Palmitates: Salts and esters of the 16-carbon saturated monocarboxylic acid--palmitic acid.Palmitic Acid: A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids.Palmitic Acids: A group of 16-carbon fatty acids that contain no double bonds.Fatty Acids: Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)Vitamin A: Retinol and derivatives of retinol that play an essential role in metabolic functioning of the retina, the growth of and differentiation of epithelial tissue, the growth of bone, reproduction, and the immune response. Dietary vitamin A is derived from a variety of CAROTENOIDS found in plants. It is enriched in the liver, egg yolks, and the fat component of dairy products.Stearates: Salts and esters of the 18-carbon saturated, monocarboxylic acid--stearic acid.Fatty Acids, Nonesterified: FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form.Oleic Acid: An unsaturated fatty acid that is the most widely distributed and abundant fatty acid in nature. It is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. (Stedman, 26th ed)Acylation: The addition of an organic acid radical into a molecule.Oxidation-Reduction: A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).Glucose: A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.Lipoylation: Covalent attachment of LIPIDS and FATTY ACIDS to other compounds and PROTEINS.Palmitoyl Coenzyme A: A fatty acid coenzyme derivative which plays a key role in fatty acid oxidation and biosynthesis.TriglyceridesCaprylates: Derivatives of caprylic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a carboxy terminated eight carbon aliphatic structure.Oleic Acids: A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon.Carnitine: A constituent of STRIATED MUSCLE and LIVER. It is an amino acid derivative and an essential cofactor for fatty acid metabolism.Carnitine O-Palmitoyltransferase: An enzyme that catalyzes reversibly the conversion of palmitoyl-CoA to palmitoylcarnitine in the inner mitochondrial membrane. EC 2.3.1.21.Stearic Acids: A group of compounds that are derivatives of octadecanoic acid which is one of the most abundant fatty acids found in animal lipids. (Stedman, 25th ed)Myristic Acid: A saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed)Lipid Metabolism: Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS.Myristic Acids: 14-carbon saturated monocarboxylic acids.Insulin: A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).Carbon Isotopes: Stable carbon atoms that have the same atomic number as the element carbon, but differ in atomic weight. C-13 is a stable carbon isotope.Esterification: The process of converting an acid into an alkyl or aryl derivative. Most frequently the process consists of the reaction of an acid with an alcohol in the presence of a trace of mineral acid as catalyst or the reaction of an acyl chloride with an alcohol. Esterification can also be accomplished by enzymatic processes.Glycerides: GLYCEROL esterified with FATTY ACIDS.Malonyl Coenzyme A: A coenzyme A derivative which plays a key role in the fatty acid synthesis in the cytoplasmic and microsomal systems.Acyltransferases: Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3.Liver: A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.Epoxy Compounds: Organic compounds that include a cyclic ether with three ring atoms in their structure. They are commonly used as precursors for POLYMERS such as EPOXY RESINS.Hydroxylamine: A colorless inorganic compound (HONH2) used in organic synthesis and as a reducing agent, due to its ability to donate nitric oxide.Chylomicrons: A class of lipoproteins that carry dietary CHOLESTEROL and TRIGLYCERIDES from the SMALL INTESTINE to the tissues. Their density (0.93-1.006 g/ml) is the same as that of VERY-LOW-DENSITY LIPOPROTEINS.Myristates: Salts and esters of the 14-carbon saturated monocarboxylic acid--myristic acid.Kinetics: The rate dynamics in chemical or physical systems.Carbon Radioisotopes: Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes.Glycerol: A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, and sweetening agent.Lipolysis: The metabolic process of breaking down LIPIDS to release FREE FATTY ACIDS, the major oxidative fuel for the body. Lipolysis may involve dietary lipids in the DIGESTIVE TRACT, circulating lipids in the BLOOD, and stored lipids in the ADIPOSE TISSUE or the LIVER. A number of enzymes are involved in such lipid hydrolysis, such as LIPASE and LIPOPROTEIN LIPASE from various tissues.EstersPhospholipids: Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system.Acyl Coenzyme A: S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation.Coenzyme AVitamin A Deficiency: A nutritional condition produced by a deficiency of VITAMIN A in the diet, characterized by NIGHT BLINDNESS and other ocular manifestations such as dryness of the conjunctiva and later of the cornea (XEROPHTHALMIA). Vitamin A deficiency is a very common problem worldwide, particularly in developing countries as a consequence of famine or shortages of vitamin A-rich foods. In the United States it is found among the urban poor, the elderly, alcoholics, and patients with malabsorption. (From Cecil Textbook of Medicine, 19th ed, p1179)Acetates: Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure.Coenzyme A Ligases: Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1.Muscle, Skeletal: A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles.Hypervitaminosis A: A symptom complex resulting from ingesting excessive amounts of VITAMIN A.Myocardium: The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow.TritiumKetone Bodies: The metabolic substances ACETONE; 3-HYDROXYBUTYRIC ACID; and acetoacetic acid (ACETOACETATES). They are produced in the liver and kidney during FATTY ACIDS oxidation and used as a source of energy by the heart, muscle and brain.Acetyl-CoA Carboxylase: A carboxylating enzyme that catalyzes the conversion of ATP, acetyl-CoA, and HCO3- to ADP, orthophosphate, and malonyl-CoA. It is a biotinyl-protein that also catalyzes transcarboxylation. The plant enzyme also carboxylates propanoyl-CoA and butanoyl-CoA (From Enzyme Nomenclature, 1992) EC 6.4.1.2.Perfusion: Treatment process involving the injection of fluid into an organ or tissue.Insulin-Secreting Cells: A type of pancreatic cell representing about 50-80% of the islet cells. Beta cells secrete INSULIN.Ceramides: Members of the class of neutral glycosphingolipids. They are the basic units of SPHINGOLIPIDS. They are sphingoids attached via their amino groups to a long chain fatty acyl group. They abnormally accumulate in FABRY DISEASE.Lipids: A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)Islets of Langerhans: Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN.Cells, Cultured: Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.Fatty Acid Synthases: Enzymes that catalyze the synthesis of FATTY ACIDS from acetyl-CoA and malonyl-CoA derivatives.Linoleic Acid: A doubly unsaturated fatty acid, occurring widely in plant glycosides. It is an essential fatty acid in mammalian nutrition and is used in the biosynthesis of prostaglandins and cell membranes. (From Stedman, 26th ed)Dietary Fats: Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados.Linoleic Acids: Eighteen-carbon essential fatty acids that contain two double bonds.Hydroxylamines: Organic compounds that contain the (-NH2OH) radical.Chromatography, Thin Layer: Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)Antigens, CD36: Leukocyte differentiation antigens and major platelet membrane glycoproteins present on MONOCYTES; ENDOTHELIAL CELLS; PLATELETS; and mammary EPITHELIAL CELLS. They play major roles in CELL ADHESION; SIGNAL TRANSDUCTION; and regulation of angiogenesis. CD36 is a receptor for THROMBOSPONDINS and can act as a scavenger receptor that recognizes and transports oxidized LIPOPROTEINS and FATTY ACIDS.GlycogenOxygen Consumption: The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346)Palmitoyl-CoA Hydrolase: Enzyme catalyzing reversibly the hydrolysis of palmitoyl-CoA or other long-chain acyl coenzyme A compounds to yield CoA and palmitate or other acyl esters. The enzyme is involved in the esterification of fatty acids to form triglycerides. EC 3.1.2.2.beta Carotene: A carotenoid that is a precursor of VITAMIN A. It is administered to reduce the severity of photosensitivity reactions in patients with erythropoietic protoporphyria (PORPHYRIA, ERYTHROPOIETIC). (From Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Engewood, CO, 1995.)Energy Metabolism: The chemical reactions involved in the production and utilization of various forms of energy in cells.Insulin Resistance: Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS.Acetyl Coenzyme A: Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent.Acetoacetates: Salts and derivatives of acetoacetic acid.Serum Albumin, Bovine: Serum albumin from cows, commonly used in in vitro biological studies. (From Stedman, 25th ed)Carboxylic Ester Hydrolases: Enzymes which catalyze the hydrolysis of carboxylic acid esters with the formation of an alcohol and a carboxylic acid anion.Aminoimidazole Carboxamide: An imidazole derivative which is a metabolite of the antineoplastic agents BIC and DIC. By itself, or as the ribonucleotide, it is used as a condensation agent in the preparation of nucleosides and nucleotides. Compounded with orotic acid, it is used to treat liver diseases.PhloretinHydroxybutyrates: Salts and esters of hydroxybutyric acid.Rats, Sprague-Dawley: A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.Lipoproteins: Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes.Rats, Inbred Strains: Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.Adipose Tissue: Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white.Starvation: Lengthy and continuous deprivation of food. (Stedman, 25th ed)Muscle Fibers, Skeletal: Large, multinucleate single cells, either cylindrical or prismatic in shape, that form the basic unit of SKELETAL MUSCLE. They consist of MYOFIBRILS enclosed within and attached to the SARCOLEMMA. They are derived from the fusion of skeletal myoblasts (MYOBLASTS, SKELETAL) into a syncytium, followed by differentiation.Cerulenin: An epoxydodecadienamide isolated from several species, including ACREMONIUM, Acrocylindrum, and Helicoceras. It inhibits the biosynthesis of several lipids by interfering with enzyme function.3-Hydroxybutyric Acid: BUTYRIC ACID substituted in the beta or 3 position. It is one of the ketone bodies produced in the liver.Cell Line: Established cell cultures that have the potential to propagate indefinitely.AMP-Activated Protein Kinases: Intracellular signaling protein kinases that play a signaling role in the regulation of cellular energy metabolism. Their activity largely depends upon the concentration of cellular AMP which is increased under conditions of low energy or metabolic stress. AMP-activated protein kinases modify enzymes involved in LIPID METABOLISM, which in turn provide substrates needed to convert AMP into ATP.Retinol-Binding Proteins: Proteins which bind with RETINOL. The retinol-binding protein found in plasma has an alpha-1 mobility on electrophoresis and a molecular weight of about 21 kDa. The retinol-protein complex (MW=80-90 kDa) circulates in plasma in the form of a protein-protein complex with prealbumin. The retinol-binding protein found in tissue has a molecular weight of 14 kDa and carries retinol as a non-covalently-bound ligand.Mitochondria, Muscle: Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available.Fatty Acids, Monounsaturated: Fatty acids which are unsaturated in only one position.

Correlations in palmitoylation and multiple phosphorylation of rat bradykinin B2 receptor in Chinese hamster ovary cells. (1/811)

Rat bradykinin B2 receptor from unstimulated Chinese hamster ovary cells transfected with the corresponding cDNA has been isolated, and subsequent mass spectrometric analysis of multiple phosphorylated species and of the palmitoylation attachment site is described. Bradykinin B2 receptor was isolated on oligo(dT)-cellulose using N-(epsilon-maleimidocaproyloxy)succinimide-Met-Lys-bradykinin coupled to a protected (dA)30-mer. This allowed a one-step isolation of the receptor on an oligo(dT)-cellulose column via variation solely of salt concentration. After enzymatic in-gel digestion, matrix-assisted laser desorption ionization and electrospray ion trap mass spectrometric analysis of the isolated rat bradykinin B2 receptor showed phosphorylation at Ser365, Ser371, Ser378, Ser380, and Thr374. Further phosphorylation at Tyr352 and Tyr161 was observed. Rat bradykinin receptor B2 receptor is also palmitoylated at Cys356. All of the phosphorylation sites except for Tyr161 cluster at the carboxyl-terminal domain of the receptor located on the cytoplasmic face of the cell membrane. Surprisingly, many of the post-translational modifications were shown by MSn mass spectroscopic analysis to be correlated pairwise, e.g. diphosphorylation at Ser365 and Ser371, at Ser378 and Ser380, and at Thr374 and Ser380 as well as mutually exclusive phosphorylation at Tyr352 and palmitoylation at Cys356. The last correlation may be involved in a receptor internalization motif. Pairwise correlations and mutual exclusion of phosphorylation and palmitoylation suggest critical roles of multiple post-translational modifications for the regulation of activity, coupling to intracelluar signaling pathways, and/or sequestration of the bradykinin receptor.  (+info)

Role of the cysteine-rich domain of the t-SNARE component, SYNDET, in membrane binding and subcellular localization. (2/811)

Wild-type syndet is efficiently recruited at the plasma membrane in transfected AtT-20 cells. A deletion at the cysteine-rich domain abolishes palmitoylation, membrane binding, and plasma membrane distribution of syndet. Syndet, SNAP-25A, and SNAP-25B share four cysteine residues, of which three, Cys2, Cys4, and Cys5, are absolutely conserved in all three homologs. Mutations at any pair of cysteines within cysteines 2, 4, and 5 shift syndet from the cell surface into the cytoplasm. Thus, at least two cysteines within the conserved triplet are necessary for plasma membrane localization. Syndet C1S/C3S, with substitutions at the pair Cys1 and Cys3, distributes to the plasma membrane, a Golgi-like compartment, and the cytosol. We conclude that Cys1 and Cys3 are not absolutely necessary for membrane binding or plasma membrane localization. Our results show that the cysteine-rich domain of syndet plays a major role in its subcellular distribution.  (+info)

Total plasmalogens and O-(acylalkylglycerophosphoryl) ethanolamine from labelled hexadecanol and palmitate during hypoxia and anoxia in rat heart. (3/811)

By the use of the Langendorff technique, surviving isolated rat hearts were perfused with [1-14 C] palmitate, [1-14C] hexadecanol or [1-14C,1-3H] hexadecanol under normal or anoxic conditions. After perfusion for 30min with either precursor, when oxygenated or in an hypoxic condition, or when 1mM-KCN was included in the system, the heart tissues showed no significant chemical changes in their content of total lipids, total phospholipids or total ethanolamine-containing phospholipids. Changes were observed in the ratio of alkyl-to alk-1-enyl-glycerophosphorylethanolamine in the tissue perfused with N2+CO1 plus CN-. A slight increase from 4.0+/-0.3 to 4.9+/-0.2% in alkyl derivatives and a decrease from 11.2+/-0.4 to 9.4+/-0.3% in alk-1-enyl derivatives was observed. The incorporation of the [14C] palmitate and the [14C] hexadecanol into the recovered phospholipids and plasmalogens was severely decreased in the tissues perfused with CN-: in the hypoxic state only a mild inhibition was observed compared with the oxygenated systems. Considerable 3H from [1-14C, 1-3H] hexadecanol was retained (25-35%) in the alk-1-enylether chains of plasmalogens under both the oxygenated conditions and with CN-, suggesting that the same mechanism of incorporation is operational at high or low O2 concentrations. The results are consistent with an O2-dependent, CN-sensitive step in the biosynthesis of plasmalogens in the rat heart.  (+info)

The glycerol phosphate, dihydroxyacetone phosphate and monoacylglycerol pathways of glycerolipid synthesis in rat adipose-tissue homogenates. (4/811)

1. Fat-free homogenates from the epididymal fat-pads of rats were used to measure the rate of palmitate esterification with different substrates. The effectiveness of the acyl acceptors decreased in the order glycerol phosphate, dihydroxyacetone phosphate, 2-octadecenyl-glycerol and 2-hexadecylglycerol. 2. Glycerol phosphate and dihydroxyacetone phosphate inhibited their rates of esterification in a mutually competitive manner. 3. The esterification of glycerol phosphate was also inhibited in a partially competitive manner by 2-octadecenylglycerol and to a lesser extent by 2-hexadecylglycerol. However, glycerol phosphate did not inhibit the esterification of 2-octadecenylglycerol. 4. The esterification of dihydroxyacetone phosphate and 2-hexadecylglycerol was more sensitive to inhibition by clofenapate than was that of glycerol phosphate. Norfenfluramine was more effective in inhibiting the esterification of 2-hexadecylglycerol than that of glycerol phosphate or dihydroxyacetone phosphate. 5 It is concluded that rat adipose tissue can synthesize glycerolipids by three independent routes.  (+info)

Hepatic glucose cycling does not contribute to the development of hyperglycemia in Zucker diabetic fatty rats. (5/811)

Hepatic glucose cycling, whereby glucose is taken up by the liver, partially metabolized, then recycled to glucose, makes a substantial contribution to the development of hyperglycemia in IDDM. This stimulation of glucose cycling appears to be associated with elevated rates of fatty acid oxidation. Whether hepatic glucose cycling also contributes to the development of hyperglycemia in NIDDM is unclear. Using a model of NIDDM, the Zucker diabetic fatty (ZDF) rat, we determined whether glucose cycling was enhanced. Hepatocytes from ZDF rats exhibited higher rates of glucose phosphorylation and glycolysis, but there was no increase in the rate of cycling between glucose and glucose-6-phosphate or between glycolytically derived pyruvate and glucose. Despite the increased rates of glycolysis, the production of CO2 in liver cells from ZDF rats was no different from rates measured in cells from control animals. Instead, there was a large increase in the accumulation of lactate and pyruvate in the ZDF liver cells. The addition of 2-bromopalmitate, an inhibitor of fatty acid oxidation that inhibited glucose cycling in hepatocytes from IDDM rats, had no effect on glucose cycling in cells from ZDF rats. We therefore conclude that, unlike in IDDM, hepatic glucose cycling does not contribute to the development of hyperglycemia in the NIDDM Zucker rat.  (+info)

Reactivating tammar wallaby blastocysts oxidize fatty acids and amino acids. (6/811)

The tammar wallaby, Macropus eugenii, has a ruminant-like digestive system which may make a significant concentration of amino acids and fatty acids available to the blastocyst via uterine fluids. Fluorescent and radioisotope analyses were performed to determine the rate of glutamine and palmitate use by blastocysts recovered on day 0, 3, 4, 5 and 10 after reactivation induced by removal of pouch young (RPY). Between day 0 and 4 glutamine uptake increased from 15.6 +/- 6.6 to 36.1 +/- 2.7 pmol per embryo h-1 (P < 0.01) and ammonium production increased from 8.2 +/- 4.3 to 26.6 +/- 3.0 pmol per embryo h-1 (P < 0.01). Glutamine oxidation did not increase until day 10 after RPY (P < 0.01), but the percentage of glutamine oxidized increased from 4.5 +/- 3.1% during diapause to 31.2 +/- 12.6% (P < 0.01) by day 5 after RPY and increased further to 51.0 +/- 15.8% (P < 0.01) by day 10 after RPY. Palmitate oxidation also increased from 0.3 +/- 0.1 by day 0 blastocysts to 3.8 +/- 1.7 pmol per embryo h-1 (P < 0.01) by day 4 blastocysts. This increase provides a greater potential for ATP production, possibly to supply increased demand due to the coincident resumption of mitoses. The ATP:ADP ratio within blastocysts had reduced by the time of the first measurement at day 3 (0.5 +/- 0.2 pmol per embryo h-1; P < 0.01) compared with day 0 blastocysts (1.4 +/- 0.3 pmol per embryo h-1). It is likely that metabolism of amino acids and fatty acids contributes to the energy supply during reactivation of tammar wallaby blastocysts after embryonic diapause.  (+info)

The mechanism of inhibition of beta-oxidation by aspirin metabolites in skin fibroblasts from Reye's syndrome patients and controls. (7/811)

The effects of aspirin metabolites on beta-oxidation were studied in skin fibroblasts from eight typical Reye's syndrome (RS) patients and controls. RS patients' cells did not differ from controls in rates of palmitate oxidation or in the three component activities of the mitochondrial trifunctional enzyme (MTE), indicating no inherited beta-oxidation defect. Aspirin metabolites salicylate, hydroxyhippurate and gentisate, but not aspirin, directly inhibited palmitate oxidation in control and RS cells. RS cells were significantly more sensitive to inhibition than controls at 0.5 to 5 mM salicylate. Inhibition was concentration-dependent and reversible. Inhibition did not occur in fibroblasts lacking activity of the long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) activity of MTE. Salicylate was therefore inhibiting beta-oxidation at this step. Hydroxyhippurate and salicylate reversibly inhibited HAD activities in extracts of control and RS cells. Studies with pure short-chain HAD and LCHAD (MTE) showed hydroxyhippurate and salicylate were competitive inhibitors of the former but mixed (not competitive) inhibitors of the latter. Both compounds inhibited the combined, three-step, MTE reaction measured in the physiological direction. We conclude that (1) salicylate and hydroxyhippurate decrease beta-oxidation in intact cells by reversible inhibition of LCHAD activity of the MTE, and (2) beta-oxidation in RS cells is inherently more sensitive to inhibition by low concentrations of salicylate than controls.  (+info)

Development and initial evaluation of a novel method for assessing tissue-specific plasma free fatty acid utilization in vivo using (R)-2-bromopalmitate tracer. (8/811)

We describe a method for assessing tissue-specific plasma free fatty acid (FFA) utilization in vivo using a non-beta-oxidizable FFA analog, [9,10-3H]-(R)-2-bromopalmitate (3H-R-BrP). Ideally 3H-R-BrP would be transported in plasma, taken up by tissues and activated by the enzyme acyl-CoA synthetase (ACS) like native FFA, but then 3H-labeled metabolites would be trapped. In vitro we found that 2-bromopalmitate and palmitate compete equivalently for the same ligand binding sites on albumin and intestinal fatty acid binding protein, and activation by ACS was stereoselective for the R-isomer. In vivo, oxidative and non-oxidative FFA metabolism was assessed in anesthetized Wistar rats by infusing, over 4 min, a mixture of 3H-R-BrP and [U-14C] palmitate (14C-palmitate). Indices of total FFA utilization (R*f) and incorporation into storage products (Rfs') were defined, based on tissue concentrations of 3H and 14C, respectively, 16 min after the start of tracer infusion. R*f, but not Rfs', was substantially increased in contracting (sciatic nerve stimulated) hindlimb muscles compared with contralateral non-contracting muscles. The contraction-induced increases in R*f were completely prevented by blockade of beta-oxidation with etomoxir. These results verify that 3H-R-BrP traces local total FFA utilization, including oxidative and non-oxidative metabolism. Separate estimates of the rates of loss of 3H activity indicated effective 3H metabolite retention in most tissues over a 16-min period, but appeared less effective in liver and heart. In conclusion, simultaneous use of 3H-R-BrP and [14C]palmitate tracers provides a new useful tool for in vivo studies of tissue-specific FFA transport, utilization and metabolic fate, especially in skeletal muscle and adipose tissue.  (+info)

  • Patients who met criteria for clinical stability then received a single three-month paliperidone palmitate injection during a 12-week, open-label maintenance phase. (empr.com)
  • The results of this study were previously submitted to the Food and Drug Administration (FDA) to support the New Drug Application (NDA) filing for three-month paliperidone palmitate injection to treat schizophrenia in adults. (empr.com)
  • The purpose of this study is to investigate the mean number of schizophrenia-related hospital admissions, in adult participants with schizophrenia, occurred during 12 months before and 12 months after initiation of Paliperidone Palmitate 1-month formulation treatment. (centerwatch.com)
  • However, chronic insulin treatment causes a decrease in respiratory acceptor control ratio (RCR) in C2C12, as observed with palmitate treatment. (oroboros.at)
  • Vitamins and Minerals: Dicalcium Phosphate, Vitamin A Palmitate T. Niacinamide (Vitamin B3), Reduced Iron, Pyridoxine Hydrochloride (Vitamin 86), Thiamine Hydrochloride (Vitamin B1), Riboflavin (Vitamin 82), Cyanocobalamin (Vitamin B12). (safeway.com)
  • We examined how junctophilin-2 normalizes calcium signals and inhibits the occurrence of a condition called "endoplasmic reticulum stress", which causes heart muscle cell death under over-supply of palmitate. (uwo.ca)
  • Chronic palmitate exposure inhibits insulin secretion by dissociation of Ca(2+) channels from secretory granules. (ox.ac.uk)
  • Many vitamins, minerals and amino acids produce toxic side effects ranging from skin itching and flushing (niacin, for example) to liver impairment (vitamin A palmitate, for example). (selfgrowth.com)
  • Since the levels of this junctophilin-2 protein are reduced in heart muscle cells during lipotoxicity, we examined whether addition of junctophilin-2 reduces heart muscle cell death caused by palmitate, a toxic lipid that has been widely applied in the study of cardiac lipotoxicity. (uwo.ca)
  • Furthermore, blocking Ca 2+ release from ryanodine receptor-2 (RyR2) prevented palmitate-stimulated CHOP induction and apoptosis. (uwo.ca)
  • In summary, we demonstrate that JPH2 attenuates palmitate-induced apoptosis by reducing Ca 2+ release from RyR2 and preventing CHOP expression in cardiomyocytes. (uwo.ca)
  • Importantly, the release competence of the granules was not affected by palmitate. (ox.ac.uk)
  • We found that these domains of localized Ca(2+) entry become dispersed by long-term (72 hr), but not by acute (2 hr), exposure to palmitate. (ox.ac.uk)