely up-to-date, as the use and understanding of proglumide have evolved over time. Always consult a reliable medical source or healthcare professional for the most accurate and current information.

Bicarbonates, also known as sodium bicarbonate or baking soda, is a chemical compound with the formula NaHCO3. In the context of medical definitions, bicarbonates refer to the bicarbonate ion (HCO3-), which is an important buffer in the body that helps maintain normal pH levels in blood and other bodily fluids.

The balance of bicarbonate and carbonic acid in the body helps regulate the acidity or alkalinity of the blood, a condition known as pH balance. Bicarbonates are produced by the body and are also found in some foods and drinking water. They work to neutralize excess acid in the body and help maintain the normal pH range of 7.35 to 7.45.

In medical testing, bicarbonate levels may be measured as part of an electrolyte panel or as a component of arterial blood gas (ABG) analysis. Low bicarbonate levels can indicate metabolic acidosis, while high levels can indicate metabolic alkalosis. Both conditions can have serious consequences if not treated promptly and appropriately.

Aminobenzoates are a group of chemical compounds that contain an amino (NH2) group and a benzoate (C6H5COO-) group in their structure. They are widely used in the pharmaceutical and cosmetic industries due to their various properties, such as ultraviolet light absorption, antimicrobial activity, and anti-inflammatory effects.

One of the most well-known aminobenzoates is para-aminobenzoic acid (PABA), which is a naturally occurring compound found in some foods and also synthesized by bacteria in the human gut. PABA has been used as a topical sunscreen agent due to its ability to absorb ultraviolet B (UVB) radiation, but its use as a sunscreen ingredient has declined in recent years due to concerns about skin irritation and potential allergic reactions.

Other aminobenzoates have various medical uses, such as:

* Antimicrobial agents: Some aminobenzoates, such as benzalkonium chloride and cetylpyridinium chloride, are used as antiseptics and disinfectants due to their ability to disrupt bacterial cell membranes.
* Analgesic and anti-inflammatory agents: Aminobenzoates such as methyl salicylate and acetaminophen (paracetamol) are commonly used as pain relievers and fever reducers.
* Vitamin B supplements: PABA is a component of folic acid, which is an essential vitamin for human health. Some people take PABA supplements to treat or prevent various conditions, such as graying hair, rheumatoid arthritis, and vitiligo, although there is limited scientific evidence to support these uses.

It's important to note that some aminobenzoates can be toxic in high doses or with prolonged exposure, so they should be used under the guidance of a healthcare professional.

Azaserine is a antineoplastic and antibiotic agent. Its chemical name is O-diazoacetyl-L-serine. It is an analog of the amino acid serine, which inhibits the enzyme necessary for the synthesis of DNA and RNA, thus preventing the growth of cancer cells. Azaserine is used in research but not in clinical medicine due to its high toxicity.

Islets of Langerhans transplantation is a surgical procedure that involves the transplantation of isolated islets from a deceased donor's pancreas into another person with type 1 diabetes. The islets of Langerhans are clusters of cells within the pancreas that produce hormones, including insulin, which regulates blood sugar levels.

In type 1 diabetes, the body's immune system mistakenly attacks and destroys these insulin-producing cells, leading to high blood sugar levels. Islet transplantation aims to replace the damaged islets with healthy ones from a donor, allowing the recipient's body to produce and regulate its own insulin again.

The procedure involves extracting the islets from the donor pancreas and infusing them into the recipient's liver through a small incision in the abdomen. Once inside the liver, the islets can sense glucose levels in the bloodstream and release insulin as needed to maintain normal blood sugar levels.

Islet transplantation has shown promising results in improving blood sugar control and reducing the risk of severe hypoglycemia (low blood sugar) in people with type 1 diabetes. However, it requires long-term immunosuppressive therapy to prevent rejection of the transplanted islets, which can have side effects and increase the risk of infections.

Magnetic resonance cholangiopancreatography (MRCP) is a non-invasive medical imaging technique that uses magnetic resonance imaging (MRI) to visualize the bile ducts and pancreatic duct. This diagnostic test does not use radiation like other imaging techniques such as computed tomography (CT) scans or endoscopic retrograde cholangiopancreatography (ERCP).

During an MRCP, the patient lies on a table that slides into the MRI machine. Contrast agents may be used to enhance the visibility of the ducts. The MRI machine uses a strong magnetic field and radio waves to produce detailed images of the internal structures, allowing radiologists to assess any abnormalities or blockages in the bile and pancreatic ducts.

MRCP is often used to diagnose conditions such as gallstones, tumors, inflammation, or strictures in the bile or pancreatic ducts. It can also be used to monitor the effectiveness of treatments for these conditions. However, it does not allow for therapeutic interventions like ERCP, which can remove stones or place stents.

Gabexate is a medicinal drug that belongs to the class of agents known as serine protease inhibitors. It is used in the treatment and prevention of inflammation and damage to tissues caused by various surgical procedures, pancreatitis, and other conditions associated with the activation of proteolytic enzymes.

Gabexate works by inhibiting the activity of certain enzymes such as trypsin, chymotrypsin, and thrombin, which play a key role in the inflammatory response and blood clotting cascade. By doing so, it helps to reduce the release of inflammatory mediators, prevent further tissue damage, and promote healing.

Gabexate is available in various forms, including injectable solutions and enteric-coated tablets, and its use is typically reserved for clinical settings under the supervision of a healthcare professional. As with any medication, it should be used only under the direction of a qualified medical practitioner, and its potential benefits and risks should be carefully weighed against those of other available treatment options.

Glucagon-secreting cells, also known as alpha (α) cells, are a type of cell located in the pancreatic islets of Langerhans. These cells are responsible for producing and secreting the hormone glucagon, which plays a crucial role in regulating blood glucose levels.

Glucagon works in opposition to insulin, another hormone produced by different cells in the pancreas called beta (β) cells. When blood glucose levels are low, such as during fasting or exercise, glucagon is released into the bloodstream and travels to the liver, where it stimulates the breakdown of glycogen (stored glucose) into glucose, which is then released into the bloodstream to raise blood glucose levels.

Abnormalities in glucagon-secreting cells can contribute to various endocrine disorders, such as diabetes and hypoglycemia.

Mucinous cystadenoma is a type of benign tumor that arises from the epithelial cells lining the mucous membranes of the body. It is most commonly found in the ovary, but can also occur in other locations such as the pancreas or appendix.

Mucinous cystadenomas are characterized by the production of large amounts of mucin, a slippery, gel-like substance that accumulates inside the tumor and causes it to grow into a cystic mass. These tumors can vary in size, ranging from a few centimeters to over 20 centimeters in diameter.

While mucinous cystadenomas are generally benign, they have the potential to become cancerous (mucinous cystadenocarcinoma) if left untreated. Symptoms of mucinous cystadenoma may include abdominal pain or swelling, bloating, and changes in bowel movements or urinary habits. Treatment typically involves surgical removal of the tumor.

Carcinoma, islet cell, also known as pancreatic neuroendocrine tumor or pancreatic endocrine carcinoma, is a type of malignancy that arises from the islets of Langerhans within the pancreas. These tumors can produce and release hormones such as insulin, glucagon, gastrin, and somatostatin, leading to various clinical syndromes depending on the specific hormone produced.

Islet cell carcinomas are relatively rare, accounting for less than 5% of all pancreatic malignancies. They can occur at any age but are more common in adults between 40 and 60 years old. The prognosis for islet cell carcinoma varies widely depending on the stage and grade of the tumor, as well as the presence or absence of metastases. Treatment options may include surgery, chemotherapy, radiation therapy, and targeted therapies.

Secretory vesicles are membrane-bound organelles found within cells that store and transport secretory proteins and other molecules to the plasma membrane for exocytosis. Exocytosis is the process by which these molecules are released from the cell, allowing them to perform various functions, such as communication with other cells or participation in biochemical reactions. Secretory vesicles can be found in a variety of cell types, including endocrine cells, exocrine cells, and neurons. The proteins and molecules contained within secretory vesicles are synthesized in the rough endoplasmic reticulum and then transported to the Golgi apparatus, where they are processed, modified, and packaged into the vesicles for subsequent release.

Carbachol is a cholinergic agonist, which means it stimulates the parasympathetic nervous system by mimicking the action of acetylcholine, a neurotransmitter that is involved in transmitting signals between nerves and muscles. Carbachol binds to both muscarinic and nicotinic receptors, but its effects are more pronounced on muscarinic receptors.

Carbachol is used in medical treatments to produce miosis (pupil constriction), lower intraocular pressure, and stimulate gastrointestinal motility. It can also be used as a diagnostic tool to test for certain conditions such as Hirschsprung's disease.

Like any medication, carbachol can have side effects, including sweating, salivation, nausea, vomiting, diarrhea, bradycardia (slow heart rate), and bronchoconstriction (narrowing of the airways in the lungs). It should be used with caution and under the supervision of a healthcare professional.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

Histochemistry is the branch of pathology that deals with the microscopic localization of cellular or tissue components using specific chemical reactions. It involves the application of chemical techniques to identify and locate specific biomolecules within tissues, cells, and subcellular structures. This is achieved through the use of various staining methods that react with specific antigens or enzymes in the sample, allowing for their visualization under a microscope. Histochemistry is widely used in diagnostic pathology to identify different types of tissues, cells, and structures, as well as in research to study cellular and molecular processes in health and disease.

Acute necrotizing pancreatitis is a severe and potentially life-threatening form of acute pancreatitis, which is an inflammatory condition of the pancreas. In acute necrotizing pancreatitis, there is widespread death (necrosis) of pancreatic tissue due to autodigestion caused by the activation and release of digestive enzymes within the pancreas. This condition can lead to systemic inflammation, organ failure, and infection of the necrotic areas in the pancreas. It typically has a more complicated clinical course and worse prognosis compared to acute interstitial pancreatitis, which is another form of acute pancreatitis without significant necrosis.

Endoderm is the innermost of the three primary germ layers in a developing embryo, along with the ectoderm and mesoderm. The endoderm gives rise to several internal tissues and organs, most notably those found in the digestive system and respiratory system. Specifically, it forms the lining of the gut tube, which eventually becomes the epithelial lining of the gastrointestinal tract, liver, pancreas, lungs, and other associated structures.

During embryonic development, the endoderm arises from the inner cell mass of the blastocyst, following a series of cell divisions and migrations that help to establish the basic body plan of the organism. As the embryo grows and develops, the endoderm continues to differentiate into more specialized tissues and structures, playing a critical role in the formation of many essential bodily functions.

Endocrine cells are a type of cell that produce and secrete hormones into the bloodstream. These cells are part of the endocrine system, which is responsible for regulating various functions and processes in the body through the production of hormones. Endocrine cells can be found in endocrine glands, such as the pituitary gland, thyroid gland, and pancreas, as well as in other organs, such as the gonads and placenta. When these cells release hormones, they are transported through the bloodstream to target cells or organs, where they bind to specific receptors and elicit a response. This allows endocrine cells to play a crucial role in maintaining homeostasis and coordinating various physiological processes in the body.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Colipases are small protein enzymes that activate and work together with pancreatic lipases to digest dietary fats in the small intestine. They are produced by the pancreas and secreted into the duodenum as part of the pancreatic juice. Colipases help to stabilize and orient the lipase enzyme on the surface of fat droplets, allowing it to efficiently hydrolyze triacylglycerols into monoacylglycerols, free fatty acids, and glycerol. This process is crucial for the absorption of dietary fats in the human body.

The submandibular glands are one of the major salivary glands in the human body. They are located beneath the mandible (jawbone) and produce saliva that helps in digestion, lubrication, and protection of the oral cavity. The saliva produced by the submandibular glands contains enzymes like amylase and mucin, which aid in the digestion of carbohydrates and provide moisture to the mouth and throat. Any medical condition or disease that affects the submandibular gland may impact its function and could lead to problems such as dry mouth (xerostomia), swelling, pain, or infection.

A serous cystadenoma is a type of benign tumor that arises from the epithelial cells lining the serous glands, which are glands that produce a watery, lubricating fluid. This type of tumor typically develops in the ovary or the pancreas.

Serous cystadenomas of the ovary are usually filled with a clear, watery fluid and have multiple loculations (compartments). They can vary in size from a few millimeters to several centimeters in diameter. Although these tumors are benign, they can cause symptoms if they become large enough to press on surrounding organs or if they rupture and release their contents into the abdominal cavity.

Serous cystadenomas of the pancreas are less common than ovarian serous cystadenomas. They typically occur in the tail of the pancreas and can range in size from a few millimeters to several centimeters in diameter. These tumors are usually asymptomatic, but they can cause symptoms such as abdominal pain or discomfort if they become large enough to press on surrounding organs.

It is important to note that while serous cystadenomas are generally benign, there is a small risk that they may undergo malignant transformation and develop into a type of cancer known as a serous cystadenocarcinoma. For this reason, it is important for patients with these tumors to be followed closely by a healthcare provider and to have regular imaging studies and/or surgical excision to monitor for any changes in the tumor.

Developmental gene expression regulation refers to the processes that control the activation or repression of specific genes during embryonic and fetal development. These regulatory mechanisms ensure that genes are expressed at the right time, in the right cells, and at appropriate levels to guide proper growth, differentiation, and morphogenesis of an organism.

Developmental gene expression regulation is a complex and dynamic process involving various molecular players, such as transcription factors, chromatin modifiers, non-coding RNAs, and signaling molecules. These regulators can interact with cis-regulatory elements, like enhancers and promoters, to fine-tune the spatiotemporal patterns of gene expression during development.

Dysregulation of developmental gene expression can lead to various congenital disorders and developmental abnormalities. Therefore, understanding the principles and mechanisms governing developmental gene expression regulation is crucial for uncovering the etiology of developmental diseases and devising potential therapeutic strategies.

Endoscopic retrograde cholangiopancreatography (ERCP) is a medical procedure that combines upper gastrointestinal (GI) endoscopy and fluoroscopy to diagnose and treat certain problems of the bile ducts and pancreas.

During ERCP, a flexible endoscope (a long, thin, lighted tube with a camera on the end) is passed through the patient's mouth and throat, then through the stomach and into the first part of the small intestine (duodenum). A narrow plastic tube (catheter) is then inserted through the endoscope and into the bile ducts and/or pancreatic duct. Contrast dye is injected through the catheter, and X-rays are taken to visualize the ducts.

ERCP can be used to diagnose a variety of conditions affecting the bile ducts and pancreas, including gallstones, tumors, strictures (narrowing of the ducts), and chronic pancreatitis. It can also be used to treat certain conditions, such as removing gallstones from the bile duct or placing stents to keep the ducts open in cases of stricture.

ERCP is an invasive procedure that carries a risk of complications, including pancreatitis, infection, bleeding, and perforation (a tear in the lining of the GI tract). It should only be performed by experienced medical professionals in a hospital setting.

Sjögren's syndrome is a chronic autoimmune disorder in which the body's immune system mistakenly attacks its own moisture-producing glands, particularly the tear and salivary glands. This can lead to symptoms such as dry eyes, dry mouth, and dryness in other areas of the body. In some cases, it may also affect other organs, leading to a variety of complications.

There are two types of Sjögren's syndrome: primary and secondary. Primary Sjögren's syndrome occurs when the condition develops on its own, while secondary Sjögren's syndrome occurs when it develops in conjunction with another autoimmune disease, such as rheumatoid arthritis or lupus.

The exact cause of Sjögren's syndrome is not fully understood, but it is believed to involve a combination of genetic and environmental factors. Treatment typically focuses on relieving symptoms and may include artificial tears, saliva substitutes, medications to stimulate saliva production, and immunosuppressive drugs in more severe cases.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Insulinoma is a rare type of neuroendocrine tumor that originates from the beta cells of the pancreatic islets (islets of Langerhans). These tumors produce and secrete excessive amounts of insulin, leading to hypoglycemia (low blood sugar levels) even when the person hasn't eaten for a while. Insulinomas are typically slow-growing and benign (noncancerous), but about 10% of them can be malignant (cancerous) and may spread to other parts of the body. Common symptoms include sweating, confusion, dizziness, and weakness due to low blood sugar levels. The diagnosis is often confirmed through imaging tests like CT scans or MRI, and measuring insulin and C-peptide levels in the blood during a fasting test. Treatment usually involves surgical removal of the tumor.

Enzyme precursors are typically referred to as zymogens or proenzymes. These are inactive forms of enzymes that can be activated under specific conditions. When the need for the enzyme's function arises, the proenzyme is converted into its active form through a process called proteolysis, where it is cleaved by another enzyme. This mechanism helps control and regulate the activation of certain enzymes in the body, preventing unwanted or premature reactions. A well-known example of an enzyme precursor is trypsinogen, which is converted into its active form, trypsin, in the digestive system.

The digestive system is a complex group of organs and glands that process food. It converts the food we eat into nutrients, which the body uses for energy, growth, and cell repair. The digestive system also eliminates waste from the body. It is made up of the gastrointestinal tract (GI tract) and other organs that help the body break down and absorb food.

The GI tract includes the mouth, esophagus, stomach, small intestine, large intestine, and anus. Other organs that are part of the digestive system include the liver, pancreas, gallbladder, and salivary glands.

The process of digestion begins in the mouth, where food is chewed and mixed with saliva. The food then travels down the esophagus and into the stomach, where it is broken down further by stomach acids. The digested food then moves into the small intestine, where nutrients are absorbed into the bloodstream. The remaining waste material passes into the large intestine, where it is stored until it is eliminated through the anus.

The liver, pancreas, and gallbladder play important roles in the digestive process as well. The liver produces bile, a substance that helps break down fats in the small intestine. The pancreas produces enzymes that help digest proteins, carbohydrates, and fats. The gallbladder stores bile until it is needed in the small intestine.

Overall, the digestive system is responsible for breaking down food, absorbing nutrients, and eliminating waste. It plays a critical role in maintaining our health and well-being.

Pancreatic alpha-amylases are a type of enzyme that is produced and secreted by the exocrine cells (acinar cells) of the pancreas. These enzymes play an essential role in digesting carbohydrates, particularly starches and glycogen, which are complex forms of carbohydrates found in various foods like grains, potatoes, and legumes.

Alpha-amylases break down these complex carbohydrates into smaller, simpler sugars, such as maltose, maltotriose, and glucose, allowing for their absorption and utilization by the body. The pancreatic alpha-amylases are released into the duodenum, the first part of the small intestine, along with other digestive enzymes during the process of digestion.

In addition to pancreatic alpha-amylases, salivary glands also produce a form of amylase called salivary alpha-amylase, which initiates the breakdown of starches in the mouth through mastication (chewing). However, the majority of carbohydrate digestion occurs in the small intestine with the help of pancreatic alpha-amylases and other enzymes produced by the intestinal lining.

Blood glucose, also known as blood sugar, is the concentration of glucose in the blood. Glucose is a simple sugar that serves as the main source of energy for the body's cells. It is carried to each cell through the bloodstream and is absorbed into the cells with the help of insulin, a hormone produced by the pancreas.

The normal range for blood glucose levels in humans is typically between 70 and 130 milligrams per deciliter (mg/dL) when fasting, and less than 180 mg/dL after meals. Levels that are consistently higher than this may indicate diabetes or other metabolic disorders.

Blood glucose levels can be measured through a variety of methods, including fingerstick blood tests, continuous glucose monitoring systems, and laboratory tests. Regular monitoring of blood glucose levels is important for people with diabetes to help manage their condition and prevent complications.

Basic Helix-Loop-Helix (bHLH) transcription factors are a type of proteins that regulate gene expression through binding to specific DNA sequences. They play crucial roles in various biological processes, including cell growth, differentiation, and apoptosis. The bHLH domain is composed of two amphipathic α-helices separated by a loop region. This structure allows the formation of homodimers or heterodimers, which then bind to the E-box DNA motif (5'-CANNTG-3') to regulate transcription.

The bHLH family can be further divided into several subfamilies based on their sequence similarities and functional characteristics. Some members of this family are involved in the development and function of the nervous system, while others play critical roles in the development of muscle and bone. Dysregulation of bHLH transcription factors has been implicated in various human diseases, including cancer and neurodevelopmental disorders.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

Adenocarcinoma is a type of cancer that arises from glandular epithelial cells. These cells line the inside of many internal organs, including the breasts, prostate, colon, and lungs. Adenocarcinomas can occur in any of these organs, as well as in other locations where glands are present.

The term "adenocarcinoma" is used to describe a cancer that has features of glandular tissue, such as mucus-secreting cells or cells that produce hormones. These cancers often form glandular structures within the tumor mass and may produce mucus or other substances.

Adenocarcinomas are typically slow-growing and tend to spread (metastasize) to other parts of the body through the lymphatic system or bloodstream. They can be treated with surgery, radiation therapy, chemotherapy, targeted therapy, or a combination of these treatments. The prognosis for adenocarcinoma depends on several factors, including the location and stage of the cancer, as well as the patient's overall health and age.

Tissue distribution, in the context of pharmacology and toxicology, refers to the way that a drug or xenobiotic (a chemical substance found within an organism that is not naturally produced by or expected to be present within that organism) is distributed throughout the body's tissues after administration. It describes how much of the drug or xenobiotic can be found in various tissues and organs, and is influenced by factors such as blood flow, lipid solubility, protein binding, and the permeability of cell membranes. Understanding tissue distribution is important for predicting the potential effects of a drug or toxin on different parts of the body, and for designing drugs with improved safety and efficacy profiles.

Organ specificity, in the context of immunology and toxicology, refers to the phenomenon where a substance (such as a drug or toxin) or an immune response primarily affects certain organs or tissues in the body. This can occur due to various reasons such as:

1. The presence of specific targets (like antigens in the case of an immune response or receptors in the case of drugs) that are more abundant in these organs.
2. The unique properties of certain cells or tissues that make them more susceptible to damage.
3. The way a substance is metabolized or cleared from the body, which can concentrate it in specific organs.

For example, in autoimmune diseases, organ specificity describes immune responses that are directed against antigens found only in certain organs, such as the thyroid gland in Hashimoto's disease. Similarly, some toxins or drugs may have a particular affinity for liver cells, leading to liver damage or specific drug interactions.

A pancreatic fistula is an abnormal connection or passage between the pancreas and another organ, often the digestive system. It usually occurs as a complication following trauma, surgery, or inflammation of the pancreas (such as pancreatitis). The pancreas secretes digestive enzymes, and when these enzymes escape the pancreas through a damaged or disrupted duct, they can cause irritation and inflammation in nearby tissues, leading to the formation of a fistula.

Pancreatic fistulas are typically characterized by the drainage of pancreatic fluid, which contains high levels of digestive enzymes, into other parts of the body. This can lead to various symptoms, including abdominal pain, swelling, fever, and malnutrition. Treatment may involve surgical repair of the fistula, as well as supportive care such as antibiotics, nutritional support, and drainage of any fluid collections.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

Trans-activators are proteins that increase the transcriptional activity of a gene or a set of genes. They do this by binding to specific DNA sequences and interacting with the transcription machinery, thereby enhancing the recruitment and assembly of the complexes needed for transcription. In some cases, trans-activators can also modulate the chromatin structure to make the template more accessible to the transcription machinery.

In the context of HIV (Human Immunodeficiency Virus) infection, the term "trans-activator" is often used specifically to refer to the Tat protein. The Tat protein is a viral regulatory protein that plays a critical role in the replication of HIV by activating the transcription of the viral genome. It does this by binding to a specific RNA structure called the Trans-Activation Response Element (TAR) located at the 5' end of all nascent HIV transcripts, and recruiting cellular cofactors that enhance the processivity and efficiency of RNA polymerase II, leading to increased viral gene expression.

Pancreatic stellate cells (PSCs) are adult, tissue-specific mesenchymal cells that are found in the exocrine portion of the pancreas. They are star-shaped and are located in the periacinar area, where they normally remain quiescent. However, in response to injury or inflammation, such as in chronic pancreatitis or pancreatic cancer, PSCs become activated and transform into a myofibroblast-like phenotype.

Activated PSCs play a key role in the pathogenesis of pancreatic fibrosis, which is characterized by an excessive accumulation of extracellular matrix (ECM) proteins, such as collagen and fibronectin. This process can lead to the destruction of the normal pancreatic architecture and function. Activated PSCs also produce various growth factors and cytokines that promote the growth and survival of pancreatic cancer cells, contributing to the aggressive behavior of this disease.

Overall, PSCs play a critical role in the development and progression of pancreatic diseases, making them an important target for therapeutic intervention.

A pancreatic pseudocyst is a fluid-filled sac that forms in the abdomen, usually as a result of pancreatitis or trauma to the pancreas. It is composed of cells and tissues from the pancreas, along with enzymes, debris, and fluids. Unlike true cysts, pseudocysts do not have an epithelial lining. They can vary in size and may cause symptoms such as abdominal pain, nausea, vomiting, or fever. In some cases, they may resolve on their own, but larger or symptomatic pseudocysts may require medical intervention, such as drainage or surgery.

I couldn't find a medical definition specifically for "Diabetes Mellitus, Experimental." However, I can provide you with information about experimental diabetes research and its relevance to understanding the disease.

Experimental diabetes models are used in biomedical research to study the pathophysiology of diabetes mellitus and to test potential therapies or treatments. These models can be broadly categorized into two types: chemically-induced and genetically modified.

1. Chemically-induced diabetes models: These involve administering chemicals, such as alloxan or streptozotocin, to animals (commonly mice or rats) to destroy their pancreatic β-cells, which produce insulin. This results in hyperglycemia and symptoms similar to those seen in type 1 diabetes in humans.
2. Genetically modified diabetes models: These involve altering the genes of animals (commonly mice) to create a diabetes phenotype. Examples include non-obese diabetic (NOD) mice, which develop an autoimmune form of diabetes similar to human type 1 diabetes, and various strains of obese mice with insulin resistance, such as ob/ob or db/db mice, which model aspects of type 2 diabetes.

These experimental models help researchers better understand the mechanisms behind diabetes development and progression, identify new therapeutic targets, and test potential treatments before moving on to human clinical trials. However, it's essential to recognize that these models may not fully replicate all aspects of human diabetes, so findings from animal studies should be interpreted with caution.

The ampulla of Vater, also known as hepatopancreatic ampulla, is a dilated portion of the common bile duct where it joins the main pancreatic duct and empties into the second part of the duodenum. It serves as a conduit for both bile from the liver and digestive enzymes from the pancreas to reach the small intestine, facilitating the digestion and absorption of nutrients. The ampulla of Vater is surrounded by a muscular sphincter, the sphincter of Oddi, which controls the flow of these secretions into the duodenum.

Glucose is a simple monosaccharide (or single sugar) that serves as the primary source of energy for living organisms. It's a fundamental molecule in biology, often referred to as "dextrose" or "grape sugar." Glucose has the molecular formula C6H12O6 and is vital to the functioning of cells, especially those in the brain and nervous system.

In the body, glucose is derived from the digestion of carbohydrates in food, and it's transported around the body via the bloodstream to cells where it can be used for energy. Cells convert glucose into a usable form through a process called cellular respiration, which involves a series of metabolic reactions that generate adenosine triphosphate (ATP)—the main currency of energy in cells.

Glucose is also stored in the liver and muscles as glycogen, a polysaccharide (multiple sugar) that can be broken down back into glucose when needed for energy between meals or during physical activity. Maintaining appropriate blood glucose levels is crucial for overall health, and imbalances can lead to conditions such as diabetes mellitus.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Diabetes Mellitus is a chronic metabolic disorder characterized by elevated levels of glucose in the blood (hyperglycemia) due to absolute or relative deficiency in insulin secretion and/or insulin action. There are two main types: Type 1 diabetes, which results from the autoimmune destruction of pancreatic beta cells leading to insulin deficiency, and Type 2 diabetes, which is associated with insulin resistance and relative insulin deficiency.

Type 1 diabetes typically presents in childhood or young adulthood, while Type 2 diabetes tends to occur later in life, often in association with obesity and physical inactivity. Both types of diabetes can lead to long-term complications such as damage to the eyes, kidneys, nerves, and cardiovascular system if left untreated or not well controlled.

The diagnosis of diabetes is usually made based on fasting plasma glucose levels, oral glucose tolerance tests, or hemoglobin A1c (HbA1c) levels. Treatment typically involves lifestyle modifications such as diet and exercise, along with medications to lower blood glucose levels and manage associated conditions.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Gastrointestinal (GI) hormones are a group of hormones that are secreted by cells in the gastrointestinal tract in response to food intake and digestion. They play crucial roles in regulating various physiological processes, including appetite regulation, gastric acid secretion, motility of the gastrointestinal tract, insulin secretion, and pancreatic enzyme release.

Examples of GI hormones include:

* Gastrin: Secreted by G cells in the stomach, gastrin stimulates the release of hydrochloric acid from parietal cells in the stomach lining.
* Ghrelin: Produced by the stomach, ghrelin is often referred to as the "hunger hormone" because it stimulates appetite and food intake.
* Cholecystokinin (CCK): Secreted by I cells in the small intestine, CCK promotes digestion by stimulating the release of pancreatic enzymes and bile from the liver. It also inhibits gastric emptying and reduces appetite.
* Gastric inhibitory peptide (GIP): Produced by K cells in the small intestine, GIP promotes insulin secretion and inhibits glucagon release.
* Secretin: Released by S cells in the small intestine, secretin stimulates the pancreas to produce bicarbonate-rich fluid that neutralizes stomach acid in the duodenum.
* Motilin: Secreted by MO cells in the small intestine, motilin promotes gastrointestinal motility and regulates the migrating motor complex (MMC), which is responsible for cleaning out the small intestine between meals.

These hormones work together to regulate digestion and maintain homeostasis in the body. Dysregulation of GI hormones can contribute to various gastrointestinal disorders, such as gastroparesis, irritable bowel syndrome (IBS), and diabetes.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

A gastric fistula is an abnormal connection or passage between the stomach and another organ or the skin surface. This condition can occur as a result of complications from surgery, injury, infection, or certain diseases such as cancer. Symptoms may include persistent drainage from the site of the fistula, pain, malnutrition, and infection. Treatment typically involves surgical repair of the fistula and management of any underlying conditions.

Carboxylesterase is a type of enzyme that catalyzes the hydrolysis of ester bonds in carboxylic acid esters, producing alcohol and carboxylate products. These enzymes are widely distributed in various tissues, including the liver, intestines, and plasma. They play important roles in detoxification, metabolism, and the breakdown of xenobiotics (foreign substances) in the body.

Carboxylesterases can also catalyze the reverse reaction, forming esters from alcohols and carboxylates, which is known as transesterification or esterification. This activity has applications in industrial processes and biotechnology.

There are several families of carboxylesterases, with different substrate specificities, kinetic properties, and tissue distributions. These enzymes have been studied for their potential use in therapeutics, diagnostics, and drug delivery systems.

A zebrafish is a freshwater fish species belonging to the family Cyprinidae and the genus Danio. Its name is derived from its distinctive striped pattern that resembles a zebra's. Zebrafish are often used as model organisms in scientific research, particularly in developmental biology, genetics, and toxicology studies. They have a high fecundity rate, transparent embryos, and a rapid development process, making them an ideal choice for researchers. However, it is important to note that providing a medical definition for zebrafish may not be entirely accurate or relevant since they are primarily used in biological research rather than clinical medicine.

Endocrine gland neoplasms refer to abnormal growths (tumors) that develop in the endocrine glands. These glands are responsible for producing hormones, which are chemical messengers that regulate various functions and processes in the body. Neoplasms can be benign or malignant (cancerous). Benign neoplasms tend to grow slowly and do not spread to other parts of the body. Malignant neoplasms, on the other hand, can invade nearby tissues and organs and may also metastasize (spread) to distant sites.

Endocrine gland neoplasms can occur in any of the endocrine glands, including:

1. Pituitary gland: located at the base of the brain, it produces several hormones that regulate growth and development, as well as other bodily functions.
2. Thyroid gland: located in the neck, it produces thyroid hormones that regulate metabolism and calcium balance.
3. Parathyroid glands: located near the thyroid gland, they produce parathyroid hormone that regulates calcium levels in the blood.
4. Adrenal glands: located on top of each kidney, they produce hormones such as adrenaline, cortisol, and aldosterone that regulate stress response, metabolism, and blood pressure.
5. Pancreas: located behind the stomach, it produces insulin and glucagon, which regulate blood sugar levels, and digestive enzymes that help break down food.
6. Pineal gland: located in the brain, it produces melatonin, a hormone that regulates sleep-wake cycles.
7. Gonads (ovaries and testicles): located in the pelvis (ovaries) and scrotum (testicles), they produce sex hormones such as estrogen, progesterone, and testosterone that regulate reproductive function and secondary sexual characteristics.

Endocrine gland neoplasms can cause various symptoms depending on the type and location of the tumor. For example, a pituitary gland neoplasm may cause headaches, vision problems, or hormonal imbalances, while an adrenal gland neoplasm may cause high blood pressure, weight gain, or mood changes.

Diagnosis of endocrine gland neoplasms typically involves a combination of medical history, physical examination, imaging studies such as CT or MRI scans, and laboratory tests to measure hormone levels. Treatment options may include surgery, radiation therapy, chemotherapy, or hormonal therapy, depending on the type and stage of the tumor.

Organ size refers to the volume or physical measurement of an organ in the body of an individual. It can be described in terms of length, width, and height or by using specialized techniques such as imaging studies (like CT scans or MRIs) to determine the volume. The size of an organ can vary depending on factors such as age, sex, body size, and overall health status. Changes in organ size may indicate various medical conditions, including growths, inflammation, or atrophy.

Carboxypeptidases A are a group of enzymes that play a role in the digestion of proteins. They are found in various organisms, including humans, and function to cleave specific amino acids from the carboxyl-terminal end of protein substrates. In humans, Carboxypeptidase A is primarily produced in the pancreas and secreted into the small intestine as an inactive zymogen called procarboxypeptidase A.

Procarboxypeptidase A is activated by trypsin, another proteolytic enzyme, to form Carboxypeptidase A1 and Carboxypeptidase A2. These enzymes have different substrate specificities, with Carboxypeptidase A1 preferentially cleaving aromatic amino acids such as phenylalanine and tyrosine, while Carboxypeptidase A2 cleaves basic amino acids such as arginine and lysine.

Carboxypeptidases A play a crucial role in the final stages of protein digestion by breaking down large peptides into smaller di- and tripeptides, which can then be absorbed by the intestinal epithelium and transported to other parts of the body for use as building blocks or energy sources.

The endocrine system is a complex network of glands and organs that produce, store, and secrete hormones. It plays a crucial role in regulating various functions and processes in the body, including metabolism, growth and development, tissue function, sexual function, reproduction, sleep, and mood.

The major endocrine glands include:

1. Pituitary gland: located at the base of the brain, it is often referred to as the "master gland" because it controls other glands' functions. It produces and releases several hormones that regulate growth, development, and reproduction.
2. Thyroid gland: located in the neck, it produces hormones that regulate metabolism, growth, and development.
3. Parathyroid glands: located near the thyroid gland, they produce parathyroid hormone, which regulates calcium levels in the blood.
4. Adrenal glands: located on top of the kidneys, they produce hormones that regulate stress response, metabolism, and blood pressure.
5. Pancreas: located in the abdomen, it produces hormones such as insulin and glucagon that regulate blood sugar levels.
6. Sex glands (ovaries and testes): they produce sex hormones such as estrogen, progesterone, and testosterone that regulate sexual development and reproduction.
7. Pineal gland: located in the brain, it produces melatonin, a hormone that regulates sleep-wake cycles.

The endocrine system works closely with the nervous system to maintain homeostasis or balance in the body's internal environment. Hormones are chemical messengers that travel through the bloodstream to target cells or organs, where they bind to specific receptors and elicit a response. Disorders of the endocrine system can result from overproduction or underproduction of hormones, leading to various health problems such as diabetes, thyroid disorders, growth disorders, and sexual dysfunction.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

Lipomatosis is a medical term that refers to a condition characterized by the abnormal growth of fatty tumors (lipomas) in various parts of the body. These lipomas are benign, soft, and rubbery masses made up of adipose or fatty tissue. Unlike isolated lipomas, which occur as solitary lumps under the skin, lipomatosis is a more widespread condition where multiple lipomas develop in a diffuse pattern, affecting a particular region or area of the body.

There are different types of lipomatosis, including:

1. Diffuse Lipomatosis: This type involves the growth of numerous small lipomas distributed throughout the subcutaneous tissue, giving the affected area a doughy feel and appearance.
2. Adiposis Dolorosa or Dercum's Disease: A rare condition characterized by painful and tender lipomas typically found in the trunk, arms, and legs. It primarily affects middle-aged women and can be accompanied by other systemic symptoms like fatigue, memory problems, and depression.
3. Multiple Symmetric Lipomatosis (MSL) or Madelung's Disease: This condition predominantly affects middle-aged men, particularly those with a history of alcohol abuse. It is characterized by the growth of large, symmetrical lipomas around the neck, shoulders, and upper trunk, leading to a "horse collar" appearance.
4. Familial Multiple Lipomatosis: An inherited condition where multiple benign fatty tumors develop in various parts of the body, usually appearing during adulthood. It tends to run in families with an autosomal dominant pattern of inheritance.

Treatment for lipomatosis typically involves surgical removal of the lipomas if they cause discomfort, limit mobility, or negatively impact a person's appearance. Regular monitoring and follow-up appointments with healthcare professionals are essential to ensure that no malignant changes occur in the lipomas over time.

Bethanechol compounds are a type of cholinergic agent used in medical treatment. They are parasympathomimetic drugs, which means they mimic the actions of the neurotransmitter acetylcholine at muscarinic receptors. Specifically, bethanechol compounds stimulate the muscarinic receptors in the smooth muscle of the bladder and gastrointestinal tract, increasing tone and promoting contractions.

Bethanechol is primarily used to treat urinary retention and associated symptoms, such as those that can occur after certain types of surgery or with conditions like spinal cord injury or multiple sclerosis. It works by helping the bladder muscle contract, which can promote urination.

It's important to note that bethanechol should be used with caution, as it can have various side effects, including sweating, increased salivation, flushed skin, and gastrointestinal symptoms like nausea, vomiting, or diarrhea. It may also interact with other medications, so it's crucial to discuss any potential risks with a healthcare provider before starting this treatment.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Drainage, in medical terms, refers to the removal of excess fluid or accumulated collections of fluids from various body parts or spaces. This is typically accomplished through the use of medical devices such as catheters, tubes, or drains. The purpose of drainage can be to prevent the buildup of fluids that may cause discomfort, infection, or other complications, or to treat existing collections of fluid such as abscesses, hematomas, or pleural effusions. Drainage may also be used as a diagnostic tool to analyze the type and composition of the fluid being removed.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Gastrins are a group of hormones that are produced by G cells in the stomach lining. These hormones play an essential role in regulating gastric acid secretion and motor functions of the gastrointestinal tract. The most well-known gastrin is known as "gastrin-17," which is released into the bloodstream and stimulates the release of hydrochloric acid from parietal cells in the stomach lining.

Gastrins are stored in secretory granules within G cells, and their release is triggered by several factors, including the presence of food in the stomach, gastrin-releasing peptide (GRP), and vagus nerve stimulation. Once released, gastrins bind to specific receptors on parietal cells, leading to an increase in intracellular calcium levels and the activation of enzymes that promote hydrochloric acid secretion.

Abnormalities in gastrin production can lead to several gastrointestinal disorders, including gastrinomas (tumors that produce excessive amounts of gastrin), which can cause severe gastric acid hypersecretion and ulcers. Conversely, a deficiency in gastrin production can result in hypochlorhydria (low stomach acid levels) and impaired digestion.

An acute disease is a medical condition that has a rapid onset, develops quickly, and tends to be short in duration. Acute diseases can range from minor illnesses such as a common cold or flu, to more severe conditions such as pneumonia, meningitis, or a heart attack. These types of diseases often have clear symptoms that are easy to identify, and they may require immediate medical attention or treatment.

Acute diseases are typically caused by an external agent or factor, such as a bacterial or viral infection, a toxin, or an injury. They can also be the result of a sudden worsening of an existing chronic condition. In general, acute diseases are distinct from chronic diseases, which are long-term medical conditions that develop slowly over time and may require ongoing management and treatment.

Examples of acute diseases include:

* Acute bronchitis: a sudden inflammation of the airways in the lungs, often caused by a viral infection.
* Appendicitis: an inflammation of the appendix that can cause severe pain and requires surgical removal.
* Gastroenteritis: an inflammation of the stomach and intestines, often caused by a viral or bacterial infection.
* Migraine headaches: intense headaches that can last for hours or days, and are often accompanied by nausea, vomiting, and sensitivity to light and sound.
* Myocardial infarction (heart attack): a sudden blockage of blood flow to the heart muscle, often caused by a buildup of plaque in the coronary arteries.
* Pneumonia: an infection of the lungs that can cause coughing, chest pain, and difficulty breathing.
* Sinusitis: an inflammation of the sinuses, often caused by a viral or bacterial infection.

It's important to note that while some acute diseases may resolve on their own with rest and supportive care, others may require medical intervention or treatment to prevent complications and promote recovery. If you are experiencing symptoms of an acute disease, it is always best to seek medical attention to ensure proper diagnosis and treatment.

Isoamylase is not a medical term per se, but rather a biochemical term used to describe an enzyme. Medically, it may be relevant in the context of certain medical conditions or treatments that involve carbohydrate metabolism. Here's a general definition:

Isoamylase (EC 3.2.1.68) is a type of amylase, a group of enzymes that break down complex carbohydrates, specifically starch and glycogen, into simpler sugars. Isoamylase is more precisely defined as an enzyme that hydrolyzes (breaks down) alpha-1,6 glucosidic bonds in isomaltose, panose, and dextrins, yielding mainly isomaltose and limit dextrin. It is found in various organisms, including bacteria, fungi, and plants. In humans, isoamylase is involved in the digestion of starch in the small intestine, where it helps convert complex carbohydrates into glucose for energy absorption.

Mucinous cystadenocarcinoma is a type of cancer that arises from the mucin-producing cells in the lining of a cyst. It is a subtype of cystadenocarcinoma, which is a malignant tumor that develops within a cyst. Mucinous cystadenocarcinomas are typically found in the ovary or pancreas but can also occur in other organs such as the appendix and the respiratory tract.

These tumors are characterized by the production of large amounts of mucin, a gel-like substance that can accumulate within the cyst and cause it to grow. Mucinous cystadenocarcinomas tend to grow slowly but can become quite large and may eventually spread (metastasize) to other parts of the body if left untreated.

Symptoms of mucinous cystadenocarcinoma depend on the location and size of the tumor, but they may include abdominal pain or discomfort, bloating, changes in bowel movements, or vaginal bleeding. Treatment typically involves surgical removal of the tumor, followed by chemotherapy or radiation therapy to kill any remaining cancer cells. The prognosis for mucinous cystadenocarcinoma depends on several factors, including the stage of the disease at diagnosis and the patient's overall health.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Endosonography, also known as endoscopic ultrasound (EUS), is a medical procedure that combines endoscopy and ultrasound to obtain detailed images and information about the digestive tract and surrounding organs. An endoscope, which is a flexible tube with a light and camera at its tip, is inserted through the mouth or rectum to reach the area of interest. A high-frequency ultrasound transducer at the tip of the endoscope generates sound waves that bounce off body tissues and create echoes, which are then translated into detailed images by a computer.

Endosonography allows doctors to visualize structures such as the esophageal, stomach, and intestinal walls, lymph nodes, blood vessels, and organs like the pancreas, liver, and gallbladder. It can help diagnose conditions such as tumors, inflammation, and infections, and it can also be used to guide biopsies or fine-needle aspirations of suspicious lesions.

Overall, endosonography is a valuable tool for the diagnosis and management of various gastrointestinal and related disorders.

Atropine is an anticholinergic drug that blocks the action of the neurotransmitter acetylcholine in the central and peripheral nervous system. It is derived from the belladonna alkaloids, which are found in plants such as deadly nightshade (Atropa belladonna), Jimson weed (Datura stramonium), and Duboisia spp.

In clinical medicine, atropine is used to reduce secretions, increase heart rate, and dilate the pupils. It is often used before surgery to dry up secretions in the mouth, throat, and lungs, and to reduce salivation during the procedure. Atropine is also used to treat certain types of nerve agent and pesticide poisoning, as well as to manage bradycardia (slow heart rate) and hypotension (low blood pressure) caused by beta-blockers or calcium channel blockers.

Atropine can have several side effects, including dry mouth, blurred vision, dizziness, confusion, and difficulty urinating. In high doses, it can cause delirium, hallucinations, and seizures. Atropine should be used with caution in patients with glaucoma, prostatic hypertrophy, or other conditions that may be exacerbated by its anticholinergic effects.

Alpha-amylases are a type of enzyme that breaks down complex carbohydrates, such as starch and glycogen, into simpler sugars like maltose, maltotriose, and glucose. These enzymes catalyze the hydrolysis of alpha-1,4 glycosidic bonds in these complex carbohydrates, making them more easily digestible.

Alpha-amylases are produced by various organisms, including humans, animals, plants, and microorganisms such as bacteria and fungi. In humans, alpha-amylases are primarily produced by the salivary glands and pancreas, and they play an essential role in the digestion of dietary carbohydrates.

Deficiency or malfunction of alpha-amylases can lead to various medical conditions, such as diabetes, kidney disease, and genetic disorders like congenital sucrase-isomaltase deficiency. On the other hand, excessive production of alpha-amylases can contribute to dental caries and other oral health issues.

Carcinoma, papillary is a type of cancer that begins in the cells that line the glandular structures or the lining of organs. In a papillary carcinoma, the cancerous cells grow and form small finger-like projections, called papillae, within the tumor. This type of cancer most commonly occurs in the thyroid gland, but can also be found in other organs such as the lung, breast, and kidney. Papillary carcinoma of the thyroid gland is usually slow-growing and has a good prognosis, especially when it is diagnosed at an early stage.

In situ hybridization (ISH) is a molecular biology technique used to detect and localize specific nucleic acid sequences, such as DNA or RNA, within cells or tissues. This technique involves the use of a labeled probe that is complementary to the target nucleic acid sequence. The probe can be labeled with various types of markers, including radioisotopes, fluorescent dyes, or enzymes.

During the ISH procedure, the labeled probe is hybridized to the target nucleic acid sequence in situ, meaning that the hybridization occurs within the intact cells or tissues. After washing away unbound probe, the location of the labeled probe can be visualized using various methods depending on the type of label used.

In situ hybridization has a wide range of applications in both research and diagnostic settings, including the detection of gene expression patterns, identification of viral infections, and diagnosis of genetic disorders.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Papillary cystadenoma is a type of benign (non-cancerous) tumor that arises from the glandular cells in various organs. It is characterized by the growth of finger-like projections (papillae) inside the cysts. These tumors can occur in different parts of the body, including the ovaries, pancreas, and the lining of the abdominal cavity (peritoneum).

In general, papillary cystadenomas are slow-growing and do not typically spread to other organs. However, they can cause symptoms such as pain or discomfort if they become large enough to press on surrounding tissues. Treatment usually involves surgical removal of the tumor. It is important to note that while papillary cystadenomas are generally benign, there is a small risk that they may undergo malignant transformation and develop into cancerous tumors over time. Regular follow-up with a healthcare provider is recommended to monitor for any changes in the tumor or the development of new symptoms.

Regeneration in a medical context refers to the process of renewal, restoration, and growth that replaces damaged or missing cells, tissues, organs, or even whole limbs in some organisms. This complex biological process involves various cellular and molecular mechanisms, such as cell proliferation, differentiation, and migration, which work together to restore the structural and functional integrity of the affected area.

In human medicine, regeneration has attracted significant interest due to its potential therapeutic applications in treating various conditions, including degenerative diseases, trauma, and congenital disorders. Researchers are actively studying the underlying mechanisms of regeneration in various model organisms to develop novel strategies for promoting tissue repair and regeneration in humans.

Examples of regeneration in human medicine include liver regeneration after partial hepatectomy, where the remaining liver lobes can grow back to their original size within weeks, and skin wound healing, where keratinocytes migrate and proliferate to close the wound and restore the epidermal layer. However, the regenerative capacity of humans is limited compared to some other organisms, such as planarians and axolotls, which can regenerate entire body parts or even their central nervous system.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Venom is a complex mixture of toxic compounds produced by certain animals, such as snakes, spiders, scorpions, and marine creatures like cone snails and stonefish. These toxic substances are specifically designed to cause damage to the tissues or interfere with the normal physiological processes of other organisms, which can lead to harmful or even lethal effects.

Venoms typically contain a variety of components, including enzymes, peptides, proteins, and small molecules, each with specific functions that contribute to the overall toxicity of the mixture. Some of these components may cause localized damage, such as tissue necrosis or inflammation, while others can have systemic effects, impacting various organs and bodily functions.

The study of venoms, known as toxinology, has important implications for understanding the evolution of animal behavior, developing new therapeutics, and advancing medical treatments for envenomation (the process of being poisoned by venom). Additionally, venoms have been used in traditional medicine for centuries, and ongoing research continues to uncover novel compounds with potential applications in modern pharmacology.

Rab3 GTP-binding proteins are a subfamily of the Rab family of small GTPases, which are involved in regulating intracellular vesicle trafficking. These proteins play a crucial role in the regulation of neurotransmitter release at synapses in neurons. They are responsible for mediating the docking and fusion of synaptic vesicles with the presynaptic membrane during exocytosis. Rab3 GTP-binding proteins exist in four isoforms (Rab3A, Rab3B, Rab3C, and Rab3D) that share a high degree of sequence similarity. They cycle between an active GTP-bound state and an inactive GDP-bound state, and their activity is regulated by various accessory proteins, including GTP exchange factors (GEFs) and GTPase-activating proteins (GAPs).

Gastrointestinal agents are a class of pharmaceutical drugs that affect the gastrointestinal (GI) tract, which includes the organs involved in digestion such as the mouth, esophagus, stomach, small intestine, large intestine, and anus. These agents can have various effects on the GI tract, including:

1. Increasing gastric motility (promoting bowel movements) - laxatives, prokinetics
2. Decreasing gastric motility (reducing bowel movements) - antidiarrheal agents
3. Neutralizing gastric acid - antacids
4. Reducing gastric acid secretion - H2-blockers, proton pump inhibitors
5. Protecting the mucosal lining of the GI tract - sucralfate, misoprostol
6. Relieving symptoms associated with GI disorders such as bloating, abdominal pain, and nausea - antispasmodics, antiemetics

Examples of gastrointestinal agents include:

* Laxatives (e.g., psyllium, docusate)
* Prokinetics (e.g., metoclopramide)
* Antacids (e.g., calcium carbonate, aluminum hydroxide)
* H2-blockers (e.g., ranitidine, famotidine)
* Proton pump inhibitors (e.g., omeprazole, lansoprazole)
* Sucralfate
* Misoprostol
* Antispasmodics (e.g., hyoscyamine, dicyclomine)
* Antiemetics (e.g., ondansetron, promethazine)

It is important to note that gastrointestinal agents can have both therapeutic and adverse effects, and their use should be based on a careful evaluation of the patient's condition and medical history.

Medical definitions of "milk substitutes" refer to products that are designed to replace or serve as an alternative to traditional cow's milk for individuals who cannot consume it or choose not to. These can include a wide variety of products, such as:

1. Plant-based milks: These are made from plants such as soy, almonds, coconuts, oats, rice, hemp, flaxseed, and cashews. They are often fortified with calcium, vitamin D, and other nutrients to make them more similar in nutrition to cow's milk.
2. Animal-based milks: These include goat's milk, sheep's milk, and buffalo milk, which can be suitable alternatives for those who are allergic or intolerant to cow's milk.
3. Formula milks: These are designed for infants and young children who cannot be breastfed or need additional nutrition. They can be based on cow's milk, soy, or other proteins and are fortified with vitamins, minerals, and other nutrients to support growth and development.
4. Specialized milks: These are formulated for individuals with specific dietary needs, such as lactose-free milk for those with lactose intolerance, or hypoallergenic formulas for people with milk protein allergies.

It is important to note that not all milk substitutes are created equal in terms of nutrition and should be chosen based on individual dietary needs and preferences. Always consult a healthcare professional or registered dietitian for personalized advice on selecting the most appropriate milk substitute.

Exocytosis is the process by which cells release molecules, such as hormones or neurotransmitters, to the extracellular space. This process involves the transport of these molecules inside vesicles (membrane-bound sacs) to the cell membrane, where they fuse and release their contents to the outside of the cell. It is a crucial mechanism for intercellular communication and the regulation of various physiological processes in the body.

Cystic fibrosis (CF) is a genetic disorder that primarily affects the lungs and digestive system. It is caused by mutations in the CFTR gene, which regulates the movement of salt and water in and out of cells. When this gene is not functioning properly, thick, sticky mucus builds up in various organs, leading to a range of symptoms.

In the lungs, this mucus can clog the airways, making it difficult to breathe and increasing the risk of lung infections. Over time, lung damage can occur, which may lead to respiratory failure. In the digestive system, the thick mucus can prevent the release of digestive enzymes from the pancreas, impairing nutrient absorption and leading to malnutrition. CF can also affect the reproductive system, liver, and other organs.

Symptoms of cystic fibrosis may include persistent coughing, wheezing, lung infections, difficulty gaining weight, greasy stools, and frequent greasy diarrhea. The severity of the disease can vary significantly among individuals, depending on the specific genetic mutations they have inherited.

Currently, there is no cure for cystic fibrosis, but treatments are available to help manage symptoms and slow the progression of the disease. These may include airway clearance techniques, medications to thin mucus, antibiotics to treat infections, enzyme replacement therapy, and a high-calorie, high-fat diet. Lung transplantation is an option for some individuals with advanced lung disease.

4-Hydroxyaminoquinoline-1-oxide, also known as 4HAQ or acriflavine hydroxylamine, is a chemical compound that has been used in research to study the mechanisms of DNA damage and mutagenesis. It is an aromatic heterocyclic amine and is known to be a potent mutagen and carcinogen.

The compound works by forming adducts with DNA, particularly at guanine residues, leading to mispairing during replication and the introduction of mutations. It has been used as a tool in molecular biology to study the effects of DNA damage on cellular processes such as transcription, replication, and repair.

It is important to note that 4HAQ is not used clinically in medicine due to its toxicity and carcinogenic properties.

Carboxypeptidases are a group of enzymes that catalyze the cleavage of peptide bonds at the carboxyl-terminal end of polypeptides or proteins. They specifically remove the last amino acid residue from the protein chain, provided that it has a free carboxyl group and is not blocked by another chemical group. Carboxypeptidases are classified into two main types based on their catalytic mechanism: serine carboxypeptidases and metallo-carboxypeptidases.

Serine carboxypeptidases, also known as chymotrypsin C or carboxypeptidase C, use a serine residue in their active site to catalyze the hydrolysis of peptide bonds. They are found in various organisms, including animals and bacteria.

Metallo-carboxypeptidases, on the other hand, require a metal ion (usually zinc) for their catalytic activity. They can be further divided into several subtypes based on their structure and substrate specificity. For example, carboxypeptidase A prefers to cleave hydrophobic amino acids from the carboxyl-terminal end of proteins, while carboxypeptidase B specifically removes basic residues (lysine or arginine).

Carboxypeptidases have important roles in various biological processes, such as protein maturation, digestion, and regulation of blood pressure. Dysregulation of these enzymes has been implicated in several diseases, including cancer, neurodegenerative disorders, and cardiovascular disease.

A chronic disease is a long-term medical condition that often progresses slowly over a period of years and requires ongoing management and care. These diseases are typically not fully curable, but symptoms can be managed to improve quality of life. Common chronic diseases include heart disease, stroke, cancer, diabetes, arthritis, and COPD (chronic obstructive pulmonary disease). They are often associated with advanced age, although they can also affect children and younger adults. Chronic diseases can have significant impacts on individuals' physical, emotional, and social well-being, as well as on healthcare systems and society at large.

In anatomical terms, the stomach is a muscular, J-shaped organ located in the upper left portion of the abdomen. It is part of the gastrointestinal tract and plays a crucial role in digestion. The stomach's primary functions include storing food, mixing it with digestive enzymes and hydrochloric acid to break down proteins, and slowly emptying the partially digested food into the small intestine for further absorption of nutrients.

The stomach is divided into several regions, including the cardia (the area nearest the esophagus), the fundus (the upper portion on the left side), the body (the main central part), and the pylorus (the narrowed region leading to the small intestine). The inner lining of the stomach, called the mucosa, is protected by a layer of mucus that prevents the digestive juices from damaging the stomach tissue itself.

In medical contexts, various conditions can affect the stomach, such as gastritis (inflammation of the stomach lining), peptic ulcers (sores in the stomach or duodenum), gastroesophageal reflux disease (GERD), and stomach cancer. Symptoms related to the stomach may include abdominal pain, bloating, nausea, vomiting, heartburn, and difficulty swallowing.

Cystadenoma is a type of benign tumor (not cancerous), which arises from glandular epithelial cells and is covered by a thin layer of connective tissue. These tumors can develop in various locations within the body, including the ovaries, pancreas, and other organs that contain glands.

There are two main types of cystadenomas: serous and mucinous. Serous cystadenomas are filled with a clear or watery fluid, while mucinous cystadenomas contain a thick, gelatinous material. Although they are generally not harmful, these tumors can grow quite large and cause discomfort or other symptoms due to their size or location. In some cases, cystadenomas may undergo malignant transformation and develop into cancerous tumors, known as cystadenocarcinomas. Regular medical follow-up and monitoring are essential for individuals diagnosed with cystadenomas to ensure early detection and treatment of any potential complications.

Nerve tissue proteins are specialized proteins found in the nervous system that provide structural and functional support to nerve cells, also known as neurons. These proteins include:

1. Neurofilaments: These are type IV intermediate filaments that provide structural support to neurons and help maintain their shape and size. They are composed of three subunits - NFL (light), NFM (medium), and NFH (heavy).

2. Neuronal Cytoskeletal Proteins: These include tubulins, actins, and spectrins that provide structural support to the neuronal cytoskeleton and help maintain its integrity.

3. Neurotransmitter Receptors: These are specialized proteins located on the postsynaptic membrane of neurons that bind neurotransmitters released by presynaptic neurons, triggering a response in the target cell.

4. Ion Channels: These are transmembrane proteins that regulate the flow of ions across the neuronal membrane and play a crucial role in generating and transmitting electrical signals in neurons.

5. Signaling Proteins: These include enzymes, receptors, and adaptor proteins that mediate intracellular signaling pathways involved in neuronal development, differentiation, survival, and death.

6. Adhesion Proteins: These are cell surface proteins that mediate cell-cell and cell-matrix interactions, playing a crucial role in the formation and maintenance of neural circuits.

7. Extracellular Matrix Proteins: These include proteoglycans, laminins, and collagens that provide structural support to nerve tissue and regulate neuronal migration, differentiation, and survival.

A Glucose Tolerance Test (GTT) is a medical test used to diagnose prediabetes, type 2 diabetes, and gestational diabetes. It measures how well your body is able to process glucose, which is a type of sugar.

During the test, you will be asked to fast (not eat or drink anything except water) for at least eight hours before the test. Then, a healthcare professional will take a blood sample to measure your fasting blood sugar level. After that, you will be given a sugary drink containing a specific amount of glucose. Your blood sugar levels will be measured again after two hours and sometimes also after one hour.

The results of the test will indicate how well your body is able to process the glucose and whether you have normal, impaired, or diabetic glucose tolerance. If your blood sugar levels are higher than normal but not high enough to be diagnosed with diabetes, you may have prediabetes, which means that you are at increased risk of developing type 2 diabetes in the future.

It is important to note that a Glucose Tolerance Test should be performed under the supervision of a healthcare professional, as high blood sugar levels can be dangerous if not properly managed.

Duodenal neoplasms refer to abnormal growths in the duodenum, which is the first part of the small intestine that receives digestive secretions from the pancreas and bile duct. These growths can be benign or malignant (cancerous).

Benign neoplasms include adenomas, leiomyomas, lipomas, and hamartomas. They are usually slow-growing and do not spread to other parts of the body. However, they may cause symptoms such as abdominal pain, bleeding, or obstruction of the intestine.

Malignant neoplasms include adenocarcinomas, neuroendocrine tumors (carcinoids), lymphomas, and sarcomas. They are more aggressive and can invade surrounding tissues and spread to other parts of the body. Symptoms may include abdominal pain, weight loss, jaundice, anemia, or bowel obstruction.

The diagnosis of duodenal neoplasms is usually made through imaging tests such as CT scans, MRI, or endoscopy with biopsy. Treatment depends on the type and stage of the tumor and may include surgery, chemotherapy, radiation therapy, or a combination of these modalities.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Streptozocin is an antibiotic and antineoplastic agent, which is primarily used in the treatment of metastatic pancreatic islet cell carcinoma (a type of pancreatic cancer). It is a naturally occurring compound produced by the bacterium Streptomyces achromogenes.

Medically, streptozocin is classified as an alkylating agent due to its ability to interact with DNA and RNA, disrupting the growth and multiplication of malignant cells. However, it can also have adverse effects on non-cancerous cells, particularly in the kidneys and pancreas, leading to potential side effects such as nephrotoxicity (kidney damage) and hyperglycemia (high blood sugar).

It is essential that streptozocin be administered under the supervision of a healthcare professional, who can monitor its effectiveness and potential side effects. The drug is typically given through intravenous infusion, with the dosage and duration tailored to individual patient needs and treatment responses.

Metaplasia is a term used in pathology to describe the replacement of one differentiated cell type with another differentiated cell type within a tissue or organ. It is an adaptive response of epithelial cells to chronic irritation, inflammation, or injury and can be reversible if the damaging stimulus is removed. Metaplastic changes are often associated with an increased risk of cancer development in the affected area.

For example, in the case of gastroesophageal reflux disease (GERD), chronic exposure to stomach acid can lead to metaplasia of the esophageal squamous epithelium into columnar epithelium, a condition known as Barrett's esophagus. This metaplastic change is associated with an increased risk of developing esophageal adenocarcinoma.

Common bile duct neoplasms refer to abnormal growths that can occur in the common bile duct, which is a tube that carries bile from the liver and gallbladder into the small intestine. These growths can be benign or malignant (cancerous).

Benign neoplasms of the common bile duct include papillomas, adenomas, and leiomyomas. Malignant neoplasms are typically adenocarcinomas, which arise from the glandular cells lining the duct. Other types of malignancies that can affect the common bile duct include cholangiocarcinoma, gallbladder carcinoma, and metastatic cancer from other sites.

Symptoms of common bile duct neoplasms may include jaundice (yellowing of the skin and eyes), abdominal pain, dark urine, and light-colored stools. Diagnosis may involve imaging tests such as CT scans or MRCP (magnetic resonance cholangiopancreatography) and biopsy to confirm the type of neoplasm. Treatment options depend on the type and stage of the neoplasm and may include surgery, radiation therapy, chemotherapy, or a combination of these approaches.

The intestines, also known as the bowel, are a part of the digestive system that extends from the stomach to the anus. They are responsible for the further breakdown and absorption of nutrients from food, as well as the elimination of waste products. The intestines can be divided into two main sections: the small intestine and the large intestine.

The small intestine is a long, coiled tube that measures about 20 feet in length and is lined with tiny finger-like projections called villi, which increase its surface area and enhance nutrient absorption. The small intestine is where most of the digestion and absorption of nutrients takes place.

The large intestine, also known as the colon, is a wider tube that measures about 5 feet in length and is responsible for absorbing water and electrolytes from digested food, forming stool, and eliminating waste products from the body. The large intestine includes several regions, including the cecum, colon, rectum, and anus.

Together, the intestines play a critical role in maintaining overall health and well-being by ensuring that the body receives the nutrients it needs to function properly.

Neoplasms: Neoplasms refer to abnormal growths of tissue that can be benign (non-cancerous) or malignant (cancerous). They occur when the normal control mechanisms that regulate cell growth and division are disrupted, leading to uncontrolled cell proliferation.

Cystic Neoplasms: Cystic neoplasms are tumors that contain fluid-filled sacs or cysts. These tumors can be benign or malignant and can occur in various organs of the body, including the pancreas, ovary, and liver.

Mucinous Neoplasms: Mucinous neoplasms are a type of cystic neoplasm that is characterized by the production of mucin, a gel-like substance produced by certain types of cells. These tumors can occur in various organs, including the ovary, pancreas, and colon. Mucinous neoplasms can be benign or malignant, and malignant forms are often aggressive and have a poor prognosis.

Serous Neoplasms: Serous neoplasms are another type of cystic neoplasm that is characterized by the production of serous fluid, which is a thin, watery fluid. These tumors commonly occur in the ovary and can be benign or malignant. Malignant serous neoplasms are often aggressive and have a poor prognosis.

In summary, neoplasms refer to abnormal tissue growths that can be benign or malignant. Cystic neoplasms contain fluid-filled sacs and can occur in various organs of the body. Mucinous neoplasms produce a gel-like substance called mucin and can also occur in various organs, while serous neoplasms produce thin, watery fluid and commonly occur in the ovary. Both mucinous and serous neoplasms can be benign or malignant, with malignant forms often being aggressive and having a poor prognosis.

Bethanechol is a parasympathomimetic drug, which means it stimulates the parasympathetic nervous system. This system is responsible for regulating many automatic functions in the body, including digestion and urination. Bethanechol works by causing the smooth muscles of the bladder to contract, which can help to promote urination in people who have difficulty emptying their bladder completely due to certain medical conditions such as surgery, spinal cord injury, or multiple sclerosis.

The medical definition of 'Bethanechol' is:

A parasympathomimetic agent that stimulates the muscarinic receptors of the autonomic nervous system, causing contraction of smooth muscle and increased secretion of exocrine glands. It is used to treat urinary retention and associated symptoms, such as those caused by bladder-neck obstruction due to prostatic hypertrophy or neurogenic bladder dysfunction. Bethanechol may also be used to diagnose urinary tract obstruction and to test the integrity of the bladder's innervation.

Chromogranins are a group of proteins that are stored in the secretory vesicles of neuroendocrine cells, including neurons and endocrine cells. These proteins are co-released with neurotransmitters and hormones upon stimulation of the cells. Chromogranin A is the most abundant and best studied member of this protein family.

Chromogranins have several functions in the body. They play a role in the biogenesis, processing, and storage of neuropeptides and neurotransmitters within secretory vesicles. Additionally, chromogranins can be cleaved into smaller peptides, some of which have hormonal or regulatory activities. For example, vasostatin-1, a peptide derived from chromogranin A, has been shown to have vasodilatory and cardioprotective effects.

Measurement of chromogranin levels in blood can be used as a biomarker for the diagnosis and monitoring of neuroendocrine tumors, which are characterized by excessive secretion of chromogranins and other neuroendocrine markers.

'Cell lineage' is a term used in biology and medicine to describe the developmental history or relationship of a cell or group of cells to other cells, tracing back to the original progenitor or stem cell. It refers to the series of cell divisions and differentiation events that give rise to specific types of cells in an organism over time.

In simpler terms, cell lineage is like a family tree for cells, showing how they are related to each other through a chain of cell division and specialization events. This concept is important in understanding the development, growth, and maintenance of tissues and organs in living beings.

Enteroendocrine cells are specialized cells found within the epithelial lining of the gastrointestinal tract, which play a crucial role in regulating digestion and energy balance. They are responsible for producing and secreting various hormones in response to mechanical or chemical stimuli, such as the presence of nutrients in the gut lumen. These hormones include:

1. Gastrin: Secreted by G cells in the stomach, gastrin promotes the release of hydrochloric acid from parietal cells and increases gastric motility.
2. Cholecystokinin (CCK): Produced by I cells in the small intestine, CCK stimulates the secretion of digestive enzymes from the pancreas, promotes gallbladder contraction, and inhibits gastric emptying.
3. Secretin: Released by S cells in the duodenum, secretin stimulates bicarbonate secretion from the pancreas to neutralize stomach acid and increases pancreatic secretions.
4. Serotonin (5-HT): Found in enterochromaffin cells throughout the gastrointestinal tract, serotonin regulates gut motility, sensation, and secretion. It also plays a role in modulating the immune response and affecting mood and cognition when released into the bloodstream.
5. Motilin: Produced by MO cells in the small intestine, motilin stimulates gastrointestinal motility and regulates the migrating motor complex (MMC), which is responsible for the housekeeping functions of the gut during fasting periods.
6. Gastric inhibitory peptide (GIP): Secreted by K cells in the duodenum, GIP promotes insulin secretion, inhibits gastric acid secretion, and stimulates intestinal motility and pancreatic bicarbonate secretion.
7. Glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2): Released by L cells in the ileum and colon, GLP-1 stimulates insulin secretion, inhibits glucagon release, slows gastric emptying, and promotes satiety. GLP-2 enhances intestinal growth and absorption.

These hormones play crucial roles in regulating various aspects of gastrointestinal function, including digestion, motility, secretion, sensation, and immune response. Dysregulation of these hormones can contribute to the development of several gastrointestinal disorders, such as irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), functional dyspepsia, and diabetes. Understanding the complex interactions between these hormones and their receptors is essential for developing targeted therapeutic strategies to treat gastrointestinal diseases.

Autoradiography is a medical imaging technique used to visualize and localize the distribution of radioactively labeled compounds within tissues or organisms. In this process, the subject is first exposed to a radioactive tracer that binds to specific molecules or structures of interest. The tissue is then placed in close contact with a radiation-sensitive film or detector, such as X-ray film or an imaging plate.

As the radioactive atoms decay, they emit particles (such as beta particles) that interact with the film or detector, causing chemical changes and leaving behind a visible image of the distribution of the labeled compound. The resulting autoradiogram provides information about the location, quantity, and sometimes even the identity of the molecules or structures that have taken up the radioactive tracer.

Autoradiography has been widely used in various fields of biology and medical research, including pharmacology, neuroscience, genetics, and cell biology, to study processes such as protein-DNA interactions, gene expression, drug metabolism, and neuronal connectivity. However, due to the use of radioactive materials and potential hazards associated with them, this technique has been gradually replaced by non-radioactive alternatives like fluorescence in situ hybridization (FISH) or immunofluorescence techniques.

Parasympathetic fibers, postganglionic, refer to the portion of the parasympathetic nervous system's peripheral nerves that arise from ganglia (clusters of neurons) located near or within the target organs. These postganglionic fibers are responsible for transmitting signals from the ganglia to the effector organs such as glands, smooth muscles, and heart, instructing them to carry out specific functions.

The parasympathetic nervous system is one of the two subdivisions of the autonomic nervous system (the other being the sympathetic nervous system). Its primary role is to conserve energy and maintain homeostasis during rest or digestion. The preganglionic fibers originate in the brainstem and sacral spinal cord, synapsing in the ganglia located near or within the target organs. Upon receiving signals from the preganglionic fibers, the postganglionic fibers release neurotransmitters like acetylcholine to activate muscarinic receptors on the effector organ, leading to responses such as decreased heart rate, increased gastrointestinal motility and secretion, and contraction of the urinary bladder.

Epithelium is the tissue that covers the outer surface of the body, lines the internal cavities and organs, and forms various glands. It is composed of one or more layers of tightly packed cells that have a uniform shape and size, and rest on a basement membrane. Epithelial tissues are avascular, meaning they do not contain blood vessels, and are supplied with nutrients by diffusion from the underlying connective tissue.

Epithelial cells perform a variety of functions, including protection, secretion, absorption, excretion, and sensation. They can be classified based on their shape and the number of cell layers they contain. The main types of epithelium are:

1. Squamous epithelium: composed of flat, scalelike cells that fit together like tiles on a roof. It forms the lining of blood vessels, air sacs in the lungs, and the outermost layer of the skin.
2. Cuboidal epithelium: composed of cube-shaped cells with equal height and width. It is found in glands, tubules, and ducts.
3. Columnar epithelium: composed of tall, rectangular cells that are taller than they are wide. It lines the respiratory, digestive, and reproductive tracts.
4. Pseudostratified epithelium: appears stratified or layered but is actually made up of a single layer of cells that vary in height. The nuclei of these cells appear at different levels, giving the tissue a stratified appearance. It lines the respiratory and reproductive tracts.
5. Transitional epithelium: composed of several layers of cells that can stretch and change shape to accommodate changes in volume. It is found in the urinary bladder and ureters.

Epithelial tissue provides a barrier between the internal and external environments, protecting the body from physical, chemical, and biological damage. It also plays a crucial role in maintaining homeostasis by regulating the exchange of substances between the body and its environment.

The Golgi apparatus, also known as the Golgi complex or simply the Golgi, is a membrane-bound organelle found in the cytoplasm of most eukaryotic cells. It plays a crucial role in the processing, sorting, and packaging of proteins and lipids for transport to their final destinations within the cell or for secretion outside the cell.

The Golgi apparatus consists of a series of flattened, disc-shaped sacs called cisternae, which are stacked together in a parallel arrangement. These stacks are often interconnected by tubular structures called tubules or vesicles. The Golgi apparatus has two main faces: the cis face, which is closest to the endoplasmic reticulum (ER) and receives proteins and lipids directly from the ER; and the trans face, which is responsible for sorting and dispatching these molecules to their final destinations.

The Golgi apparatus performs several essential functions in the cell:

1. Protein processing: After proteins are synthesized in the ER, they are transported to the cis face of the Golgi apparatus, where they undergo various post-translational modifications, such as glycosylation (the addition of sugar molecules) and sulfation. These modifications help determine the protein's final structure, function, and targeting.
2. Lipid modification: The Golgi apparatus also modifies lipids by adding or removing different functional groups, which can influence their properties and localization within the cell.
3. Protein sorting and packaging: Once proteins and lipids have been processed, they are sorted and packaged into vesicles at the trans face of the Golgi apparatus. These vesicles then transport their cargo to various destinations, such as lysosomes, plasma membrane, or extracellular space.
4. Intracellular transport: The Golgi apparatus serves as a central hub for intracellular trafficking, coordinating the movement of vesicles and other transport carriers between different organelles and cellular compartments.
5. Cell-cell communication: Some proteins that are processed and packaged in the Golgi apparatus are destined for secretion, playing crucial roles in cell-cell communication and maintaining tissue homeostasis.

In summary, the Golgi apparatus is a vital organelle involved in various cellular processes, including post-translational modification, sorting, packaging, and intracellular transport of proteins and lipids. Its proper functioning is essential for maintaining cellular homeostasis and overall organismal health.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Kidney transplantation is a surgical procedure where a healthy kidney from a deceased or living donor is implanted into a patient with end-stage renal disease (ESRD) or permanent kidney failure. The new kidney takes over the functions of filtering waste and excess fluids from the blood, producing urine, and maintaining the body's electrolyte balance.

The transplanted kidney is typically placed in the lower abdomen, with its blood vessels connected to the recipient's iliac artery and vein. The ureter of the new kidney is then attached to the recipient's bladder to ensure proper urine flow. Following the surgery, the patient will require lifelong immunosuppressive therapy to prevent rejection of the transplanted organ by their immune system.

Duodenal obstruction is a medical condition characterized by the blockage or impediment of the normal flow of contents through the duodenum, which is the first part of the small intestine. This blockage can be partial or complete and can be caused by various factors such as:

1. Congenital abnormalities: Duodenal atresia or stenosis, where there is a congenital absence or narrowing of a portion of the duodenum.
2. Inflammatory conditions: Duodenitis, Crohn's disease, or tumors that cause swelling and inflammation in the duodenum.
3. Mechanical obstructions: Gallstones, tumors, strictures, or adhesions (scar tissue) from previous surgeries can physically block the duodenum.
4. Neuromuscular disorders: Conditions like progressive systemic sclerosis or amyloidosis that affect the neuromuscular function of the intestines can lead to duodenal obstruction.

Symptoms of duodenal obstruction may include nausea, vomiting (often with bilious or fecal matter), abdominal pain, distention, and decreased bowel movements. Diagnosis typically involves imaging studies such as X-rays, CT scans, or upper gastrointestinal series to visualize the blockage. Treatment depends on the underlying cause but may involve surgery, endoscopic procedures, or medications to manage symptoms and address the obstruction.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

I must clarify that the term "Guinea Pigs" is not typically used in medical definitions. However, in colloquial or informal language, it may refer to people who are used as the first to try out a new medical treatment or drug. This is known as being a "test subject" or "in a clinical trial."

In the field of scientific research, particularly in studies involving animals, guinea pigs are small rodents that are often used as experimental subjects due to their size, cost-effectiveness, and ease of handling. They are not actually pigs from Guinea, despite their name's origins being unclear. However, they do not exactly fit the description of being used in human medical experiments.

Chromogranin A is a protein that is widely used as a marker for neuroendocrine tumors. These are tumors that arise from cells of the neuroendocrine system, which is a network of cells throughout the body that produce hormones and help to regulate various bodily functions. Chromogranin A is stored in secretory granules within these cells and is released into the bloodstream when the cells are stimulated to release their hormones.

Chromogranin A is measured in the blood as a way to help diagnose neuroendocrine tumors, monitor the effectiveness of treatment, and track the progression of the disease. Elevated levels of chromogranin A in the blood may indicate the presence of a neuroendocrine tumor, although other factors can also cause an increase in this protein.

It's important to note that while chromogranin A is a useful marker for neuroendocrine tumors, it is not specific to any one type of tumor and should be used in conjunction with other diagnostic tests and clinical evaluation.

Inbred NOD (Nonobese Diabetic) mice are a strain of laboratory mice that are genetically predisposed to develop autoimmune diabetes. This strain was originally developed in Japan and has been widely used as an animal model for studying type 1 diabetes and its complications.

NOD mice typically develop diabetes spontaneously at around 12-14 weeks of age, although the onset and severity of the disease can vary between individual mice. The disease is caused by a breakdown in immune tolerance, leading to an autoimmune attack on the insulin-producing beta cells of the pancreas.

Inbred NOD mice are highly valuable for research purposes because they exhibit many of the same genetic and immunological features as human patients with type 1 diabetes. By studying these mice, researchers can gain insights into the underlying mechanisms of the disease and develop new treatments and therapies.

Body weight is the measure of the force exerted on a scale or balance by an object's mass, most commonly expressed in units such as pounds (lb) or kilograms (kg). In the context of medical definitions, body weight typically refers to an individual's total weight, which includes their skeletal muscle, fat, organs, and bodily fluids.

Healthcare professionals often use body weight as a basic indicator of overall health status, as it can provide insights into various aspects of a person's health, such as nutritional status, metabolic function, and risk factors for certain diseases. For example, being significantly underweight or overweight can increase the risk of developing conditions like malnutrition, diabetes, heart disease, and certain types of cancer.

It is important to note that body weight alone may not provide a complete picture of an individual's health, as it does not account for factors such as muscle mass, bone density, or body composition. Therefore, healthcare professionals often use additional measures, such as body mass index (BMI), waist circumference, and blood tests, to assess overall health status more comprehensively.

Ethionine is a toxic, synthetic analog of the amino acid methionine. It is an antimetabolite that inhibits the enzyme methionine adenosyltransferase, which plays a crucial role in methionine metabolism. Ethionine is often used in research to study the effects of methionine deficiency and to create animal models of various human diseases. It is not a natural component of human nutrition and has no known medical uses. Prolonged exposure or high levels of ethionine can lead to liver damage, growth impairment, and other harmful health effects.

According to the National Institutes of Health (NIH), stem cells are "initial cells" or "precursor cells" that have the ability to differentiate into many different cell types in the body. They can also divide without limit to replenish other cells for as long as the person or animal is still alive.

There are two main types of stem cells: embryonic stem cells, which come from human embryos, and adult stem cells, which are found in various tissues throughout the body. Embryonic stem cells have the ability to differentiate into all cell types in the body, while adult stem cells have more limited differentiation potential.

Stem cells play an essential role in the development and repair of various tissues and organs in the body. They are currently being studied for their potential use in the treatment of a wide range of diseases and conditions, including cancer, diabetes, heart disease, and neurological disorders. However, more research is needed to fully understand the properties and capabilities of these cells before they can be used safely and effectively in clinical settings.

Nestin is a type of class VI intermediate filament protein that is primarily expressed in various types of undifferentiated or progenitor cells in the nervous system, including neural stem cells and progenitor cells. It is often used as a marker for these cells due to its expression during stages of active cell division and migration. Nestin is also expressed in some other tissues undergoing regeneration or injury.

Organ preservation solutions are specialized fluids used to maintain the viability and functionality of organs ex vivo (outside the body) during the process of transplantation. These solutions are designed to provide optimal conditions for the organ by preventing tissue damage, reducing metabolic activity, and minimizing ischemic injuries that may occur during the time between organ removal from the donor and implantation into the recipient.

The composition of organ preservation solutions typically includes various ingredients such as:

1. Cryoprotectants: These help prevent ice crystal formation and damage to cell membranes during freezing and thawing processes, especially for organs like the heart and lungs that require deep hypothermia for preservation.
2. Buffers: They maintain physiological pH levels and counteract acidosis caused by anaerobic metabolism in the absence of oxygen supply.
3. Colloids: These substances, such as hydroxyethyl starch or dextran, help preserve oncotic pressure and prevent cellular edema.
4. Electrolytes: Balanced concentrations of ions like sodium, potassium, calcium, magnesium, chloride, and bicarbonate are essential for maintaining physiological osmolarity and membrane potentials.
5. Energy substrates: Glucose, lactate, or other energy-rich compounds can serve as fuel sources to support the metabolic needs of the organ during preservation.
6. Antioxidants: These agents protect against oxidative stress and lipid peroxidation induced by ischemia-reperfusion injuries.
7. Anti-inflammatory agents and immunosuppressants: Some solutions may contain substances that mitigate the inflammatory response and reduce immune activation in the transplanted organ.

Examples of commonly used organ preservation solutions include University of Wisconsin (UW) solution, Histidine-Tryptophan-Ketoglutarate (HTK) solution, Custodiol HTK solution, and Euro-Collins solution. The choice of preservation solution depends on the specific organ being transplanted and the duration of preservation required.

"Mesocricetus" is a genus of rodents, more commonly known as hamsters. It includes several species of hamsters that are native to various parts of Europe and Asia. The best-known member of this genus is the Syrian hamster, also known as the golden hamster or Mesocricetus auratus, which is a popular pet due to its small size and relatively easy care. These hamsters are burrowing animals and are typically solitary in the wild.

The vagus nerve, also known as the 10th cranial nerve (CN X), is the longest of the cranial nerves and extends from the brainstem to the abdomen. It has both sensory and motor functions and plays a crucial role in regulating various bodily functions such as heart rate, digestion, respiratory rate, speech, and sweating, among others.

The vagus nerve is responsible for carrying sensory information from the internal organs to the brain, and it also sends motor signals from the brain to the muscles of the throat and voice box, as well as to the heart, lungs, and digestive tract. The vagus nerve helps regulate the body's involuntary responses, such as controlling heart rate and blood pressure, promoting relaxation, and reducing inflammation.

Dysfunction in the vagus nerve can lead to various medical conditions, including gastroparesis, chronic pain, and autonomic nervous system disorders. Vagus nerve stimulation (VNS) is a therapeutic intervention that involves delivering electrical impulses to the vagus nerve to treat conditions such as epilepsy, depression, and migraine headaches.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

The endoplasmic reticulum (ER) is a network of interconnected tubules and sacs that are present in the cytoplasm of eukaryotic cells. It is a continuous membranous organelle that plays a crucial role in the synthesis, folding, modification, and transport of proteins and lipids.

The ER has two main types: rough endoplasmic reticulum (RER) and smooth endoplasmic reticulum (SER). RER is covered with ribosomes, which give it a rough appearance, and is responsible for protein synthesis. On the other hand, SER lacks ribosomes and is involved in lipid synthesis, drug detoxification, calcium homeostasis, and steroid hormone production.

In summary, the endoplasmic reticulum is a vital organelle that functions in various cellular processes, including protein and lipid metabolism, calcium regulation, and detoxification.

Bombesin is a type of peptide that occurs naturally in the body. It is a small protein-like molecule made up of amino acids, and it is involved in various physiological processes, including regulating appetite and digestion. Bombesin was first discovered in the skin of a frog species called Bombina bombina, hence its name. In the human body, bombesin-like peptides are produced by various tissues, including the stomach and brain. They bind to specific receptors in the body, triggering a range of responses, such as stimulating the release of hormones and increasing gut motility. Bombesin has been studied for its potential role in treating certain medical conditions, including cancer, although more research is needed to establish its safety and efficacy.

CA 19-9 antigen, also known as carbohydrate antigen 19-9, is a tumor marker that is commonly found in the blood. It is a type of sialylated Lewis blood group antigen, which is a complex carbohydrate molecule found on the surface of many cells in the body.

CA 19-9 antigen is often elevated in people with certain types of cancer, particularly pancreatic cancer, bile duct cancer, and colon cancer. However, it can also be elevated in noncancerous conditions such as pancreatitis, liver cirrhosis, and cholestasis. Therefore, CA 19-9 antigen is not a specific or sensitive marker for cancer, and its use as a screening test for cancer is not recommended.

Instead, CA 19-9 antigen is often used as a tumor marker to monitor the response to treatment in people with known cancers, particularly pancreatic cancer. A decrease in CA 19-9 antigen levels may indicate that the cancer is responding to treatment, while an increase may suggest that the cancer is growing or has recurred. However, it is important to note that CA 19-9 antigen levels can also be affected by other factors, such as the size and location of the tumor, the presence of obstructive jaundice, and the patient's overall health status. Therefore, CA 19-9 antigen should always be interpreted in conjunction with other clinical and diagnostic findings.

Epithelial cells are types of cells that cover the outer surfaces of the body, line the inner surfaces of organs and glands, and form the lining of blood vessels and body cavities. They provide a protective barrier against the external environment, regulate the movement of materials between the internal and external environments, and are involved in the sense of touch, temperature, and pain. Epithelial cells can be squamous (flat and thin), cuboidal (square-shaped and of equal height), or columnar (tall and narrow) in shape and are classified based on their location and function.

A fistula is an abnormal connection or passage between two organs, vessels, or body parts that usually do not connect. It can form as a result of injury, infection, surgery, or disease. A fistula can occur anywhere in the body but commonly forms in the digestive system, genital area, or urinary system. The symptoms and treatment options for a fistula depend on its location and underlying cause.

5-Hydroxytryptophan (5-HTP) is a chemical compound that is produced by the body as a precursor to serotonin, a neurotransmitter that helps regulate mood, appetite, sleep, and pain sensation. 5-HTP is not present in food but can be derived from the amino acid tryptophan, which is found in high-protein foods such as turkey, chicken, milk, and cheese.

5-HTP supplements are sometimes used to treat conditions related to low serotonin levels, including depression, anxiety, insomnia, migraines, and fibromyalgia. However, the effectiveness of 5-HTP for these conditions is not well established, and it can have side effects and interact with certain medications. Therefore, it's important to consult a healthcare provider before taking 5-HTP supplements.

Vasoactive Intestinal Peptide (VIP) is a 28-amino acid polypeptide hormone that has potent vasodilatory, secretory, and neurotransmitter effects. It is widely distributed throughout the body, including in the gastrointestinal tract, where it is synthesized and released by nerve cells (neurons) in the intestinal mucosa. VIP plays a crucial role in regulating various physiological functions such as intestinal secretion, motility, and blood flow. It also has immunomodulatory effects and may play a role in neuroprotection. High levels of VIP are found in the brain, where it acts as a neurotransmitter or neuromodulator and is involved in various cognitive functions such as learning, memory, and social behavior.

Nitrosamines are a type of chemical compound that are formed by the reaction between nitrous acid (or any nitrogen oxide) and secondary amines. They are often found in certain types of food, such as cured meats and cheeses, as well as in tobacco products and cosmetics.

Nitrosamines have been classified as probable human carcinogens by the International Agency for Research on Cancer (IARC). Exposure to high levels of nitrosamines has been linked to an increased risk of cancer, particularly in the digestive tract. They can also cause DNA damage and interfere with the normal functioning of cells.

In the medical field, nitrosamines have been a topic of concern due to their potential presence as contaminants in certain medications. For example, some drugs that contain nitrofurantoin, a medication used to treat urinary tract infections, have been found to contain low levels of nitrosamines. While the risk associated with these low levels is not well understood, efforts are underway to minimize the presence of nitrosamines in medications and other products.

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

Microsomes are subcellular membranous vesicles that are obtained as a byproduct during the preparation of cellular homogenates. They are not naturally occurring structures within the cell, but rather formed due to fragmentation of the endoplasmic reticulum (ER) during laboratory procedures. Microsomes are widely used in various research and scientific studies, particularly in the fields of biochemistry and pharmacology.

Microsomes are rich in enzymes, including the cytochrome P450 system, which is involved in the metabolism of drugs, toxins, and other xenobiotics. These enzymes play a crucial role in detoxifying foreign substances and eliminating them from the body. As such, microsomes serve as an essential tool for studying drug metabolism, toxicity, and interactions, allowing researchers to better understand and predict the effects of various compounds on living organisms.

Hyperplasia is a medical term that refers to an abnormal increase in the number of cells in an organ or tissue, leading to an enlargement of the affected area. It's a response to various stimuli such as hormones, chronic irritation, or inflammation. Hyperplasia can be physiological, like the growth of breast tissue during pregnancy, or pathological, like in the case of benign or malignant tumors. The process is generally reversible if the stimulus is removed. It's important to note that hyperplasia itself is not cancerous, but some forms of hyperplasia can increase the risk of developing cancer over time.

Gastrin-Releasing Peptide (GRP) is defined as a 27-amino acid peptide that shares structural and functional similarities with the C-terminal part of gastrin. It is widely distributed in the central and peripheral nervous systems, where it functions as a neurotransmitter or neuromodulator. GRP plays a crucial role in various physiological processes such as regulation of gastrointestinal motility, smooth muscle relaxation, and mucous secretion. Additionally, GRP has been implicated in several pathophysiological conditions, including cancer, where it can act as a growth factor for certain types of tumors, such as small cell lung carcinoma.

Cystadenocarcinoma is a type of tumor that arises from the epithelial lining of a cyst, and it has the potential to invade surrounding tissues and spread (metastasize) to other parts of the body. It typically affects glandular organs such as the ovaries, pancreas, and salivary glands.

Cystadenocarcinomas can be classified into two types: serous and mucinous. Serous cystadenocarcinomas produce a watery fluid, while mucinous cystadenocarcinomas produce a thick, mucus-like fluid. Both types of tumors can be benign or malignant, but malignant cystadenocarcinomas are more aggressive and have a higher risk of metastasis.

Symptoms of cystadenocarcinoma depend on the location and size of the tumor. In some cases, there may be no symptoms until the tumor has grown large enough to cause pain or other problems. Treatment typically involves surgical removal of the tumor, along with any affected surrounding tissue. Chemotherapy and radiation therapy may also be used in some cases to help prevent recurrence or spread of the cancer.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Veratrum alkaloids are a group of steroidal alkaloids found in plants belonging to the genus Veratrum, such as Veratrum album (white hellebore) and Veratrum viride (American false hellebore). These compounds have complex structures and can be divided into several types, including veratrine, jervine, and cevadine. They have various pharmacological effects, such as being anticholinergic, antiarrhythmic, and emetic. Veratrum alkaloids are used in traditional medicine, but they can also be highly toxic if ingested or handled improperly.

Perfusion, in medical terms, refers to the process of circulating blood through the body's organs and tissues to deliver oxygen and nutrients and remove waste products. It is a measure of the delivery of adequate blood flow to specific areas or tissues in the body. Perfusion can be assessed using various methods, including imaging techniques like computed tomography (CT) scans, magnetic resonance imaging (MRI), and perfusion scintigraphy.

Perfusion is critical for maintaining proper organ function and overall health. When perfusion is impaired or inadequate, it can lead to tissue hypoxia, acidosis, and cell death, which can result in organ dysfunction or failure. Conditions that can affect perfusion include cardiovascular disease, shock, trauma, and certain surgical procedures.

The small intestine is the portion of the gastrointestinal tract that extends from the pylorus of the stomach to the beginning of the large intestine (cecum). It plays a crucial role in the digestion and absorption of nutrients from food. The small intestine is divided into three parts: the duodenum, jejunum, and ileum.

1. Duodenum: This is the shortest and widest part of the small intestine, approximately 10 inches long. It receives chyme (partially digested food) from the stomach and begins the process of further digestion with the help of various enzymes and bile from the liver and pancreas.
2. Jejunum: The jejunum is the middle section, which measures about 8 feet in length. It has a large surface area due to the presence of circular folds (plicae circulares), finger-like projections called villi, and microvilli on the surface of the absorptive cells (enterocytes). These structures increase the intestinal surface area for efficient absorption of nutrients, electrolytes, and water.
3. Ileum: The ileum is the longest and final section of the small intestine, spanning about 12 feet. It continues the absorption process, mainly of vitamin B12, bile salts, and any remaining nutrients. At the end of the ileum, there is a valve called the ileocecal valve that prevents backflow of contents from the large intestine into the small intestine.

The primary function of the small intestine is to absorb the majority of nutrients, electrolytes, and water from ingested food. The mucosal lining of the small intestine contains numerous goblet cells that secrete mucus, which protects the epithelial surface and facilitates the movement of chyme through peristalsis. Additionally, the small intestine hosts a diverse community of microbiota, which contributes to various physiological functions, including digestion, immunity, and protection against pathogens.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Zebrafish proteins refer to the diverse range of protein molecules that are produced by the organism Danio rerio, commonly known as the zebrafish. These proteins play crucial roles in various biological processes such as growth, development, reproduction, and response to environmental stimuli. They are involved in cellular functions like enzymatic reactions, signal transduction, structural support, and regulation of gene expression.

Zebrafish is a popular model organism in biomedical research due to its genetic similarity with humans, rapid development, and transparent embryos that allow for easy observation of biological processes. As a result, the study of zebrafish proteins has contributed significantly to our understanding of protein function, structure, and interaction in both zebrafish and human systems.

Some examples of zebrafish proteins include:

* Transcription factors that regulate gene expression during development
* Enzymes involved in metabolic pathways
* Structural proteins that provide support to cells and tissues
* Receptors and signaling molecules that mediate communication between cells
* Heat shock proteins that assist in protein folding and protect against stress

The analysis of zebrafish proteins can be performed using various techniques, including biochemical assays, mass spectrometry, protein crystallography, and computational modeling. These methods help researchers to identify, characterize, and understand the functions of individual proteins and their interactions within complex networks.

A salt gland is a type of exocrine gland found in certain animals, including birds and reptiles, that helps regulate the balance of salt and water in their bodies. These glands are capable of excreting a highly concentrated solution of sodium chloride, or salt, which allows these animals to drink seawater and still maintain the proper osmotic balance in their tissues.

In birds, salt glands are typically located near the eyes and are responsible for producing tears that contain high levels of salt. These tears then drain into the nasal passages and are eventually expelled from the body. In reptiles, salt glands can be found in various locations, depending on the species, but they serve the same function of helping to regulate salt and water balance.

It's worth noting that mammals do not have salt glands and must rely on other mechanisms to regulate their salt and water balance, such as through the kidneys and the production of sweat.

Hormone antagonists are substances or drugs that block the action of hormones by binding to their receptors without activating them, thereby preventing the hormones from exerting their effects. They can be classified into two types: receptor antagonists and enzyme inhibitors. Receptor antagonists bind directly to hormone receptors and prevent the hormone from binding, while enzyme inhibitors block the production or breakdown of hormones by inhibiting specific enzymes involved in their metabolism. Hormone antagonists are used in the treatment of various medical conditions, such as cancer, hormonal disorders, and cardiovascular diseases.

Morphogenesis is a term used in developmental biology and refers to the process by which cells give rise to tissues and organs with specific shapes, structures, and patterns during embryonic development. This process involves complex interactions between genes, cells, and the extracellular environment that result in the coordinated movement and differentiation of cells into specialized functional units.

Morphogenesis is a dynamic and highly regulated process that involves several mechanisms, including cell proliferation, death, migration, adhesion, and differentiation. These processes are controlled by genetic programs and signaling pathways that respond to environmental cues and regulate the behavior of individual cells within a developing tissue or organ.

The study of morphogenesis is important for understanding how complex biological structures form during development and how these processes can go awry in disease states such as cancer, birth defects, and degenerative disorders.

Trypsin Inhibitor, Kazal Pancreatic is a type of protein that is produced in the pancreas and functions as an inhibitor to trypsin, which is a proteolytic enzyme involved in digestion. Specifically, this inhibitor belongs to the Kazal-type serine protease inhibitors. It helps regulate the activity of trypsin within the pancreas, preventing premature activation and potential damage to pancreatic tissue. Any imbalance or deficiency in this inhibitor can lead to pancreatic diseases such as pancreatitis.

An exocrine pancreas cell is a pancreatic cell that produces enzymes that are secreted into the small intestine. These enzymes ... Exocrine pancreas cell entry in the public domain NCI Dictionary of Cancer Terms This article incorporates public domain ...
The pancreas contains tissue with an endocrine and exocrine role, and this division is also visible when the pancreas is viewed ... In pancreatitis, enzymes of the exocrine pancreas damage the structure and tissue of the pancreas. Detection of some of these ... Pancreas of a human embryo at end of sixth week The pancreas and its surrounding structures Duodenum and pancreas. Deep ... and is cancer arising from the exocrine digestive part of the pancreas. Most occur in the head of the pancreas. Symptoms tend ...
Pandol, Stephen (2010). "The Exocrine Pancreas". Colloquium Series on Integrated Systems Physiology: From Molecule to Function ... In humans, amylases are secreted by the pancreas and salivary glands, with both sources of the enzyme required for complete ... It is the derivative of trypsinogen, an inactive precursor that is produced in the pancreas. When secreted into the small ...
p. 235 Bowen, R. [1] "Exocrine Secretion of the Pancreas" Pandol SJ. The Exocrine Pancreas. San Rafael (CA): Morgan & Claypool ... that are administered to people with exocrine pancreatic insufficiency. The pancreas's exocrine function owes part of its ... Digestive or exocrine function of pancreas is as significant to the maintenance of health as its endocrine function. Two of the ... Pancreas is both an endocrine and an exocrine gland, in that it functions to produce endocrinic hormones released into the ...
"Telocytes in the Interstitium of Human Exocrine Pancreas: Ultrastructural Evidence". Pancreas. 41 (6): 949-956. doi:10.1097/MPA ... pancreas (exocrine gland); mammary gland; placenta; kidneys; Recent evidence shows the involvement of TC in pathology. TC are ...
"Exocrine Sections of the Pancreas". Colorado State University School of Veterinary Medicine. Archived from the original on 14 ... exocrine portion, which produces enzymes needed for the digestion of food. Acinar cells make up 82% of the total pancreas; ... while letting the pancreas heal on its own. Treatment often involves "resting" the pancreas for a short period of time by which ... Diseases of the Pancreas. In Tams T. (ed): Handbook of Small Animal Gastroenterology, 2nd ed. St. Louis, W. B. Saunders Co, ...
Babic, Tanja; Travagli, R. Alberto (2016-09-23). "Neural Control of the Pancreas". Pancreapedia: The Exocrine Pancreas ... which exert control over the alpha cells in the pancreas. The pancreas is controlled by both the sympathetic nervous system and ... Zinc is secreted at the same time as insulin by the beta cells in the pancreas. It has been proposed to act as a paracrine ... Alpha cells are most commonly found on the dorsal side of the pancreas and are very rarely found on the ventral side of the ...
Bodian M, Sheldon W, Lightwood R (1964). "Congenital hypoplasia of the exocrine pancreas". Acta Paediatr. 53 (3): 282-93. doi: ... Exocrine pancreatic dysfunction: Pancreatic exocrine insufficiency arises due to a lack of acinar cells that produce digestive ... After cystic fibrosis (CF), it is the second most common cause of exocrine pancreatic insufficiency in children. It is ... Pancreatic exocrine insufficiency may be treated through pancreatic enzyme supplementation, while severe skeletal abnormalities ...
The Exocrine Pancreas Knowledge Base. doi:10.3998/panc.2015.8. Vanden Oever, Michael; Twaroski, Kirk; Osborn, Mark J.; Wagner, ... Casanova, Daniel (May 2017). "Pancreas transplantation: 50 years of experience". Cirugía Española (English Edition). 95 (5): ... cardiac pacemaker was invented by Earl Bakken with the help of Walton Lillehei and Richard Varco in 1957 First pancreas-kidney ...
February 2017). "FGF21 Is an Exocrine Pancreas Secretagogue". Cell Metabolism. 25 (2): 472-480. doi:10.1016/j.cmet.2016.12.004 ... In the pancreas, FGF21 favors the formation of pancreatic juice through a β-klotho dependent mechanism. Whether an ... In mice, FGF21 has been shown to protect against high fat diet-induced inflammation and islet hyperplasia in the pancreas, a ... For example, expression of FGF21 is selectively increased in the liver by fasting, by overfeeding in the pancreas, by exercise ...
They modulate bile secretion, exocrine pancreas secretion, and satiety. Stomach enteroendocrine cells, which release gastrin, ... Enteroendocrine cells are located in the stomach, in the intestine and in the pancreas. Microbiota play key roles in the ... Enteroendocrine cells are specialized cells of the gastrointestinal tract and pancreas with endocrine function. They produce ... Kiba T (August 2004). "Relationships between the autonomic nervous system and the pancreas including regulation of regeneration ...
"Pancreas - Exocrine tumors / carcinomas - Intraductal papillary mucinous neoplasm (IPMN)". Pathology Outlines. Topic Completed ... removal of the body and tail of the pancreas (a distal pancreatectomy), or rarely removal of the entire pancreas (a total ... "Characteristic Clinicopathological Features of the Types of Intraductal Papillary-Mucinous Neoplasms of the Pancreas". Pancreas ... 2011). "Diffusion-weighted MR imaging of solid and cystic lesions of the pancreas". Radiographics. 31 (3): E47-64. doi:10.1148/ ...
... s are spindle-shaped cells in the exocrine pancreas. They represent an extension of the intercalated duct into ... and Pancreas: pancreas, centroacinar cells" UIUC Histology Subject 870 Portal: Anatomy v t e (Wikipedia articles incorporating ... Anatomy Atlases - Microscopic Anatomy, plate 10.213 - "Pancreas" Histology image: 10406loa - Histology Learning System at ...
Sjostrand FS, Hanzon V (November 1954). "Ultrastructure of Golgi apparatus of exocrine cells of mouse pancreas". Exp Cell Res. ...
The liver and pancreas are both exocrine and endocrine glands; they are exocrine glands because they secrete products-bile and ... Exocrine glands are glands that secrete substances on to an epithelial surface by way of a duct. Examples of exocrine glands ... Exocrine sweat glands are part of the integumentary system; they have eccrine and apocrine types. Exocrine glands contain a ... Exocrine glands are one of two types of glands in the human body, the other being endocrine glands, which secrete their ...
Hegyi, P; Petersen, OH (2013). "The exocrine pancreas: the acinar-ductal tango in physiology and pathophysiology". Reviews of ... 2017). β Cells Persist in T1D Pancreata Without Evidence of Ongoing β-Cell Turnover or Neogenesis. The Journal of clinical ... Research has shown that beta cells can be differentiated from human pancreas progenitor cells. These differentiated beta cells ... "A Single-Cell Transcriptome Atlas of the Human Pancreas". Cell Systems. 3 (4): 385-394.e3. doi:10.1016/j.cels.2016.09.002. ISSN ...
"A potential endogenous ligand of annexin IV in the exocrine pancreas. Carbohydrate structure of GP-2, a ...
The pancreas is a mixture of highly differentiated exocrine and endocrine cells. Primary cilia are present in exocrine cells ... Disruption of IFT results in both exocrine and endocrine abnormalities in the pancreas of Tg737orpk mutant mice. Lab Invest 85 ... Hegyi, P; Petersen, OH (2013). "The exocrine pancreas: the acinar-ductal tango in physiology and pathophysiology". Reviews of ...
The pancreas has both an endocrine and a digestive exocrine function. As an endocrine gland, it functions mostly to regulate ... Pancreas - is an organ of the digestive system and endocrine system of vertebrates. In humans, it is located in the abdomen ... As a part of the digestive system, it functions as an exocrine gland secreting pancreatic juice into the duodenum through the ... Salivary gland - The salivary glands in mammals are exocrine glands that produce saliva through a system of ducts. Humans have ...
Some small clusters may also be found surrounded by exocrine pancreas. They tend to be located in the duodenal part of the ... The pancreas serves multiple roles within mammalian organisms. It plays a role in the digestive system and the endocrine system ... PP cells show the highest concentration at the head of the pancreas. PP cells play an important role when it comes to the ... Given that PP cells reside in the pancreas and serve both the digestive and endocrine systems, the roles it can play within a ...
Mally MI, Cirulli V, Hayek A, Otonkoski T (Sep 1996). "ICA69 is expressed equally in the human endocrine and exocrine pancreas ... is preferentially expressed in the human islets of Langerhans than exocrine pancreas". Diabetologia. 40 (1): 120-2. PMID ...
In the pancreas the role of dopamine is somewhat complex. The pancreas consists of two parts, an exocrine and an endocrine ... The exocrine part synthesizes and secretes digestive enzymes and other substances, including dopamine, into the small intestine ... The peripheral systems in which dopamine plays an important role include the immune system, the kidneys and the pancreas. In ... in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects ...
Therefore, its concentration in feces reflects exocrine pancreatic function. During an inflammation of the pancreas, E1 is ... However it was later discovered that it was the only chymotrypsin-like elastase that was not expressed in the pancreas. In fact ... Pancreatic elastase is a form of elastase that is produced in the acinar cells of the pancreas, initially produced as an ... Clinical literature that describes human elastase 1 activity in the pancreas or fecal material is actually referring to ...
This gene encodes a protein that is secreted by the exocrine pancreas. It is associated with islet cell regeneration and ... de la Monte SM, Ozturk M, Wands JR (1990). "Enhanced expression of an exocrine pancreatic protein in Alzheimer's disease and ... "A gene homologous to the reg gene is expressed in the human pancreas". FEBS Lett. 327 (3): 289-93. doi:10.1016/0014-5793(93) ...
Freedman SD, Sakamoto K, Scheele GA (1994). "Nonparallel secretion of GP-2 from exocrine pancreas implies luminal coupling ... 2003). "A potential endogenous ligand of annexin IV in the exocrine pancreas. Carbohydrate structure of GP-2, a ... the major membrane protein in the secretory granule of the exocrine pancreas". Gene. 171 (2): 311-2. doi:10.1016/0378-1119(96) ... 1994). "Incorporation of the pancreatic membrane protein GP-2 into secretory granules in exocrine but not endocrine cells". J. ...
"Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes". Cell. 53 (4): 549-554. doi:10.1016/0092-8674(88) ...
Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M (May 1988). "Most human carcinomas of the exocrine pancreas ... ductal carcinoma of the pancreas and colorectal cancer. Several germline KRAS mutations have been found to be associated with ... imbalance is associated with worse prognosis in pancreatic cancer and progression to undifferentiated carcinoma of the pancreas ...
It is responsible for 1% to 4% of exocrine forms of pancreas cancer. Light microscopy shows a combination of gland-like cells ... Mahendraraj K, Di Como JA, Chamberlain RS (October 2014). "Adenosquamous carcinoma of the pancreas: a population based clinical ... February 2010). "Adenosquamous carcinoma of the pancreas: a case report". Cases Journal. 3 (1): 41. doi:10.1186/1757-1626-3-41 ...
... of the pancreatic islets of the pancreas. These are found predominantly in the head of the pancreas.[citation needed] ... Pancreatic polypeptide regulates pancreatic secretion activities by both endocrine and exocrine tissues. It also affects ... Pancreatic polypeptide (PP) is a polypeptide secreted by PP cells in the endocrine pancreas. It regulates pancreatic secretion ... and by gastrinoma Polypeptide-p Pancreas List of human cell types derived from the germ layers Boel E, Schwartz TW, Norris KE, ...
... is a duct joining the pancreas to the common bile duct. This supplies it with pancreatic juice from the exocrine pancreas, ... Pancreas of a human embryo of five weeks. Pancreas of a human embryo at end of sixth week. Pancreatic duct Deep dissection. ...
An exocrine pancreas cell is a pancreatic cell that produces enzymes that are secreted into the small intestine. These enzymes ... Exocrine pancreas cell entry in the public domain NCI Dictionary of Cancer Terms This article incorporates public domain ...
If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Centers RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.. ...
Return to Article Details Mixed Exocrine-Endocrine Tumors of the Pancreas ...
DNA synthesis in exocrine and endocrine pancreas after partial hepatectomy in Syrian golden hamsters. ... Dive into the research topics of DNA synthesis in exocrine and endocrine pancreas after partial hepatectomy in Syrian golden ...
Exocrine" by people in this website by year, and whether "Pancreas, Exocrine" was a major or minor topic of these publications ... "Pancreas, Exocrine" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH (Medical ... Secretion from the exocrine pancreas drains into the pancreatic ductal system and empties into the DUODENUM. ... Below are the most recent publications written about "Pancreas, Exocrine" by people in Profiles. ...
The exocrine pancreas secretes a major digestive fluid called pancreatic juice, The liver is the largest organ of the body ... The pancreas. The exocrine pancreas secretes a major digestive fluid called pancreatic juice. This juice is secreted into the ... The Exocrine Pancreas, Liver And Gallbladder pediagenosis July 17, 2018 Abdomen , AnatomyPhysiology Comment ... Pancreatic juice is made up of a number of enzymes, secreted by the acinar cells of the pancreas, which break down the major ...
Liver, biliary system and exocrine pancreas. Published on 19/03/2015 by admin ... tumours-notably carcinoma of the head of the pancreas compressing the common bile duct. ...
Structure of Islets and Vascular Relationship to the Exocrine Pancreas.. Pancreapedia: Exocrine Pancreas Knowledge Base, DOI: ... the exocrine and endocrine pancreas. The endocrine pancreas is organized into islets of Langerhans, consisting of five cell ... and led to studies of the pancreas as an exocrine gland. Reignier de DeGraaf (1641-1673) showed that the pancreas was ... The structure of the exocrine and endocrine pancreas has been extensively studied due the clinical importance of pancreas- ...
Repository is powered by EPrints 3 which is developed by the School of Electronics and Computer Science at the University of Southampton. More information and software credits ...
Symptoms of Exocrine Pancreatic Insufficiency. Exocrine pancreatic insufficiency is most often caused by inactivity of ... There are varying symptoms of pancreas problems in dogs that can be indicative of multiple ailments. The pancreas provides ... Laboratory blood tests can show elevated amylase or lipase levels and an abdominal ultrasound may show an enlarged pancreas in ... Effective treatment requires administration of intravenous fluids to allow the pancreas to rest. The dog may need to be treated ...
Exocrine glandular cells are the major cell type in the pancreas. These cells secrete digestive enzymes and NaHCO3 into ducts ... PLA2G1B - pancreas PLA2G1B - pancreas #sc_barchartPLA2G1B16 .tick {display:none}. PLA2G1B - pancreas CPA1 - pancreas CPA1 - ... Exocrine glandular cells. As shown in Table 1, 199 genes are elevated in exocrine glandular cells compared to other cell types ... Examples of exocrine glandular cell specific genes are phospholipase A2 precursor (PLA2G1B), a Ca2+ dependent phospholipase and ...
... whereas T2D pancreata had greater lobular and parenchymal fibrosis. Thus, the exocrine pancreas undergoes distinct changes as ... Exocrine pancreas in type 1 and type 2 diabetes: different patterns of fibrosis, metaplasia, angiopathy, and adiposity. ... The endocrine and exocrine compartments of the pancreas are spatially related but functionally distinct. Multiple diseases ... To better understand how the exocrine pancreas changes with age, obesity, and diabetes, we performed systematic analysis of ...
Exocrine Pancreas. Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, et al, eds. AJCC Cancer Staging Manual. Eighth Ed. New ... Tumor limited to the pancreas, ,2 cm and ≤4 cm in greatest dimension ... Tumor limited to the pancreas, ,2 cm and ≤4 cm in greatest dimension ... Pancreas Club, Sigma Xi, The Scientific Research Honor Society, Society for Leukocyte Biology, Society for Surgery of the ...
Pancreas (Exocrine). Current Version. PDF (v4.2.0.2). Word (v4.2.0.2). November 2021. Previous Version. 2021 (v4.2.0.1). 2021 ( ... Pancreas (Endocrine). Current Version. PDF (v4.1.0.0). Word (v4.1.0.0). June 2021. Previous Version. 2020 (v4.0.0.2). ...
Jose Serrano, M.D., Ph.D. Gastrointestinal Neuroendocrinology; Exocrine Pancreas; Pancreatitis; Drug Induced Liver Injury; ... Pancreatitis is a syndrome that is characterized by pain associated with inflammation and damage to the pancreas. Relapsing or ... within the pancreas directly or indirectly; the determination of the role of diet, including fat and protein, in the modulation ... and inflammatory leukocytes in the initiation and progression of inflammation of the pancreas; the characterization of the ...
Exocrine portion of pancreas had ceased to function. I have been taking Now Pancreatin for about 10 years. I take a capsule ... When I had my last test where the doctor looks at the pancreas from the inside and does a biopsy, it didnt have any scar tissue ... as it helps their pancreas to work better. ...
Heart Failure and Pancreas Exocrine Insufficiency: Pathophysiological Mechanisms and Clini Heart Failure and Pancreas Exocrine ... In addition, pancreatic exocrine insufficiency may lead to further deterioration of cardiovascular disease and heart failure, ... We will show that heart failure causes significant impairment of pancreatic exocrine function, particularly in the elderly, ... This dysfunction has been investigated extensively for many organs, but data regarding pancreatic (exocrine) dysfunction are ...
Diseases of the exocrine pancreas: acute and chronic pancreatitis.. Tumors of the exocrine pancreas. Classification, cystic ... pancreas, kidney, urinary tract, male and female reproductive systems, breast, endocrine system, central and peripheral nervous ...
... opposite to the right location of the pancreas, and in place of the liver. We believe, however, that it is the pancreas and not ... exocrine; en, endocrine; rpl, retinal pigmented epithelial layer; pcl, photoreceptor cell layer; ipl, inner plexiform layer; ... 3N). In contrast, no cav1.3b message was detected in HCs, CNS, pancreas, or heart at all stages examined (Fig. 3K,L and data ... N, A cav1.3a-specific band is detected by RT-PCRs of total RNA from adult brain, ear, eye, pancreas, heart (low levels), and ...
To the pancreas. The autonomic nervous system controls the secretion of insulin and glucagon in the pancreas. Sympathetic and ... Pancreatic polypeptide regulates gastric motility, pancreatic exocrine secretion and food intake. Systemic administration of ... Satin LS, Kinard TA . Neurotransmitters and their receptors in the islets of Langerhans of the pancreas. Endocrine 1998; 8: 213 ... Thorens B . Central control of glucose homeostasis: the brain-endocrine pancreas axis. Diabetes Metab 2010; 36: S45-S49. ...
Age-and sex-specific prevalence of diabetes associated with diseases of the exocrine pancreas: a population based study. Dig ... 3D illustration of human body organs (pancreas). Istock 916163392 10/1/2020 By: Val Williams Share this page. Social Media ... Pancreas. 2014;43(4):630-637.. *Frey CF, Zhou H, Harvey DJ, et al. The incidence and case-fatality rates of acute biliary, ... Pancreas. 2011;40(2):289-294.. *Kumar S, Ooi CY, Werlin S, et al. Risk factors associated with Pediatric acute recurrent and ...
The pancreas is located on the left side of the abdomen, above the intestines and behind the stomach. It is made up of exocrine ... Exocrine tissue produces digestive juices (or enzymes) to help digest food. Endocrine tissue produces hormones such as insulin ... Pancreas and Liver Institute Pancreatic Cancer Program Parkinsons Disease and Movement Disorders Center Pathology Pelvic Floor ...
Exocrine pancreatic insufficiency (EPI) symptoms are stressful, and stress can make your condition worse. Find out how to cut ... How Stress Affects Exocrine Pancreatic Insufficiency (EPI). You know with EPI, your pancreas isnt making enough digestive ... The National Pancreas Foundation, patient information: "Exocrine Pancreatic Insufficiency," "Financial Assistance.". Journal of ... Exocrine pancreatic insufficiency (EPI) shouldnt keep you from eating out, so long as you plan ahead, eat right, and bring ...
... is usually based on where the cancer is located in the pancreas and whether the tumor can be ... Exocrine Pancreatic Insufficiency (EPI). A healthy pancreas secretes enzymes that help with digestion. When a person has ... They affect the hormone-producing cells in the pancreas and tend to grow more slowly than exocrine tumors. ... a surgery for cancer in the head of the pancreas) in which parts of the pancreas, gall bladder, bile duct and small bowel are ...
The pancreas is primarily made up of two different tissues with separate functions: the exocrine pancreas, which secretes ... a disease characterized by abnormal growth of cells in the pancreas, a 15-cm- (6-inch-) long gland located behind the stomach. ... The pancreas is primarily made up of two different tissues with separate functions: the exocrine pancreas, which secretes ... Ninety-five percent of pancreatic cancers develop from the exocrine pancreas. The remaining 5 percent are often called ...
... with a clinical history of solid pseudopapillary tumor of the pancreas, predating her pregnancy. The patient had undergone ... Solid pseudopapillary tumor of the pancreas is a rare tumor seen in predominately young women and carries a low malignant ... Solid pseudopapillary tumor of the pancreas is a rare neoplasm of the pancreas, predominately affecting the exocrine function ... It predominately affects the exocrine function of the pancreas. The origins of the tumor remain unknown, and there are no ...
dorsal pancreas +. 0. exocrine pancreas +. 0. pericardial muscle. 0. skeletal muscle of trunk +. 0. ...
A lack of digestive enzymes causes exocrine pancreatic insufficiency (EPI). People with pancreatitis and cystic fibrosis are ... What causes exocrine pancreatic insufficiency (EPI)?. The pancreas is part of your digestive system. It makes enzymes that aid ... Exocrine Pancreatic Insufficiency (EPI). Pancreatitis, cystic fibrosis and other conditions that affect the pancreas cause ... What is exocrine pancreatic insufficiency (EPI)?. EPI occurs when your pancreas doesnt make enough digestive enzymes. ...
  • Exocrine pancreatic insufficiency is most often caused by inactivity of pancreatic acinar cells that produce enzymes to aid in digestion and absorption of nutrients. (vetinfo.com)
  • Relapsing or chronic pancreatitis can lead to exocrine and endocrine pancreatic insufficiency. (nih.gov)
  • Heart Failure and Pancreas Exocrine Insufficiency: Pathophysiological Mechanisms and Clinical Point of View. (bvsalud.org)
  • In addition, pancreatic exocrine insufficiency may lead to further deterioration of cardiovascular disease and heart failure , thus constituting a true vicious circle. (bvsalud.org)
  • People may tell you not to let your exocrine pancreatic insufficiency (EPI) get the best of you - and not to stress. (webmd.com)
  • Pancreatitis, cystic fibrosis and other conditions that affect the pancreas cause exocrine pancreatic insufficiency (EPI). (clevelandclinic.org)
  • What causes exocrine pancreatic insufficiency (EPI)? (clevelandclinic.org)
  • What causes exocrine pancreatic insufficiency (EPI) in adults? (clevelandclinic.org)
  • What are the symptoms of exocrine pancreatic insufficiency (EPI)? (clevelandclinic.org)
  • How is exocrine pancreatic insufficiency (EPI) diagnosed? (clevelandclinic.org)
  • What are the complications of exocrine pancreatic insufficiency (EPI)? (clevelandclinic.org)
  • How is exocrine pancreatic insufficiency (EPI) managed or treated? (clevelandclinic.org)
  • This is called exocrine pancreatic insufficiency. (medlineplus.gov)
  • A stool elastase test is used check for exocrine pancreatic insufficiency (EPI) when a person has belly pain and other digestive symptoms that don't have a known cause. (medlineplus.gov)
  • You or your child may need a stool elastase test if you have certain digestive problems and a health care provider thinks exocrine pancreatic insufficiency (EPI) could be the cause. (medlineplus.gov)
  • A normal amount of elastase means that you may not have exocrine pancreatic insufficiency (EPI). (medlineplus.gov)
  • While dietary changes and enzyme replacement therapy are the basic treatments for exocrine pancreatic insufficiency, you may be able to do more. (everydayhealth.com)
  • Exocrine pancreatic insufficiency ( EPI ) is a condition in which the pancreas doesn't produce enough digestive enzymes. (everydayhealth.com)
  • Do You Have Exocrine Pancreatic Insufficiency or Something Else? (everydayhealth.com)
  • The pancreatic duct discovery was a milestone in pancreatic history because it made Galen's theory obsolete, and led to studies of the pancreas as an exocrine gland. (pancreapedia.org)
  • 1 Located behind the stomach, the pancreas is a long, flat gland that secretes digestive enzymes into the small intestine and releases insulin to regulate blood glucose levels. (health.mil)
  • The pancreas is a gland located behind the stomach in the upper left abdomen. (cancercare.org)
  • pancreatic cancer , a disease characterized by abnormal growth of cells in the pancreas , a 15-cm- (6-inch-) long gland located behind the stomach . (britannica.com)
  • The exocrine gland secretes digestive enzymes. (barnesjewish.org)
  • The enzymes secreted by the exocrine gland in the pancreas help break down carbohydrates, fats, and proteins. (barnesjewish.org)
  • The main hormones secreted by the endocrine gland in the pancreas are insulin and glucagon. (barnesjewish.org)
  • Your pancreas is a gland that sits behind your stomach. (medlineplus.gov)
  • The pancreas is a gland that rests behind the stomach and in front of the spine. (hopkinsmedicine.org)
  • It's an endocrine AND exocrine gland! (iheartguts.com)
  • Your pancreas produces hormones (endocrine gland, meaning stuff that goes into your blood) that go into the bloodstream that help turn food into energy. (iheartguts.com)
  • The pancreas also makes fluids that go directly into your digestive system (exocrine gland, meaning stuff that squirts directly into the body) to help break down food. (iheartguts.com)
  • In diagnostics, sophisticated imaging methods are in the forefront, and less frequent is the use of tests that assess the exocrine function of the gland. (muni.cz)
  • The structure of the exocrine and endocrine pancreas has been extensively studied due the clinical importance of pancreas-specific diseases such as diabetes, pancreatic cancer and pancreatitis. (pancreapedia.org)
  • Pancreatitis is an inflammation and swelling of the pancreas. (vetinfo.com)
  • Laboratory blood tests can show elevated amylase or lipase levels and an abdominal ultrasound may show an enlarged pancreas in cases of pancreatitis. (vetinfo.com)
  • Pancreatic abscesses, collections of pus near the pancreas, may occur secondary to pancreatitis resulting in continuation of pancreatitis symptoms after treatment. (vetinfo.com)
  • Pancreatitis is a syndrome that is characterized by pain associated with inflammation and damage to the pancreas. (nih.gov)
  • Pancreatitis is an inflammatory disease of the pancreas resulting from the premature activation of digestive enzymes within the pancreas. (health.mil)
  • Pancreatitis is an inflammatory disease of the pancreas that causes significant morbidity and mortality worldwide. (health.mil)
  • 2 Pancreatitis results from the premature activation of digestive enzymes within the pancreas that leads to organ injury with or without subsequent destruction of the pancreatic acinar cell clusters. (health.mil)
  • The main cause of EPI in adults is chronic pancreatitis, which triggers inflammation and swelling of the pancreas and can damage the cells that make digestive enzymes. (webmd.com)
  • A stool elastase test is also used to monitor how well the pancreas is working in people who have cystic fibrosis, diabetes, or chronic pancreatitis. (medlineplus.gov)
  • Drinking heavily can cause or contribute to chronic pancreatitis , an inflammation of the pancreas that doesn't heal or improve. (everydayhealth.com)
  • Pancreatitis can affect both the exocrine and endocrine functions of the pancreas. (msdmanuals.com)
  • Solid pseudopapillary tumor of the pancreas is a rare tumor seen in predominately young women and carries a low malignant potential. (hindawi.com)
  • We discuss a patient, who presented to our high risk clinic, with a clinical history of solid pseudopapillary tumor of the pancreas, predating her pregnancy. (hindawi.com)
  • Solid pseudopapillary tumor of the pancreas is considered a rare neoplasm, which predominately affects young African American women [ 1 ]. (hindawi.com)
  • She was treated two years earlier for a solid pseudopapillary tumor of the pancreas. (hindawi.com)
  • Solid pseudopapillary tumor of the pancreas is a rare neoplasm of the pancreas, predominately affecting the exocrine function of the pancreas. (hindawi.com)
  • The pancreas is a retroperitoneal organ with its function being dictated by the possession of two morphologically distinct tissues, the exocrine and endocrine pancreas. (pancreapedia.org)
  • The brain integrates metabolic signals from peripheral tissues such as the liver, pancreas, adipose tissue, gut and muscle. (nature.com)
  • The pancreas is primarily made up of two different tissues with separate functions: the exocrine pancreas, which secretes enzymes into the digestive tract , aiding the breakdown of fats and proteins, and the endocrine pancreas, which secretes glucagon and insulin into the bloodstream in order to control blood sugar levels. (britannica.com)
  • Pancreatic islets are highly vascularized micro-organs with a capillary network that is five to ten times denser than that of the exocrine pancreas ( Figure 1 ) (10). (pancreapedia.org)
  • The pancreatic islets or islets of Langerhans are the regions of the pancreas that contain its endocrine (hormone-producing) cells, discovered in 1869 by German pathological anatomist Paul Langerhans . (wikipedia.org)
  • [1] The pancreatic islets constitute 1-2% of the pancreas volume and receive 10-15% of its blood flow. (wikipedia.org)
  • [2] [3] The pancreatic islets are arranged in density routes throughout the human pancreas, and are important in the metabolism of glucose . (wikipedia.org)
  • There are about 1 million islets distributed throughout the pancreas of a healthy adult human, each of which measures an average of about 0.2 mm in diameter. (wikipedia.org)
  • Because the beta cells in the pancreatic islets are selectively destroyed by an autoimmune process in type 1 diabetes , clinicians and researchers are actively pursuing islet transplantation as a means of restoring physiological beta cell function, which would offer an alternative to a complete pancreas transplant or artificial pancreas . (wikipedia.org)
  • The peri-islet membrane, which encapsulates the islets, separates the endocrine cells from the exocrine pancreas and serves as a barrier from immune cell infiltration to the islets. (nature.com)
  • The hormone-producing cells of the pancreas cluster together in small groups, called islets, throughout the pancreas. (hopkinsmedicine.org)
  • Also the pancreas has a ton of really fun nooks and crannies with colorful ye olde names like the Duct of Wirsung and the Islets of Langerhans, named after a bunch of dead anatomists. (iheartguts.com)
  • More striking, the pancreas in these mice appeared relatively normal, with well-demarcated islets, suggesting that Pax4 misexpression was inducing an orderly and spatially correct program of cellular conversion that probably recapitulated the normal cellular differentiation process. (medscape.com)
  • In the present review we will discuss the available data on the mechanisms of pancreatic damage, how heart failure can lead to exocrine dysfunction, and its clinical consequences. (bvsalud.org)
  • The pancreas provides digestive enzymes manufactured by the acinar cells and insulin for sugar metabolism produced by the iselet cells. (vetinfo.com)
  • A portion of the pancreas is left in place to produce digestive enzymes and make insulin. (cancercare.org)
  • And if we can geek out a bit more, here is how one of the pancreas' most famous hormones -- insulin -- works inside your body to help you transform lunch into energy. (iheartguts.com)
  • Insulin from your pancreas - or shot if you're diabetic - unlocks body cells so they can accept a special delivery of sugar (aka glucose). (iheartguts.com)
  • The purpose of pancreas transplantation is to ameliorate insulin-dependent type 1 diabetes and produce complete independence from injected insulin. (medscape.com)
  • More than 95 percent of pancreatic cancers (tumors) form in the gland's exocrine cells, usually in the ducts. (cancercare.org)
  • Ninety-five percent of pancreatic cancers develop from the exocrine pancreas. (britannica.com)
  • You know with EPI, your pancreas isn't making enough digestive enzymes, so foods are passing through your intestines in a more whole or undigested state. (webmd.com)
  • EPI occurs when your pancreas doesn't make enough digestive enzymes. (clevelandclinic.org)
  • In rare instances, patients may require a total pancreatectomy (removal of the entire pancreas, part of the stomach and small intestine, the bile duct, gallbladder, spleen and nearby lymph nodes). (cancercare.org)
  • They affect the hormone-producing cells in the pancreas and tend to grow more slowly than exocrine tumors. (cancercare.org)
  • A pancreatic neuroendocrine tumor (NET) is a type of cancer that forms tumors in the pancreas. (hopkinsmedicine.org)
  • This disorder causes tumors within the pancreas that are usually benign, but sometimes become malignant. (hopkinsmedicine.org)
  • Surgery may be an option for people whose tumor is located in the "head" of the pancreas, or in the regions adjacent to the head such as the "body" or "tail" of the pancreas, as long as the cancer has not spread beyond those areas. (cancercare.org)
  • About 10 to 15 percent of people diagnosed with pancreatic cancer will be candidates for a Whipple procedure (a surgery for cancer in the head of the pancreas) in which parts of the pancreas, gall bladder, bile duct and small bowel are removed. (cancercare.org)
  • The body of the pancreas is tapered on the left side and extends slightly upward. (barnesjewish.org)
  • Approximately 75% of all pancreatic carcinomas occur within the head or neck of the pancreas, 15-20% occur in the body of the pancreas, and 5-10% occur in the tail. (medscape.com)
  • Over time, the inflammation can lead to damage to the pancreas that can't be fixed. (webmd.com)
  • CT scan of the abdomen revealed a calcified cystic mass located in the distal portion of the pancreas. (hindawi.com)
  • It is indicated for metastatic adenocarcinoma of the pancreas as first-line treatment in combination with gemcitabine. (medscape.com)
  • Irinotecan liposomal is used in combination with fluorouracil and leucovorin for metastatic adenocarcinoma of the pancreas after disease progression following gemcitabine-based therapy. (medscape.com)
  • Gross section of an adenocarcinoma of the pancreas measuring 5 × 6 cm resected from the pancreatic body and tail. (medscape.com)
  • Gross section of an adenocarcinoma of the pancreas measuring 5 X 6 cm resected from the pancreatic body and tail. (medscape.com)
  • The major component (about 80%) of the PANCREAS composed of acinar functional units of tubular and spherical cells. (wakehealth.edu)
  • The exocrine pancreas, which is composed of acinar and ductal epithelial cells, accounts for nearly 98% of the adult pancreatic mass (12). (pancreapedia.org)
  • Pancreatic juice is made up of a number of enzymes , secreted by the acinar cells of the pancreas, which break down the major constituents in the diet. (pediagenosis.com)
  • The hormone cholecystokinin ( CCK ), released into the bloodstream by the duodenal cells in response to the presence of amino acids and fatty acids in the chyme, is responsible for the secretion of the pancreatic enzymes from the acinar cells of the pancreas. (pediagenosis.com)
  • Pancreatic cells secrete bicarbonate and digestive enzymes into ducts that connect the pancreas to the duodenum at the ampulla of Vater (exocrine function). (msdmanuals.com)
  • Intensity-modulated radiation therapy (IMRT) is a form of external beam radiation that allows a higher dose of radiation to be directed to the tumor, while minimizing the amount of radiation received by healthy tissue near the pancreas. (cancercare.org)
  • In addition to its rarity, pseudopapillary tumor of the pancreas is additionally associated with a relatively low malignant potential [ 2 ]. (hindawi.com)
  • Pathology slide showing hyalinized core, typical of pseudopapillary tumor of the pancreas. (hindawi.com)
  • A number of advanced scanning techniques can also be used to look for the tumor within the pancreas. (hopkinsmedicine.org)
  • SPPT) is a rare exocrine pancreatic neoplasm, tumor' of the pancreas.4 not conflict of interests. (bvsalud.org)
  • An exocrine pancreas cell is a pancreatic cell that produces enzymes that are secreted into the small intestine. (wikipedia.org)
  • Mucus also collects in the pancreas, which keeps digestive enzymes from reaching the small intestine. (clevelandclinic.org)
  • Your pancreas releases elastase into your small intestine through a duct (a small tube). (medlineplus.gov)
  • The pancreas sits deep in the abdomen and is in close proximity to many important structures such as the small intestine (the duodenum) and the bile ducts, as well as important blood vessels and nerves. (medicinenet.com)
  • The pancreas is located on the left side of the abdomen, above the intestines and behind the stomach. (bidmc.org)
  • Emotional stress also keeps the stomach and pancreas from releasing enzymes the way they should. (webmd.com)
  • The pancreas is an elongated, tapered organ located across the back of the belly, behind the stomach. (barnesjewish.org)
  • The exocrine tissue also secretes a bicarbonate to neutralize stomach acid in the duodenum. (barnesjewish.org)
  • This picture of the pancreas shows its location in the back of the abdomen, behind the stomach. (medicinenet.com)
  • Secretion from the exocrine pancreas drains into the pancreatic ductal system and empties into the DUODENUM. (wakehealth.edu)
  • Compared to age- and sex-matched ND organs, T1D pancreata had greater acinar atrophy and angiopathy with fewer intralobular adipocytes. (figshare.com)
  • T2D pancreata had greater ADM, angiopathy, and total T lymphocytes, but no difference in adipocyte number, compared to ND organs. (figshare.com)
  • This dysfunction has been investigated extensively for many organs, but data regarding pancreatic (exocrine) dysfunction are scarce. (bvsalud.org)
  • 3D illustration of human body organs (pancreas). (health.mil)
  • This inherited disease causes mucus to build up in pancreas, lungs, and other organs. (medlineplus.gov)
  • This focus on mouse is due to difficulty in procuring human pancreas. (pancreapedia.org)
  • the recent approval by the US Food and Drug Administration (FDA) of the first "artificial pancreas" [ 1 ] provides promise that closed-loop mechanical systems may enable tight glycemic control with minimal patient intervention. (medscape.com)
  • With SDS, the part of the pancreas that makes enzymes doesn't work properly. (clevelandclinic.org)
  • The exocrine pancreas makes enzymes that enter the intestines and help us digest food. (hopkinsmedicine.org)
  • Other structures within the pancreas that appear highly vascularized are the pancreatic ducts which are enveloped by a dense network of vessels that are much denser than in the surrounding acinar tissue ( Figure 1 ) (10). (pancreapedia.org)
  • To better understand how the exocrine pancreas changes with age, obesity, and diabetes, we performed systematic analysis of well-preserved tissue sections from the pancreatic head, body, and tail of organ donors with T1D (n = 20), type 2 diabetes (T2D, n = 25), and donors with no diabetes (ND, n = 74). (figshare.com)
  • When I had my last test where the doctor looks at the pancreas from the inside and does a biopsy, it didnt have any scar tissue. (allstarhealth.com)
  • It is made up of exocrine and endocrine tissue. (bidmc.org)
  • Exocrine tissue produces digestive juices (or enzymes) to help digest food. (bidmc.org)
  • :928 Each islet is separated from the surrounding pancreatic tissue by a thin fibrous connective tissue capsule which is continuous with the fibrous connective tissue that is interwoven throughout the rest of the pancreas. (wikipedia.org)
  • It is up to 15 times more than in exocrine tissue of the pancreas. (wikipedia.org)
  • Elastase is one of a few digestive enzymes ("digestive juices") that your pancreas makes to help digest food. (medlineplus.gov)
  • If little or no elastase is found in your stool, it can mean that your pancreas can't make and/or release enough elastase and other digestive juices. (medlineplus.gov)
  • The tests are done to check whether your pancreas is making enough digestive juices. (medlineplus.gov)
  • Exocrine portion of pancreas had ceased to function. (allstarhealth.com)
  • We will show that heart failure causes significant impairment of pancreatic exocrine function, particularly in the elderly , which may exacerbate the clinical syndrome of heart failure . (bvsalud.org)
  • It predominately affects the exocrine function of the pancreas. (hindawi.com)
  • Secretin pancreatic function test to test how the pancreas responds to secretin, a hormone that triggers the release of digestive enzymes. (clevelandclinic.org)
  • second, it makes and secretes into the intestine digestive enzymes which help break down dietary proteins, fats , and carbohydrates (an exocrine function). (medicinenet.com)
  • Good hydration buffers the pancreas and helps it function more properly," Dr. Glessing says. (everydayhealth.com)
  • The remaining 10% of cases are performed as pancreas transplantation alone in patients who have normal renal function, but with very labile and problematic diabetes, such as patients with life-threatening hypoglycemic unawareness. (medscape.com)
  • For example, we have applied light-activatable cMOs to interrogate transcription factor function during zebrafish notochord, pancreas, and vascular patterning. (cdc.gov)
  • is characterized by histologic changes that are irreversible and progressive and that result in considerable loss of exocrine and endocrine pancreatic function. (msdmanuals.com)
  • The endocrine pancreas makes certain hormones that are released into the blood. (hopkinsmedicine.org)
  • Pathology confirmed the lesion to be solid pseudopapillary neoplasm of the pancreas with clear margins (Figures 3 and 4 ). (hindawi.com)
  • Endocrinology: historical increased secretion from the pancreas. (who.int)
  • Cells in the pancreas make enzymes to help the body digest food. (cancercare.org)
  • Still missing from these approaches is any attempt to induce regeneration or replication of endogenous beta cells in the pancreas, an approach that would be physiologically desirable. (medscape.com)
  • A 2008 study by Zhou and colleagues [ 6 ] provided early insight into how endogenous cells in the pancreas could be coaxed into becoming beta cells. (medscape.com)
  • This team showed that injection of just three genes- Neurog3, Mafa, and Pdx1 -into the pancreatic parenchyma of mice leads to conversion of exocrine cells to functional beta cells, a process popularly known as "reprogramming. (medscape.com)
  • For a deeper understanding of your pancreas, crack open that anatomy textbook and take a deeper dive into this amazing organ. (iheartguts.com)
  • Gross surgical specimen showing the distal pancreas and the spleen. (hindawi.com)
  • Nutrient restriction decreased ( P ⩽0.001) maternal pancreatic mass (g) and α -amylase activity (U/g, kU/pancreas, U/kg BW). (cambridge.org)
  • Ewes supplemented with melatonin had increased pancreatic mass ( P =0.03) and α -amylase content (kU/pancreas and U/kg BW). (cambridge.org)
  • In summary, the maternal pancreas responded to nutrient restriction by decreasing pancreatic weight and activity of digestive enzymes while melatonin supplementation increased α -amylase content. (cambridge.org)
  • About 100 transplant centers in the United States perform pancreas transplantations. (medscape.com)
  • However, the percentage of pancreas transplants performed as part of a multi-organ transplant has increased since 2004. (medscape.com)
  • The most common multi-organ transplant was kidney-pancreas transplant. (medscape.com)
  • EPI is caused by conditions that damage the pancreas or block the ducts that let elastase flow into the intestine. (medlineplus.gov)
  • Enzymes leave the pancreas via a system of tubes called 'ducts' that connect the pancreas to the intestines where the enzymes mix with ingested food. (medicinenet.com)
  • Organochlorine compounds such as p,p'-DDT, p,p'-DDE, and some PCBs could play a part in the pathogenesis of exocrine pancreatic cancer through modulation of K-ras activation. (nih.gov)
  • Gross surgical specimen showing a well encapsulated cystic mass located in the distal pancreas. (hindawi.com)
  • When life gives you diabetes, you gotta laugh - and snuggle your pancreas plushie! (iheartguts.com)
  • Studies show your diabetes care packages and gift baskets are 100% cuter with our pancreas plush stuffed in there. (iheartguts.com)
  • An alternative therapy that may also ameliorate diabetes is islet cell transplantation, but this procedure is experimental and has not yet demonstrated equivalence to whole-graft pancreas transplantation. (medscape.com)
  • Most pancreas transplantation candidates have had diabetes for 20-25 years on average prior to consideration for transplantation, so many have had laser surgery for retinopathy. (medscape.com)
  • Neuropathy improves after both kidney and pancreas transplantation, suggesting that renal failure and diabetes contribute to the sensory neuropathy commonly observed at the time of transplantation. (medscape.com)
  • [ 2 ] The first successful pancreas transplantation was performed in 1966, simultaneously with kidney graft. (medscape.com)
  • About 75% of pancreas transplantations are performed simultaneously with a kidney transplantation from the same deceased donor. (medscape.com)
  • [ 4 ] About 15% of pancreas transplantations are performed after a previously successful kidney transplantation from a living or deceased donor. (medscape.com)
  • This is referred to as a pancreas-after-kidney transplantation. (medscape.com)
  • The resulting benefits of pancreas and kidney transplantation are discussed below. (medscape.com)
  • The severity of these ophthalmologic changes may obviate a clear salutary effect of pancreas transplantation alone (PTA) or simultaneous pancreas-kidney (SPK) transplantation on retinopathy. (medscape.com)
  • Cancers in the body or tail of the pancreas are removed in an operation called a distal pancreatectomy, in which the bottom half of the pancreas is removed. (cancercare.org)