Glial cell derived tumors arising from the optic nerve, usually presenting in childhood.
An autosomal dominant inherited disorder (with a high frequency of spontaneous mutations) that features developmental changes in the nervous system, muscles, bones, and skin, most notably in tissue derived from the embryonic NEURAL CREST. Multiple hyperpigmented skin lesions and subcutaneous tumors are the hallmark of this disease. Peripheral and central nervous system neoplasms occur frequently, especially OPTIC NERVE GLIOMA and NEUROFIBROSARCOMA. NF1 is caused by mutations which inactivate the NF1 gene (GENES, NEUROFIBROMATOSIS 1) on chromosome 17q. The incidence of learning disabilities is also elevated in this condition. (From Adams et al., Principles of Neurology, 6th ed, pp1014-18) There is overlap of clinical features with NOONAN SYNDROME in a syndrome called neurofibromatosis-Noonan syndrome. Both the PTPN11 and NF1 gene products are involved in the SIGNAL TRANSDUCTION pathway of Ras (RAS PROTEINS).
The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM.
Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21)
A protein found most abundantly in the nervous system. Defects or deficiencies in this protein are associated with NEUROFIBROMATOSIS 1, Watson syndrome, and LEOPARD syndrome. Mutations in the gene (GENE, NEUROFIBROMATOSIS 1) affect two known functions: regulation of ras-GTPase and tumor suppression.
Benign and malignant neoplasms that arise from the optic nerve or its sheath. OPTIC NERVE GLIOMA is the most common histologic type. Optic nerve neoplasms tend to cause unilateral visual loss and an afferent pupillary defect and may spread via neural pathways to the brain.
The portion of the optic nerve seen in the fundus with the ophthalmoscope. It is formed by the meeting of all the retinal ganglion cell axons as they enter the optic nerve.
A group of disorders characterized by ectodermal-based malformations and neoplastic growths in the skin, nervous system, and other organs.
Tumor suppressor genes located on the long arm of human chromosome 17 in the region 17q11.2. Mutation of these genes is thought to cause NEUROFIBROMATOSIS 1, Watson syndrome, and LEOPARD syndrome.
Inflammation of the optic nerve. Commonly associated conditions include autoimmune disorders such as MULTIPLE SCLEROSIS, infections, and granulomatous diseases. Clinical features include retro-orbital pain that is aggravated by eye movement, loss of color vision, and contrast sensitivity that may progress to severe visual loss, an afferent pupillary defect (Marcus-Gunn pupil), and in some instances optic disc hyperemia and swelling. Inflammation may occur in the portion of the nerve within the globe (neuropapillitis or anterior optic neuritis) or the portion behind the globe (retrobulbar neuritis or posterior optic neuritis).
The X-shaped structure formed by the meeting of the two optic nerves. At the optic chiasm the fibers from the medial part of each retina cross to project to the other side of the brain while the lateral retinal fibers continue on the same side. As a result each half of the brain receives information about the contralateral visual field from both eyes.
Atrophy of the optic disk which may be congenital or acquired. This condition indicates a deficiency in the number of nerve fibers which arise in the RETINA and converge to form the OPTIC DISK; OPTIC NERVE; OPTIC CHIASM; and optic tracts. GLAUCOMA; ISCHEMIA; inflammation, a chronic elevation of intracranial pressure, toxins, optic nerve compression, and inherited conditions (see OPTIC ATROPHIES, HEREDITARY) are relatively common causes of this condition.
Injuries to the optic nerve induced by a trauma to the face or head. These may occur with closed or penetrating injuries. Relatively minor compression of the superior aspect of orbit may also result in trauma to the optic nerve. Clinical manifestations may include visual loss, PAPILLEDEMA, and an afferent pupillary defect.
In invertebrate zoology, a lateral lobe of the FOREBRAIN in certain ARTHROPODS. In vertebrate zoology, either of the corpora bigemina of non-mammalian VERTEBRATES. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1329)
Ischemic injury to the OPTIC NERVE which usually affects the OPTIC DISK (optic neuropathy, anterior ischemic) and less frequently the retrobulbar portion of the nerve (optic neuropathy, posterior ischemic). The injury results from occlusion of arterial blood supply which may result from TEMPORAL ARTERITIS; ATHEROSCLEROSIS; COLLAGEN DISEASES; EMBOLISM; DIABETES MELLITUS; and other conditions. The disease primarily occurs in the sixth decade or later and presents with the sudden onset of painless and usually severe monocular visual loss. Anterior ischemic optic neuropathy also features optic disk edema with microhemorrhages. The optic disk appears normal in posterior ischemic optic neuropathy. (Glaser, Neuro-Ophthalmology, 2nd ed, p135)
The continuous visual field seen by a subject through space and time.
Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain.
A specialized field of physics and engineering involved in studying the behavior and properties of light and the technology of analyzing, generating, transmitting, and manipulating ELECTROMAGNETIC RADIATION in the visible, infrared, and ultraviolet range.
Hereditary conditions that feature progressive visual loss in association with optic atrophy. Relatively common forms include autosomal dominant optic atrophy (OPTIC ATROPHY, AUTOSOMAL DOMINANT) and Leber hereditary optic atrophy (OPTIC ATROPHY, HEREDITARY, LEBER).
A maternally linked genetic disorder that presents in mid-life as acute or subacute central vision loss leading to central scotoma and blindness. The disease has been associated with missense mutations in the mtDNA, in genes for Complex I, III, and IV polypeptides, that can act autonomously or in association with each other to cause the disease. (from Online Mendelian Inheritance in Man, http://www.ncbi.nlm.nih.gov/Omim/, MIM#535000 (April 17, 2001))
Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM.
Organized efforts by communities or organizations to improve the health and well-being of the child.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
Children with mental or physical disabilities that interfere with usual activities of daily living and that may require accommodation or intervention.
Any observable response or action of a child from 24 months through 12 years of age. For neonates or children younger than 24 months, INFANT BEHAVIOR is available.
Dominant optic atrophy is a hereditary optic neuropathy causing decreased visual acuity, color vision deficits, a centrocecal scotoma, and optic nerve pallor (Hum. Genet. 1998; 102: 79-86). Mutations leading to this condition have been mapped to the OPA1 gene at chromosome 3q28-q29. OPA1 codes for a dynamin-related GTPase that localizes to mitochondria.
The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent.
Optic disk bodies composed primarily of acid mucopolysaccharides that may produce pseudopapilledema (elevation of the optic disk without associated INTRACRANIAL HYPERTENSION) and visual field deficits. Drusen may also occur in the retina (see RETINAL DRUSEN). (Miller et al., Clinical Neuro-Ophthalmology, 4th ed, p355)
Swelling of the OPTIC DISK, usually in association with increased intracranial pressure, characterized by hyperemia, blurring of the disk margins, microhemorrhages, blind spot enlargement, and engorgement of retinal veins. Chronic papilledema may cause OPTIC ATROPHY and visual loss. (Miller et al., Clinical Neuro-Ophthalmology, 4th ed, p175)
The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching.
The organ of sight constituting a pair of globular organs made up of a three-layered roughly spherical structure specialized for receiving and responding to light.
A malignant form of astrocytoma histologically characterized by pleomorphism of cells, nuclear atypia, microhemorrhage, and necrosis. They may arise in any region of the central nervous system, with a predilection for the cerebral hemispheres, basal ganglia, and commissural pathways. Clinical presentation most frequently occurs in the fifth or sixth decade of life with focal neurologic signs or seizures.
Neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors. Fibrillary astrocytomas are the most common type and may be classified in order of increasing malignancy (grades I through IV). In the first two decades of life, astrocytomas tend to originate in the cerebellar hemispheres; in adults, they most frequently arise in the cerebrum and frequently undergo malignant transformation. (From Devita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2013-7; Holland et al., Cancer Medicine, 3d ed, p1082)
Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body.
The technology of transmitting light over long distances through strands of glass or other transparent material.
Examination of the interior of the eye with an ophthalmoscope.
The total area or space visible in a person's peripheral vision with the eye looking straightforward.
Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM.
The pressure of the fluids in the eye.
Organized services to provide health care for children.
Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract.
The training or bringing-up of children by parents or parent-substitutes. It is used also for child rearing practices in different societies, at different economic levels, in different ethnic groups, etc. It differs from PARENTING in that in child rearing the emphasis is on the act of training or bringing up the child and the interaction between the parent and child, while parenting emphasizes the responsibility and qualities of exemplary behavior of the parent.
Visual impairments limiting one or more of the basic functions of the eye: visual acuity, dark adaptation, color vision, or peripheral vision. These may result from EYE DISEASES; OPTIC NERVE DISEASES; VISUAL PATHWAY diseases; OCCIPITAL LOBE diseases; OCULAR MOTILITY DISORDERS; and other conditions (From Newell, Ophthalmology: Principles and Concepts, 7th ed, p132).
Clarity or sharpness of OCULAR VISION or the ability of the eye to see fine details. Visual acuity depends on the functions of RETINA, neuronal transmission, and the interpretative ability of the brain. Normal visual acuity is expressed as 20/20 indicating that one can see at 20 feet what should normally be seen at that distance. Visual acuity can also be influenced by brightness, color, and contrast.
Method of making images on a sensitized surface by exposure to light or other radiant energy.
Congenital anomaly in which some of the structures of the eye are absent due to incomplete fusion of the fetal intraocular fissure during gestation.
A child who is receiving long-term in-patient services or who resides in an institutional setting.

An Optic Nerve Glioma is a type of brain tumor that arises from the glial cells (supportive tissue) within the optic nerve. It is most commonly seen in children, particularly those with neurofibromatosis type 1 (NF1). These tumors are typically slow-growing and may not cause any symptoms, especially if they are small. However, as they grow larger, they can put pressure on the optic nerve, leading to vision loss or other visual disturbances. In some cases, these tumors can also affect nearby structures in the brain, causing additional neurological symptoms. Treatment options may include observation, chemotherapy, radiation therapy, or surgery, depending on the size and location of the tumor, as well as the patient's age and overall health.

Neurofibromatosis 1 (NF1) is a genetic disorder that affects the development and growth of nerve tissue. It's also known as von Recklinghausen disease. NF1 is characterized by the growth of non-cancerous tumors on the nerves, as well as skin and bone abnormalities.

The symptoms of Neurofibromatosis 1 can vary widely, even among members of the same family. Some common features include:

* Multiple café au lait spots (flat, light brown patches on the skin)
* Freckles in the underarms and groin area
* Benign growths on or under the skin called neurofibromas
* Larger, more complex tumors called plexiform neurofibromas
* Optic gliomas (tumors that form on the optic nerve)
* Distinctive bone abnormalities, such as a curved spine (scoliosis) or an enlarged head (macrocephaly)
* Learning disabilities and behavioral problems

Neurofibromatosis 1 is caused by mutations in the NF1 gene, which provides instructions for making a protein called neurofibromin. This protein helps regulate cell growth and division. When the NF1 gene is mutated, the production of neurofibromin is reduced or absent, leading to uncontrolled cell growth and the development of tumors.

NF1 is an autosomal dominant disorder, which means that a person has a 50% chance of inheriting the mutated gene from an affected parent. However, about half of all cases are the result of new mutations in the NF1 gene, and occur in people with no family history of the disorder.

There is currently no cure for Neurofibromatosis 1, but treatments are available to manage the symptoms and complications of the disease. These may include medications to control pain or reduce the size of tumors, surgery to remove tumors or correct bone abnormalities, and physical therapy to improve mobility and strength. Regular monitoring by a healthcare team experienced in treating Neurofibromatosis 1 is also important to detect any changes in the condition and provide appropriate care.

The optic nerve, also known as the second cranial nerve, is the nerve that transmits visual information from the retina to the brain. It is composed of approximately one million nerve fibers that carry signals related to vision, such as light intensity and color, from the eye's photoreceptor cells (rods and cones) to the visual cortex in the brain. The optic nerve is responsible for carrying this visual information so that it can be processed and interpreted by the brain, allowing us to see and perceive our surroundings. Damage to the optic nerve can result in vision loss or impairment.

A glioma is a type of tumor that originates from the glial cells in the brain. Glial cells are non-neuronal cells that provide support and protection for nerve cells (neurons) within the central nervous system, including providing nutrients, maintaining homeostasis, and insulating neurons.

Gliomas can be classified into several types based on the specific type of glial cell from which they originate. The most common types include:

1. Astrocytoma: Arises from astrocytes, a type of star-shaped glial cells that provide structural support to neurons.
2. Oligodendroglioma: Develops from oligodendrocytes, which produce the myelin sheath that insulates nerve fibers.
3. Ependymoma: Originate from ependymal cells, which line the ventricles (fluid-filled spaces) in the brain and spinal cord.
4. Glioblastoma multiforme (GBM): A highly aggressive and malignant type of astrocytoma that tends to spread quickly within the brain.

Gliomas can be further classified based on their grade, which indicates how aggressive and fast-growing they are. Lower-grade gliomas tend to grow more slowly and may be less aggressive, while higher-grade gliomas are more likely to be aggressive and rapidly growing.

Symptoms of gliomas depend on the location and size of the tumor but can include headaches, seizures, cognitive changes, and neurological deficits such as weakness or paralysis in certain parts of the body. Treatment options for gliomas may include surgery, radiation therapy, chemotherapy, or a combination of these approaches.

Neurofibromin 1 is a protein that is encoded by the NF1 gene in humans. Neurofibromin 1 acts as a tumor suppressor, helping to regulate cell growth and division. It plays an important role in the nervous system, where it helps to control the development and function of nerve cells. Mutations in the NF1 gene can lead to neurofibromatosis type 1 (NF1), a genetic disorder characterized by the growth of non-cancerous tumors on the nerves (neurofibromas) and other symptoms.

Optic nerve neoplasms refer to abnormal growths or tumors that develop within or near the optic nerve. These tumors can be benign (non-cancerous) or malignant (cancerous).

Benign optic nerve neoplasms include optic nerve meningiomas and schwannomas, which originate from the sheaths surrounding the optic nerve. They usually grow slowly and may not cause significant vision loss, but they can lead to compression of the optic nerve, resulting in visual field defects or optic disc swelling (papilledema).

Malignant optic nerve neoplasms are rare but more aggressive. The most common type is optic nerve glioma, which arises from the glial cells within the optic nerve. These tumors can quickly damage the optic nerve and cause severe vision loss.

It's important to note that any optic nerve neoplasm requires prompt medical evaluation and treatment, as they can potentially lead to significant visual impairment or even blindness if left untreated.

The optic disk, also known as the optic nerve head, is the point where the optic nerve fibers exit the eye and transmit visual information to the brain. It appears as a pale, circular area in the back of the eye, near the center of the retina. The optic disk has no photoreceptor cells (rods and cones), so it is insensitive to light. It is an important structure to observe during eye examinations because changes in its appearance can indicate various ocular diseases or conditions, such as glaucoma, optic neuritis, or papilledema.

Neurocutaneous syndromes are a group of rare, genetic disorders that primarily affect the nervous system and skin. These conditions are present at birth or develop in early childhood. They are characterized by the growth of benign tumors along nerve pathways (neurocutaneous) and various abnormalities of the skin, eyes, brain, spine, and other organs.

Some common examples of neurocutaneous syndromes include:

1. Neurofibromatosis type 1 (NF1): A condition characterized by multiple café-au-lait spots on the skin, freckling in the axillary and inguinal regions, and neurofibromas (benign tumors of the nerves).
2. Neurofibromatosis type 2 (NF2): A condition that primarily affects the auditory nerves and is characterized by bilateral acoustic neuromas (vestibular schwannomas), which can cause hearing loss, tinnitus, and balance problems.
3. Tuberous sclerosis complex (TSC): A condition characterized by benign tumors in various organs, including the brain, skin, heart, kidneys, and lungs. The skin manifestations include hypomelanotic macules, facial angiofibromas, and shagreen patches.
4. Sturge-Weber syndrome (SWS): A condition characterized by a port-wine birthmark on the face, which involves the trigeminal nerve distribution, and abnormal blood vessels in the brain, leading to seizures, developmental delays, and visual impairment.
5. Von Hippel-Lindau disease (VHL): A condition characterized by the growth of benign tumors in various organs, including the brain, spinal cord, kidneys, pancreas, and adrenal glands. The tumors can become malignant over time.
6. Ataxia-telangiectasia (A-T): A condition characterized by progressive ataxia (loss of coordination), oculocutaneous telangiectasias (dilated blood vessels in the skin and eyes), immune deficiency, and increased risk of cancer.

Early diagnosis and management of neurocutaneous disorders are essential to prevent complications and improve outcomes. Regular follow-up with a multidisciplinary team, including neurologists, dermatologists, ophthalmologists, geneticists, and other specialists, is necessary to monitor disease progression and provide appropriate interventions.

Neurofibromatosis 1 (NF1) is a genetic disorder caused by mutations in the NF1 gene, which is located on chromosome 17 and encodes the protein neurofibromin. Neurofibromin is a tumor suppressor protein that regulates cell growth and differentiation.

The NF1 gene mutation leads to the development of benign (non-cancerous) tumors on nerves and skin, called neurofibromas, as well as other clinical features such as café-au-lait spots (light brown patches on the skin), freckling in the axillary or inguinal regions, Lisch nodules (harmless growths on the iris of the eye), and skeletal abnormalities.

Neurofibromatosis 1 is an autosomal dominant disorder, which means that a person has a 50% chance of inheriting the mutated gene from an affected parent. However, up to 50% of cases result from new mutations in the NF1 gene and occur in people with no family history of the condition.

The clinical manifestations of Neurofibromatosis 1 can vary widely among individuals, even within the same family. The diagnosis is typically made based on clinical criteria established by the National Institutes of Health (NIH). Treatment is generally focused on managing symptoms and addressing complications as they arise, although surgery may be necessary to remove large or symptomatic tumors.

Optic neuritis is a medical condition characterized by inflammation and damage to the optic nerve, which transmits visual information from the eye to the brain. This condition can result in various symptoms such as vision loss, pain with eye movement, color vision disturbances, and pupillary abnormalities. Optic neuritis may occur in isolation or be associated with other underlying medical conditions, including multiple sclerosis, neuromyelitis optica, and autoimmune disorders. The diagnosis typically involves a comprehensive eye examination, including visual acuity testing, dilated funduscopic examination, and possibly imaging studies like MRI to evaluate the optic nerve and brain. Treatment options may include corticosteroids or other immunomodulatory therapies to reduce inflammation and prevent further damage to the optic nerve.

The optic chiasm is a structure in the brain where the optic nerves from each eye meet and cross. This allows for the integration of visual information from both eyes into the brain's visual cortex, creating a single, combined image of the visual world. The optic chiasm plays an important role in the processing of visual information and helps to facilitate depth perception and other complex visual tasks. Damage to the optic chiasm can result in various visual field deficits, such as bitemporal hemianopsia, where there is a loss of vision in the outer halves (temporal fields) of both eyes' visual fields.

Optic atrophy is a medical term that refers to the degeneration and shrinkage (atrophy) of the optic nerve, which transmits visual information from the eye to the brain. This condition can result in various vision abnormalities, including loss of visual acuity, color vision deficiencies, and peripheral vision loss.

Optic atrophy can occur due to a variety of causes, such as:

* Traumatic injuries to the eye or optic nerve
* Glaucoma
* Optic neuritis (inflammation of the optic nerve)
* Ischemic optic neuropathy (reduced blood flow to the optic nerve)
* Compression or swelling of the optic nerve
* Hereditary or congenital conditions affecting the optic nerve
* Toxins and certain medications that can damage the optic nerve.

The diagnosis of optic atrophy typically involves a comprehensive eye examination, including visual acuity testing, refraction assessment, slit-lamp examination, and dilated funduscopic examination to evaluate the health of the optic nerve. In some cases, additional diagnostic tests such as visual field testing, optical coherence tomography (OCT), or magnetic resonance imaging (MRI) may be necessary to confirm the diagnosis and determine the underlying cause.

There is no specific treatment for optic atrophy, but addressing the underlying cause can help prevent further damage to the optic nerve. In some cases, vision rehabilitation may be recommended to help patients adapt to their visual impairment.

Optic nerve injuries refer to damages or trauma inflicted on the optic nerve, which is a crucial component of the visual system. The optic nerve transmits visual information from the retina to the brain, enabling us to see. Injuries to the optic nerve can result in various visual impairments, including partial or complete vision loss, decreased visual acuity, changes in color perception, and reduced field of view.

These injuries may occur due to several reasons, such as:

1. Direct trauma to the eye or head
2. Increased pressure inside the eye (glaucoma)
3. Optic neuritis, an inflammation of the optic nerve
4. Ischemia, or insufficient blood supply to the optic nerve
5. Compression from tumors or other space-occupying lesions
6. Intrinsic degenerative conditions affecting the optic nerve
7. Toxic exposure to certain chemicals or medications

Optic nerve injuries are diagnosed through a comprehensive eye examination, including visual acuity testing, slit-lamp examination, dilated fundus exam, and additional diagnostic tests like optical coherence tomography (OCT) and visual field testing. Treatment options vary depending on the cause and severity of the injury but may include medications, surgery, or vision rehabilitation.

The optic lobe in non-mammals refers to a specific region of the brain that is responsible for processing visual information. It is a part of the protocerebrum in the insect brain and is analogous to the mammalian visual cortex. The optic lobes receive input directly from the eyes via the optic nerves and are involved in the interpretation and integration of visual stimuli, enabling non-mammals to perceive and respond to their environment. In some invertebrates, like insects, the optic lobe is further divided into subregions, including the lamina, medulla, and lobula, each with distinct functions in visual processing.

Ischemic optic neuropathy (ION) is a medical condition that refers to the damage or death of the optic nerve due to insufficient blood supply. The optic nerve is responsible for transmitting visual information from the eye to the brain.

In ION, the blood vessels that supply the optic nerve become blocked or narrowed, leading to decreased blood flow and oxygen delivery to the nerve fibers. This results in inflammation, swelling, and ultimately, damage to the optic nerve. The damage can cause sudden, painless vision loss, often noticed upon waking up in the morning.

There are two types of ION: anterior ischemic optic neuropathy (AION) and posterior ischemic optic neuropathy (PION). AION affects the front part of the optic nerve, while PION affects the back part of the nerve. AION is further classified into arteritic and non-arteritic types, depending on whether it is caused by giant cell arteritis or not.

Risk factors for ION include age (most commonly occurring in people over 50), hypertension, diabetes, smoking, sleep apnea, and other cardiovascular diseases. Treatment options depend on the type and cause of ION and may include controlling underlying medical conditions, administering corticosteroids, or undergoing surgical procedures to improve blood flow.

Optic flow is not a medical term per se, but rather a term used in the field of visual perception and neuroscience. It refers to the pattern of motion of objects in the visual field that occurs as an observer moves through the environment. This pattern of motion is important for the perception of self-motion and the estimation of egocentric distance (the distance of objects in the environment relative to the observer). Optic flow has been studied in relation to various clinical populations, such as individuals with vestibular disorders or visual impairments, who may have difficulty processing optic flow information.

Brain neoplasms, also known as brain tumors, are abnormal growths of cells within the brain. These growths can be benign (non-cancerous) or malignant (cancerous). Benign brain tumors typically grow slowly and do not spread to other parts of the body. However, they can still cause serious problems if they press on sensitive areas of the brain. Malignant brain tumors, on the other hand, are cancerous and can grow quickly, invading surrounding brain tissue and spreading to other parts of the brain or spinal cord.

Brain neoplasms can arise from various types of cells within the brain, including glial cells (which provide support and insulation for nerve cells), neurons (nerve cells that transmit signals in the brain), and meninges (the membranes that cover the brain and spinal cord). They can also result from the spread of cancer cells from other parts of the body, known as metastatic brain tumors.

Symptoms of brain neoplasms may vary depending on their size, location, and growth rate. Common symptoms include headaches, seizures, weakness or paralysis in the limbs, difficulty with balance and coordination, changes in speech or vision, confusion, memory loss, and changes in behavior or personality.

Treatment for brain neoplasms depends on several factors, including the type, size, location, and grade of the tumor, as well as the patient's age and overall health. Treatment options may include surgery, radiation therapy, chemotherapy, targeted therapy, or a combination of these approaches. Regular follow-up care is essential to monitor for recurrence and manage any long-term effects of treatment.

I'm sorry for any confusion, but "Optics and Photonics" is a broad field that encompasses various scientific and engineering disciplines. It doesn't have a specific medical definition, as it's not a term typically used in a medical context.

However, I can provide a general definition:

Optics is the study of light and its interactions with matter. This includes how light is produced, controlled, transmitted, and detected. It involves phenomena such as reflection, refraction, diffraction, and interference.

Photonics, on the other hand, is a branch of optics that deals with the generation, detection, and manipulation of individual photons, the basic units of light. Photonics is often applied to technologies such as lasers, fiber optics, and optical communications.

In a medical context, these fields might be used in various diagnostic and therapeutic applications, such as endoscopes, ophthalmic devices, laser surgery, and imaging technologies like MRI and CT scans. But the terms "Optics" and "Photonics" themselves are not medical conditions or treatments.

Hereditary optic atrophies (HOAs) are a group of genetic disorders that cause degeneration of the optic nerve, leading to vision loss. The optic nerve is responsible for transmitting visual information from the eye to the brain. In HOAs, this nerve degenerates over time, resulting in decreased visual acuity, color vision deficits, and sometimes visual field defects.

There are several types of HOAs, including dominant optic atrophy (DOA), Leber hereditary optic neuropathy (LHON), autosomal recessive optic atrophy (AROA), and Wolfram syndrome. Each type has a different inheritance pattern and is caused by mutations in different genes.

DOA is the most common form of HOA and is characterized by progressive vision loss that typically begins in childhood or early adulthood. It is inherited in an autosomal dominant manner, meaning that a child has a 50% chance of inheriting the disease-causing mutation from an affected parent.

LHON is a mitochondrial disorder that primarily affects males and is characterized by sudden, severe vision loss that typically occurs in young adulthood. It is caused by mutations in the mitochondrial DNA and is inherited maternally.

AROA is a rare form of HOA that is inherited in an autosomal recessive manner, meaning that both copies of the gene must be mutated to cause the disease. It typically presents in infancy or early childhood with progressive vision loss.

Wolfram syndrome is a rare genetic disorder that affects multiple organs, including the eyes, ears, and endocrine system. It is characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and hearing loss. It is inherited in an autosomal recessive manner.

There is currently no cure for HOAs, but treatments such as low-vision aids and rehabilitation may help to manage the symptoms. Research is ongoing to develop new therapies for these disorders.

Hereditary Optic Atrophy, Leber type (LOA) is a mitochondrial DNA-associated inherited condition that primarily affects the optic nerve and leads to vision loss. It is characterized by the degeneration of retinal ganglion cells and their axons, which make up the optic nerve. This results in bilateral, painless, and progressive visual deterioration, typically beginning in young adulthood (14-35 years).

Leber's hereditary optic atrophy is caused by mutations in the mitochondrial DNA (mtDNA) gene MT-ND4 or MT-ND6. The condition follows a maternal pattern of inheritance, meaning that it is passed down through the mother's lineage.

The onset of LOA usually occurs in one eye first, followed by the second eye within weeks to months. Central vision is initially affected, leading to blurriness and loss of visual acuity. Color vision may also be impaired. The progression of the condition generally stabilizes after a few months, but complete recovery of vision is unlikely.

Currently, there is no cure for Leber's hereditary optic atrophy. Treatment focuses on managing symptoms and providing visual rehabilitation to help affected individuals adapt to their visual impairment.

Retinal Ganglion Cells (RGCs) are a type of neuron located in the innermost layer of the retina, the light-sensitive tissue at the back of the eye. These cells receive visual information from photoreceptors (rods and cones) via intermediate cells called bipolar cells. RGCs then send this visual information through their long axons to form the optic nerve, which transmits the signals to the brain for processing and interpretation as vision.

There are several types of RGCs, each with distinct morphological and functional characteristics. Some RGCs are specialized in detecting specific features of the visual scene, such as motion, contrast, color, or brightness. The diversity of RGCs allows for a rich and complex representation of the visual world in the brain.

Damage to RGCs can lead to various visual impairments, including loss of vision, reduced visual acuity, and altered visual fields. Conditions associated with RGC damage or degeneration include glaucoma, optic neuritis, ischemic optic neuropathy, and some inherited retinal diseases.

Child welfare is a broad term that refers to the overall well-being and protection of children. It encompasses a range of services and interventions aimed at promoting the physical, emotional, social, and educational development of children, while also protecting them from harm, abuse, and neglect. The medical definition of child welfare may include:

1. Preventive Services: Programs and interventions designed to strengthen families and prevent child maltreatment, such as home visiting programs, parent education classes, and family support services.
2. Protective Services: Interventions that aim to protect children from harm, abuse, or neglect, including investigations of reports of maltreatment, removal of children from dangerous situations, and provision of alternative care arrangements.
3. Family Reunification Services: Efforts to reunite children with their families when it is safe and in the best interest of the child, such as family therapy, parent-child visitation, and case management services.
4. Permanency Planning: The development of long-term plans for children who cannot safely return to their families, including adoption, guardianship, or other permanent living arrangements.
5. Foster Care Services: Provision of temporary care for children who cannot safely remain in their own homes, including placement with foster families, group homes, or residential treatment facilities.
6. Child Health and Development Services: Programs that promote the physical, emotional, and developmental well-being of children, such as health screenings, immunizations, mental health services, and early intervention programs for children with special needs.
7. Advocacy and Policy Development: Efforts to promote policies and practices that support the well-being and protection of children, including advocating for laws and regulations that protect children's rights and ensure their safety and well-being.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

A disabled child is a child who has a physical, cognitive, or developmental condition that limits their ability to perform everyday tasks and activities. This limitation can be temporary or permanent and may range from mild to severe. According to the Americans with Disabilities Act (ADA), a person with a disability is someone who has a physical or mental impairment that substantially limits one or more major life activities, has a record of such an impairment, or is regarded as having such an impairment.

Disabled children may face challenges in various areas of their lives, including mobility, communication, self-care, learning, and socialization. Some common examples of disabilities that affect children include cerebral palsy, Down syndrome, autism spectrum disorder, intellectual disability, hearing or vision loss, and spina bifida.

It is important to note that disabled children have the same rights and entitlements as other children, and they should be given equal opportunities to participate in all aspects of society. This includes access to education, healthcare, social services, and community activities. With appropriate support and accommodations, many disabled children can lead fulfilling lives and reach their full potential.

Child behavior refers to the actions, reactions, and interactions exhibited by children in response to their environment, experiences, and developmental stage. It is a broad term that encompasses various aspects, including emotional, social, cognitive, and physical development.

Child behavior can be categorized into two main types:

1. Desirable or positive behaviors - These are behaviors that promote healthy development, social interactions, and learning. Examples include sharing toys, following rules, expressing emotions appropriately, and demonstrating empathy towards others.
2. Challenging or negative behaviors - These are behaviors that hinder healthy development, social interactions, and learning. Examples include aggression, defiance, tantrums, anxiety, and withdrawal.

Understanding child behavior is crucial for parents, caregivers, educators, and healthcare professionals to provide appropriate support, guidance, and interventions to promote positive developmental outcomes in children. Factors influencing child behavior include genetics, temperament, environment, parenting style, and life experiences.

Autosomal dominant optic atrophy (ADOA) is a genetic disorder that affects the optic nerve, which transmits visual information from the eye to the brain. The term "optic atrophy" refers to degeneration or damage to the optic nerve. In ADOA, this condition is inherited in an autosomal dominant manner, meaning that only one copy of the mutated gene, located on one of the autosomal chromosomes (not a sex chromosome), needs to be present for the individual to develop the disorder.

The most common form of ADOA is caused by mutations in the OPA1 gene, which provides instructions for making a protein involved in the maintenance of mitochondria, the energy-producing structures in cells. The exact role of this protein in optic nerve function is not fully understood, but it is thought to play a critical role in maintaining the health and function of retinal ganglion cells, which are the neurons that make up the optic nerve.

In ADOA, mutations in the OPA1 gene lead to progressive degeneration of retinal ganglion cells and their axons (nerve fibers) within the optic nerve. This results in decreased visual acuity, color vision deficits, and a characteristic visual field defect called centrocecal scotoma, which is an area of blindness near the center of the visual field. The onset and severity of these symptoms can vary widely among individuals with ADOA.

It's important to note that medical definitions may contain complex terminology. In simpler terms, autosomal dominant optic atrophy (ADOA) is a genetic condition affecting the optic nerve, leading to decreased visual acuity and other vision problems due to degeneration of retinal ganglion cells. The disorder is inherited in an autosomal dominant manner, meaning only one copy of the mutated gene is needed for the individual to develop ADOA.

The retina is the innermost, light-sensitive layer of tissue in the eye of many vertebrates and some cephalopods. It receives light that has been focused by the cornea and lens, converts it into neural signals, and sends these to the brain via the optic nerve. The retina contains several types of photoreceptor cells including rods (which handle vision in low light) and cones (which are active in bright light and are capable of color vision).

In medical terms, any pathological changes or diseases affecting the retinal structure and function can lead to visual impairment or blindness. Examples include age-related macular degeneration, diabetic retinopathy, retinal detachment, and retinitis pigmentosa among others.

Optic disk drusen are small, calcified deposits that form within the optic nerve head, also known as the optic disc. They are made up of protein and calcium salts and can vary in size and number. These deposits can be seen on ophthalmic examination using an instrument called an ophthalmoscope.

Optic disk drusen are typically asymptomatic and are often discovered during routine eye examinations. However, in some cases, they may cause visual disturbances or even vision loss if they compress the optic nerve fibers. They can also increase the risk of developing other eye conditions such as glaucoma.

Optic disk drusen are more commonly found in individuals with a family history of the condition and tend to occur in younger people, typically before the age of 40. While there is no cure for optic disk drusen, regular eye examinations can help monitor any changes in the condition and manage any associated visual symptoms or complications.

Papilledema is a medical term that refers to swelling of the optic nerve head, also known as the disc, which is the point where the optic nerve enters the back of the eye (the retina). This swelling can be caused by increased pressure within the skull, such as from brain tumors, meningitis, or idiopathic intracranial hypertension. Papilledema is usually detected through a routine eye examination and may be accompanied by symptoms such as headaches, visual disturbances, and nausea. If left untreated, papilledema can lead to permanent vision loss.

The superior colliculi are a pair of prominent eminences located on the dorsal surface of the midbrain, forming part of the tectum or roof of the midbrain. They play a crucial role in the integration and coordination of visual, auditory, and somatosensory information for the purpose of directing spatial attention and ocular movements. Essentially, they are involved in the reflexive orienting of the head and eyes towards novel or significant stimuli in the environment.

In a more detailed medical definition, the superior colliculi are two rounded, convex mounds of gray matter that are situated on the roof of the midbrain, specifically at the level of the rostral mesencephalic tegmentum. Each superior colliculus has a stratified laminated structure, consisting of several layers that process different types of sensory information and control specific motor outputs.

The superficial layers of the superior colliculi primarily receive and process visual input from the retina, lateral geniculate nucleus, and other visual areas in the brain. These layers are responsible for generating spatial maps of the visual field, which allow for the localization and identification of visual stimuli.

The intermediate and deep layers of the superior colliculi receive and process auditory and somatosensory information from various sources, including the inferior colliculus, medial geniculate nucleus, and ventral posterior nucleus of the thalamus. These layers are involved in the localization and identification of auditory and tactile stimuli, as well as the coordination of head and eye movements towards these stimuli.

The superior colliculi also contain a population of neurons called "motor command neurons" that directly control the muscles responsible for orienting the eyes, head, and body towards novel or significant sensory events. These motor command neurons are activated in response to specific patterns of activity in the sensory layers of the superior colliculus, allowing for the rapid and automatic orientation of attention and gaze towards salient stimuli.

In summary, the superior colliculi are a pair of structures located on the dorsal surface of the midbrain that play a critical role in the integration and coordination of visual, auditory, and somatosensory information for the purpose of orienting attention and gaze towards salient stimuli. They contain sensory layers that generate spatial maps of the environment, as well as motor command neurons that directly control the muscles responsible for orienting the eyes, head, and body.

The eye is the organ of sight, primarily responsible for detecting and focusing on visual stimuli. It is a complex structure composed of various parts that work together to enable vision. Here are some of the main components of the eye:

1. Cornea: The clear front part of the eye that refracts light entering the eye and protects the eye from harmful particles and microorganisms.
2. Iris: The colored part of the eye that controls the amount of light reaching the retina by adjusting the size of the pupil.
3. Pupil: The opening in the center of the iris that allows light to enter the eye.
4. Lens: A biconvex structure located behind the iris that further refracts light and focuses it onto the retina.
5. Retina: A layer of light-sensitive cells (rods and cones) at the back of the eye that convert light into electrical signals, which are then transmitted to the brain via the optic nerve.
6. Optic Nerve: The nerve that carries visual information from the retina to the brain.
7. Vitreous: A clear, gel-like substance that fills the space between the lens and the retina, providing structural support to the eye.
8. Conjunctiva: A thin, transparent membrane that covers the front of the eye and the inner surface of the eyelids.
9. Extraocular Muscles: Six muscles that control the movement of the eye, allowing for proper alignment and focus.

The eye is a remarkable organ that allows us to perceive and interact with our surroundings. Various medical specialties, such as ophthalmology and optometry, are dedicated to the diagnosis, treatment, and management of various eye conditions and diseases.

Glioblastoma, also known as Glioblastoma multiforme (GBM), is a highly aggressive and malignant type of brain tumor that arises from the glial cells in the brain. These tumors are characterized by their rapid growth, invasion into surrounding brain tissue, and resistance to treatment.

Glioblastomas are composed of various cell types, including astrocytes and other glial cells, which make them highly heterogeneous and difficult to treat. They typically have a poor prognosis, with a median survival rate of 14-15 months from the time of diagnosis, even with aggressive treatment.

Symptoms of glioblastoma can vary depending on the location and size of the tumor but may include headaches, seizures, nausea, vomiting, memory loss, difficulty speaking or understanding speech, changes in personality or behavior, and weakness or paralysis on one side of the body.

Standard treatment for glioblastoma typically involves surgical resection of the tumor, followed by radiation therapy and chemotherapy with temozolomide. However, despite these treatments, glioblastomas often recur, leading to a poor overall prognosis.

Astrocytoma is a type of brain tumor that arises from astrocytes, which are star-shaped glial cells in the brain. These tumors can occur in various parts of the brain and can have different grades of malignancy, ranging from low-grade (I or II) to high-grade (III or IV). Low-grade astrocytomas tend to grow slowly and may not cause any symptoms for a long time, while high-grade astrocytomas are more aggressive and can grow quickly, causing neurological problems.

Symptoms of astrocytoma depend on the location and size of the tumor but may include headaches, seizures, weakness or numbness in the limbs, difficulty speaking or swallowing, changes in vision or behavior, and memory loss. Treatment options for astrocytomas include surgery, radiation therapy, chemotherapy, or a combination of these approaches. The prognosis for astrocytoma varies widely depending on the grade and location of the tumor, as well as the age and overall health of the patient.

An axon is a long, slender extension of a neuron (a type of nerve cell) that conducts electrical impulses (nerve impulses) away from the cell body to target cells, such as other neurons or muscle cells. Axons can vary in length from a few micrometers to over a meter long and are typically surrounded by a myelin sheath, which helps to insulate and protect the axon and allows for faster transmission of nerve impulses.

Axons play a critical role in the functioning of the nervous system, as they provide the means by which neurons communicate with one another and with other cells in the body. Damage to axons can result in serious neurological problems, such as those seen in spinal cord injuries or neurodegenerative diseases like multiple sclerosis.

Fiber optic technology in the medical context refers to the use of thin, flexible strands of glass or plastic fibers that are designed to transmit light and images along their length. These fibers are used to create bundles, known as fiber optic cables, which can be used for various medical applications such as:

1. Illumination: Fiber optics can be used to deliver light to hard-to-reach areas during surgical procedures or diagnostic examinations.
2. Imaging: Fiber optics can transmit images from inside the body, enabling doctors to visualize internal structures and tissues. This is commonly used in medical imaging techniques such as endoscopy, colonoscopy, and laparoscopy.
3. Sensing: Fiber optic sensors can be used to measure various physiological parameters such as temperature, pressure, and strain within the body. These sensors can provide real-time data during surgical procedures or for monitoring patients' health status.

Fiber optic technology offers several advantages over traditional medical imaging techniques, including high resolution, flexibility, small diameter, and the ability to bend around corners without significant loss of image quality. Additionally, fiber optics are non-magnetic and can be used in MRI environments without causing interference.

Ophthalmoscopy is a medical examination technique used by healthcare professionals to observe the interior structures of the eye, including the retina, optic disc, and vitreous humor. This procedure typically involves using an ophthalmoscope, a handheld device that consists of a light and magnifying lenses. The healthcare provider looks through the ophthalmoscope and directly observes the internal structures of the eye by illuminating them.

There are several types of ophthalmoscopy, including direct ophthalmoscopy, indirect ophthalmoscopy, and slit-lamp biomicroscopy. Each type has its own advantages and disadvantages, and they may be used in different situations depending on the specific clinical situation and the information needed.

Ophthalmoscopy is an important diagnostic tool for detecting and monitoring a wide range of eye conditions, including diabetic retinopathy, glaucoma, age-related macular degeneration, and other retinal disorders. It can also provide valuable information about the overall health of the individual, as changes in the appearance of the retina or optic nerve may indicate the presence of systemic diseases such as hypertension or diabetes.

Visual fields refer to the total area in which objects can be seen while keeping the eyes focused on a central point. It is the entire area that can be observed using peripheral (side) vision while the eye gazes at a fixed point. A visual field test is used to detect blind spots or gaps (scotomas) in a person's vision, which could indicate various medical conditions such as glaucoma, retinal damage, optic nerve disease, brain tumors, or strokes. The test measures both the central and peripheral vision and maps the entire area that can be seen when focusing on a single point.

Nerve fibers are specialized structures that constitute the long, slender processes (axons) of neurons (nerve cells). They are responsible for conducting electrical impulses, known as action potentials, away from the cell body and transmitting them to other neurons or effector organs such as muscles and glands. Nerve fibers are often surrounded by supportive cells called glial cells and are grouped together to form nerve bundles or nerves. These fibers can be myelinated (covered with a fatty insulating sheath called myelin) or unmyelinated, which influences the speed of impulse transmission.

Intraocular pressure (IOP) is the fluid pressure within the eye, specifically within the anterior chamber, which is the space between the cornea and the iris. It is measured in millimeters of mercury (mmHg). The aqueous humor, a clear fluid that fills the anterior chamber, is constantly produced and drained, maintaining a balance that determines the IOP. Normal IOP ranges from 10-21 mmHg, with average values around 15-16 mmHg. Elevated IOP is a key risk factor for glaucoma, a group of eye conditions that can lead to optic nerve damage and vision loss if not treated promptly and effectively. Regular monitoring of IOP is essential in diagnosing and managing glaucoma and other ocular health issues.

Child health services refer to a range of medical and supportive services designed to promote the physical, mental, and social well-being of children from birth up to adolescence. These services aim to prevent or identify health problems early, provide treatment and management for existing conditions, and support healthy growth and development.

Examples of child health services include:

1. Well-child visits: Regular checkups with a pediatrician or other healthcare provider to monitor growth, development, and overall health.
2. Immunizations: Vaccinations to protect against infectious diseases such as measles, mumps, rubella, polio, and hepatitis B.
3. Screening tests: Blood tests, hearing and vision screenings, and other diagnostic tests to identify potential health issues early.
4. Developmental assessments: Evaluations of a child's cognitive, emotional, social, and physical development to ensure they are meeting age-appropriate milestones.
5. Dental care: Preventive dental services such as cleanings, fluoride treatments, and sealants, as well as restorative care for cavities or other dental problems.
6. Mental health services: Counseling, therapy, and medication management for children experiencing emotional or behavioral challenges.
7. Nutrition counseling: Education and support to help families make healthy food choices and promote good nutrition.
8. Chronic disease management: Coordinated care for children with ongoing medical conditions such as asthma, diabetes, or cerebral palsy.
9. Injury prevention: Programs that teach parents and children about safety measures to reduce the risk of accidents and injuries.
10. Public health initiatives: Community-based programs that promote healthy lifestyles, provide access to healthcare services, and address social determinants of health such as poverty, housing, and education.

Visual pathways, also known as the visual system or the optic pathway, refer to the series of specialized neurons in the nervous system that transmit visual information from the eyes to the brain. This complex network includes the retina, optic nerve, optic chiasma, optic tract, lateral geniculate nucleus, pulvinar, and the primary and secondary visual cortices located in the occipital lobe of the brain.

The process begins when light enters the eye and strikes the photoreceptor cells (rods and cones) in the retina, converting the light energy into electrical signals. These signals are then transmitted to bipolar cells and subsequently to ganglion cells, whose axons form the optic nerve. The fibers from each eye's nasal hemiretina cross at the optic chiasma, while those from the temporal hemiretina continue without crossing. This results in the formation of the optic tract, which carries visual information from both eyes to the opposite side of the brain.

The majority of fibers in the optic tract synapse with neurons in the lateral geniculate nucleus (LGN), a part of the thalamus. The LGN sends this information to the primary visual cortex, also known as V1 or Brodmann area 17, located in the occipital lobe. Here, simple features like lines and edges are initially processed. Further processing occurs in secondary (V2) and tertiary (V3-V5) visual cortices, where more complex features such as shape, motion, and depth are analyzed. Ultimately, this information is integrated to form our perception of the visual world.

Child rearing, also known as child care or child raising, refers to the process of caring for and raising children from infancy through adolescence. This includes providing for their physical needs such as food, clothing, and shelter, as well as their emotional, social, and intellectual development. Child rearing involves a range of activities such as feeding, bathing, dressing, educating, disciplining, and providing love and support. It is typically the responsibility of parents or guardians, but may also involve other family members, teachers, caregivers, and community institutions. Effective child rearing requires knowledge, skills, patience, and a commitment to meeting the needs of the child in a loving and supportive environment.

Vision disorders refer to a wide range of conditions that affect the visual system and result in various symptoms, such as blurry vision, double vision, distorted vision, impaired depth perception, and difficulty with visual tracking or focusing. These disorders can be categorized into several types, including:

1. Refractive errors: These occur when the shape of the eye prevents light from focusing directly on the retina, resulting in blurry vision. Examples include myopia (nearsightedness), hyperopia (farsightedness), astigmatism, and presbyopia (age-related loss of near vision).
2. Strabismus: Also known as crossed eyes or walleye, strabismus is a misalignment of the eyes where they point in different directions, which can lead to double vision or loss of depth perception.
3. Amblyopia: Often called lazy eye, amblyopia is a condition where one eye has reduced vision due to lack of proper visual development during childhood. It may be caused by strabismus, refractive errors, or other factors that interfere with normal visual development.
4. Accommodative disorders: These involve problems with the focusing ability of the eyes, such as convergence insufficiency (difficulty focusing on close objects) and accommodative dysfunction (inability to maintain clear vision at different distances).
5. Binocular vision disorders: These affect how the eyes work together as a team, leading to issues like poor depth perception, eye strain, and headaches. Examples include convergence insufficiency, divergence excess, and suppression.
6. Ocular motility disorders: These involve problems with eye movement, such as nystagmus (involuntary eye movements), strabismus, or restricted extraocular muscle function.
7. Visual processing disorders: These affect the brain's ability to interpret and make sense of visual information, even when the eyes themselves are healthy. Symptoms may include difficulty with reading, recognizing shapes and objects, and understanding spatial relationships.
8. Low vision: This term refers to significant visual impairment that cannot be fully corrected with glasses, contact lenses, medication, or surgery. It includes conditions like macular degeneration, diabetic retinopathy, glaucoma, and cataracts.
9. Blindness: Complete loss of sight in both eyes, which can be caused by various factors such as injury, disease, or genetic conditions.

Visual acuity is a measure of the sharpness or clarity of vision. It is usually tested by reading an eye chart from a specific distance, such as 20 feet (6 meters). The standard eye chart used for this purpose is called the Snellen chart, which contains rows of letters that decrease in size as you read down the chart.

Visual acuity is typically expressed as a fraction, with the numerator representing the testing distance and the denominator indicating the smallest line of type that can be read clearly. For example, if a person can read the line on the eye chart that corresponds to a visual acuity of 20/20, it means they have normal vision at 20 feet. If their visual acuity is 20/40, it means they must be as close as 20 feet to see what someone with normal vision can see at 40 feet.

It's important to note that visual acuity is just one aspect of overall vision and does not necessarily reflect other important factors such as peripheral vision, depth perception, color vision, or contrast sensitivity.

I'm sorry for any confusion, but "photography" is not a term typically used in medical definitions. Photography refers to the art, application, or process of creating images by recording light or other electromagnetic radiation, either electronically by means of an image sensor, or chemically by means of a light-sensitive material such as photographic film.

If you're looking for a medical term related to imaging, there are several terms that might be relevant, such as:

1. Radiography: This is a technique using X-rays to visualize the internal structures of the body.
2. Ultrasonography: Also known as ultrasound, this is a diagnostic imaging technique using high-frequency sound waves to create images of the inside of the body.
3. Computed Tomography (CT): A type of imaging that uses X-rays to create detailed cross-sectional images of the body.
4. Magnetic Resonance Imaging (MRI): A type of imaging that uses magnetic fields and radio waves to create detailed images of the organs and tissues within the body.
5. Nuclear Medicine: This is a branch of medical imaging that uses small amounts of radioactive material to diagnose and treat diseases.

If you have any questions related to medical definitions or topics, feel free to ask!

A coloboma is a congenital condition that results from incomplete closure of the optic fissure during fetal development. This results in a gap or hole in one or more structures of the eye, such as the iris, retina, choroid, or optic nerve. The size and location of the coloboma can vary widely, and it may affect one or both eyes.

Colobomas can cause a range of visual symptoms, depending on their size and location. Some people with colobomas may have no visual impairment, while others may experience reduced vision, double vision, or sensitivity to light. In severe cases, colobomas can lead to blindness.

Colobomas are usually diagnosed during routine eye exams and are typically not treatable, although some visual symptoms may be managed with glasses, contact lenses, or surgery in certain cases. Colobomas can occur as an isolated condition or as part of a genetic syndrome, so individuals with colobomas may benefit from genetic counseling to understand their risk of passing the condition on to their offspring.

The term "institutionalized child" is used to describe a minor (a person who has not yet reached the age of legal majority) who resides in an institution such as a group home, foster care facility, residential treatment center, or other similar setting on a long-term basis. Institutionalization may occur for various reasons, including but not limited to:

1. Abuse or neglect in their biological family
2. Parental absence or inability to provide care
3. Behavioral or emotional challenges that require specialized treatment and support
4. Disabilities that necessitate around-the-clock care
5. Legal reasons, such as being a ward of the state

Institutionalized children typically receive care, supervision, education, and other services from trained staff members in these facilities. The goal of institutionalization is often to provide a safe, structured environment where the child can receive the necessary support and resources to help them thrive and eventually transition back into a family or community setting when possible.

Optic glioma in children: Turkish experience. Copy For Citation Bajin I. Y., Korones D. N., Aydin B., Oguz K. K., Kurucu N., ...
... also known as optic pathway glioma) is the most common primary neoplasm of the optic nerve. Along with reducing visual acuity ... Optic Pathway Gliomas in Neurofibromatosis Type 1. J Child Neurol. 2018 Jan. 33 (1):73-81. [QxMD MEDLINE Link]. [Full Text]. ... Optic nerve glioma (also known as optic pathway glioma) is the most common primary neoplasm of the optic nerve. Optic pathway ... encoded search term (Optic Pathway (Optic Nerve) Glioma Imaging and Diagnosis) and Optic Pathway (Optic Nerve) Glioma Imaging ...
These cancers are the most common type of cancer in children. When discovered early, they often can be cured. ... Optic pathway gliomas mostly affect kids under age 10. People with neurofibromatosis type 1 (a genetic condition that causes ... Optic pathway gliomas are usually treated with chemotherapy, although radiation also can be used. Most kids do well with ... Optic Pathway Glioma. The optic pathway sends signals to the brain about what the eye sees. A tumor that develops along this ...
Optic nerve gliomas have low mortality but extremely high prevalence of vision loss & eye-bulging exophthalmos) in children. As ... Optic nerve glioma (or optic glioma), a form of glioma which affects the optic nerve, is often one of the central nervous ... Optic gliomas are usually pilocytic tumors, and can involve the optic nerve or optic chiasm. Optic gliomas are usually ... Optic nerve gliomas are diagnosed using magnetic resonance imaging (MRI) and CT scans. The tumor adopts a fusiform appearance, ...
Moreover, approximately 15% of children with NF1 develop low-grade optic gliomas.3 Pediatric Low-Grade Gliomas (pLGG) are the ... The Mechanism and Treatment of Pediatric Low-Grade Glioma and Optic Glioma in children with Neurofibromatosis Type 1. ... shedding within the optic nerve impedes the progression of NF1 optic gliomas.8 Furthermore, stimulation of optic nerve activity ... the mechanisms of development and potential treatment options for pediatric low-grade glioma and optic glioma in children with ...
Does chemotherapy affect the visual outcome in children with optic pathway glioma? A systematic review of the evidence. In: ... Does chemotherapy affect the visual outcome in children with optic pathway glioma? A systematic review of the evidence. / ... Does chemotherapy affect the visual outcome in children with optic pathway glioma? A systematic review of the evidence. ... INTRODUCTION: Overall prognosis for optic pathway glioma (OPG) in children is excellent. Little is known, however, about the ...
The Cancer Predisposition Program proactively monitors and treats children and young adults who are at risk for developing ... Optic glioma. *Osteosarcoma. *Sertoli-Leydig cell tumor. *Small cell carcinoma of ovary ... 2023 Childrens Healthcare of Atlanta Inc. All Rights Reserved. Childrens Healthcare of Atlanta is a not-for-profit, section ... Childrens License Agreement. Childrens Healthcare of Atlanta ("CHOA") provides free access to certain materials and ...
Optic Nerve Glioma...369 • Influenza...370 • Ptosis...371 • Christmas Cataract...372 • Sir Isaac Newton...373 • Optic Pit...374 ... Visual Acuity Testing in Children...364 • Sturge-Weber Syndrome...365 • Louis Pasteur...366 • Acute Angle-Closure Glaucoma... ... Last-Minute Optics: A Concise Review of Optics, Refraction, and Contact Lenses, Second Edition MSRP: ... He is an Adjunct Associate Professor in Ophthalmology at the University of Minnesota, where he teaches optics, refraction, and ...
Axial proptosis is seen in tumours arising within the muscle cone like optic nerve glioma. The eyeball is displaced down and/or ... K. Sindhu, J. Downie, R. Ghabrial, and F. Martin, "Aetiology of childhood proptosis," Journal of Paediatrics and Child Health, ... The causes of unilateral proptosis in a child include retinoblastoma in the first 5 years of life and infective orbital ... The operating microscope, specialized orbital instruments, fibre optic illumination, endoscopy, and hypotensive anaesthesia ...
The child was brought to the emergency department for evaluation. ... that had developed behind the childs right ear. ... Optic glioma is a primary neoplasm of the optic nerve. In children, it is mostly benign and is classified as a grade I ... It may also be associated with neurofibromatosis type 1. Approximately one third of optic gliomas present with proptosis. Other ... Listernick R, Ferner R, Liu G, Gutmann D. Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann ...
T1 weighted sagital MRI shows mass thickening the optic chiasm. T2 weighted axial MRI shows high signal mass. Optic gliomas are ... This 4 year old child presented with decreased visiual acuity. T1 weighted axial MRI after gadolinium reveals an enhancing mass ... but only about one fourth of patients with optic gliomas have NF-I. They commonly involve the optic chiasm and extend ... posteriorly to involve optic tracts and radiations, as in this case. Contrast enhancement is usually not as striking as in this ...
Diffusion-weighted and dynamic contrast-enhanced imaging as markers of clinical behavior in children with optic pathway glioma ... Intracranial ependymomas in children: a critical review of prognostic factors and a plea for cooperation. Med Pediatr Oncol ... Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR Am J Neuroradiol 2006; 27: 1362- 69 ... The other 5 tumors included atypical teratoid rhabdoid tumors (n = 2), ganglioglioma (n = 1), grade 2 glioma without pilocytic ...
The most common brain tumor in children with NF1 is the optic glioma. Treatment for NF1-related optic gliomas often includes ... Although the mice the researchers studied were bred to model NF1 optic gliomas, the researchers said the findings could be ... Mouse low-grade gliomas contain cancer stem cells with unique molecular and functional properties. Cell Reports, online March ... Study offers clues to cause of kids brain tumors. Nov 16, 2012 ...
... child with neurofibromatosis type 1 who developed a pigmented peripapillary lesion following excision of an optic nerve glioma ...
Paediatric neuro-ophthalmology conditions include demyelinating optic neuropathies, optic nerve gliomas (often with ... Prospective study investigating the feasibility of Octopus visual fields in children with optic nerve and neurological disease ... Asthma is one of NZs most common lung conditions affecting 1 in 7 children and 1 in 8 adults in NZ. There is some evidence ... For patients and families with FEVR identified from the New Zealand Database of Inherited Retinal and Optic Nerve Disease, the ...
... is a research biostatistician with the Division of Oncology at Childrens Hospital of Philadelphia. ... Risk of optic pathway glioma in children with neurofibromatosis type 1 and optic nerve tortuosity or nerve sheath thickening. ... Yimei L. Merging Childrens Oncology Group clinical trial data with Pediatric Health Information System using indirect patient ... Daniel LC, Li Y, Kloss J, Reilly AF, Barakat LP (2016). The impact of dexamethasone and prednisone on sleep in children with ...
Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Childrens ... Insights into optic pathway glioma vision loss from mouse models of neurofibromatosis type 1. J Neuro Res. 2019; 97:45-56. ... A phase 1 study of AZD6244 in children with recurrent or refractory low grade gliomas: a pediatric brain tumor consortium ... A multi-institutional study of brainstem gliomas in children with neurofibromatosis type 1. Neurology. 2017;88:1584-1589. ...
She went in to see a neurosurgeon who diagnosed her with a brain tumor known as optic nerve glioma, a cancer typically seen in ... children.. Shocked and scared, but wanted to find a solution. A friend referred her to a local surgeon to whom Stephanie asked ...
Optic-Pathway Glioma: Natural History Demonstrated by a New Empirical Score. Aviv Schupper, Liora Kornreich, Isaak Yaniv, Ian J ... Dive into the research topics of Optic-Pathway Glioma: Natural History Demonstrated by a New Empirical Score. Together they ...
This work has the potential to lead to a preventative treatment for children living with NF1 and could help them avoid the ... Development of Therapeutic Strategies for NF1-Associated Optic Pathway Glioma. Posted September 22, 2023 Yuan Zhu, Ph.D., ... A therapeutic window for preventive therapy in NF1-associated optic pathway glioma. Molecular & Cellular Oncology 8(6):198262. ... Loss of functional NF1 leads to increased activation of the ERK/MAPK pathway and growth of optic pathway gliomas (OPG), or ...
... optic neuropathy) as the disease progresses. Continued research shows promising results for molecularly targeted therapy ... PMA should be considered in the differential diagnosis of hypothalamic/chiasmal glioma. Cases previously labeled as JPA may be ... JPA is the most common type of glioma in children and adolescents, accounting for approximately 15.6% of all brain tumors and ... J Child Neurol. 2020;35(12):852-858. doi:10.1177/0883073820937225 *↑ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 ...
... in younger children who meet the clinical criteria for NF1 and who may have an optic glioma. T2-weighted MRI may show ... An optic glioma and Lisch nodules (iris hamartomas) occur in some patients. Optic gliomas are typically asymptomatic and do not ... Most optic gliomas are asymptomatic and just need to be monitored for progression. For both progressive optic gliomas and ... they include supratentorial or brain stem gliomas Gliomas Gliomas are primary tumors that originate in brain parenchyma. ...
Optic pathway/hypothalamic glioma. *Pilocytic astrocytoma. *Pineal tumor. *Pituitary adenoma. Childhood brain cancer treatments ... Children often need several treatment sessions over a few weeks.. Stereotactic radiosurgery: This specialized form of radiation ... Your child may undergo other treatments along with surgery.. Chemotherapy: Pediatric chemotherapy uses powerful drugs that ... We use a multidisciplinary approach to offer your child the best possible outcomes. Treatment plans may include: Surgery: ...
Molecular Control Mechanisms in Optic Nerve Glioma; Implications for Therapy J. Douglas Cameron, MD ... Intraocular Tumors in Children and Adults-Passing the Torch Carol L. Shields, MD ... Outcomes of Two Prospective Clinical Trials: The Impact on Current Management of Children with Retinoblastoma. Patricia Chevez- ... Basic and Clinical Science Course, Section 03: Clinical Optics and Vision Rehabilitation ...
A glioma originating in the optic nerve or optic chiasm. ... affect the visual outcome in children with optic pathway glioma ... Glioma, Optic; Glioma, Optic Nerve; Gliomas, Optic; Gliomas, Optic Nerve; Optic Glioma; Optic Gliomas; Optic Nerve Glioma; ... Glioma*Optic nerve glioma*Optic nerve astrocytoma*Recurrent Childhood Optic Nerve Astrocytoma ... Optic Pathway Gliomas in Neurofibromatosis Type 1.. Campen CJ, Gutmann DH. J Child Neurol 2018 Jan;33(1):73-81. doi: 10.1177/ ...
... are the most frequent brain tumors in children. Up to 50% will be refractory to conventional chemotherapy. It is now known that ... Group 4 includes other patients with progressing/refractory glioma with activation of the MAPK/ERK pathway. Eligible patients ... Group 1 includes NF1 patients with progressing/refractory glioma. Group 2 includes NF1 patients with plexiform neurofibroma. ... Group 3 includes patients with progressing/refractory glioma with KIAA1549-BRAF fusion. ...
In children, most hypothalamic tumors are gliomas. Gliomas are a common type of brain tumor that results from the abnormal ... Goodden J, Mallucci C. Optic pathway hypothalamic gliomas. In: Winn HR, ed. Youmans and Winn Neurological Surgery. 8th ed. ... In general, gliomas in adults are more aggressive than in children and usually have a worse outcome. Tumors that cause ... Gliomas can occur at any age. They are often more aggressive in adults than in children. ...
... to optic tracts, optic radiations, and visual cortices (1-4). Children with brain tumors can present visual impairments like ... 3. Fried I, Tabori U, Tihan T, Reginald A, Bouffet E. Optic pathway gliomas: a review. CNS Oncol. (2013) 2:143-59. doi: 10.2217 ... The primary site was on the optic chiasm, where the optic nerves connect to the brain. I underwent 2 years of chemotherapy, ... Visual function in children with primary brain tumors. Curr Opin Neurol. (2019) 32:75-81. doi: 10.1097/WCO.0000000000000644 ...
IL is one of the foremost physicians on the management and treatment of optic gliomas in children with NF1. ... Green is a physician-scientist and a child psychiatrist who works primarily with children with known genetic conditions and " ... Louis Childrens Hospital, discusses apps and resources that benefit children with NF1. ... Marys Childrens Hospital in Manchester, where he is also is the head of the NF2 Clinic. He has a wealth of experience with ...
Phase II Randomized Trial of Lenalidomide in Children With Pilocytic Astrocytomas and Optic Pathway Gliomas: A Report From the ... Childrens Oncology Group. J Clin Oncol 2023; 41:3374-3383. PubMed * Schrag D, Uno H, Rosovsky R, Rutherford C, Sanfilippo K, ...

No FAQ available that match "optic glioma child with optic"

No images available that match "optic glioma child with optic"