Techniques for the artifical induction of ovulation, the rupture of the follicle and release of the ovum.
An OOCYTE-containing structure in the cortex of the OVARY. The oocyte is enclosed by a layer of GRANULOSA CELLS providing a nourishing microenvironment (FOLLICULAR FLUID). The number and size of follicles vary depending on the age and reproductive state of the female. The growing follicles are divided into five stages: primary, secondary, tertiary, Graafian, and atretic. Follicular growth and steroidogenesis depend on the presence of GONADOTROPINS.
Gonadotropins secreted by the pituitary or the placenta in horses. This term generally refers to the gonadotropins found in the pregnant mare serum, a rich source of equine CHORIONIC GONADOTROPIN; LUTEINIZING HORMONE; and FOLLICLE STIMULATING HORMONE. Unlike that in humans, the equine LUTEINIZING HORMONE, BETA SUBUNIT is identical to the equine choronic gonadotropin, beta. Equine gonadotropins prepared from pregnant mare serum are used in reproductive studies.
The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE.
The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS.
A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity.
The period in the ESTROUS CYCLE associated with maximum sexual receptivity and fertility in non-primate female mammals.
A gonadotropic glycoprotein hormone produced primarily by the PLACENTA. Similar to the pituitary LUTEINIZING HORMONE in structure and function, chorionic gonadotropin is involved in maintaining the CORPUS LUTEUM during pregnancy. CG consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is virtually identical to the alpha subunits of the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity (CHORIONIC GONADOTROPIN, BETA SUBUNIT, HUMAN).
Blocking the process leading to OVULATION. Various factors are known to inhibit ovulation, such as neuroendocrine, psychological, and pharmacological agents.
Suspension or cessation of OVULATION in animals or humans with follicle-containing ovaries (OVARIAN FOLLICLE). Depending on the etiology, OVULATION may be induced with appropriate therapy.
A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity.
Occurrence or induction of release of more ova than are normally released at the same time in a given species. The term applies to both animals and humans.
A triphenyl ethylene stilbene derivative which is an estrogen agonist or antagonist depending on the target tissue. Note that ENCLOMIPHENE and ZUCLOMIPHENE are the (E) and (Z) isomers of Clomiphene respectively.
The number of offspring produced at one birth by a viviparous animal.
The yellow body derived from the ruptured OVARIAN FOLLICLE after OVULATION. The process of corpus luteum formation, LUTEINIZATION, is regulated by LUTEINIZING HORMONE.
Artificial introduction of SEMEN or SPERMATOZOA into the VAGINA to facilitate FERTILIZATION.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids.
Compounds which increase the capacity to conceive in females.
Occurrence or induction of ESTRUS in all of the females in a group at the same time, applies only to non-primate mammals with ESTROUS CYCLE.
The period of the MENSTRUAL CYCLE representing follicular growth, increase in ovarian estrogen (ESTROGENS) production, and epithelial proliferation of the ENDOMETRIUM. Follicular phase begins with the onset of MENSTRUATION and ends with OVULATION.
A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND.
Hormones that stimulate gonadal functions such as GAMETOGENESIS and sex steroid hormone production in the OVARY and the TESTIS. Major gonadotropins are glycoproteins produced primarily by the adenohypophysis (GONADOTROPINS, PITUITARY) and the placenta (CHORIONIC GONADOTROPIN). In some species, pituitary PROLACTIN and PLACENTAL LACTOGEN exert some luteotropic activities.
Diminished or absent ability of a female to achieve conception.
The capacity to conceive or to induce conception. It may refer to either the male or female.
Methods for recognizing the state of ESTRUS.
Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS.
The period in the MENSTRUAL CYCLE that follows OVULATION, characterized by the development of CORPUS LUTEUM, increase in PROGESTERONE production by the OVARY and secretion by the glandular epithelium of the ENDOMETRIUM. The luteal phase begins with ovulation and ends with the onset of MENSTRUATION.
Achievement of full sexual capacity in animals and in humans.
Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH).
A state of sexual inactivity in female animals exhibiting no ESTROUS CYCLE. Causes of anestrus include pregnancy, presence of offspring, season, stress, and pathology.
The period from onset of one menstrual bleeding (MENSTRUATION) to the next in an ovulating woman or female primate. The menstrual cycle is regulated by endocrine interactions of the HYPOTHALAMUS; the PITUITARY GLAND; the ovaries; and the genital tract. The menstrual cycle is divided by OVULATION into two phases. Based on the endocrine status of the OVARY, there is a FOLLICULAR PHASE and a LUTEAL PHASE. Based on the response in the ENDOMETRIUM, the menstrual cycle is divided into a proliferative and a secretory phase.
The production of offspring by selective mating or HYBRIDIZATION, GENETIC in animals or plants.
The period of cyclic physiological and behavior changes in non-primate female mammals that exhibit ESTRUS. The estrous cycle generally consists of 4 or 5 distinct periods corresponding to the endocrine status (PROESTRUS; ESTRUS; METESTRUS; DIESTRUS; and ANESTRUS).
An inactive metabolite of PROGESTERONE by reduction at C5, C3, and C20 position. Pregnanediol has two hydroxyl groups, at 3-alpha and 20-alpha. It is detectable in URINE after OVULATION and is found in great quantities in the pregnancy urine.
A phase of the ESTROUS CYCLE that precedes ESTRUS. During proestrus, the Graafian follicles undergo maturation.
A naturally occurring prostaglandin that has oxytocic, luteolytic, and abortifacient activities. Due to its vasocontractile properties, the compound has a variety of other biological actions.
A complex disorder characterized by infertility, HIRSUTISM; OBESITY; and various menstrual disturbances such as OLIGOMENORRHEA; AMENORRHEA; ANOVULATION. Polycystic ovary syndrome is usually associated with bilateral enlarged ovaries studded with atretic follicles, not with cysts. The term, polycystic ovary, is misleading.
In females, the period that is shortly after giving birth (PARTURITION).
Steroidal compounds related to PROGESTERONE, the major mammalian progestational hormone. Progesterone congeners include important progesterone precursors in the biosynthetic pathways, metabolites, derivatives, and synthetic steroids with progestational activities.
The potential of the FETUS to survive outside the UTERUS after birth, natural or induced. Fetal viability depends largely on the FETAL ORGAN MATURITY, and environmental conditions.
The total process by which organisms produce offspring. (Stedman, 25th ed)
The fluid surrounding the OVUM and GRANULOSA CELLS in the Graafian follicle (OVARIAN FOLLICLE). The follicular fluid contains sex steroids, glycoprotein hormones, plasma proteins, mucopolysaccharides, and enzymes.
The hollow thick-walled muscular organ in the female PELVIS. It consists of the fundus (the body) which is the site of EMBRYO IMPLANTATION and FETAL DEVELOPMENT. Beyond the isthmus at the perineal end of fundus, is CERVIX UTERI (the neck) opening into VAGINA. Beyond the isthmi at the upper abdominal end of fundus, are the FALLOPIAN TUBES.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
The ratio of the number of conceptions (CONCEPTION) including LIVE BIRTH; STILLBIRTH; and fetal losses, to the mean number of females of reproductive age in a population during a set time period.
The flattened stroma cells forming a sheath or theca outside the basal lamina lining the mature OVARIAN FOLLICLE. Thecal interstitial or stromal cells are steroidogenic, and produce primarily ANDROGENS which serve as precusors of ESTROGENS in the GRANULOSA CELLS.
Peptides, natural or synthetic, that stimulate the release of PITUITARY HORMONES. They were first isolated from the extracts of the HYPOTHALAMUS; MEDIAN EMINENCE; PITUITARY STALK; and NEUROHYPOPHYSIS. In addition, some hypophysiotropic hormones control pituitary cell differentiation, cell proliferation, and hormone synthesis. Some can act on more than one pituitary hormone.
A pair of highly specialized muscular canals extending from the UTERUS to its corresponding OVARY. They provide the means for OVUM collection, and the site for the final maturation of gametes and FERTILIZATION. The fallopian tube consists of an interstitium, an isthmus, an ampulla, an infundibulum, and fimbriae. Its wall consists of three histologic layers: serous, muscular, and an internal mucosal layer lined with both ciliated and secretory cells.
Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM).
A synthetic prostaglandin F2alpha analog. The compound has luteolytic effects and is used for the synchronization of estrus in cattle.
Glycoproteins that inhibit pituitary FOLLICLE STIMULATING HORMONE secretion. Inhibins are secreted by the Sertoli cells of the testes, the granulosa cells of the ovarian follicles, the placenta, and other tissues. Inhibins and ACTIVINS are modulators of FOLLICLE STIMULATING HORMONE secretions; both groups belong to the TGF-beta superfamily, as the TRANSFORMING GROWTH FACTOR BETA. Inhibins consist of a disulfide-linked heterodimer with a unique alpha linked to either a beta A or a beta B subunit to form inhibin A or inhibin B, respectively
Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest.
Hormones secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR) that stimulate gonadal functions in both males and females. They include FOLLICLE STIMULATING HORMONE that stimulates germ cell maturation (OOGENESIS; SPERMATOGENESIS), and LUTEINIZING HORMONE that stimulates the production of sex steroids (ESTROGENS; PROGESTERONE; ANDROGENS).
Unsaturated androstanes which are substituted with one or more hydroxyl groups in any position in the ring system.
The degeneration and resorption of an OVARIAN FOLLICLE before it reaches maturity and ruptures.
Passive or active movement of SPERMATOZOA from the testicular SEMINIFEROUS TUBULES through the male reproductive tract as well as within the female reproductive tract.
Extracts of urine from menopausal women that contain high concentrations of pituitary gonadotropins, FOLLICLE STIMULATING HORMONE and LUTEINIZING HORMONE. Menotropins are used to treat infertility. The FSH:LH ratio and degree of purity vary in different preparations.
Elements of limited time intervals, contributing to particular results or situations.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
A complication of OVULATION INDUCTION in infertility treatment. It is graded by the severity of symptoms which include OVARY enlargement, multiple OVARIAN FOLLICLES; OVARIAN CYSTS; ASCITES; and generalized EDEMA. The full-blown syndrome may lead to RENAL FAILURE, respiratory distress, and even DEATH. Increased capillary permeability is caused by the vasoactive substances, such as VASCULAR ENDOTHELIAL GROWTH FACTORS, secreted by the overly-stimulated OVARIES.
Degradation of CORPUS LUTEUM. In the absence of pregnancy and diminishing trophic hormones, the corpus luteum undergoes luteolysis which is characterized by the involution and cessation of its endocrine function.
A major gonadotropin secreted by the human adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and the LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. The alpha subunit is common in the three human pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity.
The process of bearing developing young (EMBRYOS or FETUSES) in utero in non-human mammals, beginning from FERTILIZATION to BIRTH.
Formation of CORPUS LUTEUM. This process includes capillary invasion of the ruptured OVARIAN FOLLICLE, hypertrophy of the GRANULOSA CELLS and the THECA CELLS, and the production of PROGESTERONE. Luteinization is regulated by LUTEINIZING HORMONE.
An assisted reproductive technique that includes the direct handling and manipulation of oocytes and sperm to achieve fertilization in vitro.
Transport of the OVUM or fertilized ovum (ZYGOTE) from the mammalian oviduct (FALLOPIAN TUBES) to the site of EMBRYO IMPLANTATION in the UTERUS.
A phase of the ESTROUS CYCLES that follows METESTRUS. Diestrus is a period of sexual quiescence separating phases of ESTRUS in polyestrous animals.
Unsaturated pregnane derivatives containing two keto groups on side chains or ring structures.
Sexual activities of animals.
Small containers or pellets of a solid drug implanted in the body to achieve sustained release of the drug.
The condition of carrying two or more FETUSES simultaneously.
A bone morphogenetic protein that plays an essential role in the regulation of ovarian folliculogenesis.
An infraclass of MAMMALS, also called Metatheria, where the young are born at an early stage of development and continue to develop in a pouch (marsupium). In contrast to Eutheria (placentals), marsupials have an incomplete PLACENTA.
A potent synthetic analog of GONADOTROPIN-RELEASING HORMONE with D-serine substitution at residue 6, glycine10 deletion, and other modifications.
The processes of milk secretion by the maternal MAMMARY GLANDS after PARTURITION. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including ESTRADIOL; PROGESTERONE; PROLACTIN; and OXYTOCIN.
Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects.
The surgical removal of one or both ovaries.
Drugs used to increase fertility or to treat infertility.
Endometrial implantation of EMBRYO, MAMMALIAN at the BLASTOCYST stage.
Steroid hormones produced by the GONADS. They stimulate reproductive organs, germ cell maturation, and the secondary sex characteristics in the males and the females. The major sex steroid hormones include ESTRADIOL; PROGESTERONE; and TESTOSTERONE.
The process of germ cell development in the female from the primordial germ cells through OOGONIA to the mature haploid ova (OVUM).
A delta-4 C19 steroid that is produced not only in the TESTIS, but also in the OVARY and the ADRENAL CORTEX. Depending on the tissue type, androstenedione can serve as a precursor to TESTOSTERONE as well as ESTRONE and ESTRADIOL.
Shrews are small, insectivorous mammals belonging to the family Soricidae, characterized by their pointed snouts, tiny eyes, and rapid movements.
Absence of menstruation.
An anabolic steroid used mainly as an anabolic agent in veterinary practice.
A protein that plays a role in GRANULOSA CELLS where it regulates folliculogenesis. Mutations in the gene for bone morphogenetic protein 15 are linked to reproductive abnormalities such as PREMATURE OVARIAN FAILURE.
A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate.
Divisions of the year according to some regularly recurrent phenomena usually astronomical or climatic. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Morphological and physiological development of EMBRYOS or FETUSES.
Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation.
A synthetic fluorinated steroid that is used as a progestational hormone.
A biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. (From Martindale, The Extra Pharmacopoeia, 30th ed, p289)
Chemical substances which inhibit the function of the endocrine glands, the biosynthesis of their secreted hormones, or the action of hormones upon their specific sites.
Inability to reproduce after a specified period of unprotected intercourse. Reproductive sterility is permanent infertility.
The granulosa cells of the cumulus oophorus which surround the OVUM in the GRAAFIAN FOLLICLE. At OVULATION they are extruded with OVUM.
Ducts that serve exclusively for the passage of eggs from the ovaries to the exterior of the body. In non-mammals, they are termed oviducts. In mammals, they are highly specialized and known as FALLOPIAN TUBES.
Pregnadienes which have undergone ring contractions or are lacking carbon-18 or carbon-19.
The transfer of mammalian embryos from an in vivo or in vitro environment to a suitable host to improve pregnancy or gestational outcome in human or animal. In human fertility treatment programs, preimplantation embryos ranging from the 4-cell stage to the blastocyst stage are transferred to the uterine cavity between 3-5 days after FERTILIZATION IN VITRO.
Process of maintaining the functions of CORPORA LUTEA, specifically PROGESTERONE production which is regulated primarily by pituitary LUTEINIZING HORMONE in cycling females, and by PLACENTAL HORMONES in pregnant females. The ability to maintain luteal functions is important in PREGNANCY MAINTENANCE.
A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM.
A 6-methyl PROGESTERONE acetate with reported glucocorticoid activity and effect on ESTRUS.
The mucous membrane lining of the uterine cavity that is hormonally responsive during the MENSTRUAL CYCLE and PREGNANCY. The endometrium undergoes cyclic changes that characterize MENSTRUATION. After successful FERTILIZATION, it serves to sustain the developing embryo.
An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from ANDROSTENEDIONE directly, or from TESTOSTERONE via ESTRADIOL. In humans, it is produced primarily by the cyclic ovaries, PLACENTA, and the ADIPOSE TISSUE of men and postmenopausal women.
A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL.
An acyclic state that resembles PREGNANCY in that there is no ovarian cycle, ESTROUS CYCLE, or MENSTRUAL CYCLE. Unlike pregnancy, there is no EMBRYO IMPLANTATION. Pseudopregnancy can be experimentally induced to form DECIDUOMA in the UTERUS.
A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects.
A mature haploid female germ cell extruded from the OVARY at OVULATION.
Those protein complexes or molecular sites on the surfaces and cytoplasm of gonadal cells that bind luteinizing or chorionic gonadotropic hormones and thereby cause the gonadal cells to synthesize and secrete sex steroids. The hormone-receptor complex is internalized from the plasma membrane and initiates steroid synthesis.
The event that a FETUS is born alive with heartbeats or RESPIRATION regardless of GESTATIONAL AGE. Such liveborn is called a newborn infant (INFANT, NEWBORN).
Two individuals derived from two FETUSES that were fertilized at or about the same time, developed in the UTERUS simultaneously, and born to the same mother. Twins are either monozygotic (TWINS, MONOZYGOTIC) or dizygotic (TWINS, DIZYGOTIC).
Time interval, or number of non-contraceptive menstrual cycles that it takes for a couple to conceive.
Liquid components of living organisms.
Clinical and laboratory techniques used to enhance fertility in humans and animals.
Compounds that interact with PROGESTERONE RECEPTORS in target tissues to bring about the effects similar to those of PROGESTERONE. Primary actions of progestins, including natural and synthetic steroids, are on the UTERUS and the MAMMARY GLAND in preparation for and in maintenance of PREGNANCY.
Permanent deprivation of breast milk and commencement of nourishment with other food. (From Stedman, 25th ed)
The process of laying or shedding fully developed eggs (OVA) from the female body. The term is usually used for certain INSECTS or FISHES with an organ called ovipositor where eggs are stored or deposited before expulsion from the body.
A progestational and glucocorticoid hormone antagonist. Its inhibition of progesterone induces bleeding during the luteal phase and in early pregnancy by releasing endogenous prostaglandins from the endometrium or decidua. As a glucocorticoid receptor antagonist, the drug has been used to treat hypercortisolism in patients with nonpituitary CUSHING SYNDROME.
A group of polycyclic compounds closely related biochemically to TERPENES. They include cholesterol, numerous hormones, precursors of certain vitamins, bile acids, alcohols (STEROLS), and certain natural drugs and poisons. Steroids have a common nucleus, a fused, reduced 17-carbon atom ring system, cyclopentanoperhydrophenanthrene. Most steroids also have two methyl groups and an aliphatic side-chain attached to the nucleus. (From Hawley's Condensed Chemical Dictionary, 11th ed)
The insertion of drugs into the vagina to treat local infections, neoplasms, or to induce labor. The dosage forms may include medicated pessaries, irrigation fluids, and suppositories.
(9 alpha,11 alpha,13E,15S)-9,11,15-Trihydroxyprost-13-en-1-oic acid (PGF(1 alpha)); (5Z,9 alpha,11,alpha,13E,15S)-9,11,15-trihydroxyprosta-5,13-dien-1-oic acid (PGF(2 alpha)); (5Z,9 alpha,11 alpha,13E,15S,17Z)-9,11,15-trihydroxyprosta-5,13,17-trien-1-oic acid (PGF(3 alpha)). A family of prostaglandins that includes three of the six naturally occurring prostaglandins. All naturally occurring PGF have an alpha configuration at the 9-carbon position. They stimulate uterine and bronchial smooth muscle and are often used as oxytocics.
Chemical substances or agents with contraceptive activity in females. Use for female contraceptive agents in general or for which there is no specific heading.
Death of the developing young in utero. BIRTH of a dead FETUS is STILLBIRTH.
Forceful administration into a muscle of liquid medication, nutrient, or other fluid through a hollow needle piercing the muscle and any tissue covering it.
Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
A slightly alkaline secretion of the endocervical glands. The consistency and amount are dependent on the physiological hormone changes in the menstrual cycle. It contains the glycoprotein mucin, amino acids, sugar, enzymes, and electrolytes, with a water content up to 90%. The mucus is a useful protection against the ascent of bacteria and sperm into the uterus. (From Dictionary of Obstetrics and Gynecology, 1988)
Any of numerous agile, hollow-horned RUMINANTS of the genus Capra, in the family Bovidae, closely related to the SHEEP.
General term for CYSTS and cystic diseases of the OVARY.
Pathological processes of the OVARY.
Cyst due to the occlusion of the duct of a follicle or small gland.
Various fish of the family SALMONIDAE, usually smaller than salmon. They are mostly restricted to cool clear freshwater. Some are anadromous. They are highly regarded for their handsome colors, rich well-flavored flesh, and gameness as an angling fish. The genera Salvelinus, Salmo, and ONCORHYNCHUS have been introduced virtually throughout the world.
Methods pertaining to the generation of new individuals, including techniques used in selective BREEDING, cloning (CLONING, ORGANISM), and assisted reproduction (REPRODUCTIVE TECHNIQUES, ASSISTED).
Hoofed mammals with four legs, a big-lipped snout, and a humped back belonging to the family Camelidae.
A non-steroidal anti-inflammatory agent (NSAID) that inhibits the enzyme cyclooxygenase necessary for the formation of prostaglandins and other autacoids. It also inhibits the motility of polymorphonuclear leukocytes.
Ruminant mammals of South America. They are related to camels.
The female reproductive organs. The external organs include the VULVA; BARTHOLIN'S GLANDS; and CLITORIS. The internal organs include the VAGINA; UTERUS; OVARY; and FALLOPIAN TUBES.
Procedures using an electrically heated wire or scalpel to treat hemorrhage (e.g., bleeding ulcers) and to ablate tumors, mucosal lesions, and refractory arrhythmias. It is different from ELECTROSURGERY which is used more for cutting tissue than destroying and in which the patient is part of the electric circuit.
Cell surface proteins that bind FOLLICLE STIMULATING HORMONE with high affinity and trigger intracellular changes influencing the behavior of cells.
Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility.
A synthetic progestational hormone with actions similar to those of PROGESTERONE and about twice as potent as its racemic or (+-)-isomer (NORGESTREL). It is used for contraception, control of menstrual disorders, and treatment of endometriosis.
The religion of the Jews characterized by belief in one God and in the mission of the Jews to teach the Fatherhood of God as revealed in the Hebrew Scriptures. (Webster, 3d ed)
Postcoital contraceptives which owe their effectiveness to synthetic preparations.
'Zoo animals' are various species of captive wild animals, housed and displayed in a facility for the purpose of public education, conservation, research, and recreation.
Human artificial insemination in which the husband's semen is used.
The science of breeding, feeding and care of domestic animals; includes housing and nutrition.
Physiological activities and functions that pertain to REPRODUCTION.
Results of conception and ensuing pregnancy, including LIVE BIRTH; STILLBIRTH; SPONTANEOUS ABORTION; INDUCED ABORTION. The outcome may follow natural or artificial insemination or any of the various ASSISTED REPRODUCTIVE TECHNIQUES, such as EMBRYO TRANSFER or FERTILIZATION IN VITRO.
A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes.
The genital canal in the female, extending from the UTERUS to the VULVA. (Stedman, 25th ed)
A semisynthetic alkylated ESTRADIOL with a 17-alpha-ethinyl substitution. It has high estrogenic potency when administered orally, and is often used as the estrogenic component in ORAL CONTRACEPTIVES.
The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms.
The sexual union of a male and a female, a term used for human only.
Catalyze the oxidation of 3-hydroxysteroids to 3-ketosteroids.
The thick, yellowish-white, viscid fluid secretion of male reproductive organs discharged upon ejaculation. In addition to reproductive organ secretions, it contains SPERMATOZOA and their nutrient plasma.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
An orally active synthetic progestational hormone used often in combinations as an oral contraceptive.
A 21-amino acid peptide produced predominantly within the kidney and intestine, with smaller amounts produced in the myocardium, placenta, and uterus, but the cells of origin are not clear. Endothelin-2 has no unique physiologic functions, as compared with endothelin-1. (N Eng J Med 1995;333(6):356-63)
Differential and non-random reproduction of different genotypes, operating to alter the gene frequencies within a population.
Treatment process involving the injection of fluid into an organ or tissue.
An enzyme that catalyzes the desaturation (aromatization) of the ring A of C19 androgens and converts them to C18 estrogens. In this process, the 19-methyl is removed. This enzyme is membrane-bound, located in the endoplasmic reticulum of estrogen-producing cells of ovaries, placenta, testes, adipose, and brain tissues. Aromatase is encoded by the CYP19 gene, and functions in complex with NADPH-FERRIHEMOPROTEIN REDUCTASE in the cytochrome P-450 system.
Contraceptive devices used by females.
The active production and accumulation of VITELLINS (egg yolk proteins) in the non-mammalian OOCYTES from circulating precursors, VITELLOGENINS. Vitellogenesis usually begins after the first MEIOSIS and is regulated by estrogenic hormones.
Variations of menstruation which may be indicative of disease.
A biologically active 20-alpha-reduced metabolite of PROGESTERONE. It is converted from progesterone to 20-alpha-hydroxypregn-4-en-3-one by the 20-ALPHA-HYDROXYSTEROID DEHYDROGENASE in the CORPUS LUTEUM and the PLACENTA.
Morphological and physiological development of EMBRYOS.
Procedures to obtain viable OOCYTES from the host. Oocytes most often are collected by needle aspiration from OVARIAN FOLLICLES before OVULATION.
A semisynthetic ergotamine alkaloid that is a dopamine D2 agonist. It suppresses prolactin secretion.
A heterogeneous group of proteolytic enzymes that convert PLASMINOGEN to FIBRINOLYSIN. They are concentrated in the lysosomes of most cells and in the vascular endothelium, particularly in the vessels of the microcirculation.
A principle of estimation in which the estimates of a set of parameters in a statistical model are those quantities minimizing the sum of squared differences between the observed values of a dependent variable and the values predicted by the model.
Abnormally infrequent menstruation.
A protein extract of human menopausal urine in which LUTEINIZING HORMONE has been partially or completely removed. Urofollitropin represents FOLLICLE STIMULATING HORMONE from the urine.
Fixed drug combinations administered orally for contraceptive purposes.
A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper.
An alpha-adrenergic sympathomimetic amine, biosynthesized from tyramine in the CNS and platelets and also in invertebrate nervous systems. It is used to treat hypotension and as a cardiotonic. The natural D(-) form is more potent than the L(+) form in producing cardiovascular adrenergic responses. It is also a neurotransmitter in some invertebrates.
The amount of a substance secreted by cells or by a specific organ or organism over a given period of time; usually applies to those substances which are formed by glandular tissues and are released by them into biological fluids, e.g., secretory rate of corticosteroids by the adrenal cortex, secretory rate of gastric acid by the gastric mucosa.
A potent synthetic long-acting agonist of GONADOTROPIN-RELEASING HORMONE with D-tryptophan substitution at residue 6.
A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells.
The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS.
A system of metabolic interactions by products produced in the distal nephron of the KIDNEY. These products include KALLIKREIN; KININS; KININASE I; KININASE II; and ENKEPHALINASE. This system participates in the control of renal functions. It interacts with the RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM to regulate BLOOD PRESSURE, generation of PROSTAGLANDINS, release of VASOPRESSINS, and WATER-ELECTROLYTE BALANCE.
Metabolites or derivatives of PROGESTERONE with hydroxyl group substitution at various sites.
A common name for fish of the family Percidae, belonging to the suborder Percoidei, order PERCIFORMES.
Predicting the time of OVULATION can be achieved by measuring the preovulatory elevation of ESTRADIOL; LUTEINIZING HORMONE or other hormones in BLOOD or URINE. Accuracy of ovulation prediction depends on the completeness of the hormone profiles, and the ability to determine the preovulatory LH peak.
'Dairying' is not a term used in medical definitions; it refers to the practice of keeping dairy animals for milk production and its related processes, which is an agricultural or farming concept.
A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils.
A potent synthetic long-acting agonist of GONADOTROPIN-RELEASING HORMONE that regulates the synthesis and release of pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE.
Surgical removal or destruction of the hypophysis, or pituitary gland. (Dorland, 28th ed)
The relationship between the dose of an administered drug and the response of the organism to the drug.
A cytotoxic polypeptide quinoxaline antibiotic isolated from Streptomyces echinatus that binds to DNA and inhibits RNA synthesis.
Oral contraceptives which owe their effectiveness to synthetic preparations.
The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical.
Interactive processes between the oocyte (OVUM) and the sperm (SPERMATOZOA) including sperm adhesion, ACROSOME REACTION, sperm penetration of the ZONA PELLUCIDA, and events leading to FERTILIZATION.
Surgical removal or artificial destruction of gonads.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
The gamete-producing glands, OVARY or TESTIS.
The deposit of SEMEN or SPERMATOZOA into the VAGINA to facilitate FERTILIZATION.
The FERTILIZATION of an OVUM that takes place when a FETUS is already present in the UTERUS. Superfetation results in an unusual PREGNANCY with fetuses of different ages and sizes developing in utero simultaneously.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
The beta subunit of follicle stimulating hormone. It is a 15-kDa glycopolypeptide. Full biological activity of FSH requires the non-covalently bound heterodimers of an alpha and a beta subunit. Mutation of the FSHB gene causes delayed puberty, or infertility.
A genus of the family Muridae having three species. The present domesticated strains were developed from individuals brought from Syria. They are widely used in biomedical research.
A synthetic progestational hormone used often as the progestogenic component of combined oral contraceptive agents.
Intercellular signaling peptides that were originally characterized by their ability to suppress NEOPLASM METASTASIS. Kisspeptins have since been found to play an important role in the neuroendocrine regulation of REPRODUCTION.

Prolonged mating in prairie voles (Microtus ochrogaster) increases likelihood of ovulation and embryo number. (1/2710)

Prairie voles are induced ovulators that mate frequently in brief bouts over a period of approximately 24 h. We examined 1) impact of mating duration on ovulation and embryo number, 2) incidence of fertilization, 3) temporal pattern of embryo development, 4) embryo progression through the reproductive tract over time, and 5) embryo development in culture. Mating was videotaped to determine first copulation, and the ovaries were examined and the reproductive tracts flushed at 6, 8, 10, 12, 16, 20, and 24 h and 2, 3, and 4 days after first copulation. The number of mature follicles and fresh corpora lutea and the number and developmental stage of embryos were quantified. One, two-, and four-cell embryos were cultured in Whitten's medium. Mature follicles were present at the earliest time examined (6 h). Thirty-eight percent of females that had been paired for < 12 h after the first copulation ovulated, whereas all females paired >/= 12 h after the first copulation ovulated. Virtually all (> 99%) oocytes recovered from females paired for >/= 12 h after first copulation were fertilized. Pairing time after first copulation and mean copulation-bout duration were significant (p < 0.05) determinants of embryo number. Embryos entered the uterine horns and implanted on Days 3 and 4, respectively, after first copulation (Day 0). Embryos cultured in vitro underwent approximately one cell division per day, a rate similar to that in vivo. We conclude that prairie voles ovulate reliably after pairing for >/= 12 h, although some females showed exceptional sensitivity not predicted by the variables quantified. Prolonged mating for longer than 12 h increased the total embryos produced. This mechanism likely has adaptive significance for increasing offspring number.  (+info)

Precocious estrus and reproductive ability induced by PG 600 in prepuberal gilts. (2/2710)

A total of 29 SPF Large White prepuberal gilts (mean age 152 days at treatment) were examined for estrous and ovulatory responses after PG 600 treatment. After treatment, 85.2% of the gilts showed standing estrus within 6 days. Whereas the treatment-to-estrus interval and duration were 3.7 and 1.9 days respectively. As ovulation occurred on Day 5 to 6, appropriate timing of artificial insemination would be about 4 days after treatment. Fertility of gilts revealed to be excellent, giving rise to a high percentage of normal embryos, 85.3%. Meanwhile, development and growth of fetuses were mostly normal. Other reproductive performances recorded were: mean litter size 6.8; mean birth weight 1.26 kg; weaning-to-return estrus interval 5 to 8 days. In conclusion, PG 600 was found to be useful in inducing fertile estrus in prepuberal gilts, a result which will be of interest for commercial pig farms.  (+info)

No association between the -308 polymorphism in the tumour necrosis factor alpha (TNFalpha) promoter region and polycystic ovaries. (3/2710)

The tumour necrosis factor (TNF)2 allele appears to be linked with increased insulin resistance and obesity, conditions often found in overweight patients with polycystic ovary syndrome (PCOS). The significance of TNFalpha polymorphism in relation to the clinical and biochemical parameters associated with PCOS was investigated in 122 well-characterized patients with polycystic ovaries (PCO). Of these, 84 had an abnormal menstrual cycle and were classified as having PCOS, while the remaining 38 had a normal menstrual cycle and were classified as having PCO. There were a further 28 individuals without PCO (non-PCO) and 108 individuals whose PCO status was undetermined (reference population). The promoter region of the TNFalpha gene was amplified by polymerase chain reaction (PCR), and the presence or absence of the polymorphism at -308 was determined by single-strand conformational polymorphism (SSCP) analysis. The less common TNF allele (TNF2) was found as TNF1/2 or TNF2/2 in 11/38 (29%) of PCO subjects, 25/84 (30%) of PCOS subjects, 7/28 (25%) of non-PCO subjects, and 45/108 (42%) of the reference population. There was no significant difference in the incidence of the TNF2 allele between the groups. The relationship of TNF genotype to clinical and biochemical parameters was examined. In both the PCO group and the PCOS group, the presence of the TNF2 allele was significantly associated with lower glucose values obtained from the glucose tolerance testing (P<0.05). The TNF genotype was not significantly associated with any clinical or biochemical parameter measured in the PCO, PCOS or non-PCOS groups. Thus, the TNFalpha -308 polymorphism does not appear to strongly influence genetic susceptibility to polycystic ovaries.  (+info)

Intraperitoneal insemination of the guinea pig with synchronized estrus induced by progesterone implant. (4/2710)

Female guinea pigs with synchronized ovulation by means of implantation of progesterone-filled tubing (P-tube) followed by a progesterone injection, were inseminated by intraperitoneal injection with sperm suspension. First, to obtain the optimum conditions for insemination, the females were inseminated singly over the range of 1-10 x 10(7) spermatozoa before and after the synchronized ovulation. The incidence of conception and implantation was 100% in the females given more than 5 x 10(7)/animal at 9:00 h on the 5th day after removal of the P-tube. Second, the reproductive ability of the inseminated females under this optimal condition was observed throughout the pregnancy to delivery. Inseminated females had a mean +/- S.D. gestation period of 68.7 +/- 0.5 days, a litter size of 2.8 +/- 0.6 pups and body weight of 110 +/- 14 g. These data were comparable to those of naturally-mated females. Our findings suggest that the artificial insemination by intraperitoneal injection in combination with the synchronized estrus technique is very useful for production control in a small colony of guinea pigs.  (+info)

Caffeine consumption and menstrual function. (5/2710)

The relation between caffeine intake and menstrual function was examined in 403 healthy premenopausal women who belonged to Kaiser Permanente Medical Care Program in 1990-1991. A telephone interview collected information about caffeinated beverage intake as well as other lifestyle, demographic, occupational, and environmental factors. Subjects collected daily urine samples and completed a daily diary for an average of five menstrual cycles. Metabolites of estrogen and progesterone were measured in the urine, each cycle was characterized as anovulatory or ovulatory, and a probable day of ovulation was selected when appropriate. Logistic regression and repeated measures analyses were performed on menstrual parameters. Women whose caffeine consumption was heavy (>300 mg of caffeine per day) had less than a third of the risk for long menses (> or =8 days) compared with women who did not consume caffeine (adjusted odds ratio = 0.30, 95% confidence interval 0.14-0.66). Those whose caffeine consumption was heavy also had a doubled risk for short cycle length (< or =24 days) (adjusted odds ratio = 2.00, 95% confidence interval 0.98-4.06); this association was also evident in those whose caffeine consumption was heavy who did not smoke (adjusted odds ratio = 2.11, 95% confidence interval 1.03-4.33). Caffeine intake was not strongly related to an increased risk for anovulation, short luteal phase (< or =10 days), long follicular phase (> or =24 days), long cycle (> or =36 days), or measures of within-woman cycle variability.  (+info)

Comparative expression of luteinizing hormone and follicle-stimulating hormone receptors in ovarian follicles from high and low prolific sheep breeds. (6/2710)

Expression of gonadotropin receptors and granulosa cell sensitivity to gonadotropin hormones by small (1-3 mm) and large (3.5-7 mm) follicles were compared in Romanov (ROM, ovulation rate = 3) and Ile-de-France (IF, ovulation rate = 1) ewes in the early and late follicular phase. In healthy follicles, LH receptor levels in granulosa cells increased with increasing follicular size (p < 0. 001) while FSH receptor levels decreased (p < 0.05). In granulosa cells of large follicles, LH receptor (LHR) mRNA levels were greater in the late than in the early follicular phase (p < 0.001, p < 0.05, for ROM and IF, respectively). In the early follicular phase, LHR levels in granulosa (p < 0.001) and theca cells (p < 0.05) of small follicles were greater in ROM than in IF ewes. FSH receptor mRNA levels in granulosa cells of small and large ROM follicles were greater than in the corresponding IF follicles (p < 0.05). Finally, a greater responsiveness (increase in cAMP secretion) to both FSH and hCG was observed by granulosa cells collected during the early follicular phase from ROM vs. IF ewes. Data provide evidence that the greater ovulation rate in the ROM as compared to the IF breed is associated with a greater gonadotropin responsiveness during the early follicular phase.  (+info)

Effect of pelvic endometrial implants on overall reproductive functions of female rats. (7/2710)

The effects of pelvic endometrial implants on the overall reproductive potential of female rats were investigated. After homologous transplantation in the peritoneum, the ectopic endometrium developed into highly vascularized nodes that gradually increased in mass until the 9th week postsurgery and then plateaued. In the presence of these implants, overall reproductive function was adversely affected. The effect was of greatest magnitude during 50-70 days posttransplantation. As compared with values in corresponding controls, ovulation was reduced by 43% (6 of 14) (p < 0.05), mating rate was reduced by 44% (12 of 27) (p < 0.025), and premature termination of pregnancy occurred in 34% (5 of 15) of rats. Wastage of pregnancy, which included complete termination or reduction of fetal number, occurred during the postimplantation course of gestation. Furthermore, 100% of the rats with transplants failed to respond to the copulomimetic stimulation for the induction of pseudopregnancy (p < 0.01, compared with corresponding controls). However, on exposure to vasectomized males, 46% (6 of 13) of these rats exhibited development of pseudopregnancy (p < 0.05, compared with corresponding group receiving copulomimetic stimulation). Increased rate of mating failure and differential pseudopregnancy rates after copulomimetic and natural cervical stimulation suggest that the rats with endometrial explants possibly had an absence or a short appearance of behavioral estrus. Hormonal assessment during the preovulatory phase showed a tendency toward lower mean levels of preovulatory estradiol and significantly lower LH (p < 0.01) and progesterone (p < 0.01) concentrations. The adversely affected reproductive functions may be a secondary consequence of these altered endocrine milieus.  (+info)

Volume-regulated anion and organic osmolyte channels in mouse zygotes. (8/2710)

Whole-cell currents in mouse zygotes were measured using the patch-clamp technique in whole-cell mode. Upon exposure to hypotonic medium, patch-clamped zygotes increased in volume and developed a large swelling-activated current. The swelling-activated current was blocked by Cl- channel blockers, and the magnitude of the current and reversal potential were dependent on the Cl- gradient. Thus, the swelling-activated current had the properties of a current mediated by anion channels. However, in addition to being permeable to Cl- and I- (with I- having the greater permeability), there was also a significant swelling-activated conductance to aspartate and taurine, indicating that the swelling-activated channels in zygotes conduct not only inorganic anions but organic osmolytes as well. This swelling-activated anion and organic osmolyte pathway likely underlies the ability of zygotes to recover from an increase in volume, and it may function to regulate intracellular amino acid concentrations.  (+info)

Ovulation induction is a medical procedure that involves the stimulation of ovulation (the release of an egg from the ovaries) in women who have difficulties conceiving due to ovulatory disorders. This is typically achieved through the use of medications such as clomiphene citrate or gonadotropins, which promote the development and maturation of follicles in the ovaries containing eggs. The process is closely monitored through regular ultrasounds and hormone tests to ensure appropriate response and minimize the risk of complications like multiple pregnancies. Ovulation induction may be used as a standalone treatment or in conjunction with other assisted reproductive technologies (ART), such as intrauterine insemination (IUI) or in vitro fertilization (IVF).

An ovarian follicle is a fluid-filled sac in the ovary that contains an immature egg or ovum (oocyte). It's a part of the female reproductive system and plays a crucial role in the process of ovulation.

Ovarian follicles start developing in the ovaries during fetal development, but only a small number of them will mature and release an egg during a woman's reproductive years. The maturation process is stimulated by hormones like follicle-stimulating hormone (FSH) and luteinizing hormone (LH).

There are different types of ovarian follicles, including primordial, primary, secondary, and tertiary or Graafian follicles. The Graafian follicle is the mature follicle that ruptures during ovulation to release the egg into the fallopian tube, where it may be fertilized by sperm.

It's important to note that abnormal growth or development of ovarian follicles can lead to conditions like polycystic ovary syndrome (PCOS) and ovarian cancer.

Equine Gonadotropins are glycoprotein hormones derived from the pituitary gland of horses. They consist of two subunits: a common alpha subunit and a unique beta subunit that determines the biological activity of each hormone. There are two main types of equine gonadotropins: Equine Follicle Stimulating Hormone (eFSH) and Equine Luteinizing Hormone (eLH).

eFSH plays a crucial role in the growth and development of ovarian follicles in females, while eLH stimulates ovulation and the production of sex steroids in both males and females. These hormones are often used in veterinary medicine to induce ovulation and improve fertility in horses, as well as in research to study the physiology and biochemistry of gonadotropins and reproduction. It's important to note that equine gonadotropins have limited application in human reproductive medicine due to potential immunogenic reactions and other safety concerns.

An ovary is a part of the female reproductive system in which ova or eggs are produced through the process of oogenesis. They are a pair of solid, almond-shaped structures located one on each side of the uterus within the pelvic cavity. Each ovary measures about 3 to 5 centimeters in length and weighs around 14 grams.

The ovaries have two main functions: endocrine (hormonal) function and reproductive function. They produce and release eggs (ovulation) responsible for potential fertilization and development of an embryo/fetus during pregnancy. Additionally, they are essential in the production of female sex hormones, primarily estrogen and progesterone, which regulate menstrual cycles, sexual development, and reproduction.

During each menstrual cycle, a mature egg is released from one of the ovaries into the fallopian tube, where it may be fertilized by sperm. If not fertilized, the egg, along with the uterine lining, will be shed, leading to menstruation.

Progesterone is a steroid hormone that is primarily produced in the ovaries during the menstrual cycle and in pregnancy. It plays an essential role in preparing the uterus for implantation of a fertilized egg and maintaining the early stages of pregnancy. Progesterone works to thicken the lining of the uterus, creating a nurturing environment for the developing embryo.

During the menstrual cycle, progesterone is produced by the corpus luteum, a temporary structure formed in the ovary after an egg has been released from a follicle during ovulation. If pregnancy does not occur, the levels of progesterone will decrease, leading to the shedding of the uterine lining and menstruation.

In addition to its reproductive functions, progesterone also has various other effects on the body, such as helping to regulate the immune system, supporting bone health, and potentially influencing mood and cognition. Progesterone can be administered medically in the form of oral pills, intramuscular injections, or vaginal suppositories for various purposes, including hormone replacement therapy, contraception, and managing certain gynecological conditions.

Luteinizing Hormone (LH) is a glycoprotein hormone, which is primarily produced and released by the anterior pituitary gland. In women, a surge of LH triggers ovulation, the release of an egg from the ovaries during the menstrual cycle. During pregnancy, LH stimulates the corpus luteum to produce progesterone. In men, LH stimulates the testes to produce testosterone. It plays a crucial role in sexual development, reproduction, and maintaining the reproductive system.

Estrus is a term used in veterinary medicine to describe the physiological and behavioral state of female mammals that are ready to mate and conceive. It refers to the period of time when the female's reproductive system is most receptive to fertilization.

During estrus, the female's ovaries release one or more mature eggs (ovulation) into the fallopian tubes, where they can be fertilized by sperm from a male. This phase of the estrous cycle is often accompanied by changes in behavior and physical appearance, such as increased vocalization, restlessness, and swelling of the genital area.

The duration and frequency of estrus vary widely among different species of mammals. In some animals, such as dogs and cats, estrus occurs regularly at intervals of several weeks or months, while in others, such as cows and mares, it may only occur once or twice a year.

It's important to note that the term "estrus" is not used to describe human reproductive physiology. In humans, the equivalent phase of the menstrual cycle is called ovulation.

Chorionic Gonadotropin (hCG) is a hormone that is produced during pregnancy. It is produced by the placenta after implantation of the fertilized egg in the uterus. The main function of hCG is to prevent the disintegration of the corpus luteum, which is a temporary endocrine structure that forms in the ovary after ovulation and produces progesterone during early pregnancy. Progesterone is essential for maintaining the lining of the uterus and supporting the pregnancy.

hCG can be detected in the blood or urine as early as 10 days after conception, and its levels continue to rise throughout the first trimester of pregnancy. In addition to its role in maintaining pregnancy, hCG is also used as a clinical marker for pregnancy and to monitor certain medical conditions such as gestational trophoblastic diseases.

Ovulation inhibition is a term used in reproductive medicine to describe the prevention or delay of ovulation, which is the release of a mature egg from the ovaries during the menstrual cycle. This can be achieved through various means, such as hormonal contraceptives (birth control pills, patches, rings), injectable hormones, or intrauterine devices (IUDs) that release hormones.

Hormonal contraceptives typically contain synthetic versions of the hormones estrogen and progestin, which work together to inhibit the natural hormonal signals that trigger ovulation. By suppressing the surge in luteinizing hormone (LH) and follicle-stimulating hormone (FSH), these methods prevent the development and release of a mature egg from the ovaries.

In addition to preventing ovulation, hormonal contraceptives can also thicken cervical mucus, making it more difficult for sperm to reach the egg, and thin the lining of the uterus, reducing the likelihood of implantation in case fertilization does occur. It is important to note that while ovulation inhibition is a reliable method of birth control, it may not provide protection against sexually transmitted infections (STIs).

Anovulation is a medical condition in which there is a failure to ovulate, or release a mature egg from the ovaries, during a menstrual cycle. This can occur due to various reasons such as hormonal imbalances, polycystic ovary syndrome (PCOS), premature ovarian failure, excessive exercise, stress, low body weight, or certain medications. Anovulation is common in women with irregular menstrual cycles and can cause infertility if left untreated. In some cases, anovulation may be treated with medication to stimulate ovulation.

Follicle-Stimulating Hormone (FSH) is a glycoprotein hormone secreted and released by the anterior pituitary gland. In females, it promotes the growth and development of ovarian follicles in the ovary, which ultimately leads to the maturation and release of an egg (ovulation). In males, FSH stimulates the testes to produce sperm. It works in conjunction with luteinizing hormone (LH) to regulate reproductive processes. The secretion of FSH is controlled by the hypothalamic-pituitary-gonadal axis and its release is influenced by the levels of gonadotropin-releasing hormone (GnRH), estrogen, inhibin, and androgens.

Superovulation, also known as controlled ovarian stimulation (COS), refers to the process of inducing the development and release of multiple mature ova (eggs) from the ovaries during a single reproductive cycle. This is achieved through the administration of exogenous gonadotropins or other fertility medications, which stimulate the ovarian follicles to grow and mature beyond the normal number. Superovulation is commonly used in assisted reproductive technologies (ART) such as in vitro fertilization (IVF) to increase the chances of successful conception by obtaining a larger number of ova for fertilization and embryo transfer.

Clomiphene is a medication that is primarily used to treat infertility in women. It is an ovulatory stimulant, which means that it works by stimulating the development and release of mature eggs from the ovaries (a process known as ovulation). Clomiphene is a selective estrogen receptor modulator (SERM), which means that it binds to estrogen receptors in the body and blocks the effects of estrogen in certain tissues, while enhancing the effects of estrogen in others.

In the ovary, clomiphene works by blocking the negative feedback effect of estrogen on the hypothalamus and pituitary gland, which results in an increase in the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These hormones stimulate the growth and development of ovarian follicles, which contain eggs. As the follicles grow and mature, they produce increasing amounts of estrogen, which eventually triggers a surge in LH that leads to ovulation.

Clomiphene is typically taken orally for 5 days, starting on the 3rd, 4th, or 5th day of the menstrual cycle. The dosage may be adjusted based on the patient's response to treatment. Common side effects of clomiphene include hot flashes, mood changes, breast tenderness, and ovarian hyperstimulation syndrome (OHSS), which is a potentially serious complication characterized by the enlargement of the ovaries and the accumulation of fluid in the abdomen.

It's important to note that clomiphene may not be suitable for everyone, and its use should be carefully monitored by a healthcare provider. Women with certain medical conditions, such as liver disease, thyroid disorders, or uterine fibroids, may not be able to take clomiphene. Additionally, women who become pregnant while taking clomiphene have an increased risk of multiple pregnancies (e.g., twins or triplets), which can pose additional risks to both the mother and the fetuses.

Litter size is a term used in veterinary medicine, particularly in relation to breeding of animals. It refers to the number of offspring that are born to an animal during one pregnancy. For example, in the case of dogs or cats, it would be the number of kittens or puppies born in a single litter. The size of the litter can vary widely depending on the species, breed, age, and health status of the parent animals.

The corpus luteum is a temporary endocrine structure that forms in the ovary after an oocyte (egg) has been released from a follicle during ovulation. It's formed by the remaining cells of the ruptured follicle, which transform into large, hormone-secreting cells.

The primary function of the corpus luteum is to produce progesterone and, to a lesser extent, estrogen during the menstrual cycle or pregnancy. Progesterone plays a crucial role in preparing the uterus for potential implantation of a fertilized egg and maintaining the early stages of pregnancy. If pregnancy does not occur, the corpus luteum will typically degenerate and stop producing hormones after approximately 10-14 days, leading to menstruation.

However, if pregnancy occurs, the developing embryo starts to produce human chorionic gonadotropin (hCG), which signals the corpus luteum to continue secreting progesterone and estrogen until the placenta takes over hormonal production, usually around the end of the first trimester.

Artificial insemination (AI) is a medical procedure that involves the introduction of sperm into a female's cervix or uterus for the purpose of achieving pregnancy. This procedure can be performed using sperm from a partner or a donor. It is often used when there are issues with male fertility, such as low sperm count or poor sperm motility, or in cases where natural conception is not possible due to various medical reasons.

There are two types of artificial insemination: intracervical insemination (ICI) and intrauterine insemination (IUI). ICI involves placing the sperm directly into the cervix, while IUI involves placing the sperm directly into the uterus using a catheter. The choice of procedure depends on various factors, including the cause of infertility and the preferences of the individuals involved.

Artificial insemination is a relatively simple and low-risk procedure that can be performed in a doctor's office or clinic. It may be combined with fertility drugs to increase the chances of pregnancy. The success rate of artificial insemination varies depending on several factors, including the age and fertility of the individuals involved, the cause of infertility, and the type of procedure used.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

Estradiol is a type of estrogen, which is a female sex hormone. It is the most potent and dominant form of estrogen in humans. Estradiol plays a crucial role in the development and maintenance of secondary sexual characteristics in women, such as breast development and regulation of the menstrual cycle. It also helps maintain bone density, protect the lining of the uterus, and is involved in cognition and mood regulation.

Estradiol is produced primarily by the ovaries, but it can also be synthesized in smaller amounts by the adrenal glands and fat cells. In men, estradiol is produced from testosterone through a process called aromatization. Abnormal levels of estradiol can contribute to various health issues, such as hormonal imbalances, infertility, osteoporosis, and certain types of cancer.

Female fertility agents are medications or treatments that are used to enhance or restore female fertility. They can work in various ways such as stimulating ovulation, improving the quality of eggs, facilitating the implantation of a fertilized egg in the uterus, or addressing issues related to the reproductive system.

Some examples of female fertility agents include:

1. Clomiphene citrate (Clomid, Serophene): This medication stimulates ovulation by causing the pituitary gland to release more follicle-stimulating hormone (FSH) and luteinizing hormone (LH).
2. Gonadotropins: These are hormonal medications that contain FSH and LH, which stimulate the ovaries to produce mature eggs. Examples include human menopausal gonadotropin (hMG) and follicle-stimulating hormone (FSH).
3. Letrozole (Femara): This medication is an aromatase inhibitor that can be used off-label to stimulate ovulation in women who do not respond to clomiphene citrate.
4. Metformin (Glucophage): This medication is primarily used to treat type 2 diabetes, but it can also improve fertility in women with polycystic ovary syndrome (PCOS) by regulating insulin levels and promoting ovulation.
5. Bromocriptine (Parlodel): This medication is used to treat infertility caused by hyperprolactinemia, a condition characterized by high levels of prolactin in the blood.
6. Assisted reproductive technologies (ART): These include procedures such as in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), and gamete intrafallopian transfer (GIFT). They involve manipulating eggs and sperm outside the body to facilitate fertilization and implantation.

It is important to consult with a healthcare provider or reproductive endocrinologist to determine the most appropriate fertility agent for individual needs, as these medications can have side effects and potential risks.

Estrus synchronization is a veterinary medical procedure used in the management of domestic animals, such as cattle and sheep. It is a process of coordinating the estrous cycles of animals so that they can be bred at the same time or have their fertility treatments performed simultaneously. This is achieved through the use of various hormonal therapies, including progestins, prostaglandins, and gonadotropin-releasing hormones (GnRH).

The goal of estrus synchronization is to improve reproductive efficiency in animal production systems by ensuring that a larger number of animals become pregnant during a shorter breeding season. This can lead to more uniform calf or lamb crops, reduced labor and management costs, and increased profitability for farmers and ranchers.

Estrus synchronization is a complex process that requires careful planning and implementation, as well as ongoing monitoring and evaluation of the animals' reproductive performance. It is typically performed under the guidance of a veterinarian or animal reproduction specialist.

The follicular phase is a term used in reproductive endocrinology, which refers to the first part of the menstrual cycle. This phase begins on the first day of menstruation and lasts until ovulation. During this phase, several follicles in the ovaries begin to mature under the influence of follicle-stimulating hormone (FSH) released by the pituitary gland.

Typically, one follicle becomes dominant and continues to mature, while the others regress. The dominant follicle produces increasing amounts of estrogen, which causes the lining of the uterus to thicken in preparation for a possible pregnancy. The follicular phase can vary in length, but on average it lasts about 14 days.

It's important to note that the length and characteristics of the follicular phase can provide valuable information in diagnosing various reproductive disorders, such as polycystic ovary syndrome (PCOS) or thyroid dysfunction.

Gonadotropin-Releasing Hormone (GnRH), also known as Luteinizing Hormone-Releasing Hormone (LHRH), is a hormonal peptide consisting of 10 amino acids. It is produced and released by the hypothalamus, an area in the brain that links the nervous system to the endocrine system via the pituitary gland.

GnRH plays a crucial role in regulating reproduction and sexual development through its control of two gonadotropins: follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These gonadotropins, in turn, stimulate the gonads (ovaries or testes) to produce sex steroids and eggs or sperm.

GnRH acts on the anterior pituitary gland by binding to its specific receptors, leading to the release of FSH and LH. The hypothalamic-pituitary-gonadal axis is under negative feedback control, meaning that when sex steroid levels are high, they inhibit the release of GnRH, which subsequently decreases FSH and LH secretion.

GnRH agonists and antagonists have clinical applications in various medical conditions, such as infertility treatments, precocious puberty, endometriosis, uterine fibroids, prostate cancer, and hormone-responsive breast cancer.

Gonadotropins are hormones that stimulate the gonads (sex glands) to produce sex steroids and gametes (sex cells). In humans, there are two main types of gonadotropins: follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which are produced and released by the anterior pituitary gland.

FSH plays a crucial role in the development and maturation of ovarian follicles in females and sperm production in males. LH triggers ovulation in females, causing the release of a mature egg from the ovary, and stimulates testosterone production in males.

Gonadotropins are often used in medical treatments to stimulate the gonads, such as in infertility therapies where FSH and LH are administered to induce ovulation or increase sperm production.

Female infertility is a condition characterized by the inability to conceive after 12 months or more of regular, unprotected sexual intercourse or the inability to carry a pregnancy to a live birth. The causes of female infertility can be multifactorial and may include issues with ovulation, damage to the fallopian tubes or uterus, endometriosis, hormonal imbalances, age-related factors, and other medical conditions.

Some common causes of female infertility include:

1. Ovulation disorders: Conditions such as polycystic ovary syndrome (PCOS), thyroid disorders, premature ovarian failure, and hyperprolactinemia can affect ovulation and lead to infertility.
2. Damage to the fallopian tubes: Pelvic inflammatory disease, endometriosis, or previous surgeries can cause scarring and blockages in the fallopian tubes, preventing the egg and sperm from meeting.
3. Uterine abnormalities: Structural issues with the uterus, such as fibroids, polyps, or congenital defects, can interfere with implantation and pregnancy.
4. Age-related factors: As women age, their fertility declines due to a decrease in the number and quality of eggs.
5. Other medical conditions: Certain medical conditions, such as diabetes, celiac disease, and autoimmune disorders, can contribute to infertility.

In some cases, female infertility can be treated with medications, surgery, or assisted reproductive technologies (ART) like in vitro fertilization (IVF). A thorough evaluation by a healthcare professional is necessary to determine the underlying cause and develop an appropriate treatment plan.

Fertility is the natural ability to conceive or to cause conception of offspring. In humans, it is the capacity of a woman and a man to reproduce through sexual reproduction. For women, fertility usually takes place during their reproductive years, which is from adolescence until menopause. A woman's fertility depends on various factors including her age, overall health, and the health of her reproductive system.

For men, fertility can be affected by a variety of factors such as age, genetics, general health, sexual function, and environmental factors that may affect sperm production or quality. Factors that can negatively impact male fertility include exposure to certain chemicals, radiation, smoking, alcohol consumption, drug use, and sexually transmitted infections (STIs).

Infertility is a common medical condition affecting about 10-15% of couples trying to conceive. Infertility can be primary or secondary. Primary infertility refers to the inability to conceive after one year of unprotected sexual intercourse, while secondary infertility refers to the inability to conceive following a previous pregnancy.

Infertility can be treated with various medical and surgical interventions depending on the underlying cause. These may include medications to stimulate ovulation, intrauterine insemination (IUI), in vitro fertilization (IVF), or surgery to correct anatomical abnormalities.

Estrus detection in veterinary medicine refers to the process of identifying when a female animal is in heat or estrus, which is the period of time when she is fertile and receptive to mating. This is an important aspect of managing breeding programs for livestock and other animals.

Detection of estrus can be done through various methods, including:

1. Observing behavioral changes: Female animals in heat may show signs of increased interest in males, becoming more vocal or restless, and may adopt a mating stance.
2. Physical examination: A veterinarian may perform a physical exam to check for signs of estrus, such as swelling or reddening of the vulva.
3. Hormonal assays: Blood or vaginal fluid samples can be tested for hormone levels, such as estradiol and progesterone, to determine if an animal is in heat.
4. Use of teaser animals: Intact males can be used to stimulate a response in females, indicating that they are in estrus.

Accurate detection of estrus is critical for successful breeding and management of animal reproduction.

I apologize, but "sheep" is not a term that has a medical definition. It is a common animal with the scientific name Ovis aries. If you have any medical or health-related questions, I would be happy to try and help answer those for you.

The luteal phase is the second half of the menstrual cycle, starting from ovulation (release of an egg from the ovaries) and lasting until the start of the next menstruation. This phase typically lasts around 12-14 days in a regular 28-day menstrual cycle. During this phase, the remains of the dominant follicle that released the egg transform into the corpus luteum, which produces progesterone and some estrogen to support the implantation of a fertilized egg and maintain the early stages of pregnancy. If pregnancy does not occur, the corpus luteum degenerates, leading to a drop in hormone levels and the start of a new menstrual cycle.

Sexual maturation is the process of physical development during puberty that leads to the ability to reproduce. This process involves the development of primary and secondary sexual characteristics, changes in hormone levels, and the acquisition of reproductive capabilities. In females, this includes the onset of menstruation and the development of breasts and hips. In males, this includes the deepening of the voice, growth of facial hair, and the production of sperm. Achieving sexual maturation is an important milestone in human development and typically occurs during adolescence.

Granulosa cells are specialized cells that surround and enclose the developing egg cells (oocytes) in the ovaries. They play a crucial role in the growth, development, and maturation of the follicles (the fluid-filled sacs containing the oocytes) by providing essential nutrients and hormones.

Granulosa cells are responsible for producing estrogen, which supports the development of the endometrium during the menstrual cycle in preparation for a potential pregnancy. They also produce inhibin and activin, two hormones that regulate the function of the pituitary gland and its secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH).

These cells are critical for female reproductive health and fertility. Abnormalities in granulosa cell function can lead to various reproductive disorders, such as polycystic ovary syndrome (PCOS), premature ovarian failure, and infertility.

Anestrus is a term used in veterinary medicine to describe the period of sexual quiescence in female animals, during which they do not exhibit estrous cycles. This phase is characterized by low levels of reproductive hormones and is seen in some species as a part of their natural reproductive cycle, while in others it may indicate an abnormality or underlying health issue.

For example, in dogs, anestrus is the period between heat cycles when the reproductive system is relatively inactive. In contrast, in domestic cats, continuous estrous cycling is the norm, and they do not typically exhibit an anestrus phase.

In some cases, anestrus may be induced by factors such as poor nutrition, stress, or illness, and it can have negative consequences for an animal's reproductive health if it persists for too long. If an animal is experiencing prolonged anestrus or other reproductive issues, it is important to consult with a veterinarian for proper diagnosis and treatment.

The menstrual cycle is a series of natural changes that occur in the female reproductive system over an approximate 28-day interval, marking the body's preparation for potential pregnancy. It involves the interplay of hormones that regulate the growth and disintegration of the uterine lining (endometrium) and the release of an egg (ovulation) from the ovaries.

The menstrual cycle can be divided into three main phases:

1. Menstrual phase: The cycle begins with the onset of menstruation, where the thickened uterine lining is shed through the vagina, lasting typically for 3-7 days. This shedding occurs due to a decrease in estrogen and progesterone levels, which are hormones essential for maintaining the endometrium during the previous cycle.

2. Follicular phase: After menstruation, the follicular phase commences with the pituitary gland releasing follicle-stimulating hormone (FSH). FSH stimulates the growth of several ovarian follicles, each containing an immature egg. One dominant follicle usually becomes selected to mature and release an egg during ovulation. Estrogen levels rise as the dominant follicle grows, causing the endometrium to thicken in preparation for a potential pregnancy.

3. Luteal phase: Following ovulation, the ruptured follicle transforms into the corpus luteum, which produces progesterone and estrogen to further support the endometrial thickening. If fertilization does not occur within approximately 24 hours after ovulation, the corpus luteum will degenerate, leading to a decline in hormone levels. This drop triggers the onset of menstruation, initiating a new menstrual cycle.

Understanding the menstrual cycle is crucial for monitoring reproductive health and planning or preventing pregnancies. Variations in cycle length and symptoms are common among women, but persistent irregularities may indicate underlying medical conditions requiring further evaluation by a healthcare professional.

In medical terms, "breeding" is not a term that is commonly used. It is more frequently used in the context of animal husbandry to refer to the process of mating animals in order to produce offspring with specific desired traits or characteristics. In human medicine, the term is not typically applied to people and instead, related concepts such as reproduction, conception, or pregnancy are used.

The estrous cycle is the reproductive cycle in certain mammals, characterized by regular changes in the reproductive tract and behavior, which are regulated by hormonal fluctuations. It is most commonly observed in non-primate mammals such as dogs, cats, cows, pigs, and horses.

The estrous cycle consists of several stages:

1. Proestrus: This stage lasts for a few days and is characterized by the development of follicles in the ovaries and an increase in estrogen levels. During this time, the female may show signs of sexual receptivity, but will not allow mating to occur.
2. Estrus: This is the period of sexual receptivity, during which the female allows mating to take place. It typically lasts for a few days and is marked by a surge in luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which triggers ovulation.
3. Metestrus: This stage follows ovulation and is characterized by the formation of a corpus luteum, a structure that produces progesterone to support pregnancy. If fertilization does not occur, the corpus luteum will eventually regress, leading to the next phase.
4. Diestrus: This is the final stage of the estrous cycle and can last for several weeks or months. During this time, the female's reproductive tract returns to its resting state, and she is not sexually receptive. If pregnancy has occurred, the corpus luteum will continue to produce progesterone until the placenta takes over this function later in pregnancy.

It's important to note that the human menstrual cycle is different from the estrous cycle. While both cycles involve hormonal fluctuations and changes in the reproductive tract, the menstrual cycle includes a shedding of the uterine lining (menstruation) if fertilization does not occur, which is not a feature of the estrous cycle.

Pregnanediol is a steroid hormone that is produced as a metabolite of progesterone. It is primarily used as a biomarker to measure the exposure to progesterone, particularly in cases where progesterone levels need to be monitored, such as during pregnancy or in certain medical conditions. Pregnanediol can be measured in urine, blood, or other bodily fluids and is often used in clinical and research settings to assess hormonal status. It is important to note that pregnanediol itself does not have any known physiological effects on the body, but rather serves as an indicator of progesterone levels.

Proestrus is a stage in the estrous cycle of animals, specifically referring to the phase preceding estrus (heat) during which follicle development and estrogen production occur. It is characterized by the swelling of the vulva and the onset of behaviors indicating readiness to mate, although the animal is not yet receptive to males. This stage typically lasts around 2-13 days, depending on the species. In humans, this equivalent phase does not exist due to menstrual cycles rather than estrous cycles.

Dinoprost is a synthetic form of prostaglandin F2α, which is a naturally occurring hormone-like substance in the body. It is used in veterinary medicine as a uterotonic agent to induce labor and abortion in various animals such as cows and pigs. In human medicine, it may be used off-label for similar purposes, but its use must be under the close supervision of a healthcare provider due to potential side effects and risks.

It is important to note that Dinoprost is not approved by the FDA for use in humans, and its availability may vary depending on the country or region. Always consult with a licensed healthcare professional before using any medication, including Dinoprost.

Polycyctic Ovary Syndrome (PCOS) is a complex endocrine-metabolic disorder characterized by the presence of hyperandrogenism (excess male hormones), ovulatory dysfunction, and polycystic ovaries. The Rotterdam criteria are commonly used for diagnosis, which require at least two of the following three features:

1. Oligo- or anovulation (irregular menstrual cycles)
2. Clinical and/or biochemical signs of hyperandrogenism (e.g., hirsutism, acne, or high levels of androgens in the blood)
3. Polycystic ovaries on ultrasound examination (presence of 12 or more follicles measuring 2-9 mm in diameter, or increased ovarian volume >10 mL)

The exact cause of PCOS remains unclear, but it is believed to involve a combination of genetic and environmental factors. Insulin resistance and obesity are common findings in women with PCOS, which can contribute to the development of metabolic complications such as type 2 diabetes, dyslipidemia, and cardiovascular disease.

Management of PCOS typically involves a multidisciplinary approach that includes lifestyle modifications (diet, exercise, weight loss), medications to regulate menstrual cycles and reduce hyperandrogenism (e.g., oral contraceptives, metformin, anti-androgens), and fertility treatments if desired. Regular monitoring of metabolic parameters and long-term follow-up are essential for optimal management and prevention of complications.

The postpartum period refers to the time frame immediately following childbirth, typically defined as the first 6-12 weeks. During this time, significant physical and emotional changes occur as the body recovers from pregnancy and delivery. Hormone levels fluctuate dramatically, leading to various symptoms such as mood swings, fatigue, and breast engorgement. The reproductive system also undergoes significant changes, with the uterus returning to its pre-pregnancy size and shape, and the cervix closing.

It is essential to monitor physical and emotional health during this period, as complications such as postpartum depression, infection, or difficulty breastfeeding may arise. Regular check-ups with healthcare providers are recommended to ensure a healthy recovery and address any concerns. Additionally, proper rest, nutrition, and support from family and friends can help facilitate a smooth transition into this new phase of life.

Progesterone congeners refer to synthetic or naturally occurring compounds that are structurally similar to progesterone, a steroid hormone involved in the menstrual cycle, pregnancy, and embryogenesis. These compounds have similar chemical structures to progesterone and may exhibit similar physiological activities, although they can also have unique properties and uses. Examples of progesterone congeners include various synthetic progestins used in hormonal contraceptives and other medical treatments.

Fetal viability is the point in pregnancy at which a fetus is considered capable of surviving outside the uterus, given appropriate medical support. Although there is no precise gestational age that defines fetal viability, it is generally considered to occur between 24 and 28 weeks of gestation. At this stage, the fetus has developed sufficient lung maturity and body weight, and the risk of neonatal mortality and morbidity significantly decreases. However, the exact definition of fetal viability may vary depending on regional standards, medical facilities, and individual clinical assessments.

Reproduction, in the context of biology and medicine, refers to the process by which organisms produce offspring. It is a complex process that involves the creation, development, and growth of new individuals from parent organisms. In sexual reproduction, this process typically involves the combination of genetic material from two parents through the fusion of gametes (sex cells) such as sperm and egg cells. This results in the formation of a zygote, which then develops into a new individual with a unique genetic makeup.

In contrast, asexual reproduction does not involve the fusion of gametes and can occur through various mechanisms such as budding, fragmentation, or parthenogenesis. Asexual reproduction results in offspring that are genetically identical to the parent organism.

Reproduction is a fundamental process that ensures the survival and continuation of species over time. It is also an area of active research in fields such as reproductive medicine, where scientists and clinicians work to understand and address issues related to human fertility, contraception, and genetic disorders.

Follicular fluid is the fluid that accumulates within the follicle (a small sac or cyst) in the ovary where an egg matures. This fluid contains various chemicals, hormones, and proteins that support the growth and development of the egg cell. It also contains metabolic waste products and other substances from the granulosa cells (the cells that surround the egg cell within the follicle). Follicular fluid is often analyzed in fertility treatments and studies as it can provide valuable information about the health and viability of the egg cell.

The uterus, also known as the womb, is a hollow, muscular organ located in the female pelvic cavity, between the bladder and the rectum. It has a thick, middle layer called the myometrium, which is composed of smooth muscle tissue, and an inner lining called the endometrium, which provides a nurturing environment for the fertilized egg to develop into a fetus during pregnancy.

The uterus is where the baby grows and develops until it is ready for birth through the cervix, which is the lower, narrow part of the uterus that opens into the vagina. The uterus plays a critical role in the menstrual cycle as well, by shedding its lining each month if pregnancy does not occur.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

The pregnancy rate is a measure used in reproductive medicine to determine the frequency or efficiency of conception following certain treatments, interventions, or under specific conditions. It is typically defined as the number of pregnancies per 100 women exposed to the condition being studied over a specified period of time. A pregnancy is confirmed when a woman has a positive result on a pregnancy test or through the detection of a gestational sac on an ultrasound exam.

In clinical trials and research, the pregnancy rate helps healthcare professionals evaluate the effectiveness of various fertility treatments such as in vitro fertilization (IVF), intrauterine insemination (IUI), or ovulation induction medications. The pregnancy rate can also be used to assess the impact of lifestyle factors, environmental exposures, or medical conditions on fertility and conception.

It is important to note that pregnancy rates may vary depending on several factors, including age, the cause of infertility, the type and quality of treatment provided, and individual patient characteristics. Therefore, comparing pregnancy rates between different studies should be done cautiously, considering these potential confounding variables.

Theca cells are specialized cells that are part of the follicle where the egg matures in the ovary. They are located in the outer layer of the follicle and play an important role in producing hormones necessary for the growth and development of the follicle and the egg within it. Specifically, they produce androgens, such as testosterone, which are then converted into estrogens by another type of cells in the follicle called granulosa cells. These hormones help to thicken the lining of the uterus in preparation for a possible pregnancy. In some cases, theca cells can become overactive and produce too much testosterone, leading to conditions such as polycystic ovary syndrome (PCOS).

Pituitary hormone-releasing hormones (PRHs), also known as hypothalamic releasing hormones or hypothalamic hormones, are small neuropeptides produced and released by the hypothalamus - a small region of the brain. These hormones play crucial roles in regulating the secretion and release of various pituitary hormones, which in turn control several essential bodily functions, including growth, development, metabolism, stress response, reproduction, and lactation.

There are several PRHs, each with a specific target pituitary hormone:

1. Thyrotropin-releasing hormone (TRH): Stimulates the release of thyroid-stimulating hormone (TSH) from the anterior pituitary gland, which then promotes the production and release of thyroid hormones.
2. Gonadotropin-releasing hormone (GnRH): Regulates the secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the anterior pituitary gland, which are essential for reproductive functions.
3. Corticotropin-releasing hormone (CRH): Stimulates the release of adrenocorticotropic hormone (ACTH) from the anterior pituitary gland, which then promotes the production and release of cortisol and other glucocorticoids from the adrenal glands.
4. Growth hormone-releasing hormone (GHRH): Stimulates the release of growth hormone (GH) from the anterior pituitary gland, which is essential for growth, development, and metabolism regulation.
5. Somatostatin or growth hormone-inhibiting hormone (GHIH): Inhibits the release of GH from the anterior pituitary gland and also suppresses the secretion of thyroid hormones.
6. Prolactin-releasing hormone (PRH) or prolactin-releasing factor (PRF): Stimulates the release of prolactin from the anterior pituitary gland, which is essential for lactation and reproductive functions.
7. Prolactin-inhibiting hormone (PIH) or dopamine: Inhibits the release of prolactin from the anterior pituitary gland.

These releasing hormones and inhibitory hormones work together to maintain a delicate balance in various physiological processes, including growth, development, metabolism, stress response, and reproductive functions. Dysregulation of these hormonal systems can lead to various endocrine disorders and diseases.

The Fallopian tubes, also known as uterine tubes or oviducts, are a pair of slender tubular structures in the female reproductive system. They play a crucial role in human reproduction by providing a passageway for the egg (ovum) from the ovary to the uterus (womb).

Each Fallopian tube is typically around 7.6 to 10 centimeters long and consists of four parts: the interstitial part, the isthmus, the ampulla, and the infundibulum. The fimbriated end of the infundibulum, which resembles a fringe or frill, surrounds and captures the released egg from the ovary during ovulation.

Fertilization usually occurs in the ampulla when sperm meets the egg after sexual intercourse. Once fertilized, the zygote (fertilized egg) travels through the Fallopian tube toward the uterus for implantation and further development. The cilia lining the inner surface of the Fallopian tubes help propel the egg and the zygote along their journey.

In some cases, abnormalities or blockages in the Fallopian tubes can lead to infertility or ectopic pregnancies, which are pregnancies that develop outside the uterus, typically within the Fallopian tube itself.

An oocyte, also known as an egg cell or female gamete, is a large specialized cell found in the ovary of female organisms. It contains half the number of chromosomes as a normal diploid cell, as it is the product of meiotic division. Oocytes are surrounded by follicle cells and are responsible for the production of female offspring upon fertilization with sperm. The term "oocyte" specifically refers to the immature egg cell before it reaches full maturity and is ready for fertilization, at which point it is referred to as an ovum or egg.

Cloprostenol is a synthetic prostaglandin analog used primarily in veterinary medicine for the treatment and prevention of various conditions. The main therapeutic uses of Cloprostenol include:

1. Induction of parturition (labor) in cows, helping to synchronize calving in managed herds.
2. Termination of pregnancy in cattle, especially in cases where the fetus is nonviable or the pregnancy poses a risk to the animal's health.
3. Treatment of uterine and oviductal disorders, such as pyometra (infection of the uterus) and salpingitis (inflammation of the oviduct), in cattle and pigs.
4. Prevention of postpartum disorders, like endometritis (inflammation of the lining of the uterus) and mastitis (inflammation of the mammary glands), by promoting uterine involution and improving overall reproductive performance in cattle.
5. Control of estrus (heat) in cattle, as an aid in estrous synchronization programs for artificial insemination.

Cloprostenol is available in various formulations, such as intramuscular or subcutaneous injectable solutions, and is typically administered by a veterinarian or trained personnel. It is important to note that the use of Cloprostenol and other prostaglandin analogs should be carried out under the guidance and supervision of a veterinary professional, as improper usage can lead to adverse effects or complications.

Inhibins are a group of protein hormones that play a crucial role in regulating the function of the reproductive system, specifically by inhibiting the production of follicle-stimulating hormone (FSH) in the pituitary gland. They are produced and secreted primarily by the granulosa cells in the ovaries of females and Sertoli cells in the testes of males.

Inhibins consist of two subunits, an alpha subunit, and a beta subunit, which can be further divided into two types: inhibin A and inhibin B. Inhibin A is primarily produced by the granulosa cells of developing follicles in the ovary, while inhibin B is mainly produced by the Sertoli cells in the testes.

By regulating FSH production, inhibins help control the development and maturation of ovarian follicles in females and spermatogenesis in males. Abnormal levels of inhibins have been associated with various reproductive disorders, including polycystic ovary syndrome (PCOS) and certain types of cancer.

I'm sorry for any confusion, but "horses" is not a medical term. It is the common name given to the species *Equus ferus caballus*, which are large domesticated mammals used for transportation, work, and recreation. If you have any questions about horses or a related topic that you would like a medical perspective on, please let me know and I'd be happy to help!

Gonadotropins are hormones produced and released by the anterior pituitary gland, a small endocrine gland located at the base of the brain. These hormones play crucial roles in regulating reproduction and sexual development. There are two main types of gonadotropins:

1. Follicle-Stimulating Hormone (FSH): FSH is essential for the growth and development of follicles in the ovaries (in females) or sperm production in the testes (in males). In females, FSH stimulates the maturation of eggs within the follicles.
2. Luteinizing Hormone (LH): LH triggers ovulation in females, causing the release of a mature egg from the dominant follicle. In males, LH stimulates the production and secretion of testosterone in the testes.

Together, FSH and LH work synergistically to regulate various aspects of reproductive function and sexual development. Their secretion is controlled by the hypothalamus, which releases gonadotropin-releasing hormone (GnRH) to stimulate the production and release of FSH and LH from the anterior pituitary gland.

Abnormal levels of gonadotropins can lead to various reproductive disorders, such as infertility or menstrual irregularities in females and issues related to sexual development or function in both sexes. In some cases, synthetic forms of gonadotropins may be used clinically to treat these conditions or for assisted reproductive technologies (ART).

Androstenols are a type of steroid compound that is found in both animals and humans. They are classified as pheromones, which are chemicals that can affect the behavior or physiology of other members of the same species. Androstenols are found in high concentrations in male sweat, and they have been suggested to play a role in human sexual attraction and communication.

In particular, androstenols are thought to have a positive and calming effect on people, and may help to reduce stress and anxiety. They have also been shown to increase feelings of approachability and friendliness between individuals. Some studies have suggested that androstenols may be particularly effective at enhancing social interactions in women.

Androstenols are often used in perfumes and colognes, as well as in aromatherapy products, because of their potential to promote positive social interactions and reduce stress. However, it is important to note that the effects of androstenols on human behavior and physiology are still not fully understood, and more research is needed to confirm their role in human communication and attraction.

Follicular atresia is a physiological process that occurs in the ovary, where follicles (fluid-filled sacs containing immature eggs or oocytes) undergo degeneration and disappearance. This process begins after the primordial follicle stage and continues throughout a woman's reproductive years. At birth, a female has approximately 1 to 2 million primordial follicles, but only about 400 of these will mature and release an egg during her lifetime. The rest undergo atresia, which is a natural process that helps regulate the number of available eggs and maintain hormonal balance within the body.

The exact mechanisms that trigger follicular atresia are not fully understood, but it is believed to be influenced by various factors such as hormonal imbalances, oxidative stress, and apoptosis (programmed cell death). In some cases, accelerated or excessive follicular atresia can lead to infertility or early menopause.

Sperm transport refers to the series of events that occur from the production of sperm in the testes to their release into the female reproductive tract during sexual intercourse. This process involves several stages:

1. Spermatogenesis: The production of sperm cells (spermatozoa) takes place in the seminiferous tubules within the testes.
2. Maturation: The newly produced sperm are immature and incapable of fertilization. They undergo a maturation process as they move through the epididymis, where they acquire motility and the ability to fertilize an egg.
3. Ejaculation: During sexual arousal, sperm are mixed with seminal fluid produced by the seminal vesicles, prostate gland, and bulbourethral glands to form semen. This mixture is propelled through the urethra during orgasm (ejaculation) and released from the penis into the female reproductive tract.
4. Transport within the female reproductive tract: Once inside the female reproductive tract, sperm must travel through the cervix, uterus, and fallopian tubes to reach the site of fertilization, the ampullary-isthmic junction of the fallopian tube. This journey can take several hours to a few days.
5. Capacitation: During their transport within the female reproductive tract, sperm undergo further changes called capacitation, which prepares them for fertilization by increasing their motility and making them more responsive to the egg's chemical signals.
6. Acrosome reaction: The final step in sperm transport is the acrosome reaction, where the sperm releases enzymes from the acrosome (a cap-like structure on the head of the sperm) to penetrate and fertilize the egg.

Menotropins are a preparation of natural follicle-stimulating hormone (FSH) and luteinizing hormone (LH) derived from the urine of postmenopausal women. They are used in infertility treatment to stimulate the development of multiple follicles in the ovaries, leading to an increased chance of pregnancy through assisted reproductive technologies such as in vitro fertilization (IVF).

Menotropins contain a mixture of FSH and LH in a ratio that is similar to the natural hormone levels found in the human body. The FSH component stimulates the growth and development of follicles in the ovaries, while the LH component triggers ovulation when the follicles have matured.

Menotropins are typically administered by subcutaneous injection and are available under various brand names, such as Menopur and Repronex. The use of menotropins requires careful medical supervision to monitor the response of the ovaries and to minimize the risk of complications such as ovarian hyperstimulation syndrome (OHSS).

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Ovarian Hyperstimulation Syndrome (OHSS) is a medical condition characterized by the enlargement of the ovaries and the accumulation of fluid in the abdominal cavity, which can occur as a complication of fertility treatments that involve the use of medications to stimulate ovulation.

In OHSS, the ovaries become swollen and may contain multiple follicles (small sacs containing eggs) that have developed in response to the hormonal stimulation. This can lead to the release of large amounts of vasoactive substances, such as vascular endothelial growth factor (VEGF), which can cause increased blood flow to the ovaries and fluid leakage from the blood vessels into the abdominal cavity.

Mild cases of OHSS may cause symptoms such as bloating, abdominal pain or discomfort, nausea, and diarrhea. More severe cases can lead to more serious complications, including blood clots, kidney failure, and respiratory distress. In extreme cases, hospitalization may be necessary to manage the symptoms of OHSS and prevent further complications.

OHSS is typically managed by monitoring the patient's symptoms and providing supportive care, such as fluid replacement and pain management. In severe cases, medication or surgery may be necessary to drain excess fluid from the abdominal cavity. Preventive measures, such as adjusting the dosage of fertility medications or canceling treatment cycles, may also be taken to reduce the risk of OHSS in high-risk patients.

Luteolysis is the physiological process that leads to the breakdown and regression of the corpus luteum, a temporary endocrine structure in the ovary that forms after ovulation. The corpus luteum produces progesterone, which supports pregnancy in mammals. If pregnancy does not occur, luteolysis takes place approximately 10-14 days after ovulation in humans and is characterized by the degeneration of the corpus luteum, decreased production of progesterone, and the initiation of the menstrual cycle or the onset of a new reproductive cycle.

The primary event that triggers luteolysis is the release of prostaglandin F2α (PGF2α) from the uterus, which reaches the corpus luteum through the systemic circulation and causes vasoconstriction, reduced blood flow, and structural damage to the corpus luteum. This results in a decline in progesterone levels, which ultimately leads to menstruation or the onset of a new reproductive cycle.

In summary, luteolysis is a crucial process in the female reproductive system that regulates hormonal balance and prepares the body for a new reproductive cycle when pregnancy does not occur.

Follicle-Stimulating Hormone (FSH) is a glycoprotein hormone secreted by the anterior pituitary gland. In humans, FSH plays a crucial role in the reproductive system. Specifically, in females, it stimulates the growth of ovarian follicles in the ovary and the production of estrogen. In males, FSH promotes the formation of sperm within the testes' seminiferous tubules. The human FSH is a heterodimer, consisting of two noncovalently associated subunits: α (alpha) and β (beta). The alpha subunit is common to several pituitary hormones, including thyroid-stimulating hormone (TSH), luteinizing hormone (LH), and human chorionic gonadotropin (hCG). In contrast, the beta subunit is unique to FSH and determines its biological specificity. The regulation of FSH secretion is primarily controlled by the hypothalamic-pituitary axis, involving complex feedback mechanisms with gonadal steroid hormones and inhibins.

"Animal pregnancy" is not a term that is typically used in medical definitions. However, in biological terms, animal pregnancy refers to the condition where a fertilized egg (or eggs) implants and develops inside the reproductive tract of a female animal, leading to the birth of offspring (live young).

The specific details of animal pregnancy can vary widely between different species, with some animals exhibiting phenomena such as placental development, gestation periods, and hormonal changes that are similar to human pregnancy, while others may have very different reproductive strategies.

It's worth noting that the study of animal pregnancy and reproduction is an important area of biological research, as it can provide insights into fundamental mechanisms of embryonic development, genetics, and evolution.

Luteinization is the process in which a structure called the granulosa cell in the ovary transforms into a luteal cell after ovulation, or the release of an egg from the ovary. This transformation is triggered by the LH (luteinizing hormone) surge that occurs just before ovulation.

The luteal cells then begin to produce and secrete progesterone and estrogen, which are important hormones for preparing the uterus for implantation of a fertilized egg and maintaining early pregnancy. If pregnancy does not occur, the corpus luteum (the structure formed by the luteinized granulosa cells) will degenerate and progesterone levels will decrease, leading to menstruation.

Luteinization can also refer to a similar process that occurs in the testes, where Sertoli cells transform into Leydig cells in response to LH stimulation, leading to the production of testosterone.

Fertilization in vitro, also known as in-vitro fertilization (IVF), is a medical procedure where an egg (oocyte) and sperm are combined in a laboratory dish to facilitate fertilization. The fertilized egg (embryo) is then transferred to a uterus with the hope of establishing a successful pregnancy. This procedure is often used when other assisted reproductive technologies have been unsuccessful or are not applicable, such as in cases of blocked fallopian tubes, severe male factor infertility, and unexplained infertility. The process involves ovarian stimulation, egg retrieval, fertilization, embryo culture, and embryo transfer. In some cases, additional techniques such as intracytoplasmic sperm injection (ICSI) or preimplantation genetic testing (PGT) may be used to increase the chances of success.

'Ovum transport' refers to the movement of an egg or ovum from the mature follicle within the ovary, through the fallopian tube, and ultimately to the uterus. This process is a critical part of the female reproductive system and occurs during each menstrual cycle.

The ovulation phase of the menstrual cycle triggers the release of a mature egg from the follicle in the ovary. The fimbriated end of the fallopian tube captures the egg and transports it into the tube, where it may encounter sperm for fertilization. Cilia lining the inside of the fallopian tubes create wave-like motions that help propel the egg towards the uterus.

If fertilization occurs, the resulting zygote will continue to travel down the fallopian tube and implant itself into the uterine lining, initiating pregnancy. If fertilization does not occur, the egg will be shed along with the uterine lining during menstruation.

Diestrus is a stage in the estrous cycle of animals, which is similar to the menstrual cycle in humans. It follows the phase of estrus (or heat), during which the animal is receptive to mating. Diestrus is the period of relative sexual quiescence and hormonal stability between cycles. In this phase, the corpus luteum in the ovary produces progesterone, preparing the uterus for potential pregnancy. If fertilization does not occur, the corpus luteum will degenerate, leading to a drop in progesterone levels and the onset of the next estrous cycle. The duration of diestrus varies among species.

In humans, this phase is analogous to the luteal phase of the menstrual cycle. However, since humans do not exhibit estrous behavior, the term 'diestrus' is typically not used in human reproductive physiology discussions.

Pregnenediones are a class of steroid hormones that contain a pregnane structure, which is a skeleton formed by four fused cyclohexane rings. Specifically, pregnenediones are characterized by having a ketone group (a carbonyl group, -C=O) at the 20th carbon position of this pregnane structure. They can be further classified into various subgroups based on the presence and location of other functional groups in the molecule.

Pregnenediones are not typically used as medications, but they do play important roles in the human body. For example, progesterone is a naturally occurring pregnenedione that plays a crucial role in maintaining pregnancy and preparing the uterus for childbirth. Other pregnenediones may also have hormonal activity or serve as intermediates in the synthesis of other steroid hormones.

Sexual behavior in animals refers to a variety of behaviors related to reproduction and mating that occur between members of the same species. These behaviors can include courtship displays, mating rituals, and various physical acts. The specific forms of sexual behavior displayed by a given species are influenced by a combination of genetic, hormonal, and environmental factors.

In some animals, sexual behavior is closely tied to reproductive cycles and may only occur during certain times of the year or under specific conditions. In other species, sexual behavior may be more frequent and less closely tied to reproduction, serving instead as a means of social bonding or communication.

It's important to note that while humans are animals, the term "sexual behavior" is often used in a more specific sense to refer to sexual activities between human beings. The study of sexual behavior in animals is an important area of research within the field of animal behavior and can provide insights into the evolutionary origins of human sexual behavior as well as the underlying mechanisms that drive it.

A drug implant is a medical device that is specially designed to provide controlled release of a medication into the body over an extended period of time. Drug implants can be placed under the skin or in various body cavities, depending on the specific medical condition being treated. They are often used when other methods of administering medication, such as oral pills or injections, are not effective or practical.

Drug implants come in various forms, including rods, pellets, and small capsules. The medication is contained within the device and is released slowly over time, either through diffusion or erosion of the implant material. This allows for a steady concentration of the drug to be maintained in the body, which can help to improve treatment outcomes and reduce side effects.

Some common examples of drug implants include:

1. Hormonal implants: These are small rods that are inserted under the skin of the upper arm and release hormones such as progestin or estrogen over a period of several years. They are often used for birth control or to treat conditions such as endometriosis or uterine fibroids.
2. Intraocular implants: These are small devices that are placed in the eye during surgery to release medication directly into the eye. They are often used to treat conditions such as age-related macular degeneration or diabetic retinopathy.
3. Bone cement implants: These are specially formulated cements that contain antibiotics and are used to fill bone defects or joint spaces during surgery. The antibiotics are released slowly over time, helping to prevent infection.
4. Implantable pumps: These are small devices that are placed under the skin and deliver medication directly into a specific body cavity, such as the spinal cord or the peritoneal cavity. They are often used to treat chronic pain or cancer.

Overall, drug implants offer several advantages over other methods of administering medication, including improved compliance, reduced side effects, and more consistent drug levels in the body. However, they may also have some disadvantages, such as the need for surgical placement and the potential for infection or other complications. As with any medical treatment, it is important to discuss the risks and benefits of drug implants with a healthcare provider.

Multiple pregnancy is a type of gestation where more than one fetus is carried simultaneously in the uterus. The most common forms of multiple pregnancies are twins (two fetuses), triplets (three fetuses), and quadruplets (four fetuses). Multiple pregnancies can occur when a single fertilized egg splits into two or more embryos (monozygotic) or when more than one egg is released and gets fertilized during ovulation (dizygotic). The risk of multiple pregnancies increases with the use of assisted reproductive technologies, such as in vitro fertilization. Multiple pregnancies are associated with higher risks for both the mother and the fetuses, including preterm labor, low birth weight, and other complications.

Growth Differentiation Factor 9 (GDF9) is a member of the transforming growth factor-beta (TGF-β) superfamily, which plays crucial roles in various biological processes such as cell growth, differentiation, and apoptosis. Specifically, GDF9 is primarily expressed in oocytes and has essential functions during follicular development and ovulation in the ovary. It regulates granulosa cell proliferation, differentiation, and steroidogenesis, contributing to the maintenance of follicular integrity and promoting follicle growth. Additionally, GDF9 is involved in embryonic development and has been implicated in several reproductive disorders when its expression or function is disrupted.

I'm sorry for any confusion, but "Marsupialia" is not a medical term. It is a taxonomic category in biology, specifically an order that includes mammals known as marsupials. These are mammals that carry their young in a pouch after birth. Examples of marsupials include kangaroos, koalas, and opossums. If you have any medical questions or terms you would like defined, I'd be happy to help!

Buserelin is a synthetic analogue of gonadotropin-releasing hormone (GnRH or LHRH), which is a hormonal drug used in the treatment of various conditions such as endometriosis, uterine fibroids, prostate cancer, and central precocious puberty.

By mimicking the action of natural GnRH, buserelin stimulates the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland, which in turn regulates the production of sex hormones such as estrogen and testosterone.

However, prolonged use of buserelin leads to downregulation of GnRH receptors and a decrease in FSH and LH secretion, resulting in reduced levels of sex hormones. This property is exploited in the treatment of hormone-dependent cancers such as prostate cancer, where reducing testosterone levels can help slow tumor growth.

Buserelin is available in various forms, including nasal sprays, implants, and injectable solutions, and its use should be under the supervision of a healthcare professional due to potential side effects and the need for careful monitoring of hormone levels during treatment.

Lactation is the process by which milk is produced and secreted from the mammary glands of female mammals, including humans, for the nourishment of their young. This physiological function is initiated during pregnancy and continues until it is deliberately stopped or weaned off. The primary purpose of lactation is to provide essential nutrients, antibodies, and other bioactive components that support the growth, development, and immune system of newborns and infants.

The process of lactation involves several hormonal and physiological changes in a woman's body. During pregnancy, the hormones estrogen and progesterone stimulate the growth and development of the mammary glands. After childbirth, the levels of these hormones drop significantly, allowing another hormone called prolactin to take over. Prolactin is responsible for triggering the production of milk in the alveoli, which are tiny sacs within the breast tissue.

Another hormone, oxytocin, plays a crucial role in the release or "let-down" of milk from the alveoli to the nipple during lactation. This reflex is initiated by suckling or thinking about the baby, which sends signals to the brain to release oxytocin. The released oxytocin then binds to receptors in the mammary glands, causing the smooth muscles around the alveoli to contract and push out the milk through the ducts and into the nipple.

Lactation is a complex and highly regulated process that ensures the optimal growth and development of newborns and infants. It provides not only essential nutrients but also various bioactive components, such as immunoglobulins, enzymes, and growth factors, which protect the infant from infections and support their immune system.

In summary, lactation is the physiological process by which milk is produced and secreted from the mammary glands of female mammals for the nourishment of their young. It involves hormonal changes, including the actions of prolactin, oxytocin, estrogen, and progesterone, to regulate the production, storage, and release of milk.

Hormones are defined as chemical messengers that are produced by endocrine glands or specialized cells and are transported through the bloodstream to tissues and organs, where they elicit specific responses. They play crucial roles in regulating various physiological processes such as growth, development, metabolism, reproduction, and mood. Examples of hormones include insulin, estrogen, testosterone, adrenaline, and thyroxine.

Ovariectomy is a surgical procedure in which one or both ovaries are removed. It is also known as "ovary removal" or "oophorectomy." This procedure is often performed as a treatment for various medical conditions, including ovarian cancer, endometriosis, uterine fibroids, and pelvic pain. Ovariectomy can also be part of a larger surgical procedure called an hysterectomy, in which the uterus is also removed.

In some cases, an ovariectomy may be performed as a preventative measure for individuals at high risk of developing ovarian cancer. This is known as a prophylactic ovariectomy. After an ovariectomy, a person will no longer have menstrual periods and will be unable to become pregnant naturally. Hormone replacement therapy may be recommended in some cases to help manage symptoms associated with the loss of hormones produced by the ovaries.

Fertility agents, also known as fertility drugs or medications, are substances that are used to enhance or restore fertility in individuals who are having difficulty conceiving a child. These agents work by affecting various aspects of the reproductive system, such as stimulating ovulation, enhancing sperm production, or improving the quality and quantity of eggs produced by the ovaries.

There are several types of fertility agents available, including:

1. Ovulation Inducers: These medications are used to stimulate ovulation in women who do not ovulate regularly or at all. Examples include clomiphene citrate (Clomid) and letrozole (Femara).
2. Gonadotropins: These hormones are administered to stimulate the ovaries to produce multiple eggs during a single menstrual cycle. Examples include human menopausal gonadotropin (hMG), follicle-stimulating hormone (FSH), and luteinizing hormone (LH).
3. Inhibins: These medications are used to prevent premature ovulation and improve the quality of eggs produced by the ovaries. Examples include ganirelix acetate and cetrorelix acetate.
4. Sperm Motility Enhancers: These medications are used to improve sperm motility in men with low sperm count or poor sperm movement. Examples include pentoxifylline and caffeine.
5. Fertility Preservation Medications: These medications are used to preserve fertility in individuals who are undergoing treatments that may affect their reproductive system, such as chemotherapy or radiation therapy. Examples include gonadotropin-releasing hormone agonists (GnRH) and cryopreservation of sperm, eggs, or embryos.

It is important to note that fertility agents can have side effects and should only be used under the guidance of a healthcare professional. It is also essential to discuss any underlying medical conditions, allergies, and potential risks before starting any fertility treatment.

Embryo implantation is the process by which a fertilized egg, or embryo, becomes attached to the wall of the uterus (endometrium) and begins to receive nutrients from the mother's blood supply. This process typically occurs about 6-10 days after fertilization and is a critical step in the establishment of a successful pregnancy.

During implantation, the embryo secretes enzymes that help it to burrow into the endometrium, while the endometrium responds by producing receptors for the embryo's enzymes and increasing blood flow to the area. The embryo then begins to grow and develop, eventually forming the placenta, which will provide nutrients and oxygen to the developing fetus throughout pregnancy.

Implantation is a complex process that requires precise timing and coordination between the embryo and the mother's body. Factors such as age, hormonal imbalances, and uterine abnormalities can affect implantation and increase the risk of miscarriage or difficulty becoming pregnant.

Gonadal steroid hormones, also known as gonadal sex steroids, are hormones that are produced and released by the gonads (i.e., ovaries in women and testes in men). These hormones play a critical role in the development and maintenance of secondary sexual characteristics, reproductive function, and overall health.

The three main classes of gonadal steroid hormones are:

1. Androgens: These are male sex hormones that are primarily produced by the testes but also produced in smaller amounts by the ovaries and adrenal glands. The most well-known androgen is testosterone, which plays a key role in the development of male secondary sexual characteristics such as facial hair, deepening of the voice, and increased muscle mass.
2. Estrogens: These are female sex hormones that are primarily produced by the ovaries but also produced in smaller amounts by the adrenal glands. The most well-known estrogen is estradiol, which plays a key role in the development of female secondary sexual characteristics such as breast development and the menstrual cycle.
3. Progestogens: These are hormones that are produced by the ovaries during the second half of the menstrual cycle and play a key role in preparing the uterus for pregnancy. The most well-known progestogen is progesterone, which also plays a role in maintaining pregnancy and regulating the menstrual cycle.

Gonadal steroid hormones can have significant effects on various physiological processes, including bone density, cognitive function, mood, and sexual behavior. Disorders of gonadal steroid hormone production or action can lead to a range of health problems, including infertility, osteoporosis, and sexual dysfunction.

Oogenesis is the biological process of formation and maturation of female gametes, or ova or egg cells, in the ovary. It begins during fetal development and continues throughout a woman's reproductive years. The process involves the division and differentiation of a germ cell (oogonium) into an immature ovum (oocyte), which then undergoes meiotic division to form a mature ovum capable of being fertilized by sperm.

The main steps in oogenesis include:

1. Multiplication phase: The oogonia divide mitotically to increase their number.
2. Growth phase: One of the oogonia becomes primary oocyte and starts to grow, accumulating nutrients and organelles required for future development.
3. First meiotic division: The primary oocyte undergoes an incomplete first meiotic division, resulting in two haploid cells - a secondary oocyte and a smaller cell called the first polar body. This division is arrested in prophase I until puberty.
4. Second meiotic division: At ovulation or just before fertilization, the secondary oocyte completes the second meiotic division, producing another small cell, the second polar body, and a mature ovum (egg) with 23 chromosomes.
5. Fertilization: The mature ovum can be fertilized by a sperm, restoring the normal diploid number of chromosomes in the resulting zygote.

Oogenesis is a complex and highly regulated process that involves various hormonal signals and cellular interactions to ensure proper development and maturation of female gametes for successful reproduction.

Androstenedione is a steroid hormone produced by the adrenal glands, ovaries, and testes. It is a precursor to both male and female sex hormones, including testosterone and estrogen. In the adrenal glands, it is produced from cholesterol through a series of biochemical reactions involving several enzymes. Androstenedione can also be converted into other steroid hormones, such as dehydroepiandrosterone (DHEA) and estrone.

In the body, androstenedione plays an important role in the development and maintenance of secondary sexual characteristics, such as facial hair and a deep voice in men, and breast development and menstrual cycles in women. It also contributes to bone density, muscle mass, and overall physical strength.

Androstenedione is available as a dietary supplement and has been marketed as a way to boost athletic performance and increase muscle mass. However, its effectiveness for these purposes is not supported by scientific evidence, and it may have harmful side effects when taken in high doses or for extended periods of time. Additionally, the use of androstenedione as a dietary supplement is banned by many sports organizations, including the International Olympic Committee and the National Collegiate Athletic Association.

I'm sorry for any confusion, but the term "shrews" is not a medical term. It is a common name used in zoology to refer to small mammals that are part of the family Soricidae and the suborder Soricomorpha. Shrews are insectivores, distantly related to moles and hedgehogs. If you have any questions about medical terminology or concepts, I would be happy to help!

Amenorrhea is a medical condition characterized by the absence or cessation of menstrual periods in women of reproductive age. It can be categorized as primary amenorrhea, when a woman who has not yet had her first period at the expected age (usually around 16 years old), or secondary amenorrhea, when a woman who has previously had regular periods stops getting them for six months or more.

There are various causes of amenorrhea, including hormonal imbalances, pregnancy, breastfeeding, menopause, extreme weight loss or gain, eating disorders, intense exercise, stress, chronic illness, tumors, and certain medications or medical treatments. In some cases, amenorrhea may indicate an underlying medical condition that requires further evaluation and treatment.

Amenorrhea can have significant impacts on a woman's health and quality of life, including infertility, bone loss, and emotional distress. Therefore, it is essential to consult with a healthcare provider if you experience amenorrhea or missed periods to determine the underlying cause and develop an appropriate treatment plan.

Trenbolone Acetate is an esterified form of the synthetic steroid hormone Trenbolone. It is a potent anabolic and androgenic steroid, which is used in veterinary medicine for promoting muscle growth and appetite stimulation in cattle. In human medicine, it is not approved for use but is sometimes misused for its anabolic effects, such as increasing muscle mass, strength, and reducing body fat. It is important to note that the use of Trenbolone Acetate in humans is considered off-label and can lead to serious health consequences, including liver toxicity, cardiovascular issues, and hormonal imbalances.

Bone Morphogenetic Protein 15 (BMP-15) is a growth factor belonging to the transforming growth factor-beta (TGF-β) superfamily. It plays crucial roles in the development and function of the reproductive system, particularly in the ovary. BMP-15 is primarily produced by the oocytes (egg cells) and stimulates the growth and differentiation of granulosa cells, which surround and support the oocytes during follicular development.

BMP-15 has been shown to promote follicular development, increase ovulation rate, and improve embryo quality in various animal models. In humans, mutations in the BMP15 gene have been associated with ovarian dysfunction, including premature ovarian failure and primary ovarian insufficiency. However, the role of BMP-15 in human reproductive physiology is not yet fully understood, and further research is needed to clarify its exact functions and potential clinical applications.

Prolactin is a hormone produced by the pituitary gland, a small gland located at the base of the brain. Its primary function is to stimulate milk production in women after childbirth, a process known as lactation. However, prolactin also plays other roles in the body, including regulating immune responses, metabolism, and behavior. In men, prolactin helps maintain the sexual glands and contributes to paternal behaviors.

Prolactin levels are usually low in both men and non-pregnant women but increase significantly during pregnancy and after childbirth. Various factors can affect prolactin levels, including stress, sleep, exercise, and certain medications. High prolactin levels can lead to medical conditions such as amenorrhea (absence of menstruation), galactorrhea (spontaneous milk production not related to childbirth), infertility, and reduced sexual desire in both men and women.

I'm sorry for any confusion, but "seasons" is not a term that has a medical definition. Seasons refer to the four divisions of the year (spring, summer, autumn or fall, and winter) based on the position of the earth in its orbit around the sun. If you have any questions related to health or medicine, I'd be happy to try to help answer those!

Embryonic and fetal development is the process of growth and development that occurs from fertilization of the egg (conception) to birth. The terms "embryo" and "fetus" are used to describe different stages of this development:

* Embryonic development: This stage begins at fertilization and continues until the end of the 8th week of pregnancy. During this time, the fertilized egg (zygote) divides and forms a blastocyst, which implants in the uterus and begins to develop into a complex structure called an embryo. The embryo consists of three layers of cells that will eventually form all of the organs and tissues of the body. During this stage, the basic structures of the body, including the nervous system, heart, and gastrointestinal tract, begin to form.
* Fetal development: This stage begins at the end of the 8th week of pregnancy and continues until birth. During this time, the embryo is called a fetus, and it grows and develops rapidly. The organs and tissues that were formed during the embryonic stage continue to mature and become more complex. The fetus also begins to move and kick, and it can hear and respond to sounds from outside the womb.

Overall, embryonic and fetal development is a complex and highly regulated process that involves the coordinated growth and differentiation of cells and tissues. It is a critical period of development that lays the foundation for the health and well-being of the individual throughout their life.

Radioimmunoassay (RIA) is a highly sensitive analytical technique used in clinical and research laboratories to measure concentrations of various substances, such as hormones, vitamins, drugs, or tumor markers, in biological samples like blood, urine, or tissues. The method relies on the specific interaction between an antibody and its corresponding antigen, combined with the use of radioisotopes to quantify the amount of bound antigen.

In a typical RIA procedure, a known quantity of a radiolabeled antigen (also called tracer) is added to a sample containing an unknown concentration of the same unlabeled antigen. The mixture is then incubated with a specific antibody that binds to the antigen. During the incubation period, the antibody forms complexes with both the radiolabeled and unlabeled antigens.

After the incubation, the unbound (free) radiolabeled antigen is separated from the antibody-antigen complexes, usually through a precipitation or separation step involving centrifugation, filtration, or chromatography. The amount of radioactivity in the pellet (containing the antibody-antigen complexes) is then measured using a gamma counter or other suitable radiation detection device.

The concentration of the unlabeled antigen in the sample can be determined by comparing the ratio of bound to free radiolabeled antigen in the sample to a standard curve generated from known concentrations of unlabeled antigen and their corresponding bound/free ratios. The higher the concentration of unlabeled antigen in the sample, the lower the amount of radiolabeled antigen that will bind to the antibody, resulting in a lower bound/free ratio.

Radioimmunoassays offer high sensitivity, specificity, and accuracy, making them valuable tools for detecting and quantifying low levels of various substances in biological samples. However, due to concerns about radiation safety and waste disposal, alternative non-isotopic immunoassay techniques like enzyme-linked immunosorbent assays (ELISAs) have become more popular in recent years.

I'm sorry for any confusion, but I was unable to find a medical definition for "Flurogestone Acetate." It is possible that there may be a spelling error or it could be a medication that is not widely recognized in the medical field. If you have more information about this term, such as its alternate names or the context in which it's used, I might be able to provide a more accurate response.

Fluorogestone acetate is a synthetic progestogen, which is a type of hormone that is similar to the natural progesterone produced by the body. It has been used in some formulations for hormonal contraception and hormone replacement therapy. However, it's important to note that specific medications and their uses may vary depending on the country and region, so I cannot provide a definitive medical definition without more context.

If you have any concerns about your medication or its effects, please consult with a healthcare professional for accurate information tailored to your situation.

Metformin is a type of biguanide antihyperglycemic agent used primarily in the treatment of type 2 diabetes mellitus. It works by decreasing glucose production in the liver, reducing glucose absorption in the gut, and increasing insulin sensitivity in muscle and fat tissue. By lowering both basal and postprandial plasma glucose levels, metformin helps to control blood sugar levels and improve glycemic control. It is also used off-label for various other indications such as polycystic ovary syndrome (PCOS) and gestational diabetes. Common side effects include diarrhea, nausea, vomiting, and abdominal discomfort. Lactic acidosis is a rare but serious side effect that requires immediate medical attention.

Hormone antagonists are substances or drugs that block the action of hormones by binding to their receptors without activating them, thereby preventing the hormones from exerting their effects. They can be classified into two types: receptor antagonists and enzyme inhibitors. Receptor antagonists bind directly to hormone receptors and prevent the hormone from binding, while enzyme inhibitors block the production or breakdown of hormones by inhibiting specific enzymes involved in their metabolism. Hormone antagonists are used in the treatment of various medical conditions, such as cancer, hormonal disorders, and cardiovascular diseases.

Infertility is a reproductive health disorder defined as the failure to achieve a clinical pregnancy after 12 months or more of regular, unprotected sexual intercourse or due to an impairment of a person's capacity to reproduce either as an individual or with their partner. It can be caused by various factors in both men and women, including hormonal imbalances, structural abnormalities, genetic issues, infections, age, lifestyle factors, and others. Infertility can have significant emotional and psychological impacts on individuals and couples experiencing it, and medical intervention may be necessary to help them conceive.

Cumulus cells are a type of specialized cell that surround and support the egg (oocyte) in the ovary of female mammals, including humans. These cells are located in the cumulus oophorus, which is a cluster of cells that surrounds and protects the mature egg within the follicle.

Cumulus cells play an important role in the process of fertilization by providing nutrients to the developing egg and helping to regulate its growth and development. They also help to facilitate communication between the egg and the surrounding follicular cells, which is necessary for the release of the mature egg from the ovary during ovulation.

In addition to their role in reproduction, cumulus cells have been studied for their potential use in various medical applications, including as a source of stem cells for therapeutic purposes. However, more research is needed to fully understand the properties and potential uses of these cells.

Oviducts, also known as fallopian tubes in humans, are pair of slender tubular structures that serve as the conduit for the ovum (egg) from the ovaries to the uterus. They are an essential part of the female reproductive system, providing a site for fertilization of the egg by sperm and early embryonic development before the embryo moves into the uterus for further growth.

In medical terminology, the term "oviduct" refers to this functional description rather than a specific anatomical structure in all female organisms. The oviducts vary in length and shape across different species, but their primary role remains consistent: to facilitate the transport of the egg and provide a site for fertilization.

Norpregnadienes are a type of steroid hormone that are structurally similar to progesterone, but with certain chemical groups (such as the methyl group at C10) removed. They are formed through the metabolism of certain steroid hormones and can be further metabolized into other compounds.

Norpregnadienes have been studied for their potential role in various physiological processes, including the regulation of reproductive function and the development of certain diseases such as cancer. However, more research is needed to fully understand their functions and clinical significance.

Embryo transfer is a medical procedure that involves the transfer of an embryo, which is typically created through in vitro fertilization (IVF), into the uterus of a woman with the aim of establishing a pregnancy. The embryo may be created using the intended parent's own sperm and eggs or those from donors. After fertilization and early cell division, the resulting embryo is transferred into the uterus of the recipient mother through a thin catheter that is inserted through the cervix. This procedure is typically performed under ultrasound guidance to ensure proper placement of the embryo. Embryo transfer is a key step in assisted reproductive technology (ART) and is often used as a treatment for infertility.

The Corpus Luteum is a temporary endocrine structure formed in the ovary after the release of a mature egg (ovulation) during the menstrual cycle. It produces progesterone and estrogen, which support the early stages of pregnancy by maintaining the lining of the uterus (endometrium). "Corpus Luteum Maintenance" refers to the physiological processes that sustain the function and survival of the Corpus Luteum.

The maintenance of the Corpus Luteum is primarily regulated by two hormones: luteinizing hormone (LH) and human chorionic gonadotropin (hCG). After ovulation, a surge in LH triggers the formation of the Corpus Luteum. In the absence of pregnancy, the Corpus Luteum begins to degenerate after approximately 10-14 days, leading to a decline in progesterone levels and the onset of menstruation.

However, if conception occurs, the developing embryo starts producing hCG, which shares structural similarities with LH. This hCG maintains the Corpus Luteum by binding to LH receptors and stimulating the continued production of progesterone. The high levels of progesterone help thicken the endometrium and prepare it for implantation of the fertilized egg, ensuring a suitable environment for fetal development during early pregnancy.

In summary, Corpus Luteum Maintenance refers to the hormonal regulation and physiological processes that sustain the function and survival of the Corpus Luteum, primarily through the actions of LH and hCG, leading to the production of progesterone and supporting the early stages of pregnancy.

The pituitary gland is a small, endocrine gland located at the base of the brain, in the sella turcica of the sphenoid bone. It is often called the "master gland" because it controls other glands and makes the hormones that trigger many body functions. The pituitary gland measures about 0.5 cm in height and 1 cm in width, and it weighs approximately 0.5 grams.

The pituitary gland is divided into two main parts: the anterior lobe (adenohypophysis) and the posterior lobe (neurohypophysis). The anterior lobe is further divided into three zones: the pars distalis, pars intermedia, and pars tuberalis. Each part of the pituitary gland has distinct functions and produces different hormones.

The anterior pituitary gland produces and releases several important hormones, including:

* Growth hormone (GH), which regulates growth and development in children and helps maintain muscle mass and bone strength in adults.
* Thyroid-stimulating hormone (TSH), which controls the production of thyroid hormones by the thyroid gland.
* Adrenocorticotropic hormone (ACTH), which stimulates the adrenal glands to produce cortisol and other steroid hormones.
* Follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which regulate reproductive function in both males and females.
* Prolactin, which stimulates milk production in pregnant and lactating women.

The posterior pituitary gland stores and releases two hormones that are produced by the hypothalamus:

* Antidiuretic hormone (ADH), which helps regulate water balance in the body by controlling urine production.
* Oxytocin, which stimulates uterine contractions during childbirth and milk release during breastfeeding.

Overall, the pituitary gland plays a critical role in maintaining homeostasis and regulating various bodily functions, including growth, development, metabolism, and reproductive function.

Melengestrol Acetate (MGA) is a synthetic progestin, which is a type of steroid hormone. It is used primarily as a growth promoter in the livestock industry to increase weight gain and feed efficiency in beef cattle. MGA works by suppressing the animal's natural hormonal balance, particularly the levels of estrogen and testosterone, which leads to changes in metabolism and behavior that promote weight gain.

It is not approved for use in humans in many countries, including the United States, due to concerns about potential health risks associated with its long-term use, such as reproductive and developmental effects. However, it has been used off-label in some cases to treat certain medical conditions in women, such as endometriosis or abnormal uterine bleeding, under the close supervision of a healthcare provider.

The endometrium is the innermost layer of the uterus, which lines the uterine cavity and has a critical role in the menstrual cycle and pregnancy. It is composed of glands and blood vessels that undergo cyclic changes under the influence of hormones, primarily estrogen and progesterone. During the menstrual cycle, the endometrium thickens in preparation for a potential pregnancy. If fertilization does not occur, it will break down and be shed, resulting in menstruation. In contrast, if implantation takes place, the endometrium provides essential nutrients to support the developing embryo and placenta throughout pregnancy.

Estrone is a type of estrogen, which is a female sex hormone. It's one of the three major naturally occurring estrogens in women, along with estradiol and estriol. Estrone is weaker than estradiol but has a longer half-life, meaning it remains active in the body for a longer period of time.

Estrone is produced primarily in the ovaries, adrenal glands, and fat tissue. In postmenopausal women, when the ovaries stop producing estradiol, estrone becomes the dominant form of estrogen. It plays a role in maintaining bone density, regulating the menstrual cycle, and supporting the development and maintenance of female sexual characteristics.

Like other forms of estrogen, estrone can also have effects on various tissues throughout the body, including the brain, heart, and breast tissue. Abnormal levels of estrone, either too high or too low, can contribute to a variety of health issues, such as osteoporosis, menstrual irregularities, and increased risk of certain types of cancer.

Testosterone is a steroid hormone that belongs to androsten class of hormones. It is primarily secreted by the Leydig cells in the testes of males and, to a lesser extent, by the ovaries and adrenal glands in females. Testosterone is the main male sex hormone and anabolic steroid. It plays a key role in the development of masculine characteristics, such as body hair and muscle mass, and contributes to bone density, fat distribution, red cell production, and sex drive. In females, testosterone contributes to sexual desire and bone health. Testosterone is synthesized from cholesterol and its production is regulated by luteinizing hormone (LH) and follicle-stimulating hormone (FSH).

Pseudopregnancy, also known as pseudocyesis or phantom pregnancy, is a psychological condition where an individual (most commonly in women) believes they are pregnant when they are not. This belief is often accompanied by various physical symptoms such as weight gain, abdominal distention, and breast enlargement that mimic those of a genuine pregnancy, despite there being no actual fetal development. These symptoms are caused by the body's hormonal and physiological responses to the individual's strong belief of being pregnant. It is important to note that this condition is rare and can be resolved with proper medical evaluation, counseling, and support.

"Random allocation," also known as "random assignment" or "randomization," is a process used in clinical trials and other research studies to distribute participants into different intervention groups (such as experimental group vs. control group) in a way that minimizes selection bias and ensures the groups are comparable at the start of the study.

In random allocation, each participant has an equal chance of being assigned to any group, and the assignment is typically made using a computer-generated randomization schedule or other objective methods. This process helps to ensure that any differences between the groups are due to the intervention being tested rather than pre-existing differences in the participants' characteristics.

An ovum is the female reproductive cell, or gamete, produced in the ovaries. It is also known as an egg cell and is released from the ovary during ovulation. When fertilized by a sperm, it becomes a zygote, which can develop into a fetus. The ovum contains half the genetic material necessary to create a new individual.

Luteinizing Hormone (LH) receptors are specialized protein structures found on the surface of certain cells in the body. They play a crucial role in the endocrine system by binding to specific hormones, such as Luteinizing Hormone, and triggering a series of intracellular events that ultimately lead to changes in cell function.

In particular, LH receptors are found on the cells of the ovaries and testes. In females, when LH binds to its receptor in the ovary, it stimulates ovulation and the development of the corpus luteum, which produces progesterone. In males, LH (also known as Interstitial Cell-Stimulating Hormone in this context) binding to its receptor on testicular Leydig cells triggers the production of testosterone.

Therefore, LH receptors are essential for reproductive processes and the maintenance of secondary sexual characteristics.

A live birth is the complete expulsion or extraction from its mother of a product of human conception, irrespective of the duration of the pregnancy, that, after such separation, breathes or shows any other evidence of life - such as beating of the heart, pulsation of the umbilical cord, or definite movement of voluntary muscles - whether or not the umbilical cord has been cut or the placenta is attached.

This definition is used by the World Health Organization (WHO) and most national statistical agencies to distinguish live births from stillbirths. It's important to note that in some medical contexts, a different definition of live birth may be used.

In the field of medicine, twins are defined as two offspring produced by the same pregnancy. They can be either monozygotic (identical) or dizygotic (fraternal). Monozygotic twins develop from a single fertilized egg that splits into two separate embryos, resulting in individuals who share identical genetic material. Dizygotic twins, on the other hand, result from the fertilization of two separate eggs by two different sperm cells, leading to siblings who share about 50% of their genetic material, similar to non-twin siblings.

Time-to-Pregnancy (TTP) is a measure used in reproductive medicine and epidemiology to assess fertility. It refers to the length of time it takes for a sexually active couple to conceive from the start of trying to become pregnant, typically measured in menstrual cycles. A shorter TTP indicates higher fertility, while a longer TTP may suggest decreased fertility or potential underlying fertility issues. The World Health Organization (WHO) defines TTP of 12 months or more as a useful cut-off point for identifying couples who may require further evaluation and medical intervention to address infertility concerns.

Body fluids refer to the various liquids that can be found within and circulating throughout the human body. These fluids include, but are not limited to:

1. Blood: A fluid that carries oxygen, nutrients, hormones, and waste products throughout the body via the cardiovascular system. It is composed of red and white blood cells suspended in plasma.
2. Lymph: A clear-to-white fluid that circulates through the lymphatic system, helping to remove waste products, bacteria, and damaged cells from tissues while also playing a crucial role in the immune system.
3. Interstitial fluid: Also known as tissue fluid or extracellular fluid, it is the fluid that surrounds the cells in the body's tissues, allowing for nutrient exchange and waste removal between cells and blood vessels.
4. Cerebrospinal fluid (CSF): A clear, colorless fluid that circulates around the brain and spinal cord, providing protection, cushioning, and nutrients to these delicate structures while also removing waste products.
5. Pleural fluid: A small amount of lubricating fluid found in the pleural space between the lungs and the chest wall, allowing for smooth movement during respiration.
6. Pericardial fluid: A small amount of lubricating fluid found within the pericardial sac surrounding the heart, reducing friction during heart contractions.
7. Synovial fluid: A viscous, lubricating fluid found in joint spaces, allowing for smooth movement and protecting the articular cartilage from wear and tear.
8. Urine: A waste product produced by the kidneys, consisting of water, urea, creatinine, and various ions, which is excreted through the urinary system.
9. Gastrointestinal secretions: Fluids produced by the digestive system, including saliva, gastric juice, bile, pancreatic juice, and intestinal secretions, which aid in digestion, absorption, and elimination of food particles.
10. Reproductive fluids: Secretions from the male (semen) and female (cervical mucus, vaginal lubrication) reproductive systems that facilitate fertilization and reproduction.

Assisted reproductive techniques (ART) are medical procedures that involve the handling of human sperm and ova to establish a pregnancy. These techniques are used when other methods of achieving pregnancy have failed or are not available. Examples of ART include in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), gamete intrafallopian transfer (GIFT), and zygote intrafallopian transfer (ZIFT). These procedures may be used to treat infertility, prevent genetic disorders, or to help same-sex couples or single people have children. It is important to note that the use of ART can involve significant physical, emotional, and financial costs, and it may not always result in a successful pregnancy.

Progestins are a class of steroid hormones that are similar to progesterone, a natural hormone produced by the ovaries during the menstrual cycle and pregnancy. They are often used in hormonal contraceptives, such as birth control pills, shots, and implants, to prevent ovulation and thicken the cervical mucus, making it more difficult for sperm to reach the egg. Progestins are also used in menopausal hormone therapy to alleviate symptoms of menopause, such as hot flashes and vaginal dryness. Additionally, progestins may be used to treat endometriosis, uterine fibroids, and breast cancer. Different types of progestins have varying properties and may be more suitable for certain indications or have different side effect profiles.

Weaning is the process of gradually introducing an infant or young child to a new source of nutrition, such as solid foods, while simultaneously decreasing their dependence on breast milk or formula. This process can begin when the child is developmentally ready, typically around 6 months of age, and involves offering them small amounts of pureed or mashed foods to start, then gradually introducing more textured and varied foods as they become comfortable with the new diet. The weaning process should be done slowly and under the guidance of a healthcare provider to ensure that the child's nutritional needs are being met and to avoid any potential digestive issues.

Oviposition is a medical/biological term that refers to the process of laying or depositing eggs by female organisms, including birds, reptiles, insects, and fish. In humans and other mammals, the term is not applicable since they give birth to live young rather than laying eggs.

Mifepristone is a synthetic steroid that is used in the medical termination of pregnancy (also known as medication abortion or RU-486). It works by blocking the action of progesterone, a hormone necessary for maintaining pregnancy. Mifepristone is often used in combination with misoprostol to cause uterine contractions and expel the products of conception from the uterus.

It's also known as an antiprogestin or progesterone receptor modulator, which means it can bind to progesterone receptors in the body and block their activity. In addition to its use in pregnancy termination, mifepristone has been studied for its potential therapeutic uses in conditions such as Cushing's syndrome, endometriosis, uterine fibroids, and hormone-dependent cancers.

It is important to note that Mifepristone should be administered under the supervision of a licensed healthcare professional and it is not available over the counter. Also, it has some contraindications and potential side effects, so it's essential to have a consultation with a doctor before taking this medication.

Steroids, also known as corticosteroids, are a type of hormone that the adrenal gland produces in your body. They have many functions, such as controlling the balance of salt and water in your body and helping to reduce inflammation. Steroids can also be synthetically produced and used as medications to treat a variety of conditions, including allergies, asthma, skin conditions, and autoimmune disorders.

Steroid medications are available in various forms, such as oral pills, injections, creams, and inhalers. They work by mimicking the effects of natural hormones produced by your body, reducing inflammation and suppressing the immune system's response to prevent or reduce symptoms. However, long-term use of steroids can have significant side effects, including weight gain, high blood pressure, osteoporosis, and increased risk of infections.

It is important to note that anabolic steroids are a different class of drugs that are sometimes abused for their muscle-building properties. These steroids are synthetic versions of the male hormone testosterone and can have serious health consequences when taken in large doses or without medical supervision.

Intravaginal administration refers to the delivery of medications or other substances directly into the vagina. This route of administration can be used for local treatment of vaginal infections or inflammation, or to deliver systemic medication that is absorbed through the vaginal mucosa.

Medications can be administered intravaginally using a variety of dosage forms, including creams, gels, foams, suppositories, and films. The choice of dosage form depends on several factors, such as the drug's physicochemical properties, the desired duration of action, and patient preference.

Intravaginal administration offers several advantages over other routes of administration. It allows for direct delivery of medication to the site of action, which can result in higher local concentrations and fewer systemic side effects. Additionally, some medications may be more effective when administered intravaginally due to their ability to bypass first-pass metabolism in the liver.

However, there are also potential disadvantages to intravaginal administration. Some women may find it uncomfortable or inconvenient to use this route of administration, and there is a risk of leakage or expulsion of the medication. Additionally, certain medications may cause local irritation or allergic reactions when administered intravaginally.

Overall, intravaginal administration can be a useful route of administration for certain medications and conditions, but it is important to consider the potential benefits and risks when choosing this method.

Prostaglandin F (PGF) is a type of prostaglandin, which is a group of lipid compounds that are synthesized in the body from fatty acids and have diverse hormone-like effects. Prostaglandin F is a naturally occurring compound that is produced in various tissues throughout the body, including the uterus, lungs, and kidneys.

There are two major types of prostaglandin F: PGF1α and PGF2α. These compounds play important roles in a variety of physiological processes, including:

* Uterine contraction: Prostaglandin F helps to stimulate uterine contractions during labor and childbirth. It is also involved in the shedding of the uterine lining during menstruation.
* Bronchodilation: In the lungs, prostaglandin F can help to relax bronchial smooth muscle and promote bronchodilation.
* Renal function: Prostaglandin F helps to regulate blood flow and fluid balance in the kidneys.

Prostaglandin F is also used as a medication to induce labor, treat postpartum hemorrhage, and manage some types of glaucoma. It is available in various forms, including injections, tablets, and eye drops.

Contraceptive agents, female, are medications or devices specifically designed to prevent pregnancy in women. They work by interfering with the normal process of ovulation, fertilization, or implantation of a fertilized egg in the uterus. Some common examples of female contraceptive agents include:

1. Hormonal methods: These include combined oral contraceptives (COCs), progestin-only pills, patches, vaginal rings, and hormonal implants. They contain synthetic forms of the female hormones estrogen and/or progesterone, which work by preventing ovulation, thickening cervical mucus to make it harder for sperm to reach the egg, or thinning the lining of the uterus to prevent implantation of a fertilized egg.
2. Intrauterine devices (IUDs): These are small, T-shaped devices made of plastic or copper that are inserted into the uterus by a healthcare provider. They release hormones or copper ions that interfere with sperm movement and prevent fertilization or implantation.
3. Barrier methods: These include condoms, diaphragms, cervical caps, and sponges. They work by physically preventing sperm from reaching the egg.
4. Emergency contraception: This includes medications such as Plan B or Ella, which can be taken up to 5 days after unprotected sex to prevent pregnancy. They work by delaying ovulation or preventing fertilization of the egg.
5. Fertility awareness-based methods (FABMs): These involve tracking a woman's menstrual cycle and avoiding sexual intercourse during her fertile window. Some FABMs also involve using barrier methods during this time.

It is important to note that different contraceptive agents have varying levels of effectiveness, side effects, and risks. Women should consult with their healthcare provider to determine the best method for their individual needs and circumstances.

Fetal death, also known as stillbirth or intrauterine fetal demise, is defined as the death of a fetus at 20 weeks of gestation or later. The criteria for defining fetal death may vary slightly by country and jurisdiction, but in general, it refers to the loss of a pregnancy after the point at which the fetus is considered viable outside the womb.

Fetal death can occur for a variety of reasons, including chromosomal abnormalities, placental problems, maternal health conditions, infections, and umbilical cord accidents. In some cases, the cause of fetal death may remain unknown.

The diagnosis of fetal death is typically made through ultrasound or other imaging tests, which can confirm the absence of a heartbeat or movement in the fetus. Once fetal death has been diagnosed, medical professionals will work with the parents to determine the best course of action for managing the pregnancy and delivering the fetus. This may involve waiting for labor to begin naturally, inducing labor, or performing a cesarean delivery.

Experiencing a fetal death can be a very difficult and emotional experience for parents, and it is important for them to receive supportive care from their healthcare providers, family members, and friends. Grief counseling and support groups may also be helpful in coping with the loss.

"Intramuscular injections" refer to a medical procedure where a medication or vaccine is administered directly into the muscle tissue. This is typically done using a hypodermic needle and syringe, and the injection is usually given into one of the large muscles in the body, such as the deltoid (shoulder), vastus lateralis (thigh), or ventrogluteal (buttock) muscles.

Intramuscular injections are used for a variety of reasons, including to deliver medications that need to be absorbed slowly over time, to bypass stomach acid and improve absorption, or to ensure that the medication reaches the bloodstream quickly and directly. Common examples of medications delivered via intramuscular injection include certain vaccines, antibiotics, and pain relievers.

It is important to follow proper technique when administering intramuscular injections to minimize pain and reduce the risk of complications such as infection or injury to surrounding tissues. Proper site selection, needle length and gauge, and injection technique are all critical factors in ensuring a safe and effective intramuscular injection.

Estrogens are a group of steroid hormones that are primarily responsible for the development and regulation of female sexual characteristics and reproductive functions. They are also present in lower levels in males. The main estrogen hormone is estradiol, which plays a key role in promoting the growth and development of the female reproductive system, including the uterus, fallopian tubes, and breasts. Estrogens also help regulate the menstrual cycle, maintain bone density, and have important effects on the cardiovascular system, skin, hair, and cognitive function.

Estrogens are produced primarily by the ovaries in women, but they can also be produced in smaller amounts by the adrenal glands and fat cells. In men, estrogens are produced from the conversion of testosterone, the primary male sex hormone, through a process called aromatization.

Estrogen levels vary throughout a woman's life, with higher levels during reproductive years and lower levels after menopause. Estrogen therapy is sometimes used to treat symptoms of menopause, such as hot flashes and vaginal dryness, or to prevent osteoporosis in postmenopausal women. However, estrogen therapy also carries risks, including an increased risk of certain cancers, blood clots, and stroke, so it is typically recommended only for women who have a high risk of these conditions.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

The cervix is the lower, narrow part of the uterus that opens into the vagina. Cervical mucus is a clear or cloudy secretion produced by glands in the cervix. The amount and consistency of cervical mucus changes throughout a woman's menstrual cycle, influenced by hormonal fluctuations.

During the fertile window (approximately mid-cycle), estrogen levels rise, causing the cervical mucus to become more abundant, clear, and stretchy (often described as resembling raw egg whites). This "fertile" mucus facilitates the movement of sperm through the cervix and into the uterus, increasing the chances of fertilization.

As the menstrual cycle progresses and progesterone levels rise after ovulation, cervical mucus becomes thicker, cloudier, and less abundant, making it more difficult for sperm to penetrate. This change in cervical mucus helps prevent additional sperm from entering and fertilizing an already-fertilized egg.

Changes in cervical mucus can be used as a method of natural family planning or fertility awareness, with women checking their cervical mucus daily to identify their most fertile days. However, this method should be combined with other tracking methods for increased accuracy and reliability.

I'm sorry for any confusion, but "goats" is not a term commonly used in medical definitions. It is a common noun referring to the domesticated animal species Capra aegagrus hircus. If you have any questions about a specific medical condition or term, please provide that and I would be happy to help.

An ovarian cyst is a sac or pouch filled with fluid that forms on the ovary. Ovarian cysts are quite common in women during their childbearing years, and they often cause no symptoms. In most cases, ovarian cysts disappear without treatment over a few months. However, larger or persistent cysts may require medical intervention, including surgical removal.

There are various types of ovarian cysts, such as functional cysts (follicular and corpus luteum cysts), which develop during the menstrual cycle due to hormonal changes, and non-functional cysts (dermoid cysts, endometriomas, and cystadenomas), which can form due to different causes.

While many ovarian cysts are benign, some may have malignant potential or indicate an underlying medical condition like polycystic ovary syndrome (PCOS). Regular gynecological check-ups, including pelvic examinations and ultrasounds, can help detect and monitor ovarian cysts.

Ovarian diseases refer to a range of conditions that affect the function and health of the ovaries, which are the female reproductive organs responsible for producing eggs (oocytes) and female hormones estrogen and progesterone. These diseases can be categorized into functional disorders, infectious and inflammatory diseases, neoplastic diseases, and other conditions that impact ovarian function. Here's a brief overview of some common ovarian diseases:

1. Functional Disorders: These are conditions where the ovaries experience hormonal imbalances or abnormal functioning, leading to issues such as:
* Polycystic Ovary Syndrome (PCOS): A condition characterized by hormonal imbalances that can cause irregular periods, cysts in the ovaries, and symptoms like acne, weight gain, and infertility.
* Functional Cysts: Fluid-filled sacs that develop within the ovary, usually as a result of normal ovulation (follicular or corpus luteum cysts). They're typically harmless and resolve on their own within a few weeks or months.
2. Infectious and Inflammatory Diseases: These conditions are caused by infections or inflammation affecting the ovaries, such as:
* Pelvic Inflammatory Disease (PID): An infection that spreads to the reproductive organs, including the ovaries, fallopian tubes, and uterus. It's often caused by sexually transmitted bacteria like Chlamydia trachomatis or Neisseria gonorrhoeae.
* Tuberculosis (TB): A bacterial infection that can spread to the ovaries and cause inflammation, abscesses, or scarring.
3. Neoplastic Diseases: These are conditions where abnormal growths or tumors develop in the ovaries, which can be benign (non-cancerous) or malignant (cancerous). Examples include:
* Ovarian Cysts: While some cysts are functional and harmless, others can be neoplastic. Benign tumors like fibromas, dermoids, or cystadenomas can grow significantly larger and cause symptoms like pain or bloating. Malignant tumors include epithelial ovarian cancer, germ cell tumors, and sex cord-stromal tumors.
4. Other Conditions: Various other conditions can affect the ovaries, such as:
* Polycystic Ovary Syndrome (PCOS): A hormonal disorder that causes enlarged ovaries with small cysts. It's associated with irregular periods, infertility, and increased risk of diabetes, high blood pressure, and heart disease.
* Premature Ovarian Failure (POF): Also known as primary ovarian insufficiency, it occurs when the ovaries stop functioning before age 40, leading to menstrual irregularities, infertility, and early onset of menopause.

It's essential to consult a healthcare professional if you experience any symptoms related to your reproductive system or suspect an issue with your ovaries. Early detection and treatment can significantly improve the prognosis for many conditions affecting the ovaries.

A Follicular Cyst is a type of cyst that forms within a follicle, which is the sac-like structure in the skin that contains and protects a hair root. In particular, it refers to a specific condition in the ovary where a follicle fails to rupture or release an egg after maturation, instead continuing to grow and fill with fluid, forming a cyst. These cysts are usually asymptomatic but can become large and cause symptoms such as pelvic pain or discomfort, irregular menstrual cycles, or abnormal vaginal bleeding. In most cases, follicular cysts resolve on their own within 2-3 menstrual cycles, but in rare cases, they may require medical intervention if they become complicated or do not resolve.

I'm sorry for any confusion, but "trout" is not a term typically used in medical definitions. Trout is a common name that refers to several species of freshwater fish belonging to the salmonid family. If you have any questions related to medical terminology or health concerns, I would be happy to try and help answer those for you.

Reproductive techniques refer to various methods and procedures used to assist individuals or couples in achieving pregnancy, carrying a pregnancy to term, or preserving fertility. These techniques can be broadly categorized into assisted reproductive technology (ART) and fertility preservation.

Assisted reproductive technology (ART) includes procedures such as:

1. In vitro fertilization (IVF): A process where an egg is fertilized by sperm outside the body in a laboratory dish, and then the resulting embryo is transferred to a woman's uterus.
2. Intracytoplasmic sperm injection (ICSI): A procedure where a single sperm is directly injected into an egg to facilitate fertilization.
3. Embryo culture and cryopreservation: The process of growing embryos in a laboratory for a few days before freezing them for later use.
4. Donor gametes: Using eggs, sperm, or embryos from a known or anonymous donor to achieve pregnancy.
5. Gestational surrogacy: A method where a woman carries and gives birth to a baby for another individual or couple who cannot carry a pregnancy themselves.

Fertility preservation techniques include:

1. Sperm banking: The process of freezing and storing sperm for future use in artificial reproduction.
2. Egg (oocyte) freezing: A procedure where a woman's eggs are extracted, frozen, and stored for later use in fertility treatments.
3. Embryo freezing: The cryopreservation of embryos created through IVF for future use.
4. Ovarian tissue cryopreservation: The freezing and storage of ovarian tissue to restore fertility after cancer treatment or other conditions that may affect fertility.
5. Testicular tissue cryopreservation: The collection and storage of testicular tissue in prepubertal boys undergoing cancer treatment to preserve their future fertility potential.

A "camel" is a large, even-toed ungulate that belongs to the genus Camelus in the family Camelidae. There are two species of camels: the dromedary camel (Camelus dromedarius), also known as the Arabian camel, which has one hump, and the Bactrian camel (Camelus bactrianus), which has two humps.

Camels are well adapted to life in arid environments and are native to the Middle East and Central Asia. They have long legs, large, flat feet that help them walk on sand, and a thick coat of hair that helps protect them from the sun and cold temperatures. Camels are also known for their ability to store fat in their humps, which they can convert into water and energy when food and water are scarce.

Camels have been domesticated for thousands of years and have played an important role in human history as transportation, pack animals, and sources of meat, milk, and wool. They are also used in traditional medicine and religious ceremonies in some cultures.

Indomethacin is a non-steroidal anti-inflammatory drug (NSAID) that is commonly used to reduce pain, inflammation, and fever. It works by inhibiting the activity of certain enzymes in the body, including cyclooxygenase (COX), which plays a role in producing prostaglandins, chemicals involved in the inflammatory response.

Indomethacin is available in various forms, such as capsules, suppositories, and injectable solutions, and is used to treat a wide range of conditions, including rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, gout, and bursitis. It may also be used to relieve pain and reduce fever in other conditions, such as dental procedures or after surgery.

Like all NSAIDs, indomethacin can have side effects, including stomach ulcers, bleeding, and kidney damage, especially when taken at high doses or for long periods of time. It may also increase the risk of heart attack and stroke. Therefore, it is important to use indomethacin only as directed by a healthcare provider and to report any unusual symptoms or side effects promptly.

New World camelids are a family of mammals (Camelidae) that are native to South America. The family includes four species: the llama (Lama glama), the alpaca (Vicugna pacos), the guanaco (Lama guanicoe), and the vicuña (Vicugna vicugna). These animals are characterized by their long necks, long legs, and a pad on their chest instead of a true knee joint. They are known for their ability to survive in harsh environments with limited water and food resources.

Female genitalia refer to the reproductive and sexual organs located in the female pelvic region. They are primarily involved in reproduction, menstruation, and sexual activity. The external female genitalia, also known as the vulva, include the mons pubis, labia majora, labia minora, clitoris, and the external openings of the urethra and vagina. The internal female genitalia consist of the vagina, cervix, uterus, fallopian tubes, and ovaries. These structures work together to facilitate menstruation, fertilization, pregnancy, and childbirth.

Electrocoagulation is a medical procedure that uses heat generated from an electrical current to cause coagulation (clotting) of tissue. This procedure is often used to treat a variety of medical conditions, such as:

* Gastrointestinal bleeding: Electrocoagulation can be used to control bleeding in the stomach or intestines by applying an electrical current to the affected blood vessels, causing them to shrink and clot.
* Skin lesions: Electrocoagulation can be used to remove benign or malignant skin lesions, such as warts, moles, or skin tags, by applying an electrical current to the growth, which causes it to dehydrate and eventually fall off.
* Vascular malformations: Electrocoagulation can be used to treat vascular malformations (abnormal blood vessels) by applying an electrical current to the affected area, causing the abnormal vessels to shrink and clot.

The procedure is typically performed using a specialized device that delivers an electrical current through a needle or probe. The intensity and duration of the electrical current can be adjusted to achieve the desired effect. Electrocoagulation may be used alone or in combination with other treatments, such as surgery or medication.

It's important to note that electrocoagulation is not without risks, including burns, infection, and scarring. It should only be performed by a qualified medical professional who has experience with the procedure.

Follicle-stimulating hormone (FSH) receptors are specialized protein structures found on the surface of specific cells in the body. They play a crucial role in the endocrine system, particularly in the regulation of reproduction and development.

FSH receptors are primarily located on the granulosa cells that surround and support the developing eggs (oocytes) within the ovarian follicles in females. In males, these receptors can be found on the Sertoli cells in the seminiferous tubules of the testes.

When FSH, a glycoprotein hormone secreted by the anterior pituitary gland, binds to its specific receptor, it triggers a series of intracellular signaling events that ultimately lead to various physiological responses. In females, FSH receptor activation stimulates follicle growth, estrogen production, and oocyte maturation. In males, FSH receptor signaling supports spermatogenesis, the process of sperm cell development within the testes.

In summary, FSH receptors are essential components in the hormonal regulation of reproduction and development, mediating the actions of follicle-stimulating hormone on target cells in both females and males.

Spermatozoa are the male reproductive cells, or gametes, that are produced in the testes. They are microscopic, flagellated (tail-equipped) cells that are highly specialized for fertilization. A spermatozoon consists of a head, neck, and tail. The head contains the genetic material within the nucleus, covered by a cap-like structure called the acrosome which contains enzymes to help the sperm penetrate the female's egg (ovum). The long, thin tail propels the sperm forward through fluid, such as semen, enabling its journey towards the egg for fertilization.

Levonorgestrel is a synthetic form of the natural hormone progesterone, which is used in various forms of birth control and emergency contraceptives. It works by preventing ovulation (the release of an egg from the ovaries), thickening cervical mucus to make it harder for sperm to reach the egg, and thinning the lining of the uterus to make it less likely for a fertilized egg to implant.

Medically, Levonorgestrel is classified as a progestin and is available in various forms, including oral tablets, intrauterine devices (IUDs), and emergency contraceptive pills. It may also be used to treat endometriosis, irregular menstrual cycles, and heavy menstrual bleeding.

It's important to note that while Levonorgestrel is a highly effective form of birth control when used correctly, it does not protect against sexually transmitted infections (STIs). Therefore, condoms should still be used during sexual activity if there is any risk of STI transmission.

I'm sorry for any confusion, but "Judaism" is not a medical term. It is a religion, ethnicity, and culture originating in the Judaea region of the Middle East. Judaism is based on the teachings of the Torah and the Talmud, and it includes various practices, beliefs, and traditions. If you have any questions about medical terminology or health-related topics, I would be happy to try to help answer those for you.

Postcoital contraceptives, also known as emergency contraceptives, are methods used to prevent pregnancy after sexual intercourse. The synthetic postcoital contraceptive is a type of emergency contraception that contains synthetic hormones, such as levonorgestrel or ulipristal acetate. These hormones work by preventing ovulation, inhibiting fertilization, or altering the lining of the uterus to prevent implantation of a fertilized egg.

The most common synthetic postcoital contraceptive is the levonorgestrel emergency contraceptive pill (LNG-ECP), which contains a high dose of the synthetic hormone levonorgestrel. It is usually taken as a single dose within 72 hours (3 days) of unprotected sexual intercourse, but it is most effective when taken as soon as possible after intercourse.

Another synthetic postcoital contraceptive is ulipristal acetate, which is also taken as a single dose but within 120 hours (5 days) of unprotected sexual intercourse. Ulipristal acetate works by delaying ovulation and preventing the fertilized egg from implanting in the uterus.

It's important to note that synthetic postcoital contraceptives are not intended for regular use as a primary form of birth control, but rather as an emergency measure to prevent pregnancy after unprotected sexual intercourse or contraceptive failure. They should be used under the guidance of a healthcare provider and should not be used in place of regular contraception.

"Animals, Zoo" is not a medical term. However, it generally refers to a collection of various species of wild animals kept in enclosures or exhibits for the public to view and learn about. These animals are usually obtained from different parts of the world and live in environments that attempt to simulate their natural habitats. Zoos play an essential role in conservation efforts, education, and research. They provide a unique opportunity for people to connect with wildlife and understand the importance of preserving and protecting endangered species and their ecosystems.

Artificial insemination, homologous is a medical procedure where sperm from a woman's partner (the husband or male partner in a heterosexual relationship) is collected, processed and then inserted into the woman's reproductive tract through various methods to achieve fertilization and pregnancy. This method is often used when the male partner has issues with infertility, such as low sperm count or poor sperm motility, or when there are physical barriers that prevent natural conception from occurring. It is a type of artificial insemination that utilizes sperm from a genetically related source, as opposed to artificial insemination with donor (AID) sperm, which uses sperm from an anonymous or known donor.

Animal husbandry is the practice of breeding and raising animals for agricultural purposes, such as for the production of meat, milk, eggs, or fiber. It involves providing proper care for the animals, including feeding, housing, health care, and breeding management. The goal of animal husbandry is to maintain healthy and productive animals while also being mindful of environmental sustainability and animal welfare.

Reproductive physiological processes refer to the various functional and biological changes that occur in an organism's reproductive system, enabling the production, development, and reproduction of offspring. These processes involve a complex interplay of hormonal signals, cellular interactions, and anatomical structures that work together to ensure successful reproduction.

In females, the reproductive physiological processes include:

1. Oogenesis: The formation and maturation of female gametes (eggs or ova) within the ovaries.
2. Menstrual cycle: A series of hormonal and physical changes that prepare the uterus for potential pregnancy, involving follicular development, ovulation, and endometrial transformation.
3. Fertilization: The fusion of a spermatozoon with an egg to form a zygote.
4. Implantation: The embedding of the fertilized egg (blastocyst) into the uterine lining for further development.
5. Placental development and function: The formation of the placenta, which provides nutrients, oxygen, and waste removal for the developing fetus, as well as producing hormones to maintain pregnancy.
6. Parturition: The onset of labor and delivery of offspring.

In males, the reproductive physiological processes include:

1. Spermatogenesis: The formation and maturation of male gametes (spermatozoa) within the testes.
2. Hormonal regulation: The production and release of hormones such as testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) to maintain spermatogenesis and secondary sexual characteristics.
3. Ejaculation: The expulsion of semen, containing spermatozoa, from the urethra during sexual arousal and orgasm.
4. Fertilization: The fusion of a spermatozoon with an egg to form a zygote.

Pregnancy outcome refers to the final result or status of a pregnancy, including both the health of the mother and the newborn baby. It can be categorized into various types such as:

1. Live birth: The delivery of one or more babies who show signs of life after separation from their mother.
2. Stillbirth: The delivery of a baby who has died in the womb after 20 weeks of pregnancy.
3. Miscarriage: The spontaneous loss of a pregnancy before the 20th week.
4. Abortion: The intentional termination of a pregnancy before the fetus can survive outside the uterus.
5. Ectopic pregnancy: A pregnancy that develops outside the uterus, usually in the fallopian tube, which is not viable and requires medical attention.
6. Preterm birth: The delivery of a baby before 37 weeks of gestation, which can lead to various health issues for the newborn.
7. Full-term birth: The delivery of a baby between 37 and 42 weeks of gestation.
8. Post-term pregnancy: The delivery of a baby after 42 weeks of gestation, which may increase the risk of complications for both mother and baby.

The pregnancy outcome is influenced by various factors such as maternal age, health status, lifestyle habits, genetic factors, and access to quality prenatal care.

Prostaglandins are naturally occurring, lipid-derived hormones that play various important roles in the human body. They are produced in nearly every tissue in response to injury or infection, and they have diverse effects depending on the site of release and the type of prostaglandin. Some of their functions include:

1. Regulation of inflammation: Prostaglandins contribute to the inflammatory response by increasing vasodilation, promoting fluid accumulation, and sensitizing pain receptors, which can lead to symptoms such as redness, heat, swelling, and pain.
2. Modulation of gastrointestinal functions: Prostaglandins protect the stomach lining from acid secretion and promote mucus production, maintaining the integrity of the gastric mucosa. They also regulate intestinal motility and secretion.
3. Control of renal function: Prostaglandins help regulate blood flow to the kidneys, maintain sodium balance, and control renin release, which affects blood pressure and fluid balance.
4. Regulation of smooth muscle contraction: Prostaglandins can cause both relaxation and contraction of smooth muscles in various tissues, such as the uterus, bronchioles, and vascular system.
5. Modulation of platelet aggregation: Some prostaglandins inhibit platelet aggregation, preventing blood clots from forming too quickly or becoming too large.
6. Reproductive system regulation: Prostaglandins are involved in the menstrual cycle, ovulation, and labor induction by promoting uterine contractions.
7. Neurotransmission: Prostaglandins can modulate neurotransmitter release and neuronal excitability, affecting pain perception, mood, and cognition.

Prostaglandins exert their effects through specific G protein-coupled receptors (GPCRs) found on the surface of target cells. There are several distinct types of prostaglandins (PGs), including PGD2, PGE2, PGF2α, PGI2 (prostacyclin), and thromboxane A2 (TXA2). Each type has unique functions and acts through specific receptors. Prostaglandins are synthesized from arachidonic acid, a polyunsaturated fatty acid derived from membrane phospholipids, by the action of cyclooxygenase (COX) enzymes. Nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin and ibuprofen, inhibit COX activity, reducing prostaglandin synthesis and providing analgesic, anti-inflammatory, and antipyretic effects.

The vagina is the canal that joins the cervix (the lower part of the uterus) to the outside of the body. It also is known as the birth canal because babies pass through it during childbirth. The vagina is where sexual intercourse occurs and where menstrual blood exits the body. It has a flexible wall that can expand and retract. During sexual arousal, the vaginal walls swell with blood to become more elastic in order to accommodate penetration.

It's important to note that sometimes people use the term "vagina" to refer to the entire female genital area, including the external structures like the labia and clitoris. But technically, these are considered part of the vulva, not the vagina.

Ethinyl estradiol is a synthetic form of the hormone estrogen that is often used in various forms of hormonal contraception, such as birth control pills. It works by preventing ovulation and thickening cervical mucus to make it more difficult for sperm to reach the egg. Ethinyl estradiol may also be used in combination with other hormones to treat menopausal symptoms or hormonal disorders.

It is important to note that while ethinyl estradiol can be an effective form of hormonal therapy, it can also carry risks and side effects, such as an increased risk of blood clots, stroke, and breast cancer. As with any medication, it should only be used under the guidance and supervision of a healthcare provider.

Body weight is the measure of the force exerted on a scale or balance by an object's mass, most commonly expressed in units such as pounds (lb) or kilograms (kg). In the context of medical definitions, body weight typically refers to an individual's total weight, which includes their skeletal muscle, fat, organs, and bodily fluids.

Healthcare professionals often use body weight as a basic indicator of overall health status, as it can provide insights into various aspects of a person's health, such as nutritional status, metabolic function, and risk factors for certain diseases. For example, being significantly underweight or overweight can increase the risk of developing conditions like malnutrition, diabetes, heart disease, and certain types of cancer.

It is important to note that body weight alone may not provide a complete picture of an individual's health, as it does not account for factors such as muscle mass, bone density, or body composition. Therefore, healthcare professionals often use additional measures, such as body mass index (BMI), waist circumference, and blood tests, to assess overall health status more comprehensively.

Coitus is the medical term for sexual intercourse, which is typically defined as the act of inserting the penis into the vagina for the purpose of sexual pleasure, reproduction, or both. It often involves rhythmic thrusting and movement, and can lead to orgasm in both males and females. Coitus may also be referred to as vaginal sex or penetrative sex.

It's important to note that there are many ways to engage in sexual activity beyond coitus, including oral sex, manual stimulation, and using sex toys. All of these forms of sexual expression can be healthy and normal when practiced safely and with consent.

3-Hydroxysteroid dehydrogenases (3-HSDs) are a group of enzymes that play a crucial role in steroid hormone biosynthesis. These enzymes catalyze the conversion of 3-beta-hydroxy steroids to 3-keto steroids, which is an essential step in the production of various steroid hormones, including progesterone, cortisol, aldosterone, and sex hormones such as testosterone and estradiol.

There are several isoforms of 3-HSDs that are expressed in different tissues and have distinct substrate specificities. For instance, 3-HSD type I is primarily found in the ovary and adrenal gland, where it catalyzes the conversion of pregnenolone to progesterone and 17-hydroxyprogesterone to 17-hydroxycortisol. On the other hand, 3-HSD type II is mainly expressed in the testes, adrenal gland, and placenta, where it catalyzes the conversion of dehydroepiandrosterone (DHEA) to androstenedione and androstenedione to testosterone.

Defects in 3-HSDs can lead to various genetic disorders that affect steroid hormone production and metabolism, resulting in a range of clinical manifestations such as adrenal insufficiency, ambiguous genitalia, and sexual development disorders.

Semen is a complex, whitish fluid that is released from the male reproductive system during ejaculation. It is produced by several glands, including the seminal vesicles, prostate gland, and bulbourethral glands. Semen contains several components, including sperm (the male reproductive cells), as well as various proteins, enzymes, vitamins, and minerals. Its primary function is to transport sperm through the female reproductive tract during sexual intercourse, providing nutrients and aiding in the protection of the sperm as they travel toward the egg for fertilization.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Chlormadinone Acetate is a synthetic progestin, which is a type of female sex hormone. It is used in the treatment of various medical conditions such as endometriosis, uterine fibroids, and abnormal menstrual bleeding. It works by suppressing the natural progesterone produced by the ovaries, thereby preventing the buildup of the lining of the uterus (endometrium). This medication is available in the form of tablets for oral administration.

It's important to note that Chlormadinone Acetate can cause a range of side effects and should only be used under the supervision of a healthcare provider. Additionally, it may interact with other medications, so it's important to inform your doctor about all the medications you are taking before starting this medication.

Endothelin-2 is a type of endothelin, which is a small peptide (small protein) consisting of 21 amino acids. It is primarily produced by the endothelial cells, which line the interior surface of blood vessels. Endothelin-2 is one of three known endothelin isoforms, along with endothelin-1 and endothelin-3.

Endothelin-2 binds to and activates two types of G protein-coupled receptors, called ETA and ETB receptors, which are found on the surface of various cells throughout the body. The activation of these receptors leads to a variety of physiological responses, including vasoconstriction (narrowing of blood vessels), increased heart rate, and inflammation.

Endothelin-2 is involved in several biological processes, such as the regulation of blood pressure, the development of the cardiovascular system, and the modulation of pain perception. However, excessive or prolonged activation of endothelin-2 signaling has been implicated in various pathological conditions, including hypertension, heart failure, atherosclerosis, and cancer.

In summary, Endothelin-2 is a potent vasoconstrictor peptide that plays crucial roles in normal physiology and disease development.

Genetic selection, also known as natural selection, is a fundamental mechanism of evolution. It refers to the process by which certain heritable traits become more or less common in a population over successive generations due to differential reproduction of organisms with those traits.

In genetic selection, traits that increase an individual's fitness (its ability to survive and reproduce) are more likely to be passed on to the next generation, while traits that decrease fitness are less likely to be passed on. This results in a gradual change in the distribution of traits within a population over time, leading to adaptation to the environment and potentially speciation.

Genetic selection can occur through various mechanisms, including viability selection (differential survival), fecundity selection (differences in reproductive success), and sexual selection (choices made by individuals during mating). The process of genetic selection is driven by environmental pressures, such as predation, competition for resources, and changes in the availability of food or habitat.

Perfusion, in medical terms, refers to the process of circulating blood through the body's organs and tissues to deliver oxygen and nutrients and remove waste products. It is a measure of the delivery of adequate blood flow to specific areas or tissues in the body. Perfusion can be assessed using various methods, including imaging techniques like computed tomography (CT) scans, magnetic resonance imaging (MRI), and perfusion scintigraphy.

Perfusion is critical for maintaining proper organ function and overall health. When perfusion is impaired or inadequate, it can lead to tissue hypoxia, acidosis, and cell death, which can result in organ dysfunction or failure. Conditions that can affect perfusion include cardiovascular disease, shock, trauma, and certain surgical procedures.

Aromatase is a enzyme that belongs to the cytochrome P450 superfamily, and it is responsible for converting androgens into estrogens through a process called aromatization. This enzyme plays a crucial role in the steroid hormone biosynthesis pathway, particularly in females where it is primarily expressed in adipose tissue, ovaries, brain, and breast tissue.

Aromatase inhibitors are used as a treatment for estrogen receptor-positive breast cancer in postmenopausal women, as they work by blocking the activity of aromatase and reducing the levels of circulating estrogens in the body.

Contraceptive devices for females refer to medical products designed to prevent pregnancy by blocking or interfering with the sperm's ability to reach and fertilize an egg. Some common examples of female contraceptive devices include:

1. Diaphragm: A shallow, flexible dome made of silicone that is inserted into the vagina before sexual intercourse to cover the cervix and prevent sperm from entering the uterus.
2. Cervical Cap: Similar to a diaphragm but smaller in size, the cervical cap fits over the cervix and creates a barrier to sperm entry.
3. Intrauterine Device (IUD): A small, T-shaped device made of plastic or copper that is inserted into the uterus by a healthcare professional. IUDs can prevent pregnancy for several years and work by changing the chemistry of the cervical mucus and uterine lining to inhibit sperm movement and implantation of a fertilized egg.
4. Contraceptive Sponge: A soft, round sponge made of polyurethane foam that contains spermicide. The sponge is inserted into the vagina before sexual intercourse and covers the cervix to prevent sperm from entering the uterus.
5. Female Condom: A thin, flexible pouch made of polyurethane or nitrile that is inserted into the vagina before sexual intercourse. The female condom creates a barrier between the sperm and the cervix, preventing pregnancy and reducing the risk of sexually transmitted infections (STIs).
6. Vaginal Ring: A flexible ring made of plastic that is inserted into the vagina for three weeks at a time to release hormones that prevent ovulation, thicken cervical mucus, and thin the lining of the uterus.
7. Contraceptive Implant: A small, flexible rod made of plastic that is implanted under the skin of the upper arm by a healthcare professional. The implant releases hormones that prevent ovulation and thicken cervical mucus to prevent pregnancy for up to three years.

It's important to note that while these contraceptive devices can be highly effective at preventing pregnancy, they do not protect against STIs. Using condoms in addition to other forms of contraception is recommended to reduce the risk of both pregnancy and STIs.

Vitellogenesis is the process of producing and accumulating yolk proteins in the oocytes (immature ovum or egg cell) of females in preparation for fertilization and embryonic development. This process is primarily seen in oviparous animals, such as birds, fish, and insects, where the yolk serves as a source of nutrients for the developing embryo.

The yolk proteins are synthesized mainly in the liver under the control of estrogen hormones and are then transported to the oocytes through the bloodstream. Once inside the oocytes, these proteins are taken up by a process called pinocytosis, where they are enclosed in vesicles and fuse with lysosomes to form yolk granules. The accumulation of these yolk granules provides the developing embryo with essential nutrients such as lipids, carbohydrates, and proteins.

In addition to its role in reproduction, vitellogenesis has been used as a biomarker for environmental estrogen exposure in non-target organisms, as the production of yolk proteins can be induced by estrogenic compounds found in pollutants such as pesticides and industrial chemicals.

Menstruation disturbances, also known as menstrual disorders, refer to any irregularities or abnormalities in a woman's menstrual cycle. These disturbances can manifest in various ways, including:

1. Amenorrhea: The absence of menstrual periods for three consecutive cycles or more in women of reproductive age.
2. Oligomenorrhea: Infrequent or light menstrual periods that occur at intervals greater than 35 days.
3. Dysmenorrhea: Painful menstruation, often accompanied by cramping, pelvic pain, and other symptoms that can interfere with daily activities.
4. Menorrhagia: Heavy or prolonged menstrual periods that last longer than seven days or result in excessive blood loss, leading to anemia or other health complications.
5. Polymenorrhea: Abnormally frequent menstrual periods that occur at intervals of 21 days or less.
6. Metrorrhagia: Irregular and unpredictable vaginal bleeding between expected menstrual periods, which can be caused by various factors such as hormonal imbalances, infections, or structural abnormalities.

Menstruation disturbances can have significant impacts on a woman's quality of life, fertility, and overall health. They may result from various underlying conditions, including hormonal imbalances, polycystic ovary syndrome (PCOS), thyroid disorders, uterine fibroids, endometriosis, or sexually transmitted infections. Proper diagnosis and treatment of the underlying cause are essential for managing menstruation disturbances effectively.

20-Alpha-Dihydroprogesterone is a weak endogenous progestin, a form of progesterone, naturally occurring in the body. It is a metabolite of progesterone and has only about 1% of the activity of its parent compound. It is formed by the action of the enzyme 5-alpha-reductase on progesterone.

Medical Definition:
20-Alpha-Dihydroprogesterone (20-α-DHP): An endogenous progestin, a weak metabolite of progesterone, formed by the action of 5-alpha-reductase on progesterone. It has only about 1% of the activity of its parent compound, progesterone.

Embryonic development is the series of growth and developmental stages that occur during the formation and early growth of the embryo. In humans, this stage begins at fertilization (when the sperm and egg cell combine) and continues until the end of the 8th week of pregnancy. During this time, the fertilized egg (now called a zygote) divides and forms a blastocyst, which then implants into the uterus. The cells in the blastocyst begin to differentiate and form the three germ layers: the ectoderm, mesoderm, and endoderm. These germ layers will eventually give rise to all of the different tissues and organs in the body.

Embryonic development is a complex and highly regulated process that involves the coordinated interaction of genetic and environmental factors. It is characterized by rapid cell division, migration, and differentiation, as well as programmed cell death (apoptosis) and tissue remodeling. Abnormalities in embryonic development can lead to birth defects or other developmental disorders.

It's important to note that the term "embryo" is used to describe the developing organism from fertilization until the end of the 8th week of pregnancy in humans, after which it is called a fetus.

Oocyte retrieval is a medical procedure that is performed to obtain mature eggs (oocytes) from the ovaries of a female patient, typically for the purpose of assisted reproductive technologies (ART) such as in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI).

During the procedure, which is usually done under sedation or anesthesia, a thin needle is inserted through the vaginal wall and guided into the ovarian follicles using ultrasound imaging. The mature eggs are then gently aspirated from the follicles and collected in a test tube.

Oocyte retrieval is typically performed after several days of hormonal stimulation, which helps to promote the development and maturation of multiple eggs within the ovaries. After the procedure, the eggs are examined for maturity and quality before being fertilized with sperm in the laboratory. The resulting embryos are then transferred to the uterus or frozen for future use.

It's important to note that oocyte retrieval carries some risks, including bleeding, infection, and damage to surrounding organs. However, these complications are generally rare and can be minimized with careful monitoring and skilled medical care.

Bromocriptine is a dopamine receptor agonist drug, which means it works by binding to and activating dopamine receptors in the brain. It has several therapeutic uses, including:

* Treatment of Parkinson's disease: Bromocriptine can be used alone or in combination with levodopa to help manage the symptoms of Parkinson's disease, such as stiffness, tremors, spasms, and poor muscle control.
* Suppression of lactation: Bromocriptine can be used to suppress milk production in women who are not breastfeeding or who have stopped breastfeeding but still have high levels of prolactin, a hormone that stimulates milk production.
* Treatment of pituitary tumors: Bromocriptine can be used to shrink certain types of pituitary tumors, such as prolactinomas, which are tumors that secrete excessive amounts of prolactin.
* Management of acromegaly: Bromocriptine can be used to manage the symptoms of acromegaly, a rare hormonal disorder characterized by abnormal growth and enlargement of body tissues, by reducing the production of growth hormone.

Bromocriptine is available in immediate-release and long-acting formulations, and it is usually taken orally. Common side effects of bromocriptine include nausea, dizziness, lightheadedness, and drowsiness. Serious side effects are rare but can include hallucinations, confusion, and priapism (prolonged erection).

Plasminogen activators are a group of enzymes that play a crucial role in the body's fibrinolytic system, which is responsible for breaking down and removing blood clots. These enzymes activate plasminogen, a zymogen (inactive precursor) found in circulation, converting it into plasmin - a protease that degrades fibrin, the insoluble protein mesh that forms the structural basis of a blood clot.

There are two main types of plasminogen activators:

1. Tissue Plasminogen Activator (tPA): This is a serine protease primarily produced by endothelial cells lining blood vessels. tPA has a higher affinity for fibrin-bound plasminogen and is therefore more specific in activating plasmin at the site of a clot, helping to localize fibrinolysis and minimize bleeding risks.
2. Urokinase Plasminogen Activator (uPA): This is another serine protease found in various tissues and body fluids, including urine. uPA can be produced by different cell types, such as macrophages and fibroblasts. Unlike tPA, uPA does not have a strong preference for fibrin-bound plasminogen and can activate plasminogen in a more general manner, which might contribute to its role in processes like tissue remodeling and cancer progression.

Plasminogen activators are essential for maintaining vascular homeostasis by ensuring the proper removal of blood clots and preventing excessive fibrin accumulation. They have also been implicated in various pathological conditions, including thrombosis, hemorrhage, and tumor metastasis.

Least-Squares Analysis is not a medical term, but rather a statistical method that is used in various fields including medicine. It is a way to find the best fit line or curve for a set of data points by minimizing the sum of the squared distances between the observed data points and the fitted line or curve. This method is often used in medical research to analyze data, such as fitting a regression line to a set of data points to make predictions or identify trends. The goal is to find the line or curve that most closely represents the pattern of the data, which can help researchers understand relationships between variables and make more informed decisions based on their analysis.

Oligomenorrhea is a medical term used to describe infrequent menstrual periods, where the cycle length is more than 35 days but less than 68 days. It's considered a menstrual disorder and can affect people of reproductive age. The causes of oligomenorrhea are varied, including hormonal imbalances, polycystic ovary syndrome (PCOS), thyroid disorders, excessive exercise, significant weight loss or gain, and stress. In some cases, it may not cause any other symptoms, but in others, it can be associated with infertility, hirsutism (excessive hair growth), acne, or obesity. Treatment depends on the underlying cause and may include lifestyle modifications, hormonal medications, or surgery in rare cases.

Urofollitropin is a purified form of follicle-stimulating hormone (FSH) that is derived from the urine of postmenopausal women. It is used in fertility treatments to stimulate the development and maturation of ovarian follicles in women who have difficulty conceiving due to problems with ovulation.

Follicle-stimulating hormone is a gonadotropin that plays an essential role in the reproductive system. In women, FSH stimulates the growth and development of follicles in the ovaries, which contain eggs. Urofollitropin contains a higher concentration of FSH than what is found naturally in the body, which allows for more effective stimulation of follicle growth and maturation.

Urofollitropin is typically administered via injection and is often used in conjunction with other fertility medications as part of an assisted reproductive technology (ART) cycle, such as in vitro fertilization (IVF). It is important to note that the use of urofollitropin and other fertility treatments should be under the close supervision of a healthcare provider to minimize the risk of complications.

Oral combined contraceptives, also known as "the pill," are a type of hormonal birth control that contain a combination of synthetic estrogen and progestin. These hormones work together to prevent ovulation (the release of an egg from the ovaries), thicken cervical mucus to make it harder for sperm to reach the egg, and thin the lining of the uterus to make it less likely for a fertilized egg to implant.

Combined oral contraceptives come in various brands and forms, such as monophasic, biphasic, and triphasic pills. Monophasic pills contain the same amount of hormones in each active pill, while biphasic and triphasic pills have varying amounts of hormones in different phases of the cycle.

It is important to note that oral combined contraceptives do not protect against sexually transmitted infections (STIs) and should be used in conjunction with condoms for safer sex practices. Additionally, there are potential risks and side effects associated with oral combined contraceptives, including an increased risk of blood clots, stroke, and heart attack, especially in women who smoke or have certain medical conditions. It is essential to consult a healthcare provider before starting any hormonal birth control method to determine if it is safe and appropriate for individual use.

A blastocyst is a stage in the early development of a fertilized egg, or embryo, in mammals. It occurs about 5-6 days after fertilization and consists of an outer layer of cells called trophoblasts, which will eventually form the placenta, and an inner cell mass, which will give rise to the fetus. The blastocyst is characterized by a fluid-filled cavity called the blastocoel. This stage is critical for the implantation of the embryo into the uterine lining.

Octopamine is not primarily used in medical definitions, but it is a significant neurotransmitter in invertebrates, including insects. It is the equivalent to noradrenaline (norepinephrine) in vertebrates and has similar functions related to the "fight or flight" response, arousal, and motivation. Insects use octopamine for various physiological processes such as learning, memory, regulation of heart rate, and modulation of muscle contraction. It also plays a role in the social behavior of insects like aggression and courtship.

Secretory rate refers to the amount or volume of a secretion produced by a gland or an organ over a given period of time. It is a measure of the productivity or activity level of the secreting structure. The secretory rate can be quantified for various bodily fluids, such as saliva, sweat, digestive enzymes, hormones, or milk, depending on the context and the specific gland or organ being studied.

In clinical settings, measuring the secretory rate might involve collecting and analyzing samples over a certain duration to estimate the production rate of the substance in question. This information can be helpful in diagnosing conditions related to impaired secretion, monitoring treatment responses, or understanding the physiological adaptations of the body under different circumstances.

Triptorelin pamoate is a synthetic analogue of the natural hormone gonadotropin-releasing hormone (GnRH). It is used in the treatment of various conditions such as endometriosis, uterine fibroids, precocious puberty, and prostate cancer.

Triptorelin pamoate works by stimulating the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland, which in turn stimulate the production of sex hormones such as estrogen and testosterone. However, with continued use, it causes downregulation of the pituitary gland, leading to a decrease in the production of FSH and LH, and therefore a reduction in the levels of sex hormones.

The pamoate salt is used to slow down the release of triptorelin, allowing for longer-acting formulations that can be administered monthly or quarterly. The medication is usually given as an injection into a muscle (intramuscularly).

Meiosis is a type of cell division that results in the formation of four daughter cells, each with half the number of chromosomes as the parent cell. It is a key process in sexual reproduction, where it generates gametes or sex cells (sperm and eggs).

The process of meiosis involves one round of DNA replication followed by two successive nuclear divisions, meiosis I and meiosis II. In meiosis I, homologous chromosomes pair, form chiasma and exchange genetic material through crossing over, then separate from each other. In meiosis II, sister chromatids separate, leading to the formation of four haploid cells. This process ensures genetic diversity in offspring by shuffling and recombining genetic information during the formation of gametes.

A mammalian embryo is the developing offspring of a mammal, from the time of implantation of the fertilized egg (blastocyst) in the uterus until the end of the eighth week of gestation. During this period, the embryo undergoes rapid cell division and organ differentiation to form a complex structure with all the major organs and systems in place. This stage is followed by fetal development, which continues until birth. The study of mammalian embryos is important for understanding human development, evolution, and reproductive biology.

The Kallikrein-Kinin system is a complex network of blood proteins and enzymes that plays a significant role in the regulation of blood pressure, inflammation, and pain perception. This system involves the activation of several components, including prekallikrein, kininogen, and kallikrein, which work together to release vasoactive peptides called bradykinins.

Bradykinins are potent vasodilators that increase blood flow and lower blood pressure by promoting the dilation of blood vessels. They also stimulate pain receptors, causing localized pain and inflammation in response to tissue damage or injury. The Kallikrein-Kinin system is activated during various physiological and pathological conditions, such as inflammation, trauma, and certain kidney diseases, contributing to the regulation of these processes.

In summary, the Kallikrein-Kinin system is a crucial component of the body's homeostatic mechanisms that helps maintain blood pressure, modulate inflammatory responses, and regulate pain perception through the release of vasoactive peptides called bradykinins.

Hydroxyprogesterone is a synthetic form of the natural hormone progesterone, which is produced by the body during pregnancy to support the growth and development of the fetus. Hydroxyprogesterone is used in medical treatments to help prevent preterm birth in certain high-risk pregnancies.

There are several different forms of hydroxyprogesterone that have been developed for use as medications, including:

1. Hydroxyprogesterone caproate (HPC): This is a synthetic form of progesterone that is given as an injection once a week to help prevent preterm birth in women who have previously given birth prematurely. It works by helping to thicken the lining of the uterus and prevent contractions.
2. 17-Hydroxyprogesterone: This is a natural hormone that is produced by the body during pregnancy, but it can also be synthesized in a laboratory for use as a medication. It has been studied for its potential to help prevent preterm birth, although it is not currently approved for this use by the U.S. Food and Drug Administration (FDA).
3. 21-Hydroxyprogesterone: This is another natural hormone that is produced by the body during pregnancy, but it can also be synthesized in a laboratory for use as a medication. It has been studied for its potential to help prevent preterm birth and for its ability to reduce the risk of certain complications in women with a history of premature birth.

It's important to note that hydroxyprogesterone should only be used under the supervision of a healthcare provider, as it can have side effects and may not be appropriate for all women. If you are pregnant or planning to become pregnant and have concerns about preterm birth, it's important to discuss your options with your healthcare provider.

I'm sorry for any confusion, but "perches" is not a term commonly used in medical terminology. It is most often used to refer to a place where a bird or small animal perches, or in measurements of height (such as "perches above ground"). If you have any questions about a medical term or concept, I would be happy to help clarify!

Ovulation prediction is the process of determining the most fertile period during a woman's menstrual cycle, specifically the time when ovulation is likely to occur. This is typically done through various methods and tests that detect the surge in luteinizing hormone (LH) levels, which occurs 24-36 hours prior to ovulation. These methods may include urine test kits, saliva ferning tests, or electronic fertility monitors. Accurately predicting ovulation can help individuals or couples trying to conceive or avoid pregnancy through natural family planning methods.

"Dairying" is not a medical term. It refers to the industry or practice of producing and processing milk and milk products, such as butter, cheese, and yogurt, typically from cows but also from other animals like goats and sheep. Dairying involves various activities including breeding and raising dairy animals, milking, processing, and marketing milk and milk products. It is not a medical concept or procedure.

Masoprocol is not a medication that has an established or widely accepted medical definition in the field of pharmacology or clinical medicine. It may refer to a chemical compound with the name 5-n-butyl-2-benzoxazolinone, which has been studied for its potential anti-cancer properties. However, it is not currently approved by regulatory agencies such as the U.S. Food and Drug Administration (FDA) for use in medical treatments.

Therefore, it's important to consult with healthcare professionals or reliable medical sources for information regarding medications and their uses, rather than relying on unverified or obscure sources.

Leuprolide is a synthetic hormonal analog of gonadotropin-releasing hormone (GnRH or LHRH). It acts as a potent agonist of GnRH receptors, leading to the suppression of pituitary gland's secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). This, in turn, results in decreased levels of sex hormones such as testosterone and estrogen.

Leuprolide is used clinically for the treatment of various conditions related to hormonal imbalances, including:
- Prostate cancer: Leuprolide can help slow down the growth of prostate cancer cells by reducing testosterone levels in the body.
- Endometriosis: By lowering estrogen levels, leuprolide can alleviate symptoms associated with endometriosis such as pelvic pain and menstrual irregularities.
- Central precocious puberty: Leuprolide is used to delay the onset of puberty in children who experience it prematurely by inhibiting the release of gonadotropins.
- Uterine fibroids: Lowering estrogen levels with leuprolide can help shrink uterine fibroids and reduce symptoms like heavy menstrual bleeding and pelvic pain.

Leuprolide is available in various formulations, such as injectable depots or implants, for long-term hormonal suppression. Common side effects include hot flashes, mood changes, and potential loss of bone density due to prolonged hormone suppression.

Hypophysectomy is a surgical procedure that involves the removal or partial removal of the pituitary gland, also known as the hypophysis. The pituitary gland is a small endocrine gland located at the base of the brain, just above the nasal cavity, and is responsible for producing and secreting several important hormones that regulate various bodily functions.

Hypophysectomy may be performed for therapeutic or diagnostic purposes. In some cases, it may be used to treat pituitary tumors or other conditions that affect the function of the pituitary gland. It may also be performed as a research procedure in animal models to study the effects of pituitary hormone deficiency on various physiological processes.

The surgical approach for hypophysectomy may vary depending on the specific indication and the patient's individual anatomy. In general, however, the procedure involves making an incision in the skull and exposing the pituitary gland through a small opening in the bone. The gland is then carefully dissected and removed or partially removed as necessary.

Potential complications of hypophysectomy include damage to surrounding structures such as the optic nerves, which can lead to vision loss, and cerebrospinal fluid leaks. Additionally, removal of the pituitary gland can result in hormonal imbalances that may require long-term management with hormone replacement therapy.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Echinomycin is a type of antibiotic that is derived from a species of bacteria called Streptomyces echinatus. It has been studied for its potential as an anticancer agent, due to its ability to bind to DNA and inhibit the growth of cancer cells. However, its use in clinical practice is not widespread, and more research is needed to determine its safety and efficacy for treating cancer.

Echinomycin works by binding to the minor groove of DNA, which prevents the transcription of genes that are necessary for cell growth and division. This can lead to the death of cancer cells and may help to slow or stop the progression of tumors. However, echinomycin can also bind to DNA in normal cells, which can cause toxic side effects and limit its therapeutic potential.

Echinomycin has been studied in clinical trials for the treatment of various types of cancer, including lung cancer, leukemia, and brain tumors. While some studies have shown promising results, others have found that echinomycin has limited efficacy or is too toxic to be used as a standalone therapy. Therefore, more research is needed to determine the best way to use echinomycin in cancer treatment and to identify which patients are most likely to benefit from it.

Oral contraceptives, also known as "birth control pills," are synthetic hormonal medications that are taken by mouth to prevent pregnancy. They typically contain a combination of synthetic versions of the female hormones estrogen and progesterone, which work together to inhibit ovulation (the release of an egg from the ovaries), thicken cervical mucus (making it harder for sperm to reach the egg), and thin the lining of the uterus (making it less likely that a fertilized egg will implant).

There are several different types of oral contraceptives, including combination pills, progestin-only pills, and extended-cycle pills. Combination pills contain both estrogen and progestin, while progestin-only pills contain only progestin. Extended-cycle pills are a type of combination pill that are taken for 12 weeks followed by one week of placebo pills, which can help reduce the frequency of menstrual periods.

It's important to note that oral contraceptives do not protect against sexually transmitted infections (STIs), so it's still important to use barrier methods like condoms if you are at risk for STIs. Additionally, oral contraceptives can have side effects and may not be suitable for everyone, so it's important to talk to your healthcare provider about the potential risks and benefits before starting to take them.

I couldn't find a medical definition for "Depression, Chemical" as it is not a recognized medical term. However, I can provide you with information about chemical imbalances in the brain that are associated with depression.

Major depressive disorder (MDD), commonly referred to as depression, is believed to be caused by a combination of genetic, environmental, and physiological factors. While there is no definitive evidence that depression is solely caused by a "chemical imbalance," neurotransmitter irregularities in the brain are associated with depressive symptoms. Neurotransmitters are chemical messengers that transmit signals in the brain and other parts of the body. Some of the primary neurotransmitters involved in mood regulation include serotonin, norepinephrine, and dopamine.

In depression, it is thought that there may be alterations in the functioning of these neurotransmitter systems, leading to an imbalance. For example:

1. Serotonin: Low levels of serotonin are associated with depressive symptoms. Selective serotonin reuptake inhibitors (SSRIs), a common class of antidepressants, work by increasing the availability of serotonin in the synapse (the space between neurons) to improve communication between brain cells.
2. Norepinephrine: Imbalances in norepinephrine levels can contribute to depressive symptoms and anxiety. Norepinephrine reuptake inhibitors (NRIs), tricyclic antidepressants (TCAs), and monoamine oxidase inhibitors (MAOIs) are medications that target norepinephrine to help alleviate depression.
3. Dopamine: Deficiencies in dopamine can lead to depressive symptoms, anhedonia (the inability to feel pleasure), and motivation loss. Some antidepressants, like bupropion, work by increasing dopamine levels in the brain.

In summary, while "Chemical Depression" is not a recognized medical term, chemical imbalances in neurotransmitter systems are associated with depressive symptoms. However, depression is a complex disorder that cannot be solely attributed to a single cause or a simple chemical imbalance. It is essential to consider multiple factors when diagnosing and treating depression.

Sperm-ovum interactions, also known as sperm-egg interactions, refer to the specific series of events that occur between a spermatozoon (sperm) and an oocyte (egg or ovum) during fertilization in sexual reproduction.

The process begins with the sperm's attachment to the zona pellucida, a glycoprotein layer surrounding the oocyte. This interaction is mediated by specific proteins on the surface of both the sperm and the zona pellucida. Following attachment, the sperm undergoes the acrosome reaction, during which enzymes are released from the sperm's head to help digest and penetrate the zona pellucida.

Once the sperm has successfully traversed the zona pellucida, it makes contact with the oocyte's plasma membrane, triggering the fusion of the sperm and egg membranes. This results in the release of the sperm's genetic material into the oocyte's cytoplasm and the initiation of a series of intracellular signaling events within the oocyte that ultimately lead to its completion of meiosis II and formation of a zygote, marking the beginning of embryonic development.

Proper sperm-ovum interactions are crucial for successful fertilization and subsequent embryonic development, and any disruptions in these processes can result in infertility or early pregnancy loss.

Castration is a surgical procedure to remove the testicles in males or ovaries in females. In males, it is also known as orchiectomy. This procedure results in the inability to produce sex hormones and gametes (sperm in men and eggs in women), and can be done for various reasons such as medical treatment for certain types of cancer, to reduce sexual urges in individuals with criminal tendencies, or as a form of birth control in animals.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Gonads are the reproductive organs that produce gametes (sex cells) and sex hormones. In males, the gonads are the testes, which produce sperm and testosterone. In females, the gonads are the ovaries, which produce eggs and estrogen and progesterone. The development, function, and regulation of the gonads are crucial for reproductive health and fertility.

Insemination, in a medical context, refers to the introduction of semen into the reproductive system of a female for the purpose of achieving pregnancy. This can be done through various methods including intracervical insemination (ICI), intrauterine insemination (IUI), and in vitro fertilization (IVF).

Intracervical insemination involves placing the semen at the cervix, the opening to the uterus. Intrauterine insemination involves placing the sperm directly into the uterus using a catheter. In vitro fertilization is a more complex process where the egg and sperm are combined in a laboratory dish and then transferred to the uterus.

Insemination is often used in cases of infertility, either because of male or female factors, or unexplained infertility. It can also be used for those who wish to become pregnant but do not have a partner, such as single women and same-sex female couples.

Superfetation is an extremely rare medical condition where a second pregnancy occurs during an existing pregnancy. In this unusual case, a fertilized egg implants itself into the uterus while another embryo or fetus is already present in the womb, resulting in two separate gestational sacs. This phenomenon is not to be confused with superfecundation, which refers to the fertilization of two or more eggs from one menstrual cycle by different sexual partners. Superfetation is very unusual because it typically requires a woman to ovulate twice within a single menstrual cycle, and both eggs must then be fertilized and implanted at distinct times. This condition is not generally associated with human pregnancies due to the complex hormonal changes that occur during pregnancy, which usually prevent further ovulation. However, superfetation has been reported in some animal species, such as cats, dogs, and marsupials.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Follicle-stimulating hormone (FSH) is a glycoprotein hormone produced and released by the anterior pituitary gland. It plays crucial roles in the reproductive system, primarily by promoting the growth and development of follicles in the ovaries or sperm production in the testes.

The FSH molecule consists of two subunits: α (alpha) and β (beta). The α-subunit is common to several glycoprotein hormones, including thyroid-stimulating hormone (TSH), luteinizing hormone (LH), and human chorionic gonadotropin (hCG). In contrast, the β-subunit is unique to each hormone and determines its specific biological activity.

A medical definition of 'Follicle Stimulating Hormone, beta Subunit' refers to the distinct portion of the FSH molecule that is responsible for its particular functions in the body. The β-subunit of FSH enables the hormone to bind to its specific receptors in the gonads and initiate downstream signaling pathways leading to follicular development and spermatogenesis. Any alterations or mutations in the FSH beta subunit can lead to disruptions in reproductive processes, potentially causing infertility or other related disorders.

"Mesocricetus" is a genus of rodents, more commonly known as hamsters. It includes several species of hamsters that are native to various parts of Europe and Asia. The best-known member of this genus is the Syrian hamster, also known as the golden hamster or Mesocricetus auratus, which is a popular pet due to its small size and relatively easy care. These hamsters are burrowing animals and are typically solitary in the wild.

Desogestrel is a synthetic form of progestin, which is a female sex hormone. It is used in various forms of hormonal contraception such as birth control pills, patches, and vaginal rings to prevent pregnancy. Desogestrel works by preventing ovulation (the release of an egg from the ovaries), thickening cervical mucus to make it harder for sperm to reach the egg, and thinning the lining of the uterus to make it less likely for a fertilized egg to implant.

Desogestrel is also used in some hormone replacement therapies (HRT) to treat symptoms of menopause such as hot flashes and vaginal dryness. It may be prescribed alone or in combination with estrogen.

Like all hormonal contraceptives, desogestrel has potential side effects, including irregular menstrual bleeding, headaches, mood changes, breast tenderness, and nausea. In rare cases, it may also increase the risk of blood clots, stroke, or heart attack. It is important to discuss the risks and benefits of desogestrel with a healthcare provider before using it.

Kisspeptins are a family of peptides that are derived from the preproprotein kisspeptin. The most well-known member of this family is kisspeptin-54, which is also known as metastin. Kisspeptins play important roles in several physiological processes, including the regulation of growth, inflammation, and energy homeostasis. However, they are perhaps best known for their role in the reproductive system.

In the reproductive system, kisspeptins act as key regulators of the hypothalamic-pituitary-gonadal (HPG) axis, which is responsible for controlling reproductive function. Kisspeptins are produced by neurons in the hypothalamus and bind to receptors on other neurons that release gonadotropin-releasing hormone (GnRH). GnRH then stimulates the pituitary gland to release follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which act on the gonads to promote the production of sex steroids and eggs or sperm.

Dysregulation of the HPG axis, including abnormal kisspeptin signaling, has been implicated in a number of reproductive disorders, such as precocious puberty, delayed puberty, and infertility. As such, there is significant interest in understanding the role of kisspeptins in reproductive function and developing therapies that target this pathway.

The Cholesterol Side-Chain Cleavage Enzyme, also known as Steroidogenic Acute Regulatory (StAR) protein or P450scc, is a complex enzymatic system that plays a crucial role in the production of steroid hormones. It is located in the inner mitochondrial membrane of steroid-producing cells, such as those found in the adrenal glands, gonads, and placenta.

The Cholesterol Side-Chain Cleavage Enzyme is responsible for converting cholesterol into pregnenolone, which is the first step in the biosynthesis of all steroid hormones, including cortisol, aldosterone, sex hormones, and vitamin D. This enzymatic complex consists of two components: a flavoprotein called NADPH-cytochrome P450 oxidoreductase, which provides electrons for the reaction, and a cytochrome P450 protein called CYP11A1, which catalyzes the actual cleavage of the cholesterol side chain.

Defects in the Cholesterol Side-Chain Cleavage Enzyme can lead to various genetic disorders, such as congenital lipoid adrenal hyperplasia (CLAH), a rare autosomal recessive disorder characterized by impaired steroidogenesis and accumulation of cholesteryl esters in the adrenal glands and gonads.

I apologize, but "estrenes" is not a term commonly used in medical terminology in English. It may be a term used in another language or context. If you could provide more context or clarify what you are looking for, I would be happy to help further.

Nafarelin is a synthetic decapeptide analog of the natural gonadotropin-releasing hormone (GnRH). It is primarily used as a nasal spray for the treatment of central precocious puberty in children and endometriosis in adults.

In medical terms, Nafarelin is defined as:

A synthetic decapeptide analog of gonadotropin-releasing hormone (GnRH) used in the treatment of central precocious puberty and endometriosis. It acts as a potent agonist of GnRH receptors, leading to an initial increase in the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), followed by downregulation of these receptors and a decrease in FSH and LH secretion. This results in decreased gonadal steroid production, including estrogen and testosterone, which helps to control the symptoms of central precocious puberty and endometriosis.

Nafarelin is available under the brand name Synarel and is administered as a nasal spray. It is important to note that Nafarelin can cause side effects such as hot flashes, headaches, and mood changes, and it may also affect bone growth in children with central precocious puberty. Therefore, it should be used under the close supervision of a healthcare provider.

Oxathiins are a class of synthetic heterocyclic compounds that contain a sulfur atom and an oxygen atom in their structure. They are not commonly used as medications, but some oxathiin derivatives have been developed for use as antibiotics and anti-inflammatory agents.

One example of an oxathiin derivative is the antibiotic class called monobactams, which includes drugs such as aztreonam. Monobactams contain a unique monocyclic beta-lactam ring fused with an oxathiin ring and have been used to treat various bacterial infections.

However, it's important to note that the term "oxathiins" is not commonly used in medical terminology, and it's more frequently encountered in the context of chemistry or pharmacology research.

Carnivora is an order of mammals that consists of animals whose primary diet consists of flesh. The term "Carnivora" comes from the Latin words "caro", meaning flesh, and "vorare", meaning to devour. This order includes a wide variety of species, ranging from large predators such as lions, tigers, and bears, to smaller animals such as weasels, otters, and raccoons.

While members of the Carnivora order are often referred to as "carnivores," it is important to note that not all members exclusively eat meat. Some species, such as raccoons and bears, have an omnivorous diet that includes both plants and animals. Additionally, some species within this order have evolved specialized adaptations for their specific diets, such as the elongated canines and carnassial teeth of felids (cats) and canids (dogs), which are adapted for tearing and shearing meat.

Overall, the medical definition of Carnivora refers to an order of mammals that have a diet primarily consisting of flesh, although not all members exclusively eat meat.

Luteal cells, also known as granulosa-lutein cells, are specialized cells found in the ovary that play a crucial role in the menstrual cycle and pregnancy. They are formed from the granulosa cells of the ovarian follicle after ovulation, during which the follicle ruptures and releases the egg (oocyte). The remaining cells then transform into luteal cells, forming a structure called the corpus luteum.

The primary function of luteal cells is to produce and secrete progesterone and estrogen, two hormones that are essential for preparing the uterus for implantation of a fertilized egg and maintaining early pregnancy. Progesterone stimulates the growth of blood vessels in the endometrium (the lining of the uterus), making it thicker and more receptive to the implantation of a fertilized egg. It also suppresses further development of ovarian follicles, preventing the release of additional eggs during pregnancy.

If pregnancy does not occur, the corpus luteum will degenerate, and the levels of progesterone and estrogen will decrease, leading to menstruation. However, if pregnancy occurs, the developing embryo will produce human chorionic gonadotropin (hCG), which stimulates the luteal cells to continue producing progesterone and estrogen until the placenta takes over these functions around the 10th week of gestation.

In summary, luteal cells are specialized ovarian cells that produce and secrete progesterone and estrogen during the menstrual cycle and early pregnancy to prepare the uterus for implantation and maintain pregnancy.

Contraceptive agents are substances or medications that are used to prevent pregnancy by interfering with the normal process of conception and fertilization or the development and implantation of the fertilized egg. They can be divided into two main categories: hormonal and non-hormonal methods.

Hormonal contraceptive agents include combined oral contraceptives (COCs), progestin-only pills, patches, rings, injections, and implants. These methods work by releasing synthetic hormones that mimic the natural hormones estrogen and progesterone in a woman's body. By doing so, they prevent ovulation, thicken cervical mucus to make it harder for sperm to reach the egg, and thin the lining of the uterus to make it less likely for a fertilized egg to implant.

Non-hormonal contraceptive agents include barrier methods such as condoms, diaphragms, cervical caps, and sponges, which prevent sperm from reaching the egg by creating a physical barrier. Other non-hormonal methods include intrauterine devices (IUDs), which are inserted into the uterus to prevent pregnancy, and fertility awareness-based methods, which involve tracking ovulation and avoiding intercourse during fertile periods.

Emergency contraceptive agents, such as Plan B or ella, can also be used to prevent pregnancy after unprotected sex or contraceptive failure. These methods work by preventing or delaying ovulation, preventing fertilization, or preventing implantation of a fertilized egg.

It's important to note that while contraceptive agents are effective at preventing pregnancy, they do not protect against sexually transmitted infections (STIs). Using condoms in addition to other forms of contraception can help reduce the risk of STIs.

Laparoscopy is a surgical procedure that involves the insertion of a laparoscope, which is a thin tube with a light and camera attached to it, through small incisions in the abdomen. This allows the surgeon to view the internal organs without making large incisions. It's commonly used to diagnose and treat various conditions such as endometriosis, ovarian cysts, infertility, and appendicitis. The advantages of laparoscopy over traditional open surgery include smaller incisions, less pain, shorter hospital stays, and quicker recovery times.

In the context of medicine, "periodicity" refers to the occurrence of events or phenomena at regular intervals or cycles. This term is often used in reference to recurring symptoms or diseases that have a pattern of appearing and disappearing over time. For example, some medical conditions like menstrual cycles, sleep-wake disorders, and certain infectious diseases exhibit periodicity. It's important to note that the duration and frequency of these cycles can vary depending on the specific condition or individual.

I apologize for any confusion, but "deer" is not a medical term. It is a common name used to refer to various species of hooved mammals belonging to the family Cervidae. If you have any questions about medical terminology or health-related topics, I would be happy to help answer them.

Menstruation-inducing agents, also known as menstrual induction agents or abortifacients, are medications or substances that stimulate or induce menstruation and can potentially lead to the termination of an early pregnancy. These agents work by causing the uterus to contract and expel its lining (endometrium), which is shed during menstruation.

Common menstruation-inducing agents include:

1. Hormonal medications: Combination oral contraceptives, containing both estrogen and progestin, can be used to induce menstruation by causing the uterus to shed its lining after a planned break from taking the medication. This is often used in birth control methods like the "birth control pill pack."
2. Prostaglandins: These are naturally occurring hormone-like substances that can cause the uterus to contract. Synthetic prostaglandin analogs, such as misoprostol (Cytotec), can be used to induce menstruation or early pregnancy termination.
3. Mifepristone: This is a synthetic steroid hormone that blocks progesterone receptors in the body. When used in combination with prostaglandins, it can cause the uterus to contract and expel its lining, leading to an abortion or inducing menstruation.

It's important to note that using menstruation-inducing agents without medical supervision or for purposes other than their intended use may pose health risks and should be avoided. Always consult a healthcare professional before using any medication for this purpose.

Cryopreservation is a medical procedure that involves the preservation of cells, tissues, or organs by cooling them to very low temperatures, typically below -150°C. This is usually achieved using liquid nitrogen. The low temperature slows down or stops biological activity, including chemical reactions and cellular metabolism, which helps to prevent damage and decay.

The cells, tissues, or organs that are being cryopreserved must be treated with a cryoprotectant solution before cooling to prevent the formation of ice crystals, which can cause significant damage. Once cooled, the samples are stored in specialized containers or tanks until they are needed for use.

Cryopreservation is commonly used in assisted reproductive technologies, such as the preservation of sperm, eggs, and embryos for fertility treatments. It is also used in research, including the storage of cell lines and stem cells, and in clinical settings, such as the preservation of skin grafts and corneas for transplantation.

"Chickens" is a common term used to refer to the domesticated bird, Gallus gallus domesticus, which is widely raised for its eggs and meat. However, in medical terms, "chickens" is not a standard term with a specific definition. If you have any specific medical concern or question related to chickens, such as food safety or allergies, please provide more details so I can give a more accurate answer.

Insulin-like growth factor I (IGF-I) is a hormone that plays a crucial role in growth and development. It is a small protein with structural and functional similarity to insulin, hence the name "insulin-like." IGF-I is primarily produced in the liver under the regulation of growth hormone (GH).

IGF-I binds to its specific receptor, the IGF-1 receptor, which is widely expressed throughout the body. This binding activates a signaling cascade that promotes cell proliferation, differentiation, and survival. In addition, IGF-I has anabolic effects on various tissues, including muscle, bone, and cartilage, contributing to their growth and maintenance.

IGF-I is essential for normal growth during childhood and adolescence, and it continues to play a role in maintaining tissue homeostasis throughout adulthood. Abnormal levels of IGF-I have been associated with various medical conditions, such as growth disorders, diabetes, and certain types of cancer.

A contraceptive vaccine is a type of immunocontraception that uses the immune system to prevent pregnancy. It is a relatively new field of research and development, and there are currently no licensed contraceptive vaccines available on the market. However, several experimental vaccines are in various stages of preclinical and clinical testing.

Contraceptive vaccines work by stimulating the immune system to produce antibodies against specific proteins or hormones that play a critical role in reproduction. By neutralizing these targets, the vaccine can prevent fertilization or inhibit the implantation of a fertilized egg in the uterus.

For example, one approach is to develop vaccines that target the zona pellucida (ZP), a glycoprotein layer surrounding mammalian eggs. Antibodies generated against ZP proteins can prevent sperm from binding and fertilizing the egg. Another strategy is to create vaccines that generate antibodies against hormones such as human chorionic gonadotropin (hCG), a hormone produced during pregnancy. By blocking hCG, the vaccine can prevent the maintenance of pregnancy and induce a miscarriage.

While contraceptive vaccines have shown promise in preclinical studies, several challenges remain before they can be widely adopted. These include issues related to safety, efficacy, duration of protection, and public acceptance. Additionally, there are concerns about the potential for accidental cross-reactivity with other proteins or hormones, leading to unintended side effects.

Overall, contraceptive vaccines represent a promising area of research that could provide long-acting, reversible, and user-friendly contraception options in the future. However, further studies are needed to address the remaining challenges and ensure their safe and effective use.

The hypothalamus is a small, vital region of the brain that lies just below the thalamus and forms part of the limbic system. It plays a crucial role in many important functions including:

1. Regulation of body temperature, hunger, thirst, fatigue, sleep, and circadian rhythms.
2. Production and regulation of hormones through its connection with the pituitary gland (the hypophysis). It controls the release of various hormones by producing releasing and inhibiting factors that regulate the anterior pituitary's function.
3. Emotional responses, behavior, and memory formation through its connections with the limbic system structures like the amygdala and hippocampus.
4. Autonomic nervous system regulation, which controls involuntary physiological functions such as heart rate, blood pressure, and digestion.
5. Regulation of the immune system by interacting with the autonomic nervous system.

Damage to the hypothalamus can lead to various disorders like diabetes insipidus, growth hormone deficiency, altered temperature regulation, sleep disturbances, and emotional or behavioral changes.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Progesterone receptors (PRs) are a type of nuclear receptor proteins that are expressed in the nucleus of certain cells and play a crucial role in the regulation of various physiological processes, including the menstrual cycle, embryo implantation, and maintenance of pregnancy. These receptors bind to the steroid hormone progesterone, which is produced primarily in the ovaries during the second half of the menstrual cycle and during pregnancy.

Once progesterone binds to the PRs, it triggers a series of molecular events that lead to changes in gene expression, ultimately resulting in the modulation of various cellular functions. Progesterone receptors exist in two main isoforms, PR-A and PR-B, which differ in their size, structure, and transcriptional activity. Both isoforms are expressed in a variety of tissues, including the female reproductive tract, breast, brain, and bone.

Abnormalities in progesterone receptor expression or function have been implicated in several pathological conditions, such as uterine fibroids, endometriosis, breast cancer, and osteoporosis. Therefore, understanding the molecular mechanisms underlying PR signaling is essential for developing novel therapeutic strategies to treat these disorders.

In medical terms, parity refers to the number of times a woman has given birth to a viable fetus, usually defined as a pregnancy that reaches at least 20 weeks' gestation. It is often used in obstetrics and gynecology to describe a woman's childbearing history and to assess potential risks associated with childbirth.

Parity is typically categorized as follows:

* Nulliparous: A woman who has never given birth to a viable fetus.
* Primiparous: A woman who has given birth to one viable fetus.
* Multiparous: A woman who has given birth to more than one viable fetus.

In some cases, parity may also consider the number of pregnancies that resulted in stillbirths or miscarriages, although this is not always the case. It's important to note that parity does not necessarily reflect the total number of pregnancies a woman has had, only those that resulted in viable births.

Postcoital contraception, also known as emergency contraception, refers to methods used to prevent pregnancy after sexual intercourse has already occurred. These methods are typically used in situations where regular contraception has failed or was not used, such as in cases of condom breakage or forgotten birth control pills.

There are two main types of postcoital contraception:

1. Emergency contraceptive pill (ECP): Also known as the "morning-after pill," this is a hormonal medication that can be taken up to 5 days after unprotected sex, but it is most effective when taken within 72 hours. There are two types of ECPs available: progestin-only and combined estrogen-progestin. The progestin-only pill is preferred because it has fewer side effects and is just as effective as the combined pill.
2. Copper intrauterine device (IUD): This is a small, T-shaped device made of flexible plastic and copper that is inserted into the uterus by a healthcare provider. The IUD can be inserted up to 5 days after unprotected sex to prevent pregnancy. It is the most effective form of emergency contraception available, and it also provides ongoing protection against pregnancy for up to 10 years, depending on the type of IUD.

It's important to note that postcoital contraception should not be used as a regular method of contraception, but rather as a backup in case of emergencies. It is also not effective in preventing sexually transmitted infections (STIs). Regular contraceptive methods, such as condoms and hormonal birth control, are the best ways to prevent unintended pregnancies and STIs.

Fetal development is the process in which a fertilized egg grows and develops into a fetus, which is a developing human being from the end of the eighth week after conception until birth. This complex process involves many different stages, including:

1. Fertilization: The union of a sperm and an egg to form a zygote.
2. Implantation: The movement of the zygote into the lining of the uterus, where it will begin to grow and develop.
3. Formation of the embryo: The development of the basic structures of the body, including the neural tube (which becomes the brain and spinal cord), heart, gastrointestinal tract, and sensory organs.
4. Differentiation of tissues and organs: The process by which different cells and tissues become specialized to perform specific functions.
5. Growth and maturation: The continued growth and development of the fetus, including the formation of bones, muscles, and other tissues.

Fetal development is a complex and highly regulated process that involves the interaction of genetic and environmental factors. Proper nutrition, prenatal care, and avoidance of harmful substances such as tobacco, alcohol, and drugs are important for ensuring healthy fetal development.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Diathermy is a medical term that refers to the use of high-frequency electrical currents to heat body tissues. The term "diathermy" comes from the Greek words "dia," meaning "through," and "therme," meaning "heat." There are several types of diathermy, including shortwave, microwave, and ultrasound diathermy.

Shortwave diathermy uses electromagnetic waves with frequencies between 10 MHz and 27 MHz to generate heat in deep tissues. This type of diathermy is often used to treat muscle or joint pain, increase blood flow, or promote healing after surgery or injury.

Microwave diathermy uses high-frequency electromagnetic waves with frequencies between 915 MHz and 2450 MHz to generate heat in superficial tissues. This type of diathermy is often used to treat skin conditions such as dermatitis or psoriasis.

Ultrasound diathermy uses high-frequency sound waves with frequencies above 1 MHz to generate heat in soft tissues. This type of diathermy is often used to treat muscle or tendon injuries, promote healing, or relieve pain.

Diathermy should be administered by a trained healthcare professional, as there are potential risks and complications associated with its use, including burns, discomfort, or damage to implanted medical devices such as pacemakers.

Disintegrins are a group of small, cysteine-rich proteins that are derived from the venom of certain snakes, such as vipers and pit vipers. They are named for their ability to disrupt the integrin-mediated adhesion of cells, which is an important process in many physiological and pathological processes, including hemostasis, inflammation, and cancer metastasis.

Disintegrins contain a conserved RGD (Arg-Gly-Asp) or KTS (Lys-Thr-Ser) sequence that allows them to bind specifically to integrin receptors on the surface of cells. This binding can cause various effects, such as inhibiting cell adhesion, migration, and proliferation, or promoting apoptosis (programmed cell death).

Due to their potent biological activities, disintegrins have been studied for their potential therapeutic applications in various diseases, including thrombosis, cancer, and inflammation. However, further research is needed to fully understand their mechanisms of action and safety profiles before they can be used clinically.

Dinoprostone is a prostaglandin E2 analog used in medical practice for the induction of labor and ripening of the cervix in pregnant women. It is available in various forms, including vaginal suppositories, gel, and tablets. Dinoprostone works by stimulating the contraction of uterine muscles and promoting cervical dilation, which helps in facilitating a successful delivery.

It's important to note that dinoprostone should only be administered under the supervision of a healthcare professional, as its use is associated with certain risks and side effects, including uterine hyperstimulation, fetal distress, and maternal infection. The dosage and duration of treatment are carefully monitored to minimize these risks and ensure the safety of both the mother and the baby.

Prostaglandin E (PGE) is a type of prostaglandin, which is a group of lipid compounds that are synthesized in the body from fatty acids and have diverse hormone-like effects. Prostaglandins are not actually hormones, but are similar to them in that they act as chemical messengers that have specific effects on certain cells.

Prostaglandin E is one of the most abundant prostaglandins in the body and has a variety of physiological functions. It is involved in the regulation of inflammation, pain perception, fever, and smooth muscle contraction. Prostaglandin E also plays a role in the regulation of blood flow, platelet aggregation, and gastric acid secretion.

Prostaglandin E is synthesized from arachidonic acid, which is released from cell membranes by the action of enzymes called phospholipases. Once formed, prostaglandin E binds to specific receptors on the surface of cells, leading to a variety of intracellular signaling events that ultimately result in changes in cell behavior.

Prostaglandin E is used medically in the treatment of several conditions, including dysmenorrhea (painful menstruation), postpartum hemorrhage, and patent ductus arteriosus (a congenital heart defect). It is also used as a diagnostic tool in the evaluation of kidney function.

A drug combination refers to the use of two or more drugs in combination for the treatment of a single medical condition or disease. The rationale behind using drug combinations is to achieve a therapeutic effect that is superior to that obtained with any single agent alone, through various mechanisms such as:

* Complementary modes of action: When different drugs target different aspects of the disease process, their combined effects may be greater than either drug used alone.
* Synergistic interactions: In some cases, the combination of two or more drugs can result in a greater-than-additive effect, where the total response is greater than the sum of the individual responses to each drug.
* Antagonism of adverse effects: Sometimes, the use of one drug can mitigate the side effects of another, allowing for higher doses or longer durations of therapy.

Examples of drug combinations include:

* Highly active antiretroviral therapy (HAART) for HIV infection, which typically involves a combination of three or more antiretroviral drugs to suppress viral replication and prevent the development of drug resistance.
* Chemotherapy regimens for cancer treatment, where combinations of cytotoxic agents are used to target different stages of the cell cycle and increase the likelihood of tumor cell death.
* Fixed-dose combination products, such as those used in the treatment of hypertension or type 2 diabetes, which combine two or more active ingredients into a single formulation for ease of administration and improved adherence to therapy.

However, it's important to note that drug combinations can also increase the risk of adverse effects, drug-drug interactions, and medication errors. Therefore, careful consideration should be given to the selection of appropriate drugs, dosing regimens, and monitoring parameters when using drug combinations in clinical practice.

I. Definition:

An abortion in a veterinary context refers to the intentional or unintentional termination of pregnancy in a non-human animal before the fetus is capable of surviving outside of the uterus. This can occur spontaneously (known as a miscarriage) or be induced through medical intervention (induced abortion).

II. Common Causes:

Spontaneous abortions may result from genetic defects, hormonal imbalances, infections, exposure to toxins, trauma, or other maternal health issues. Induced abortions are typically performed for population control, humane reasons (such as preventing the birth of a severely deformed or non-viable fetus), or when the pregnancy poses a risk to the mother's health.

III. Methods:

Veterinarians may use various methods to induce abortion depending on the species, stage of gestation, and reason for the procedure. These can include administering drugs that stimulate uterine contractions (such as prostaglandins), physically removing the fetus through surgery (dilation and curettage or hysterectomy), or using techniques specific to certain animal species (e.g., intrauterine infusion of hypertonic saline in equids).

IV. Ethical Considerations:

The ethics surrounding veterinary abortions are complex and multifaceted, often involving considerations related to animal welfare, conservation, population management, and human-animal relationships. Veterinarians must weigh these factors carefully when deciding whether to perform an abortion and which method to use. In some cases, legal regulations may also influence the decision-making process.

V. Conclusion:

Abortion in veterinary medicine is a medical intervention that can be used to address various clinical scenarios, ranging from unintentional pregnancy loss to deliberate termination of pregnancy for humane or population control reasons. Ethical considerations play a significant role in the decision-making process surrounding veterinary abortions, and veterinarians must carefully evaluate each situation on a case-by-case basis.

Luteolytic agents are substances that cause the breakdown or regression of the corpus luteum, a temporary endocrine structure in the ovary that forms after ovulation and produces progesterone during early pregnancy in mammals. These agents work by inhibiting the secretion of prostaglandins, which are necessary for maintaining the integrity of the corpus luteum. By causing the breakdown of the corpus luteum, luteolytic agents can induce menstruation or cause the termination of an early pregnancy. Examples of luteolytic agents include prostaglandin F2alpha (PGF2α) and its analogs, as well as certain dopamine agonists such as cabergoline. These agents are used in various clinical settings, including reproductive medicine and veterinary medicine.

Mestranol is a synthetic form of estrogen, which is a female sex hormone used in oral contraceptives and hormone replacement therapy. It works by preventing the release of an egg from the ovary (ovulation) and altering the cervical mucus and the lining of the uterus to make it more difficult for sperm to reach the egg or for an already established pregnancy to be implanted.

Mestranol is typically combined with a progestin in birth control pills, such as those known as the "combined oral contraceptives." It's important to note that mestranol has largely been replaced by ethinyl estradiol, which is a more commonly used form of synthetic estrogen in hormonal medications.

As with any medication, there are potential risks and side effects associated with the use of mestranol, including an increased risk of blood clots, stroke, and certain types of cancer. It's essential to consult with a healthcare provider before starting or changing any hormonal medication.

Sperm count, also known as sperm concentration, is the number of sperm present in a given volume of semen. The World Health Organization (WHO) previously defined a normal sperm count as at least 20 million sperm per milliliter of semen. However, more recent studies suggest that fertility may be affected even when sperm counts are slightly lower than this threshold. It's important to note that sperm count is just one factor among many that can influence male fertility. Other factors, such as sperm motility (the ability of sperm to move properly) and morphology (the shape of the sperm), also play crucial roles in successful conception.

Pentobarbital is a barbiturate medication that is primarily used for its sedative and hypnotic effects in the treatment of insomnia, seizure disorders, and occasionally to treat severe agitation or delirium. It works by decreasing the activity of nerves in the brain, which produces a calming effect.

In addition to its medical uses, pentobarbital has been used for non-therapeutic purposes such as euthanasia and capital punishment due to its ability to cause respiratory depression and death when given in high doses. It is important to note that the use of pentobarbital for these purposes is highly regulated and restricted to licensed medical professionals in specific circumstances.

Like all barbiturates, pentobarbital has a high potential for abuse and addiction, and its use should be closely monitored by a healthcare provider. It can also cause serious side effects such as respiratory depression, decreased heart rate, and low blood pressure, especially when used in large doses or combined with other central nervous system depressants.

"Acinonyx" is a genus name that refers to a single species of big cat, the cheetah. The correct medical definition of "Acinonyx" is:

* Acinonyx jubatus: a large, slender wild cat that is known for its incredible speed and unique adaptations for running. It is the fastest land animal, capable of reaching speeds up to 60-70 miles per hour. The cheetah's body is built for speed, with long legs, a flexible spine, and a non-retractable claw that provides traction while running.

The cheetah's habitat ranges from the savannas of Africa to the deserts of Iran. It primarily hunts medium-sized ungulates, such as gazelles and wildebeest. The cheetah's population has been declining due to habitat loss, human-wildlife conflict, and illegal wildlife trade. Conservation efforts are underway to protect this iconic species and its habitat.

Primary Ovarian Insufficiency (POI), also known as Premature Ovarian Failure, is a condition characterized by the cessation of ovarian function before the age of 40. This results in decreased estrogen production and loss of fertility. It is often associated with menstrual irregularities or amenorrhea (absence of menstruation). The exact cause can vary, including genetic factors, autoimmune diseases, toxins, and iatrogenic causes such as chemotherapy or radiation therapy.

Medroxyprogesterone is a synthetic form of the natural hormone progesterone, which is a female sex hormone produced by the corpus luteum during the menstrual cycle and by the placenta during pregnancy. As a medication, medroxyprogesterone is used to treat a variety of conditions, including:

* Abnormal menstrual bleeding
* Endometrial hyperplasia (overgrowth of the lining of the uterus)
* Contraception (birth control)
* Hormone replacement therapy in postmenopausal women
* Prevention of breast cancer in high-risk women
* Treatment of certain types of cancer, such as endometrial and renal cancers

Medroxyprogesterone works by binding to progesterone receptors in the body, which helps to regulate the menstrual cycle, maintain pregnancy, and prevent the growth of some types of cancer. It is available in various forms, including tablets, injectable solutions, and depot suspensions for intramuscular injection.

It's important to note that medroxyprogesterone can have significant side effects, and its use should be monitored by a healthcare provider. Women who are pregnant or breastfeeding should not take medroxyprogesterone, and it may interact with other medications, so it is important to inform your doctor of all medications you are taking before starting medroxyprogesterone.

Chiroptera is the scientific order that includes all bat species. Bats are the only mammals capable of sustained flight, and they are distributed worldwide with the exception of extremely cold environments. They vary greatly in size, from the bumblebee bat, which weighs less than a penny, to the giant golden-crowned flying fox, which has a wingspan of up to 6 feet.

Bats play a crucial role in many ecosystems as pollinators and seed dispersers for plants, and they also help control insect populations. Some bat species are nocturnal and use echolocation to navigate and find food, while others are diurnal and rely on their vision. Their diet mainly consists of insects, fruits, nectar, and pollen, although a few species feed on blood or small vertebrates.

Unfortunately, many bat populations face significant threats due to habitat loss, disease, and wind turbine collisions, leading to declining numbers and increased conservation efforts.

'Caenorhabditis elegans' is a species of free-living, transparent nematode (roundworm) that is widely used as a model organism in scientific research, particularly in the fields of biology and genetics. It has a simple anatomy, short lifespan, and fully sequenced genome, making it an ideal subject for studying various biological processes and diseases.

Some notable features of C. elegans include:

* Small size: Adult hermaphrodites are about 1 mm in length.
* Short lifespan: The average lifespan of C. elegans is around 2-3 weeks, although some strains can live up to 4 weeks under laboratory conditions.
* Development: C. elegans has a well-characterized developmental process, with adults developing from eggs in just 3 days at 20°C.
* Transparency: The transparent body of C. elegans allows researchers to observe its internal structures and processes easily.
* Genetics: C. elegans has a fully sequenced genome, which contains approximately 20,000 genes. Many of these genes have human homologs, making it an excellent model for studying human diseases.
* Neurobiology: C. elegans has a simple nervous system, with only 302 neurons in the hermaphrodite and 383 in the male. This simplicity makes it an ideal organism for studying neural development, function, and behavior.

Research using C. elegans has contributed significantly to our understanding of various biological processes, including cell division, apoptosis, aging, learning, and memory. Additionally, studies on C. elegans have led to the discovery of many genes associated with human diseases such as cancer, neurodegenerative disorders, and metabolic conditions.

Androgens are a class of hormones that are primarily responsible for the development and maintenance of male sexual characteristics and reproductive function. Testosterone is the most well-known androgen, but other androgens include dehydroepiandrosterone (DHEA), androstenedione, and dihydrotestosterone (DHT).

Androgens are produced primarily by the testes in men and the ovaries in women, although small amounts are also produced by the adrenal glands in both sexes. They play a critical role in the development of male secondary sexual characteristics during puberty, such as the growth of facial hair, deepening of the voice, and increased muscle mass.

In addition to their role in sexual development and function, androgens also have important effects on bone density, mood, and cognitive function. Abnormal levels of androgens can contribute to a variety of medical conditions, including infertility, erectile dysfunction, acne, hirsutism (excessive hair growth), and prostate cancer.

Endometriosis is a medical condition in which tissue similar to the lining of the uterus (endometrium) grows outside the uterine cavity, most commonly on the ovaries, fallopian tubes, and the pelvic peritoneum. This misplaced endometrial tissue continues to act as it would inside the uterus, thickening, breaking down, and bleeding with each menstrual cycle. However, because it is outside the uterus, this blood and tissue have no way to exit the body and can lead to inflammation, scarring, and the formation of adhesions (tissue bands that bind organs together).

The symptoms of endometriosis may include pelvic pain, heavy menstrual periods, painful intercourse, and infertility. The exact cause of endometriosis is not known, but several theories have been proposed, including retrograde menstruation (the backflow of menstrual blood through the fallopian tubes into the pelvic cavity), genetic factors, and immune system dysfunction.

Endometriosis can be diagnosed through a combination of methods, such as medical history, physical examination, imaging tests like ultrasound or MRI, and laparoscopic surgery with tissue biopsy. Treatment options for endometriosis include pain management, hormonal therapies, and surgical intervention to remove the misplaced endometrial tissue. In severe cases, a hysterectomy (removal of the uterus) may be recommended, but this is typically considered a last resort due to its impact on fertility and quality of life.

"Suckling animals" refers to young mammals that are in the process of nursing from their mother's teats or nipples, typically for the purpose of obtaining milk and nutrition. This behavior is instinctual in newborn mammals and helps to establish a strong bond between the mother and offspring, as well as providing essential nutrients for growth and development.

The duration of suckling can vary widely among different species, ranging from just a few days or weeks in some animals to several months or even years in others. In many cases, suckling also helps to stimulate milk production in the mother, ensuring an adequate supply of milk for her offspring.

Examples of suckling animals include newborn humans, as well as young mammals such as puppies, kittens, piglets, lambs, calves, and fawns, among others.

Lagomorpha is an order of mammals that includes rabbits, hares, and pikas. They are herbivores with large incisors in the front of their mouths and a second pair of smaller incisors behind them. Lagomorpha is distinguished from other orders by its unique dental characteristics and the presence of two pairs of upper incisors. These animals are known for their high reproductive rates and are found worldwide, except for Antarctica and some islands.

"Sex preselection," also known as "gender selection" or "family balancing," is the process of influencing the sex of an offspring before birth. It can be achieved through various methods, including preimplantation genetic diagnosis (PGD) in conjunction with in vitro fertilization (IVF), sperm sorting techniques, and embryo manipulation.

PGD is a technique where one or more cells are taken from an embryo created through IVF and tested for genetic disorders or chromosomal abnormalities. During this process, the sex of the embryo can also be determined. Only embryos of the desired sex are then transferred to the uterus for implantation.

Sperm sorting techniques involve separating X-chromosome-bearing sperm (which produce female offspring) from Y-chromosome-bearing sperm (which produce male offspring). The sorted sperm can then be used for artificial insemination or IVF.

It's important to note that sex preselection is a controversial topic due to ethical considerations and legal restrictions in some countries.

'Caenorhabditis elegans' (C. elegans) is a type of free-living, transparent nematode (roundworm) that is often used as a model organism in scientific research. C. elegans proteins refer to the various types of protein molecules that are produced by the organism's genes and play crucial roles in maintaining its biological functions.

Proteins are complex molecules made up of long chains of amino acids, and they are involved in virtually every cellular process, including metabolism, DNA replication, signal transduction, and transportation of molecules within the cell. In C. elegans, proteins are encoded by genes, which are transcribed into messenger RNA (mRNA) molecules that are then translated into protein sequences by ribosomes.

Studying C. elegans proteins is important for understanding the basic biology of this organism and can provide insights into more complex biological systems, including humans. Because C. elegans has a relatively simple nervous system and a short lifespan, it is often used to study neurobiology, aging, and development. Additionally, because many of the genes and proteins in C. elegans have counterparts in other organisms, including humans, studying them can provide insights into human disease processes and potential therapeutic targets.

I couldn't find a medical definition specifically for "delayed-action preparations." However, in the context of pharmacology, it may refer to medications or treatments that have a delayed onset of action. These are designed to release the active drug slowly over an extended period, which can help to maintain a consistent level of the medication in the body and reduce the frequency of dosing.

Examples of delayed-action preparations include:

1. Extended-release (ER) or controlled-release (CR) formulations: These are designed to release the drug slowly over several hours, reducing the need for frequent dosing. Examples include extended-release tablets and capsules.
2. Transdermal patches: These deliver medication through the skin and can provide a steady rate of drug delivery over several days. Examples include nicotine patches for smoking cessation or fentanyl patches for pain management.
3. Injectable depots: These are long-acting injectable formulations that slowly release the drug into the body over weeks to months. An example is the use of long-acting antipsychotic injections for the treatment of schizophrenia.
4. Implantable devices: These are small, biocompatible devices placed under the skin or within a body cavity that release a steady dose of medication over an extended period. Examples include hormonal implants for birth control or drug-eluting stents used in cardiovascular procedures.

Delayed-action preparations can improve patient compliance and quality of life by reducing dosing frequency, minimizing side effects, and maintaining consistent therapeutic levels.

Aminoglutethimide is a medication that is primarily used to treat hormone-sensitive cancers such as breast cancer and prostate cancer. It works by blocking the production of certain hormones in the body, including estrogen and cortisol. Aminoglutethimide is an inhibitor of steroid synthesis, specifically targeting the enzymes involved in the conversion of cholesterol to steroid hormones.

The medication is available in oral form and is typically taken 2-3 times a day. Common side effects include drowsiness, dizziness, dry mouth, skin rash, and changes in appetite or weight. More serious side effects may include liver damage, severe allergic reactions, and changes in heart rhythm.

It's important to note that aminoglutethimide can interact with other medications, so it's crucial to inform your healthcare provider about all the drugs you are currently taking before starting this medication. Additionally, regular monitoring of liver function and hormone levels may be necessary during treatment with aminoglutethimide.

Zona pellucida is a term used in the field of reproductive biology and it refers to the glycoprotein membrane that surrounds mammalian oocytes (immature egg cells). This membrane plays a crucial role in the fertilization process. It has receptors for sperm, and upon binding with the sperm, it undergoes changes that prevent other sperm from entering, a process known as the zona reaction. This membrane is also involved in the early development of the embryo.

Aging is a complex, progressive and inevitable process of bodily changes over time, characterized by the accumulation of cellular damage and degenerative changes that eventually lead to increased vulnerability to disease and death. It involves various biological, genetic, environmental, and lifestyle factors that contribute to the decline in physical and mental functions. The medical field studies aging through the discipline of gerontology, which aims to understand the underlying mechanisms of aging and develop interventions to promote healthy aging and extend the human healthspan.

Delayed embryo implantation is a medical condition that occurs when the fertilized egg (embryo) does not attach to the uterine lining (endometrium) within the expected time frame, typically within 7-10 days after ovulation. In delayed implantation, the embryo may take longer than usual to implant, which can result in a prolonged menstrual cycle or irregular bleeding.

There are several possible reasons for delayed implantation, including hormonal imbalances, uterine abnormalities, immune system dysfunction, and chromosomal abnormalities in the embryo. In some cases, delayed implantation may be a sign of infertility or recurrent pregnancy loss.

Diagnosis of delayed implantation typically involves monitoring hormone levels and tracking menstrual cycles. Imaging tests such as ultrasound or hysteroscopy may also be used to assess the uterine lining and detect any abnormalities that could be contributing to the delay in implantation.

Treatment for delayed implantation depends on the underlying cause. Hormonal therapies, medications to suppress the immune system, or surgery to correct uterine abnormalities may be recommended in some cases. In vitro fertilization (IVF) with embryo transfer may also be considered as a treatment option for couples experiencing delayed implantation and infertility.

Anti-Mullerian Hormone (AMH) is a glycoprotein hormone that belongs to the transforming growth factor-beta (TGF-β) family. It is primarily produced by the granulosa cells of developing follicles in the ovaries of females. AMH plays an essential role in female reproductive physiology, as it inhibits the recruitment and further development of primordial follicles, thereby regulating the size of the primordial follicle pool and the onset of puberty.

AMH levels are often used as a biomarker for ovarian reserve assessment in women. High AMH levels indicate a larger ovarian reserve, while low levels suggest a decreased reserve, which may be associated with reduced fertility or an earlier onset of menopause. Additionally, measuring AMH levels can help predict the response to ovarian stimulation during assisted reproductive technologies (ART) such as in vitro fertilization (IVF).

Hypogonadism is a medical condition characterized by the inability of the gonads (testes in males and ovaries in females) to produce sufficient amounts of sex hormones, such as testosterone and estrogen. This can lead to various symptoms including decreased libido, erectile dysfunction in men, irregular menstrual periods in women, and reduced fertility in both sexes. Hypogonadism may be caused by genetic factors, aging, injury to the gonads, or certain medical conditions such as pituitary disorders. It can be treated with hormone replacement therapy.

Dizygotic twins, also known as fraternal twins, are a result of two separate sperm fertilizing two separate eggs during conception. These twins share about 50% of their genes, similar to any non-twin siblings. They may be of the same sex or different sexes and can vary in appearance, personality, and interests. Dizygotic twins typically do not share a placenta or a sac in the womb, but they may share a chorion (outer fetal membrane).

Subcutaneous injection is a route of administration where a medication or vaccine is delivered into the subcutaneous tissue, which lies between the skin and the muscle. This layer contains small blood vessels, nerves, and connective tissues that help to absorb the medication slowly and steadily over a period of time. Subcutaneous injections are typically administered using a short needle, at an angle of 45-90 degrees, and the dose is injected slowly to minimize discomfort and ensure proper absorption. Common sites for subcutaneous injections include the abdomen, thigh, or upper arm. Examples of medications that may be given via subcutaneous injection include insulin, heparin, and some vaccines.

Sperm motility is the ability of sperm to move actively and effectively through the female reproductive tract towards the egg for fertilization. It is typically measured as the percentage of moving sperm in a sample, and their progressiveness or velocity. Normal human sperm motility is generally defined as forward progression of at least 25 micrometers per second, with at least 50% of sperm showing progressive motility. Reduced sperm motility, also known as asthenozoospermia, can negatively impact fertility and reproductive outcomes.

I apologize for the confusion, but "Azacosterol" is not a recognized term in medical or clinical medicine. It appears to be a specialized term used in some scientific research, specifically in the field of steroid chemistry and biochemistry. Azacosterol is a type of sterol that has been synthesized and studied for its potential biological activity. However, it is not a term commonly used in medical practice or clinical medicine.

If you have any questions about steroids, sterol metabolism, or any other medical topic, I would be happy to help answer them to the best of my ability.

Culture techniques are methods used in microbiology to grow and multiply microorganisms, such as bacteria, fungi, or viruses, in a controlled laboratory environment. These techniques allow for the isolation, identification, and study of specific microorganisms, which is essential for diagnostic purposes, research, and development of medical treatments.

The most common culture technique involves inoculating a sterile growth medium with a sample suspected to contain microorganisms. The growth medium can be solid or liquid and contains nutrients that support the growth of the microorganisms. Common solid growth media include agar plates, while liquid growth media are used for broth cultures.

Once inoculated, the growth medium is incubated at a temperature that favors the growth of the microorganisms being studied. During incubation, the microorganisms multiply and form visible colonies on the solid growth medium or turbid growth in the liquid growth medium. The size, shape, color, and other characteristics of the colonies can provide important clues about the identity of the microorganism.

Other culture techniques include selective and differential media, which are designed to inhibit the growth of certain types of microorganisms while promoting the growth of others, allowing for the isolation and identification of specific pathogens. Enrichment cultures involve adding specific nutrients or factors to a sample to promote the growth of a particular type of microorganism.

Overall, culture techniques are essential tools in microbiology and play a critical role in medical diagnostics, research, and public health.

I'm sorry for any confusion, but "Goldfish" is not a term used in medical definitions. Goldfish are small domesticated fish that are often kept as pets. They belong to the family Cyprinidae and the genus Carassius. The most common species of goldfish is Carassius auratus. If you have any questions about goldfish or their care, I might be able to help with some general information, but for specific medical concerns, it would be best to consult a veterinarian.

Oxytocin is a hormone that is produced in the hypothalamus and released by the posterior pituitary gland. It plays a crucial role in various physiological processes, including social bonding, childbirth, and breastfeeding. During childbirth, oxytocin stimulates uterine contractions to facilitate labor and delivery. After giving birth, oxytocin continues to be released in large amounts during breastfeeding, promoting milk letdown and contributing to the development of the maternal-infant bond.

In social contexts, oxytocin has been referred to as the "love hormone" or "cuddle hormone," as it is involved in social bonding, trust, and attachment. It can be released during physical touch, such as hugging or cuddling, and may contribute to feelings of warmth and closeness between individuals.

In addition to its roles in childbirth, breastfeeding, and social bonding, oxytocin has been implicated in other physiological functions, including regulating blood pressure, reducing anxiety, and modulating pain perception.

Oviparity is a form of reproduction in which an animal lays eggs with externally developing embryos. The eggs are usually equipped with a protective shell and all the nutrients necessary for the development of the embryo, which allows the female to lay and abandon them, without any further care. This method of reproduction is common in many species of fish, reptiles, insects, and birds.

In oviparous animals, the fertilization of the egg may occur either internally or externally. In internal fertilization, the male deposits sperm directly into the female's reproductive tract, which then travel to the ova and fertilize them. The fertilized eggs are subsequently laid by the female. In external fertilization, the male and female release their gametes (sperm and eggs) into the surrounding environment, where fertilization takes place.

Oviparity is distinct from viviparity, a reproductive strategy in which the embryo develops inside the mother's body and receives nutrients through a placenta. In viviparous animals, such as mammals (excluding monotremes), the young are born live instead of hatching from eggs.

In situ hybridization (ISH) is a molecular biology technique used to detect and localize specific nucleic acid sequences, such as DNA or RNA, within cells or tissues. This technique involves the use of a labeled probe that is complementary to the target nucleic acid sequence. The probe can be labeled with various types of markers, including radioisotopes, fluorescent dyes, or enzymes.

During the ISH procedure, the labeled probe is hybridized to the target nucleic acid sequence in situ, meaning that the hybridization occurs within the intact cells or tissues. After washing away unbound probe, the location of the labeled probe can be visualized using various methods depending on the type of label used.

In situ hybridization has a wide range of applications in both research and diagnostic settings, including the detection of gene expression patterns, identification of viral infections, and diagnosis of genetic disorders.

"Social dominance" is not a term that has a specific medical definition. However, it is a concept that is often used in the social sciences, including sociology, psychology, and anthropology. It refers to the degree of control, influence, or power that an individual or group has over others within a particular social context or hierarchy.

In some cases, social dominance may be associated with certain medical conditions or situations. For example, individuals with antisocial personality disorder or other psychiatric disorders may exhibit dominant behaviors as part of their symptoms. Similarly, social dominance can be a factor in the development and maintenance of certain types of relationships, such as those seen in abusive or coercive relationships.

However, it's important to note that social dominance is not a medical diagnosis or condition in and of itself. Rather, it is a social phenomenon that can intersect with various medical and psychological issues.

Androstane-3,17-diol is a steroid hormone, specifically a 17-ketosteroid, that is synthesized from the metabolism of androgens such as testosterone. It exists in two forms: 5α-androstane-3α,17β-diol and 5β-androstane-3α,17β-diol, which differ based on the configuration of the A ring at the 5 position. These compounds are weak androgens themselves but serve as important intermediates in steroid hormone metabolism. They can be further metabolized to form other steroid hormones or their metabolites, such as androstanediol glucuronide, which is a major urinary metabolite of testosterone and dihydrotestosterone.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

"Macaca mulatta" is the scientific name for the Rhesus macaque, a species of monkey that is native to South, Central, and Southeast Asia. They are often used in biomedical research due to their genetic similarity to humans.

Hyperprolactinemia is a medical condition characterized by abnormally high levels of prolactin, a hormone produced by the pituitary gland. In women, this can lead to menstrual irregularities, milk production outside of pregnancy (galactorrhea), and infertility. In men, it can cause decreased libido, erectile dysfunction, breast enlargement (gynecomastia), and infertility. The condition can be caused by various factors, including pituitary tumors, certain medications, and hypothyroidism. Treatment typically involves addressing the underlying cause and may include medication to lower prolactin levels.

Estradiol congeners refer to chemical compounds that are structurally similar to estradiol, which is the most potent and prevalent form of estrogen in humans. Estradiol congeners can be naturally occurring or synthetic and may have similar or different biological activities compared to estradiol.

These compounds can be found in various sources, including plants, animals, and industrial products. Some estradiol congeners are used in pharmaceuticals as hormone replacement therapies, while others are considered environmental pollutants and may have endocrine-disrupting effects on wildlife and humans.

Examples of estradiol congeners include:

1. Estrone (E1): a weak estrogen that is produced in the body from estradiol and is also found in some plants.
2. Estriol (E3): a weaker estrogen that is produced in large quantities during pregnancy.
3. Diethylstilbestrol (DES): a synthetic estrogen that was prescribed to pregnant women from the 1940s to the 1970s to prevent miscarriage, but was later found to have serious health effects on their offspring.
4. Zeranol: a synthetic non-steroidal estrogen used as a growth promoter in livestock.
5. Bisphenol A (BPA): a chemical used in the production of plastics and epoxy resins, which has been shown to have weak estrogenic activity and may disrupt the endocrine system.

Pregnanes are a class of steroid hormones and steroids that contain a pregnane nucleus, which is a steroid core with a carbon skeleton consisting of 21 carbons. This structure includes four fused rings, labeled A through D, and is derived from cholesterol.

Pregnanes are important precursors for the synthesis of various steroid hormones in the body, including progesterone, which plays a crucial role in maintaining pregnancy and regulating the menstrual cycle. Other examples of pregnanes include cortisol, a stress hormone produced by the adrenal gland, and aldosterone, a hormone that helps regulate electrolyte balance and blood pressure.

It's worth noting that pregnanes can also refer to synthetic compounds that contain this steroid nucleus and are used in various medical and research contexts.

"Cell count" is a medical term that refers to the process of determining the number of cells present in a given volume or sample of fluid or tissue. This can be done through various laboratory methods, such as counting individual cells under a microscope using a specialized grid called a hemocytometer, or using automated cell counters that use light scattering and electrical impedance techniques to count and classify different types of cells.

Cell counts are used in a variety of medical contexts, including hematology (the study of blood and blood-forming tissues), microbiology (the study of microscopic organisms), and pathology (the study of diseases and their causes). For example, a complete blood count (CBC) is a routine laboratory test that includes a white blood cell (WBC) count, red blood cell (RBC) count, hemoglobin level, hematocrit value, and platelet count. Abnormal cell counts can indicate the presence of various medical conditions, such as infections, anemia, or leukemia.

Microbial collagenase is not a medical term per se, but it does refer to an enzyme that is used in various medical and research contexts. Collagenases are a group of enzymes that break down collagen, a structural protein found in connective tissues such as skin, tendons, and ligaments. Microbial collagenase is a type of collagenase that is produced by certain bacteria, such as Clostridium histolyticum.

In medical terms, microbial collagenase is used in various therapeutic and research applications, including:

1. Wound healing: Microbial collagenase can be used to break down and remove necrotic tissue from wounds, which can help promote healing and prevent infection.
2. Dental applications: Collagenases have been used in periodontal therapy to remove calculus and improve the effectiveness of root planing and scaling procedures.
3. Research: Microbial collagenase is a valuable tool for researchers studying the structure and function of collagen and other extracellular matrix proteins. It can be used to digest tissue samples, allowing scientists to study the individual components of the extracellular matrix.

It's important to note that while microbial collagenase has many useful applications, it must be used with care, as excessive or improper use can damage healthy tissues and cause adverse effects.

Flutamide is an anti-androgen medication, which is primarily used to treat prostate cancer. It works by blocking the action of androgens (male hormones), such as testosterone, on cancer cells. This helps to slow down or stop the growth of prostate cancer cells. Flutamide may be given in combination with other medications, such as a luteinizing hormone-releasing hormone (LHRH) agonist, to enhance its effectiveness. It is usually taken by mouth in the form of tablets.

Flutamide can have side effects, including breast tenderness and enlargement, hot flashes, nausea, vomiting, diarrhea, and loss of sexual desire. In rare cases, it may cause more serious side effects such as liver damage. It is important to be monitored by a healthcare professional while taking this medication to ensure that it is working properly and to manage any potential side effects.

Pregnancy maintenance refers to the ongoing process and care required to support and sustain a healthy pregnancy until childbirth. This includes regular prenatal check-ups to monitor the health of both the mother and the developing fetus, proper nutrition, regular exercise, and avoiding harmful behaviors such as smoking or consuming alcohol. In some cases, pregnancy maintenance may also include medical interventions such as hormone treatments or bed rest. The goal of pregnancy maintenance is to ensure the best possible outcome for both the mother and the baby.

"Salmonidae" is not a medical term. It is a biological term that refers to a family of fish which includes salmon, trout, char, grayling, and whitefish. These fish are often anadromous, meaning they are born in fresh water, migrate to the ocean, then return to fresh water to reproduce. They are important both commercially and recreationally as a source of food and sport fishing.

"Dolphins" is a common name that refers to several species of marine mammals belonging to the family Delphinidae, within the larger group Cetacea. Dolphins are known for their intelligence, social behavior, and acrobatic displays. They are generally characterized by a streamlined body, a prominent dorsal fin, and a distinctive "smiling" expression created by the curvature of their mouths.

Although "dolphins" is sometimes used to refer to all members of the Delphinidae family, it is important to note that there are several other families within the Cetacea order, including porpoises and whales. Therefore, not all small cetaceans are dolphins.

Some examples of dolphin species include:

1. Bottlenose Dolphin (Tursiops truncatus) - This is the most well-known and studied dolphin species, often featured in aquariums and marine parks. They have a robust body and a prominent, curved dorsal fin.
2. Common Dolphin (Delphinus delphis) - These dolphins are characterized by their hourglass-shaped color pattern and distinct, falcate dorsal fins. There are two subspecies: the short-beaked common dolphin and the long-beaked common dolphin.
3. Spinner Dolphin (Stenella longirostris) - Known for their acrobatic behavior, spinner dolphins have a slender body and a long, thin beak. They are named for their spinning jumps out of the water.
4. Risso's Dolphin (Grampus griseus) - These dolphins have a unique appearance, with a robust body, a prominent dorsal fin, and a distinctive, scarred skin pattern caused by social interactions and encounters with squid, their primary food source.
5. Orca (Orcinus orca) - Also known as the killer whale, orcas are the largest dolphin species and are highly intelligent and social predators. They have a distinctive black-and-white color pattern and a prominent dorsal fin.

In medical terminology, "dolphins" do not have a specific relevance, but they can be used in various contexts such as therapy, research, or education. For instance, dolphin-assisted therapy is an alternative treatment that involves interactions between patients and dolphins to improve psychological and physical well-being. Additionally, marine biologists and researchers study dolphin behavior, communication, and cognition to understand their complex social structures and intelligence better.

Saralasin is a synthetic analog of the natural hormone angiotensin II, which is used in research and medicine. It acts as an antagonist of the angiotensin II receptor, blocking its effects. Saralasin is primarily used in research to study the role of the renin-angiotensin system in various physiological processes. In clinical medicine, it has been used in the diagnosis and treatment of conditions such as hypertension and pheochromocytoma, although its use is not widespread due to the availability of more effective and selective drugs.

Premenstrual Syndrome (PMS) is a complex of symptoms that occur in the latter part of the luteal phase (the second half) of the menstrual cycle, typically starting 5-11 days before the onset of menses, and remitting shortly after the onset of menstruation. The symptoms can be physical, psychological, or behavioral and vary from mild to severe. They include but are not limited to: bloating, breast tenderness, cramps, headaches, mood swings, irritability, depression, anxiety, fatigue, changes in appetite, and difficulty concentrating.

The exact cause of PMS is not known, but it appears to be related to hormonal changes during the menstrual cycle, particularly fluctuations in estrogen and progesterone levels. Some women may be more susceptible to these hormonal shifts due to genetic factors, neurotransmitter imbalances, or other health conditions.

Treatment for PMS often involves a combination of lifestyle changes (such as regular exercise, stress management, and dietary modifications), over-the-counter pain relievers, and, in some cases, hormonal medications or antidepressants. It's important to consult with a healthcare provider for an accurate diagnosis and treatment plan.

Oral hormonal contraceptives, also known as "birth control pills," are a type of medication that contains synthetic hormones (estrogen and/or progestin) that are taken by mouth to prevent pregnancy. They work by preventing ovulation (the release of an egg from the ovaries), thickening cervical mucus to make it harder for sperm to reach the egg, and thinning the lining of the uterus to make it less likely for a fertilized egg to implant.

There are several different types of oral hormonal contraceptives, including combined pills that contain both estrogen and progestin, and mini-pills that only contain progestin. These medications are usually taken daily for 21 days, followed by a seven-day break during which menstruation occurs. Some newer formulations may be taken continuously with no break.

It's important to note that while oral hormonal contraceptives are highly effective at preventing pregnancy when used correctly, they do not protect against sexually transmitted infections (STIs). Therefore, it is still important to use barrier methods of protection, such as condoms, during sexual activity to reduce the risk of STIs.

As with any medication, oral hormonal contraceptives can have side effects and may not be suitable for everyone. It's important to discuss any medical conditions, allergies, or medications you are taking with your healthcare provider before starting to take oral hormonal contraceptives.

The birth rate is the number of live births that occur in a population during a specific period, usually calculated as the number of live births per 1,000 people per year. It is an important demographic indicator used to measure the growth or decline of a population over time. A higher birth rate indicates a younger population and faster population growth, while a lower birth rate suggests an older population and slower growth.

The birth rate can be affected by various factors, including socioeconomic conditions, cultural attitudes towards childbearing, access to healthcare services, and government policies related to family planning and reproductive health. It is also influenced by the age structure of the population, as women in their reproductive years (typically ages 15-49) are more likely to give birth.

It's worth noting that while the birth rate is an important indicator of population growth, it does not provide a complete picture of fertility rates or demographic trends. Other measures, such as the total fertility rate (TFR), which estimates the average number of children a woman would have during her reproductive years, are also used to analyze fertility patterns and population dynamics.

Metestrus is the second phase of the estrous cycle in animals, specifically referring to the period of sexual receptivity and ovulation. In humans, this phase corresponds to the luteal phase of the menstrual cycle. During metestrus, the corpus luteum, a temporary endocrine structure formed from the remains of the ovarian follicle after ovulation, produces progesterone, which prepares the uterus for potential implantation of a fertilized egg. The duration of metestrus varies among species and can last several days to a few weeks. It is followed by diestrus, the final phase of the estrous cycle, during which the corpus luteum regresses, and hormone levels drop, leading to the shedding of the uterine lining in non-pregnant individuals.

Dihydrotestosterone (DHT) is a sex hormone and androgen that plays a critical role in the development and maintenance of male characteristics, such as facial hair, deep voice, and muscle mass. It is synthesized from testosterone through the action of the enzyme 5-alpha reductase. DHT is essential for the normal development of the male genitalia during fetal development and for the maturation of the sexual organs at puberty.

In addition to its role in sexual development, DHT also contributes to the growth of hair follicles, the health of the prostate gland, and the maintenance of bone density. However, an excess of DHT has been linked to certain medical conditions, such as benign prostatic hyperplasia (BPH) and androgenetic alopecia (male pattern baldness).

DHT exerts its effects by binding to androgen receptors in various tissues throughout the body. Once bound, DHT triggers a series of cellular responses that regulate gene expression and influence the growth and differentiation of cells. In some cases, these responses can lead to unwanted side effects, such as hair loss or prostate enlargement.

Medications that block the action of 5-alpha reductase, such as finasteride and dutasteride, are sometimes used to treat conditions associated with excess DHT production. These drugs work by reducing the amount of DHT available to bind to androgen receptors, thereby alleviating symptoms and slowing disease progression.

In summary, dihydrotestosterone is a potent sex hormone that plays a critical role in male sexual development and function. While it is essential for normal growth and development, an excess of DHT has been linked to certain medical conditions, such as BPH and androgenetic alopecia. Medications that block the action of 5-alpha reductase are sometimes used to treat these conditions by reducing the amount of DHT available to bind to androgen receptors.

The sex ratio is not a medical term per se, but it is a term used in demography and population health. The sex ratio is the ratio of males to females in a given population. It is typically expressed as the number of males for every 100 females. A sex ratio of 100 would indicate an equal number of males and females.

In the context of human populations, the sex ratio at birth is usually around 103-107 males per 100 females, reflecting a slightly higher likelihood of male births. However, due to biological factors such as higher male mortality rates in infancy and childhood, as well as social and behavioral factors, the sex ratio tends to equalize over time and can even shift in favor of women in older age groups.

It's worth noting that significant deviations from the expected sex ratio at birth or in a population can indicate underlying health issues or societal problems. For example, skewed sex ratios may be associated with gender discrimination, selective abortion of female fetuses, or exposure to environmental toxins that affect male reproductive health.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

A chemical stimulation in a medical context refers to the process of activating or enhancing physiological or psychological responses in the body using chemical substances. These chemicals can interact with receptors on cells to trigger specific reactions, such as neurotransmitters and hormones that transmit signals within the nervous system and endocrine system.

Examples of chemical stimulation include the use of medications, drugs, or supplements that affect mood, alertness, pain perception, or other bodily functions. For instance, caffeine can chemically stimulate the central nervous system to increase alertness and decrease feelings of fatigue. Similarly, certain painkillers can chemically stimulate opioid receptors in the brain to reduce the perception of pain.

It's important to note that while chemical stimulation can have therapeutic benefits, it can also have adverse effects if used improperly or in excessive amounts. Therefore, it's essential to follow proper dosing instructions and consult with a healthcare provider before using any chemical substances for stimulation purposes.

17-α-Hydroxyprogesterone is a naturally occurring hormone produced by the adrenal glands and, in smaller amounts, by the ovaries and testes. It is an intermediate in the biosynthesis of steroid hormones, including cortisol, aldosterone, and sex hormones such as testosterone and estrogen.

In a medical context, 17-α-Hydroxyprogesterone may also refer to a synthetic form of this hormone that is used in the treatment of certain medical conditions. For example, a medication called 17-alpha-hydroxyprogesterone caproate (17-OHP) is used to reduce the risk of preterm birth in women who have previously given birth prematurely. It works by suppressing uterine contractions and promoting fetal lung maturity.

It's important to note that 17-alpha-Hydroxyprogesterone should only be used under the supervision of a healthcare provider, as it can have side effects and may interact with other medications.

Artificial insemination, heterologous (also known as donor insemination) is a medical procedure that involves the introduction of sperm from a donor into a woman's reproductive tract with the aim of achieving pregnancy. The sperm used in this procedure comes from a donor who is not the woman's sexual partner. This method may be used when the male partner has severe fertility problems, such as azoospermia (absence of sperm in the ejaculate), or when the couple has a high risk of passing on genetic disorders to their offspring. The donor sperm can be injected into the woman's uterus through intrauterine insemination (IUI) or placed directly into the cervix through intracervical insemination (ICI).

A "Drug Administration Schedule" refers to the plan for when and how a medication should be given to a patient. It includes details such as the dose, frequency (how often it should be taken), route (how it should be administered, such as orally, intravenously, etc.), and duration (how long it should be taken) of the medication. This schedule is often created and prescribed by healthcare professionals, such as doctors or pharmacists, to ensure that the medication is taken safely and effectively. It may also include instructions for missed doses or changes in the dosage.

Sperm capacitation is a complex process that occurs in the female reproductive tract and prepares sperm for fertilization. It involves a series of biochemical modifications to the sperm's membrane and motility, which enable it to undergo the acrosome reaction and penetrate the zona pellucida surrounding the egg.

The capacitation process typically takes several hours and requires the sperm to be exposed to specific factors in the female reproductive tract, including bicarbonate ions, calcium ions, and certain proteins. During capacitation, cholesterol is removed from the sperm's plasma membrane, which leads to an increase in membrane fluidity and the exposure of receptors that are necessary for binding to the egg.

Capacitation is a critical step in the fertilization process, as it ensures that only sperm that have undergone this process can successfully fertilize the egg. Abnormalities in sperm capacitation have been linked to infertility and other reproductive disorders.

An injection is a medical procedure in which a medication, vaccine, or other substance is introduced into the body using a needle and syringe. The substance can be delivered into various parts of the body, including into a vein (intravenous), muscle (intramuscular), under the skin (subcutaneous), or into the spinal canal (intrathecal or spinal).

Injections are commonly used to administer medications that cannot be taken orally, have poor oral bioavailability, need to reach the site of action quickly, or require direct delivery to a specific organ or tissue. They can also be used for diagnostic purposes, such as drawing blood samples (venipuncture) or injecting contrast agents for imaging studies.

Proper technique and sterile conditions are essential when administering injections to prevent infection, pain, and other complications. The choice of injection site depends on the type and volume of the substance being administered, as well as the patient's age, health status, and personal preferences.

Norethindrone is a synthetic form of progesterone, a female hormone that is produced naturally in the ovaries. It is used as a medication for various purposes such as:

* Preventing pregnancy when used as a birth control pill
* Treating endometriosis
* Managing symptoms associated with menopause
* Treating abnormal menstrual bleeding

Norethindrone works by thinning the lining of the uterus, preventing ovulation (the release of an egg from the ovary), and changing the cervical mucus to make it harder for sperm to reach the egg. It is important to note that norethindrone should be taken under the supervision of a healthcare provider, as it can have side effects and may interact with other medications.

Colobinae is a subfamily of Old World monkeys that includes species such as colobus monkeys, langurs, and proboscis monkeys. These monkeys are characterized by their specialized stomachs for fermenting plant material, particularly leaves, and a lack of thumbs to assist in grasping branches. They are primarily found in Africa and Asia.

Uterine inversion is a relatively uncommon but potentially life-threatening obstetrical emergency that occurs when the uterus turns inside out and moves through the cervix into the vagina or even beyond, sometimes protruding from the vulva. This condition can cause severe bleeding due to the exposure of the rich uterine vascular supply, leading to hypovolemic shock if not promptly identified and managed. Uterine inversions are classified into four degrees based on the extent of the inversion:

1. First-degree inversion: The fundus of the uterus is inverted but remains within the cervix.
2. Second-degree inversion: The fundus protrudes through the cervix into the vagina.
3. Third-degree inversion: The fundus reaches or extends beyond the introitus (vaginal opening).
4. Complete inversion: The entire uterus is outside the body.

Uterine inversion can be caused by several factors, including rapid or forceful traction on the umbilical cord, a weakened uterine muscle due to overdistention, previous uterine surgeries, or an abnormally shaped uterus. Prompt recognition and management are crucial for successful repositioning of the uterus and preventing severe maternal morbidity and mortality.

Intracytoplasmic Sperm Injection (ICSI) is a specialized form of assisted reproductive technology (ART), specifically used in the context of in vitro fertilization (IVF). It involves the direct injection of a single sperm into the cytoplasm of a mature egg (oocyte) to facilitate fertilization. This technique is often used when there are issues with male infertility, such as low sperm count or poor sperm motility, to increase the chances of successful fertilization. The resulting embryos can then be transferred to the uterus in hopes of achieving a pregnancy.

The scrotum is a part of the external male genitalia. It's a sac-like structure made up of several layers of skin and smooth muscle, which hangs down behind and beneath the penis. The primary function of the scrotum is to maintain the testicles at a temperature slightly lower than the core body temperature, which is optimal for sperm production.

The scrotum contains two compartments, each one housing a testicle. It's located in the pubic region and is usually visible externally. The skin of the scrotum is thin and wrinkled, which allows it to expand and contract depending on the temperature, accommodating the shrinking or swelling of the testicles.

Please note that while I strive to provide accurate information, this definition is intended to be a general overview and should not replace professional medical advice.

I believe you are looking for a medical or scientific term that is related to elephants, as there is no medical definition for the word "elephants" itself. Elephants are large mammals of the family Elephantidae and the order Proboscidea. They are native to Africa and Asia and are known for their long trunks, large ears, and tusks.

One possible connection between elephants and medicine is the use of elephant ivory in medical equipment. In the past, elephant ivory was used to make a variety of medical instruments, such as dental tools and surgical instruments. However, due to concerns about animal welfare and the illegal trade in elephant ivory, the use of elephant ivory in medical equipment has become increasingly rare.

Another possible connection between elephants and medicine is the study of their social behavior and communication, which may provide insights into human social behavior and mental health. For example, research has shown that elephants have complex social structures and exhibit behaviors such as empathy, cooperation, and mourning, which are also important aspects of human social and emotional functioning.

Overall, while there is no specific medical definition for "elephants," these fascinating animals have contributed to our understanding of biology, medicine, and human behavior in various ways.

Oral contraceptives, also known as "birth control pills," are medications taken by mouth to prevent pregnancy. They contain synthetic hormones that mimic the effects of natural hormones estrogen and progesterone in a woman's body, thereby preventing ovulation, fertilization, or implantation of a fertilized egg in the uterus.

There are two main types of oral contraceptives: combined pills, which contain both estrogen and progestin, and mini-pills, which contain only progestin. Combined pills work by preventing ovulation, thickening cervical mucus to make it harder for sperm to reach the egg, and thinning the lining of the uterus to make it less likely for a fertilized egg to implant. Mini-pills work mainly by thickening cervical mucus and changing the lining of the uterus.

Oral contraceptives are highly effective when used correctly, but they do not protect against sexually transmitted infections (STIs). It is important to use them consistently and as directed by a healthcare provider. Side effects may include nausea, breast tenderness, headaches, mood changes, and irregular menstrual bleeding. In rare cases, oral contraceptives may increase the risk of serious health problems such as blood clots, stroke, or liver tumors. However, for most women, the benefits of using oral contraceptives outweigh the risks.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

The corpus luteum is a temporary endocrine structure that forms in the ovary after an oocyte (egg) has been released from a follicle during ovulation. It produces several hormones, including:

1. Progesterone: This hormone prepares the uterus for potential pregnancy by stimulating the growth of blood vessels and glands in the endometrium (lining of the uterus). Progesterone also has an essential role in maintaining pregnancy by preventing menstruation and supporting fetal development.

2. Estradiol: Although primarily produced by developing follicles, the corpus luteum continues to secrete small amounts of estradiol after ovulation. This hormone contributes to the maintenance of the endometrium and helps regulate the menstrual cycle.

3. Relaxin: A peptide hormone that relaxes uterine and pelvic muscles in preparation for childbirth, as well as promoting the growth and remodeling of connective tissues during pregnancy.

4. Inhibin A and B: These are glycoprotein hormones that inhibit the release of follicle-stimulating hormone (FSH) from the pituitary gland, thereby regulating ovarian function and the menstrual cycle.

5. Androstenedione: A weak androgenic steroid hormone that can be converted to testosterone or estradiol in peripheral tissues.

The corpus luteum remains functional for approximately 10-14 days after ovulation if pregnancy does not occur, leading to a decline in hormone production and the onset of menstruation. However, if pregnancy occurs, the developing embryo will produce human chorionic gonadotropin (hCG), which maintains the corpus luteum and its hormonal function until the placenta takes over hormone production around 8-10 weeks of gestation.

I'm sorry for any confusion, but "Nebraska" is a state in the central United States and not a medical term. If you have any medical questions or terms you would like defined, I'd be happy to help with those!

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

The anterior pituitary, also known as the adenohypophysis, is the front portion of the pituitary gland. It is responsible for producing and secreting several important hormones that regulate various bodily functions. These hormones include:

* Growth hormone (GH), which stimulates growth and cell reproduction in bones and other tissues.
* Thyroid-stimulating hormone (TSH), which regulates the production of thyroid hormones by the thyroid gland.
* Adrenocorticotropic hormone (ACTH), which stimulates the adrenal glands to produce cortisol and other steroid hormones.
* Follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which regulate reproductive function in both males and females by controlling the development and release of eggs or sperm.
* Prolactin, which stimulates milk production in pregnant and nursing women.
* Melanocyte-stimulating hormone (MSH), which regulates skin pigmentation and appetite.

The anterior pituitary gland is controlled by the hypothalamus, a small region of the brain located just above it. The hypothalamus produces releasing and inhibiting hormones that regulate the secretion of hormones from the anterior pituitary. These hormones are released into a network of blood vessels called the portal system, which carries them directly to the anterior pituitary gland.

Damage or disease of the anterior pituitary can lead to hormonal imbalances and various medical conditions, such as growth disorders, thyroid dysfunction, adrenal insufficiency, reproductive problems, and diabetes insipidus.

"Animal nutritional physiological phenomena" is not a standardized medical or scientific term. However, it seems to refer to the processes and functions related to nutrition and physiology in animals. Here's a breakdown of the possible components:

1. Animal: This term refers to non-human living organisms that are multicellular, heterotrophic, and have a distinct nervous system.
2. Nutritional: This term pertains to the nourishment and energy requirements of an animal, including the ingestion, digestion, absorption, transportation, metabolism, and excretion of nutrients.
3. Physiological: This term refers to the functions and processes that occur within a living organism, including the interactions between different organs and systems.
4. Phenomena: This term generally means an observable fact or event.

Therefore, "animal nutritional physiological phenomena" could refer to the observable events and processes related to nutrition and physiology in animals. Examples of such phenomena include digestion, absorption, metabolism, energy production, growth, reproduction, and waste elimination.

Characiformes is an order of ray-finned fish that includes around 2,000 species, such as characins, tetras, and hatchetfish. These fish are characterized by their small to medium size, streamlined bodies, and teeth that are arranged in a single row on the jaw bones. They are found primarily in freshwater environments in tropical and subtropical regions of the world, particularly in South America. Characiformes species vary widely in their ecology and behavior, with some living in schools and others being solitary predators. Some members of this order, such as the piranha, have a reputation for being aggressive feeders, while others are popular aquarium fish due to their vibrant colors and patterns.

Oncorhynchus mykiss is the scientific name for a species of fish that is commonly known as the Rainbow Trout. According to the medical or clinical definition provided by the US National Library of Medicine, Oncorhynchus mykiss is "a freshwater fish that is widely cultured and an important food source in many parts of the world." It is also a popular game fish and is often stocked in lakes and rivers for recreational fishing. Rainbow trout are native to cold-water tributaries that flow into the Pacific Ocean in Asia and North America. They have been introduced widely throughout the world and can now be found in freshwater systems on every continent except Antarctica. Rainbow trout are a valuable species for both commercial and recreational fisheries, and they also play an important role in the food web as both predators and prey.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Reproductive medicine is a branch of medicine that deals with the prevention, diagnosis, and management of reproductive health disorders, including infertility, sexual dysfunction, and other reproductive system-related issues. It involves a multidisciplinary approach, combining expertise from various medical specialties such as obstetrics, gynecology, endocrinology, urology, and genetics.

Reproductive medicine encompasses several areas of focus, including:

1. Infertility treatment: Utilizing assisted reproductive technologies (ART) like in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), and other techniques to help individuals or couples conceive.
2. Contraception: Providing various methods for family planning, including hormonal contraceptives, barrier methods, and permanent sterilization procedures.
3. Sexual dysfunction: Addressing issues related to sexual desire, arousal, orgasm, and pain through medical interventions, counseling, or surgical treatments.
4. Reproductive endocrinology: Managing hormonal imbalances affecting reproductive health, such as polycystic ovary syndrome (PCOS), premature ovarian failure, and hypogonadism.
5. Genetic counseling and testing: Assessing the risk of inheritable genetic disorders and providing guidance on family planning options.
6. Menopause management: Offering treatments for symptoms associated with menopause, such as hot flashes, vaginal dryness, and mood changes.
7. Fertility preservation: Providing options for individuals facing cancer treatment or other medical conditions that may impact their future fertility, including egg, sperm, and embryo freezing.
8. Adolescent reproductive health: Addressing the unique needs of adolescents related to sexual and reproductive health, including education, counseling, and preventative care.
9. Andrology: Focusing on male reproductive health, including issues related to sperm production, function, and genital abnormalities.

Luteinizing Hormone (LH) is a glycoprotein hormone secreted by the anterior pituitary gland. It plays a crucial role in regulating the reproductive system. The beta subunit of LH is one of the two non-identical polypeptide chains that make up the LH molecule (the other being the alpha subunit, which is common to several hormones).

The beta subunit of LH is unique to LH and is often used in assays to measure and determine the concentration of LH in blood or urine. It's responsible for the biological specificity and activity of the LH hormone. Any changes in the structure of this subunit can affect the function of LH, which in turn can have implications for reproductive processes such as ovulation and testosterone production.

I am not a doctor, but I can provide you with some information about "thymic factor, circulating" that I found in scientific and medical sources. However, please consult medical literature or healthcare professionals for more detailed and accurate information.

The thymus is an essential primary lymphoid organ of the immune system where T cells (T lymphocytes) mature. Thymic factors are hormones secreted by the thymus that play a crucial role in the development, differentiation, and functioning of T cells. One such thymic factor is thymosin, which has several subtypes, including thymosin alpha-1 (Tα1) and thymosin beta-4 (Tβ4).

Circulating thymic factors refer to these hormones that can be found in the bloodstream. They help regulate immune responses by promoting T cell maturation and differentiation, enhancing their functions, and maintaining immune homeostasis. Thymosin alpha-1 is a well-studied thymic factor with potential therapeutic applications due to its immunomodulatory properties.

Keep in mind that this explanation might not be comprehensive or fully up-to-date, so I encourage you to consult medical literature and professionals for more detailed information.

Ovarian neoplasms refer to abnormal growths or tumors in the ovary, which can be benign (non-cancerous) or malignant (cancerous). These growths can originate from various cell types within the ovary, including epithelial cells, germ cells, and stromal cells. Ovarian neoplasms are often classified based on their cell type of origin, histological features, and potential for invasive or metastatic behavior.

Epithelial ovarian neoplasms are the most common type and can be further categorized into several subtypes, such as serous, mucinous, endometrioid, clear cell, and Brenner tumors. Some of these epithelial tumors have a higher risk of becoming malignant and spreading to other parts of the body.

Germ cell ovarian neoplasms arise from the cells that give rise to eggs (oocytes) and can include teratomas, dysgerminomas, yolk sac tumors, and embryonal carcinomas. Stromal ovarian neoplasms develop from the connective tissue cells supporting the ovary and can include granulosa cell tumors, thecomas, and fibromas.

It is essential to diagnose and treat ovarian neoplasms promptly, as some malignant forms can be aggressive and potentially life-threatening if not managed appropriately. Regular gynecological exams, imaging studies, and tumor marker tests are often used for early detection and monitoring of ovarian neoplasms. Treatment options may include surgery, chemotherapy, or radiation therapy, depending on the type, stage, and patient's overall health condition.

Hypothalamic diseases refer to conditions that affect the hypothalamus, a small but crucial region of the brain responsible for regulating many vital functions in the body. The hypothalamus helps control:

1. Body temperature
2. Hunger and thirst
3. Sleep cycles
4. Emotions and behavior
5. Release of hormones from the pituitary gland

Hypothalamic diseases can be caused by genetic factors, infections, tumors, trauma, or other conditions that damage the hypothalamus. Some examples of hypothalamic diseases include:

1. Hypothalamic dysfunction syndrome: A condition characterized by various symptoms such as obesity, sleep disturbances, and hormonal imbalances due to hypothalamic damage.
2. Kallmann syndrome: A genetic disorder that affects the development of the hypothalamus and results in a lack of sexual maturation and a decreased sense of smell.
3. Prader-Willi syndrome: A genetic disorder that causes obesity, developmental delays, and hormonal imbalances due to hypothalamic dysfunction.
4. Craniopharyngiomas: Tumors that develop near the pituitary gland and hypothalamus, often causing visual impairment, hormonal imbalances, and growth problems.
5. Infiltrative diseases: Conditions such as sarcoidosis or histiocytosis can infiltrate the hypothalamus, leading to various symptoms related to hormonal imbalances and neurological dysfunction.
6. Traumatic brain injury: Damage to the hypothalamus due to head trauma can result in various hormonal and neurological issues.
7. Infections: Bacterial or viral infections that affect the hypothalamus, such as encephalitis or meningitis, can cause damage and lead to hypothalamic dysfunction.

Treatment for hypothalamic diseases depends on the underlying cause and may involve medications, surgery, hormone replacement therapy, or other interventions to manage symptoms and improve quality of life.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

The medical definition of 'charcoal' is referred to as activated charcoal, which is a fine, black powder made from coconut shells, wood, or other natural substances. It is used in medical situations to absorb poison or drugs in the stomach, thereby preventing their absorption into the body and reducing their toxic effects. Activated charcoal works by binding to certain chemicals and preventing them from being absorbed through the digestive tract.

Activated charcoal is generally safe for most people when taken as directed, but it can cause side effects such as black stools, constipation, and regurgitation of the charcoal. It should be used under medical supervision and not as a substitute for seeking immediate medical attention in case of poisoning or overdose.

It's important to note that activated charcoal is different from regular charcoal, which is not safe to consume and can contain harmful chemicals or substances.

Inbred strains of mice are defined as lines of mice that have been brother-sister mated for at least 20 consecutive generations. This results in a high degree of homozygosity, where the mice of an inbred strain are genetically identical to one another, with the exception of spontaneous mutations.

Inbred strains of mice are widely used in biomedical research due to their genetic uniformity and stability, which makes them useful for studying the genetic basis of various traits, diseases, and biological processes. They also provide a consistent and reproducible experimental system, as compared to outbred or genetically heterogeneous populations.

Some commonly used inbred strains of mice include C57BL/6J, BALB/cByJ, DBA/2J, and 129SvEv. Each strain has its own unique genetic background and phenotypic characteristics, which can influence the results of experiments. Therefore, it is important to choose the appropriate inbred strain for a given research question.

Embryo loss is a medical term that refers to the miscarriage or spontaneous abortion of an embryo, which is the developing offspring from the time of fertilization until the end of the eighth week of pregnancy. Embryo loss can occur at any point during this period and may be caused by various factors such as chromosomal abnormalities, maternal health issues, infections, environmental factors, or lifestyle habits.

Embryo loss is a common occurrence, with up to 30% of pregnancies ending in miscarriage, many of which happen before the woman even realizes she is pregnant. In most cases, embryo loss is a natural process that occurs when the body detects an abnormality or problem with the developing embryo and terminates the pregnancy to prevent further complications. However, recurrent embryo loss can be a sign of underlying medical issues and may require further evaluation and treatment.

Metalloendopeptidases are a type of enzymes that cleave peptide bonds in proteins, specifically at interior positions within the polypeptide chain. They require metal ions as cofactors for their catalytic activity, typically zinc (Zn2+) or cobalt (Co2+). These enzymes play important roles in various biological processes such as protein degradation, processing, and signaling. Examples of metalloendopeptidases include thermolysin, matrix metalloproteinases (MMPs), and neutrophil elastase.

A quantitative trait is a phenotypic characteristic that can be measured and displays continuous variation, meaning it can take on any value within a range. Examples include height, blood pressure, or biochemical measurements like cholesterol levels. These traits are usually influenced by the combined effects of multiple genes (polygenic inheritance) as well as environmental factors.

Heritability, in the context of genetics, refers to the proportion of variation in a trait that can be attributed to genetic differences among individuals in a population. It is estimated using statistical methods and ranges from 0 to 1, with higher values indicating a greater contribution of genetics to the observed phenotypic variance.

Therefore, a heritable quantitative trait would be a phenotype that shows continuous variation, influenced by multiple genes and environmental factors, and for which a significant portion of the observed variation can be attributed to genetic differences among individuals in a population.

Progesterone reductase is not a widely recognized or used term in medical literature. However, based on the terms "progesterone" and "reductase," it can be inferred that progesterone reductase might refer to an enzyme responsible for reducing or converting progesterone into another form through a reduction reaction.

Progesterone is a steroid hormone involved in the menstrual cycle, pregnancy, and embryogenesis. Reductases are enzymes that catalyze the transfer of electrons from a donor to an acceptor, often resulting in the reduction of a substrate. In this context, progesterone reductase could potentially refer to an enzyme responsible for reducing progesterone into a different steroid hormone or metabolite.

However, it is essential to note that there is no widely accepted or established definition of "progesterone reductase" in medical literature. If you are looking for information on a specific enzyme related to progesterone metabolism, I would recommend consulting primary scientific literature or seeking guidance from a medical professional.

Aromatase inhibitors (AIs) are a class of drugs that are primarily used in the treatment of hormone-sensitive breast cancer in postmenopausal women. They work by inhibiting the enzyme aromatase, which is responsible for converting androgens into estrogens. By blocking this conversion, AIs decrease the amount of estrogen in the body, thereby depriving hormone-sensitive breast cancer cells of the estrogen they need to grow and multiply.

There are three main types of aromatase inhibitors:

1. Letrozole (Femara) - a non-steroidal AI that is taken orally once a day.
2. Anastrozole (Arimidex) - another non-steroidal AI that is also taken orally once a day.
3. Exemestane (Aromasin) - a steroidal AI that is taken orally once a day.

In addition to their use in breast cancer treatment, AIs are also sometimes used off-label for the treatment of estrogen-dependent conditions such as endometriosis and uterine fibroids. However, it's important to note that the use of aromatase inhibitors can have significant side effects, including hot flashes, joint pain, and bone loss, so they should only be used under the close supervision of a healthcare provider.

Callitrichinae is a subfamily of New World monkeys that includes marmosets and tamarins. These small primates are known for their claw-like nails (called "tegulae"), which they use for grooming and climbing, as well as their small size and social behavior. They are native to the forests of Central and South America. Some notable species in this subfamily include the common marmoset (Callithrix jacchus) and the golden lion tamarin (Leontopithecus rosalia).

Growth Hormone (GH), also known as somatotropin, is a peptide hormone secreted by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in regulating growth, cell reproduction, and regeneration by stimulating the production of another hormone called insulin-like growth factor 1 (IGF-1) in the liver and other tissues. GH also has important metabolic functions, such as increasing glucose levels, enhancing protein synthesis, and reducing fat storage. Its secretion is regulated by two hypothalamic hormones: growth hormone-releasing hormone (GHRH), which stimulates its release, and somatostatin (SRIF), which inhibits its release. Abnormal levels of GH can lead to various medical conditions, such as dwarfism or gigantism if there are deficiencies or excesses, respectively.

Immunization is defined medically as the process where an individual is made immune or resistant to an infectious disease, typically through the administration of a vaccine. The vaccine stimulates the body's own immune system to recognize and fight off the specific disease-causing organism, thereby preventing or reducing the severity of future infections with that organism.

Immunization can be achieved actively, where the person is given a vaccine to trigger an immune response, or passively, where antibodies are transferred to the person through immunoglobulin therapy. Immunizations are an important part of preventive healthcare and have been successful in controlling and eliminating many infectious diseases worldwide.

I'm sorry for any confusion, but "Macaca" is not a medical term. It is the name of a genus that includes several species of monkeys, commonly known as macaques. These primates are often used in biomedical research due to their similarities with humans in terms of genetics and physiology. If you have any questions related to medicine or health, I would be happy to try to help answer them.

Scanning electron microscopy (SEM) is a type of electron microscopy that uses a focused beam of electrons to scan the surface of a sample and produce a high-resolution image. In SEM, a beam of electrons is scanned across the surface of a specimen, and secondary electrons are emitted from the sample due to interactions between the electrons and the atoms in the sample. These secondary electrons are then detected by a detector and used to create an image of the sample's surface topography. SEM can provide detailed images of the surface of a wide range of materials, including metals, polymers, ceramics, and biological samples. It is commonly used in materials science, biology, and electronics for the examination and analysis of surfaces at the micro- and nanoscale.

A domestic sheep (Ovis aries) is not a medical term, but it is an animal species that humans keep and breed for a variety of purposes, including meat, wool, and milk production. While the term "sheep" may appear in medical contexts, such as in discussions of zoonotic diseases (diseases transmissible between animals and humans), the specific definition you are looking for is not medical in nature. Domestic sheep are social herbivores that prefer to eat short grasses and can be found in various parts of the world. They have been domesticated for thousands of years, making them one of the earliest animals to be domesticated by humans.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Semen preservation is the process of collecting, liquefying, testing, and storing semen samples for future use in assisted reproductive technologies (ART) such as artificial insemination (AI), in vitro fertilization (IVF), or intracytoplasmic sperm injection (ICSI). The semen sample is usually collected through masturbation, and then it is mixed with a cryoprotectant solution to prevent damage during the freezing and thawing process. After that, the sample is divided into straws or vials and frozen in liquid nitrogen tanks at temperatures below -196°C. Properly preserved semen can be stored for many years without significant loss of quality or fertility potential. Semen preservation is often recommended for men who are about to undergo medical treatments that may affect their sperm production or fertility, such as chemotherapy or radiation therapy, or for those who wish to postpone fatherhood for personal or medical reasons.

I am not aware of a medical definition for the term "buffaloes." The term generally refers to large, hoofed mammals that are native to Africa and Asia. In English language slang, the term "buffalo" is sometimes used to describe a lie or exaggeration, but this usage is not related to the medical field. If you have more context about where you encountered this term, I may be able to provide a more specific answer.

Egg proteins, also known as egg white proteins or ovalbumin, refer to the proteins found in egg whites. There are several different types of proteins found in egg whites, including:

1. Ovalbumin (54%): This is the major protein found in egg whites and is responsible for their white color. It has various functions such as providing nutrition, maintaining the structural integrity of the egg, and protecting the egg from bacteria.
2. Conalbumin (13%): Also known as ovotransferrin, this protein plays a role in the defense against microorganisms by binding to iron and making it unavailable for bacterial growth.
3. Ovomucoid (11%): This protein is resistant to digestion and helps protect the egg from being broken down by enzymes in the digestive tract of predators.
4. Lysozyme (3.5%): This protein has antibacterial properties and helps protect the egg from bacterial infection.
5. Globulins (4%): These are a group of simple proteins found in egg whites that have various functions such as providing nutrition, maintaining the structural integrity of the egg, and protecting the egg from bacteria.
6. Avidin (0.05%): This protein binds to biotin, a vitamin, making it unavailable for use by the body. However, cooking denatures avidin and makes the biotin available again.

Egg proteins are highly nutritious and contain all nine essential amino acids, making them a complete source of protein. They are also low in fat and cholesterol, making them a popular choice for those following a healthy diet.

Diethylstilbestrol (DES) is a synthetic form of the hormone estrogen that was prescribed to pregnant women from the 1940s until the early 1970s to prevent miscarriage, premature labor, and other complications of pregnancy. However, it was later discovered that DES could cause serious health problems in both the mothers who took it and their offspring.

DES is a non-selective estrogen agonist, meaning that it binds to and activates both estrogen receptors (ERα and ERβ) in the body. It has a higher binding affinity for ERα than for ERβ, which can lead to disruptions in normal hormonal signaling pathways.

In addition to its use as a pregnancy aid, DES has also been used in the treatment of prostate cancer, breast cancer, and other conditions associated with hormonal imbalances. However, due to its potential health risks, including an increased risk of certain cancers, DES is no longer widely used in clinical practice.

Some of the known health effects of DES exposure include:

* In women who were exposed to DES in utero (i.e., their mothers took DES during pregnancy):
+ A rare form of vaginal or cervical cancer called clear cell adenocarcinoma
+ Abnormalities of the reproductive system, such as structural changes in the cervix and vagina, and an increased risk of infertility, ectopic pregnancy, and preterm delivery
+ An increased risk of breast cancer later in life
* In men who were exposed to DES in utero:
+ Undescended testicles
+ Abnormalities of the penis and scrotum
+ A higher risk of testicular cancer
* In both men and women who were exposed to DES in utero or who took DES themselves:
+ An increased risk of certain types of breast cancer
+ A possible increased risk of cardiovascular disease, including high blood pressure and stroke.

It is important for individuals who have been exposed to DES to inform their healthcare providers of this fact, as it may have implications for their medical care and monitoring.

Megestrol is a synthetic progestin, which is a type of female hormone. It is used to treat certain types of cancer, such as breast cancer and endometrial cancer, in postmenopausal women. Megestrol works by blocking the effects of estrogen, a female hormone that can promote the growth of some breast and endometrial cancers.

Megestrol is also used to treat anorexia (loss of appetite) and cachexia (wasting syndrome) in people with AIDS or cancer. It works by increasing appetite and promoting weight gain.

Megestrol is available as a tablet or a suspension that is taken by mouth, usually two to four times a day. The dosage depends on the condition being treated and the individual patient's response to therapy. Common side effects of megestrol include nausea, vomiting, diarrhea, dizziness, headache, breast tenderness, and changes in menstrual periods.

It is important to note that megestrol can cause serious side effects, such as blood clots, fluid retention, and increased risk of certain types of infections. Patients should discuss the risks and benefits of megestrol therapy with their healthcare provider before starting treatment.

Alpha-globulins are a group of proteins present in blood plasma, which are classified based on their electrophoretic mobility. They migrate between albumin and beta-globulins during electrophoresis. Alpha-globulins include several proteins, such as alpha-1 antitrypsin, alpha-1 acid glycoprotein, and haptoglobin. These proteins play various roles in the body, including transporting and regulating other molecules, participating in immune responses, and maintaining oncotic pressure in blood vessels.

Macropodidae is not a medical term, but a taxonomic family in the order Diprotodontia, which includes large marsupials commonly known as kangaroos, wallabies, and tree-kangaroos. These animals are native to Australia and New Guinea. They are characterized by their strong hind legs, large feet adapted for leaping, and a long muscular tail used for balance. Some members of this family, particularly the larger kangaroo species, can pose a risk to humans in certain situations, such as vehicle collisions or aggressive encounters during breeding season. However, they are not typically associated with medical conditions or human health.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

Spontaneous abortion, also known as miscarriage, is the unintentional expulsion of a nonviable fetus from the uterus before the 20th week of gestation. It is a common complication of early pregnancy, with most miscarriages occurring during the first trimester. Spontaneous abortion can have various causes, including chromosomal abnormalities, maternal health conditions, infections, hormonal imbalances, and structural issues of the uterus or cervix. In many cases, the exact cause may remain unknown.

The symptoms of spontaneous abortion can vary but often include vaginal bleeding, which may range from light spotting to heavy bleeding; abdominal pain or cramping; and the passing of tissue or clots from the vagina. While some miscarriages occur suddenly and are immediately noticeable, others may progress slowly over several days or even weeks.

In medical practice, healthcare providers often use specific terminology to describe different stages and types of spontaneous abortion. For example:

* Threatened abortion: Vaginal bleeding during early pregnancy, but the cervix remains closed, and there is no evidence of fetal demise or passing of tissue.
* Inevitable abortion: Vaginal bleeding with an open cervix, indicating that a miscarriage is imminent or already in progress.
* Incomplete abortion: The expulsion of some but not all products of conception from the uterus, requiring medical intervention to remove any remaining tissue.
* Complete abortion: The successful passage of all products of conception from the uterus, often confirmed through an ultrasound or pelvic examination.
* Missed abortion: The death of a fetus in the uterus without any expulsion of the products of conception, which may be discovered during routine prenatal care.
* Septic abortion: A rare and life-threatening complication of spontaneous abortion characterized by infection of the products of conception and the surrounding tissues, requiring prompt medical attention and antibiotic treatment.

Healthcare providers typically monitor patients who experience a spontaneous abortion to ensure that all products of conception have been expelled and that there are no complications, such as infection or excessive bleeding. In some cases, medication or surgical intervention may be necessary to remove any remaining tissue or address other issues related to the miscarriage. Counseling and support services are often available for individuals and couples who experience a spontaneous abortion, as they may face emotional challenges and concerns about future pregnancies.

Isothiuronium is not a medical term, but it is a chemical compound that can be referred to in a medical context. It is a type of organic compound called an isothiouronium salt, which contains a nitrogen atom bonded to a sulfur atom and two organic groups.

Isothiouronium compounds are known to have various biological activities, including inhibition of certain enzymes and potential use as therapeutic agents. However, they can also be toxic in high concentrations. Therefore, exposure to isothiuronium compounds may require medical attention, particularly if it occurs through inhalation, ingestion, or skin contact.

In a medical context, isothiuronium may be mentioned in the context of drug metabolism, toxicology, or pharmacology, depending on the specific compound and its biological activity.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

The vulva refers to the external female genital area. It includes the mons pubis (the pad of fatty tissue covered with skin and hair that's located on the front part of the pelvis), labia majora (the outer folds of skin that surround and protect the vaginal opening), labia minora (the inner folds of skin that surround the vaginal and urethral openings), clitoris (a small, sensitive organ located at the front of the vulva where the labia minora join), the external openings of the urethra (the tube that carries urine from the bladder out of the body) and vagina (the passageway leading to the cervix, which is the lower part of the uterus).

It's important to note that understanding the anatomy and terminology related to one's own body can help facilitate effective communication with healthcare providers, promote self-awareness, and support overall health and well-being.

"Asterina" is a term that refers to a genus of starfish-like echinoderms, specifically belonging to the family Asterinidae. These marine animals are characterized by their small size and pentagonal or radial symmetry. They are typically found in shallow waters of various parts of the world and play an important role in the marine ecosystem as scavengers and predators.

It is worth noting that "Asterina" is not a medical term, but rather a scientific name used in the field of marine biology.

In medical terms, triplets are a type of multiple pregnancy, where three offsprings (fetuses) develop simultaneously in the uterus of a single pregnant woman. This occurs when a woman releases more than one egg during ovulation, and all three eggs get fertilized by separate sperm cells. Triplets can also occur through the use of assisted reproductive technologies such as in vitro fertilization (IVF) where multiple embryos are transferred into the uterus.

Triplet pregnancies carry a higher risk of complications for both the mother and the offsprings compared to singleton or twin pregnancies, including preterm labor, low birth weight, and developmental issues. As such, they often require close monitoring and specialized care throughout the pregnancy.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Sulpiride is an antipsychotic drug that belongs to the chemical class of benzamides. It primarily acts as a selective dopamine D2 and D3 receptor antagonist. Sulpiride is used in the treatment of various psychiatric disorders such as schizophrenia, psychosis, anxiety, and depression. In addition, it has been found to be effective in managing gastrointestinal disorders like gastroparesis due to its prokinetic effects on the gastrointestinal tract.

The medical definition of Sulpiride is as follows:

Sulpiride (INN, BAN), also known as Sultopride (USAN) or SP, is a selective dopamine D2 and D3 receptor antagonist used in the treatment of various psychiatric disorders such as schizophrenia, psychosis, anxiety, and depression. It has been found to be effective in managing gastrointestinal disorders like gastroparesis due to its prokinetic effects on the gastrointestinal tract. Sulpiride is available under various brand names worldwide, including Dogmatil, Sulpitac, and Espirid."

Please note that this definition includes information about the drug's therapeutic uses, which are essential aspects of understanding a medication in its entirety.

Thiazines are a class of organic compounds that contain a heterocyclic ring consisting of nitrogen, carbon, and sulfur atoms. In the context of pharmaceuticals, thiazine rings are often found in various drugs, including some antipsychotic medications such as chlorpromazine and thioridazine. These drugs function by blocking dopamine receptors in the brain, helping to manage symptoms associated with certain mental health conditions like schizophrenia.

It is important to note that 'thiazines' are not a medical term per se but rather a chemical classification of compounds. The medical relevance lies in the therapeutic application of specific drugs that have thiazine rings within their structures.

Immunologic contraception refers to the use of the immune system to prevent pregnancy. This is achieved by stimulating the production of antibodies against specific proteins or hormones that are essential for fertilization and implantation of a fertilized egg in the uterus. The most well-known example of immunologic contraception is the development of a vaccine that would induce an immune response against human chorionic gonadotropin (hCG), a hormone produced during pregnancy. By neutralizing hCG, the immune system could prevent the establishment and maintenance of pregnancy. However, this approach is still in the experimental stage and has not yet been approved for use in humans.

A zygote is the initial cell formed when a sperm fertilizes an egg, also known as an oocyte. This occurs in the process of human reproduction and marks the beginning of a new genetic identity, containing 46 chromosomes - 23 from the sperm and 23 from the egg. The zygote starts the journey of cell division and growth, eventually developing into a blastocyst, then an embryo, and finally a fetus over the course of pregnancy.

Drug resistance, also known as antimicrobial resistance, is the ability of a microorganism (such as bacteria, viruses, fungi, or parasites) to withstand the effects of a drug that was originally designed to inhibit or kill it. This occurs when the microorganism undergoes genetic changes that allow it to survive in the presence of the drug. As a result, the drug becomes less effective or even completely ineffective at treating infections caused by these resistant organisms.

Drug resistance can develop through various mechanisms, including mutations in the genes responsible for producing the target protein of the drug, alteration of the drug's target site, modification or destruction of the drug by enzymes produced by the microorganism, and active efflux of the drug from the cell.

The emergence and spread of drug-resistant microorganisms pose significant challenges in medical treatment, as they can lead to increased morbidity, mortality, and healthcare costs. The overuse and misuse of antimicrobial agents, as well as poor infection control practices, contribute to the development and dissemination of drug-resistant strains. To address this issue, it is crucial to promote prudent use of antimicrobials, enhance surveillance and monitoring of resistance patterns, invest in research and development of new antimicrobial agents, and strengthen infection prevention and control measures.

ADAM (A Disintegrin And Metalloprotease) proteins are a family of type I transmembrane proteins that contain several distinct domains, including a prodomain, a metalloprotease domain, a disintegrin-like domain, a cysteine-rich domain, a transmembrane domain, and a cytoplasmic tail. These proteins are involved in various biological processes such as cell adhesion, migration, proteolysis, and signal transduction.

ADAM proteins have been found to play important roles in many physiological and pathological conditions, including fertilization, neurodevelopment, inflammation, and cancer metastasis. For example, ADAM12 is involved in the fusion of myoblasts during muscle development, while ADAM17 (also known as TACE) plays a crucial role in the shedding of membrane-bound proteins such as tumor necrosis factor-alpha and epidermal growth factor receptor ligands.

Abnormalities in ADAM protein function have been implicated in various diseases, including cancer, Alzheimer's disease, and arthritis. Therefore, understanding the structure and function of these proteins has important implications for the development of novel therapeutic strategies.

Body temperature is the measure of heat produced by the body. In humans, the normal body temperature range is typically between 97.8°F (36.5°C) and 99°F (37.2°C), with an average oral temperature of 98.6°F (37°C). Body temperature can be measured in various ways, including orally, rectally, axillary (under the arm), and temporally (on the forehead).

Maintaining a stable body temperature is crucial for proper bodily functions, as enzymes and other biological processes depend on specific temperature ranges. The hypothalamus region of the brain regulates body temperature through feedback mechanisms that involve shivering to produce heat and sweating to release heat. Fever is a common medical sign characterized by an elevated body temperature above the normal range, often as a response to infection or inflammation.

1-Methyl-3-isobutylxanthine is a chemical compound that belongs to the class of xanthines. It is a methylated derivative of xanthine and is commonly found in some types of tea, coffee, and chocolate. This compound acts as a non-selective phosphodiesterase inhibitor, which means it can increase the levels of intracellular cyclic AMP (cAMP) by preventing its breakdown.

In medical terms, 1-Methyl-3-isobutylxanthine is often used as a bronchodilator and a stimulant of central nervous system. It is also known to have diuretic properties. This compound is sometimes used in the treatment of asthma, COPD (chronic obstructive pulmonary disease), and other respiratory disorders.

It's important to note that 1-Methyl-3-isobutylxanthine can have side effects, including increased heart rate, blood pressure, and anxiety. It should be used under the supervision of a medical professional and its use should be carefully monitored to avoid potential adverse reactions.

Perissodactyla is not a medical term, but rather a taxonomic order in zoology. It includes mammals with an odd number of toes on each foot and a particular type of digestive system called "hindgut fermentation." The order Perissodactyla includes horses, rhinos, and tapirs.

Metrorrhagia is defined as uterine bleeding that occurs at irregular intervals, particularly between expected menstrual periods. It can also be described as abnormal vaginal bleeding that is not related to the regular menstrual cycle. The amount of bleeding can vary from light spotting to heavy flow.

Metrorrhagia is different from menorrhagia, which refers to excessive or prolonged menstrual bleeding during the menstrual period. Metrorrhagia can be caused by various factors, including hormonal imbalances, uterine fibroids, polyps, endometrial hyperplasia, infection, pregnancy complications, and certain medications or medical conditions.

It is essential to consult a healthcare provider if you experience any abnormal vaginal bleeding to determine the underlying cause and receive appropriate treatment.

Endocrine glands are ductless glands in the human body that release hormones directly into the bloodstream, which then carry the hormones to various tissues and organs in the body. These glands play a crucial role in regulating many of the body's functions, including metabolism, growth and development, tissue function, sexual function, reproduction, sleep, and mood.

Examples of endocrine glands include the pituitary gland, thyroid gland, parathyroid glands, adrenal glands, pineal gland, pancreas, ovaries, and testes. Each of these glands produces specific hormones that have unique effects on various target tissues in the body.

The endocrine system works closely with the nervous system to regulate many bodily functions through a complex network of feedback mechanisms. Disorders of the endocrine system can result in a wide range of symptoms and health problems, including diabetes, thyroid disease, growth disorders, and sexual dysfunction.

Embryo culture techniques refer to the methods and procedures used to maintain and support the growth and development of an embryo outside of the womb, typically in a laboratory setting. These techniques are often used in the context of assisted reproductive technologies (ART), such as in vitro fertilization (IVF).

The process typically involves fertilizing an egg with sperm in a laboratory dish and then carefully monitoring and maintaining the resulting embryo in a specialized culture medium that provides the necessary nutrients, hormones, and other factors to support its development. The culture medium is usually contained within an incubator that maintains optimal temperature, humidity, and gas concentrations to mimic the environment inside the body.

Embryologists may use various embryo culture techniques depending on the stage of development and the specific needs of the embryo. For example, some techniques involve culturing the embryo in a single layer, while others may use a technique called "co-culture" that involves growing the embryo on a layer of cells to provide additional support and nutrients.

The goal of embryo culture techniques is to promote the healthy growth and development of the embryo, increasing the chances of a successful pregnancy and live birth. However, it's important to note that these techniques are not without risk, and there are potential ethical considerations surrounding the use of ART and embryo culture.

A pessary is a medical device that is inserted into the vagina to provide support for the uterus, vaginal vault, or bladder. It is often used in the management of pelvic organ prolapse, urinary incontinence, and other gynecological conditions. Pessaries come in various shapes and sizes, and they are typically made of silicone, rubber, or plastic. They can be worn for extended periods of time and are usually removable and cleanable. The selection and fitting of a pessary should be performed by a healthcare professional, such as a gynecologist or nurse midwife.

"Gonanes" is not a recognized medical term. However, in the field of chemistry and pharmacology, gonanes refer to a class of steroidal compounds that have a chemical structure similar to testosterone, which is the primary male sex hormone. These compounds are often used as the basis for developing drugs that can affect the reproductive system or other systems in the body that are influenced by testosterone and its derivatives.

It's important to note that while gonanes may have implications for medical research and drug development, they do not have a specific medical definition in the same way that terms like "myocardial infarction" or "diabetes mellitus" do.

A hysterectomy is a surgical procedure that involves the removal of the uterus (womb). Depending on the specific medical condition and necessity, a hysterectomy may also include the removal of the ovaries, fallopian tubes, and surrounding tissues. There are different types of hysterectomies, including:

1. Total hysterectomy: The uterus and cervix are removed.
2. Supracervical (or subtotal) hysterectomy: Only the upper part of the uterus is removed, leaving the cervix intact.
3. Radical hysterectomy: This procedure involves removing the uterus, cervix, surrounding tissues, and the upper part of the vagina. It is typically performed in cases of cervical cancer.
4. Oophorectomy: The removal of one or both ovaries can be performed along with a hysterectomy depending on the patient's medical condition and age.
5. Salpingectomy: The removal of one or both fallopian tubes can also be performed along with a hysterectomy if needed.

The reasons for performing a hysterectomy may include but are not limited to: uterine fibroids, heavy menstrual bleeding, endometriosis, adenomyosis, pelvic prolapse, cervical or uterine cancer, and chronic pelvic pain. The choice of the type of hysterectomy depends on the patient's medical condition, age, and personal preferences.

Gestational age is the length of time that has passed since the first day of the last menstrual period (LMP) in pregnant women. It is the standard unit used to estimate the age of a pregnancy and is typically expressed in weeks. This measure is used because the exact date of conception is often not known, but the start of the last menstrual period is usually easier to recall.

It's important to note that since ovulation typically occurs around two weeks after the start of the LMP, gestational age is approximately two weeks longer than fetal age, which is the actual time elapsed since conception. Medical professionals use both gestational and fetal age to track the development and growth of the fetus during pregnancy.

Hydrocortisone is a synthetic glucocorticoid, which is a class of steroid hormones. It is identical to the naturally occurring cortisol, a hormone produced by the adrenal gland that helps regulate metabolism and helps your body respond to stress. Hydrocortisone has anti-inflammatory effects and is used to treat various inflammatory conditions such as allergies, skin disorders, and autoimmune diseases. It works by suppressing the immune system's response to reduce swelling, redness, itching, and other symptoms caused by inflammation.

Hydrocortisone is available in different forms, including oral tablets, topical creams, lotions, gels, and ointments, as well as injectable solutions. The specific use and dosage depend on the condition being treated and the individual patient's medical history and current health status.

As with any medication, hydrocortisone can have side effects, especially when used in high doses or for extended periods. Common side effects include increased appetite, weight gain, mood changes, insomnia, and skin thinning. Long-term use of hydrocortisone may also increase the risk of developing osteoporosis, diabetes, cataracts, and other health problems. Therefore, it is essential to follow your healthcare provider's instructions carefully when using this medication.

Disorders of Sex Development (DSD) are a group of conditions that occur when there is a difference in the development and assignment of sex characteristics. These differences may be apparent at birth, at puberty, or later in life. DSD can affect chromosomes, gonads, genitals, or secondary sexual characteristics, and can result from genetic mutations or environmental factors during fetal development.

DSDs were previously referred to as "intersex" conditions, but the term "Disorders of Sex Development" is now preferred in medical settings because it is more descriptive and less stigmatizing. DSDs are not errors or abnormalities, but rather variations in human development that require sensitive and individualized care.

The diagnosis and management of DSD can be complex and may involve a team of healthcare providers, including endocrinologists, urologists, gynecologists, psychologists, and genetic counselors. Treatment options depend on the specific type of DSD and may include hormone therapy, surgery, or other interventions to support physical and emotional well-being.

Pimozide is an antipsychotic medication that is primarily used to treat chronic tics and Tourette's disorder. It works by blocking the action of dopamine, a neurotransmitter in the brain that is involved in regulating movement and mood. By blocking dopamine receptors, pimozide helps to reduce the severity and frequency of tics and other symptoms associated with these conditions.

Pimozide may also be used off-label for the treatment of other conditions, such as severe behavioral problems in children with developmental disabilities. It is important to note that pimozide can have serious side effects, including cardiac arrhythmias and neurological symptoms, and should only be prescribed by a healthcare professional who is experienced in managing its use.

As with all medications, it's essential to follow the dosage instructions carefully and to report any unusual or concerning symptoms to your healthcare provider promptly.

Intercellular signaling peptides and proteins are molecules that mediate communication and interaction between different cells in living organisms. They play crucial roles in various biological processes, including cell growth, differentiation, migration, and apoptosis (programmed cell death). These signals can be released into the extracellular space, where they bind to specific receptors on the target cell's surface, triggering intracellular signaling cascades that ultimately lead to a response.

Peptides are short chains of amino acids, while proteins are larger molecules made up of one or more polypeptide chains. Both can function as intercellular signaling molecules by acting as ligands for cell surface receptors or by being cleaved from larger precursor proteins and released into the extracellular space. Examples of intercellular signaling peptides and proteins include growth factors, cytokines, chemokines, hormones, neurotransmitters, and their respective receptors.

These molecules contribute to maintaining homeostasis within an organism by coordinating cellular activities across tissues and organs. Dysregulation of intercellular signaling pathways has been implicated in various diseases, such as cancer, autoimmune disorders, and neurodegenerative conditions. Therefore, understanding the mechanisms underlying intercellular signaling is essential for developing targeted therapies to treat these disorders.

Prostaglandins F (PGF) are a type of prostaglandin, which are naturally occurring hormone-like substances that have various effects on the body. They are produced in response to injury or infection and play a role in inflammation, fever, and pain. Prostaglandins F are synthesized for medical use and are available as drugs known as dinoprost and cloprostenol.

Dinoprost is a synthetic form of PGF2α (prostaglandin F2 alpha) used to induce labor and treat postpartum hemorrhage. It works by causing the uterus to contract, helping to expel the placenta and reduce bleeding.

Cloprostenol is a synthetic form of PGF2α used in veterinary medicine as a reproductive hormone to synchronize estrus cycles in cattle and sheep, as well as to induce parturition (giving birth) in cows. It works by stimulating the contraction of the uterus and promoting the release of luteinizing hormone (LH), which triggers ovulation.

It is important to note that these synthetic prostaglandins should only be used under the supervision of a healthcare professional or veterinarian, as they can have side effects and interactions with other medications.

Cathepsin H is a lysosomal cysteine protease that plays a role in intracellular protein degradation and turnover. It is expressed in various tissues, including the spleen, thymus, lungs, and immune cells. Cathepsin H has been implicated in several physiological processes, such as antigen presentation, bone resorption, and extracellular matrix remodeling. Additionally, its dysregulation has been associated with various pathological conditions, including cancer, neurodegenerative disorders, and infectious diseases.

The enzyme's active site contains a catalytic triad composed of cysteine, histidine, and aspartic acid residues, which facilitates the proteolytic activity. Cathepsin H exhibits specificity for peptide bonds containing hydrophobic or aromatic amino acids, making it an important player in processing and degrading various cellular proteins.

In summary, Cathepsin H is a lysosomal cysteine protease involved in protein turnover and degradation with potential implications in several pathological conditions when dysregulated.

"Oryzias" is not a medical term, but a genus name in the family Adrianichthyidae, which includes various species of small fish commonly known as "ricefishes" or "medaka." These fish are often used in scientific research, particularly in the fields of genetics and developmental biology. They are not associated with human diseases or medical conditions.

Propylene glycol is not a medical term, but rather a chemical compound. However, it does have various applications in the medical field. Medically, propylene glycol can be used as a:

1. Vehicle for intravenous (IV) medications: Propylene glycol helps dissolve drugs that are not water-soluble and allows them to be administered intravenously. It is used in the preparation of some IV medications, including certain antibiotics, antivirals, and chemotherapeutic agents.
2. Preservative: Propylene glycol acts as a preservative in various medical products, such as topical ointments, eye drops, and injectable solutions, to prevent bacterial growth and increase shelf life.
3. Humectant: In some medical devices and pharmaceutical formulations, propylene glycol is used as a humectant, which means it helps maintain moisture and prevent dryness in the skin or mucous membranes.

The chemical definition of propylene glycol (C3H8O2) is:

A colorless, nearly odorless, viscous liquid belonging to the alcohol family. It is a diol, meaning it contains two hydroxyl groups (-OH), and its molecular formula is C3H8O2. Propylene glycol is miscible with water and most organic solvents and has applications in various industries, including pharmaceuticals, food processing, cosmetics, and industrial manufacturing.

Ovulation detection refers to the process of identifying the time period during which an ovary releases an oocyte (mature egg) from its follicle, ready for fertilization. This is a crucial aspect of reproductive health and assisted reproduction technologies (ART), such as in vitro fertilization (IVF).

There are several methods to detect ovulation, including:

1. Ovulation Predictor Kits (OPKs): These are home-use test kits that detect the surge of luteinizing hormone (LH) in urine, which occurs 24-36 hours prior to ovulation.
2. Basal Body Temperature (BBT) Charting: This involves tracking and recording daily basal body temperature (the lowest temperature attained by the body during rest), as it tends to rise slightly after ovulation due to increased progesterone levels.
3. Hormonal Monitoring: Blood tests can be used to measure hormone levels, such as estrogen and progesterone, throughout a menstrual cycle to detect ovulation.
4. Transvaginal Ultrasound: This imaging technique is often used in clinical settings to monitor follicular development and determine the exact time of ovulation by observing changes in the ovarian follicle and endometrial lining.
5. Saliva Ferning Tests: A microscope is used to examine the patterns formed by dried saliva, which can indicate increased estrogen levels prior to ovulation.

Accurate ovulation detection helps individuals or couples trying to conceive optimize their chances of success and provides valuable information for healthcare providers in managing reproductive health issues.

The Hypothalamo-Hypophyseal system, also known as the hypothalamic-pituitary system, is a crucial part of the endocrine system that regulates many bodily functions. It consists of two main components: the hypothalamus and the pituitary gland.

The hypothalamus is a region in the brain that receives information from various parts of the body and integrates them to regulate vital functions such as body temperature, hunger, thirst, sleep, and emotional behavior. It also produces and releases neurohormones that control the secretion of hormones from the pituitary gland.

The pituitary gland is a small gland located at the base of the brain, just below the hypothalamus. It consists of two parts: the anterior pituitary (also called adenohypophysis) and the posterior pituitary (also called neurohypophysis). The anterior pituitary produces and releases several hormones that regulate various bodily functions such as growth, metabolism, reproduction, and stress response. The posterior pituitary stores and releases hormones produced by the hypothalamus, including antidiuretic hormone (ADH) and oxytocin.

The hypothalamo-hypophyseal system works together to maintain homeostasis in the body by regulating various physiological processes through hormonal signaling. Dysfunction of this system can lead to several endocrine disorders, such as diabetes insipidus, pituitary tumors, and hypothalamic-pituitary axis disorders.

"Macaca radiata" is a species of monkey that is native to India. It is often referred to as the "bonnet macaque" due to the distinctive cap of hair on its head. This species is widely studied in the field of primatology and has been an important model organism in biomedical research, particularly in the areas of neuroscience and infectious disease. However, I couldn't find a specific medical definition for "Macaca radiata".

Birth intervals refer to the length of time between the birth of one child and the conception of the next child. It is the duration from the delivery of one baby to the initiation of the pregnancy that results in another birth. This interval is an essential measure in reproductive health, as it can impact the health and well-being of both the mother and the children.

The World Health Organization (WHO) recommends a minimum birth interval of 24 months between pregnancies to reduce the risk of adverse maternal and perinatal outcomes. Shorter birth intervals are associated with increased risks for preterm birth, low birth weight, small for gestational age, and neonatal mortality. Additionally, short birth intervals can also negatively affect the mother's health, increasing the risk of maternal depletion syndrome, which may lead to nutritional deficiencies, anemia, and fatigue.

Birth intervals are influenced by various factors, including cultural norms, socioeconomic status, access to family planning services, and individual preferences. Encouraging longer birth intervals through improved access to family planning resources and education can contribute to better maternal and child health outcomes.

Epithelium is the tissue that covers the outer surface of the body, lines the internal cavities and organs, and forms various glands. It is composed of one or more layers of tightly packed cells that have a uniform shape and size, and rest on a basement membrane. Epithelial tissues are avascular, meaning they do not contain blood vessels, and are supplied with nutrients by diffusion from the underlying connective tissue.

Epithelial cells perform a variety of functions, including protection, secretion, absorption, excretion, and sensation. They can be classified based on their shape and the number of cell layers they contain. The main types of epithelium are:

1. Squamous epithelium: composed of flat, scalelike cells that fit together like tiles on a roof. It forms the lining of blood vessels, air sacs in the lungs, and the outermost layer of the skin.
2. Cuboidal epithelium: composed of cube-shaped cells with equal height and width. It is found in glands, tubules, and ducts.
3. Columnar epithelium: composed of tall, rectangular cells that are taller than they are wide. It lines the respiratory, digestive, and reproductive tracts.
4. Pseudostratified epithelium: appears stratified or layered but is actually made up of a single layer of cells that vary in height. The nuclei of these cells appear at different levels, giving the tissue a stratified appearance. It lines the respiratory and reproductive tracts.
5. Transitional epithelium: composed of several layers of cells that can stretch and change shape to accommodate changes in volume. It is found in the urinary bladder and ureters.

Epithelial tissue provides a barrier between the internal and external environments, protecting the body from physical, chemical, and biological damage. It also plays a crucial role in maintaining homeostasis by regulating the exchange of substances between the body and its environment.

Fluphenazine is an antipsychotic medication that belongs to the class of phenothiazines. It works by blocking the action of dopamine, a neurotransmitter in the brain, which helps to reduce the symptoms of psychosis such as delusions, hallucinations, and disordered thought.

Fluphenazine is available in several forms, including oral tablets, orally disintegrating tablets, and injectable solutions. It may be used for the treatment of schizophrenia, psychotic disorders, and other conditions associated with elevated levels of dopamine in the brain.

Like all antipsychotic medications, fluphenazine can cause side effects, including extrapyramidal symptoms (EPS), such as stiffness, tremors, and spasms of the face and neck muscles, as well as other systemic side effects like weight gain, sedation, and orthostatic hypotension. It is essential to use fluphenazine under the close supervision of a healthcare provider who can monitor for side effects and adjust the dosage accordingly.

Parturition is the process of giving birth, or the act of delivering newborn offspring. In medical terms, it refers to the expulsion of the products of conception (such as the fetus, placenta, and membranes) from the uterus of a pregnant woman during childbirth. This process is regulated by hormonal changes and involves complex interactions between the mother's body and the developing fetus. Parturition typically occurs after a full-term pregnancy, which is approximately 40 weeks in humans.

Tissue culture techniques refer to the methods used to maintain and grow cells, tissues or organs from multicellular organisms in an artificial environment outside of the living body, called an in vitro culture. These techniques are widely used in various fields such as biology, medicine, and agriculture for research, diagnostics, and therapeutic purposes.

The basic components of tissue culture include a sterile growth medium that contains nutrients, growth factors, and other essential components to support the growth of cells or tissues. The growth medium is often supplemented with antibiotics to prevent contamination by microorganisms. The cells or tissues are cultured in specialized containers called culture vessels, which can be plates, flasks, or dishes, depending on the type and scale of the culture.

There are several types of tissue culture techniques, including:

1. Monolayer Culture: In this technique, cells are grown as a single layer on a flat surface, allowing for easy observation and manipulation of individual cells.
2. Organoid Culture: This method involves growing three-dimensional structures that resemble the organization and function of an organ in vivo.
3. Co-culture: In co-culture, two or more cell types are grown together to study their interactions and communication.
4. Explant Culture: In this technique, small pieces of tissue are cultured to maintain the original structure and organization of the cells within the tissue.
5. Primary Culture: This refers to the initial culture of cells directly isolated from a living organism. These cells can be further subcultured to generate immortalized cell lines.

Tissue culture techniques have numerous applications, such as studying cell behavior, drug development and testing, gene therapy, tissue engineering, and regenerative medicine.

A morula is a term used in embryology, which refers to the early stage of development in mammalian embryos. It is formed after fertilization when the zygote (a single cell resulting from the fusion of sperm and egg) undergoes several rounds of mitotic divisions to form a solid mass of 16 or more cells called blastomeres. At this stage, the cells are tightly packed together and have a compact, mulberry-like appearance, hence the name "morula" which is derived from the Latin word for "mulberry."

The morula stage typically occurs about 4-5 days after fertilization in humans and is marked by the beginning of blastulation, where the cells start to differentiate and become organized into an outer layer (trophoblast) and an inner cell mass. The trophoblast will eventually form the placenta, while the inner cell mass will give rise to the embryo proper.

It's important to note that the morula stage is a transient phase in embryonic development, and it represents a critical period of growth and differentiation as the embryo prepares for implantation into the uterine wall.

The preoptic area (POA) is a region within the anterior hypothalamus of the brain. It is named for its location near the optic chiasm, where the optic nerves cross. The preoptic area is involved in various functions, including body temperature regulation, sexual behavior, and sleep-wake regulation.

The preoptic area contains several groups of neurons that are sensitive to changes in temperature and are responsible for generating heat through shivering or non-shivering thermogenesis. It also contains neurons that release inhibitory neurotransmitters such as GABA and galanin, which help regulate arousal and sleep.

Additionally, the preoptic area has been implicated in the regulation of sexual behavior, particularly in males. Certain populations of neurons within the preoptic area are involved in the expression of male sexual behavior, such as mounting and intromission.

Overall, the preoptic area is a critical region for the regulation of various physiological and behavioral functions, making it an important area of study in neuroscience research.

The cleavage stage of an ovum, also known as a fertilized egg, refers to the series of rapid cell divisions that occur after fertilization. During this stage, the single cell (zygote) divides into multiple cells, forming a blastomere. This process occurs in the fallopian tube and continues until the blastocyst reaches the uterus, typically around 5-6 days after fertilization. The cleavage stage is a critical period in early embryonic development, as any abnormalities during this time can lead to implantation failure or developmental defects.

Northern blotting is a laboratory technique used in molecular biology to detect and analyze specific RNA molecules (such as mRNA) in a mixture of total RNA extracted from cells or tissues. This technique is called "Northern" blotting because it is analogous to the Southern blotting method, which is used for DNA detection.

The Northern blotting procedure involves several steps:

1. Electrophoresis: The total RNA mixture is first separated based on size by running it through an agarose gel using electrical current. This separates the RNA molecules according to their length, with smaller RNA fragments migrating faster than larger ones.

2. Transfer: After electrophoresis, the RNA bands are denatured (made single-stranded) and transferred from the gel onto a nitrocellulose or nylon membrane using a technique called capillary transfer or vacuum blotting. This step ensures that the order and relative positions of the RNA fragments are preserved on the membrane, similar to how they appear in the gel.

3. Cross-linking: The RNA is then chemically cross-linked to the membrane using UV light or heat treatment, which helps to immobilize the RNA onto the membrane and prevent it from washing off during subsequent steps.

4. Prehybridization: Before adding the labeled probe, the membrane is prehybridized in a solution containing blocking agents (such as salmon sperm DNA or yeast tRNA) to minimize non-specific binding of the probe to the membrane.

5. Hybridization: A labeled nucleic acid probe, specific to the RNA of interest, is added to the prehybridization solution and allowed to hybridize (form base pairs) with its complementary RNA sequence on the membrane. The probe can be either a DNA or an RNA molecule, and it is typically labeled with a radioactive isotope (such as ³²P) or a non-radioactive label (such as digoxigenin).

6. Washing: After hybridization, the membrane is washed to remove unbound probe and reduce background noise. The washing conditions (temperature, salt concentration, and detergent concentration) are optimized based on the stringency required for specific hybridization.

7. Detection: The presence of the labeled probe is then detected using an appropriate method, depending on the type of label used. For radioactive probes, this typically involves exposing the membrane to X-ray film or a phosphorimager screen and analyzing the resulting image. For non-radioactive probes, detection can be performed using colorimetric, chemiluminescent, or fluorescent methods.

8. Data analysis: The intensity of the signal is quantified and compared to controls (such as housekeeping genes) to determine the relative expression level of the RNA of interest. This information can be used for various purposes, such as identifying differentially expressed genes in response to a specific treatment or comparing gene expression levels across different samples or conditions.

Tissue distribution, in the context of pharmacology and toxicology, refers to the way that a drug or xenobiotic (a chemical substance found within an organism that is not naturally produced by or expected to be present within that organism) is distributed throughout the body's tissues after administration. It describes how much of the drug or xenobiotic can be found in various tissues and organs, and is influenced by factors such as blood flow, lipid solubility, protein binding, and the permeability of cell membranes. Understanding tissue distribution is important for predicting the potential effects of a drug or toxin on different parts of the body, and for designing drugs with improved safety and efficacy profiles.

Bone morphogenetic protein receptors (BMPRs) are a group of transmembrane serine/threonine kinase receptors that play a crucial role in the signaling pathway of bone morphogenetic proteins (BMPs), which are growth factors involved in various biological processes including cell proliferation, differentiation, and apoptosis.

Type I BMPRs include three subtypes: activin receptor-like kinase 2 (ALK2), ALK3 (also known as BMPR-IA), and ALK6 (also known as BMPR-IB). These receptors form a complex with type II BMPRs upon binding of BMP ligands to their extracellular domains. The activation of the receptor complex leads to the phosphorylation of intracellular signaling molecules, such as SMAD proteins, which then translocate to the nucleus and regulate gene expression.

Mutations in type I BMPRs have been associated with several genetic disorders, including hereditary hemorrhagic telangiectasia (HHT), a vascular dysplasia disorder characterized by the formation of abnormal blood vessels. Additionally, alterations in BMP signaling pathways have been implicated in various human diseases, such as cancer, fibrosis, and bone disorders.

Ethylamines are organic compounds that contain a primary amino group (-NH2) attached to an ethyl group (-C2H5). In other words, they have the formula R-CH2-CH2-NH2, where R is a carbon-containing group. Ethylamines are derivatives of ammonia (NH3), in which one or more hydrogen atoms have been replaced by an ethyl group.

Ethylamines can be found in various natural and synthetic substances. They are used as building blocks in the synthesis of various pharmaceuticals, agrochemicals, and other industrial chemicals. Some ethylamines also have psychoactive properties and are used as recreational drugs or abused for their mind-altering effects.

It is important to note that some ethylamines can be toxic or harmful to human health, especially at high concentrations or with prolonged exposure. Therefore, they should be handled with care and used only under controlled conditions.

Hybrid vigor, also known as heterosis or heterozygote advantage, is a phenomenon in genetics where the offspring of genetically diverse parents exhibit certain favorable traits that are not present in either parent. This results in increased growth, fertility, disease resistance, and overall hardiness in the offspring compared to the purebred parents.

In medical terms, hybrid vigor is often discussed in the context of breeding programs for livestock or plants used for agricultural purposes. By crossing two distinct lines or breeds with different genetic backgrounds, breeders can create offspring that have improved health and productivity traits, which can lead to better outcomes in farming and agriculture.

It's worth noting that while hybrid vigor is a well-established concept in genetics, its application in human medicine is limited. However, understanding the principles of hybrid vigor can still be useful for researchers studying genetic diversity and disease susceptibility in humans.

"Genetic crosses" refer to the breeding of individuals with different genetic characteristics to produce offspring with specific combinations of traits. This process is commonly used in genetics research to study the inheritance patterns and function of specific genes.

There are several types of genetic crosses, including:

1. Monohybrid cross: A cross between two individuals that differ in the expression of a single gene or trait.
2. Dihybrid cross: A cross between two individuals that differ in the expression of two genes or traits.
3. Backcross: A cross between an individual from a hybrid population and one of its parental lines.
4. Testcross: A cross between an individual with unknown genotype and a homozygous recessive individual.
5. Reciprocal cross: A cross in which the male and female parents are reversed to determine if there is any effect of sex on the expression of the trait.

These genetic crosses help researchers to understand the mode of inheritance, linkage, recombination, and other genetic phenomena.

Cyclooxygenase-2 (COX-2) is an enzyme involved in the synthesis of prostaglandins, which are hormone-like substances that play a role in inflammation, pain, and fever. COX-2 is primarily expressed in response to stimuli such as cytokines and growth factors, and its expression is associated with the development of inflammation.

COX-2 inhibitors are a class of nonsteroidal anti-inflammatory drugs (NSAIDs) that selectively block the activity of COX-2, reducing the production of prostaglandins and providing analgesic, anti-inflammatory, and antipyretic effects. These medications are often used to treat pain and inflammation associated with conditions such as arthritis, menstrual cramps, and headaches.

It's important to note that while COX-2 inhibitors can be effective in managing pain and inflammation, they may also increase the risk of cardiovascular events such as heart attack and stroke, particularly when used at high doses or for extended periods. Therefore, it's essential to use these medications under the guidance of a healthcare provider and to follow their instructions carefully.

Fetal mortality refers to the death of a fetus after reaching viability, typically defined as 20 weeks of gestation or greater. The term "stillbirth" is often used interchangeably with fetal mortality and is generally defined as the birth of a baby who has died in the womb after 20 weeks of pregnancy.

Fetal mortality can be caused by a variety of factors, including chromosomal abnormalities, maternal health conditions, placental problems, infections, and complications during labor and delivery. In some cases, the cause of fetal mortality may remain unknown.

The rate of fetal mortality is an important public health indicator and is closely monitored by healthcare providers and researchers. Reducing fetal mortality requires a multifaceted approach that includes prenatal care, identification and management of risk factors, and access to high-quality obstetric care.

Abortifacient agents, steroidal, refer to a type of medication or substance that is capable of inducing abortion or causing the termination of pregnancy by interfering with the implantation and maintenance of the fertilized ovum (embryo) or the development of the placenta. Steroidal abortifacient agents are synthetic derivatives of steroids, which have a similar structure to naturally occurring hormones in the human body.

The most commonly used steroidal abortifacient agent is mifepristone, also known as RU-486. Mifepristone works by blocking the action of progesterone, a hormone that is essential for maintaining pregnancy. By blocking the action of progesterone, mifepristone causes the shedding of the uterine lining and the expulsion of the embryo or fetus from the uterus.

Steroidal abortifacient agents are typically used in the early stages of pregnancy, up to 10 weeks after the last menstrual period. They may be used alone or in combination with other medications, such as misoprostol, which helps to stimulate uterine contractions and expel the embryo or fetus from the uterus.

It is important to note that steroidal abortifacient agents are not the same as emergency contraceptives, which are used to prevent pregnancy after unprotected sexual intercourse. Steroidal abortifacient agents are intended for use in cases where pregnancy has already occurred and is unwanted or poses a risk to the health of the mother or fetus.

ICR (Institute of Cancer Research) is a strain of albino Swiss mice that are widely used in scientific research. They are an outbred strain, which means that they have been bred to maintain maximum genetic heterogeneity. However, it is also possible to find inbred strains of ICR mice, which are genetically identical individuals produced by many generations of brother-sister mating.

Inbred ICR mice are a specific type of ICR mouse that has been inbred for at least 20 generations. This means that they have a high degree of genetic uniformity and are essentially genetically identical to one another. Inbred strains of mice are often used in research because their genetic consistency makes them more reliable models for studying biological phenomena and testing new therapies or treatments.

It is important to note that while inbred ICR mice may be useful for certain types of research, they do not necessarily represent the genetic diversity found in human populations. Therefore, it is important to consider the limitations of using any animal model when interpreting research findings and applying them to human health.

Parthenogenesis is a form of asexual reproduction in which offspring develop from unfertilized eggs or ovums. It occurs naturally in some plant and insect species, as well as a few vertebrates such as reptiles and fish. Parthenogenesis does not involve the fusion of sperm and egg cells; instead, the development of offspring is initiated by some other trigger, such as a chemical or physical stimulus. This type of reproduction results in offspring that are genetically identical to the parent organism. In humans and other mammals, parthenogenesis is not a natural occurrence and would require scientific intervention to induce.

An animal model in medicine refers to the use of non-human animals in experiments to understand, predict, and test responses and effects of various biological and chemical interactions that may also occur in humans. These models are used when studying complex systems or processes that cannot be easily replicated or studied in human subjects, such as genetic manipulation or exposure to harmful substances. The choice of animal model depends on the specific research question being asked and the similarities between the animal's and human's biological and physiological responses. Examples of commonly used animal models include mice, rats, rabbits, guinea pigs, and non-human primates.

Estrogen antagonists, also known as antiestrogens, are a class of drugs that block the effects of estrogen in the body. They work by binding to estrogen receptors and preventing the natural estrogen from attaching to them. This results in the inhibition of estrogen-mediated activities in various tissues, including breast and uterine tissue.

There are two main types of estrogen antagonists: selective estrogen receptor modulators (SERMs) and pure estrogen receptor downregulators (PERDS), also known as estrogen receptor downregulators (ERDs). SERMs, such as tamoxifen and raloxifene, can act as estrogen agonists or antagonists depending on the tissue type. For example, they may block the effects of estrogen in breast tissue while acting as an estrogen agonist in bone tissue, helping to prevent osteoporosis.

PERDS, such as fulvestrant, are pure estrogen receptor antagonists and do not have any estrogen-like activity. They are used primarily for the treatment of hormone receptor-positive breast cancer in postmenopausal women.

Overall, estrogen antagonists play an important role in the management of hormone receptor-positive breast cancer and other conditions where inhibiting estrogen activity is beneficial.

Mammals are a group of warm-blooded vertebrates constituting the class Mammalia, characterized by the presence of mammary glands (which produce milk to feed their young), hair or fur, three middle ear bones, and a neocortex region in their brain. They are found in a diverse range of habitats and come in various sizes, from tiny shrews to large whales. Examples of mammals include humans, apes, monkeys, dogs, cats, bats, mice, raccoons, seals, dolphins, horses, and elephants.

Helminth proteins refer to the proteins that are produced and expressed by helminths, which are parasitic worms that cause diseases in humans and animals. These proteins can be found on the surface or inside the helminths and play various roles in their biology, such as in development, reproduction, and immune evasion. Some helminth proteins have been identified as potential targets for vaccines or drug development, as blocking their function may help to control or eliminate helminth infections. Examples of helminth proteins that have been studied include the antigen Bm86 from the cattle tick Boophilus microplus, and the tetraspanin protein Sm22.6 from the blood fluke Schistosoma mansoni.

Oxytocics are a class of medications that stimulate the contraction of uterine smooth muscle. They are primarily used in obstetrics to induce or augment labor, and to control bleeding after childbirth. Oxytocin is the most commonly used oxytocic and is naturally produced by the posterior pituitary gland. Synthetic forms of oxytocin, such as Pitocin, are often used in medical settings to induce labor or reduce postpartum bleeding. Other medications with oxytocic properties include ergometrine and methylergometrine. It's important to note that the use of oxytocics should be monitored carefully as overuse can lead to excessive uterine contractions, which may compromise fetal oxygenation and increase the risk of uterine rupture.

Invertebrate hormones refer to the chemical messengers that regulate various physiological processes in invertebrate animals, which include insects, mollusks, worms, and other animals without a backbone. These hormones are produced by specialized endocrine cells or glands and released into the bloodstream to target organs, where they elicit specific responses that help control growth, development, reproduction, metabolism, and behavior.

Examples of invertebrate hormones include:

1. Ecdysteroids: These are steroid hormones found in arthropods such as insects and crustaceans. They regulate molting (ecdysis) and metamorphosis by stimulating the growth and differentiation of new cuticle layers.
2. Juvenile hormone (JH): This is a sesquiterpenoid hormone produced by the corpora allata glands in insects. JH plays a crucial role in maintaining the juvenile stage, regulating reproduction, and controlling diapause (a period of suspended development during unfavorable conditions).
3. Neuropeptides: These are short chains of amino acids that act as hormones or neurotransmitters in invertebrates. They regulate various functions such as feeding behavior, growth, reproduction, and circadian rhythms. Examples include the neuropeptide F (NPF), which controls food intake and energy balance, and the insulin-like peptides (ILPs) that modulate metabolism and growth.
4. Molluscan cardioactive peptides: These are neuropeptides found in mollusks that regulate heart function by controlling heart rate and contractility. An example is FMRFamide, which has been identified in various mollusk species and influences several physiological processes, including feeding behavior, muscle contraction, and reproduction.
5. Vertebrate-like hormones: Some invertebrates produce hormones that are structurally and functionally similar to those found in vertebrates. For example, some annelids (segmented worms) and cephalopods (squid and octopus) have insulin-like peptides that regulate metabolism and growth, while certain echinoderms (starfish and sea urchins) produce steroid hormones that control reproduction.

In summary, invertebrates utilize various types of hormones to regulate their physiological functions, including neuropeptides, cardioactive peptides, insulin-like peptides, and vertebrate-like hormones. These hormones play crucial roles in controlling growth, development, reproduction, feeding behavior, and other essential processes that maintain homeostasis and ensure survival. Understanding the mechanisms of hormone action in invertebrates can provide valuable insights into the evolution of hormonal systems and their functions across different animal taxa.

Steroid isomerases are a class of enzymes that catalyze the interconversion of steroids by rearranging various chemical bonds within their structures, leading to the formation of isomers. These enzymes play crucial roles in steroid biosynthesis and metabolism, enabling the production of a diverse array of steroid hormones with distinct biological activities.

There are several types of steroid isomerases, including:

1. 3-beta-hydroxysteroid dehydrogenase/delta(5)-delta(4) isomerase (3-beta-HSD): This enzyme catalyzes the conversion of delta(5) steroids to delta(4) steroids, accompanied by the oxidation of a 3-beta-hydroxyl group to a keto group. It is essential for the biosynthesis of progesterone, cortisol, and aldosterone.
2. Aromatase: This enzyme converts androgens (such as testosterone) into estrogens (such as estradiol) by introducing a phenolic ring, which results in the formation of an aromatic A-ring. It is critical for the development and maintenance of female secondary sexual characteristics.
3. 17-beta-hydroxysteroid dehydrogenase (17-beta-HSD): This enzyme catalyzes the interconversion between 17-keto and 17-beta-hydroxy steroids, playing a key role in the biosynthesis of estrogens, androgens, and glucocorticoids.
4. 5-alpha-reductase: This enzyme catalyzes the conversion of testosterone to dihydrotestosterone (DHT) by reducing the double bond between carbons 4 and 5 in the A-ring. DHT is a more potent androgen than testosterone, playing essential roles in male sexual development and prostate growth.
5. 20-alpha-hydroxysteroid dehydrogenase (20-alpha-HSD): This enzyme catalyzes the conversion of corticosterone to aldosterone, a critical mineralocorticoid involved in regulating electrolyte and fluid balance.
6. 3-beta-hydroxysteroid dehydrogenase (3-beta-HSD): This enzyme catalyzes the conversion of pregnenolone to progesterone and 17-alpha-hydroxypregnenolone to 17-alpha-hydroxyprogesterone, which are essential intermediates in steroid hormone biosynthesis.

These enzymes play crucial roles in the biosynthesis, metabolism, and elimination of various steroid hormones, ensuring proper endocrine function and homeostasis. Dysregulation or mutations in these enzymes can lead to various endocrine disorders, including congenital adrenal hyperplasia (CAH), polycystic ovary syndrome (PCOS), androgen insensitivity syndrome (AIS), and others.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Insulin is a hormone produced by the beta cells of the pancreatic islets, primarily in response to elevated levels of glucose in the circulating blood. It plays a crucial role in regulating blood glucose levels and facilitating the uptake and utilization of glucose by peripheral tissues, such as muscle and adipose tissue, for energy production and storage. Insulin also inhibits glucose production in the liver and promotes the storage of excess glucose as glycogen or triglycerides.

Deficiency in insulin secretion or action leads to impaired glucose regulation and can result in conditions such as diabetes mellitus, characterized by chronic hyperglycemia and associated complications. Exogenous insulin is used as a replacement therapy in individuals with diabetes to help manage their blood glucose levels and prevent long-term complications.

Organ culture techniques refer to the methods used to maintain or grow intact organs or pieces of organs under controlled conditions in vitro, while preserving their structural and functional characteristics. These techniques are widely used in biomedical research to study organ physiology, pathophysiology, drug development, and toxicity testing.

Organ culture can be performed using a variety of methods, including:

1. Static organ culture: In this method, the organs or tissue pieces are placed on a porous support in a culture dish and maintained in a nutrient-rich medium. The medium is replaced periodically to ensure adequate nutrition and removal of waste products.
2. Perfusion organ culture: This method involves perfusing the organ with nutrient-rich media, allowing for better distribution of nutrients and oxygen throughout the tissue. This technique is particularly useful for studying larger organs such as the liver or kidney.
3. Microfluidic organ culture: In this approach, microfluidic devices are used to create a controlled microenvironment for organ cultures. These devices allow for precise control over the flow of nutrients and waste products, as well as the application of mechanical forces.

Organ culture techniques can be used to study various aspects of organ function, including metabolism, secretion, and response to drugs or toxins. Additionally, these methods can be used to generate three-dimensional tissue models that better recapitulate the structure and function of intact organs compared to traditional two-dimensional cell cultures.

Ultrasonography, also known as sonography, is a diagnostic medical procedure that uses high-frequency sound waves (ultrasound) to produce dynamic images of organs, tissues, or blood flow inside the body. These images are captured in real-time and can be used to assess the size, shape, and structure of various internal structures, as well as detect any abnormalities such as tumors, cysts, or inflammation.

During an ultrasonography procedure, a small handheld device called a transducer is placed on the patient's skin, which emits and receives sound waves. The transducer sends high-frequency sound waves into the body, and these waves bounce back off internal structures and are recorded by the transducer. The recorded data is then processed and transformed into visual images that can be interpreted by a medical professional.

Ultrasonography is a non-invasive, painless, and safe procedure that does not use radiation like other imaging techniques such as CT scans or X-rays. It is commonly used to diagnose and monitor conditions in various parts of the body, including the abdomen, pelvis, heart, blood vessels, and musculoskeletal system.

Colforsin is a drug that belongs to a class of medications called phosphodiesterase inhibitors. It works by increasing the levels of a chemical called cyclic AMP (cyclic adenosine monophosphate) in the body, which helps to relax and widen blood vessels.

Colforsin is not approved for use in humans in many countries, including the United States. However, it has been used in research settings to study its potential effects on heart function and other physiological processes. In animals, colforsin has been shown to have positive inotropic (contractility-enhancing) and lusitropic (relaxation-enhancing) effects on the heart, making it a potential therapeutic option for heart failure and other cardiovascular conditions.

It is important to note that while colforsin has shown promise in preclinical studies, more research is needed to establish its safety and efficacy in humans. Therefore, it should only be used under the supervision of a qualified healthcare professional and in the context of a clinical trial or research study.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Maternal behavior refers to the nurturing and protective behaviors exhibited by a female animal towards its offspring. In humans, this term is often used to describe the natural instincts and actions of a woman during pregnancy, childbirth, and early child-rearing. It encompasses a broad range of activities such as feeding, grooming, protecting, and teaching the young.

In the context of medical and psychological research, maternal behavior is often studied to understand the factors that influence its development, expression, and outcomes for both the mother and offspring. Factors that can affect maternal behavior include hormonal changes during pregnancy and childbirth, as well as social, cultural, and environmental influences.

Abnormal or atypical maternal behavior may indicate underlying mental health issues, such as postpartum depression or anxiety, and can have negative consequences for both the mother and the child's development and well-being. Therefore, it is important to monitor and support healthy maternal behaviors in new mothers to promote positive outcomes for both parties.

Natural family planning methods (NFP) are fertility awareness-based approaches to planned pregnancy or avoiding pregnancy that involve tracking a woman's menstrual cycle and recognizing the signs and symptoms of fertility. These methods can be used to identify the fertile window, which is the time during each menstrual cycle when conception is most likely to occur.

NFP methods are based on the observation of various physiological indicators of fertility, such as changes in basal body temperature (BBT), cervical mucus, and the position and texture of the cervix. By tracking these signs over time, a woman can learn to identify her fertile window and plan or avoid sexual intercourse accordingly.

There are several different NFP methods that have been developed and studied for their effectiveness in helping couples achieve or avoid pregnancy. Some common NFP methods include:

1. The Sympto-Thermal Method (STM): This method involves tracking changes in BBT, cervical mucus, and other fertility signs to identify the fertile window.
2. The Ovulation Method (OM): This method involves tracking changes in cervical mucus to identify the fertile window.
3. The Billings Ovulation Method: This method involves tracking changes in cervical mucus and other sensations related to fertility to identify the fertile window.
4. The Standard Days Method (SDM): This method involves using a calendar to track the length of the menstrual cycle and identifying the fertile window based on the number of days before and after ovulation.
5. The TwoDay Method: This method involves tracking changes in cervical mucus over two consecutive days to identify the fertile window.

NFP methods are generally considered safe and have few side effects, as they do not involve the use of hormones or other medications. However, NFP methods require careful tracking and interpretation of fertility signs, which can be challenging for some people. The effectiveness of NFP methods in preventing pregnancy varies depending on the method used and the consistency with which it is practiced. According to the Centers for Disease Control and Prevention (CDC), typical use failure rates for NFP methods range from 2% to 23%, while perfect use failure rates are generally lower. It's important to note that NFP methods may not be effective in preventing pregnancy for people with irregular menstrual cycles or other reproductive health issues.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

Cyclic adenosine monophosphate (cAMP) is a key secondary messenger in many biological processes, including the regulation of metabolism, gene expression, and cellular excitability. It is synthesized from adenosine triphosphate (ATP) by the enzyme adenylyl cyclase and is degraded by the enzyme phosphodiesterase.

In the body, cAMP plays a crucial role in mediating the effects of hormones and neurotransmitters on target cells. For example, when a hormone binds to its receptor on the surface of a cell, it can activate a G protein, which in turn activates adenylyl cyclase to produce cAMP. The increased levels of cAMP then activate various effector proteins, such as protein kinases, which go on to regulate various cellular processes.

Overall, the regulation of cAMP levels is critical for maintaining proper cellular function and homeostasis, and abnormalities in cAMP signaling have been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

The endocrine system is a complex network of glands and organs that produce, store, and secrete hormones. It plays a crucial role in regulating various functions and processes in the body, including metabolism, growth and development, tissue function, sexual function, reproduction, sleep, and mood.

The major endocrine glands include:

1. Pituitary gland: located at the base of the brain, it is often referred to as the "master gland" because it controls other glands' functions. It produces and releases several hormones that regulate growth, development, and reproduction.
2. Thyroid gland: located in the neck, it produces hormones that regulate metabolism, growth, and development.
3. Parathyroid glands: located near the thyroid gland, they produce parathyroid hormone, which regulates calcium levels in the blood.
4. Adrenal glands: located on top of the kidneys, they produce hormones that regulate stress response, metabolism, and blood pressure.
5. Pancreas: located in the abdomen, it produces hormones such as insulin and glucagon that regulate blood sugar levels.
6. Sex glands (ovaries and testes): they produce sex hormones such as estrogen, progesterone, and testosterone that regulate sexual development and reproduction.
7. Pineal gland: located in the brain, it produces melatonin, a hormone that regulates sleep-wake cycles.

The endocrine system works closely with the nervous system to maintain homeostasis or balance in the body's internal environment. Hormones are chemical messengers that travel through the bloodstream to target cells or organs, where they bind to specific receptors and elicit a response. Disorders of the endocrine system can result from overproduction or underproduction of hormones, leading to various health problems such as diabetes, thyroid disorders, growth disorders, and sexual dysfunction.

Interleukin-1 (IL-1) is a type of cytokine, which are proteins that play a crucial role in cell signaling. Specifically, IL-1 is a pro-inflammatory cytokine that is involved in the regulation of immune and inflammatory responses in the body. It is produced by various cells, including monocytes, macrophages, and dendritic cells, in response to infection or injury.

IL-1 exists in two forms, IL-1α and IL-1β, which have similar biological activities but are encoded by different genes. Both forms of IL-1 bind to the same receptor, IL-1R, and activate intracellular signaling pathways that lead to the production of other cytokines, chemokines, and inflammatory mediators.

IL-1 has a wide range of biological effects, including fever induction, activation of immune cells, regulation of hematopoiesis (the formation of blood cells), and modulation of bone metabolism. Dysregulation of IL-1 production or activity has been implicated in various inflammatory diseases, such as rheumatoid arthritis, gout, and inflammatory bowel disease. Therefore, IL-1 is an important target for the development of therapies aimed at modulating the immune response and reducing inflammation.

"Freezing" is a term used in the medical field to describe a phenomenon that can occur in certain neurological conditions, most notably in Parkinson's disease. It refers to a sudden and temporary inability to move or initiate movement, often triggered by environmental factors such as narrow spaces, turning, or approaching a destination. This can increase the risk of falls and make daily activities challenging for affected individuals.

Freezing is also known as "freezing of gait" (FOG) when it specifically affects a person's ability to walk. During FOG episodes, the person may feel like their feet are glued to the ground, making it difficult to take steps forward. This can be very distressing and debilitating for those affected.

It is important to note that "freezing" has different meanings in different medical contexts, such as in the field of orthopedics, where it may refer to a loss of joint motion due to stiffness or inflammation. Always consult with a healthcare professional for accurate information tailored to your specific situation.

Ectopic pregnancy is a type of abnormal pregnancy that occurs outside the uterine cavity. The most common site for an ectopic pregnancy is the fallopian tube, accounting for about 95% of cases. This condition is also known as tubal pregnancy. Other less common sites include the ovary, cervix, and abdominal cavity.

In a normal pregnancy, the fertilized egg travels down the fallopian tube and implants itself in the lining of the uterus. However, in an ectopic pregnancy, the fertilized egg implants and starts to develop somewhere other than the uterus. The growing embryo cannot survive outside the uterus, and if left untreated, an ectopic pregnancy can cause life-threatening bleeding due to the rupture of the fallopian tube or other organs.

Symptoms of ectopic pregnancy may include abdominal pain, vaginal bleeding, shoulder pain, lightheadedness, fainting, and in severe cases, shock. Diagnosis is usually made through a combination of medical history, physical examination, ultrasound, and blood tests to measure the levels of human chorionic gonadotropin (hCG), a hormone produced during pregnancy.

Treatment for ectopic pregnancy depends on several factors, including the location, size, and growth rate of the ectopic mass, as well as the patient's overall health and desire for future pregnancies. Treatment options may include medication to stop the growth of the embryo or surgery to remove the ectopic tissue. In some cases, both methods may be used together. Early diagnosis and treatment can help prevent serious complications and improve the chances of preserving fertility in future pregnancies.

Genetic models are theoretical frameworks used in genetics to describe and explain the inheritance patterns and genetic architecture of traits, diseases, or phenomena. These models are based on mathematical equations and statistical methods that incorporate information about gene frequencies, modes of inheritance, and the effects of environmental factors. They can be used to predict the probability of certain genetic outcomes, to understand the genetic basis of complex traits, and to inform medical management and treatment decisions.

There are several types of genetic models, including:

1. Mendelian models: These models describe the inheritance patterns of simple genetic traits that follow Mendel's laws of segregation and independent assortment. Examples include autosomal dominant, autosomal recessive, and X-linked inheritance.
2. Complex trait models: These models describe the inheritance patterns of complex traits that are influenced by multiple genes and environmental factors. Examples include heart disease, diabetes, and cancer.
3. Population genetics models: These models describe the distribution and frequency of genetic variants within populations over time. They can be used to study evolutionary processes, such as natural selection and genetic drift.
4. Quantitative genetics models: These models describe the relationship between genetic variation and phenotypic variation in continuous traits, such as height or IQ. They can be used to estimate heritability and to identify quantitative trait loci (QTLs) that contribute to trait variation.
5. Statistical genetics models: These models use statistical methods to analyze genetic data and infer the presence of genetic associations or linkage. They can be used to identify genetic risk factors for diseases or traits.

Overall, genetic models are essential tools in genetics research and medical genetics, as they allow researchers to make predictions about genetic outcomes, test hypotheses about the genetic basis of traits and diseases, and develop strategies for prevention, diagnosis, and treatment.

Anilides are chemical compounds that result from the reaction between aniline (a organic compound with the formula C6H5NH2) and a carboxylic acid or its derivative. The resulting compound has the general structure R-CO-NH-C6H5, where R represents the rest of the carboxylic acid molecule.

Anilides are widely used in the pharmaceutical industry to produce various drugs, such as analgesics, anti-inflammatory agents, and antifungal agents. Some examples of anilide-based drugs include acetaminophen (also known as paracetamol), fenacetin, and flufenamic acid.

It's worth noting that some anilides have been found to have toxic effects on the liver and kidneys, so they must be used with caution and under medical supervision.

Nitrobenzenes are organic compounds that contain a nitro group (-NO2) attached to a benzene ring. The chemical formula for nitrobenzene is C6H5NO2. It is a pale yellow, oily liquid with a characteristic sweet and unpleasant odor. Nitrobenzene is not produced or used in large quantities in the United States, but it is still used as an intermediate in the production of certain chemicals.

Nitrobenzenes are classified as toxic and harmful if swallowed, inhaled, or if they come into contact with the skin. They can cause irritation to the eyes, skin, and respiratory tract, and prolonged exposure can lead to more serious health effects such as damage to the nervous system and liver. Nitrobenzenes are also considered to be potential carcinogens, meaning that they may increase the risk of cancer with long-term exposure.

In a medical setting, nitrobenzene poisoning is rare but can occur if someone is exposed to large amounts of this chemical. Symptoms of nitrobenzene poisoning may include headache, dizziness, nausea, vomiting, and difficulty breathing. In severe cases, it can cause convulsions, unconsciousness, and even death. If you suspect that you or someone else has been exposed to nitrobenzenes, it is important to seek medical attention immediately.

Passive immunization is a type of temporary immunity that is transferred to an individual through the injection of antibodies produced outside of the body, rather than through the active production of antibodies in the body in response to vaccination or infection. This can be done through the administration of preformed antibodies, such as immune globulins, which contain a mixture of antibodies that provide immediate protection against specific diseases.

Passive immunization is often used in situations where individuals have been exposed to a disease and do not have time to develop their own active immune response, or in cases where individuals are unable to produce an adequate immune response due to certain medical conditions. It can also be used as a short-term measure to provide protection until an individual can receive a vaccination that will confer long-term immunity.

Passive immunization provides immediate protection against disease, but the protection is typically short-lived, lasting only a few weeks or months. This is because the transferred antibodies are gradually broken down and eliminated by the body over time. In contrast, active immunization confers long-term immunity through the production of memory cells that can mount a rapid and effective immune response upon re-exposure to the same pathogen in the future.

Seminal plasma proteins are a group of proteins that are present in the seminal fluid, which is the liquid component of semen. These proteins originate primarily from the accessory sex glands, including the prostate, seminal vesicles, and bulbourethral glands, and play various roles in the maintenance of sperm function and fertility.

Some of the key functions of seminal plasma proteins include:

1. Nutrition: Seminal plasma proteins provide energy sources and essential nutrients to support sperm survival and motility during their journey through the female reproductive tract.
2. Protection: These proteins help protect sperm from oxidative stress, immune attack, and other environmental factors that could negatively impact sperm function or viability.
3. Lubrication: Seminal plasma proteins contribute to the formation of a fluid medium that facilitates the ejaculation and transport of sperm through the female reproductive tract.
4. Coagulation and liquefaction: Some seminal plasma proteins are involved in the initial coagulation and subsequent liquefaction of semen, which helps ensure proper sperm release and distribution during ejaculation.
5. Interaction with female reproductive system: Seminal plasma proteins can interact with components of the female reproductive tract to modulate immune responses, promote implantation, and support early embryonic development.

Examples of seminal plasma proteins include prostate-specific antigen (PSA), prostate-specific acid phosphatase (PSAP), and semenogelins. Abnormal levels or dysfunctions in these proteins have been associated with various reproductive disorders, such as infertility, prostatitis, and prostate cancer.

The decidua is a specialized type of tissue that lines the uterus during pregnancy. It forms after the implantation of a fertilized egg (embryo) into the uterine lining, and it plays an important role in supporting the growth and development of the embryo and fetus.

The decidua is composed of several layers, including the decidual capsularis, which surrounds the embryo, and the decidual parietalis, which lines the rest of the uterus. The tissue is rich in blood vessels and contains a variety of immune cells that help to protect the developing fetus from infection.

During pregnancy, the decidua produces various hormones and growth factors that support the growth of the placenta, which provides nutrients and oxygen to the fetus. After the birth of the baby, the decidua is shed along with the placenta in a process called childbirth or parturition.

It's worth noting that abnormalities in the decidua can contribute to pregnancy complications such as preeclampsia, preterm labor, and miscarriage.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Inhibin-β subunits are proteins that combine to form inhibins, which are hormones that play a role in regulating the function of the reproductive system. Specifically, inhibins help to regulate the production of follicle-stimulating hormone (FSH) by the pituitary gland.

There are two main types of Inhibin-β subunits, Inhibin-β A and Inhibin-β B, which combine with a common α subunit to form the inhibins. Inhibin-β A is produced primarily in the granulosa cells of the ovaries, while Inhibin-beta B is produced primarily in the testicular Sertoli cells.

Abnormal levels of Inhibin-β subunits have been associated with various reproductive disorders, such as polycystic ovary syndrome (PCOS) and certain types of cancer. Measurement of Inhibin-β subunits can be used as a biomarker for ovarian function, ovarian reserve and ovarian cancer detection.

Crown-rump length (CRL) is a medical measurement used in obstetrics to estimate the age of a developing fetus. It refers to the length from the top of the head (crown) to the bottom of the buttocks (rump). This measurement is typically taken during an ultrasound examination in the first trimester of pregnancy, between 8 and 13 weeks of gestation.

The CRL is used to calculate the estimated due date and to monitor fetal growth and development. It can also help identify potential issues or abnormalities in fetal development. As the pregnancy progresses, other measurements such as head circumference, abdominal circumference, and femur length are used to assess fetal growth and development.

The vitelline membrane is a thin, transparent, flexible, and protective membrane that surrounds the yolk in bird, reptile, and some insect eggs. It provides nutrition and physical protection to the developing embryo during incubation. In medical terms, it is not directly relevant as it does not have a counterpart or equivalent structure in mammalian embryology.

"Age factors" refer to the effects, changes, or differences that age can have on various aspects of health, disease, and medical care. These factors can encompass a wide range of issues, including:

1. Physiological changes: As people age, their bodies undergo numerous physical changes that can affect how they respond to medications, illnesses, and medical procedures. For example, older adults may be more sensitive to certain drugs or have weaker immune systems, making them more susceptible to infections.
2. Chronic conditions: Age is a significant risk factor for many chronic diseases, such as heart disease, diabetes, cancer, and arthritis. As a result, age-related medical issues are common and can impact treatment decisions and outcomes.
3. Cognitive decline: Aging can also lead to cognitive changes, including memory loss and decreased decision-making abilities. These changes can affect a person's ability to understand and comply with medical instructions, leading to potential complications in their care.
4. Functional limitations: Older adults may experience physical limitations that impact their mobility, strength, and balance, increasing the risk of falls and other injuries. These limitations can also make it more challenging for them to perform daily activities, such as bathing, dressing, or cooking.
5. Social determinants: Age-related factors, such as social isolation, poverty, and lack of access to transportation, can impact a person's ability to obtain necessary medical care and affect their overall health outcomes.

Understanding age factors is critical for healthcare providers to deliver high-quality, patient-centered care that addresses the unique needs and challenges of older adults. By taking these factors into account, healthcare providers can develop personalized treatment plans that consider a person's age, physical condition, cognitive abilities, and social circumstances.

Matrix metalloproteinases (MMPs) are a group of enzymes responsible for the degradation and remodeling of the extracellular matrix, the structural framework of most tissues in the body. These enzymes play crucial roles in various physiological processes such as tissue repair, wound healing, and embryonic development. They also participate in pathological conditions like tumor invasion, metastasis, and inflammatory diseases by breaking down the components of the extracellular matrix, including collagens, elastins, proteoglycans, and gelatins. MMPs are zinc-dependent endopeptidases that require activation from their proenzyme form to become fully functional. Their activity is tightly regulated at various levels, including gene expression, protein synthesis, and enzyme inhibition by tissue inhibitors of metalloproteinases (TIMPs). Dysregulation of MMPs has been implicated in several diseases, making them potential therapeutic targets for various clinical interventions.

I'm sorry for any confusion, but "Perciformes" is not a medical term. It is a term used in the field of biology, specifically in taxonomy and ichthyology (the study of fish). Perciformes is an order of ray-finned bony fishes that includes over 10,000 species, making it the largest order of vertebrates. Examples of fish within this order include perch, sea bass, sunfish, and tuna.

In medical terms, suction refers to the process of creating and maintaining a partial vacuum in order to remove fluids or gases from a body cavity or wound. This is typically accomplished using specialized medical equipment such as a suction machine, which uses a pump to create the vacuum, and a variety of different suction tips or catheters that can be inserted into the area being treated.

Suction is used in a wide range of medical procedures and treatments, including wound care, surgical procedures, respiratory therapy, and diagnostic tests. It can help to remove excess fluids such as blood or pus from a wound, clear secretions from the airways during mechanical ventilation, or provide a means of visualizing internal structures during endoscopic procedures.

It is important to use proper technique when performing suctioning, as excessive or improperly applied suction can cause tissue damage or bleeding. Medical professionals are trained in the safe and effective use of suction equipment and techniques to minimize risks and ensure optimal patient outcomes.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Neurosecretory systems are specialized components of the nervous system that produce and release chemical messengers called neurohormones. These neurohormones are released into the bloodstream and can have endocrine effects on various target organs in the body. The cells that make up neurosecretory systems, known as neurosecretory cells, are found in specific regions of the brain, such as the hypothalamus, and in peripheral nerves.

Neurosecretory systems play a critical role in regulating many physiological processes, including fluid and electrolyte balance, stress responses, growth and development, reproductive functions, and behavior. The neurohormones released by these systems can act synergistically or antagonistically to maintain homeostasis and coordinate the body's response to internal and external stimuli.

Neurosecretory cells are characterized by their ability to synthesize and store neurohormones in secretory granules, which are released upon stimulation. The release of neurohormones can be triggered by a variety of signals, including neural impulses, hormonal changes, and other physiological cues. Once released into the bloodstream, neurohormones can travel to distant target organs, where they bind to specific receptors and elicit a range of responses.

Overall, neurosecretory systems are an essential component of the neuroendocrine system, which plays a critical role in regulating many aspects of human physiology and behavior.

Epithelial cells are types of cells that cover the outer surfaces of the body, line the inner surfaces of organs and glands, and form the lining of blood vessels and body cavities. They provide a protective barrier against the external environment, regulate the movement of materials between the internal and external environments, and are involved in the sense of touch, temperature, and pain. Epithelial cells can be squamous (flat and thin), cuboidal (square-shaped and of equal height), or columnar (tall and narrow) in shape and are classified based on their location and function.

Cyclooxygenase (COX) inhibitors are a class of drugs that work by blocking the activity of cyclooxygenase enzymes, which are involved in the production of prostaglandins. Prostaglandins are hormone-like substances that play a role in inflammation, pain, and fever.

There are two main types of COX enzymes: COX-1 and COX-2. COX-1 is produced continuously in various tissues throughout the body and helps maintain the normal function of the stomach and kidneys, among other things. COX-2, on the other hand, is produced in response to inflammation and is involved in the production of prostaglandins that contribute to pain, fever, and inflammation.

COX inhibitors can be non-selective, meaning they block both COX-1 and COX-2, or selective, meaning they primarily block COX-2. Non-selective COX inhibitors include drugs such as aspirin, ibuprofen, and naproxen, while selective COX inhibitors are often referred to as coxibs and include celecoxib (Celebrex) and rofecoxib (Vioxx).

COX inhibitors are commonly used to treat pain, inflammation, and fever. However, long-term use of non-selective COX inhibitors can increase the risk of gastrointestinal side effects such as ulcers and bleeding, while selective COX inhibitors may be associated with an increased risk of cardiovascular events such as heart attack and stroke. It is important to talk to a healthcare provider about the potential risks and benefits of COX inhibitors before using them.

Cattle diseases are a range of health conditions that affect cattle, which include but are not limited to:

1. Bovine Respiratory Disease (BRD): Also known as "shipping fever," BRD is a common respiratory illness in feedlot cattle that can be caused by several viruses and bacteria.
2. Bovine Viral Diarrhea (BVD): A viral disease that can cause a variety of symptoms, including diarrhea, fever, and reproductive issues.
3. Johne's Disease: A chronic wasting disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis. It primarily affects the intestines and can cause severe diarrhea and weight loss.
4. Digital Dermatitis: Also known as "hairy heel warts," this is a highly contagious skin disease that affects the feet of cattle, causing lameness and decreased productivity.
5. Infectious Bovine Keratoconjunctivitis (IBK): Also known as "pinkeye," IBK is a common and contagious eye infection in cattle that can cause blindness if left untreated.
6. Salmonella: A group of bacteria that can cause severe gastrointestinal illness in cattle, including diarrhea, dehydration, and septicemia.
7. Leptospirosis: A bacterial disease that can cause a wide range of symptoms in cattle, including abortion, stillbirths, and kidney damage.
8. Blackleg: A highly fatal bacterial disease that causes rapid death in young cattle. It is caused by Clostridium chauvoei and vaccination is recommended for prevention.
9. Anthrax: A serious infectious disease caused by the bacterium Bacillus anthracis. Cattle can become infected by ingesting spores found in contaminated soil, feed or water.
10. Foot-and-Mouth Disease (FMD): A highly contagious viral disease that affects cloven-hooved animals, including cattle. It is characterized by fever and blisters on the feet, mouth, and teats. FMD is not a threat to human health but can have serious economic consequences for the livestock industry.

It's important to note that many of these diseases can be prevented or controlled through good management practices, such as vaccination, biosecurity measures, and proper nutrition. Regular veterinary care and monitoring are also crucial for early detection and treatment of any potential health issues in your herd.

Plasminogen Activator Inhibitor 1 (PAI-1) is a protein involved in the regulation of fibrinolysis, which is the body's natural process of breaking down blood clots. PAI-1 inhibits tissue plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), two enzymes that convert plasminogen to plasmin, which degrades fibrin clots. Therefore, PAI-1 acts as a natural antagonist of the fibrinolytic system, promoting clot formation and stability. Increased levels of PAI-1 have been associated with thrombotic disorders, such as deep vein thrombosis and pulmonary embolism.

Steroid 17-alpha-hydroxylase, also known as CYP17A1, is a cytochrome P450 enzyme that plays a crucial role in steroid hormone biosynthesis. It is located in the endoplasmic reticulum of cells in the adrenal glands and gonads. This enzyme catalyzes the 17-alpha-hydroxylation and subsequent lyase cleavage of pregnenolone and progesterone, converting them into dehydroepiandrosterone (DHEA) and androstenedione, respectively. These steroid intermediates are essential for the biosynthesis of both glucocorticoids and sex steroids, including cortisol, aldosterone, estrogens, and testosterone.

Defects in the CYP17A1 gene can lead to several disorders, such as congenital adrenal hyperplasia (CAH) due to 17-alpha-hydroxylase deficiency, which is characterized by decreased production of cortisol and sex steroids and increased mineralocorticoid levels. This condition results in sexual infantilism, electrolyte imbalances, and hypertension.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Melatonin is a hormone that is produced by the pineal gland in the brain. It helps regulate sleep-wake cycles and is often referred to as the "hormone of darkness" because its production is stimulated by darkness and inhibited by light. Melatonin plays a key role in synchronizing the circadian rhythm, the body's internal clock that regulates various biological processes over a 24-hour period.

Melatonin is primarily released at night, and its levels in the blood can rise and fall in response to changes in light and darkness in an individual's environment. Supplementing with melatonin has been found to be helpful in treating sleep disorders such as insomnia, jet lag, and delayed sleep phase syndrome. It may also have other benefits, including antioxidant properties and potential uses in the treatment of certain neurological conditions.

It is important to note that while melatonin supplements are available over-the-counter in many countries, they should still be used under the guidance of a healthcare professional, as their use can have potential side effects and interactions with other medications.

A Tissue Inhibitor of Metalloproteinases (TIMPs) is a group of four naturally occurring proteins that play a crucial role in the regulation of extracellular matrix (ECM) remodeling. They function by inhibiting Matrix Metalloproteinases (MMPs), which are a family of enzymes responsible for degrading various components of the ECM, such as collagen and elastin.

By controlling MMP activity, TIMPs help maintain the balance between ECM synthesis and degradation, thereby ensuring proper tissue structure and function. An imbalance in TIMPs and MMPs has been implicated in various pathological conditions, including fibrosis, cancer, and inflammatory diseases.

There are four known TIMPs: TIMP1, TIMP2, TIMP3, and TIMP4, each with distinct expression patterns and substrate specificities. They not only inhibit MMPs but also have other functions, such as promoting cell survival, modulating cell growth and differentiation, and regulating angiogenesis.

Hypoglycemic agents are a class of medications that are used to lower blood glucose levels in the treatment of diabetes mellitus. These medications work by increasing insulin sensitivity, stimulating insulin release from the pancreas, or inhibiting glucose production in the liver. Examples of hypoglycemic agents include sulfonylureas, meglitinides, biguanides, thiazolidinediones, DPP-4 inhibitors, SGLT2 inhibitors, and GLP-1 receptor agonists. It's important to note that the term "hypoglycemic" refers to a condition of abnormally low blood glucose levels, but in this context, the term is used to describe agents that are used to treat high blood glucose levels (hyperglycemia) associated with diabetes.

Thiophenes are organic compounds that contain a heterocyclic ring made up of four carbon atoms and one sulfur atom. The structure of thiophene is similar to benzene, with the benzene ring being replaced by a thiophene ring. Thiophenes are aromatic compounds, which means they have a stable, planar ring structure and delocalized electrons.

Thiophenes can be found in various natural sources such as coal tar, crude oil, and some foods like onions and garlic. They also occur in certain medications, dyes, and pesticides. Some thiophene derivatives have been synthesized and studied for their potential therapeutic uses, including anti-inflammatory, antiviral, and antitumor activities.

In the medical field, thiophenes are used in some pharmaceuticals as building blocks to create drugs with various therapeutic effects. For example, tipepidine, a cough suppressant, contains a thiophene ring. Additionally, some anesthetics and antipsychotic medications also contain thiophene moieties.

It is important to note that while thiophenes themselves are not typically considered medical terms, they play a role in the chemistry of various pharmaceuticals and other medical-related compounds.

"Rodentia" is not a medical term, but a taxonomic category in biology. It refers to the largest order of mammals, comprising over 40% of all mammal species. Commonly known as rodents, this group includes mice, rats, hamsters, gerbils, guinea pigs, squirrels, prairie dogs, capybaras, beavers, and many others.

While "Rodentia" itself is not a medical term, certain conditions or issues related to rodents can have medical implications. For instance, rodents are known to carry and transmit various diseases that can affect humans, such as hantavirus, leptospirosis, salmonellosis, and lymphocytic choriomeningitis (LCMV). Therefore, understanding the biology and behavior of rodents is important in the context of public health and preventive medicine.

Paternity is the legal or biological relationship between a father and his child. Medical definitions of paternity often refer to the biological relationship, which is established through genetic testing to identify if a man has transmitted his genetic material to a child. This is typically determined by comparing the DNA of the alleged father and the child. In contrast, legal paternity refers to the establishment of a father-child relationship through court order or other legal means, whether or not the individual is the biological father.

Food deprivation is not a medical term per se, but it is used in the field of nutrition and psychology. It generally refers to the deliberate withholding of food for a prolonged period, leading to a state of undernutrition or malnutrition. This can occur due to various reasons such as famine, starvation, anorexia nervosa, or as a result of certain medical treatments or conditions. Prolonged food deprivation can have serious consequences on physical health, including weight loss, muscle wasting, organ damage, and decreased immune function, as well as psychological effects such as depression, anxiety, and cognitive impairment.

Ultrasonography, Doppler, Pulsed is a type of diagnostic ultrasound technique that uses the Doppler effect to measure blood flow in the body. In this technique, short bursts of ultrasound are emitted and then listened for as they bounce back off moving red blood cells. By analyzing the frequency shift of the returning sound waves, the velocity and direction of blood flow can be determined. This information is particularly useful in evaluating conditions such as deep vein thrombosis, carotid artery stenosis, and fetal heart abnormalities. Pulsed Doppler ultrasonography provides more detailed information about blood flow than traditional color Doppler imaging, making it a valuable tool for diagnosing and monitoring various medical conditions.

Photoperiod is a term used in chronobiology, which is the study of biological rhythms and their synchronization with environmental cycles. In medicine, photoperiod specifically refers to the duration of light and darkness in a 24-hour period, which can significantly impact various physiological processes in living organisms, including humans.

In human medicine, photoperiod is often considered in relation to circadian rhythms, which are internal biological clocks that regulate several functions such as sleep-wake cycles, hormone secretion, and metabolism. The length of the photoperiod can influence these rhythms and contribute to the development or management of certain medical conditions, like mood disorders, sleep disturbances, and metabolic disorders.

For instance, exposure to natural daylight or artificial light sources with specific intensities and wavelengths during particular times of the day can help regulate circadian rhythms and improve overall health. Conversely, disruptions in the photoperiod due to factors like shift work, jet lag, or artificial lighting can lead to desynchronization of circadian rhythms and related health issues.

"Macaca fascicularis" is the scientific name for the crab-eating macaque, also known as the long-tailed macaque. It's a species of monkey that is native to Southeast Asia. They are called "crab-eating" macaques because they are known to eat crabs and other crustaceans. These monkeys are omnivorous and their diet also includes fruits, seeds, insects, and occasionally smaller vertebrates.

Crab-eating macaques are highly adaptable and can be found in a wide range of habitats, including forests, grasslands, and wetlands. They are also known to live in close proximity to human settlements and are often considered pests due to their tendency to raid crops and steal food from humans.

These monkeys are social animals and live in large groups called troops. They have a complex social structure with a clear hierarchy and dominant males. Crab-eating macaques are also known for their intelligence and problem-solving abilities.

In medical research, crab-eating macaques are often used as animal models due to their close genetic relationship to humans. They are used in studies related to infectious diseases, neuroscience, and reproductive biology, among others.

A "mutant strain of mice" in a medical context refers to genetically engineered mice that have specific genetic mutations introduced into their DNA. These mutations can be designed to mimic certain human diseases or conditions, allowing researchers to study the underlying biological mechanisms and test potential therapies in a controlled laboratory setting.

Mutant strains of mice are created through various techniques, including embryonic stem cell manipulation, gene editing technologies such as CRISPR-Cas9, and radiation-induced mutagenesis. These methods allow scientists to introduce specific genetic changes into the mouse genome, resulting in mice that exhibit altered physiological or behavioral traits.

These strains of mice are widely used in biomedical research because their short lifespan, small size, and high reproductive rate make them an ideal model organism for studying human diseases. Additionally, the mouse genome has been well-characterized, and many genetic tools and resources are available to researchers working with these animals.

Examples of mutant strains of mice include those that carry mutations in genes associated with cancer, neurodegenerative disorders, metabolic diseases, and immunological conditions. These mice provide valuable insights into the pathophysiology of human diseases and help advance our understanding of potential therapeutic interventions.

Fibrinolysin is defined as a proteolytic enzyme that dissolves or breaks down fibrin, a protein involved in the clotting of blood. This enzyme is produced by certain cells, such as endothelial cells that line the interior surface of blood vessels, and is an important component of the body's natural mechanism for preventing excessive blood clotting and maintaining blood flow.

Fibrinolysin works by cleaving specific bonds in the fibrin molecule, converting it into soluble degradation products that can be safely removed from the body. This process is known as fibrinolysis, and it helps to maintain the balance between clotting and bleeding in the body.

In medical contexts, fibrinolysin may be used as a therapeutic agent to dissolve blood clots that have formed in the blood vessels, such as those that can occur in deep vein thrombosis or pulmonary embolism. It is often administered in combination with other medications that help to enhance its activity and specificity for fibrin.

Male infertility is a condition characterized by the inability to cause pregnancy in a fertile female. It is typically defined as the failure to achieve a pregnancy after 12 months or more of regular unprotected sexual intercourse.

The causes of male infertility can be varied and include issues with sperm production, such as low sperm count or poor sperm quality, problems with sperm delivery, such as obstructions in the reproductive tract, or hormonal imbalances that affect sperm production. Other factors that may contribute to male infertility include genetic disorders, environmental exposures, lifestyle choices, and certain medical conditions or treatments.

It is important to note that male infertility can often be treated or managed with medical interventions, such as medication, surgery, or assisted reproductive technologies (ART). A healthcare provider can help diagnose the underlying cause of male infertility and recommend appropriate treatment options.

Medical definitions of "Multiple Birth Offspring" refer to two or more children born to the same mother during one single pregnancy and childbirth. The most common forms of multiple birth offspring are twins (two babies), triplets (three babies), quadruplets (four babies), and so on.

The occurrence of multiple birth offspring is influenced by several factors, including genetics, maternal age, the use of fertility treatments, and other medical conditions. Multiple birth offspring may be identical (monozygotic) or fraternal (dizygotic), depending on whether they developed from a single fertilized egg or from separate eggs.

Multiple birth offspring often face unique health challenges, such as preterm birth, low birth weight, and developmental delays, due to the limited space and resources available in the womb. As a result, they may require specialized medical care and attention both during and after pregnancy.

A homozygote is an individual who has inherited the same allele (version of a gene) from both parents and therefore possesses two identical copies of that allele at a specific genetic locus. This can result in either having two dominant alleles (homozygous dominant) or two recessive alleles (homozygous recessive). In contrast, a heterozygote has inherited different alleles from each parent for a particular gene.

The term "homozygote" is used in genetics to describe the genetic makeup of an individual at a specific locus on their chromosomes. Homozygosity can play a significant role in determining an individual's phenotype (observable traits), as having two identical alleles can strengthen the expression of certain characteristics compared to having just one dominant and one recessive allele.

Animal feed refers to any substance or mixture of substances, whether processed, unprocessed, or partially processed, which is intended to be used as food for animals, including fish, without further processing. It includes ingredients such as grains, hay, straw, oilseed meals, and by-products from the milling, processing, and manufacturing industries. Animal feed can be in the form of pellets, crumbles, mash, or other forms, and is used to provide nutrients such as energy, protein, fiber, vitamins, and minerals to support the growth, reproduction, and maintenance of animals. It's important to note that animal feed must be safe, nutritious, and properly labeled to ensure the health and well-being of the animals that consume it.

Urokinase-type plasminogen activator (uPA) is a serine protease enzyme that plays a crucial role in the degradation of the extracellular matrix and cell migration. It catalyzes the conversion of plasminogen to plasmin, which then breaks down various proteins in the extracellular matrix, leading to tissue remodeling and repair.

uPA is synthesized as a single-chain molecule, pro-uPA, which is activated by cleavage into two chains, forming the mature and active enzyme. uPA binds to its specific receptor, uPAR, on the cell surface, where it exerts its proteolytic activity.

Abnormal regulation of uPA and uPAR has been implicated in various pathological conditions, including cancer, where they contribute to tumor invasion and metastasis. Therefore, uPA is a potential target for therapeutic intervention in cancer and other diseases associated with excessive extracellular matrix degradation.

Energy metabolism is the process by which living organisms produce and consume energy to maintain life. It involves a series of chemical reactions that convert nutrients from food, such as carbohydrates, fats, and proteins, into energy in the form of adenosine triphosphate (ATP).

The process of energy metabolism can be divided into two main categories: catabolism and anabolism. Catabolism is the breakdown of nutrients to release energy, while anabolism is the synthesis of complex molecules from simpler ones using energy.

There are three main stages of energy metabolism: glycolysis, the citric acid cycle (also known as the Krebs cycle), and oxidative phosphorylation. Glycolysis occurs in the cytoplasm of the cell and involves the breakdown of glucose into pyruvate, producing a small amount of ATP and nicotinamide adenine dinucleotide (NADH). The citric acid cycle takes place in the mitochondria and involves the further breakdown of pyruvate to produce more ATP, NADH, and carbon dioxide. Oxidative phosphorylation is the final stage of energy metabolism and occurs in the inner mitochondrial membrane. It involves the transfer of electrons from NADH and other electron carriers to oxygen, which generates a proton gradient across the membrane. This gradient drives the synthesis of ATP, producing the majority of the cell's energy.

Overall, energy metabolism is a complex and essential process that allows organisms to grow, reproduce, and maintain their bodily functions. Disruptions in energy metabolism can lead to various diseases, including diabetes, obesity, and neurodegenerative disorders.

Activins are a type of protein that belongs to the transforming growth factor-beta (TGF-β) superfamily. They are produced and released by various cells in the body, including those in the ovaries, testes, pituitary gland, and other tissues. Activins play important roles in regulating several biological processes, such as cell growth, differentiation, and apoptosis (programmed cell death).

Activins bind to specific receptors on the surface of cells, leading to the activation of intracellular signaling pathways that control gene expression. They are particularly well-known for their role in reproductive biology, where they help regulate follicle stimulation and hormone production in the ovaries and testes. Activins also have been implicated in various disease processes, including cancer, fibrosis, and inflammation.

There are three main isoforms of activin in humans: activin A, activin B, and inhibin A. While activins and inhibins share similar structures and functions, they have opposite effects on the activity of the pituitary gland. Activins stimulate the production of follicle-stimulating hormone (FSH), while inhibins suppress it. This delicate balance between activins and inhibins helps regulate reproductive function and other physiological processes in the body.

'Immune sera' refers to the serum fraction of blood that contains antibodies produced in response to an antigenic stimulus, such as a vaccine or an infection. These antibodies are proteins known as immunoglobulins, which are secreted by B cells (a type of white blood cell) and can recognize and bind to specific antigens. Immune sera can be collected from an immunized individual and used as a source of passive immunity to protect against infection or disease. It is often used in research and diagnostic settings to identify or measure the presence of specific antigens or antibodies.

Lipoxygenase inhibitors are a class of compounds that block the activity of lipoxygenase enzymes. These enzymes are involved in the metabolism of arachidonic acid and other polyunsaturated fatty acids, leading to the production of leukotrienes and other inflammatory mediators. By inhibiting lipoxygenase, these compounds can help reduce inflammation and may have potential therapeutic applications in the treatment of various diseases, including asthma, atherosclerosis, and cancer. Some examples of lipoxygenase inhibitors include nordihydroguaiaretic acid (NDGA), zileuton, and baicalein.

Medroxyprogesterone Acetate (MPA) is a synthetic form of the natural hormone progesterone, which is often used in various medical applications. It is a white to off-white crystalline powder, slightly soluble in water, and freely soluble in alcohol, chloroform, and methanol.

Medically, MPA is used as a prescription medication for several indications, including:

1. Contraception: As an oral contraceptive or injectable solution, it can prevent ovulation, thicken cervical mucus to make it harder for sperm to reach the egg, and alter the lining of the uterus to make it less likely for a fertilized egg to implant.
2. Hormone replacement therapy (HRT): In postmenopausal women, MPA can help manage symptoms associated with decreased estrogen levels, such as hot flashes and vaginal dryness. It may also help prevent bone loss (osteoporosis).
3. Endometrial hyperplasia: MPA can be used to treat endometrial hyperplasia, a condition where the lining of the uterus becomes too thick, which could potentially lead to cancer if left untreated. By opposing the effects of estrogen, MPA helps regulate the growth of the endometrium.
4. Gynecological disorders: MPA can be used to treat various gynecological disorders, such as irregular menstrual cycles, amenorrhea (absence of menstruation), and dysfunctional uterine bleeding.
5. Cancer treatment: In some cases, MPA may be used in conjunction with other medications to treat certain types of breast or endometrial cancer.

As with any medication, Medroxyprogesterone Acetate can have side effects and potential risks. It is essential to consult a healthcare professional for proper evaluation, dosage, and monitoring when considering this medication.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Ultrasonography, Doppler, color is a type of diagnostic ultrasound technique that uses the Doppler effect to produce visual images of blood flow in vessels and the heart. The Doppler effect is the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the source of the wave. In this context, it refers to the change in frequency of the ultrasound waves as they reflect off moving red blood cells.

In color Doppler ultrasonography, different colors are used to represent the direction and speed of blood flow. Red typically represents blood flowing toward the transducer (the device that sends and receives sound waves), while blue represents blood flowing away from the transducer. The intensity or brightness of the color is proportional to the velocity of blood flow.

Color Doppler ultrasonography is often used in conjunction with grayscale ultrasound imaging, which provides information about the structure and composition of tissues. Together, these techniques can help diagnose a wide range of conditions, including heart disease, blood clots, and abnormalities in blood flow.

Angiotensin II Type 2 Receptor Blockers (AT2RBs) are a class of drugs that selectively block the activation of Angiotensin II Type 2 receptors (AT2R). These receptors are found in various tissues throughout the body and play a role in regulating blood pressure, inflammation, and cell growth.

Angiotensin II is a hormone that constricts blood vessels and increases blood pressure. It binds to both AT1R and AT2R, but its effects are mainly mediated through AT1R. AT2RBs work by blocking the action of Angiotensin II at the AT2R, which can help lower blood pressure and reduce inflammation.

AT2RBs have been shown to have potential benefits in various clinical settings, including heart failure, diabetes, and kidney disease. However, their use is not as widespread as angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs), which primarily target the AT1R.

Some examples of AT2RBs include EMA401, PD123319, and TRV120027.

Specimen handling is a set of procedures and practices followed in the collection, storage, transportation, and processing of medical samples or specimens (e.g., blood, tissue, urine, etc.) for laboratory analysis. Proper specimen handling ensures accurate test results, patient safety, and data integrity. It includes:

1. Correct labeling of the specimen container with required patient information.
2. Using appropriate containers and materials to collect, store, and transport the specimen.
3. Following proper collection techniques to avoid contamination or damage to the specimen.
4. Adhering to specific storage conditions (temperature, time, etc.) before testing.
5. Ensuring secure and timely transportation of the specimen to the laboratory.
6. Properly documenting all steps in the handling process for traceability and quality assurance.

"Lost to Follow-Up" is a term used in medical research and clinical settings to describe a participant or patient who drops out of a study or stops receiving medical care, making it difficult or impossible to collect further data on their outcomes or progress. This can introduce bias and limit the generalizability of research findings. The specific criteria for defining "Lost to Follow-Up" may vary depending on the context and the nature of the study or clinical program.

Oxytocin receptors are specialized protein structures found on the surface of cells, primarily in the uterus and mammary glands. They bind to the hormone oxytocin, which is produced in the hypothalamus and released into the bloodstream by the posterior pituitary gland.

When oxytocin binds to its receptor, it triggers a series of intracellular signaling events that lead to various physiological responses. In the uterus, oxytocin receptors play a crucial role in promoting contractions during labor and childbirth. In the mammary glands, they stimulate milk letdown and ejection during breastfeeding.

Oxytocin receptors have also been identified in other tissues, including the brain, heart, and kidneys, where they are involved in a variety of functions such as social bonding, sexual behavior, stress response, and cardiovascular regulation. Dysregulation of oxytocin receptor function has been implicated in several pathological conditions, including anxiety disorders, autism spectrum disorder, and hypertension.

Prostaglandin antagonists are a class of medications that work by blocking the action of prostaglandins, which are hormone-like substances that play many roles in the body, including causing inflammation, promoting uterine contractions during labor and menstruation, and regulating blood flow in various tissues.

Prostaglandin antagonists are often used to treat conditions that involve excessive prostaglandin activity, such as:

* Pain and inflammation associated with arthritis or musculoskeletal injuries
* Migraines and other headaches
* Dysmenorrhea (painful menstruation)
* Preterm labor

Examples of prostaglandin antagonists include nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, naproxen, and celecoxib, as well as specific prostaglandin receptor antagonists such as misoprostol and telmisartan.

It's important to note that while prostaglandin antagonists can be effective in treating certain conditions, they can also have side effects and potential risks, so it's important to use them under the guidance of a healthcare provider.

Prostaglandin-Endoperoxide Synthases (PTGS), also known as Cyclooxygenases (COX), are a group of enzymes that catalyze the conversion of arachidonic acid into prostaglandin G2 and H2, which are further metabolized to produce various prostaglandins and thromboxanes. These lipid mediators play crucial roles in several physiological processes such as inflammation, pain, fever, and blood clotting. There are two major isoforms of PTGS: PTGS-1 (COX-1) and PTGS-2 (COX-2). While COX-1 is constitutively expressed in most tissues and involved in homeostatic functions, COX-2 is usually induced during inflammation and tissue injury. Nonsteroidal anti-inflammatory drugs (NSAIDs) exert their therapeutic effects by inhibiting these enzymes, thereby reducing the production of prostaglandins and thromboxanes.

Uterine diseases refer to a range of medical conditions that affect the uterus, which is the reproductive organ in females where fetal development occurs. These diseases can be categorized into structural abnormalities, infectious diseases, and functional disorders. Here are some examples:

1. Structural abnormalities: These include congenital malformations such as septate uterus or bicornuate uterus, as well as acquired conditions like endometrial polyps, fibroids (benign tumors of the muscular wall), and adenomyosis (where the endometrial tissue grows into the muscular wall).

2. Infectious diseases: The uterus can be affected by various infections, including bacterial, viral, fungal, or parasitic agents. Examples include pelvic inflammatory disease (PID), tuberculosis, and candidiasis.

3. Functional disorders: These are conditions that affect the normal functioning of the uterus without any apparent structural abnormalities or infections. Examples include dysmenorrhea (painful periods), menorrhagia (heavy periods), and endometriosis (where the endometrial tissue grows outside the uterus).

4. Malignant diseases: Uterine cancer, including endometrial cancer and cervical cancer, are significant health concerns for women.

5. Other conditions: Miscarriage, ectopic pregnancy, and infertility can also be considered as uterine diseases since they involve the abnormal functioning or structural issues of the uterus.

Matrix metalloproteinase 2 (MMP-2), also known as gelatinase A, is an enzyme that belongs to the matrix metalloproteinase family. MMPs are involved in the breakdown of extracellular matrix components, and MMP-2 is responsible for degrading type IV collagen, a major component of the basement membrane. This enzyme plays a crucial role in various physiological processes, including tissue remodeling, wound healing, and angiogenesis. However, its dysregulation has been implicated in several pathological conditions, such as cancer, arthritis, and cardiovascular diseases. MMP-2 is synthesized as an inactive proenzyme and requires activation by other proteases or chemical modifications before it can exert its proteolytic activity.

A circadian rhythm is a roughly 24-hour biological cycle that regulates various physiological and behavioral processes in living organisms. It is driven by the body's internal clock, which is primarily located in the suprachiasmatic nucleus (SCN) of the hypothalamus in the brain.

The circadian rhythm controls many aspects of human physiology, including sleep-wake cycles, hormone secretion, body temperature, and metabolism. It helps to synchronize these processes with the external environment, particularly the day-night cycle caused by the rotation of the Earth.

Disruptions to the circadian rhythm can have negative effects on health, leading to conditions such as insomnia, sleep disorders, depression, bipolar disorder, and even increased risk of chronic diseases like cancer, diabetes, and cardiovascular disease. Factors that can disrupt the circadian rhythm include shift work, jet lag, irregular sleep schedules, and exposure to artificial light at night.

The placenta is an organ that develops in the uterus during pregnancy and provides oxygen and nutrients to the growing baby through the umbilical cord. It also removes waste products from the baby's blood. The placenta attaches to the wall of the uterus, and the baby's side of the placenta contains many tiny blood vessels that connect to the baby's circulatory system. This allows for the exchange of oxygen, nutrients, and waste between the mother's and baby's blood. After the baby is born, the placenta is usually expelled from the uterus in a process called afterbirth.

A fetus is the developing offspring in a mammal, from the end of the embryonic period (approximately 8 weeks after fertilization in humans) until birth. In humans, the fetal stage of development starts from the eleventh week of pregnancy and continues until childbirth, which is termed as full-term pregnancy at around 37 to 40 weeks of gestation. During this time, the organ systems become fully developed and the body grows in size. The fetus is surrounded by the amniotic fluid within the amniotic sac and is connected to the placenta via the umbilical cord, through which it receives nutrients and oxygen from the mother. Regular prenatal care is essential during this period to monitor the growth and development of the fetus and ensure a healthy pregnancy and delivery.

Vanadates are salts or esters of vanadic acid (HVO3), which contains the vanadium(V) ion. They contain the vanadate ion (VO3-), which consists of one vanadium atom and three oxygen atoms. Vanadates have been studied for their potential insulin-mimetic and antidiabetic effects, as well as their possible cardiovascular benefits. However, more research is needed to fully understand their mechanisms of action and potential therapeutic uses in medicine.

Diethylhexyl Phthalate (DEHP) is a type of phthalate compound that is commonly used as a plasticizer, a substance added to plastics to make them more flexible and durable. DEHP is a colorless, oily liquid with an odor similar to oil or benzene. It is soluble in organic solvents but not in water.

DEHP is used primarily in the production of polyvinyl chloride (PVC) plastics, such as flexible tubing, hoses, and medical devices like blood bags and intravenous (IV) lines. DEHP can leach out of these products over time, particularly when they are subjected to heat or other stressors, leading to potential human exposure.

Exposure to DEHP has been linked to a variety of health effects, including reproductive toxicity, developmental and neurological problems, and an increased risk of cancer. As a result, the use of DEHP in certain applications has been restricted or banned in some countries. The medical community is also moving towards using alternative plasticizers that are considered safer for human health.

"Papio" is a term used in the field of primatology, specifically for a genus of Old World monkeys known as baboons. It's not typically used in human or medical contexts. Baboons are large monkeys with robust bodies and distinctive dog-like faces. They are native to various parts of Africa and are known for their complex social structures and behaviors.

The testis, also known as the testicle, is a male reproductive organ that is part of the endocrine system. It is located in the scrotum, outside of the abdominal cavity. The main function of the testis is to produce sperm and testosterone, the primary male sex hormone.

The testis is composed of many tiny tubules called seminiferous tubules, where sperm are produced. These tubules are surrounded by a network of blood vessels, nerves, and supportive tissues. The sperm then travel through a series of ducts to the epididymis, where they mature and become capable of fertilization.

Testosterone is produced in the Leydig cells, which are located in the interstitial tissue between the seminiferous tubules. Testosterone plays a crucial role in the development and maintenance of male secondary sexual characteristics, such as facial hair, deep voice, and muscle mass. It also supports sperm production and sexual function.

Abnormalities in testicular function can lead to infertility, hormonal imbalances, and other health problems. Regular self-examinations and medical check-ups are recommended for early detection and treatment of any potential issues.

Pituitary hormones are chemical messengers produced and released by the pituitary gland, a small endocrine gland located at the base of the brain. The pituitary gland is often referred to as the "master gland" because it controls several other endocrine glands and regulates various bodily functions.

There are two main types of pituitary hormones: anterior pituitary hormones and posterior pituitary hormones, which are produced in different parts of the pituitary gland and have distinct functions.

Anterior pituitary hormones include:

1. Growth hormone (GH): regulates growth and metabolism.
2. Thyroid-stimulating hormone (TSH): stimulates the thyroid gland to produce thyroid hormones.
3. Adrenocorticotropic hormone (ACTH): stimulates the adrenal glands to produce cortisol and other steroid hormones.
4. Follicle-stimulating hormone (FSH) and luteinizing hormone (LH): regulate reproductive function in both males and females.
5. Prolactin: stimulates milk production in lactating women.
6. Melanocyte-stimulating hormone (MSH): regulates skin pigmentation and appetite.

Posterior pituitary hormones include:

1. Oxytocin: stimulates uterine contractions during childbirth and milk ejection during lactation.
2. Vasopressin (antidiuretic hormone, ADH): regulates water balance in the body by controlling urine production in the kidneys.

Overall, pituitary hormones play crucial roles in regulating growth, development, metabolism, reproductive function, and various other bodily functions. Abnormalities in pituitary hormone levels can lead to a range of medical conditions, such as dwarfism, acromegaly, Cushing's disease, infertility, and diabetes insipidus.

Tissue Plasminogen Activator (tPA) is a thrombolytic enzyme, which means it dissolves blood clots. It is naturally produced by the endothelial cells that line the interior surface of blood vessels. tPA activates plasminogen, a zymogen, to convert it into plasmin, a protease that breaks down fibrin, the structural protein in blood clots. This enzyme is used medically as a thrombolytic drug under various brand names, such as Activase and Alteplase, to treat conditions like acute ischemic stroke, pulmonary embolism, and deep vein thrombosis by dissolving the clots and restoring blood flow.

Contraception is the use of various devices, methods, or medications to prevent pregnancy. The term is derived from the Latin words "contra" meaning "against" and "conceptio" meaning "conception." Contraceptive methods can be broadly categorized into temporary and permanent methods. Temporary methods include barriers such as condoms, diaphragms, cervical caps, and sponges; hormonal methods like the pill, patch, ring, injection, and emergency contraception; and fertility awareness-based methods that involve tracking ovulation and avoiding intercourse during fertile periods. Permanent methods include surgical procedures such as tubal ligation for women and vasectomy for men.

The primary goal of contraception is to prevent the sperm from reaching and fertilizing the egg, thereby preventing pregnancy. However, some contraceptive methods also offer additional benefits such as reducing the risk of sexually transmitted infections (STIs) and regulating menstrual cycles. It's important to note that while contraception can prevent pregnancy, it does not protect against STIs, so using condoms is still recommended for individuals who are at risk of contracting STIs.

When choosing a contraceptive method, it's essential to consider factors such as effectiveness, safety, ease of use, cost, and personal preferences. It's also important to consult with a healthcare provider to determine the most appropriate method based on individual health history and needs.

Neoplasms are abnormal growths of cells or tissues that serve no purpose and can be benign (non-cancerous) or malignant (cancerous). Glandular and epithelial neoplasms refer to specific types of tumors that originate from the glandular and epithelial tissues, respectively.

Glandular neoplasms arise from the glandular tissue, which is responsible for producing and secreting substances such as hormones, enzymes, or other fluids. These neoplasms can be further classified into adenomas (benign) and adenocarcinomas (malignant).

Epithelial neoplasms, on the other hand, develop from the epithelial tissue that lines the outer surfaces of organs and the inner surfaces of cavities. These neoplasms can also be benign or malignant and are classified as papillomas (benign) and carcinomas (malignant).

It is important to note that while both glandular and epithelial neoplasms can become cancerous, not all of them do. However, if they do, the malignant versions can invade surrounding tissues and spread to other parts of the body, making them potentially life-threatening.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

In medical terms, the term "voice" refers to the sound produced by vibration of the vocal cords caused by air passing out from the lungs during speech, singing, or breathing. It is a complex process that involves coordination between respiratory, phonatory, and articulatory systems. Any damage or disorder in these systems can affect the quality, pitch, loudness, and flexibility of the voice.

The medical field dealing with voice disorders is called Phoniatrics or Voice Medicine. Voice disorders can present as hoarseness, breathiness, roughness, strain, weakness, or a complete loss of voice, which can significantly impact communication, social interaction, and quality of life.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

Interleukin-1 (IL-1) receptors are a type of cell surface receptor that bind to and mediate the effects of interleukin-1 cytokines, which are involved in the regulation of inflammatory and immune responses. There are two main types of IL-1 receptors:

1. Type I IL-1 receptor (IL-1R1): This is a transmembrane protein that consists of three domains - an extracellular domain, a transmembrane domain, and an intracellular domain. The extracellular domain contains the binding site for IL-1 cytokines, while the intracellular domain is involved in signal transduction and activation of downstream signaling pathways.
2. Type II IL-1 receptor (IL-1R2): This is a decoy receptor that lacks an intracellular signaling domain and functions to regulate IL-1 activity by preventing its interaction with IL-1R1.

IL-1 receptors are widely expressed in various tissues and cell types, including immune cells, endothelial cells, and nervous system cells. Activation of IL-1 receptors leads to the induction of a variety of biological responses, such as fever, production of acute phase proteins, activation of immune cells, and modulation of pain sensitivity. Dysregulation of IL-1 signaling has been implicated in various pathological conditions, including autoimmune diseases, chronic inflammation, and neurodegenerative disorders.

The acrosome is a specialized structure located on the anterior part of the sperm head in many species of animals, including humans. It contains enzymes that help the sperm penetrate the outer covering of the egg (zona pellucida) during fertilization. The acrosome reaction is the process by which the acrosome releases its enzymes, allowing the sperm to digest a path through the zona pellucida and reach the egg plasma membrane for fusion and fertilization.

The acrosome is formed during spermatogenesis, the process of sperm production in the testis, from the Golgi apparatus, a cellular organelle involved in protein trafficking and modification. The acrosome contains hydrolytic enzymes such as hyaluronidase, acrosin, and proteases that are activated during the acrosome reaction to facilitate sperm-egg fusion.

Abnormalities in acrosome formation or function can lead to infertility in males.

Gene expression profiling is a laboratory technique used to measure the activity (expression) of thousands of genes at once. This technique allows researchers and clinicians to identify which genes are turned on or off in a particular cell, tissue, or organism under specific conditions, such as during health, disease, development, or in response to various treatments.

The process typically involves isolating RNA from the cells or tissues of interest, converting it into complementary DNA (cDNA), and then using microarray or high-throughput sequencing technologies to determine which genes are expressed and at what levels. The resulting data can be used to identify patterns of gene expression that are associated with specific biological states or processes, providing valuable insights into the underlying molecular mechanisms of diseases and potential targets for therapeutic intervention.

In recent years, gene expression profiling has become an essential tool in various fields, including cancer research, drug discovery, and personalized medicine, where it is used to identify biomarkers of disease, predict patient outcomes, and guide treatment decisions.

Antibodies are proteins produced by the immune system in response to the presence of a foreign substance, such as a bacterium or virus. They are capable of identifying and binding to specific antigens (foreign substances) on the surface of these invaders, marking them for destruction by other immune cells. Antibodies are also known as immunoglobulins and come in several different types, including IgA, IgD, IgE, IgG, and IgM, each with a unique function in the immune response. They are composed of four polypeptide chains, two heavy chains and two light chains, that are held together by disulfide bonds. The variable regions of the heavy and light chains form the antigen-binding site, which is specific to a particular antigen.

'Labor, Obstetric' refers to the physiological process that occurs during childbirth, leading to the expulsion of the fetus from the uterus. It is divided into three stages:

1. The first stage begins with the onset of regular contractions and cervical dilation and effacement (thinning and shortening) until full dilation is reached (approximately 10 cm). This stage can last from hours to days, particularly in nulliparous women (those who have not given birth before).
2. The second stage starts with complete cervical dilation and ends with the delivery of the baby. During this stage, the mother experiences strong contractions that help push the fetus down the birth canal. This stage typically lasts from 20 minutes to two hours but can take longer in some cases.
3. The third stage involves the delivery of the placenta (afterbirth) and membranes, which usually occurs within 15-30 minutes after the baby's birth. However, it can sometimes take up to an hour for the placenta to be expelled completely.

Obstetric labor is a complex process that requires careful monitoring and management by healthcare professionals to ensure the safety and well-being of both the mother and the baby.

Leukocytes, also known as white blood cells (WBCs), are a crucial component of the human immune system. They are responsible for protecting the body against infections and foreign substances. Leukocytes are produced in the bone marrow and circulate throughout the body in the bloodstream and lymphatic system.

There are several types of leukocytes, including:

1. Neutrophils - These are the most abundant type of leukocyte and are primarily responsible for fighting bacterial infections. They contain enzymes that can destroy bacteria.
2. Lymphocytes - These are responsible for producing antibodies and destroying virus-infected cells, as well as cancer cells. There are two main types of lymphocytes: B-lymphocytes and T-lymphocytes.
3. Monocytes - These are the largest type of leukocyte and help to break down and remove dead or damaged tissues, as well as microorganisms.
4. Eosinophils - These play a role in fighting parasitic infections and are also involved in allergic reactions and inflammation.
5. Basophils - These release histamine and other chemicals that cause inflammation in response to allergens or irritants.

An abnormal increase or decrease in the number of leukocytes can indicate an underlying medical condition, such as an infection, inflammation, or a blood disorder.

Promegestone is a synthetic progestin, which is a type of hormone that is similar to the natural progesterone produced in the human body. It is used primarily as a component of hormonal contraceptives and for the treatment of various conditions related to hormonal imbalances.

In medical terms, promegestone can be defined as:

A synthetic progestin with glucocorticoid activity, used in the treatment of endometriosis, mastodynia (breast pain), and uterine fibroids. It is also used as a component of hormonal contraceptives to prevent pregnancy. Promegestone works by binding to progesterone receptors in the body, which helps regulate the menstrual cycle and prevent ovulation.

It's important to note that promegestone should only be used under the supervision of a healthcare provider, as it can have side effects and may interact with other medications.

Dioxanes are a group of chemical compounds that contain two oxygen atoms and four carbon atoms, linked together in a cyclic structure. The most common dioxane is called 1,4-dioxane, which is often used as a solvent or as a stabilizer in various industrial and consumer products, such as cosmetics, cleaning agents, and paint strippers.

In the medical field, 1,4-dioxane has been classified as a likely human carcinogen by the U.S. Environmental Protection Agency (EPA) and as a possible human carcinogen by the International Agency for Research on Cancer (IARC). Exposure to high levels of 1,4-dioxane has been linked to an increased risk of cancer in laboratory animals, and there is some evidence to suggest that it may also pose a cancer risk to humans.

It's worth noting that the use of 1,4-dioxane in cosmetics and other personal care products has been controversial, as some studies have found detectable levels of this chemical in these products. However, the levels of exposure from these sources are generally low, and it is unclear whether they pose a significant cancer risk to humans. Nonetheless, some organizations and experts have called for stricter regulations on the use of 1,4-dioxane in consumer products to minimize potential health risks.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

"Coturnix" is a genus of birds that includes several species of quails. The most common species is the Common Quail (Coturnix coturnix), which is also known as the European Quail or the Eurasian Quail. This small ground-dwelling bird is found throughout Europe, Asia, and parts of Africa, and it is known for its distinctive call and its migratory habits. Other species in the genus Coturnix include the Rain Quail (Coturnix coromandelica), the Stubble Quail (Coturnix pectoralis), and the Harlequin Quail (Coturnix delegorguei). These birds are all similar in appearance and behavior, with small, round bodies, short wings, and strong legs that are adapted for running and scratching in leaf litter. They are also known for their cryptic coloration, which helps them blend in with their surroundings and avoid predators. Quails are popular game birds and are also kept as pets and for ornamental purposes in some parts of the world.

I apologize for the confusion, but "Bucladesine" is not a recognized medical term or a medication in current use in medicine. It's possible that there may be some mistake or typo in the spelling. If you have any more context about where you encountered this term, I might be able to provide a more accurate and helpful response.

Cyprinidae is a family of fish that includes carps, minnows, and barbs. It is the largest family of freshwater fish, with over 2,400 species found worldwide, particularly in Asia and Europe. These fish are characterized by their lack of teeth on the roof of their mouths and have a single dorsal fin. Some members of this family are economically important as food fish or for aquarium trade.

Prostaglandin E (PGE) receptors are a type of G protein-coupled receptor that bind and respond to prostaglandin E, a group of lipid compounds called eicosanoids that have various hormone-like effects in the body. PGE receptors play important roles in regulating numerous physiological processes, including inflammation, pain perception, fever, gastrointestinal motility and mucosal protection, blood flow, and labor and delivery.

There are four subtypes of PGE receptors, designated EP1, EP2, EP3, and EP4, each with distinct signaling pathways and functions. For example, activation of EP1 receptors can increase calcium levels in cells and promote pain sensation, while activation of EP2 and EP4 receptors can stimulate the production of cyclic AMP (cAMP) and have anti-inflammatory effects. EP3 receptors can have both excitatory and inhibitory effects on cellular signaling, depending on the specific isoform and downstream signaling pathways involved.

Abnormalities in PGE receptor function or expression have been implicated in various disease states, including inflammatory disorders, pain syndromes, cardiovascular diseases, and cancer. As a result, PGE receptors are an active area of research for the development of new therapeutic strategies to target these conditions.

Leptin is a hormone primarily produced and released by adipocytes, which are the fat cells in our body. It plays a crucial role in regulating energy balance and appetite by sending signals to the brain when the body has had enough food. This helps control body weight by suppressing hunger and increasing energy expenditure. Leptin also influences various metabolic processes, including glucose homeostasis, neuroendocrine function, and immune response. Defects in leptin signaling can lead to obesity and other metabolic disorders.

Relaxin is a hormone produced by the ovaries and, during pregnancy, also by the placenta and the fetal membranes. Its primary function is to relax the uterus and pelvic joints in preparation for childbirth, hence its name. It does this by softening the connective tissues and increasing their elasticity, which allows them to stretch more easily. Relaxin also plays a role in the cardiovascular system during pregnancy, helping to maintain healthy blood pressure levels.

Additionally, relaxin has been shown to have effects on other parts of the body, such as reducing muscle stiffness and joint pain, increasing flexibility, and potentially even playing a role in bone metabolism. However, more research is needed to fully understand all of its functions and potential therapeutic uses.

An implantable infusion pump is a small, programmable medical device that is surgically placed under the skin to deliver precise amounts of medication directly into the body over an extended period. These pumps are often used for long-term therapies, such as managing chronic pain, delivering chemotherapy drugs, or administering hormones for conditions like diabetes or growth hormone deficiency.

The implantable infusion pump consists of a reservoir to hold the medication and a mechanism to control the rate and timing of its delivery. The device can be refilled periodically through a small incision in the skin. Implantable infusion pumps are designed to provide consistent, controlled dosing with minimal side effects and improved quality of life compared to traditional methods like injections or oral medications.

It is important to note that implantable infusion pumps should only be used under the guidance and care of a healthcare professional, as they require careful programming and monitoring to ensure safe and effective use.

Hydroxysteroid dehydrogenases (HSDs) are a group of enzymes that play a crucial role in steroid hormone metabolism. They catalyze the oxidation and reduction reactions of hydroxyl groups on the steroid molecule, which can lead to the activation or inactivation of steroid hormones. HSDs are involved in the conversion of various steroids, including sex steroids (e.g., androgens, estrogens) and corticosteroids (e.g., cortisol, cortisone). These enzymes can be found in different tissues throughout the body, and their activity is regulated by various factors, such as hormones, growth factors, and cytokines. Dysregulation of HSDs has been implicated in several diseases, including cancer, diabetes, and cardiovascular disease.

Hydroxyprostaglandin Dehydrogenases (HPGDs) are a group of enzymes that catalyze the oxidation of prostaglandins, which are hormone-like lipid compounds with various physiological effects in the body. The oxidation reaction catalyzed by HPGDs involves the removal of hydrogen atoms from the prostaglandin molecule and the addition of a ketone group in its place.

The HPGD family includes several isoforms, each with distinct tissue distributions and substrate specificities. The most well-known isoform is 15-hydroxyprostaglandin dehydrogenase (15-PGDH), which preferentially oxidizes PGE2 and PGF2α at the 15-hydroxyl position, thereby inactivating these prostaglandins.

The regulation of HPGD activity is critical for maintaining prostaglandin homeostasis, as imbalances in prostaglandin levels have been linked to various pathological conditions, including inflammation, cancer, and cardiovascular disease. For example, decreased 15-PGDH expression has been observed in several types of cancer, leading to increased PGE2 levels and promoting tumor growth and progression.

Overall, Hydroxyprostaglandin Dehydrogenases play a crucial role in regulating prostaglandin signaling and have important implications for human health and disease.

I'm sorry for any confusion, but "Morocco" is not a medical term. It is the constitutional monarchy with a parliamentary national unity government located in North Africa. It has a population of over 33 million and an area of 446,550 km2. The capital city is Rabat, and the largest city is Casablanca. Morocco's official languages are Arabic and Berber, with French widely spoken as well.

If you have any medical questions or terms that you would like me to define, please let me know!

Fallopian tube diseases refer to conditions that affect the function or structure of the Fallopian tubes, which are a pair of narrow tubes that transport the egg from the ovaries to the uterus during ovulation and provide a pathway for sperm to reach the egg for fertilization. Some common Fallopian tube diseases include:

1. Salpingitis: This is an inflammation of the Fallopian tubes, usually caused by an infection. The infection can be bacterial, viral, or fungal in origin and can lead to scarring, blockage, or damage to the Fallopian tubes.
2. Hydrosalpinx: This is a condition where one or both of the Fallopian tubes become filled with fluid, leading to swelling and distension of the tube. The cause of hydrosalpinx can be infection, endometriosis, or previous surgery.
3. Endometriosis: This is a condition where the tissue that lines the inside of the uterus grows outside of it, including on the Fallopian tubes. This can lead to scarring, adhesions, and blockage of the tubes.
4. Ectopic pregnancy: This is a pregnancy that develops outside of the uterus, usually in the Fallopian tube. An ectopic pregnancy can cause the Fallopian tube to rupture, leading to severe bleeding and potentially life-threatening complications.
5. Tubal ligation: This is a surgical procedure that involves blocking or cutting the Fallopian tubes to prevent pregnancy. In some cases, tubal ligation can lead to complications such as ectopic pregnancy or tubal sterilization syndrome, which is a condition where the fallopian tubes reconnect and allow for pregnancy to occur.

These conditions can cause infertility, chronic pain, and other health problems, and may require medical or surgical treatment.

Regression analysis is a statistical technique used in medicine, as well as in other fields, to examine the relationship between one or more independent variables (predictors) and a dependent variable (outcome). It allows for the estimation of the average change in the outcome variable associated with a one-unit change in an independent variable, while controlling for the effects of other independent variables. This technique is often used to identify risk factors for diseases or to evaluate the effectiveness of medical interventions. In medical research, regression analysis can be used to adjust for potential confounding variables and to quantify the relationship between exposures and health outcomes. It can also be used in predictive modeling to estimate the probability of a particular outcome based on multiple predictors.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Physiological feedback, also known as biofeedback, is a technique used to train an individual to become more aware of and gain voluntary control over certain physiological processes that are normally involuntary, such as heart rate, blood pressure, skin temperature, muscle tension, and brain activity. This is done by using specialized equipment to measure these processes and provide real-time feedback to the individual, allowing them to see the effects of their thoughts and actions on their body. Over time, with practice and reinforcement, the individual can learn to regulate these processes without the need for external feedback.

Physiological feedback has been found to be effective in treating a variety of medical conditions, including stress-related disorders, headaches, high blood pressure, chronic pain, and anxiety disorders. It is also used as a performance enhancement technique in sports and other activities that require focused attention and physical control.

"Newborn animals" refers to the very young offspring of animals that have recently been born. In medical terminology, newborns are often referred to as "neonates," and they are classified as such from birth until about 28 days of age. During this time period, newborn animals are particularly vulnerable and require close monitoring and care to ensure their survival and healthy development.

The specific needs of newborn animals can vary widely depending on the species, but generally, they require warmth, nutrition, hydration, and protection from harm. In many cases, newborns are unable to regulate their own body temperature or feed themselves, so they rely heavily on their mothers for care and support.

In medical settings, newborn animals may be examined and treated by veterinarians to ensure that they are healthy and receiving the care they need. This can include providing medical interventions such as feeding tubes, antibiotics, or other treatments as needed to address any health issues that arise. Overall, the care and support of newborn animals is an important aspect of animal medicine and conservation efforts.

"Energy intake" is a medical term that refers to the amount of energy or calories consumed through food and drink. It is an important concept in the study of nutrition, metabolism, and energy balance, and is often used in research and clinical settings to assess an individual's dietary habits and health status.

Energy intake is typically measured in kilocalories (kcal) or joules (J), with one kcal equivalent to approximately 4.184 J. The recommended daily energy intake varies depending on factors such as age, sex, weight, height, physical activity level, and overall health status.

It's important to note that excessive energy intake, particularly when combined with a sedentary lifestyle, can lead to weight gain and an increased risk of chronic diseases such as obesity, type 2 diabetes, and cardiovascular disease. On the other hand, inadequate energy intake can lead to malnutrition, decreased immune function, and other health problems. Therefore, it's essential to maintain a balanced energy intake that meets individual nutritional needs while promoting overall health and well-being.

Histochemistry is the branch of pathology that deals with the microscopic localization of cellular or tissue components using specific chemical reactions. It involves the application of chemical techniques to identify and locate specific biomolecules within tissues, cells, and subcellular structures. This is achieved through the use of various staining methods that react with specific antigens or enzymes in the sample, allowing for their visualization under a microscope. Histochemistry is widely used in diagnostic pathology to identify different types of tissues, cells, and structures, as well as in research to study cellular and molecular processes in health and disease.

... infrequent or irregular ovulation) and anovulation (absence of ovulation): Oligoovulation is infrequent or irregular ovulation ... Ovulation will occur between 24 and 36 hours after the HCG injection. By contrast, induced ovulation in some animal species ... The ovulation-inhibiting dose (OID) of an estrogen or progestogen refers to the dose required to consistently inhibit ovulation ... Most women who are able to conceive are fertile for an estimated five days before ovulation and one day after ovulation. There ...
... is the stimulation of ovulation by medication. It is usually used in the sense of stimulation of the ... "Ovulation Problems and Infertility: Treatment of ovulation problems with Clomid and other fertility drugs". Advanced Fertility ... Sexual intercourse or artificial insemination by the time of ovulation. During ovulation induction, it is recommended to start ... results in a predictable time of ovulation, with the interval from drug administration to ovulation depending on the type of ...
To the extent that concealed ovulation strengthened pair bonding, selective pressure would favor concealed ovulation as well. ... Concealed ovulation or hidden estrus in a species is the lack of any perceptible change in an adult female (for instance, a ... Concealed ovulation allowed the woman to mate secretly at times with a genetically superior man, and thus gain the benefit of ... While concealed human ovulation may have evolved in this fashion, extending estrus until it was no longer a distinct period, as ...
Billings, J (2002). "THE QUEST - leading to the discovery of the Billings Ovulation Method". Bulletin of Ovulation Method ... The Billings ovulation method is a method in which women use their vaginal mucus to determine their fertility. It does not rely ... In the days leading up to ovulation the cervix responds to oestrogen by producing mucus capable of sustaining sperm survival. ... Shao-Zhen Qian Teaching the Billings Ovulation Method, Dr E. L. Billings AM, MB BS, DCH (London), 2001. Odeblad, Erik (1994). " ...
Induced ovulation is the process in which the pre-ovulatory LH surge and therefore ovulation is induced by some component of ... This induction of ovulation from drugs is able to cause a predictable ovulation period and is very beneficial to farming of ... Spontaneous ovulation not only occurs in cats, but occurs with some frequency. It appears that non-copulatory ovulation may be ... The mechanism of ovulation varies between species. In humans the ovulation process occurs around day 14 of the menstrual cycle ...
CeMCOR is the only centre in the world that focuses on ovulation and the causes and consequences of ovulation disturbances. ... "Menstrual Cycle and Ovulation (CeMCOR)". Research Centres. Vancouver Coastal Health Research Institute. Archived from the ... Werschler, Laura (22 Jan 2013). "The value of ovulation to women's health". Troy Media. Archived from the original on 26 June ... The Centre for Menstrual Cycle and Ovulation Research (CeMCOR) is a health research centre in Vancouver. According to the ...
These take the form of only having sex when a woman isn't fertile, thus avoiding having sex during ovulation. Women can monitor ... Birth control (BC) pills are oral hormonal pills that prevent a woman's ovaries from releasing eggs during ovulation.[medical ... "What is the Standard Days Method? , Ovulation Calculator". www.plannedparenthood.org. Retrieved 2021-04-07. "TwoDay Method®". ... caused by PCOS can cause the egg to not properly develop or be released as would otherwise normally occur during ovulation in a ...
Chen, B.X.; Yuen, Z.X.; Pan, G.W. (1985). "Semen-induced ovulation in the bactrian camel (Camelus bactrianus)". J. Reprod. ... Greta Stamberg & Derek Wilson (12 April 2007). "Induced Ovulation". Llamapaedia. Archived from the original on 12 April 2007. L ...
Retrieved 12 March 2012.[unreliable medical source?] "Clear Blue Ovulation Test Instructions". Ovulation Guide. Retrieved 2018- ... around the time ovulation may be expected. A conversion from a negative to a positive reading would suggest that ovulation is ... In females, an acute rise of LH known as an LH surge, triggers ovulation and development of the corpus luteum. In males, where ... "Advanced Ovulation Test" (PDF). Homehealth-UK. Retrieved 2018-01-19. Version 1.1 02/11/15 Martinez AR, Bernardus RE, Vermeiden ...
"Induction of Ovulation in the Human with Human Gonadotropins: Preliminary Report." Obstetrical & Gynecological Survey Buxton, C ... "Timing of Ovulation." American Journal of Obstetrics & Gynecology Buxton, C. Lee. (1956). "Human Infertility." Gynecology & ...
Schubert W, Cullberg G (1987). "Ovulation inhibition with 17 beta-estradiol cyclo-octyl acetate and desogestrel". Acta Obstet ... Inhibition of ovulation". Expert Review of Clinical Pharmacology. 11 (11): 1085-1098. doi:10.1080/17512433.2018.1536544. ISSN ...
The ovulation-inhibiting dosage of drospirenone is 2 to 3 mg/day. Inhibition of ovulation occurred in about 90% of women at a ... Endrikat J, Gerlinger C, Richard S, Rosenbaum P, Düsterberg B (December 2011). "Ovulation inhibition doses of progestins: a ... inhibits ovulation, and alters the cervical membrane and endometrium. Due to its antigonadotropic effects, drospirenone ... Inhibition of ovulation". Expert Rev Clin Pharmacol. 11 (11): 1085-1098. doi:10.1080/17512433.2018.1536544. PMID 30325245. ...
The mature female shark has two ovaries and a uterus, which is in the right side of her body; ovulation occurs fortnightly; and ...
This is ovulation. During the luteal phase following ovulation LH and FSH cause the post-ovulation ovary to develop into the ... Peak fertility occurs during just a few days of the cycle: usually two days before and two days after the ovulation date. This ... In postmenarchal girls, about 80% of the cycles are anovulatory (ovulation does not actually take place) in the first year ... Chavarro J (2009). The Fertility Diet: Groundbreaking Research Reveals Natural Ways to Boost Ovulation and Improve Your Chances ...
302-. ISBN 978-3-527-32363-0. Kuhl H (December 1990). "[Ovulation inhibitors: the significance of estrogen dose]" [Ovulation ... The ovulation-inhibiting dose of EE by itself and not in combination with a progestin in women is 100 μg/day. However, it has ... In another study, ovulation occurred in 25.2% with an EE dose of 50 μg/day. Lower dosages of EE also have significant ... In accordance, the progestin component of COCs is primarily responsible for inhibition of ovulation in women. A combination of ...
Baker, T. G. (1982). Oogenesis and ovulation. In "Book 1: Germ cells and fertilization" (C. R. Austin and R. V. Short, Eds.), ... culminating in ovulation of usually a single competent oocyte in humans. They also consist of granulosa cells and theca of ... at ovulation for fertilization. These eggs are developed once every menstrual cycle with around 450-500 being ovulated during a ... that surround the oocyte both in the ovarian follicle and after ovulation. It contains numerous granulosa cells. Granulosa ...
Viinikka L, Ylikorkala O, Nummi S, Virkkunen P, Ranta T, Alapiessa U, Vihko R (1975). "The inhibition of ovulation by a new and ... Desogestrel (via etonogestrel) is a very potent progestogen and inhibits ovulation at very low doses, in the low microgram ... The effective minimum dosage for inhibition of ovulation is 60 μg/day desogestrel (alone, not in combination with an estrogen ... The contraceptive effects of desogestrel in women are mediated not only by prevention of ovulation via its antigonadotropic ...
Menstruation and ovulation. Most pharmacological treatments work poorly, but the best treatment is a low dosage of clonazepam, ...
doi:10.1016/0010-7824(73)90023-1. Jöchle, W (1975). "Current research in coitus-induced ovulation: A review". Journal of ... could produce reflex ovulation". Smith also cites veterinary scientist Wolfgang Jöchle, who "proposed that rape may induce ... or subtle indications of ovulation. In contrast, psychologists Tara Chavanne and Gordon Gallup Jr., found that women in the ... ovulation in human females". Literary scholar Jonathan Gottschall and economist Tiffani Gottschall argued in a 2003 Human ...
Mice are polyestrous and breed year round; ovulation is spontaneous. The duration of the estrous cycle is 4-5 days and lasts ...
Given by subcutaneous injection, it is used in combination with human chorionic gonadotropin (hCG) to assist in ovulation and ... van Wely M, Yding Andersen C, Bayram N, van der Veen F (2005). "Urofollitropin and ovulation induction". Treatments in ...
The company created the first digital ovulation test in 2004. In 2013, the company also began offering an ovulation test with a ... In 2017, Clearblue launched the Clearblue® Connected Ovulation Test System. The Clearblue Connected Ovulation Test System ... The Clearblue Digital Ovulation test was the 2011 Platinum winner in the Prima Baby Reader Awards. In 2019 Clearblue's ... "Clearblue Digital Ovulation Test" (PDF). Archived from the original (PDF) on 2015-09-24. Retrieved 2013-10-07. "ClearBlue Plus ...
Ovulation normally occurs 30 (± 2) hours after the beginning of the LH surge (when LH is first detectable in urine). Follicular ... It ends with ovulation. The main hormones controlling this stage are secretion of gonadotropin-releasing hormones, which are ... A study has found that 68% of women tended to display two follicular wave developments before ovulation while the remaining had ... Inhibin B levels will be highest during the LH surge before ovulation and will quickly decrease after. Follicle-stimulating ...
Diamond addresses aspects of human sexuality such as why women's ovulation is not overtly advertised (concealed ovulation); why ... Human ovulation is concealed. Therefore, most human sex is recreational rather than for reproduction. There are very few ... By combining both, we reach the conclusion that concealed ovulation arose at a time when our ancestors were promiscuous to ... However, he questioned Diamond's treatment of concealed ovulation, finding it inconclusive. The anthropologist Peter B. Gray ...
Scutt, D.; Manning, J. T. (1996). "Ovary and ovulation: Symmetry and ovulation in women". Human Reproduction (Primary study). ... "Body odor attractiveness as a cue of impending ovulation in women: Evidence from a study using hormone-confirmed ovulation". ... However, these effect sizes are relatively small compared to other cues of ovulation. Several studies have found that men in a ... In particular, high levels of estradiol and low levels of progesterone, which peak at high fertility just prior to ovulation, ...
"Saliva Ovulation Predictor Test , Amos Grunebaum". www.fertile-focus.com. Archived from the original on January 26, 2019. ...
... at which time ovarian follicles are maturing and ovulation can occur. Evidence of ovulation, the phase during which conception ... doi:10.1016/0140-1750(79)90001-0. Alexander, R.D., and Noonan K.M. (1979). Concealment of ovulation, parental care, and human ... Deschner, T.; Heistermann, M.; Hodges, K.; Boesch, C. (2003). "Timing and probability of ovulation in relation to sex skin ... Benshoof, L.; Thornhill, R. (1979). "The evolution of monogamy and concealed ovulation in humans". J. Social. Biol. Struct. 2 ( ...
Step by Step Ovulation Induction. Anshan Ltd, Kent, United Kingdom. ISBN 1-904798-96-9. Page 44. Follicle Stimulating Hormone ... In Women: Used to induce final maturation of follicle and subsequent ovulation.[medical citation needed] Also used for luteal ... antibodies generated in goats treated with eCG for the induction of ovulation modulate the luteinizing hormone and follicle- ... used therapeutically mainly as fertility medication for ovarian hyperstimulation and ovulation induction.[medical citation ...
Ovulation is induced by copulation. The breeding season is variable depending upon latitude and environmental factors. In the ...
Around half of women with epilepsy who menstruate have a lowered seizure threshold around ovulation, most likely from the ... The contraceptive effects of estrogens are mediated by their antigonadotropic effects and hence by inhibition of ovulation. ... Estrogens mediate their contraceptive effects in combination with progestins by inhibiting ovulation. Estrogens were first ... Ovulation: Stimulation, Suppression, and Detection. Lippincott. pp. 243-253. Herr F, Revesz C, Manson AJ, Jewell JB (1970). " ...
... infrequent or irregular ovulation) and anovulation (absence of ovulation): Oligoovulation is infrequent or irregular ovulation ... Ovulation will occur between 24 and 36 hours after the HCG injection. By contrast, induced ovulation in some animal species ... The ovulation-inhibiting dose (OID) of an estrogen or progestogen refers to the dose required to consistently inhibit ovulation ... Most women who are able to conceive are fertile for an estimated five days before ovulation and one day after ovulation. There ...
Ovulation starts when the pituitary gland releases the hormone FSH to start the development of an egg. ... Ovulation starts when the pituitary gland releases the hormone FSH to start the development of an egg. ...
I took an ovulation test.. Cant tell if its positive or not #help #askingforafriend ... Hi I am new to this.. I took an ovulation test.. Cant tell if its positive or not #help #askingforafriend ...
Learn how ovulation can affect nipples, plus other things that can cause sore nipples. ... Sore nipples may be a sign of ovulation for some people. ... Ovulation is a phase in the menstrual cycle that happens when ... The chances of getting pregnant are highest during ovulation. Read on to learn more about ovulation and sore nipples, and other ... You may have cramps during ovulation. Knowing the signs of ovulation can help you to identify your fertile window. Other signs ...
... such as tracking your ovulation days, taking your ovulation temperature, and using an ovulation calculator. ... Use an ovulation calculator In order to use an ovulation calculator like UByKotex Period & Ovulation Calculator, you need to ... There are several ways to track your ovulation: by finding your ovulation days, by measuring your ovulation temperature and by ... Ovulation Temperature and Conception févr. 22, 2022 , 2 Minutes Lire * The Luteal Phase and Ovulation févr. 22, 2022 , 2 ...
Read reviews and buy Clearblue Advanced Digital Ovulation Test at Target. Choose from Same Day Delivery, Drive Up or Order ... I do like that these tests gave me a longer fertile window then regular ovulation tests, but some months regular ovulation ... ADVANCED DIGITAL OVULATION TEST KIT: Includes twenty (20) individually wrapped Clearblue Advanced Digital Home Ovulation Test ... at least twice as many as LH only ovulation tests.(2) The Clearblue Advanced Digital Ovulation Test is a breakthrough: it is ...
Pain during ovulation occurs when your ovary releases an egg during your menstrual cycle. It causes cramps or aches, usually on ... Ovulation pain is pelvic pain that some women and people assigned female at birth (AFAB) have during ovulation. Ovulation is ... To understand ovulation pain, it helps to understand what ovulation is.. Ovulation is the point in your menstrual cycle when ... Ovulation Pain. If you have ovulation pain, also called mittelschmerz, you may experience twinging or cramps during ovulation. ...
Learn about ovulation calendars, diet, and other factors that can increase your odds of getting pregnant. ... What Happens During Ovulation. Ovulation, or the release of an egg, usually occurs between the 11th and 21st day of the cycle. ... Predicting Ovulation by Hormone. Home ovulation kits (ranging from $15 to $60) measure the hormone LH in urine. The surge in LH ... Tracking Ovulation by Temperature. After ovulation, the empty follicle (called the corpus luteum) produces the hormone ...
... can lead to resumption of ovulation. The mechanism by which exercise affects ovulation is most probably via modulation of the ... The objective of this review was to systematically assess the effect of physical activity on ovulation and to discuss the ... Ten interventions were identified, and of these three have studied the effect of vigorous exercise on ovulation in healthy, ... In women with polycystic ovary syndrome and obesity, loss of intra-abdominal fat is associated with resumption of ovulation. ...
Find out what the menstrual cycle is. As well as how long it is and how you can count your own menstrual cycle. Plus the stages of the menstrual cycle.
OVULATION: It happens more often than you think ... OVULATION: It happens more often than you think. What Doctors ... Canadian researchers monitored 63 women, all of whom had at least two ovulations a month based on follicle activity in the ... Tagged asmenstrual cyclesovulationrhythm methodWhat Doctors Dont Tell You ...
... the ideal time for intercourse is somewhere between 3 days before ovulation and no later than 24 hours after ovulation. - ... The oocyte, which is released during ovulation, can live 12 to 24 hours, while sperm can live 48 to 72 hours. That said, ... Women who know their menstrual cycle and approximate ovulation date can maximize their chances of conceiving. ... Urine Ovulation Test (LH). These tests are used to help predict ovulation based on the amount of LH (luteinizing hormone) in ...
Ovulation is a phase in the menstrual cycle where your ovary releases an egg (ovum). It happens around day 14 of a 28-day ... Is pain during ovulation normal?. Yes, many people experience ovulation pain. Ovulation pain (or mittelschmerz) is cramping or ... What is ovulation?. Ovulation is a phase in the menstrual cycle when your ovary releases an egg (ovum). Once an egg leaves your ... Ovulation. Ovulation occurs when your ovary releases an egg. It happens around the 14th day of a 28-day menstrual cycle. There ...
I used to track my ovulation by kit and it usually predicts my ovulation to be on either CD 16 or 17 or 18 or 19 .. This month ... I did get only once and next day only when I wiped once . As my app predicted my ovulation to be CD 20 and spotting was on CD ... Sounds more likely of ovulation spotting. Unless you ovulated earlier than you think. If it is implantation bleeding, you will ... it has predicted my ovulation to be on CD 20 ( I did not track ovulation this month) as last cycle I got periods on CD 35.. We ...
Ovulation Test Strips - 5 Tests and collect Advantage Card points for every £1 you spend. ... Boots Ovulation Test Strips - 5 tests. Ovulation test strip allows you to identify your most fertile days by detecting the ... Boots Boots Ovulation Test Strips - 5 tests. Ovulation test strip allows you to identify your most fertile days by detecting ... Home ovulation self test. For in vitro diagnostic use only (not for internal use).. Storage. Store in a dry place 4°C to 30°C ...
Discover your fertile days with the MAM Baby ovulation calendar to increase your chance of getting pregnant. ... Are you trying for a baby? Knowing your ovulation date can help you determine your fertile days. Use our MAM Ovulation calendar ... The MAM Ovulation calendar will show you the calculated ovulation date, your likelihood of conceiving based on your predicted ... In addition to using an ovulation calendar there are various physical signs of ovulation, that can help you track your fertile ...
Researchers identify a nerve growth factor in semen that stimulates ovulation in certain mammals, and which could shed light on ... Ovulation Induced by a Nerve Growth Factor. Researchers identify a nerve growth factor in semen that stimulates ovulation in ... A females "own NGF is probably not playing a role in ovulation," said Warren Foster, who studies the affect of environment on ... M. H. Ratto et al., "The nerve of ovulation inducing factor in semen," Proceedings of the National Academy of Sciences, doi: ...
Ovulation Temperature and Conception feb 22, 2022 , 2 Minutes Leer * Ovulation and the Cycles of the Moon feb 22, 2022 , 2 ... Generally, there is a lower temperature recording in the first half (before ovulation) and a higher spike (after ovulation) in ... In many ways, it is more useful as a tool of measuring ovulation after it has happened than before. Keeping a record and then ... Being able to predict when ovulation is just about to occur and therefore when the woman is most likely to be fertile can be ...
Ovulation test FAQ. Do you need to use ovulation tests to get pregnant?. A. Its not necessary to use ovulation tests to get ... What are the best ovulation tests to buy?. Top ovulation test. Easy@Home 50 Ovulation Test Strips and 20 Pregnancy Test Strips ... Understand how ovulation tests work. Also known as ovulation prediction kits, ovulation tests can help detect hormones in your ... There are a few different kinds of ovulation tests, including basic ovulation tests and digital ovulation tests. Basic ...
Español 30 day cycle clomid ovulation 30 day cycle clomid ovulation. Compare precios de medicamentos con y sin prescripción de ... una, la generación está presente en la línea de trazos de padres a hijos 30 day cycle clomid ovulation. All medication is ... Cialis works faster than other ED drugs and lasts for an extended period 30 day cycle clomid ovulation. Prednisone Otc Online ... Pharmacie online Buy online legitimate pharmacy 30 day cycle clomid ovulation. That is part of r now. Achat Viagra Cialis ...
Apple adds souped-up period and ovulation tracking to Apple Watch Series 8. Apple adds souped-up period and ovulation tracking ... Apple is pitching its ovulation detection feature as a way to help people who are trying to get pregnant. "If youre trying to ... This type of temperature-based cycle tracking and ovulation detection is also often used as a way to prevent pregnancy. It can ... This should allow for ovulation tracking since body temperature changes over the course of the menstrual cycle and rises in ...
Why? Because you reach peak fertility right before ovulation. Knowi ... Knowing the signs of ovulation can make a huge difference when trying to conceive. ... OVULATION PAIN Some women can experience a sensation and or cramping type pain during ovulation. The pain is felt in the lower ... 10 Signs Of Ovulation. 10 Signs or Ovulation Nulationcalend r .com COLLECT. ANALYZE. PREDICT. Each cycle, an egg matures inside ...
So if you had sex on the five days leading up to ovulation, on the day of ovulation, or on the day after ovulation, then your ... We have an ovulation calculator to help you calculate your own dates, and you can also find out more about how ovulation works. ... Ovulation took place two days ago and your ovaries released an egg. The egg entered the fallopian tube and has started to ... If youre not sure when you ovulated, itll help to know that ovulation happens around the middle of your cycle. The NHS says ...
Ovulation induction is a process to help regulate the timing of ovulation and stimulate the development and release of mature ... Ovulation Induction #iw_comp1513602337962{}. In the ovulation induction process, medications are taken (oral or injectable) to ... Medications for ovulation induction help regulate the timing of ovulation and stimulate the development and release of mature ... Ovulation medications can stimulate more than one egg to be released which increases the possibility of having twins or ...
... is a key for ovulation in adults. This should help find new fertility treatments. ... Ovulation. Ovulation is the time when an egg or ovum is released by female ovary, usually midway during the menstrual cycle. ... As an approach to treating infertility in some women, it could allow for ovulation to be induced in a more natural way than ... "This is an exciting finding, as people have been trying to find out precisely how the brain controls ovulation for more than 30 ...
Clearblue and more-check out our reviews of the best ovulation predictor kits, tested in our lab and by women trying to get ... An ovulation predictor kit, which detects the luteinizing hormone (LH) surge that occurs just before ovulation, is one of the ... Advanced ovulation kits also detect estrogen, which rises before the LH surge, letting you know sooner that youre approaching ... Here are the best ovulation predictor kits to help you pinpoint your most fertile days. ...
Just like pregnancy tests, you can take an ovulation test to measure yours - they come in pee sticks, strips, and digital ... Ovulation signals to your body that its baby-making time. This happens when hormonal changes tell the ovaries to release a ... Ovulation cramping, also called mittelschmerz, can last anywhere from minutes to days. It happens about 2 weeks before your ... There are four menstrual cycle phases: menstrual, follicular, ovulation, and luteal.. *Fertility tracking can serve as a useful ...
ovulation from Neuroscience News features breaking science news from research labs, scientists and colleges around the world. ... Researchers found no evidence that a womans preference changes across the ovulation cycle. However, women tend to perceive men ... Researchers report highly stressed women are 40 percent less likely to conceive during their ovulation window.. Read More ... Study tests the good genes ovulation shift hypothesis, which states womens preferences for certain male behaviors differ ...
... and providing 5-7 days advance notice of ovulation. With several days advance notice of ovulation, you are able to increase ... The OvaCue Fertility Monitor predicts ovulation up to 7 days in advance. I actually reviewed this when I was trying to conceive ... The OvaCue Mobile predicts ovulation accurately and easily right from your iOS device! Turn your iOS Device into a Fertility ... Youre Home! » The OvaCue Fertility Monitor - Ultimate in Ovulation Prediction (Giveaway). The OvaCue Fertility Monitor - ...
Ovulation Tracking App Premom Will be Barred from Sharing Health Data for Advertising Under Proposed FTC Order. FTC says ... The Premom app, which is free to download and used by hundreds of thousands of people, helps users track ovulation, periods, ... and other health information, and also sells ovulation test kits. The app encourages users to provide information about their ...
  • 2) The Clearblue Advanced Digital Ovulation Test is a breakthrough: it is the only ovulation test that not only detects the rise in luteinizing hormone (LH), but also monitors the level of another key fertility hormone, estrogen, which increases in the days before the LH surge. (target.com)
  • The published literature was searched up to April 2016 using the search terms ovulation, anovulatory, fertility, sport, physical activity and exercise. (springer.com)
  • By identifying these two hormones, the device can predict ovulation and indicate the level of fertility at the time of the test. (uniprix.com)
  • In order to determine your ovulation date enter the first day of your last period and the length of your menstrual cycle into this fertility calculator. (mambaby.com)
  • Because you reach peak fertility right before ovulation. (visual.ly)
  • During ovulation, your body starts producing more of the fertility hormone LH. (greatist.com)
  • The OvaCue Fertility Monitor predicts ovulation up to 7 days in advance. (shopwithmemama.com)
  • The OvaCue Fertility Monitor consists of a hand-held monitor with a colored screen, an oral sensor, and a vaginal sensor - the ideal combination for pinpointing your most fertile days in your cycle and for confirming when ovulation occurred. (shopwithmemama.com)
  • Once this trend is detected, the monitor will color-in the calendar with varying shades of blue ( from light to dark ), indicating low to peak fertility, and providing 5-7 days advance notice of ovulation. (shopwithmemama.com)
  • Using the same patented, proven technology as the traditional OvaCue Fertility Monitor, OvaCue Mobile predicts ovulation up to seven days in advance - allowing you to time intercourse during your fertile window and increase your chances of conceiving in every cycle. (shopwithmemama.com)
  • 1.Fertility is the ability of organisms to reproduce while ovulation is the production and release of a mature ovum or egg. (differencebetween.net)
  • 2.Fertility in women hastens the onset of ovulation, and when paired with a virile male, fertilization occurs. (differencebetween.net)
  • 3.For both men and women, fertility is at its peak during the early to late 30s while ovulation in women occurs 10 to 16 days prior to menstruation. (differencebetween.net)
  • 4.Fertility is when the hormones of organisms are mature and ready for reproduction while ovulation is when a woman's body releases an ovum and is ready to conceive. (differencebetween.net)
  • 5.Fertility is observed in both male and female organisms while ovulation is observed only in females. (differencebetween.net)
  • Use quantitative, in-house results to reliably predict ovulation and estimate optimal fertility. (idexx.com)
  • Ovulation and time of optimal fertility can be estimated by observing a distinct rise in progesterone concentrations, which is best identified with serial testing. (idexx.com)
  • From preconception to due-date, the 9-Months-Plus Ovulation Calendar & Pregnancy Pinwheel provides day-to-day information on fertility, ovulation and pregnancy milestones. (vitasprings.com)
  • Ideal for trying-to-conceive and pregnant women, the ovulation calendar pinpoints ovulation and peak fertility, implantation, when to expect a missed period and the best date to take a pregnancy test, all based on your cycle length. (vitasprings.com)
  • What sets Easy@Home apart is the integration of their ovulation test strips with the innovative Premom Ovulation Tracker app , one of the top fertility tracker apps available. (news10.com)
  • By scanning the test strip and results with their smartphone camera, users can conveniently track their ovulation patterns next to all other fertility indicators, like basal body temperature and the menstrual period. (news10.com)
  • The Premom app's intelligent algorithm analyzes the data and provides users with personalized ovulation predictions, ovulation test strip line progression, and insights about their fertility window. (news10.com)
  • Premom Easy@Home ovulation & pregnancy test strips can be purchased through leading online retailers, ensuring easy accessibility for women on their fertility journey. (news10.com)
  • An affordable, high quality saliva-based fertility test that predicts ovulation by detecting the estrogen surge. (fairhavenhealth.com)
  • An Affordable, Accurate Fertility Saliva Ovulation Test. (fairhavenhealth.com)
  • Fertile-Focus is the affordable high-quality saliva-based fertility test (or personal ovulation microscope) that predicts ovulation - up to 72 hours in advance. (fairhavenhealth.com)
  • There is no foolproof method to predict the fertility window and ovulation day, as it is unique to each woman. (momjunction.com)
  • The momjunction ovulation calculator gives you the tentative dates of your fertility window when you type in your LMP (last menstrual period) and average cycle length. (momjunction.com)
  • It will help you know the most fertile days, ovulation date and fertility calendar for 6 consecutive months. (momjunction.com)
  • In August 2020, the International Digital Accountability Council ("IDAC") raised concerns that the company's "Premom" app-an ovulation tracker, menstrual calendar, and fertility tool-shared sensitive user data with third parties through software development kits ("SDKs") integrated within the app. (ct.gov)
  • While ovulation tracking apps like Premom are typically not subject to the Health Insurance Portability and Accountability Act of 1996 ("HIPAA"), many women rely on them to stay informed about their ovulation cycles and reproductive health-with surveys suggesting that nearly one-third of women in the U.S. use some kind of fertility tracking app. (ct.gov)
  • The spindle apparatus of the second meiotic division appears at the time of ovulation. (wikipedia.org)
  • You may have bleeding or spotting around the time of ovulation. (healthline.com)
  • Pregnancy symptoms can be similar to the feelings that some women experience around the time of ovulation or leading up to their period. (netmums.com)
  • The ovulation calendar helps to calculate the time of ovulation. (medindia.net)
  • Confirm a definitive and continued rise above 5.0 ng/mL to assess time of ovulation. (idexx.com)
  • Ovulation occurs about midway through the menstrual cycle, after the follicular phase. (wikipedia.org)
  • If no fertilization occurs, the oocyte will degenerate between 12 and 24 hours after ovulation. (wikipedia.org)
  • Generally, ovulation occurs on day 14 of your cycle (if day 1 is the first day after your period). (huggies.com)
  • People who experience pain at ovulation often can tell based on the type of pain they feel and when it occurs. (clevelandclinic.org)
  • Others may find that ovulation only hurts on one side, so their pain likely occurs every other month. (clevelandclinic.org)
  • In this example, ovulation likely occurs around day 15. (clevelandclinic.org)
  • Ovulation, or the release of an egg, usually occurs between the 11th and 21st day of the cycle. (rxlist.com)
  • Checking your basal body temperature every morning before getting out of bed is one way to try to determine when ovulation occurs. (rxlist.com)
  • Ovulation usually occurs on the last day of low temperatures. (uniprix.com)
  • Ovulation occurs when your ovary releases an egg. (clevelandclinic.org)
  • Once ovulation occurs, your egg travels through your fallopian tube. (clevelandclinic.org)
  • In an average 28-day menstrual cycle, ovulation occurs about 14 days before the beginning of your next menstrual period. (clevelandclinic.org)
  • There are several methods people use to track their menstrual cycle and estimate when ovulation occurs. (clevelandclinic.org)
  • Ovulation test strip allows you to identify your most fertile days by detecting the sharp rise, or surge, in the level of luteinising hormone (LH) that occurs 24-48 hours before ovulation. (boots.com)
  • The ferning pattern appears during the LH surge, which occurs 24-48 hours before ovulation. (visual.ly)
  • When a woman's ovary produces a mature egg and releases it into the fallopian tube to be fertilized, ovulation occurs. (differencebetween.net)
  • Implantation itself usually occurs between six to 10 days after the egg is fertilized….Ovulation and Implantation Timing. (meltingpointathens.com)
  • Women can determine whether ovulation is occurring and estimate when it occurs by measuring body temperature or using home ovulation prediction kits. (msdmanuals.com)
  • It occurs because the ovaries no longer release eggs (ovulation) regularly and stop producing the usual premenopausal. (msdmanuals.com)
  • At the beginning of your menstrual cycle, your body temperature is lower, with a maximum around 36.7 °C (98.1 °F). You may even notice a sudden drop in temperature 12 to 24 hours before ovulation. (uniprix.com)
  • Your basal body temperature , or your temperature at rest, goes up right after ovulation. (healthline.com)
  • Common signs include a higher basal body temperature, ovulation pain akin to cramps, tenderness of your breasts and increased sexual desire. (huggies.com)
  • BASAL BODY TEMPERATURE CHANGES Your BBT (basal body temperature) will rise by about 0.4°F - 0.8°F and stay elevated, AFTER ovulation. (visual.ly)
  • Born out of the need to solve issues women face in the reproductive health sector, Premom presents an intelligent digital reader and AI-powered algorithm capable of quantifying data from three real biomarkers: ovulation tests, basal body temperature, and the menstrual period. (news10.com)
  • Being able to predict when ovulation is just about to occur and therefore when the woman is most likely to be fertile can be useful for couples who are trying to conceive. (huggies.com)
  • Knowing the signs of ovulation can make a huge difference when trying to conceive. (visual.ly)
  • Researchers report highly stressed women are 40 percent less likely to conceive during their ovulation window. (neurosciencenews.com)
  • To compare the effectiveness and safety of gonadotrophins, hormones that regulate the reproductive system, as a second-line treatment to stimulate ovulation in women with PCOS who do not ovulate or conceive on clomiphene citrate. (cochrane.org)
  • Ovulation induction with follicle stimulating hormone (FSH) is a second-line treatment in women with polycystic ovary syndrome (PCOS) who do not ovulate or conceive on clomiphene citrate. (cochrane.org)
  • To compare the effectiveness and safety of gonadotrophins as a second-line treatment for ovulation induction in women with clomiphene citrate-resistant polycystic ovary syndrome (PCOS), and women who do not ovulate or conceive after clomiphene citrate. (cochrane.org)
  • For women who are trying to conceive, ovulation microscopy has been found to be a highly accurate method. (fairhavenhealth.com)
  • Use our ovulation tests to identify your "LH Surge"-the time you're most likely to conceive. (fairhavenhealth.com)
  • As any trying-to-conceive couple knows, when it comes to ovulation and pregnancy tests, it's not a "one-or-the-other" scenario - you need them both! (fairhavenhealth.com)
  • Ovulation is the most fertile stage of a menstrual cycle and is therefore essential for you to know about the ovulation days to conceive or avoid pregnancy. (momjunction.com)
  • After ovulation, during the luteal phase, the egg will be available to be fertilized by sperm. (wikipedia.org)
  • In order to use an ovulation calculator like UByKotex Period & Ovulation Calculator , you need to know a few key things like the first day of your last period, your cycle length and the luteal phase. (huggies.com)
  • The follicular phase lasts from the beginning of menstruation to the start of ovulation. (wikipedia.org)
  • It is the length of time between ovulation and menstruation. (huggies.com)
  • Also known as ovulation prediction kits, ovulation tests can help detect hormones in your urine that allow you to know when you're about to ovulate. (wavy.com)
  • LH urine tests are commonly known as ovulation tests, and can often be bought over the counter. (ada.com)
  • Also known as ovulation spotting/intermenstrual bleeding/ or spotting during ovulation. (americanceliac.org)
  • After ovulation, the empty follicle (called the corpus luteum) produces the hormone progesterone to help prepare the lining of the uterus for pregnancy. (rxlist.com)
  • Once ovulation has occurred, progesterone is secreted, causing a rise in temperature of about 0.2 to 0.6 °C. (uniprix.com)
  • After ovulation, and as progesterone levels increase, the mucus thickens, becomes cloudy or pasty and production decreases. (uniprix.com)
  • After ovulation, the hormone progesterone rises which helps prepare your uterus for pregnancy . (clevelandclinic.org)
  • The hypothalamic control of progesterone-induced ovulation was studied in rats. (erowid.org)
  • Results Phenoxybenzamine 100 mcg blocked progesterone-induced - ovulation, whereas propranolol 100 jmcg did not. (erowid.org)
  • The primary end point was posttreatment ovulation rate, inferred from menstrual diaries and salivary progesterone. (medscape.com)
  • The chances of getting pregnant are highest during ovulation. (healthline.com)
  • There's no way to fully predict how quickly you can get pregnant, but one of the best ways to narrow your window to get pregnant is to track your ovulation, as it's a key factor in conception. (huggies.com)
  • In the days leading up to ovulation, you're the most fertile, and therefore most likely to get pregnant. (huggies.com)
  • Your partner's sperm can survive in your body for up to 5 days, so you can actually become pregnant by having intercourse during the days leading up to ovulation. (target.com)
  • Discover your fertile days with the MAM Baby ovulation calendar to increase your chance of getting pregnant. (mambaby.com)
  • The highest possibility to get pregnant is on the day of ovulation or up to two days before ovulating. (mambaby.com)
  • Apple is pitching its ovulation detection feature as a way to help people who are trying to get pregnant. (theverge.com)
  • Do you need to use ovulation tests to get pregnant? (wavy.com)
  • A. It's not necessary to use ovulation tests to get pregnant, but they can be beneficial in the process of conceiving. (wavy.com)
  • Sperm can live for up to 5 days, but an egg only lives up to 24 hours after ovulation - unless, of You will increase your chances of getting pregnant if you have sex in the 3 days leading up to and including ovulation day. (visual.ly)
  • If you're trying to get pregnant, the term 'days post ovulation' and abbreviations like 'dpo' will quickly become the norm. (netmums.com)
  • Bleeding during Ovulation: Am I Pregnant? (americanceliac.org)
  • Spotting after ovulation may be implantation bleeding, which is an indicator that you may be pregnant. (americanceliac.org)
  • Ovulation is the release of eggs from the ovaries. (wikipedia.org)
  • Ovulation is the point in your menstrual cycle when one of your ovaries releases an egg. (clevelandclinic.org)
  • Canadian researchers monitored 63 women, all of whom had at least two ovulations a month based on follicle activity in the ovaries. (healthy.net)
  • Ovulation took place two days ago and your ovaries released an egg. (netmums.com)
  • In the ovulation induction process, medications are taken (oral or injectable) to stimulate the ovaries to make eggs. (brighamandwomens.org)
  • LH allows ovulation to happen in the female ovaries, and facilitates the production of testosterone in the male testes. (ada.com)
  • During ovulation, an egg is released from the ovaries and moves through the fallopian tubes. (americanceliac.org)
  • Ovulation may not occur at all or may occur irregularly if certain hormones are not released from the brain or ovaries in a typical monthly pattern. (msdmanuals.com)
  • The ovaries are stimulated by LH and FSH, the hormones that control ovulation. (msdmanuals.com)
  • Home ovulation kits (ranging from $15 to $60) measure the hormone LH in urine. (rxlist.com)
  • These tests are used to help predict ovulation based on the amount of LH (luteinizing hormone) in urine. (uniprix.com)
  • Ranked as a top customer favorite for quality, convenience and price, Fertile-Focus offers accuracy without the mess and monthly expense of urine ovulation tests. (fairhavenhealth.com)
  • Doctors use ultrasonography or blood or urine tests to evaluate ovulation problems. (msdmanuals.com)
  • Anovulation accounts for around 30% of female infertility, and while lifestyle factors such as physical activity are known to be important, the relationship between exercise and ovulation is multi-factorial and complex, and to date there are no clear recommendations concerning exercise regimes. (springer.com)
  • Seven studies have investigated the effect of exercise on overweight/obese women suffering from polycystic ovary syndrome (PCOS) or anovulatory infertility, showing that exercise, with or without diet, can lead to resumption of ovulation. (springer.com)
  • Researchers identify a nerve growth factor in semen that stimulates ovulation in certain mammals, and which could shed light on human infertility. (the-scientist.com)
  • As an approach to treating infertility in some women, it could allow for ovulation to be induced in a more natural way than current therapies, he says. (medindia.net)
  • Infertility due to ovulation disorders is the most common reason for women to seek counselling or treatment. (cochrane.org)
  • These findings may hold potential for the treatment of infertility brought about by failure of ovulation. (healthjockey.com)
  • Sore nipples can occur at various times throughout your cycle, not just around ovulation. (healthline.com)
  • Where does ovulation pain occur? (clevelandclinic.org)
  • A positive test result indicates that ovulation will occur within the next 12 to 36 hours. (uniprix.com)
  • When does ovulation occur? (clevelandclinic.org)
  • This can help you determine when ovulation is most likely to occur. (clevelandclinic.org)
  • In 2003, Adams's group demonstrated that this actually happens twice in women-raising the possibility that ovulation may occur twice in one cycle. (the-scientist.com)
  • This type of bleeding can occur 9 days after the implantation of the fertilized egg, or 6-12 days after ovulation. (americanceliac.org)
  • If your cycle is longer or shorter, you can use an online ovulation calculator to help predict your day of ovulation. (rxlist.com)
  • People using the calendar method to predict ovulation, analyze six months of menstrual cycles to determine when they're fertile. (clevelandclinic.org)
  • The process of ovulation is controlled by the hypothalamus of the brain and through the release of hormones secreted in the anterior lobe of the pituitary gland, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). (wikipedia.org)
  • This is related to the hormones in your body, getting ready for ovulation and the potential of pregnancy. (visual.ly)
  • By targeting this switch, the subsequent processes could proceed normally, avoiding the need to induce ovulation by injection of large doses of the hormones themselves," he says. (medindia.net)
  • Ovulation is controlled by the hypothalamus and the pituitary gland which releases hormones such as luteinizing hormones (LH) and follicle-stimulating hormone (FSH). (differencebetween.net)
  • Ovulation can be affected if any of these steps or hormones are not normal. (msdmanuals.com)
  • You are most fertile usually around five days before ovulation until 48 hours after ovulation. (huggies.com)
  • These are five days before ovulation, and the ovulation day itself. (momjunction.com)
  • It is counted from five days before ovulation because sperm can survive in the woman's body for three to five days. (momjunction.com)
  • Case studies and articles that did not report anovulation/ovulation or ovarian morphology as outcomes were excluded. (springer.com)
  • The effects of HCG and prostaglandins on ovulation, cAMP and steroidogenesis in the rat pre-ovulatory ovarian follicle / by Betty Mukatimui Munalula. (who.int)
  • 0.4F OPKS (Ovulation prediction kits) look for a peak in LH (luteinizing hormone) that happens right before ovulation. (visual.ly)
  • The series of tests should start 2 to 4 days before the predicted ovulation date. (uniprix.com)
  • Nipple or breast pain that starts during ovulation typically continues until the start of your period. (healthline.com)
  • The ClearblueAdvanced Digital Ovulation Test (Prueba de Ovulacion Advanced Digital Clearblue) typically identifies 4 or more fertile days leading up to, and including the day of ovulation, at least twice as many as LH only ovulation tests. (target.com)
  • You typically feel ovulation pain in your lower abdomen and pelvic region. (clevelandclinic.org)
  • Ovulation pain typically lasts a few hours. (clevelandclinic.org)
  • Your body temperature increases slightly during ovulation (typically about 0.5 to 1 degree). (clevelandclinic.org)
  • About 5 to 6 days before ovulation, as estrogen increases, you will notice that in addition to an increase in the amount of cervical mucus, it also becomes clearer and more slippery. (uniprix.com)
  • There are methods to track ovulation such as using a calendar, checking your cervical mucus or using an ovulation predictor kit. (clevelandclinic.org)
  • Your cervical mucus is thick, white and dry before ovulation. (clevelandclinic.org)
  • Just before ovulation, your cervical mucus turns clear and slippery (like egg whites). (clevelandclinic.org)
  • MUCUS CHANGES As ovulation approaches, cervical mucus becomes more abundant, MORE ABUNDANT INCREASED takes on raw egg white like consistency, and can usually AND MORE CONSISTENT SEXUAL DESIRE stretch more than an inch Research has shown that women between your finger and thumb. (visual.ly)
  • Safe period by temperature or cervical mucus test (for example: Two Day Method, Billings Ovulation Method, Symptothermal Method) 10. (cdc.gov)
  • Some ovulation tests detect surges in luteinizing hormone, also known as LH, that arrive just before you ovulate, but more advanced ovulation tests detect both estrogen and luteinizing hormone. (wavy.com)
  • Surges in your luteinizing hormone usually happen about 36 hours before you ovulate, so you have the best chance of conceiving in the two days before ovulation. (wavy.com)
  • Basic ovulation tests are simple paper strips that let you know whether you're about to ovulate by comparing the control line to the test line. (wavy.com)
  • This is a crucial element of the female reproductive cycle, as it directly results in ovulation - the release of an egg from the now mature follicle. (ada.com)
  • Ovulation is the release of an egg from the ovary. (msdmanuals.com)
  • Problems with ovulation (release of an egg) result when one part of this system does not function properly. (msdmanuals.com)
  • In overweight and obese women (with or without PCOS), exercise contributed to lower insulin and free androgen levels, leading to the restoration of HPA regulation of ovulation. (springer.com)
  • CC regimen was still recommended to be the first-line therapy of ovulation induction for PCOS. (unboundmedicine.com)
  • In adolescent girls with PCOS, normalizing the amount of abdominal visceral and liver fat restores ovulation, besides normalizing the symptoms of androgen excess . (medscape.com)
  • Knowing your ovulation date can help you determine your fertile days. (mambaby.com)
  • The MAM Ovulation calendar will show you the calculated ovulation date, your likelihood of conceiving based on your predicted fertile days and the day of a possible nidation. (mambaby.com)
  • Still, ovulation tests can help make the process a little easier, whether you are having trouble conceiving or just want to identify your most fertile days. (wavy.com)
  • To Estimate Count back 15 days for Ovulation Day Next Period LIVES FOR HAVE SEX IN 1 DAY THESE 3 DAYS -6 - 7 YOUR CYCLE OVULATION -8 DAY -9 -10 LIVES FOR 11 5 DAYS -12 FERTILE WINDOW 13 -14 Most Fertile Days How Does Ovulation When Is How Can I Estimate When Determine When I'm Ovulating And Most Fertile? (visual.ly)
  • Easy@Home's Ovulation Test Strips are designed to assist women in identifying their most fertile days with ease and precision. (news10.com)
  • If you regularly get ovulation spotting, then you can use it to identify your fertile days. (americanceliac.org)
  • period calculator and period planner , pregnancy planner , baby due date calendar , ovulation calculator to forecast your fertile days , and more for all your monthly cycle phases and beyond! (mymonthlycycles.com)
  • Cialis works faster than other ED drugs and lasts for an extended period 30 day cycle clomid ovulation . (terminally-incoherent.com)
  • It begins up to 5 days before ovulation, and lasts for around a week. (ada.com)
  • Ovulation lasts for 12 to 24 hours, the time when the egg is available for fertilization. (momjunction.com)
  • Women who know their menstrual cycle and approximate ovulation date can maximize their chances of conceiving. (uniprix.com)
  • Using ovulation tests regularly can improve your chances of conceiving by helping you figure out exactly when you're ovulating. (wavy.com)
  • With several days advance notice of ovulation, you are able to increase your chances of conception. (shopwithmemama.com)
  • Increases chances for successful conception with ovulation tracking and determining peak fertile times. (vitasprings.com)
  • Are Sore Nipples a Sign of Ovulation? (healthline.com)
  • Sore nipples can be a sign of ovulation, but they may also be caused by other factors. (healthline.com)
  • 10. SALIVA FERNING A ferning pattern of your saliva is another possible sign of ovulation. (visual.ly)
  • The strips leverage advanced technology to detect the surge in luteinizing hormone (LH) or LH surge, signaling the onset of ovulation. (news10.com)
  • This should allow for ovulation tracking since body temperature changes over the course of the menstrual cycle and rises in response to ovulation. (theverge.com)
  • The process of ovulation begins when your hypothalamus (a part of your brain) releases gonadotropin-releasing hormone (GnRH). (clevelandclinic.org)
  • The few days surrounding ovulation (from approximately days 10 to 18 of a 28-day cycle), constitute the most fertile phase. (wikipedia.org)
  • Ovulation is a phase in the menstrual cycle that happens when the ovary releases an egg each month. (healthline.com)
  • If you track your cycle and know your ovulation days, you might have a good chance at pinpointing when you are most fertile. (huggies.com)
  • Ovulation is the part of the menstrual cycle when your ovary releases an egg. (clevelandclinic.org)
  • Ovulation usually happens about halfway between your periods or around day 14 of a 28-day menstrual cycle. (clevelandclinic.org)
  • This is a normal part of the menstrual cycle and the ovulation process. (clevelandclinic.org)
  • Ovulation usually happens about two weeks into your menstrual cycle. (clevelandclinic.org)
  • You may have ovulation pain if you feel pain at this point in your cycle. (clevelandclinic.org)
  • If your pain happens around day 15 of that cycle, it may be ovulation pain. (clevelandclinic.org)
  • Most people will have a period 14 to 16 days after ovulation, regardless of the length of their overall cycle. (clevelandclinic.org)
  • Ovulation happens at around the midpoint of your cycle if you have a 28-day cycle (day 14). (clevelandclinic.org)
  • However, a "normal" cycle is anything between 21 and 35 days, so this means ovulation is unique to your menstrual cycle. (clevelandclinic.org)
  • This month it has predicted my ovulation to be on CD 20 ( I did not track ovulation this month) as last cycle I got periods on CD 35. (babycenter.com)
  • This type of temperature-based cycle tracking and ovulation detection is also often used as a way to prevent pregnancy. (theverge.com)
  • Farmacie Online Sicure Per Viagra 30 day cycle clomid ovulation . (terminally-incoherent.com)
  • Achetez vos médicaments et tous vos produits de santé en toute sécurité sur Unooc, partenaires des pharmacies françaises à proximité ou en ligne 30 day cycle clomid ovulation . (terminally-incoherent.com)
  • una, la generación está presente en la línea de trazos de padres a hijos 30 day cycle clomid ovulation . (terminally-incoherent.com)
  • Cialis Online Apotheke Holland 30 day cycle clomid ovulation . (terminally-incoherent.com)
  • Chemist Direct UK provides over 20000 health, pharmacy, beauty and prescription products online 30 day cycle clomid ovulation . (terminally-incoherent.com)
  • Visit your local Walmart pharmacyI want to start managing my Rxs online back 30 day cycle clomid ovulation . (terminally-incoherent.com)
  • Un catálogo muy amplio con productos para cuidar o recuperar tu salud están disponibles en la Farmacia en línea, listos para ser enviados a tu domicilio 30 day cycle clomid ovulation . (terminally-incoherent.com)
  • which increases after ovulation and stays elevated until your next cycle. (visual.ly)
  • When ovulation induction is successful, pregnancy rates per cycle are close to those of normally ovulating women in a comparable age group. (brighamandwomens.org)
  • Ovulation is the time when an egg or ovum is released by female ovary, usually midway during the menstrual cycle. (medindia.net)
  • Study tests the good genes ovulation shift hypothesis, which states women's preferences for certain male behaviors differ throughout their ovulation cycle. (neurosciencenews.com)
  • Researchers found no evidence that a woman's preference changes across the ovulation cycle. (neurosciencenews.com)
  • Women with long or irregular cycles may need to use more ovulation tests in one cycle than someone with a regular cycle. (fairhavenhealth.com)
  • By using our ovulation calculator, know your fertile window based on the last menstrual period and average cycle length. (momjunction.com)
  • Ovulation is the process wherein the ovary releases a mature egg during every menstrual cycle. (momjunction.com)
  • Ovulation is likely to happen on the 14th day if you have a typical 28-day menstrual cycle ( 1 ). (momjunction.com)
  • Tracking your menstrual cycle for at least three months will help you identify the ovulation day. (momjunction.com)
  • Ovulation spotting can be useful for women with a normal cycle. (americanceliac.org)
  • SLIGHT SPOTTING Some women may experience slight spotting due to a drop of estrogen before ovulation. (visual.ly)
  • Just prior to ovulation, women experience an "estrogen surge," and a distinct fern-like pattern becomes visible in saliva due to the hormonal changes. (fairhavenhealth.com)
  • There are other possible causes for bleeding besides ovulation or implantation. (babycenter.com)
  • Along with a late period, pregnancy symptoms 17 days past ovulation include implantation bleeding, cramps, breast and nipple tenderness, and mood changes. (meltingpointathens.com)
  • Can implantation happen 20 days after ovulation? (meltingpointathens.com)
  • Implantation may be confused with ovulation bleeding. (americanceliac.org)
  • Buy Pregnancy Wheel & Ovulation Calendar from Fairhaven Health at VitaSprings, and we guarantee you a safe, secure online shopping experience! (vitasprings.com)
  • Boots Ovulation Test Strips are not intended for contraceptive use. (boots.com)
  • Luckily, there are many budget-friendly ovulation test kits out there with individual test strips priced at 10 cents per test. (wavy.com)
  • The most basic paper test strips range in price from 10-50 cents per test, and larger ovulation test strip kits will give you a lower price per individual test. (wavy.com)
  • Burr Ridge, IL, Nov. 20, 2023 (GLOBE NEWSWIRE) -- Premom Easy@Home ovulation test strips were named by the reputable site, The Bump, as the 2023 Best Ovulation Test Strips in the Best of The Bump Awards, an annual contest where the site rigorously tests a variety of baby and pregnancy products for new and aspiring parents 1 . (news10.com)
  • The 'Best Ovulation Test Strips' award given by The Bump is a testament to the hard work and dedication of our entire team," said Sherry Lu, CEO of Easy Healthcare Corporation. (news10.com)
  • The time from the beginning of the last menstrual period (LMP) until ovulation is, on average, 14.6 days, but with substantial variation among females and between cycles in any single female, with an overall 95% prediction interval of 8.2 to 20.5 days. (wikipedia.org)
  • There are several ways to pinpoint your ovulation days. (huggies.com)
  • There are several ways to track your ovulation: by finding your ovulation days, by measuring your ovulation temperature and by using the UByKotex Period & Ovulation Calculator . (huggies.com)
  • That said, the ideal time for intercourse is somewhere between 3 days before ovulation and no later than 24 hours after ovulation. (uniprix.com)
  • You are most fertile during the 2 days before ovulation day and ovulation day itself. (visual.ly)
  • Here's everything you need to know about what to expect at two days post ovulation. (netmums.com)
  • Now you know that you're two days post ovulation (2dpo), its time to seek answers to all of your burning questions. (netmums.com)
  • So if you had sex on the five days leading up to ovulation, on the day of ovulation, or on the day after ovulation, then your egg had a good chance of getting fertilised. (netmums.com)
  • Ovulation cramping , also called mittelschmerz , can last anywhere from minutes to days. (greatist.com)
  • Can you get period 17 days after ovulation? (meltingpointathens.com)
  • Can you get a false negative 16 days after ovulation? (meltingpointathens.com)
  • Ovulation spotting tends to be mild, short (can last up to 2 days), and involves a little dark brown or pinkish blood. (americanceliac.org)
  • If you have ovulation pain, also called mittelschmerz, you may experience twinging or cramps during ovulation. (clevelandclinic.org)
  • Ovulation pain may feel similar to period pain - like menstrual cramps (dysmenorrhea) . (clevelandclinic.org)
  • Researchers had identified a substance they dubbed ovulation inducing factor (OIF) in camel semen that they could use to induce ovulation in other "induced" ovulators, such as llamas. (the-scientist.com)
  • The OvaCue Mobile predicts ovulation accurately and easily right from your iOS device! (shopwithmemama.com)
  • In a randomized trial of 36 adolescent girls who were not sexually active who had polycystic ovary syndrome - characterized by hirsutism and oligomenorrhea - a three-drug combination of low-dose spironolactone , pioglitazone , and metformin (SPIOMET) improved ovulation rates more effectively than did the standard oral contraceptive ethinylestradiol-levonorgestrel treatment. (medscape.com)
  • Effect of non-pharmacological interventions for overweight/obese women with polycystic ovary syndrome on ovulation and pregnancy outcomes: a protocol for a systematic review and network meta-analysis. (bvsalud.org)
  • Ovulation is triggered by a surge in levels of the hormone luteinizing hormone (LH). (rxlist.com)
  • The surge in LH is the trigger of ovulation, so this measurement can help identify the day of ovulation. (rxlist.com)
  • Hormone levels in a woman's body can influence a heightened sense of smell, taste or vision around ovulation time. (visual.ly)
  • Ovulation is the first step in conception. (huggies.com)
  • Read on to learn more about ovulation and sore nipples, and other possible causes for nipple pain or tenderness. (healthline.com)
  • Some women experience tenderness in their breasts just before or after ovulation. (visual.ly)
  • The objective of this review was to systematically assess the effect of physical activity on ovulation and to discuss the possible mechanisms by which exercise acts to modulate ovulation in reproductive-age women. (springer.com)
  • Premom Easy@Home ovulation strips received high marks in accuracy, ease of use, and affordability, making them a top solution in the reproductive health industry. (news10.com)
  • Medications for ovulation induction help regulate the timing of ovulation and stimulate the development and release of mature eggs. (brighamandwomens.org)
  • If women do not react to this medication, the most common second-line treatment in these women is ovulation induction with gonadotrophins, which are injectable drugs. (cochrane.org)
  • and to ensure if LE can replace CC as the first-line therapy for ovulation induction in these women. (unboundmedicine.com)
  • Ovulation pain is pelvic pain that some women and people assigned female at birth (AFAB) have during ovulation . (clevelandclinic.org)
  • Ten interventions were identified, and of these three have studied the effect of vigorous exercise on ovulation in healthy, ovulating women, but only one showed a significant disruption of ovulation as a result. (springer.com)
  • OVULATION PAIN Some women can experience a sensation and or cramping type pain during ovulation. (visual.ly)
  • You might experience mittelschmerz , which is a term that describes lower abdominal or pelvic pain linked to ovulation. (healthline.com)
  • The only ovulation prediction wheel on that market that is adjustable for short, long or irregular menstrual cycles. (vitasprings.com)
  • Ovulation medications can stimulate more than one egg to be released which increases the possibility of having twins or multiple births. (brighamandwomens.org)
  • Medications, usually clomiphene or letrozole , can be used to stimulate ovulation. (msdmanuals.com)
  • The oocyte, which is released during ovulation, can live 12 to 24 hours, while sperm can live 48 to 72 hours. (uniprix.com)
  • Hormonal cycles in males and females indicate if the man is virile and can produce healthy sperm and if the woman is fertile and ready for ovulation. (differencebetween.net)
  • We have an ovulation calculator to help you calculate your own dates, and you can also find out more about how ovulation works . (netmums.com)
  • A better way to track your ovulation is through a calculator. (momjunction.com)
  • Another way to know if you are ovulating is to know your ovulation temperature. (huggies.com)
  • The basal temperature method is useful to confirm that ovulation has occurred but predicting it is more complex. (uniprix.com)
  • As is the case with basal temperature, its often the next morning, when the mucus thickens or disappears that one realizes that ovulation has occurred. (uniprix.com)
  • Usually there is a drop in temperature just before ovulation and a sudden rise afterwards. (huggies.com)
  • Generally, there is a lower temperature recording in the first half (before ovulation) and a higher spike (after ovulation) in the second half. (huggies.com)