Oligodeoxyribonucleotides: A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties.Oligodeoxyribonucleotides, Antisense: Short fragments of DNA that are used to alter the function of target RNAs or DNAs to which they hybridize.Oligonucleotides: Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed)Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Nucleic Acid Denaturation: Disruption of the secondary structure of nucleic acids by heat, extreme pH or chemical treatment. Double strand DNA is "melted" by dissociation of the non-covalent hydrogen bonds and hydrophobic interactions. Denatured DNA appears to be a single-stranded flexible structure. The effects of denaturation on RNA are similar though less pronounced and largely reversible.Indicators and Reagents: Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499)Resins, Plant: Flammable, amorphous, vegetable products of secretion or disintegration, usually formed in special cavities of plants. They are generally insoluble in water and soluble in alcohol, carbon tetrachloride, ether, or volatile oils. They are fusible and have a conchoidal fracture. They are the oxidation or polymerization products of the terpenes, and are mixtures of aromatic acids and esters. Most are soft and sticky, but harden after exposure to cold. (From Grant & Hackh's Chemical Dictionary, 5th ed & Dorland, 28th ed)Bromouracil: 5-Bromo-2,4(1H,3H)-pyrimidinedione. Brominated derivative of uracil that acts as an antimetabolite, substituting for thymine in DNA. It is used mainly as an experimental mutagen, but its deoxyriboside (BROMODEOXYURIDINE) is used to treat neoplasms.Nucleic Acid Conformation: The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape.Oligonucleotides, Antisense: Short fragments of DNA or RNA that are used to alter the function of target RNAs or DNAs to which they hybridize.RNA Ligase (ATP): An enzyme that catalyzes the conversion of linear RNA to a circular form by the transfer of the 5'-phosphate to the 3'-hydroxyl terminus. It also catalyzes the covalent joining of two polyribonucleotides in phosphodiester linkage. EC 6.5.1.3.DNA: A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).Methods: A series of steps taken in order to conduct research.Deoxyribonucleosides: A purine or pyrimidine base bonded to DEOXYRIBOSE.Organophosphorus Compounds: Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS.Organophosphates: Carbon-containing phosphoric acid derivatives. Included under this heading are compounds that have CARBON atoms bound to one or more OXYGEN atoms of the P(=O)(O)3 structure. Note that several specific classes of endogenous phosphorus-containing compounds such as NUCLEOTIDES; PHOSPHOLIPIDS; and PHOSPHOPROTEINS are listed elsewhere.Diatomaceous Earth: A form of SILICON DIOXIDE composed of skeletons of prehistoric aquatic plants which is used for its ABSORPTION quality, taking up 1.5-4 times its weight in water. The microscopic sharp edges are useful for insect control but can also be an inhalation hazard. It has been used in baked goods and animal feed. Kieselguhr is German for flint + earthy sediment.Thionucleotides: Nucleotides in which the base moiety is substituted with one or more sulfur atoms.Polynucleotide Ligases: Catalyze the joining of preformed ribonucleotides or deoxyribonucleotides in phosphodiester linkage during genetic processes. EC 6.5.1.Nucleic Acid Hybridization: Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503)Ribonuclease H: A ribonuclease that specifically cleaves the RNA moiety of RNA:DNA hybrids. It has been isolated from a wide variety of prokaryotic and eukaryotic organisms as well as RETROVIRUSES.GuanineCalifornium: Californium. A man-made radioactive actinide with atomic symbol Cf, atomic number 98, and atomic weight 251. Its valence can be +2 or +3. Californium has medical use as a radiation source for radiotherapy.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Deoxyribonucleotides: A purine or pyrimidine base bonded to a DEOXYRIBOSE containing a bond to a phosphate group.Deoxyuridine: 2'-Deoxyuridine. An antimetabolite that is converted to deoxyuridine triphosphate during DNA synthesis. Laboratory suppression of deoxyuridine is used to diagnose megaloblastic anemias due to vitamin B12 and folate deficiencies.Oligoribonucleotides, Antisense: Short fragments of RNA that are used to alter the function of target RNAs or DNAs to which they hybridize.ThyminePhosphoric Acids: Inorganic derivatives of phosphoric acid (H3PO4). Note that organic derivatives of phosphoric acids are listed under ORGANOPHOSPHATES.Adenine: A purine base and a fundamental unit of ADENINE NUCLEOTIDES.Organothiophosphorus Compounds: Compounds containing carbon-phosphorus bonds in which the phosphorus component is also bonded to one or more sulfur atoms. Many of these compounds function as CHOLINERGIC AGENTS and as INSECTICIDES.Glass: Hard, amorphous, brittle, inorganic, usually transparent, polymerous silicate of basic oxides, usually potassium or sodium. It is used in the form of hard sheets, vessels, tubing, fibers, ceramics, beads, etc.Chromatography, High Pressure Liquid: Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.Molecular Structure: The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.Genes, Synthetic: Biologically functional sequences of DNA chemically synthesized in vitro.Oligonucleotide Probes: Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin.Base Pairing: Pairing of purine and pyrimidine bases by HYDROGEN BONDING in double-stranded DNA or RNA.DNA Polymerase I: A DNA-dependent DNA polymerase characterized in prokaryotes and may be present in higher organisms. It has both 3'-5' and 5'-3' exonuclease activity, but cannot use native double-stranded DNA as template-primer. It is not inhibited by sulfhydryl reagents and is active in both DNA synthesis and repair. EC 2.7.7.7.DNA, Antisense: DNA that is complementary to the sense strand. (The sense strand has the same sequence as the mRNA transcript. The antisense strand is the template for mRNA synthesis.) Synthetic antisense DNAs are used to hybridize to complementary sequences in target RNAs or DNAs to effect the functioning of specific genes for investigative or therapeutic purposes.T-Phages: A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA.Deoxyguanosine: A nucleoside consisting of the base guanine and the sugar deoxyribose.DNA, Single-Stranded: A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle.Templates, Genetic: Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES.Oligoribonucleotides: A group of ribonucleotides (up to 12) in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.Magnetic Resonance Spectroscopy: Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.Chemistry: A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.Nucleosides: Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed)Chemical Phenomena: The composition, conformation, and properties of atoms and molecules, and their reaction and interaction processes.Kinetics: The rate dynamics in chemical or physical systems.Spectrophotometry, Ultraviolet: Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)RNA, Messenger: RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.Substrate Specificity: A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.Alkylation: The covalent bonding of an alkyl group to an organic compound. It can occur by a simple addition reaction or by substitution of another functional group.ThymidineThermodynamics: A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed)Base Composition: The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid.Structure-Activity Relationship: The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.Cross-Linking Reagents: Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other.Temperature: The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.Amides: Organic compounds containing the -CO-NH2 radical. Amides are derived from acids by replacement of -OH by -NH2 or from ammonia by the replacement of H by an acyl group. (From Grant & Hackh's Chemical Dictionary, 5th ed)Ultraviolet Rays: That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants.RNA: A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)DNA Probes: Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections.Models, Chemical: Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.Pyrimidines: A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.Cloning, Molecular: The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.Cell Division: The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.Circular Dichroism: A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)Binding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.Electrophoresis, Polyacrylamide Gel: Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Fluorescent Dyes: Agents that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags.DNA Restriction Enzymes: Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1.Protein Biosynthesis: The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS.Plasmids: Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.Tumor Cells, Cultured: Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.Models, Molecular: Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.Transfection: The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.Cattle: Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.Transcription, Genetic: The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.Cells, Cultured: Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.

Id helix-loop-helix proteins inhibit nucleoprotein complex formation by the TCF ETS-domain transcription factors. (1/10948)

The Id subfamily of helix-loop-helix (HLH) proteins plays a fundamental role in the regulation of cellular proliferation and differentiation. Id proteins are thought to inhibit differentiation mainly through interaction with other HLH proteins and by blocking their DNA-binding activity. Members of the ternary complex factor (TCF) subfamily of ETS-domain proteins have key functions in regulating immediate-early gene expression in response to mitogenic stimulation. TCFs form DNA-bound complexes with the serum response factor (SRF) and are direct targets of MAP kinase (MAPK) signal transduction cascades. In this study we demonstrate functional interactions between Id proteins and TCFs. Ids bind to the ETS DNA-binding domain and disrupt the formation of DNA-bound complexes between TCFs and SRF on the c-fos serum response element (SRE). Inhibition occurs by disrupting protein-DNA interactions with the TCF component of this complex. In vivo, the Id proteins cause down-regulation of the transcriptional activity mediated by the TCFs and thereby block MAPK signalling to SREs. Therefore, our results demonstrate a novel facet of Id function in the coordination of mitogenic signalling and cell cycle entry.  (+info)

Oligomerization and scaffolding functions of the erythropoietin receptor cytoplasmic tail. (2/10948)

Signal transduction by the erythropoietin receptor (EPOR) is activated by ligand-mediated receptor homodimerization. However, the relationship between extracellular and intracellular domain oligomerization remains poorly understood. To assess the requirements for dimerization of receptor cytoplasmic sequences for signaling, we overexpressed mutant EPORs in combination with wild-type (WT) EPOR to drive formation of heterodimeric (i.e. WT-mutant) receptor complexes. Dimerization of the membrane-proximal portion of the EPOR cytoplasmic region was found to be critical for the initiation of mitogenic signaling. However, dimerization of the entire EPOR cytoplasmic region was not required. To examine this process more closely, we generated chimeras between the intracellular and transmembrane portions of the EPOR and the extracellular domains of the interleukin-2 receptor beta and gammac chains. These chimeras allowed us to assess more precisely the signaling role of each receptor chain because only heterodimers of WT and mutant receptor chimeras form in the presence of interleukin-2. Coexpression studies demonstrated that a functional receptor complex requires the membrane-proximal region of each receptor subunit in the oligomer to permit activation of JAK2 but only one membrane-distal tail to activate STAT5 and to support cell proliferation. Thus, this study defines key relationships involved in the assembly and activation of the EPOR signal transduction complex which may be applicable to other homodimeric cytokine receptors.  (+info)

Localization of curved DNA and its association with nucleosome phasing in the promoter region of the human estrogen receptor alpha gene. (3/10948)

We determined DNA bend sites in the promoter region of the human estrogen receptor (ER) gene by the circular permutation assay. A total of five sites (ERB-4 to -1, and ERB+1) mapped in the 3 kb region showed an average distance of 688 bp. Most of the sites were accompanied by short poly(dA) x poly(dT) tracts including the potential bend core sequence A2N8A2N8A2 (A/A/A). Fine mapping of the ERB-2 site indicated that this A/A/A and the 20 bp immediate flanking sequence containing one half of the estrogen response element were the sites of DNA curvature. All of the experimentally mapped bend sites corresponded to the positions of DNA curvature as well as to nucleosomes predicted by computer analysis. In vitro nucleosome mapping at ERB-2 revealed that the bend center was located 10-30 bp from the experimental and predicted nucleosome dyad axes.  (+info)

Chlamydia infections and heart disease linked through antigenic mimicry. (4/10948)

Chlamydia infections are epidemiologically linked to human heart disease. A peptide from the murine heart muscle-specific alpha myosin heavy chain that has sequence homology to the 60-kilodalton cysteine-rich outer membrane proteins of Chlamydia pneumoniae, C. psittaci, and C. trachomatis was shown to induce autoimmune inflammatory heart disease in mice. Injection of the homologous Chlamydia peptides into mice also induced perivascular inflammation, fibrotic changes, and blood vessel occlusion in the heart, as well as triggering T and B cell reactivity to the homologous endogenous heart muscle-specific peptide. Chlamydia DNA functioned as an adjuvant in the triggering of peptide-induced inflammatory heart disease. Infection with C. trachomatis led to the production of autoantibodies to heart muscle-specific epitopes. Thus, Chlamydia-mediated heart disease is induced by antigenic mimicry of a heart muscle-specific protein.  (+info)

The RNA-editing enzyme ADAR1 is localized to the nascent ribonucleoprotein matrix on Xenopus lampbrush chromosomes but specifically associates with an atypical loop. (5/10948)

Double-stranded RNA adenosine deaminase (ADAR1, dsRAD, DRADA) converts adenosines to inosines in double-stranded RNAs. Few candidate substrates for ADAR1 editing are known at this point and it is not known how substrate recognition is achieved. In some cases editing sites are defined by basepaired regions formed between intronic and exonic sequences, suggesting that the enzyme might function cotranscriptionally. We have isolated two variants of Xenopus laevis ADAR1 for which no editing substrates are currently known. We demonstrate that both variants of the enzyme are associated with transcriptionally active chromosome loops suggesting that the enzyme acts cotranscriptionally. The widespread distribution of the protein along the entire chromosome indicates that ADAR1 associates with the RNP matrix in a substrate-independent manner. Inhibition of splicing, another cotranscriptional process, does not affect the chromosomal localization of ADAR1. Furthermore, we can show that the enzyme is dramatically enriched on a special RNA-containing loop that seems transcriptionally silent. Detailed analysis of this loop suggests that it might represent a site of ADAR1 storage or a site where active RNA editing is taking place. Finally, mutational analysis of ADAR1 demonstrates that a putative Z-DNA binding domain present in ADAR1 is not required for chromosomal targeting of the protein.  (+info)

Multiple oligodeoxyribonucleotide syntheseson a reusable solid-phase CPG support via the hydroquinone-O,O'-diacetic acid (Q-Linker) linker arm. (6/10948)

A strategy for oligodeoxyribonucleotide synthesis on a reusable CPG solid-phase support, derivatized with hydroxyl groups instead of amino groups, has been developed. Ester linkages, through a base labile hydroquinone- O, O '-diacetic acid ( Q-Linker ) linker arm, were used to couple the first nucleoside to the hydroxyl groups on the support. This coupling was rapidly accomplished (10 min) using O -benzotriazol-1-yl- N, N, N ', N '-tetramethyluronium hexafluorophosphate (HBTU) and 1-hydroxybenzotriazole as the activating reagents. Oligodeoxyribonucleotide synthesis was performed using existing procedures and reagents, except a more labile capping reagent, such as chloro-acetic anhydride, methoxyacetic anhydride or t-butylphenoxyacetic anhydride, was used instead of acetic anhydride. After each oligodeoxyribonucleotide synthesis, the product was cleaved from the support with ammonium hydroxide (3 min) and deprotected as usual. Residual linker arms or capping groups were removed by treatment with ammonium hydroxide/methylamine reagent and the regenerated support was capable of reuse. Up to six different oligodeoxyribonucleotide syntheses or up to 25 cycles of nucleoside derivatization and cleavage were consecutively performed on the reusable support. This method may provide a significant cost advantage over conventional single-use solid supports currently used for the manufacture of antisense oligodeoxyribonucleotides.  (+info)

Mutational analysis of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase propeptide processing. (7/10948)

Glutamine phosphoribosylpyrophosphate amidotransferase from Bacillus subtilis is a member of an N-terminal nucleophile hydrolase enzyme superfamily, several of which undergo autocatalytic propeptide processing to generate the mature active enzyme. A series of mutations was analyzed to determine whether amino acid residues required for catalysis are also used for propeptide processing. Propeptide cleavage was strongly inhibited by replacement of the cysteine nucleophile and two residues of an oxyanion hole that are required for glutaminase function. However, significant propeptide processing was retained in a deletion mutant with multiple defects in catalysis that was devoid of enzyme activity. Intermolecular processing of noncleaved mutant enzyme subunits by active wild-type enzyme subunits was not detected in hetero-oligomers obtained from a coexpression experiment. While direct in vitro evidence for autocatalytic propeptide cleavage was not obtained, the results indicate that some but not all of the amino acid residues that have a role in catalysis are also needed for propeptide processing.  (+info)

Hybridization of antisense oligonucleotides with the 3'part of tRNA(Phe). (8/10948)

The interaction of antisense oligodeoxyribonucleotides with yeast tRNA(Phe) was investigated. 14-15-mers complementary to the 3'-terminal sequence including the ACCA end bind to the tRNA under physiological conditions. At low oligonucleotide concentrations the binding occurs at the unique complementary site. At higher oligonucleotide concentrations, the second oligonucleotide molecule binds to the complex due to non-perfect duplex formation in the T-loop stabilized by stacking between the two bound oligonucleotides. In these complexes the acceptor stem is open and the 5'-terminal sequence of the tRNA is accessible for binding of a complementary oligonucleotide. The results prove that the efficient binding of oligonucleotides to the 3'-terminal sequence of the tRNA occurs through initial binding to the single-stranded sequence ACCA followed by invasion in the acceptor stem and strand displacement.  (+info)

  • Using a highly efficient viral HVJ (hemagglutinating virus of Japan) liposome-mediated transfer method, we examined the cellular fate of antisense oligodeoxyribonucleotides (oligos) in the vessel wall in vivo. (duke.edu)
  • To study these proteins in the Gram + pathogen, Staphylococcus aureus, two pairs of degenerate oligodeoxyribonucleotides (oligos) that corresponded to conserved sequences contained within sensor protein-encoding genes were synthesized. (nebraska.edu)
  • The nuclease resistance of the oligodeoxyribonucleotides capped with guanidinium linkages at 5′ and 3′ ends are reported. (pnas.org)
  • In addition, the recognition sequence is short and self-complementary oligodeoxyribonucleotides that are only eight base pairs long and contain the recognition sequence are substrates for the enzymes thereby allowing simple substrates and their analogues to be examined. (illinois.edu)
  • Changes in the AGT active site pocket can therefore affect the preference for repair of O 6 -benzyl or - methyl groups when present in an oligodeoxyribonucleotide without altering the reaction with free O 6 -benzylguanine. (elsevier.com)
  • Partially phosphate-methylated oligodeoxyribonucleotides have been synthesized on an oxalyl-CPG derivatized support using an isopropoxyacetyl group for the protection of the exocyclic amine of the nucleic bases. (cnrs-orleans.fr)
  • Self-complementary oligodeoxyribonucleotides with base analogues in the EcoR1 recognition sequence were synthesized by a general method that allows incorporation of the analogues at specific positions in the sequence. (illinois.edu)
  • cDNA clones corresponding to two alleles of the ADH3 locus were identified by hybridization with synthetic oligodeoxyribonucleotides specific for class I human liver alcohol dehydrogenase. (saladgaffe.ml)