A genus of the family REOVIRIDAE infecting vertebrates only. Transmission is horizontal and infected species include humans, birds, cattle, monkeys, sheep, swine, baboons, and bats. MAMMALIAN ORTHOREOVIRUS is the type species.
A species of ORTHOREOVIRUS infecting mammals (other than baboons). There are four serotypes. In humans they are generally benign but may sometimes cause upper respiratory tract illness or enteritis in infants and children. MAMMALIAN ORTHOREOVIRUS 3 is a very pathogenic virus in laboratory rodents.
A species of ORTHOREOVIRUS infecting birds, with outcomes ranging from inapparent to lethal depending on the virus strain and age of the host bird. This species does not infect mammals.
Infections produced by reoviruses, general or unspecified.
A family of snakes comprising the boas, anacondas, and pythons. They occupy a variety of habitats through the tropics and subtropics and are arboreal, aquatic or fossorial (burrowing). Some are oviparous, others ovoviviparous. Contrary to popular opinion, they do not crush the bones of their victims: their coils exert enough pressure to stop a prey's breathing, thus suffocating it. There are five subfamilies: Boinae, Bolyerinae, Erycinae, Pythoninae, and Tropidophiinae. (Goin, Goin, and Zug, Introduction to Herpetology, 3d ed, p315-320)
A family of unenveloped RNA viruses with cubic symmetry. The twelve genera include ORTHOREOVIRUS; ORBIVIRUS; COLTIVIRUS; ROTAVIRUS; Aquareovirus, Cypovirus, Phytoreovirus, Fijivirus, Seadornavirus, Idnoreovirus, Mycoreovirus, and Oryzavirus.
The complete genetic complement contained in a DNA or RNA molecule in a virus.
The relationships of groups of organisms as reflected by their genetic makeup.
A serotype of ORTHOREOVIRUS, MAMMALIAN causing serious pathology in laboratory rodents, characterized by diarrhea, oily coat, jaundice, and multiple organ involvement.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Ribonucleic acid that makes up the genetic material of viruses.
Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young.

Role of immunoglobulin A in protection against reovirus entry into Murine Peyer's patches. (1/96)

Reovirus type 1 Lang (T1L) infects the mouse intestinal mucosa by adhering specifically to epithelial M cells and exploiting M-cell transport to enter the Peyer's patches. Oral inoculation of adult mice has been shown to elicit cellular and humoral immune responses that clear the infection within 10 days. This study was designed to determine whether adult mice that have cleared a primary infection are protected against viral entry upon oral rechallenge and, if so, whether antireovirus secretory immunoglobulin A (S-IgA) is a necessary component of protection. Adult BALB/c mice that were orally inoculated on day 0 with reovirus T1L produced antiviral S-IgA in feces and IgG in serum directed primarily against the reovirus sigma1 attachment protein. Eight hours after oral reovirus challenge on day 21, the Peyer's patches of previously exposed mice contained no detectable virus whereas Peyer's patches of naive controls contained up to 2,300 PFU of reovirus/mg of tissue. Orally inoculated IgA knockout (IgA(-/-)) mice cleared the initial infection as effectively as wild-type mice and produced higher levels of reovirus-specific serum IgG and secretory IgM than C57BL/6 wild-type mice. When IgA(-/-) mice were rechallenged on day 21, however, their Peyer's patches became infected. These results indicate that intestinal S-IgA is an essential component of immune protection against reovirus entry into Peyer's patch mucosa.  (+info)

Caspase 8-dependent sensitization of cancer cells to TRAIL-induced apoptosis following reovirus-infection. (2/96)

TRAIL (TNF-related apoptosis-inducing ligand) induces apoptosis in susceptible cells by binding to death receptors 4 (DR4) and 5 (DR5). TRAIL preferentially induces apoptosis in transformed cells and the identification of mechanisms by which TRAIL-induced apoptosis can be enhanced may lead to novel cancer chemotherapeutic strategies. Here we show that reovirus infection induces apoptosis in cancer cell lines derived from human breast, lung and cervical cancers. Reovirus-induced apoptosis is mediated by TRAIL and is associated with the release of TRAIL from infected cells. Reovirus infection synergistically and specifically sensitizes cancer cell lines to killing by exogenous TRAIL. This sensitization both enhances the susceptibility of previously resistant cell lines to TRAIL-induced apoptosis and reduces the amount of TRAIL needed to kill already sensitive lines. Sensitization is not associated with a detectable change in the expression of TRAIL receptors in reovirus-infected cells. Sensitization is associated with an increase in the activity of the death receptor-associated initiator caspase, caspase 8, and is inhibited by the peptide IETD-fmk, suggesting that reovirus sensitizes cancer cells to TRAIL-induced apoptosis in a caspase 8-dependent manner. Reovirus-induced sensitization of cells to TRAIL is also associated with increased cleavage of PARP, a substrate of the effector caspases 3 and 7.  (+info)

Thermostability of reovirus disassembly intermediates (ISVPs) correlates with genetic, biochemical, and thermodynamic properties of major surface protein mu1. (3/96)

Kinetic analyses of infectivity loss during thermal inactivation of reovirus particles revealed substantial differences between virions and infectious subvirion particles (ISVPs), as well as between the ISVPs of reoviruses type 1 Lang (T1L) and type 3 Dearing (T3D). The difference in thermal inactivation of T1L and T3D ISVPs was attributed to the major surface protein mu1 by genetic analyses with reassortant viruses and recoated cores. Irreversible conformational changes in ISVP-bound mu1 were shown to accompany thermal inactivation. The thermal inactivation of ISVPs approximated first-order kinetics over a range of temperatures, permitting the use of Arrhenius plots to estimate activation enthalpies and entropies that account for the different behaviors of T1L and T3D. An effect similar to enthalpy-entropy compensation was additionally noted for the ISVPs of these two isolates. Kinetic analyses with other ISVP-like particles, including ISVPs of a previously reported thermostable mutant, provided further insights into the role of mu1 as a determinant of thermostability. Intact virions, which contain final sigma3 bound to mu1 as their major surface proteins, exhibited greater thermostability than ISVPs and underwent thermal inactivation with kinetics that deviated from first order, suggesting a role for final sigma3 in both these properties. The distinct inactivation behaviors of ISVPs are consistent with their role as an essential intermediate in reovirus entry.  (+info)

Detection of mammalian reovirus RNA by using reverse transcription-PCR: sequence diversity within the lambda3-encoding L1 gene. (4/96)

Reoviruses infect virtually all mammalian species, and infection of humans is associated with mild gastrointestinal or upper respiratory illnesses. To improve reovirus detection strategies, we developed a reverse transcription-PCR technique to amplify a fragment of the reovirus L1 gene segment. This assay was capable of detecting 44 of 44 reovirus field isolate strains and was sufficiently sensitive to detect nearly a single viral particle (1.16 +/- 0.13) per PCR of prototype strain type 3 Dearing. Pairwise comparisons of the 44 partial L1 gene sequences revealed that nucleotide variability ranged from 0 to 24.7%, with most of the nucleotide polymorphism occurring at synonymous positions. Phylogenetic trees generated from amplified L1 gene sequences suggest that multiple alleles of the L1 gene cocirculate in nature and that genetic diversity of the L1 gene is largely independent of the host species, geographic locale, or date of isolation. Phylogenetic trees constructed from the L1 gene sequences are distinct from those constructed from the four reovirus S-class gene segments, which supports the hypothesis that reovirus gene segments reassort in nature. This study establishes a new sensitive and specific technique for the identification of mammalian reoviruses and enhances our understanding of reovirus evolution.  (+info)

Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells. (5/96)

After attachment to receptors, reovirus virions are internalized by endocytosis and exposed to acid-dependent proteases that catalyze viral disassembly. Previous studies using the cysteine protease inhibitor E64 and a mutant cell line that does not support reovirus disassembly suggest a requirement for specific endocytic proteases in reovirus entry. This study identifies the endocytic proteases that mediate reovirus disassembly in murine fibroblast cells. Infection of both L929 cells treated with the cathepsin L inhibitor Z-Phe-Tyr(t-Bu)-diazomethyl ketone and cathepsin L-deficient mouse embryo fibroblasts resulted in inefficient proteolytic disassembly of viral outer-capsid proteins and decreased viral yields. In contrast, both L929 cells treated with the cathepsin B inhibitor CA-074Me and cathepsin B-deficient mouse embryo fibroblasts support reovirus disassembly and growth. However, removal of both cathepsin B and cathepsin L activity completely abrogates disassembly and growth of reovirus. Concordantly, cathepsin L mediates reovirus disassembly more efficiently than cathepsin B in vitro. These results demonstrate that either cathepsin L or cathepsin B is required for reovirus entry into murine fibroblasts and indicate that cathepsin L is the primary mediator of reovirus disassembly. Moreover, these findings suggest that specific endocytic proteases can determine host cell susceptibility to infection by intracellular pathogens.  (+info)

Addition of exogenous protease facilitates reovirus infection in many restrictive cells. (6/96)

Virion uncoating is a critical step in the life cycle of mammalian orthoreoviruses. In cell culture, and probably in extraintestinal tissues in vivo, reovirus virions undergo partial proteolysis within endosomal or/or lysosomal compartments. This process converts the virion into a form referred to as an intermediate subvirion particle (ISVP). In natural enteric reovirus infections, proteolytic uncoating takes place extracellularly within the intestinal lumen. The resultant proteolyzed particles, unlike intact virions, have the capacity to penetrate cell membranes and thereby gain access to cytoplasmic components required for viral gene expression. We hypothesized that the capacity of reovirus outer capsid proteins to be proteolyzed is a determinant of cellular host range. To investigate this hypothesis, we asked if the addition of protease to cell culture medium would expand the range of cultured mammalian cell lines that can be productively infected by reoviruses. We identified many transformed and nontransformed cell lines, as well as primary cells, that restrict viral infection. In several of these restrictive cells, virion uncoating is inefficient or blocked. Addition of proteases to the cell culture medium generates ISVP-like particles and promotes viral growth in nearly all cell lines tested. Interestingly, we found that some cell lines that restrict reovirus uncoating still express mature cathepsin L, a lysosomal protease required for virion disassembly in murine L929 cells. This finding suggests that factors in addition to cathepsin L are required for efficient intracellular proteolysis of reovirus virions. Our results demonstrate that virion uncoating is a critical determinant of reovirus cellular host range and that many cells which otherwise support productive reovirus infection cannot efficiently mediate this essential early step in the virus life cycle.  (+info)

Strategy for nonenveloped virus entry: a hydrophobic conformer of the reovirus membrane penetration protein micro 1 mediates membrane disruption. (7/96)

The mechanisms employed by nonenveloped animal viruses to penetrate the membranes of their host cells remain enigmatic. Membrane penetration by the nonenveloped mammalian reoviruses is believed to deliver a partially uncoated, but still large ( approximately 70-nm), particle with active transcriptases for viral mRNA synthesis directly into the cytoplasm. This process is likely initiated by a particle form that resembles infectious subvirion particles (ISVPs), disassembly intermediates produced from virions by proteolytic uncoating. Consistent with that idea, ISVPs, but not virions, can induce disruption of membranes in vitro. Both activities ascribed to ISVP-like particles, membrane disruption in vitro and membrane penetration within cells, are linked to N-myristoylated outer-capsid protein micro 1, present in 600 copies at the surfaces of ISVPs. To understand how micro 1 fulfills its role as the reovirus penetration protein, we monitored changes in ISVPs during the permeabilization of red blood cells induced by these particles. Hemolysis was preceded by a major structural transition in ISVPs, characterized by conformational change in micro 1 and elution of fibrous attachment protein sigma 1. The altered conformer of micro 1 was required for hemolysis and was markedly hydrophobic. The structural transition in ISVPs was further accompanied by derepression of genome-dependent mRNA synthesis by the particle-associated transcriptases. We propose a model for reovirus entry in which (i) primed and triggered conformational changes, analogous to those in enveloped-virus fusion proteins, generate a hydrophobic micro 1 conformer capable of inserting into and disrupting cell membranes and (ii) activation of the viral particles for membrane interaction and mRNA synthesis are concurrent events. Reoviruses provide an opportune system for defining the molecular details of membrane penetration by a large nonenveloped animal virus.  (+info)

The hydrophilic amino-terminal arm of reovirus core shell protein lambda1 is dispensable for particle assembly. (8/96)

The reovirus core particle is a molecular machine that mediates synthesis, capping, and export of the viral plus strand RNA transcripts. Its assembly and structure-function relationships remain to be well understood. Following the lead of previous studies with other Reoviridae family members, most notably orbiviruses and rotaviruses, we used recombinant baculoviruses to coexpress reovirus core proteins lambda1, lambda2, and sigma2 in insect cells. The resulting core-like particles (CLPs) were purified and characterized. They were found to be similar to cores with regard to their sizes, morphologies, and protein compositions. Like cores, they could also be coated in vitro with the two major outer-capsid proteins, micro 1 and sigma3, to produce virion-like particles. Coexpression of core shell protein lambda1 and core nodule protein sigma2 was sufficient to yield CLPs that could withstand purification, whereas expression of lambda1 alone was not, indicating a required role for sigma2 as a previous study also suggested. In addition, CLPs that lacked lambda2 (formed from lambda1 and sigma2 only) could not be coated with micro 1 and sigma3, indicating a required role for lambda2 in the assembly of these outer-capsid proteins into particles. To extend the use of this system for understanding the core and its assembly, we addressed the hypothesis that the hydrophilic amino-terminal region of lambda1, which adopts an extended arm-like conformation around each threefold axis in the reovirus core crystal structure, plays an important role in assembling the core shell. Using a series of lambda1 deletion mutants, we showed that the amino-terminal 230 residues of lambda1, including its zinc finger, are dispensable for CLP assembly. Residues in the 231-to-259 region of lambda1, however, were required. The core crystal structure suggests that residues in the 231-to-259 region are necessary because they affect the interaction of lambda1 with the threefold and/or fivefold copies of sigma2. An effective system for studies of reovirus core structure, assembly, and functions is hereby established.  (+info)

Orthoreovirus is a type of virus that belongs to the family Reoviridae. These are non-enveloped viruses with a double-stranded RNA genome. Orthoreoviruses are further classified into three main serotypes (Orthoreovirus 1-3), and they are known to infect both humans and animals, including birds and mammals.

In humans, orthoreovirus infections are usually mild or asymptomatic but can sometimes cause respiratory or gastrointestinal symptoms, particularly in children. The virus is typically transmitted through respiratory droplets or the fecal-oral route. Once inside the host, the virus infects and replicates within cells of the respiratory or intestinal tract, leading to tissue damage and the release of pro-inflammatory cytokines.

Orthoreovirus infections are generally self-limiting, and treatment is typically supportive. However, there is ongoing research into the potential use of orthoreoviruses as oncolytic viruses for cancer therapy, as they have been shown to selectively infect and kill cancer cells while leaving normal cells unharmed.

Orthoreovirus, mammalian, refers to a genus of viruses in the family Reoviridae that primarily infect mammals. These non-enveloped viruses have a segmented double-stranded RNA genome and an icosahedral symmetry. They are typically associated with asymptomatic or mild respiratory or enteric infections in various mammalian hosts, including humans. However, they can sometimes cause more severe diseases in immunocompromised individuals. The genus includes three species: Mammalian orthoreovirus (MRV), Nelson Bay orthoreovirus (NBORV), and Baboon orthoreovirus (BRV).

Orthoreovirus, avian refers to a type of orthoreovirus that primarily infects birds. Orthoreoviruses are non-enveloped, double-stranded RNA viruses belonging to the family Reoviridae. The avian orthoreoviruses are divided into three groups based on their host range and serological properties: orthoreovirus group 1 (avian reovirus), orthoreovirus group 2 (fiscal reovirus), and orthoreovirus group 3 (ptarmigan reovirus). Avian reoviruses are the most well-known and studied among these, causing various diseases in poultry, such as viral arthritis/tenosynovitis, runting-stunting syndrome, and enteric disease. They have a segmented genome consisting of 10 separate RNA segments that encode for several structural and non-structural proteins involved in virus replication, assembly, and pathogenesis.

Reoviridae infections refer to diseases caused by the Reoviridae family of viruses, which are non-enveloped, double-stranded RNA viruses. These viruses are widespread and can infect a variety of hosts, including humans, animals, and insects. The infection typically causes mild respiratory or gastrointestinal symptoms in humans, such as cough, runny nose, sore throat, and diarrhea. In some cases, Reoviridae infections may also lead to more severe diseases, such as meningitis or encephalitis, particularly in immunocompromised individuals. However, it's worth noting that many Reoviridae infections are asymptomatic and do not cause any noticeable illness.

Reoviridae viruses include several genera, such as Orthoreovirus, Rotavirus, Coltivirus, and Orbivirus, among others. Some of the most well-known human pathogens in this family include Rotaviruses, which are a leading cause of severe diarrheal disease in young children worldwide, and Orthoreoviruses, which can cause respiratory illnesses.

Treatment for Reoviridae infections is generally supportive, focusing on managing symptoms such as fever, dehydration, and pain. Antiviral medications are not typically used to treat these infections. Prevention measures include good hygiene practices, such as handwashing and avoiding close contact with infected individuals, as well as vaccination against specific Reoviridae viruses, such as Rotavirus vaccines.

Boidae is a family of snakes, also known as boas. This family includes many different species of large, non-venomous snakes found in various parts of the world, particularly in Central and South America, Africa, and Asia. Boas are known for their strong bodies and muscular tails, which they use to constrict their prey before swallowing it whole. Some well-known members of this family include the anaconda, the python, and the boa constrictor.

Reoviridae is a family of double-stranded RNA viruses that are non-enveloped and have a segmented genome. The name "Reoviridae" is derived from Respiratory Enteric Orphan virus, as these viruses were initially discovered in respiratory and enteric (gastrointestinal) samples but did not appear to cause any specific diseases.

The family Reoviridae includes several important human pathogens such as rotaviruses, which are a major cause of severe diarrhea in young children worldwide, and orthoreoviruses, which can cause respiratory and systemic infections in humans. Additionally, many Reoviridae viruses infect animals, including birds, mammals, fish, and insects, and can cause a variety of diseases.

Reoviridae virions are typically composed of multiple protein layers that encase the genomic RNA segments. The family is divided into two subfamilies, Sedoreovirinae and Spinareovirinae, based on structural features and genome organization. Reoviruses have a complex replication cycle that involves multiple steps, including attachment to host cells, uncoating of the viral particle, transcription of the genomic RNA, translation of viral proteins, packaging of new virions, and release from infected cells.

A viral genome is the genetic material (DNA or RNA) that is present in a virus. It contains all the genetic information that a virus needs to replicate itself and infect its host. The size and complexity of viral genomes can vary greatly, ranging from a few thousand bases to hundreds of thousands of bases. Some viruses have linear genomes, while others have circular genomes. The genome of a virus also contains the information necessary for the virus to hijack the host cell's machinery and use it to produce new copies of the virus. Understanding the genetic makeup of viruses is important for developing vaccines and antiviral treatments.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Mammalian Orthoreovirus 3 (Reovirus 3) is a species in the Reoviridae family, Orthoreovirus genus. It is a non-enveloped, double-stranded RNA virus with a segmented genome. This virus is known to infect various mammals, including humans, and primarily targets the respiratory and gastrointestinal systems. However, it generally does not cause any noticeable symptoms or diseases in immunocompetent individuals. The virus has been studied for its potential use as an oncolytic agent in cancer therapy due to its ability to selectively infect and kill cancer cells.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

A viral RNA (ribonucleic acid) is the genetic material found in certain types of viruses, as opposed to viruses that contain DNA (deoxyribonucleic acid). These viruses are known as RNA viruses. The RNA can be single-stranded or double-stranded and can exist as several different forms, such as positive-sense, negative-sense, or ambisense RNA. Upon infecting a host cell, the viral RNA uses the host's cellular machinery to translate the genetic information into proteins, leading to the production of new virus particles and the continuation of the viral life cycle. Examples of human diseases caused by RNA viruses include influenza, COVID-19 (SARS-CoV-2), hepatitis C, and polio.

Mammals are a group of warm-blooded vertebrates constituting the class Mammalia, characterized by the presence of mammary glands (which produce milk to feed their young), hair or fur, three middle ear bones, and a neocortex region in their brain. They are found in a diverse range of habitats and come in various sizes, from tiny shrews to large whales. Examples of mammals include humans, apes, monkeys, dogs, cats, bats, mice, raccoons, seals, dolphins, horses, and elephants.

No FAQ available that match "orthoreovirus mammalian"

No images available that match "orthoreovirus mammalian"