A long-chain fatty acid ester of carnitine which facilitates the transfer of long-chain fatty acids from cytoplasm into mitochondria during the oxidation of fatty acids.
A constituent of STRIATED MUSCLE and LIVER. It is an amino acid derivative and an essential cofactor for fatty acid metabolism.
A fatty acid coenzyme derivative which plays a key role in fatty acid oxidation and biosynthesis.
Coenzyme A is an essential coenzyme that plays a crucial role in various metabolic processes, particularly in the transfer and activation of acetyl groups in important biochemical reactions such as fatty acid synthesis and oxidation, and the citric acid cycle.
An enzyme that catalyzes reversibly the conversion of palmitoyl-CoA to palmitoylcarnitine in the inner mitochondrial membrane. EC 2.3.1.21.
A group of 16-carbon fatty acids that contain no double bonds.
Acyltransferases in the inner mitochondrial membrane that catalyze the reversible transfer of acyl groups from acyl-CoA to L-carnitine and thereby mediate the transport of activated fatty acids through that membrane. EC 2.3.1.
Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4)
Pyruvates, in the context of medical and biochemistry definitions, are molecules that result from the final step of glycolysis, containing a carboxylic acid group and an aldehyde group, playing a crucial role in cellular metabolism, including being converted into Acetyl-CoA to enter the Krebs cycle or lactate under anaerobic conditions.
Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available.
The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346)
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters.

Comparisons of flux control exerted by mitochondrial outer-membrane carnitine palmitoyltransferase over ketogenesis in hepatocytes and mitochondria isolated from suckling or adult rats. (1/106)

The primary aim of this paper was to calculate and report flux control coefficients for mitochondrial outer-membrane carnitine palmitoyltransferase (CPT I) over hepatic ketogenesis because its role in controlling this pathway during the neonatal period is of academic importance and immediate clinical relevance. Using hepatocytes isolated from suckling rats as our model system, we measured CPT I activity and carbon flux from palmitate to ketone bodies and to CO2 in the absence and presence of a range of concentrations of etomoxir. (This is converted in situ to etomoxir-CoA which is a specific inhibitor of the enzyme.) From these data we calculated the individual flux control coefficients for CPT I over ketogenesis, CO2 production and total carbon flux (0.51 +/- 0.03; -1.30 +/- 0.26; 0.55 +/- 0.07, respectively) and compared them with equivalent coefficients calculated by similar analyses [Drynan, L., Quant, P.A. & Zammit, V.A. (1996) Biochem. J. 317, 791-795] in hepatocytes isolated from adult rats (0.85 +/- 0.20; 0.23 +/- 0.06; 1.06 +/- 0.29). CPT I exerts significantly less control over ketogenesis in hepatocytes isolated from suckling rats than those from adult rats. In the suckling systems the flux control coefficients for CPT I over ketogenesis specifically and over total carbon flux (< 0.6) are not consistent with the enzyme being rate-limiting. Broadly similar results were obtained and conclusions drawn by reanalysis of previous data {from experiments in mitochondria isolated from suckling or adult rats [Krauss, S., Lascelles, C.V., Zammit, V.A. & Quant, P.A. (1996) Biochem. J. 319, 427-433]} using a different approach of control analysis, although it is not strictly valid to compare flux control coefficients from different systems. Our overall conclusion is that flux control coefficients for CPT I over oxidative fluxes from palmitate (or palmitoyl-CoA) differ markedly according to (a) the metabolic state, (b) the stage of development, (c) the specific pathway studied and (d) the model system.  (+info)

Biochemical and functional characterisation of secreted phospholipase activities from Cryptococcus neoformans in their naturally occurring state. (2/106)

A recent study demonstrated that phospholipase B (PLB), lysophospholipase (LPL) and lysophopholipase transacylase (LPTA) are secreted by Cryptococcus neoformans var. neoformans and showed that the amount of enzyme production correlated with virulence in mice. The present study characterised the extracellular enzyme activities further by radiometric assays and 31P nuclear magnetic resonance spectroscopy (NMR). All three enzymes were most active between 25 and 40 degrees C. Bovine lung surfactant and its major lipid components, disaturated phosphatidylcholine and phosphatidylglycerol, were the optimal substrates for PLB. Lysophosphatidylcholine was the favoured substrate for LPL and LPTA. PLB and LPL/LPTA were differentially affected by Triton X-100, and palmitoyl carnitine was a potent inhibitor of the three phospholipases. LPL and PLB activities were inhibited by dithiothreitol; N-ethylmaleimide inhibited LPL and LPTA activities. None of the enzymes was inhibited by N-bromosuccinimide or p-bromophenacyl bromide. Cellular disruption experiments indicated that >85% of the phospholipase activities were cell-associated, with LPL and LPTA being more easily released than PLB. At pH 5.5 and 7.0, the heat-inactivated secreted enzyme preparations decreased the viability of human neutrophils. This effect was attenuated by active supernates. The relative activities of the PLB, LPL and LPTA in the environment of neutrophils are likely to determine the fate of these cells in vivo. Both phospholipases and heat-stable substances secreted by C. neoformans at 37 degrees C could contribute to membrane degradation and virulence.  (+info)

Purification and characterization of secretory phospholipase B, lysophospholipase and lysophospholipase/transacylase from a virulent strain of the pathogenic fungus Cryptococcus neoformans. (3/106)

Infection caused by the fungus Cryptococcus neoformans is potentially fatal. A highly active extracellular phospholipase, demonstrating phospholipase B (PLB), lysophospholipase (LPL) and lysophospholipase/transacylase (LPTA) activities, was purified to homogeneity from C. neoformans using (NH(4))(2)SO(4) fractionation, and hydrophobic-interaction, anion-exchange and gel-filtration chromatography. All three enzyme activities co-purified as a single protein with an apparent molecular mass of 70-90 kDa by SDS/PAGE and 160-180 kDa by gel filtration. The ratio of the three activities remained constant after each purification step. The amino acid composition, as well as the sequences of the N-terminus and of five internal peptide fragments were novel. The protein was an acidic glycoprotein containing N-linked carbohydrate moieties, with pI values of 5.5 and 3.5. The apparent V(max) values for PLB and LPL activities were 12.3 and 870 micromol/min per mg of protein respectively; the corresponding K(m) values were approx. 185.3 and 92.2 microM. The enzyme was active only at acidic pH (pH optimum of 4.0 for PLB and 4.0-5.0 for LPL and LPTA). Enzyme activity did not require added cations, but was inhibited by Fe(3+). LPL and LPTA activities were decreased by 0.1% (v/v) Triton X-100 to 50% of the control value. Palmitoylcarnitine (0.5 mM) inhibited PLB (97% inhibition) and LPL and LPTA activities (35% inhibition) competitively. All phospholipids except phosphatidic acid were degraded by PLB, but dipalmitoyl phosphatidylcholine and dioleoyl phosphatidylcholine were the preferred substrates. This is the first complete description of the purification and properties of a phospholipase, which may be involved in virulence, from a pathogenic fungus.  (+info)

Multiple agents potentiate alpha1-adrenoceptor-induced conduction depression in canine cardiac purkinje fibers. (4/106)

BACKGROUND: Halothane more so than isoflurane potentiates an alpha1-adrenoceptor (alpha1-AR)-mediated action of epinephrine that abnormally slows conduction in Purkinje fibers and may facilitate reentrant arrhythmias. This adverse drug interaction was further evaluated by examining conduction responses to epinephrine in combination with thiopental and propofol, which "sensitize" or reduce the dose of epinephrine required to induce arrhythmias in the heart, and with etomidate, which does not, and responses to epinephrine with verapamil, lidocaine, and l-palmitoyl carnitine, a potential ischemic metabolite. METHODS: Action potentials and conduction times were measured in vitro using two microelectrodes in groups of canine Purkinje fibers stimulated at 150 pulses/min. Conduction was evaluated each minute after exposure to 5 microm epinephrine (or phenylephrine) alone or with the test drugs. Changes in the rate of phase 0 depolarization (Vmax) and the electrotonic spread of intracellular current were measured during exposure to epinephrine with octanol to evaluate the role of inhibition of active and passive (intercellular coupling) membrane properties in the transient depression of conduction velocity. RESULTS: Lidocaine (20 microm) and octanol (0.2 mm) potentiated alpha1-AR-induced conduction depression like halothane (0.4 mm), with maximum depression at 3-5 min of agonist exposure, no decrease of Vmax, and little accentuation at a rapid (250 vs. 150 pulses/min) stimulation rate. Thiopental (95 microm), propofol (50 microm), and verapamil (2 microm) similarly potentiated epinephrine responses, whereas etomidate (10 microm) did not. Between groups, the decrease of velocity induced by epinephrine in the presence of (10 microm) l-palmitoyl carnitine (-18%) was significantly greater than that resulting from epinephrine alone (-6%; 0.05 +info)

Regulation of the activity of caspases by L-carnitine and palmitoylcarnitine. (5/106)

L-Carnitine facilitates the transport of fatty acids into the mitochondrial matrix where they are used for energy production. Recent studies have shown that L-carnitine is capable of protecting the heart against ischemia/reperfusion injury and has beneficial effects against Alzheimer's disease and AIDS. The mechanism of action, however, is not yet understood. In the present study, we found that in Jurkat cells, L-carnitine inhibited apoptosis induced by Fas ligation. In addition, 5 mM carnitine potently inhibited the activity of recombinant caspases 3, 7 and 8, whereas its long-chain fatty acid derivative palmitoylcarnitine stimulated the activity of all the caspases. Palmitoylcarnitine reversed the inhibition mediated by carnitine. Levels of carnitine and palmitoyl-CoA decreased significantly during Fas-mediated apoptosis, while palmitoylcarnitine formation increased. These alterations may be due to inactivation of beta-oxidation or to an increase in the activity of the enzyme that converts carnitine to palmitoylcarnitine, carnitine palmitoyltransferase I (CPT I). In support of the latter possibility, fibroblasts deficient in CPT I activity were relatively resistant to staurosporine-induced apoptosis. These observations suggest that caspase activity may be regulated in part by the balance of carnitine and palmitoylcarnitine.  (+info)

Relevance of fatty acid oxidation in regulation of the outer mitochondrial membrane permeability for ADP. (6/106)

The present study on saponin-treated rat heart muscle fibers has revealed a new function of the fatty acid oxidation system in the regulation of the outer mitochondrial membrane (OMM) permeability for ADP. It is found that oxidation of palmitoyl-CoA+carnitine, palmitoyl-L-carnitine and octanoyl-L-carnitine (alone or in combination with pyruvate+malate) dramatically decreased a very high value of apparent K(m) of oxidative phosphorylation for ADP. Octanoyl-D-carnitine, as well as palmitate, palmitoyl-CoA, and palmitoyl-L-carnitine were not effective in this respect, when their oxidation was prevented by the absence of necessary cofactors or blocked with rotenone. Our data suggest that oxidation, but not transport of fatty acids into mitochondria, induces an increase in the OMM permeability for ADP.  (+info)

Topology of superoxide production from different sites in the mitochondrial electron transport chain. (7/106)

We measured production of reactive oxygen species by intact mitochondria from rat skeletal muscle, heart, and liver under various experimental conditions. By using different substrates and inhibitors, we determined the sites of production (which complexes in the electron transport chain produced superoxide). By measuring hydrogen peroxide production in the absence and presence of exogenous superoxide dismutase, we established the topology of superoxide production (on which side of the mitochondrial inner membrane superoxide was produced). Mitochondria did not release measurable amounts of superoxide or hydrogen peroxide when respiring on complex I or complex II substrates. Mitochondria from skeletal muscle or heart generated significant amounts of superoxide from complex I when respiring on palmitoyl carnitine. They produced superoxide at considerable rates in the presence of various inhibitors of the electron transport chain. Complex I (and perhaps the fatty acid oxidation electron transfer flavoprotein and its oxidoreductase) released superoxide on the matrix side of the inner membrane, whereas center o of complex III released superoxide on the cytoplasmic side. These results do not support the idea that mitochondria produce considerable amounts of reactive oxygen species under physiological conditions. Our upper estimate of the proportion of electron flow giving rise to hydrogen peroxide with palmitoyl carnitine as substrate (0.15%) is more than an order of magnitude lower than commonly cited values. We observed no difference in the rate of hydrogen peroxide production between rat and pigeon heart mitochondria respiring on complex I substrates. However, when complex I was fully reduced using rotenone, rat mitochondria released significantly more hydrogen peroxide than pigeon mitochondria. This difference was solely due to an elevated concentration of complex I in rat compared with pigeon heart mitochondria.  (+info)

Fasting, lipid metabolism, and triiodothyronine in rat gastrocnemius muscle: interrelated roles of uncoupling protein 3, mitochondrial thioesterase, and coenzyme Q. (8/106)

We investigated the role of uncoupling protein 3 (UCP3) during fasting and examined the effect of triiodothyronine (T3) administration in such a condition. The possible involvement of mitochondrial thioesterase (MTE I) and the role of putative cofactors, such as coenzyme Q (CoQ), was also examined. Here, we report that fasting induced a more than twofold elevation in the expression and activity of MTE I, and an increase in UCP3 expression, without any associated uncoupling activity. Administration of T3 to fasting rats further up-regulated UCP3 as well as MTE I expression, markedly enhanced MTE I enzyme activity and prevented the impairment of the uncoupling activity of UCP3 normally seen during fasting. Indeed, T3-treatment induced an UCP3-dependent decrease in mitochondrial membrane potential, which was abolished by the addition of either GDP or superoxide dismutase (SOD). T3 administration also prevented the marked decrease of CoQ levels observed in fasting rats and this provides evidence that also, in vivo, CoQ represents an essential cofactor for the UCP3-mediated uncoupling. The data also show that MTE I and UCP3 are likely involved in the same biochemical mechanism and that UCP3 postulated functions, such as lipid handling and uncoupling, are not mutually exclusive but may coexist in vivo.  (+info)

Palmitoylcarnitine is a type of acylcarnitine, which is an ester formed from carnitine and a fatty acid. Specifically, palmitoylcarnitine consists of the long-chain fatty acid palmitate (a 16-carbon saturated fatty acid) linked to carnitine through an ester bond.

In the human body, palmitoylcarnitine plays a crucial role in the transport and metabolism of long-chain fatty acids within mitochondria, the energy-producing organelles found in cells. The process involves converting palmitate into palmitoylcarnitine by an enzyme called carnitine palmitoyltransferase I (CPT-I) in the outer mitochondrial membrane. Palmitoylcarnitine is then transported across the inner mitochondrial membrane via a specific transporter, where it is converted back to palmitate by another enzyme called carnitine palmitoyltransferase II (CPT-II). The palmitate can then undergo beta-oxidation, a process that generates energy in the form of ATP.

Abnormal levels of palmitoylcarnitine in blood or other bodily fluids may indicate an underlying metabolic disorder, such as defects in fatty acid oxidation or carnitine transport. These conditions can lead to various symptoms, including muscle weakness, cardiomyopathy, and developmental delays.

Carnitine is a naturally occurring substance in the body that plays a crucial role in energy production. It transports long-chain fatty acids into the mitochondria, where they can be broken down to produce energy. Carnitine is also available as a dietary supplement and is often used to treat or prevent carnitine deficiency.

The medical definition of Carnitine is:

"A quaternary ammonium compound that occurs naturally in animal tissues, especially in muscle, heart, brain, and liver. It is essential for the transport of long-chain fatty acids into the mitochondria, where they can be oxidized to produce energy. Carnitine also functions as an antioxidant and has been studied as a potential treatment for various conditions, including heart disease, diabetes, and kidney disease."

Carnitine is also known as L-carnitine or levocarnitine. It can be found in foods such as red meat, dairy products, fish, poultry, and tempeh. In the body, carnitine is synthesized from the amino acids lysine and methionine with the help of vitamin C and iron. Some people may have a deficiency in carnitine due to genetic factors, malnutrition, or certain medical conditions, such as kidney disease or liver disease. In these cases, supplementation may be necessary to prevent or treat symptoms of carnitine deficiency.

Palmitoyl Coenzyme A, often abbreviated as Palmitoyl-CoA, is a type of fatty acyl coenzyme A that plays a crucial role in the body's metabolism. It is formed from the esterification of palmitic acid (a saturated fatty acid) with coenzyme A.

Medical Definition: Palmitoyl Coenzyme A is a fatty acyl coenzyme A ester, where palmitic acid is linked to coenzyme A via an ester bond. It serves as an important intermediate in lipid metabolism and energy production, particularly through the process of beta-oxidation in the mitochondria. Palmitoyl CoA also plays a role in protein modification, known as S-palmitoylation, which can affect protein localization, stability, and function.

Coenzyme A, often abbreviated as CoA or sometimes holo-CoA, is a coenzyme that plays a crucial role in several important chemical reactions in the body, particularly in the metabolism of carbohydrates, fatty acids, and amino acids. It is composed of a pantothenic acid (vitamin B5) derivative called pantothenate, an adenosine diphosphate (ADP) molecule, and a terminal phosphate group.

Coenzyme A functions as a carrier molecule for acetyl groups, which are formed during the breakdown of carbohydrates, fatty acids, and some amino acids. The acetyl group is attached to the sulfur atom in CoA, forming acetyl-CoA, which can then be used as a building block for various biochemical pathways, such as the citric acid cycle (Krebs cycle) and fatty acid synthesis.

In summary, Coenzyme A is a vital coenzyme that helps facilitate essential metabolic processes by carrying and transferring acetyl groups in the body.

Carnitine O-palmitoyltransferase (CPT) is an enzyme that plays a crucial role in the transport of long-chain fatty acids into the mitochondrial matrix, where they undergo beta-oxidation to produce energy. There are two main forms of this enzyme: CPT1 and CPT2.

CPT1 is located on the outer mitochondrial membrane and catalyzes the transfer of a long-chain fatty acyl group from coenzyme A (CoA) to carnitine, forming acylcarnitine. This reaction is reversible and allows for the regulation of fatty acid oxidation in response to changes in energy demand.

CPT2 is located on the inner mitochondrial membrane and catalyzes the reverse reaction, transferring the long-chain fatty acyl group from carnitine back to CoA, allowing for the entry of the fatty acid into the beta-oxidation pathway.

Deficiencies in CPT1 or CPT2 can lead to serious metabolic disorders, such as carnitine deficiency and mitochondrial myopathies, which can cause muscle weakness, cardiomyopathy, and other symptoms. Treatment may involve dietary modifications, supplementation with carnitine or medium-chain fatty acids, and in some cases, enzyme replacement therapy.

Palmitic acid is a type of saturated fatty acid, which is a common component in many foods and also produced by the body. Its chemical formula is C16:0, indicating that it contains 16 carbon atoms and no double bonds. Palmitic acid is found in high concentrations in animal fats, such as butter, lard, and beef tallow, as well as in some vegetable oils, like palm kernel oil and coconut oil.

In the human body, palmitic acid can be synthesized from other substances or absorbed through the diet. It plays a crucial role in various biological processes, including energy storage, membrane structure formation, and signaling pathways regulation. However, high intake of palmitic acid has been linked to an increased risk of developing cardiovascular diseases due to its potential to raise low-density lipoprotein (LDL) cholesterol levels in the blood.

It is essential to maintain a balanced diet and consume palmitic acid-rich foods in moderation, along with regular exercise and a healthy lifestyle, to reduce the risk of chronic diseases.

Carnitine acyltransferases are a group of enzymes that play a crucial role in the transport and metabolism of fatty acids within cells. These enzymes are responsible for transferring acyl groups from acyl-CoAs to carnitine, forming acylcarnitines, which can then be transported across the mitochondrial membrane and into the mitochondrial matrix.

Once inside the matrix, the acyl groups can be released from carnitine and oxidized in the beta-oxidation pathway to produce energy in the form of ATP. There are three main types of carnitine acyltransferases: Carnitine palmitoyltransferase I (CPT I), located on the outer mitochondrial membrane, which activates long-chain fatty acids for transport into the mitochondria; Carnitine palmitoyltransferase II (CPT II), located on the inner mitochondrial membrane, which reconverts acylcarnitines back to acyl-CoAs for oxidation; and carnitine octanoyltransferase (CRAT), which is involved in the metabolism of medium-chain fatty acids.

Deficiencies in these enzymes can lead to various metabolic disorders, such as CPT II deficiency, which can cause muscle weakness, hypoglycemia, and cardiomyopathy. Proper regulation of carnitine acyltransferases is essential for maintaining healthy fatty acid metabolism and overall cellular function.

I'd be happy to help! However, I believe there might be a slight misunderstanding in your question. Mitochondria are organelles found in the cells of all complex living organisms, including humans, while the liver is a large, solid organ located in the upper right portion of the abdomen. They don't have a medical definition together. I can certainly provide you with separate definitions for each:

1. Mitochondria: These are double-membrane-bound cellular organelles that generate most of the chemical energy needed to power the cell's biochemical reactions. Commonly known as the "powerhouse of the cell," mitochondria convert organic substrates, such as glucose, fatty acids, and amino acids, into adenosine triphosphate (ATP) through a process called oxidative phosphorylation. Mitochondria are dynamic structures that can change their shape, size, and number through fission (division) and fusion (merging) processes. They play essential roles in various cellular functions, including calcium signaling, apoptosis (programmed cell death), and the regulation of cellular metabolism.

2. Liver: The liver is a large, lobulated organ that lies mainly in the upper right portion of the abdominal cavity, just below the diaphragm. It plays a crucial role in various physiological functions, such as detoxification, protein synthesis, metabolism, and nutrient storage. The liver is responsible for removing toxins from the bloodstream, producing bile to aid in digestion, regulating glucose levels, synthesizing plasma proteins, and storing glycogen, vitamins, and minerals. It also contributes to the metabolism of carbohydrates, lipids, and amino acids, helping maintain energy homeostasis in the body.

I hope this clarifies any confusion! If you have any further questions or need more information, please don't hesitate to ask.

Pyruvate is a negatively charged ion or group of atoms, called anion, with the chemical formula C3H3O3-. It is formed from the decomposition of glucose and other sugars in the process of cellular respiration. Pyruvate plays a crucial role in the metabolic pathways that generate energy for cells.

In the cytoplasm, pyruvate is produced through glycolysis, where one molecule of glucose is broken down into two molecules of pyruvate, releasing energy and producing ATP (adenosine triphosphate) and NADH (reduced nicotinamide adenine dinucleotide).

In the mitochondria, pyruvate can be further metabolized through the citric acid cycle (also known as the Krebs cycle) to produce more ATP. The process involves the conversion of pyruvate into acetyl-CoA, which then enters the citric acid cycle and undergoes a series of reactions that generate energy in the form of ATP, NADH, and FADH2 (reduced flavin adenine dinucleotide).

Overall, pyruvate is an important intermediate in cellular respiration and plays a central role in the production of energy for cells.

Fatty acids are carboxylic acids with a long aliphatic chain, which are important components of lipids and are widely distributed in living organisms. They can be classified based on the length of their carbon chain, saturation level (presence or absence of double bonds), and other structural features.

The two main types of fatty acids are:

1. Saturated fatty acids: These have no double bonds in their carbon chain and are typically solid at room temperature. Examples include palmitic acid (C16:0) and stearic acid (C18:0).
2. Unsaturated fatty acids: These contain one or more double bonds in their carbon chain and can be further classified into monounsaturated (one double bond) and polyunsaturated (two or more double bonds) fatty acids. Examples of unsaturated fatty acids include oleic acid (C18:1, monounsaturated), linoleic acid (C18:2, polyunsaturated), and alpha-linolenic acid (C18:3, polyunsaturated).

Fatty acids play crucial roles in various biological processes, such as energy storage, membrane structure, and cell signaling. Some essential fatty acids cannot be synthesized by the human body and must be obtained through dietary sources.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

Mitochondria in muscle, also known as the "powerhouses" of the cell, are organelles that play a crucial role in generating energy for muscle cells through a process called cellular respiration. They convert the chemical energy found in glucose and oxygen into ATP (adenosine triphosphate), which is the main source of energy used by cells.

Muscle cells contain a high number of mitochondria due to their high energy demands for muscle contraction and relaxation. The number and size of mitochondria in muscle fibers can vary depending on the type of muscle fiber, with slow-twitch, aerobic fibers having more numerous and larger mitochondria than fast-twitch, anaerobic fibers.

Mitochondrial dysfunction has been linked to various muscle disorders, including mitochondrial myopathies, which are characterized by muscle weakness, exercise intolerance, and other symptoms related to impaired energy production in the muscle cells.

Oxygen consumption, also known as oxygen uptake, is the amount of oxygen that is consumed or utilized by the body during a specific period of time, usually measured in liters per minute (L/min). It is a common measurement used in exercise physiology and critical care medicine to assess an individual's aerobic metabolism and overall health status.

In clinical settings, oxygen consumption is often measured during cardiopulmonary exercise testing (CPET) to evaluate cardiovascular function, pulmonary function, and exercise capacity in patients with various medical conditions such as heart failure, chronic obstructive pulmonary disease (COPD), and other respiratory or cardiac disorders.

During exercise, oxygen is consumed by the muscles to generate energy through a process called oxidative phosphorylation. The amount of oxygen consumed during exercise can provide important information about an individual's fitness level, exercise capacity, and overall health status. Additionally, measuring oxygen consumption can help healthcare providers assess the effectiveness of treatments and rehabilitation programs in patients with various medical conditions.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Protein Kinase C (PKC) is a family of serine-threonine kinases that play crucial roles in various cellular signaling pathways. These enzymes are activated by second messengers such as diacylglycerol (DAG) and calcium ions (Ca2+), which result from the activation of cell surface receptors like G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs).

Once activated, PKC proteins phosphorylate downstream target proteins, thereby modulating their activities. This regulation is involved in numerous cellular processes, including cell growth, differentiation, apoptosis, and membrane trafficking. There are at least 10 isoforms of PKC, classified into three subfamilies based on their second messenger requirements and structural features: conventional (cPKC; α, βI, βII, and γ), novel (nPKC; δ, ε, η, and θ), and atypical (aPKC; ζ and ι/λ). Dysregulation of PKC signaling has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

No FAQ available that match "palmitoylcarnitine"

No images available that match "palmitoylcarnitine"