The muscles that move the eye. Included in this group are the medial rectus, lateral rectus, superior rectus, inferior rectus, inferior oblique, superior oblique, musculus orbitalis, and levator palpebrae superioris.
Contractile tissue that produces movement in animals.
The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN.
Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed)
A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles.
Large, multinucleate single cells, either cylindrical or prismatic in shape, that form the basic unit of SKELETAL MUSCLE. They consist of MYOFIBRILS enclosed within and attached to the SARCOLEMMA. They are derived from the fusion of skeletal myoblasts (MYOBLASTS, SKELETAL) into a syncytium, followed by differentiation.
The nonstriated involuntary muscle tissue of blood vessels.
Developmental events leading to the formation of adult muscular system, which includes differentiation of the various types of muscle cell precursors, migration of myoblasts, activation of myogenesis and development of muscle anchorage.
A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments.
A state arrived at through prolonged and strong contraction of a muscle. Studies in athletes during prolonged submaximal exercise have shown that muscle fatigue increases in almost direct proportion to the rate of muscle glycogen depletion. Muscle fatigue in short-term maximal exercise is associated with oxygen lack and an increased level of blood and muscle lactic acid, and an accompanying increase in hydrogen-ion concentration in the exercised muscle.
Skeletal muscle fibers characterized by their expression of the Type II MYOSIN HEAVY CHAIN isoforms which have high ATPase activity and effect several other functional properties - shortening velocity, power output, rate of tension redevelopment. Several fast types have been identified.
The resection or removal of the innervation of a muscle or muscle tissue.
Skeletal muscle fibers characterized by their expression of the Type I MYOSIN HEAVY CHAIN isoforms which have low ATPase activity and effect several other functional properties - shortening velocity, power output, rate of tension redevelopment.
Non-striated, elongated, spindle-shaped cells found lining the digestive tract, uterus, and blood vessels. They are derived from specialized myoblasts (MYOBLASTS, SMOOTH MUSCLE).
Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available.
The neck muscles consist of the platysma, splenius cervicis, sternocleidomastoid(eus), longus colli, the anterior, medius, and posterior scalenes, digastric(us), stylohyoid(eus), mylohyoid(eus), geniohyoid(eus), sternohyoid(eus), omohyoid(eus), sternothyroid(eus), and thyrohyoid(eus).
One of two types of muscle in the body, characterized by the array of bands observed under microscope. Striated muscles can be divided into two subtypes: the CARDIAC MUSCLE and the SKELETAL MUSCLE.
Skeletal muscle structures that function as the MECHANORECEPTORS responsible for the stretch or myotactic reflex (REFLEX, STRETCH). They are composed of a bundle of encapsulated SKELETAL MUSCLE FIBERS, i.e., the intrafusal fibers (nuclear bag 1 fibers, nuclear bag 2 fibers, and nuclear chain fibers) innervated by SENSORY NEURONS.
That phase of a muscle twitch during which a muscle returns to a resting position.
These include the muscles of the DIAPHRAGM and the INTERCOSTAL MUSCLES.
A vague complaint of debility, fatigue, or exhaustion attributable to weakness of various muscles. The weakness can be characterized as subacute or chronic, often progressive, and is a manifestation of many muscle and neuromuscular diseases. (From Wyngaarden et al., Cecil Textbook of Medicine, 19th ed, p2251)
Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae.
Muscles forming the ABDOMINAL WALL including RECTUS ABDOMINIS, external and internal oblique muscles, transversus abdominis, and quadratus abdominis. (from Stedman, 25th ed)
The quadriceps femoris. A collective name of the four-headed skeletal muscle of the thigh, comprised of the rectus femoris, vastus intermedius, vastus lateralis, and vastus medialis.
Mature contractile cells, commonly known as myocytes, that form one of three kinds of muscle. The three types of muscle cells are skeletal (MUSCLE FIBERS, SKELETAL), cardiac (MYOCYTES, CARDIAC), and smooth (MYOCYTES, SMOOTH MUSCLE). They are derived from embryonic (precursor) muscle cells called MYOBLASTS.
A masticatory muscle whose action is closing the jaws.
Muscles of facial expression or mimetic muscles that include the numerous muscles supplied by the facial nerve that are attached to and move the skin of the face. (From Stedman, 25th ed)
Muscles arising in the zygomatic arch that close the jaw. Their nerve supply is masseteric from the mandibular division of the trigeminal nerve. (From Stedman, 25th ed)
Respiratory muscles that arise from the lower border of one rib and insert into the upper border of the adjoining rib, and contract during inspiration or respiration. (From Stedman, 25th ed)
Recording of the changes in electric potential of muscle by means of surface or needle electrodes.
Derangement in size and number of muscle fibers occurring with aging, reduction in blood supply, or following immobilization, prolonged weightlessness, malnutrition, and particularly in denervation.
Muscular contractions characterized by increase in tension without change in length.
Elongated, spindle-shaped, quiescent myoblasts lying in close contact with adult skeletal muscle. They are thought to play a role in muscle repair and regeneration.
The pectoralis major and pectoralis minor muscles that make up the upper and fore part of the chest in front of the AXILLA.
Acquired, familial, and congenital disorders of SKELETAL MUSCLE and SMOOTH MUSCLE.
A powerful flexor of the thigh at the hip joint (psoas major) and a weak flexor of the trunk and lumbar spinal column (psoas minor). Psoas is derived from the Greek "psoa", the plural meaning "muscles of the loin". It is a common site of infection manifesting as abscess (PSOAS ABSCESS). The psoas muscles and their fibers are also used frequently in experiments in muscle physiology.
The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES .
A masticatory muscle whose action is closing the jaws; its posterior portion retracts the mandible.
Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73)
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Use of electric potential or currents to elicit biological responses.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The larger subunits of MYOSINS. The heavy chains have a molecular weight of about 230 kDa and each heavy chain is usually associated with a dissimilar pair of MYOSIN LIGHT CHAINS. The heavy chains possess actin-binding and ATPase activity.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
The muscles of the PHARYNX are voluntary muscles arranged in two layers. The external circular layer consists of three constrictors (superior, middle, and inferior). The internal longitudinal layer consists of the palatopharyngeus, the salpingopharyngeus, and the stylopharyngeus. During swallowing, the outer layer constricts the pharyngeal wall and the inner layer elevates pharynx and LARYNX.
Elements of limited time intervals, contributing to particular results or situations.
The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION.
The properties, processes, and behavior of biological systems under the action of mechanical forces.
Neurons which activate MUSCLE CELLS.
Glycogen is a multibranched polysaccharide of glucose serving as the primary form of energy storage in animals, fungi, and bacteria, stored mainly in liver and muscle tissues. (Two sentences combined as per your request)
The synapse between a neuron and a muscle.
Muscular Dystrophy, Animal: A group of genetic disorders causing progressive skeletal muscle weakness and degeneration, characterized by the lack of or defective dystrophin protein, which can also affect other organ systems such as heart and brain, occurring in various forms with different degrees of severity and age of onset, like Duchenne, Becker, Myotonic, Limb-Girdle, and Facioscapulohumeral types, among others.
Embryonic (precursor) cells of the myogenic lineage that develop from the MESODERM. They undergo proliferation, migrate to their various sites, and then differentiate into the appropriate form of myocytes (MYOCYTES, SKELETAL; MYOCYTES, CARDIAC; MYOCYTES, SMOOTH MUSCLE).
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A sustained and usually painful contraction of muscle fibers. This may occur as an isolated phenomenon or as a manifestation of an underlying disease process (e.g., UREMIA; HYPOTHYROIDISM; MOTOR NEURON DISEASE; etc.). (From Adams et al., Principles of Neurology, 6th ed, p1398)
Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
The physiological renewal, repair, or replacement of tissue.
A strain of mice arising from a spontaneous MUTATION (mdx) in inbred C57BL mice. This mutation is X chromosome-linked and produces viable homozygous animals that lack the muscle protein DYSTROPHIN, have high serum levels of muscle ENZYMES, and possess histological lesions similar to human MUSCULAR DYSTROPHY. The histological features, linkage, and map position of mdx make these mice a worthy animal model of DUCHENNE MUSCULAR DYSTROPHY.
The repeating contractile units of the MYOFIBRIL, delimited by Z bands along its length.
A growth differentiation factor that is a potent inhibitor of SKELETAL MUSCLE growth. It may play a role in the regulation of MYOGENESIS and in muscle maintenance during adulthood.
A myogenic regulatory factor that controls myogenesis. Though it is not clear how its function differs from the other myogenic regulatory factors, MyoD appears to be related to fusion and terminal differentiation of the muscle cell.
The inferior part of the lower extremity between the KNEE and the ANKLE.
Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included.
Exercises that stretch the muscle fibers with the aim to increase muscle-tendon FLEXIBILITY, improve RANGE OF MOTION or musculoskeletal function, and prevent injuries. There are various types of stretching techniques including active, passive (relaxed), static, dynamic (gentle), ballistic (forced), isometric, and others.
The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow.
Continuous involuntary sustained muscle contraction which is often a manifestation of BASAL GANGLIA DISEASES. When an affected muscle is passively stretched, the degree of resistance remains constant regardless of the rate at which the muscle is stretched. This feature helps to distinguish rigidity from MUSCLE SPASTICITY. (From Adams et al., Principles of Neurology, 6th ed, p73)
Physical activity which is usually regular and done with the intention of improving or maintaining PHYSICAL FITNESS or HEALTH. Contrast with PHYSICAL EXERTION which is concerned largely with the physiologic and metabolic response to energy expenditure.
General increase in bulk of a part or organ due to CELL ENLARGEMENT and accumulation of FLUIDS AND SECRETIONS, not due to tumor formation, nor to an increase in the number of cells (HYPERPLASIA).
A muscle protein localized in surface membranes which is the product of the Duchenne/Becker muscular dystrophy gene. Individuals with Duchenne muscular dystrophy usually lack dystrophin completely while those with Becker muscular dystrophy have dystrophin of an altered size. It shares features with other cytoskeletal proteins such as SPECTRIN and alpha-actinin but the precise function of dystrophin is not clear. One possible role might be to preserve the integrity and alignment of the plasma membrane to the myofibrils during muscle contraction and relaxation. MW 400 kDa.
The time span between the beginning of physical activity by an individual and the termination because of exhaustion.
Precursor cells destined to differentiate into skeletal myocytes (MYOCYTES, SKELETAL).
The main trunk of the systemic arteries.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Fibrous bands or cords of CONNECTIVE TISSUE at the ends of SKELETAL MUSCLE FIBERS that serve to attach the MUSCLES to bones and other structures.
A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Technique for limiting use, activity, or movement by immobilizing or restraining animal by suspending from hindlimbs or tails. This immobilization is used to simulate some effects of reduced gravity and study weightlessness physiology.
The rate dynamics in chemical or physical systems.
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization).
The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time.
The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801)
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
The portion of the leg in humans and other animals found between the HIP and KNEE.
Tumors or cancer located in muscle tissue or specific muscles. They are differentiated from NEOPLASMS, MUSCLE TISSUE which are neoplasms composed of skeletal, cardiac, or smooth muscle tissue, such as MYOSARCOMA or LEIOMYOMA.
A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins.
Two of the masticatory muscles: the internal, or medial, pterygoid muscle and external, or lateral, pterygoid muscle. Action of the former is closing the jaws and that of the latter is opening the jaws, protruding the mandible, and moving the mandible from side to side.
A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research.
The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346)
A heterogeneous group of inherited MYOPATHIES, characterized by wasting and weakness of the SKELETAL MUSCLE. They are categorized by the sites of MUSCLE WEAKNESS; AGE OF ONSET; and INHERITANCE PATTERNS.
Myosin type II isoforms found in skeletal muscle.
An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae.
The cartilaginous and membranous tube descending from the larynx and branching into the right and left main bronchi.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions.
A heterogeneous group of drugs used to produce muscle relaxation, excepting the neuromuscular blocking agents. They have their primary clinical and therapeutic uses in the treatment of muscle spasm and immobility associated with strains, sprains, and injuries of the back and, to a lesser degree, injuries to the neck. They have been used also for the treatment of a variety of clinical conditions that have in common only the presence of skeletal muscle hyperactivity, for example, the muscle spasms that can occur in MULTIPLE SCLEROSIS. (From Smith and Reynard, Textbook of Pharmacology, 1991, p358)
The excitable plasma membrane of a muscle cell. (Glick, Glossary of Biochemistry and Molecular Biology, 1990)
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
A form of muscle hypertonia associated with upper MOTOR NEURON DISEASE. Resistance to passive stretch of a spastic muscle results in minimal initial resistance (a "free interval") followed by an incremental increase in muscle tone. Tone increases in proportion to the velocity of stretch. Spasticity is usually accompanied by HYPERREFLEXIA and variable degrees of MUSCLE WEAKNESS. (From Adams et al., Principles of Neurology, 6th ed, p54)
An X-linked recessive muscle disease caused by an inability to synthesize DYSTROPHIN, which is involved with maintaining the integrity of the sarcolemma. Muscle fibers undergo a process that features degeneration and regeneration. Clinical manifestations include proximal weakness in the first few years of life, pseudohypertrophy, cardiomyopathy (see MYOCARDIAL DISEASES), and an increased incidence of impaired mentation. Becker muscular dystrophy is a closely related condition featuring a later onset of disease (usually adolescence) and a slowly progressive course. (Adams et al., Principles of Neurology, 6th ed, p1415)
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The rotational force about an axis that is equal to the product of a force times the distance from the axis where the force is applied.
Inflammation of a muscle or muscle tissue.
A myogenic regulatory factor that controls myogenesis. Myogenin is induced during differentiation of every skeletal muscle cell line that has been investigated, in contrast to the other myogenic regulatory factors that only appear in certain cell types.
A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.
Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA.
An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996)
A device that measures MUSCLE STRENGTH during muscle contraction, such as gripping, pushing, and pulling. It is used to evaluate the health status of muscle in sports medicine or physical therapy.
An intermediate filament protein found predominantly in smooth, skeletal, and cardiac muscle cells. Localized at the Z line. MW 50,000 to 55,000 is species dependent.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.
The chemical reactions involved in the production and utilization of various forms of energy in cells.
Myosin type II isoforms found in smooth muscle.
Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology.
The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
Reflex contraction of a muscle in response to stretching, which stimulates muscle proprioceptors.
Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
A protein found in the thin filaments of muscle fibers. It inhibits contraction of the muscle unless its position is modified by TROPONIN.
The measurement of an organ in volume, mass, or heaviness.
A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area.
The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
The flow of BLOOD through or around an organ or region of the body.
Different forms of a protein that may be produced from different GENES, or from the same gene by ALTERNATIVE SPLICING.
A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system.
The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms.
An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Progressive decline in muscle mass due to aging which results in decreased functional capacity of muscles.
Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods.
A general term encompassing lower MOTOR NEURON DISEASE; PERIPHERAL NERVOUS SYSTEM DISEASES; and certain MUSCULAR DISEASES. Manifestations include MUSCLE WEAKNESS; FASCICULATION; muscle ATROPHY; SPASM; MYOKYMIA; MUSCLE HYPERTONIA, myalgias, and MUSCLE HYPOTONIA.
A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc.
Thick triangular muscle in the SHOULDER whose function is to abduct, flex, and extend the arm. It is a common site of INTRAMUSCULAR INJECTIONS.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The hollow, muscular organ that maintains the circulation of the blood.
A normal intermediate in the fermentation (oxidation, metabolism) of sugar. The concentrated form is used internally to prevent gastrointestinal fermentation. (From Stedman, 26th ed)
A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
A family of muscle-specific transcription factors which bind to DNA in control regions and thus regulate myogenesis. All members of this family contain a conserved helix-loop-helix motif which is homologous to the myc family proteins. These factors are only found in skeletal muscle. Members include the myoD protein (MYOD PROTEIN); MYOGENIN; myf-5, and myf-6 (also called MRF4 or herculin).
The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors.
An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
A glucose transport protein found in mature MUSCLE CELLS and ADIPOCYTES. It promotes transport of glucose from the BLOOD into target TISSUES. The inactive form of the protein is localized in CYTOPLASMIC VESICLES. In response to INSULIN, it is translocated to the PLASMA MEMBRANE where it facilitates glucose uptake.
Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen.
A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.

Optimality of position commands to horizontal eye muscles: A test of the minimum-norm rule. (1/1100)

Six muscles control the position of the eye, which has three degrees of freedom. Daunicht proposed an optimization rule for solving this redundancy problem, whereby small changes in eye position are maintained by the minimum possible change in motor commands to the eye (the minimum-norm rule). The present study sought to test this proposal for the simplified one-dimensional case of small changes in conjugate eye position in the horizontal plane. Assuming such changes involve only the horizontal recti, Daunicht's hypothesis predicts reciprocal innervation with the size of the change in command matched to the strength of the recipient muscle at every starting position of the eye. If the motor command to a muscle is interpreted as the summed firing rate of its oculomotor neuron (OMN) pool, the minimum-norm prediction can be tested by comparing OMN firing rates with forces in the horizontal recti. The comparison showed 1) for the OMN firing rates given by Van Gisbergen and Van Opstal and the muscle forces given by Robinson, there was good agreement between the minimum-norm prediction and experimental observation over about a +/-30 degrees range of eye positions. This fit was robust with respect to variations in muscle stiffness and in methods of calculating muscle innervation. 2) Other data sets gave different estimates for the range of eye-positions within which the minimum-norm prediction held. The main sources of variation appeared to be disagreement about the proportion of OMNs with very low firing-rate thresholds (i.e., less than approximately 35 degrees in the OFF direction) and uncertainty about eye-muscle behavior for extreme (>30 degrees ) positions of the eye. 3) For all data sets, the range of eye positions over which the minimum-norm rule applied was determined by the pattern of motor-unit recruitment inferred for those data. It corresponded to the range of eye positions over which the size principle of recruitment was obeyed by both agonist and antagonist muscles. It is argued that the current best estimate of the oculomotor range over which minimum-norm control could be used for conjugate horizontal eye position is approximately +/-30 degrees. The uncertainty associated with this estimate would be reduced by obtaining unbiased samples of OMN firing rates. Minimum-norm control may result from reduction of the image movement produced by noise in OMN firing rates.  (+info)

Electrical stimulation as a therapeutic option to improve eyelid function in chronic facial nerve disorders. (2/1100)

PURPOSE: To establish whether it is possible to improve orbicularis oculi muscle function in the eyelids of patients with a chronic seventh cranial nerve palsy by using transcutaneous electrical stimulation to the point at which electrical stimulation induces a functional blink. METHODS: Ten subjects (one woman, nine men) aged 36 to 76 with chronic, moderate to severe facial nerve palsy were recruited into the study. Voluntary and spontaneous eyelid movements were assessed, using an optical measuring system, before, during, and after a 3-month treatment period. Voluntary and spontaneous lid velocities were also measured and compared with eyelid kinematic data in normal subjects (12 women, 18 men; age range, 22-56 years). RESULTS: Therapeutic electrical stimulation applied over 3 months produced improvement in eyelid movement (>2 mm) in 8 of 10 patients during voluntary eyelid closure. However, there was no significant improvement recorded in spontaneous blink amplitudes or peak downward-phase velocity of the upper eyelid. This regimen of stimulation failed to recover function well enough that a functional blink could be induced in the paretic eyelid by electrical stimulation. CONCLUSIONS: Electrical stimulation using transcutaneous electrical nerve stimulators units can improve voluntary eye closure, apparently because of a reduction in stiffness of eyelid mechanics, rather than an improvement of muscle function. Investigation of alternative stimulation regimens is warranted.  (+info)

Microstimulation of the lateral wall of the intraparietal sulcus compared with the frontal eye field during oculomotor tasks. (3/1100)

We compared the effects of intracortical microstimulation (ICMS) of the lateral wall of the intraparietal sulcus (LIP) with those of ICMS of the frontal eye field (FEF) on monkeys performing oculomotor tasks. When ICMS was applied during a task that involved fixation, contraversive saccades evoked in the LIP and FEF appeared similar. When ICMS was applied to the FEF at the onset of voluntary saccades, the evoked saccades collided with the ongoing voluntary saccade so that the trajectory of voluntary saccade was compensated by the stimulus. Thus the resultant saccade was redirected and came close to the endpoint of saccades evoked from the fixation point before the start of voluntary saccade. In contrast, when ICMS was applied to the LIP at the onset of voluntary saccades, the resultant saccade followed a trajectory that was different from that evoked from the FEF. In that case, the colliding saccades were redirected toward an endpoint that was close to the endpoint of saccades evoked when animals were already fixating at the target of the voluntary saccade. This finding suggests that the colliding saccade was directed toward an endpoint calculated with reference to the target of the voluntary saccade. We hypothesize that, shortly before initiation of voluntary saccades, a dynamic process occurs in the LIP so that the reference point for calculating the saccade target shifts from the fixation point to the target of a voluntary saccade. Such predictive updating of reference points seems useful for immediate reprogramming of upcoming saccades that can occur in rapid succession.  (+info)

Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism. (4/1100)

OBJECTIVE: To investigate the functional integrity of cerebellar and frontal systems in autism using oculomotor paradigms. BACKGROUND: Cerebellar and neocortical systems models of autism have been proposed. Courchesne and colleagues have argued that cognitive deficits such as shifting attention disturbances result from dysfunction of vermal lobules VI and VII. Such a vermal deficit should be associated with dysmetric saccadic eye movements because of the major role these areas play in guiding the motor precision of saccades. In contrast, neocortical models of autism predict intact saccade metrics, but impairments on tasks requiring the higher cognitive control of saccades. METHODS: A total of 26 rigorously diagnosed nonmentally retarded autistic subjects and 26 matched healthy control subjects were assessed with a visually guided saccade task and two volitional saccade tasks, the oculomotor delayed-response task and the antisaccade task. RESULTS: Metrics and dynamics of the visually guided saccades were normal in autistic subjects, documenting the absence of disturbances in cerebellar vermal lobules VI and VII and in automatic shifts of visual attention. Deficits were demonstrated on both volitional saccade tasks, indicating dysfunction in the circuitry of prefrontal cortex and its connections with the parietal cortex, and associated cognitive impairments in spatial working memory and in the ability to voluntarily suppress context-inappropriate responses. CONCLUSIONS: These findings demonstrate intrinsic neocortical, not cerebellar, dysfunction in autism, and parallel deficits in higher order cognitive mechanisms and not in elementary attentional and sensorimotor systems in autism.  (+info)

Ocular development and involution in the European cave salamander, Proteus anguinus laurenti. (5/1100)

The anatomy and development of the eye of Proteus anguinus are described. The relationships between organogenesis of the eye in embryos and larva and its involution in the young and the adult are discussed. The availability (in breeding cultures) of a significant number of Proteus embryos (which are normally rare) allowed experimental analysis of the effects of light, xenoplastic differentiation and thyroid hormones on the development of the eye. The results of this study suggest that development and involution of the eye of Proteus are controlled by genetic factors which are not greatly influenced by environment, and one can, therefore, consider the microphthalmy of Proteus as a relict characteristic which is the result of a specific development with disturbance of the normal ontogenic process.  (+info)

Discharge profiles of abducens, accessory abducens, and orbicularis oculi motoneurons during reflex and conditioned blinks in alert cats. (6/1100)

The discharge profiles of identified abducens, accessory abducens, and orbicularis oculi motoneurons have been recorded extra- and intracellularly in alert behaving cats during spontaneous, reflexively evoked, and classically conditioned eyelid responses. The movement of the upper lid and the electromyographic activity of the orbicularis oculi muscle also were recorded. Animals were conditioned by short, weak air puffs or 350-ms tones as conditioned stimuli (CS) and long, strong air puffs as unconditioned stimulus (US) using both trace and delayed conditioning paradigms. Motoneurons were identified by antidromic activation from their respective cranial nerves. Orbicularis oculi and accessory abducens motoneurons fired an early, double burst of action potentials (at 4-6 and 10-16 ms) in response to air puffs or to the electrical stimulation of the supraorbital nerve. Orbicularis oculi, but not accessory abducens, motoneurons fired in response to flash and tone presentations. Only 10-15% of recorded abducens motoneurons fired a late, weak burst after air puff, supraorbital nerve, and flash stimulations. Spontaneous fasciculations of the orbicularis oculi muscle and the activity of single orbicularis oculi motoneurons that generated them also were recorded. The activation of orbicularis oculi motoneurons during the acquisition of classically conditioned eyelid responses happened in a gradual, sequential manner. Initially, some putative excitatory synaptic potentials were observed in the time window corresponding to the CS-US interval; by the second to the fourth conditioning session, some isolated action potentials appeared that increased in number until some small movements were noticed in eyelid position traces. No accessory abducens motoneuron fired and no abducens motoneuron modified their discharge rate for conditioned eyelid responses. The firing of orbicularis oculi motoneurons was related linearly to lid velocity during reflex blinks but to lid position during conditioned responses, a fact indicating the different neural origin and coding of both types of motor commands. The power spectra of both reflex and conditioned lid responses showed a dominant peak at approximately 20 Hz. The wavy appearance of both reflex and conditioned eyelid responses was clearly the result of the high phasic activity of orbicularis oculi motor units. Orbicularis oculi motoneuron membrane potentials oscillated at approximately 20 Hz after supraorbital nerve stimulation and during other reflex and conditioned eyelid movements. The oscillation seemed to be the result of both intrinsic (spike afterhyperpolarization lasting approximately 50 ms, and late depolarizations) and extrinsic properties of the motoneuronal pool and of the circuits involved in eye blinks.  (+info)

Ocular microtremor in patients with idiopathic Parkinson's disease. (7/1100)

Abnormalities in the oculomotor control mechanism of patients with idiopathic Parkinson's disease are well recognised. In this study the effect of Parkinson's disease on tonic output from oculomotor nuclei was studied by using oculomicrotremor as an index of such output. Oculomicrotremor readings were taken from 22 parkinsonian patients and 22 normal healthy volunteers using the piezoelectric strain gauge technique. There was a slower overall tremor frequency, baseline, and burst frequency in the parkinsonian group. There was also a significant increase in the duration of baseline, with a decrease in the number of bursts a second and a decrease in average duration of bursts in the patient group compared with the normal group. One patient, whose medication was withdrawn, showed a marked decrease in mean frequency and baseline frequency with a decrease in number of bursts and increase in baseline duration compared with readings taken when treatment recommenced. These results suggest that variables measured in oculomicrotremor are altered compared with normal subjects, reflecting altered tonic output from oculomotor nuclei in patients with idiopathic Parkinson's disease.  (+info)

Diplopia in a swimmer due to badly fitting goggles. (8/1100)

An unusual effect of badly fitting swimming goggles is described. The goggles pressed on the trochlea of the left eye, interfering with the action of the superior oblique muscle. Diplopia resulted, which took several weeks to resolve.  (+info)

The oculomotor muscles are a group of extraocular muscles that control the movements of the eye. They include:

1. Superior rectus: This muscle is responsible for elevating the eye and helping with inward rotation (intorsion) when looking downwards.
2. Inferior rectus: It depresses the eye and helps with outward rotation (extorsion) when looking upwards.
3. Medial rectus: This muscle adducts, or moves, the eye towards the midline of the face.
4. Inferior oblique: The inferior oblique muscle intorts and elevates the eye.
5. Superior oblique: It extorts and depresses the eye.

These muscles work together to allow for smooth and precise movements of the eyes, enabling tasks such as tracking moving objects, reading, and maintaining visual fixation on a single point in space.

A muscle is a soft tissue in our body that contracts to produce force and motion. It is composed mainly of specialized cells called muscle fibers, which are bound together by connective tissue. There are three types of muscles: skeletal (voluntary), smooth (involuntary), and cardiac. Skeletal muscles attach to bones and help in movement, while smooth muscles are found within the walls of organs and blood vessels, helping with functions like digestion and circulation. Cardiac muscle is the specific type that makes up the heart, allowing it to pump blood throughout the body.

Muscle proteins are a type of protein that are found in muscle tissue and are responsible for providing structure, strength, and functionality to muscles. The two major types of muscle proteins are:

1. Contractile proteins: These include actin and myosin, which are responsible for the contraction and relaxation of muscles. They work together to cause muscle movement by sliding along each other and shortening the muscle fibers.
2. Structural proteins: These include titin, nebulin, and desmin, which provide structural support and stability to muscle fibers. Titin is the largest protein in the human body and acts as a molecular spring that helps maintain the integrity of the sarcomere (the basic unit of muscle contraction). Nebulin helps regulate the length of the sarcomere, while desmin forms a network of filaments that connects adjacent muscle fibers together.

Overall, muscle proteins play a critical role in maintaining muscle health and function, and their dysregulation can lead to various muscle-related disorders such as muscular dystrophy, myopathies, and sarcopenia.

Smooth muscle, also known as involuntary muscle, is a type of muscle that is controlled by the autonomic nervous system and functions without conscious effort. These muscles are found in the walls of hollow organs such as the stomach, intestines, bladder, and blood vessels, as well as in the eyes, skin, and other areas of the body.

Smooth muscle fibers are shorter and narrower than skeletal muscle fibers and do not have striations or sarcomeres, which give skeletal muscle its striped appearance. Smooth muscle is controlled by the autonomic nervous system through the release of neurotransmitters such as acetylcholine and norepinephrine, which bind to receptors on the smooth muscle cells and cause them to contract or relax.

Smooth muscle plays an important role in many physiological processes, including digestion, circulation, respiration, and elimination. It can also contribute to various medical conditions, such as hypertension, gastrointestinal disorders, and genitourinary dysfunction, when it becomes overactive or underactive.

Skeletal muscle, also known as striated or voluntary muscle, is a type of muscle that is attached to bones by tendons or aponeuroses and functions to produce movements and support the posture of the body. It is composed of long, multinucleated fibers that are arranged in parallel bundles and are characterized by alternating light and dark bands, giving them a striped appearance under a microscope. Skeletal muscle is under voluntary control, meaning that it is consciously activated through signals from the nervous system. It is responsible for activities such as walking, running, jumping, and lifting objects.

Skeletal muscle fibers, also known as striated muscle fibers, are the type of muscle cells that make up skeletal muscles, which are responsible for voluntary movements of the body. These muscle fibers are long, cylindrical, and multinucleated, meaning they contain multiple nuclei. They are surrounded by a connective tissue layer called the endomysium, and many fibers are bundled together into fascicles, which are then surrounded by another layer of connective tissue called the perimysium.

Skeletal muscle fibers are composed of myofibrils, which are long, thread-like structures that run the length of the fiber. Myofibrils contain repeating units called sarcomeres, which are responsible for the striated appearance of skeletal muscle fibers. Sarcomeres are composed of thick and thin filaments, which slide past each other during muscle contraction to shorten the sarcomere and generate force.

Skeletal muscle fibers can be further classified into two main types based on their contractile properties: slow-twitch (type I) and fast-twitch (type II). Slow-twitch fibers have a high endurance capacity and are used for sustained, low-intensity activities such as maintaining posture. Fast-twitch fibers, on the other hand, have a higher contractile speed and force generation capacity but fatigue more quickly and are used for powerful, explosive movements.

A smooth muscle within the vascular system refers to the involuntary, innervated muscle that is found in the walls of blood vessels. These muscles are responsible for controlling the diameter of the blood vessels, which in turn regulates blood flow and blood pressure. They are called "smooth" muscles because their individual muscle cells do not have the striations, or cross-striped patterns, that are observed in skeletal and cardiac muscle cells. Smooth muscle in the vascular system is controlled by the autonomic nervous system and by hormones, and can contract or relax slowly over a period of time.

Muscle development, also known as muscle hypertrophy, refers to the increase in size and mass of the muscles through a process called myofiber growth. This is primarily achieved through resistance or strength training exercises that cause micro-tears in the muscle fibers, leading to an inflammatory response and the release of hormones that promote muscle growth. As the muscles repair themselves, they become larger and stronger than before. Proper nutrition, including adequate protein intake, and rest are also essential components of muscle development.

It is important to note that while muscle development can lead to an increase in strength and muscular endurance, it does not necessarily result in improved athletic performance or overall fitness. A well-rounded exercise program that includes cardiovascular activity, flexibility training, and resistance exercises is recommended for optimal health and fitness outcomes.

Muscle contraction is the physiological process in which muscle fibers shorten and generate force, leading to movement or stability of a body part. This process involves the sliding filament theory where thick and thin filaments within the sarcomeres (the functional units of muscles) slide past each other, facilitated by the interaction between myosin heads and actin filaments. The energy required for this action is provided by the hydrolysis of adenosine triphosphate (ATP). Muscle contractions can be voluntary or involuntary, and they play a crucial role in various bodily functions such as locomotion, circulation, respiration, and posture maintenance.

Muscle fatigue is a condition characterized by a reduction in the ability of a muscle to generate force or power, typically after prolonged or strenuous exercise. It is often accompanied by sensations of tiredness, weakness, and discomfort in the affected muscle(s). The underlying mechanisms of muscle fatigue are complex and involve both peripheral factors (such as changes in muscle metabolism, ion handling, and neuromuscular transmission) and central factors (such as changes in the nervous system's ability to activate muscles). Muscle fatigue can also occur as a result of various medical conditions or medications that impair muscle function.

Fast-twitch muscle fibers, also known as type II fibers, are a type of skeletal muscle fiber that are characterized by their rapid contraction and relaxation rates. These fibers have a larger diameter and contain a higher concentration of glycogen, which serves as a quick source of energy for muscle contractions. Fast-twitch fibers are further divided into two subcategories: type IIa and type IIb (or type IIx). Type IIa fibers have a moderate amount of mitochondria and can utilize both aerobic and anaerobic metabolic pathways, making them fatigue-resistant. Type IIb fibers, on the other hand, have fewer mitochondria and primarily use anaerobic metabolism, leading to faster fatigue. Fast-twitch fibers are typically used in activities that require quick, powerful movements such as sprinting or weightlifting.

Muscle denervation is a medical term that refers to the loss of nerve supply to a muscle or group of muscles. This can occur due to various reasons, such as injury to the nerves, nerve compression, or certain medical conditions like neuromuscular disorders. When the nerve supply to the muscle is interrupted, it can lead to muscle weakness, atrophy (wasting), and ultimately, paralysis.

In denervation, the communication between the nervous system and the muscle is disrupted, which means that the muscle no longer receives signals from the brain to contract and move. Over time, this can result in significant muscle wasting and disability, depending on the severity and extent of the denervation.

Denervation may be treated with various therapies, including physical therapy, medication, or surgical intervention, such as nerve grafting or muscle transfers, to restore function and prevent further muscle wasting. The specific treatment approach will depend on the underlying cause and severity of the denervation.

Slow-twitch muscle fibers, also known as type I muscle fibers, are specialized skeletal muscle cells that contract relatively slowly and generate less force than fast-twitch fibers. However, they can maintain contraction for longer periods of time and have a higher resistance to fatigue. These fibers primarily use oxygen and aerobic metabolism to produce energy, making them highly efficient during prolonged, lower-intensity activities such as long-distance running or cycling. Slow-twitch muscle fibers also have an abundant blood supply, which allows for efficient delivery of oxygen and removal of waste products.

Smooth muscle myocytes are specialized cells that make up the contractile portion of non-striated, or smooth, muscles. These muscles are found in various organs and structures throughout the body, including the walls of blood vessels, the digestive system, the respiratory system, and the reproductive system.

Smooth muscle myocytes are smaller than their striated counterparts (skeletal and cardiac muscle cells) and have a single nucleus. They lack the distinctive banding pattern seen in striated muscles and instead have a uniform appearance of actin and myosin filaments. Smooth muscle myocytes are controlled by the autonomic nervous system, which allows them to contract and relax involuntarily.

These cells play an essential role in many physiological processes, such as regulating blood flow, moving food through the digestive tract, and facilitating childbirth. They can also contribute to various pathological conditions, including hypertension, atherosclerosis, and gastrointestinal disorders.

Mitochondria in muscle, also known as the "powerhouses" of the cell, are organelles that play a crucial role in generating energy for muscle cells through a process called cellular respiration. They convert the chemical energy found in glucose and oxygen into ATP (adenosine triphosphate), which is the main source of energy used by cells.

Muscle cells contain a high number of mitochondria due to their high energy demands for muscle contraction and relaxation. The number and size of mitochondria in muscle fibers can vary depending on the type of muscle fiber, with slow-twitch, aerobic fibers having more numerous and larger mitochondria than fast-twitch, anaerobic fibers.

Mitochondrial dysfunction has been linked to various muscle disorders, including mitochondrial myopathies, which are characterized by muscle weakness, exercise intolerance, and other symptoms related to impaired energy production in the muscle cells.

Neck muscles, also known as cervical muscles, are a group of muscles that provide movement, support, and stability to the neck region. They are responsible for various functions such as flexion, extension, rotation, and lateral bending of the head and neck. The main neck muscles include:

1. Sternocleidomastoid: This muscle is located on either side of the neck and is responsible for rotating and flexing the head. It also helps in tilting the head to the same side.

2. Trapezius: This large, flat muscle covers the back of the neck, shoulders, and upper back. It is involved in movements like shrugging the shoulders, rotating and extending the head, and stabilizing the scapula (shoulder blade).

3. Scalenes: These three pairs of muscles are located on the side of the neck and assist in flexing, rotating, and laterally bending the neck. They also help with breathing by elevating the first two ribs during inspiration.

4. Suboccipitals: These four small muscles are located at the base of the skull and are responsible for fine movements of the head, such as tilting and rotating.

5. Longus Colli and Longus Capitis: These muscles are deep neck flexors that help with flexing the head and neck forward.

6. Splenius Capitis and Splenius Cervicis: These muscles are located at the back of the neck and assist in extending, rotating, and laterally bending the head and neck.

7. Levator Scapulae: This muscle is located at the side and back of the neck, connecting the cervical vertebrae to the scapula. It helps with rotation, extension, and elevation of the head and scapula.

Striated muscle, also known as skeletal or voluntary muscle, is a type of muscle tissue that is characterized by the presence of distinct light and dark bands, or striations, when viewed under a microscope. These striations correspond to the arrangement of sarcomeres, which are the functional units of muscle fibers.

Striated muscle is under voluntary control, meaning that it is consciously activated by signals from the nervous system. It is attached to bones via tendons and is responsible for producing movements of the body. Striated muscle fibers are multinucleated, meaning that they contain many nuclei, and are composed of numerous myofibrils, which are rope-like structures that run the length of the fiber.

The myofibrils are composed of thick and thin filaments that slide past each other to cause muscle contraction. The thick filaments are made up of the protein myosin, while the thin filaments are composed of actin, tropomyosin, and troponin. When a nerve impulse arrives at the muscle fiber, it triggers the release of calcium ions from the sarcoplasmic reticulum, which bind to troponin and cause a conformational change that exposes the binding sites on actin for myosin. The myosin heads then bind to the actin filaments and pull them towards the center of the sarcomere, causing the muscle fiber to shorten and contract.

Muscle spindles are specialized sensory organs found within the muscle belly, which primarily function as proprioceptors, providing information about the length and rate of change in muscle length. They consist of small, encapsulated bundles of intrafusal muscle fibers that are interspersed among the extrafusal muscle fibers (the ones responsible for force generation).

Muscle spindles have two types of sensory receptors called primary and secondary endings. Primary endings are located near the equatorial region of the intrafusal fiber, while secondary endings are situated more distally. These endings detect changes in muscle length and transmit this information to the central nervous system (CNS) through afferent nerve fibers.

The activation of muscle spindles plays a crucial role in reflexive responses, such as the stretch reflex (myotatic reflex), which helps maintain muscle tone and joint stability. Additionally, they contribute to our sense of body position and movement awareness, known as kinesthesia.

Muscle relaxation, in a medical context, refers to the process of reducing tension and promoting relaxation in the skeletal muscles. This can be achieved through various techniques, including progressive muscle relaxation (PMR), where individuals consciously tense and then release specific muscle groups in a systematic manner.

PMR has been shown to help reduce anxiety, stress, and muscle tightness, and improve overall well-being. It is often used as a complementary therapy in conjunction with other treatments for conditions such as chronic pain, headaches, and insomnia.

Additionally, muscle relaxation can also be facilitated through pharmacological interventions, such as the use of muscle relaxant medications. These drugs work by inhibiting the transmission of signals between nerves and muscles, leading to a reduction in muscle tone and spasticity. They are commonly used to treat conditions such as multiple sclerosis, cerebral palsy, and spinal cord injuries.

Respiratory muscles are a group of muscles involved in the process of breathing. They include the diaphragm, intercostal muscles (located between the ribs), scalene muscles (located in the neck), and abdominal muscles. These muscles work together to allow the chest cavity to expand or contract, which draws air into or pushes it out of the lungs. The diaphragm is the primary muscle responsible for breathing, contracting to increase the volume of the chest cavity and draw air into the lungs during inhalation. The intercostal muscles help to further expand the ribcage, while the abdominal muscles assist in exhaling by compressing the abdomen and pushing up on the diaphragm.

Muscle weakness is a condition in which muscles cannot develop the expected level of physical force or power. This results in reduced muscle function and can be caused by various factors, including nerve damage, muscle diseases, or hormonal imbalances. Muscle weakness may manifest as difficulty lifting objects, maintaining posture, or performing daily activities. It is essential to consult a healthcare professional for proper diagnosis and treatment of muscle weakness.

Papillary muscles are specialized muscle structures located in the heart, specifically in the ventricles (the lower chambers of the heart). They are attached to the tricuspid and mitral valves' leaflets via tendinous cords, also known as chordae tendineae. The main function of papillary muscles is to prevent the backflow of blood during contraction by providing tension to the valve leaflets through these tendinous cords.

There are two sets of papillary muscles in the heart:

1. Anterior and posterior papillary muscles in the left ventricle, which are attached to the mitral (bicuspid) valve.
2. Three smaller papillary muscles in the right ventricle, which are attached to the tricuspid valve.

These muscle structures play a crucial role in maintaining proper blood flow through the heart and ensuring efficient cardiac function.

The abdominal muscles, also known as the abdominals or abs, are a group of muscles in the anterior (front) wall of the abdominopelvic cavity. They play a crucial role in maintaining posture, supporting the trunk, and facilitating movement of the torso. The main abdominal muscles include:

1. Rectus Abdominis: These are the pair of long, flat muscles that run vertically along the middle of the anterior abdominal wall. They are often referred to as the "six-pack" muscles due to their visible, segmented appearance in well-trained individuals. The primary function of the rectus abdominis is to flex the spine, allowing for actions such as sitting up from a lying down position or performing a crunch exercise.

2. External Obliques: These are the largest and most superficial of the oblique muscles, located on the lateral (side) aspects of the abdominal wall. They run diagonally downward and forward from the lower ribs to the iliac crest (the upper part of the pelvis) and the pubic tubercle (a bony prominence at the front of the pelvis). The external obliques help rotate and flex the trunk, as well as assist in side-bending and exhalation.

3. Internal Obliques: These muscles lie deep to the external obliques and run diagonally downward and backward from the lower ribs to the iliac crest, pubic tubercle, and linea alba (the strong band of connective tissue that runs vertically along the midline of the abdomen). The internal obliques help rotate and flex the trunk, as well as assist in forced exhalation and increasing intra-abdominal pressure during actions such as coughing or lifting heavy objects.

4. Transversus Abdominis: This is the deepest of the abdominal muscles, located inner to both the internal obliques and the rectus sheath (a strong, fibrous covering that surrounds the rectus abdominis). The transversus abdominis runs horizontally around the abdomen, attaching to the lower six ribs, the thoracolumbar fascia (a broad sheet of connective tissue spanning from the lower back to the pelvis), and the pubic crest (the front part of the pelvic bone). The transversus abdominis helps maintain core stability by compressing the abdominal contents and increasing intra-abdominal pressure.

Together, these muscles form the muscular "corset" of the abdomen, providing support, stability, and flexibility to the trunk. They also play a crucial role in respiration, posture, and various movements such as bending, twisting, and lifting.

The Quadriceps muscle, also known as the Quadriceps Femoris, is a large muscle group located in the front of the thigh. It consists of four individual muscles - the Rectus Femoris, Vastus Lateralis, Vastus Intermedius, and Vastus Medialis. These muscles work together to extend the leg at the knee joint and flex the thigh at the hip joint. The Quadriceps muscle is crucial for activities such as walking, running, jumping, and kicking.

Muscle cells, also known as muscle fibers, are specialized cells that have the ability to contract and generate force, allowing for movement of the body and various internal organ functions. There are three main types of muscle tissue: skeletal, cardiac, and smooth.

Skeletal muscle cells are voluntary striated muscles attached to bones, enabling body movements and posture. They are multinucleated, with numerous nuclei located at the periphery of the cell. These cells are often called muscle fibers and can be quite large, extending the entire length of the muscle.

Cardiac muscle cells form the contractile tissue of the heart. They are also striated but have a single nucleus per cell and are interconnected by specialized junctions called intercalated discs, which help coordinate contraction throughout the heart.

Smooth muscle cells are found in various internal organs such as the digestive, respiratory, and urinary tracts, blood vessels, and the reproductive system. They are involuntary, non-striated muscles that control the internal organ functions. Smooth muscle cells have a single nucleus per cell and can either be spindle-shaped or stellate (star-shaped).

In summary, muscle cells are specialized contractile cells responsible for movement and various internal organ functions in the human body. They can be categorized into three types: skeletal, cardiac, and smooth, based on their structure, location, and function.

The masseter muscle is a strong chewing muscle in the jaw. It is a broad, thick, quadrilateral muscle that extends from the zygomatic arch (cheekbone) to the lower jaw (mandible). The masseter muscle has two distinct parts: the superficial part and the deep part.

The superficial part of the masseter muscle originates from the lower border of the zygomatic process of the maxilla and the anterior two-thirds of the inferior border of the zygomatic arch. The fibers of this part run almost vertically downward to insert on the lateral surface of the ramus of the mandible and the coronoid process.

The deep part of the masseter muscle originates from the deep surface of the zygomatic arch and inserts on the medial surface of the ramus of the mandible, blending with the temporalis tendon.

The primary function of the masseter muscle is to elevate the mandible, helping to close the mouth and clench the teeth together during mastication (chewing). It also plays a role in stabilizing the jaw during biting and speaking. The masseter muscle is one of the most powerful muscles in the human body relative to its size.

Facial muscles, also known as facial nerves or cranial nerve VII, are a group of muscles responsible for various expressions and movements of the face. These muscles include:

1. Orbicularis oculi: muscle that closes the eyelid and raises the upper eyelid
2. Corrugator supercilii: muscle that pulls the eyebrows down and inward, forming wrinkles on the forehead
3. Frontalis: muscle that raises the eyebrows and forms horizontal wrinkles on the forehead
4. Procerus: muscle that pulls the medial ends of the eyebrows downward, forming vertical wrinkles between the eyebrows
5. Nasalis: muscle that compresses or dilates the nostrils
6. Depressor septi: muscle that pulls down the tip of the nose
7. Levator labii superioris alaeque nasi: muscle that raises the upper lip and flares the nostrils
8. Levator labii superioris: muscle that raises the upper lip
9. Zygomaticus major: muscle that raises the corner of the mouth, producing a smile
10. Zygomaticus minor: muscle that raises the nasolabial fold and corner of the mouth
11. Risorius: muscle that pulls the angle of the mouth laterally, producing a smile
12. Depressor anguli oris: muscle that pulls down the angle of the mouth
13. Mentalis: muscle that raises the lower lip and forms wrinkles on the chin
14. Buccinator: muscle that retracts the cheek and helps with chewing
15. Platysma: muscle that depresses the corner of the mouth and wrinkles the skin of the neck.

These muscles are innervated by the facial nerve, which arises from the brainstem and exits the skull through the stylomastoid foramen. Damage to the facial nerve can result in facial paralysis or weakness on one or both sides of the face.

Masticatory muscles are a group of skeletal muscles responsible for the mastication (chewing) process in humans and other animals. They include:

1. Masseter muscle: This is the primary muscle for chewing and is located on the sides of the face, running from the lower jawbone (mandible) to the cheekbone (zygomatic arch). It helps close the mouth and elevate the mandible during chewing.

2. Temporalis muscle: This muscle is situated in the temporal region of the skull, covering the temple area. It assists in closing the jaw, retracting the mandible, and moving it sideways during chewing.

3. Medial pterygoid muscle: Located deep within the cheek, near the angle of the lower jaw, this muscle helps move the mandible forward and grind food during chewing. It also contributes to closing the mouth.

4. Lateral pterygoid muscle: Found inside the ramus (the vertical part) of the mandible, this muscle has two heads - superior and inferior. The superior head helps open the mouth by pulling the temporomandibular joint (TMJ) downwards, while the inferior head assists in moving the mandible sideways during chewing.

These muscles work together to enable efficient chewing and food breakdown, preparing it for swallowing and digestion.

The intercostal muscles are a group of muscles located between the ribs (intercostal spaces) in the thoracic region of the body. They play a crucial role in the process of breathing by assisting in the expansion and contraction of the chest wall during inspiration and expiration.

There are two sets of intercostal muscles: the external intercostals and the internal intercostals. The external intercostals run from the lower edge of one rib to the upper edge of the next lower rib, forming a layer that extends from the tubercles of the ribs down to the costochondral junctions (where the rib meets the cartilage). These muscles help elevate the ribcage during inspiration.

The internal intercostals are deeper and run in the opposite direction, originating at the lower edge of a rib and inserting into the upper edge of the next higher rib. They assist in lowering the ribcage during expiration.

Additionally, there is a third layer called the innermost intercostal muscles, which are even deeper than the internal intercostals and have similar functions. The intercostal membranes connect the ends of the ribs and complete the muscle layers between the ribs. Together, these muscles help maintain the structural integrity of the chest wall and contribute to respiratory function.

Electromyography (EMG) is a medical diagnostic procedure that measures the electrical activity of skeletal muscles during contraction and at rest. It involves inserting a thin needle electrode into the muscle to record the electrical signals generated by the muscle fibers. These signals are then displayed on an oscilloscope and may be heard through a speaker.

EMG can help diagnose various neuromuscular disorders, such as muscle weakness, numbness, or pain, and can distinguish between muscle and nerve disorders. It is often used in conjunction with other diagnostic tests, such as nerve conduction studies, to provide a comprehensive evaluation of the nervous system.

EMG is typically performed by a neurologist or a physiatrist, and the procedure may cause some discomfort or pain, although this is usually minimal. The results of an EMG can help guide treatment decisions and monitor the progression of neuromuscular conditions over time.

Muscular atrophy is a condition characterized by a decrease in the size and mass of muscles due to lack of use, disease, or injury. This occurs when there is a disruption in the balance between muscle protein synthesis and degradation, leading to a net loss of muscle proteins. There are two main types of muscular atrophy:

1. Disuse atrophy: This type of atrophy occurs when muscles are not used or are immobilized for an extended period, such as after an injury, surgery, or prolonged bed rest. In this case, the nerves that control the muscles may still be functioning properly, but the muscles themselves waste away due to lack of use.
2. Neurogenic atrophy: This type of atrophy is caused by damage to the nerves that supply the muscles, leading to muscle weakness and wasting. Conditions such as amyotrophic lateral sclerosis (ALS), spinal cord injuries, and peripheral neuropathies can cause neurogenic atrophy.

In both cases, the affected muscles may become weak, shrink in size, and lose their tone and mass. Treatment for muscular atrophy depends on the underlying cause and may include physical therapy, exercise, and medication to manage symptoms and improve muscle strength and function.

Isometric contraction is a type of muscle activation where the muscle contracts without any change in the length of the muscle or movement at the joint. This occurs when the force generated by the muscle matches the external force opposing it, resulting in a balanced state with no visible movement. It is commonly experienced during activities such as holding a heavy object in static position or trying to push against an immovable object. Isometric contractions are important in maintaining posture and providing stability to joints.

Satellite cells in skeletal muscle are undifferentiated stem cells that are crucial for postnatal growth, maintenance, and repair of skeletal muscle. They are located between the basal lamina and plasma membrane of myofibers. In response to muscle damage or injury, satellite cells become activated, proliferate, differentiate into myoblasts, fuse with existing muscle fibers, and contribute to muscle regeneration. Satellite cells also play a role in maintaining muscle homeostasis by fusing with mature muscle fibers to replace damaged proteins and organelles. They are essential for the adaptation of skeletal muscle to various stimuli such as exercise or mechanical load.

The pectoralis muscles are a group of chest muscles that are primarily involved in the movement and stabilization of the shoulder joint. They consist of two individual muscles: the pectoralis major and the pectoralis minor.

1. Pectoralis Major: This is the larger and more superficial of the two muscles, lying just under the skin and fat of the chest wall. It has two heads of origin - the clavicular head arises from the medial half of the clavicle (collarbone), while the sternocostal head arises from the anterior surface of the sternum (breastbone) and the upper six costal cartilages. Both heads insert onto the lateral lip of the bicipital groove of the humerus (upper arm bone). The primary actions of the pectoralis major include flexion, adduction, and internal rotation of the shoulder joint.

2. Pectoralis Minor: This is a smaller, triangular muscle that lies deep to the pectoralis major. It originates from the third, fourth, and fifth ribs near their costal cartilages and inserts onto the coracoid process of the scapula (shoulder blade). The main function of the pectoralis minor is to pull the scapula forward and downward, helping to stabilize the shoulder joint and aiding in deep inspiration during breathing.

Together, these muscles play essential roles in various movements such as pushing, pulling, and hugging, making them crucial for daily activities and athletic performance.

Muscular diseases, also known as myopathies, refer to a group of conditions that affect the functionality and health of muscle tissue. These diseases can be inherited or acquired and may result from inflammation, infection, injury, or degenerative processes. They can cause symptoms such as weakness, stiffness, cramping, spasms, wasting, and loss of muscle function.

Examples of muscular diseases include:

1. Duchenne Muscular Dystrophy (DMD): A genetic disorder that results in progressive muscle weakness and degeneration due to a lack of dystrophin protein.
2. Myasthenia Gravis: An autoimmune disease that causes muscle weakness and fatigue, typically affecting the eyes and face, throat, and limbs.
3. Inclusion Body Myositis (IBM): A progressive muscle disorder characterized by muscle inflammation and wasting, typically affecting older adults.
4. Polymyositis: An inflammatory myopathy that causes muscle weakness and inflammation throughout the body.
5. Metabolic Myopathies: A group of inherited disorders that affect muscle metabolism, leading to exercise intolerance, muscle weakness, and other symptoms.
6. Muscular Dystonias: Involuntary muscle contractions and spasms that can cause abnormal postures or movements.

It is important to note that muscular diseases can have a significant impact on an individual's quality of life, mobility, and overall health. Proper diagnosis and treatment are crucial for managing symptoms and improving outcomes.

The psoas muscles are a pair of muscles that are located in the lower lumbar region of the spine and run through the pelvis to attach to the femur (thigh bone). They are deep muscles, meaning they are located close to the body's core, and are surrounded by other muscles, bones, and organs.

The psoas muscles are composed of two separate muscles: the psoas major and the psoas minor. The psoas major is the larger of the two muscles and originates from the lumbar vertebrae (T12 to L5) and runs through the pelvis to attach to the lesser trochanter of the femur. The psoas minor, which is smaller and tends to be absent in some people, originates from the lower thoracic vertebrae (T12) and upper lumbar vertebrae (L1-L3) and runs down to attach to the iliac fascia and the pectineal line of the pubis.

The primary function of the psoas muscles is to flex the hip joint, which means they help to bring the knee towards the chest. They also play a role in stabilizing the lumbar spine and pelvis during movement. Tightness or weakness in the psoas muscles can contribute to lower back pain, postural issues, and difficulty with mobility and stability.

Myofibrils are the basic contractile units of muscle fibers, composed of highly organized arrays of thick and thin filaments. They are responsible for generating the force necessary for muscle contraction. The thick filaments are primarily made up of the protein myosin, while the thin filaments are mainly composed of actin. Myofibrils are surrounded by a membrane called the sarcolemma and are organized into repeating sections called sarcomeres, which are the functional units of muscle contraction.

The temporalis muscle is a fan-shaped muscle located in the lateral aspect of the head, in the temporal fossa region. It belongs to the group of muscles known as muscles of mastication, responsible for chewing movements. The temporalis muscle has its origin at the temporal fossa and inserts into the coronoid process and ramus of the mandible. Its main function is to retract the mandible and assist in closing the jaw.

A hindlimb, also known as a posterior limb, is one of the pair of extremities that are located distally to the trunk in tetrapods (four-legged vertebrates) and include mammals, birds, reptiles, and amphibians. In humans and other primates, hindlimbs are equivalent to the lower limbs, which consist of the thigh, leg, foot, and toes.

The primary function of hindlimbs is locomotion, allowing animals to move from one place to another. However, they also play a role in other activities such as balance, support, and communication. In humans, the hindlimbs are responsible for weight-bearing, standing, walking, running, and jumping.

In medical terminology, the term "hindlimb" is not commonly used to describe human anatomy. Instead, healthcare professionals use terms like lower limbs or lower extremities to refer to the same region of the body. However, in comparative anatomy and veterinary medicine, the term hindlimb is still widely used to describe the corresponding structures in non-human animals.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Electric stimulation, also known as electrical nerve stimulation or neuromuscular electrical stimulation, is a therapeutic treatment that uses low-voltage electrical currents to stimulate nerves and muscles. It is often used to help manage pain, promote healing, and improve muscle strength and mobility. The electrical impulses can be delivered through electrodes placed on the skin or directly implanted into the body.

In a medical context, electric stimulation may be used for various purposes such as:

1. Pain management: Electric stimulation can help to block pain signals from reaching the brain and promote the release of endorphins, which are natural painkillers produced by the body.
2. Muscle rehabilitation: Electric stimulation can help to strengthen muscles that have become weak due to injury, illness, or surgery. It can also help to prevent muscle atrophy and improve range of motion.
3. Wound healing: Electric stimulation can promote tissue growth and help to speed up the healing process in wounds, ulcers, and other types of injuries.
4. Urinary incontinence: Electric stimulation can be used to strengthen the muscles that control urination and reduce symptoms of urinary incontinence.
5. Migraine prevention: Electric stimulation can be used as a preventive treatment for migraines by applying electrical impulses to specific nerves in the head and neck.

It is important to note that electric stimulation should only be administered under the guidance of a qualified healthcare professional, as improper use can cause harm or discomfort.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Myosin Heavy Chains are the large, essential components of myosin molecules, which are responsible for the molecular motility in muscle cells. These heavy chains have a molecular weight of approximately 200 kDa and form the motor domain of myosin, which binds to actin filaments and hydrolyzes ATP to generate force and movement during muscle contraction. There are several different types of myosin heavy chains, each with specific roles in various tissues and cellular functions. In skeletal and cardiac muscles, for example, myosin heavy chains have distinct isoforms that contribute to the contractile properties of these tissues.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

The pharyngeal muscles, also known as the musculature of the pharynx, are a group of skeletal muscles that make up the walls of the pharynx, which is the part of the throat located just above the esophagus and behind the nasal and oral cavities. These muscles play a crucial role in several vital functions, including:

1. Swallowing (deglutition): The pharyngeal muscles contract in a coordinated sequence to propel food or liquids from the mouth through the pharynx and into the esophagus during swallowing.
2. Speech: The contraction and relaxation of these muscles help shape the sounds produced by the vocal cords, contributing to the production of speech.
3. Respiration: The pharyngeal muscles assist in maintaining an open airway during breathing, especially during sleep and when the upper airways are obstructed.

The pharyngeal muscles consist of three layers: the outer circular muscle layer, the middle longitudinal muscle layer, and the inner inferior constrictor muscle layer. The specific muscles that make up these layers include:

1. Superior constrictor muscle (outer circular layer)
2. Middle constrictor muscle (middle longitudinal layer)
3. Inferior constrictor muscle (inner inferior constrictor layer)
4. Stylopharyngeus muscle
5. Salpingopharyngeus muscle
6. Palatopharyngeus muscle
7. Buccinator muscle (partially contributes to the middle longitudinal layer)

These muscles work together to perform their various functions, and any dysfunction in these muscles can lead to problems like swallowing difficulties (dysphagia), speech impairments, or respiratory issues.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

A diaphragm is a thin, dome-shaped muscle that separates the chest cavity from the abdominal cavity. It plays a vital role in the process of breathing as it contracts and flattens to draw air into the lungs (inhalation) and relaxes and returns to its domed shape to expel air out of the lungs (exhalation).

In addition, a diaphragm is also a type of barrier method of birth control. It is a flexible dome-shaped device made of silicone that fits over the cervix inside the vagina. When used correctly and consistently, it prevents sperm from entering the uterus and fertilizing an egg, thereby preventing pregnancy.

Biomechanics is the application of mechanical laws to living structures and systems, particularly in the field of medicine and healthcare. A biomechanical phenomenon refers to a observable event or occurrence that involves the interaction of biological tissues or systems with mechanical forces. These phenomena can be studied at various levels, from the molecular and cellular level to the tissue, organ, and whole-body level.

Examples of biomechanical phenomena include:

1. The way that bones and muscles work together to produce movement (known as joint kinematics).
2. The mechanical behavior of biological tissues such as bone, cartilage, tendons, and ligaments under various loads and stresses.
3. The response of cells and tissues to mechanical stimuli, such as the way that bone tissue adapts to changes in loading conditions (known as Wolff's law).
4. The biomechanics of injury and disease processes, such as the mechanisms of joint injury or the development of osteoarthritis.
5. The use of mechanical devices and interventions to treat medical conditions, such as orthopedic implants or assistive devices for mobility impairments.

Understanding biomechanical phenomena is essential for developing effective treatments and prevention strategies for a wide range of medical conditions, from musculoskeletal injuries to neurological disorders.

Motor neurons are specialized nerve cells in the brain and spinal cord that play a crucial role in controlling voluntary muscle movements. They transmit electrical signals from the brain to the muscles, enabling us to perform actions such as walking, talking, and swallowing. There are two types of motor neurons: upper motor neurons, which originate in the brain's motor cortex and travel down to the brainstem and spinal cord; and lower motor neurons, which extend from the brainstem and spinal cord to the muscles. Damage or degeneration of these motor neurons can lead to various neurological disorders, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA).

Glycogen is a complex carbohydrate that serves as the primary form of energy storage in animals, fungi, and bacteria. It is a polysaccharide consisting of long, branched chains of glucose molecules linked together by glycosidic bonds. Glycogen is stored primarily in the liver and muscles, where it can be quickly broken down to release glucose into the bloodstream during periods of fasting or increased metabolic demand.

In the liver, glycogen plays a crucial role in maintaining blood glucose levels by releasing glucose when needed, such as between meals or during exercise. In muscles, glycogen serves as an immediate energy source for muscle contractions during intense physical activity. The ability to store and mobilize glycogen is essential for the proper functioning of various physiological processes, including athletic performance, glucose homeostasis, and overall metabolic health.

The neuromuscular junction (NMJ) is the specialized synapse or chemical communication point, where the motor neuron's nerve terminal (presynaptic element) meets the muscle fiber's motor end plate (postsynaptic element). This junction plays a crucial role in controlling muscle contraction and relaxation.

At the NMJ, the neurotransmitter acetylcholine is released from the presynaptic nerve terminal into the synaptic cleft, following an action potential. Acetylcholine then binds to nicotinic acetylcholine receptors on the postsynaptic membrane of the muscle fiber, leading to the generation of an end-plate potential. If sufficient end-plate potentials are generated and summate, they will trigger an action potential in the muscle fiber, ultimately causing muscle contraction.

Dysfunction at the neuromuscular junction can result in various neuromuscular disorders, such as myasthenia gravis, where autoantibodies attack acetylcholine receptors, leading to muscle weakness and fatigue.

I'm sorry for any confusion, but "Muscular Dystrophy, Animal" is not a standard medical term. Muscular Dystrophy is a group of genetic disorders that cause progressive weakness and loss of muscle mass. They are primarily human diseases and there are no known animal models of muscular dystrophy that directly correspond to any type of muscular dystrophy in humans.

However, scientists often use animals (like mice, dogs, and cats) as models for human diseases, including various types of muscular dystrophies. These animal models are used to study the disease process and to test potential treatments. For example, the mdx mouse is a well-known model of Duchenne Muscular Dystrophy (DMD), which is caused by a mutation in the dystrophin gene. This mouse lacks the muscle protein dystrophin, similar to humans with DMD, and shows many of the same symptoms, making it a valuable tool for research.

Myoblasts are types of cells that are responsible for the development and growth of muscle tissue in the body. They are undifferentiated cells, meaning they have not yet developed into their final form or function. Myoblasts fuse together to form myotubes, which then develop into muscle fibers, also known as myofibers. This process is called myogenesis and it plays a crucial role in the growth, repair, and maintenance of skeletal muscle tissue throughout an individual's life.

Myoblasts can be derived from various sources, including embryonic stem cells, induced pluripotent stem cells, or satellite cells, which are adult stem cells found within mature muscle tissue. Satellite cells are typically quiescent but can be activated in response to muscle damage or injury, proliferate and differentiate into myoblasts, and fuse together to repair and replace damaged muscle fibers.

Dysregulation of myogenesis and impaired myoblast function have been implicated in various muscle-related disorders, including muscular dystrophies, sarcopenia, and cachexia. Therefore, understanding the biology of myoblasts and their role in muscle development and regeneration is an important area of research with potential therapeutic implications for muscle-related diseases.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

A muscle cramp is an involuntary and forcibly contracted muscle that does not relax. It can involve partial or complete muscle groups, often occurring in the legs and feet (hamstrings, quadriceps, calves, and foot intrinsic muscles) during or after exercise, at night, or while resting. The exact cause of muscle cramps is unclear, but they can be associated with muscle fatigue, heavy exercising, dehydration, electrolyte imbalances, or underlying medical conditions (e.g., nerve compression or disorders, hormonal imbalances). The primary symptom is a sudden, sharp pain in the affected muscle, which may be visibly tightened and hard to touch. Most muscle cramps resolve on their own within a few minutes, but gentle stretching, massage, or applying heat/cold can help alleviate discomfort.

Actin is a type of protein that forms part of the contractile apparatus in muscle cells, and is also found in various other cell types. It is a globular protein that polymerizes to form long filaments, which are important for many cellular processes such as cell division, cell motility, and the maintenance of cell shape. In muscle cells, actin filaments interact with another type of protein called myosin to enable muscle contraction. Actins can be further divided into different subtypes, including alpha-actin, beta-actin, and gamma-actin, which have distinct functions and expression patterns in the body.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Regeneration in a medical context refers to the process of renewal, restoration, and growth that replaces damaged or missing cells, tissues, organs, or even whole limbs in some organisms. This complex biological process involves various cellular and molecular mechanisms, such as cell proliferation, differentiation, and migration, which work together to restore the structural and functional integrity of the affected area.

In human medicine, regeneration has attracted significant interest due to its potential therapeutic applications in treating various conditions, including degenerative diseases, trauma, and congenital disorders. Researchers are actively studying the underlying mechanisms of regeneration in various model organisms to develop novel strategies for promoting tissue repair and regeneration in humans.

Examples of regeneration in human medicine include liver regeneration after partial hepatectomy, where the remaining liver lobes can grow back to their original size within weeks, and skin wound healing, where keratinocytes migrate and proliferate to close the wound and restore the epidermal layer. However, the regenerative capacity of humans is limited compared to some other organisms, such as planarians and axolotls, which can regenerate entire body parts or even their central nervous system.

'Mice, Inbred mdx' is a genetic strain of laboratory mice that are widely used as a model to study Duchenne muscular dystrophy (DMD), a severe and progressive muscle-wasting disorder in humans. The 'mdx' designation refers to the specific genetic mutation present in these mice, which is a point mutation in the gene encoding for dystrophin, a crucial protein involved in maintaining the structural integrity of muscle fibers.

Inbred mdx mice carry a spontaneous mutation in exon 23 of the dystrophin gene, resulting in the production of a truncated and nonfunctional form of the protein. This leads to a phenotype that closely resembles DMD in humans, including muscle weakness, degeneration, and fibrosis. The inbred nature of these mice ensures consistent genetic backgrounds and disease manifestations, making them valuable tools for studying the pathophysiology of DMD and testing potential therapies.

It is important to note that while the inbred mdx mouse model has been instrumental in advancing our understanding of DMD, it does not fully recapitulate all aspects of the human disease. Therefore, findings from these mice should be carefully interpreted and validated in more complex models or human studies before translating them into clinical applications.

A sarcomere is the basic contractile unit in a muscle fiber, and it's responsible for generating the force necessary for muscle contraction. It is composed of several proteins, including actin and myosin, which slide past each other to shorten the sarcomere during contraction. The sarcomere extends from one Z-line to the next in a muscle fiber, and it is delimited by the Z-discs where actin filaments are anchored. Sarcomeres play a crucial role in the functioning of skeletal, cardiac, and smooth muscles.

Myostatin is a protein that is primarily known for its role in regulating muscle growth. It's also called "growth differentiation factor 8" or GDF-8. Produced by muscle cells, myostatin inhibits the process of muscle growth by preventing the transformation of stem cells into muscle fibers and promoting the breakdown of existing muscle proteins.

In essence, myostatin acts as a negative regulator of muscle mass, keeping it in check to prevent excessive growth. Mutations leading to reduced myostatin activity or expression have been associated with increased muscle mass and strength in both animals and humans, making it a potential target for therapeutic interventions in muscle-wasting conditions such as muscular dystrophy and age-related sarcopenia.

MyoD protein is a member of the family of muscle regulatory factors (MRFs) that play crucial roles in the development and regulation of skeletal muscle. MyoD is a transcription factor, which means it binds to specific DNA sequences and helps control the transcription of nearby genes into messenger RNA (mRNA).

MyoD protein is encoded by the MYOD1 gene and is primarily expressed in skeletal muscle cells, where it functions as a master regulator of muscle differentiation. During myogenesis, MyoD is activated and initiates the expression of various genes involved in muscle-specific functions, such as contractile proteins and ion channels.

MyoD protein can also induce cell cycle arrest and promote the differentiation of non-muscle cells into muscle cells, a process known as transdifferentiation. This property has been explored in regenerative medicine for potential therapeutic applications.

In summary, MyoD protein is a key regulator of skeletal muscle development, differentiation, and maintenance, and it plays essential roles in the regulation of gene expression during myogenesis.

In medical terms, the leg refers to the lower portion of the human body that extends from the knee down to the foot. It includes the thigh (femur), lower leg (tibia and fibula), foot, and ankle. The leg is primarily responsible for supporting the body's weight and enabling movements such as standing, walking, running, and jumping.

The leg contains several important structures, including bones, muscles, tendons, ligaments, blood vessels, nerves, and joints. These structures work together to provide stability, support, and mobility to the lower extremity. Common medical conditions that can affect the leg include fractures, sprains, strains, infections, peripheral artery disease, and neurological disorders.

Physical exertion is defined as the act of applying energy to physically demandable activities or tasks, which results in various body systems working together to produce movement and maintain homeostasis. It often leads to an increase in heart rate, respiratory rate, and body temperature, among other physiological responses. The level of physical exertion can vary based on the intensity, duration, and frequency of the activity.

It's important to note that engaging in regular physical exertion has numerous health benefits, such as improving cardiovascular fitness, strengthening muscles and bones, reducing stress, and preventing chronic diseases like obesity, diabetes, and heart disease. However, it is also crucial to balance physical exertion with adequate rest and recovery time to avoid overtraining or injury.

Muscle stretching exercises are physical movements that aim to gradually lengthen the muscle to its full capacity, beyond its regular resting length, in order to improve flexibility and overall joint mobility. These exercises often involve slowly moving parts of the body into a position that will stretch certain muscles and then maintaining that position for a period of time, typically between 15-30 seconds.

There are various techniques for muscle stretching, including static stretching, dynamic stretching, ballistic stretching, and proprioceptive neuromuscular facilitation (PNF) stretches. Regular practice of these exercises can help enhance athletic performance, reduce the risk of injury, alleviate muscle tension, improve posture, and promote relaxation. However, it's important to perform muscle stretching exercises correctly and consistently, under the guidance of a fitness professional or healthcare provider, to ensure safety and effectiveness.

The myocardium is the middle layer of the heart wall, composed of specialized cardiac muscle cells that are responsible for pumping blood throughout the body. It forms the thickest part of the heart wall and is divided into two sections: the left ventricle, which pumps oxygenated blood to the rest of the body, and the right ventricle, which pumps deoxygenated blood to the lungs.

The myocardium contains several types of cells, including cardiac muscle fibers, connective tissue, nerves, and blood vessels. The muscle fibers are arranged in a highly organized pattern that allows them to contract in a coordinated manner, generating the force necessary to pump blood through the heart and circulatory system.

Damage to the myocardium can occur due to various factors such as ischemia (reduced blood flow), infection, inflammation, or genetic disorders. This damage can lead to several cardiac conditions, including heart failure, arrhythmias, and cardiomyopathy.

Muscle rigidity is a term used to describe an increased resistance to passive movement or muscle tone that is present at rest, which cannot be overcome by the person. It is a common finding in various neurological conditions such as Parkinson's disease, stiff-person syndrome, and tetanus. In these conditions, muscle rigidity can result from hyperexcitability of the stretch reflex arc or abnormalities in the basal ganglia circuitry.

Muscle rigidity should be distinguished from spasticity, which is a velocity-dependent increase in muscle tone that occurs during voluntary movement or passive stretching. Spasticity is often seen in upper motor neuron lesions such as stroke or spinal cord injury.

It's important to note that the assessment of muscle rigidity requires a careful physical examination and may need to be evaluated in conjunction with other signs and symptoms to determine an underlying cause.

Exercise is defined in the medical context as a physical activity that is planned, structured, and repetitive, with the primary aim of improving or maintaining one or more components of physical fitness. Components of physical fitness include cardiorespiratory endurance, muscular strength, muscular endurance, flexibility, and body composition. Exercise can be classified based on its intensity (light, moderate, or vigorous), duration (length of time), and frequency (number of times per week). Common types of exercise include aerobic exercises, such as walking, jogging, cycling, and swimming; resistance exercises, such as weightlifting; flexibility exercises, such as stretching; and balance exercises. Exercise has numerous health benefits, including reducing the risk of chronic diseases, improving mental health, and enhancing overall quality of life.

Hypertrophy, in the context of physiology and pathology, refers to an increase in the size of an organ or tissue due to an enlargement of its constituent cells. It is often used to describe the growth of muscle cells (myocytes) in response to increased workload or hormonal stimulation, resulting in an increase in muscle mass. However, hypertrophy can also occur in other organs such as the heart (cardiac hypertrophy) in response to high blood pressure or valvular heart disease.

It is important to note that while hypertrophy involves an increase in cell size, hyperplasia refers to an increase in cell number. In some cases, both hypertrophy and hyperplasia can occur together, leading to a significant increase in the overall size and function of the organ or tissue.

Dystrophin is a protein that provides structural stability to muscle fibers. It is an essential component of the dystrophin-glycoprotein complex, which helps maintain the integrity of the sarcolemma (the membrane surrounding muscle cells) during muscle contraction and relaxation. Dystrophin plays a crucial role in connecting the cytoskeleton of the muscle fiber to the extracellular matrix, allowing for force transmission and protecting the muscle cell from damage.

Mutations in the DMD gene, which encodes dystrophin, can lead to various forms of muscular dystrophy, including Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). In DMD, a severe form of the disease, genetic alterations typically result in little or no production of functional dystrophin, causing progressive muscle weakness, wasting, and degeneration. In BMD, a milder form of the disorder, partially functional dystrophin is produced, leading to less severe symptoms and later onset of the disease.

Physical endurance is the ability of an individual to withstand and resist physical fatigue over prolonged periods of strenuous activity, exercise, or exertion. It involves the efficient functioning of various body systems, including the cardiovascular system (heart, blood vessels, and blood), respiratory system (lungs and airways), and musculoskeletal system (muscles, bones, tendons, ligaments, and cartilage).

Physical endurance is often measured in terms of aerobic capacity or stamina, which refers to the body's ability to supply oxygen to muscles during sustained physical activity. It can be improved through regular exercise, such as running, swimming, cycling, or weightlifting, that challenges the body's major muscle groups and raises the heart rate for extended periods.

Factors that influence physical endurance include genetics, age, sex, fitness level, nutrition, hydration, sleep quality, stress management, and overall health status. It is essential to maintain good physical endurance to perform daily activities efficiently, reduce the risk of chronic diseases, and enhance overall well-being.

Skeletal myoblasts are the precursor cells responsible for the formation and repair of skeletal muscle fibers. They are also known as satellite cells, located in a quiescent state between the basal lamina and sarcolemma of mature muscle fibers. Upon muscle injury or damage, these cells become activated, proliferate, differentiate into myocytes, align with existing muscle fibers, and fuse to form new muscle fibers or repair damaged ones. This process is crucial for postnatal growth, maintenance, and regeneration of skeletal muscles.

The aorta is the largest artery in the human body, which originates from the left ventricle of the heart and carries oxygenated blood to the rest of the body. It can be divided into several parts, including the ascending aorta, aortic arch, and descending aorta. The ascending aorta gives rise to the coronary arteries that supply blood to the heart muscle. The aortic arch gives rise to the brachiocephalic, left common carotid, and left subclavian arteries, which supply blood to the head, neck, and upper extremities. The descending aorta travels through the thorax and abdomen, giving rise to various intercostal, visceral, and renal arteries that supply blood to the chest wall, organs, and kidneys.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

A tendon is the strong, flexible band of tissue that connects muscle to bone. It helps transfer the force produced by the muscle to allow various movements of our body parts. Tendons are made up of collagen fibers arranged in parallel bundles and have a poor blood supply, making them prone to injuries and slow to heal. Examples include the Achilles tendon, which connects the calf muscle to the heel bone, and the patellar tendon, which connects the kneecap to the shinbone.

Insulin is a hormone produced by the beta cells of the pancreatic islets, primarily in response to elevated levels of glucose in the circulating blood. It plays a crucial role in regulating blood glucose levels and facilitating the uptake and utilization of glucose by peripheral tissues, such as muscle and adipose tissue, for energy production and storage. Insulin also inhibits glucose production in the liver and promotes the storage of excess glucose as glycogen or triglycerides.

Deficiency in insulin secretion or action leads to impaired glucose regulation and can result in conditions such as diabetes mellitus, characterized by chronic hyperglycemia and associated complications. Exogenous insulin is used as a replacement therapy in individuals with diabetes to help manage their blood glucose levels and prevent long-term complications.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Hindlimb suspension is a commonly used animal model in biomedical research, particularly in the study of muscle atrophy and disuse osteoporosis. In this model, the hindlimbs of rodents (such as rats or mice) are suspended using a tape or a harness system, which elevates their limbs off the ground and prevents them from bearing weight. This state of disuse leads to significant changes in the musculoskeletal system, including muscle atrophy, bone loss, and alterations in muscle fiber type composition and architecture.

The hindlimb suspension model is often used to investigate the mechanisms underlying muscle wasting and bone loss in conditions such as spinal cord injury, bed rest, and spaceflight-induced disuse. By understanding these mechanisms, researchers can develop potential therapeutic interventions to prevent or mitigate the negative effects of disuse on the musculoskeletal system.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Membrane potential is the electrical potential difference across a cell membrane, typically for excitable cells such as nerve and muscle cells. It is the difference in electric charge between the inside and outside of a cell, created by the selective permeability of the cell membrane to different ions. The resting membrane potential of a typical animal cell is around -70 mV, with the interior being negative relative to the exterior. This potential is generated and maintained by the active transport of ions across the membrane, primarily through the action of the sodium-potassium pump. Membrane potentials play a crucial role in many physiological processes, including the transmission of nerve impulses and the contraction of muscle cells.

Aging is a complex, progressive and inevitable process of bodily changes over time, characterized by the accumulation of cellular damage and degenerative changes that eventually lead to increased vulnerability to disease and death. It involves various biological, genetic, environmental, and lifestyle factors that contribute to the decline in physical and mental functions. The medical field studies aging through the discipline of gerontology, which aims to understand the underlying mechanisms of aging and develop interventions to promote healthy aging and extend the human healthspan.

"Cat" is a common name that refers to various species of small carnivorous mammals that belong to the family Felidae. The domestic cat, also known as Felis catus or Felis silvestris catus, is a popular pet and companion animal. It is a subspecies of the wildcat, which is found in Europe, Africa, and Asia.

Domestic cats are often kept as pets because of their companionship, playful behavior, and ability to hunt vermin. They are also valued for their ability to provide emotional support and therapy to people. Cats are obligate carnivores, which means that they require a diet that consists mainly of meat to meet their nutritional needs.

Cats are known for their agility, sharp senses, and predatory instincts. They have retractable claws, which they use for hunting and self-defense. Cats also have a keen sense of smell, hearing, and vision, which allow them to detect prey and navigate their environment.

In medical terms, cats can be hosts to various parasites and diseases that can affect humans and other animals. Some common feline diseases include rabies, feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and toxoplasmosis. It is important for cat owners to keep their pets healthy and up-to-date on vaccinations and preventative treatments to protect both the cats and their human companions.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

In the context of human anatomy, the thigh is the part of the lower limb that extends from the hip to the knee. It is the upper and largest portion of the leg and is primarily composed of the femur bone, which is the longest and strongest bone in the human body, as well as several muscles including the quadriceps femoris (front thigh), hamstrings (back thigh), and adductors (inner thigh). The major blood vessels and nerves that supply the lower limb also pass through the thigh.

Muscle neoplasms are abnormal growths or tumors that develop in the muscle tissue. They can be benign (non-cancerous) or malignant (cancerous). Benign muscle neoplasms are typically slow-growing and do not spread to other parts of the body, while malignant muscle neoplasms, also known as soft tissue sarcomas, can grow quickly, invade nearby tissues, and metastasize (spread) to distant parts of the body.

Soft tissue sarcomas can arise from any of the muscles in the body, including the skeletal muscles (voluntary muscles that attach to bones and help with movement), smooth muscles (involuntary muscles found in the walls of blood vessels, digestive tract, and other organs), or cardiac muscle (the specialized muscle found in the heart).

There are many different types of soft tissue sarcomas, each with its own set of characteristics and prognosis. Treatment for muscle neoplasms typically involves a combination of surgery, radiation therapy, and chemotherapy, depending on the type, size, location, and stage of the tumor.

Creatine kinase (CK) is a muscle enzyme that is normally present in small amounts in the blood. It is primarily found in tissues that require a lot of energy, such as the heart, brain, and skeletal muscles. When these tissues are damaged or injured, CK is released into the bloodstream, causing the levels to rise.

Creatine kinase exists in several forms, known as isoenzymes, which can be measured in the blood to help identify the location of tissue damage. The three main isoenzymes are:

1. CK-MM: Found primarily in skeletal muscle
2. CK-MB: Found primarily in heart muscle
3. CK-BB: Found primarily in the brain

Elevated levels of creatine kinase, particularly CK-MB, can indicate damage to the heart muscle, such as occurs with a heart attack. Similarly, elevated levels of CK-BB may suggest brain injury or disease. Overall, measuring creatine kinase levels is a useful diagnostic tool for assessing tissue damage and determining the severity of injuries or illnesses.

The pterygoid muscles are a pair of muscles located in the deep part of the lateral aspect of the nasopharynx, in the human head. They are part of the group of muscles known as the muscles of mastication, which are involved in the chewing process.

There are two sets of pterygoid muscles: the medial and lateral pterygoids. The medial pterygoids are located deep within the jaw, near the temporomandibular joint (TMJ). They originate from the medial surface of the lateral pterygoid plate of the sphenoid bone and insert onto the inner aspect of the angle of the mandible (lower jawbone). The main function of the medial pterygoids is to assist in closing the jaw and moving it forward during chewing.

The lateral pterygoids, on the other hand, are located more superficially than the medial pterygoids and are situated near the TMJ. They have two heads: the upper head originates from the greater wing of the sphenoid bone, while the lower head arises from the lateral surface of the lateral pterygoid plate. The lateral pterygoids insert onto the front part of the neck of the mandible and the disc of the TMJ. Their main function is to assist in opening the jaw and moving it sideways during chewing.

Together, the pterygoid muscles play a crucial role in the movement and function of the jaw, allowing us to chew food effectively and speak clearly.

I must clarify that the term "Guinea Pigs" is not typically used in medical definitions. However, in colloquial or informal language, it may refer to people who are used as the first to try out a new medical treatment or drug. This is known as being a "test subject" or "in a clinical trial."

In the field of scientific research, particularly in studies involving animals, guinea pigs are small rodents that are often used as experimental subjects due to their size, cost-effectiveness, and ease of handling. They are not actually pigs from Guinea, despite their name's origins being unclear. However, they do not exactly fit the description of being used in human medical experiments.

Oxygen consumption, also known as oxygen uptake, is the amount of oxygen that is consumed or utilized by the body during a specific period of time, usually measured in liters per minute (L/min). It is a common measurement used in exercise physiology and critical care medicine to assess an individual's aerobic metabolism and overall health status.

In clinical settings, oxygen consumption is often measured during cardiopulmonary exercise testing (CPET) to evaluate cardiovascular function, pulmonary function, and exercise capacity in patients with various medical conditions such as heart failure, chronic obstructive pulmonary disease (COPD), and other respiratory or cardiac disorders.

During exercise, oxygen is consumed by the muscles to generate energy through a process called oxidative phosphorylation. The amount of oxygen consumed during exercise can provide important information about an individual's fitness level, exercise capacity, and overall health status. Additionally, measuring oxygen consumption can help healthcare providers assess the effectiveness of treatments and rehabilitation programs in patients with various medical conditions.

Muscular dystrophies are a group of genetic disorders that primarily affect skeletal muscles, causing progressive weakness and degeneration. They are characterized by the lack or deficiency of a protein called dystrophin, which is essential for maintaining the integrity of muscle fibers. The most common form is Duchenne muscular dystrophy (DMD), but there are many other types with varying symptoms and severity. Over time, muscle wasting and weakness can lead to disability and shortened lifespan, depending on the type and progression of the disease. Treatment typically focuses on managing symptoms, maintaining mobility, and supporting quality of life.

Skeletal muscle myosin, also known as myosin II, is a type of motor protein that plays a crucial role in muscle contraction. It is a hexameric protein composed of two heavy chains and four light chains. The heavy chains have a head region, which contains the ATPase activity and binds to actin filaments, and a tail region, which forms a coiled-coil structure that allows myosin molecules to self-associate into thick filaments.

During muscle contraction, the myosin heads bind to actin filaments in the sarcomere and undergo a power stroke, which results in the sliding of the actin filaments relative to the myosin filaments and thus shortening of the sarcomere. The ATP hydrolysis provides the energy for this power stroke.

Skeletal muscle myosin is essential for generating force and movement in skeletal muscles, and its dysfunction can lead to various muscle diseases and disorders.

"Anura" is a term used in the field of zoology, particularly in the study of amphibians. It refers to a order that includes frogs and toads. The name "Anura" comes from the Greek language, with "an-" meaning "without," and "oura" meaning "tail." This is a reference to the fact that members of this order lack tails in their adult form.

The Anura order is characterized by several distinct features:

1. They have short, powerful legs that are well adapted for jumping or leaping.
2. Their forelimbs are smaller and less specialized than their hind limbs.
3. Most anurans have a moist, glandular skin, which helps them to breathe and absorb water.
4. Anura includes both aquatic and terrestrial species, with varying degrees of adaptations for each environment.
5. They lay their eggs in water, and their larvae (tadpoles) are aquatic, undergoing a process called metamorphosis to transform into the adult form.

Anura contains approximately 7,000 known species, making it one of the largest orders of vertebrates. They have a cosmopolitan distribution and can be found on every continent except Antarctica. Anurans play essential roles in many ecosystems as both predators and prey, contributing to the regulation of insect populations and serving as indicators of environmental health.

The trachea, also known as the windpipe, is a tube-like structure in the respiratory system that connects the larynx (voice box) to the bronchi (the two branches leading to each lung). It is composed of several incomplete rings of cartilage and smooth muscle, which provide support and flexibility. The trachea plays a crucial role in directing incoming air to the lungs during inspiration and outgoing air to the larynx during expiration.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

The sarcoplasmic reticulum (SR) is a specialized type of smooth endoplasmic reticulum found in muscle cells, particularly in striated muscles such as skeletal and cardiac muscles. It is a complex network of tubules that surrounds the myofibrils, the contractile elements of the muscle fiber.

The primary function of the sarcoplasmic reticulum is to store calcium ions (Ca2+) and regulate their release during muscle contraction and uptake during muscle relaxation. The SR contains a high concentration of calcium-binding proteins, such as calsequestrin, which help to maintain this storage.

The release of calcium ions from the sarcoplasmic reticulum is triggered by an action potential that travels along the muscle fiber's sarcolemma and into the muscle fiber's interior (the sarcoplasm). This action potential causes the voltage-gated calcium channels in the SR membrane, known as ryanodine receptors, to open, releasing Ca2+ ions into the sarcoplasm.

The increased concentration of Ca2+ ions in the sarcoplasm triggers muscle contraction by binding to troponin, a protein associated with actin filaments, causing a conformational change that exposes the active sites on actin for myosin heads to bind and generate force.

After muscle contraction, the calcium ions must be actively transported back into the sarcoplasmic reticulum by Ca2+ ATPase pumps, also known as sarco(endo)plasmic reticulum calcium ATPases (SERCAs). This process helps to lower the concentration of Ca2+ in the sarcoplasm and allows the muscle fiber to relax.

Overall, the sarcoplasmic reticulum plays a crucial role in excitation-contraction coupling, the process by which action potentials trigger muscle contraction.

Central muscle relaxants are a class of pharmaceutical agents that act on the central nervous system (CNS) to reduce skeletal muscle tone and spasticity. These medications do not directly act on the muscles themselves but rather work by altering the messages sent between the brain and the muscles, thereby reducing excessive muscle contraction and promoting relaxation.

Central muscle relaxants are often prescribed for the management of various neuromuscular disorders, such as multiple sclerosis, spinal cord injuries, cerebral palsy, and stroke-induced spasticity. They may also be used to treat acute musculoskeletal conditions like strains, sprains, or other muscle injuries.

Examples of central muscle relaxants include baclofen, tizanidine, cyclobenzaprine, methocarbamol, and diazepam. It is important to note that these medications can have side effects such as drowsiness, dizziness, and impaired cognitive function, so they should be used with caution and under the guidance of a healthcare professional.

Sarcolemma is the medical term for the cell membrane that surrounds a muscle fiber or a skeletal muscle cell. It is responsible for providing protection and structure to the muscle fiber, as well as regulating the movement of ions and other molecules in and out of the cell. The sarcolemma plays a crucial role in the excitation-contraction coupling process that allows muscles to contract and relax.

The sarcolemma is composed of two main layers: the outer plasma membrane, which is similar to the cell membranes of other cells, and the inner basal lamina, which provides structural support and helps to anchor the muscle fiber to surrounding tissues. The sarcolemma also contains various ion channels, receptors, and transporters that are involved in regulating muscle function and communication with other cells.

Damage to the sarcolemma can lead to a variety of muscle disorders, including muscular dystrophy and myasthenia gravis.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

Muscle spasticity is a motor disorder characterized by an involuntary increase in muscle tone, leading to stiffness and difficulty in moving muscles. It is often seen in people with damage to the brain or spinal cord, such as those with cerebral palsy, multiple sclerosis, or spinal cord injuries.

In muscle spasticity, the muscles may contract excessively, causing rigid limbs, awkward movements, and abnormal postures. The severity of muscle spasticity can vary from mild stiffness to severe contractures that limit mobility and function.

Muscle spasticity is caused by an imbalance between excitatory and inhibitory signals in the central nervous system, leading to overactivity of the alpha motor neurons that control muscle contraction. This can result in hyperreflexia (overactive reflexes), clonus (rapid, rhythmic muscle contractions), and flexor or extensor spasms.

Effective management of muscle spasticity may involve a combination of physical therapy, medication, surgery, or other interventions to improve function, reduce pain, and prevent complications such as contractures and pressure sores.

Duchenne Muscular Dystrophy (DMD) is a genetic disorder characterized by progressive muscle weakness and degeneration. It is caused by the absence of dystrophin, a protein that helps keep muscle cells intact. Without dystrophin, the muscle cells break down and are replaced with scar tissue, leading to loss of muscle function over time.

DMD primarily affects boys, as it is inherited in an X-linked recessive pattern, meaning that females who carry one affected X chromosome typically do not show symptoms but can pass the gene on to their offspring. Symptoms usually begin in early childhood and include difficulty with motor skills such as walking, running, and climbing stairs. Over time, the muscle weakness progresses and can lead to loss of ambulation, respiratory and cardiac complications, and ultimately, premature death.

Currently, there is no cure for DMD, but various treatments such as corticosteroids, physical therapy, and assisted ventilation can help manage symptoms and improve quality of life. Gene therapy approaches are also being investigated as potential treatments for this disorder.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

"Torque" is not a term that has a specific medical definition. It is a physical concept used in the fields of physics and engineering, referring to a twisting force that causes rotation around an axis. However, in certain medical contexts, such as in discussions of spinal or joint biomechanics, the term "torque" may be used to describe a rotational force applied to a body part. But generally speaking, "torque" is not a term commonly used in medical terminology.

Myositis is a medical term that refers to inflammation of the muscle tissue. This condition can cause various symptoms, including muscle weakness, pain, swelling, and stiffness. There are several types of myositis, such as polymyositis, dermatomyositis, and inclusion body myositis, which have different causes and characteristics.

Polymyositis is a type of myositis that affects multiple muscle groups, particularly those close to the trunk of the body. Dermatomyositis is characterized by muscle inflammation as well as a skin rash. Inclusion body myositis is a less common form of myositis that typically affects older adults and can cause both muscle weakness and wasting.

The causes of myositis vary depending on the type, but they can include autoimmune disorders, infections, medications, and other medical conditions. Treatment for myositis may involve medication to reduce inflammation, physical therapy to maintain muscle strength and flexibility, and lifestyle changes to manage symptoms and prevent complications.

Myogenin is defined as a protein that belongs to the family of myogenic regulatory factors (MRFs). These proteins play crucial roles in the development, growth, and repair of skeletal muscle cells. Myogenin is specifically involved in the differentiation and fusion of myoblasts to form multinucleated myotubes, which are essential for the formation of mature skeletal muscle fibers. It functions as a transcription factor that binds to specific DNA sequences, thereby regulating the expression of genes required for muscle cell differentiation. Myogenin also plays a role in maintaining muscle homeostasis and may contribute to muscle regeneration following injury or disease.

Glucose is a simple monosaccharide (or single sugar) that serves as the primary source of energy for living organisms. It's a fundamental molecule in biology, often referred to as "dextrose" or "grape sugar." Glucose has the molecular formula C6H12O6 and is vital to the functioning of cells, especially those in the brain and nervous system.

In the body, glucose is derived from the digestion of carbohydrates in food, and it's transported around the body via the bloodstream to cells where it can be used for energy. Cells convert glucose into a usable form through a process called cellular respiration, which involves a series of metabolic reactions that generate adenosine triphosphate (ATP)—the main currency of energy in cells.

Glucose is also stored in the liver and muscles as glycogen, a polysaccharide (multiple sugar) that can be broken down back into glucose when needed for energy between meals or during physical activity. Maintaining appropriate blood glucose levels is crucial for overall health, and imbalances can lead to conditions such as diabetes mellitus.

"Chickens" is a common term used to refer to the domesticated bird, Gallus gallus domesticus, which is widely raised for its eggs and meat. However, in medical terms, "chickens" is not a standard term with a specific definition. If you have any specific medical concern or question related to chickens, such as food safety or allergies, please provide more details so I can give a more accurate answer.

Phosphocreatine (PCr) is a high-energy phosphate compound found in the skeletal muscles, cardiac muscle, and brain. It plays a crucial role in energy metabolism and storage within cells. Phosphocreatine serves as an immediate energy reserve that helps regenerate ATP (adenosine triphosphate), the primary source of cellular energy, during short bursts of intense activity or stress. This process is facilitated by the enzyme creatine kinase, which catalyzes the transfer of a phosphate group from phosphocreatine to ADP (adenosine diphosphate) to form ATP.

In a medical context, phosphocreatine levels may be assessed in muscle biopsies or magnetic resonance spectroscopy (MRS) imaging to evaluate muscle energy metabolism and potential mitochondrial dysfunction in conditions such as muscular dystrophies, mitochondrial disorders, and neuromuscular diseases. Additionally, phosphocreatine depletion has been implicated in various pathological processes, including ischemia-reperfusion injury, neurodegenerative disorders, and heart failure.

A muscle strength dynamometer is a medical device used to measure the force or strength of a muscle or group of muscles. It typically consists of a handheld handle connected to a spring scale or digital force gauge, which measures the amount of force applied by the individual being tested. The person being tested pushes or pulls against the handle with as much force as possible, and the dynamometer provides an objective measurement of their muscle strength in units such as pounds or kilograms.

Muscle strength dynamometers are commonly used in clinical settings to assess muscle weakness or dysfunction, monitor changes in muscle strength over time, and evaluate the effectiveness of rehabilitation interventions. They can be used to test various muscle groups, including the handgrip, quadriceps, hamstrings, biceps, triceps, and shoulder muscles.

When using a muscle strength dynamometer, it is important to follow standardized testing protocols to ensure accurate and reliable measurements. This may include positioning the individual in a specific way, providing standardized instructions, and averaging multiple trials to obtain an accurate measure of their muscle strength.

Desmin is a type of intermediate filament protein that is primarily found in the cardiac and skeletal muscle cells, as well as in some types of smooth muscle cells. It is an important component of the cytoskeleton, which provides structural support to the cell and helps maintain its shape. Desmin plays a crucial role in maintaining the integrity of the sarcomere, which is the basic contractile unit of the muscle fiber. Mutations in the desmin gene can lead to various forms of muscular dystrophy and other inherited muscle disorders.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

Adenosine Triphosphate (ATP) is a high-energy molecule that stores and transports energy within cells. It is the main source of energy for most cellular processes, including muscle contraction, nerve impulse transmission, and protein synthesis. ATP is composed of a base (adenine), a sugar (ribose), and three phosphate groups. The bonds between these phosphate groups contain a significant amount of energy, which can be released when the bond between the second and third phosphate group is broken, resulting in the formation of adenosine diphosphate (ADP) and inorganic phosphate. This process is known as hydrolysis and can be catalyzed by various enzymes to drive a wide range of cellular functions. ATP can also be regenerated from ADP through various metabolic pathways, such as oxidative phosphorylation or substrate-level phosphorylation, allowing for the continuous supply of energy to cells.

Energy metabolism is the process by which living organisms produce and consume energy to maintain life. It involves a series of chemical reactions that convert nutrients from food, such as carbohydrates, fats, and proteins, into energy in the form of adenosine triphosphate (ATP).

The process of energy metabolism can be divided into two main categories: catabolism and anabolism. Catabolism is the breakdown of nutrients to release energy, while anabolism is the synthesis of complex molecules from simpler ones using energy.

There are three main stages of energy metabolism: glycolysis, the citric acid cycle (also known as the Krebs cycle), and oxidative phosphorylation. Glycolysis occurs in the cytoplasm of the cell and involves the breakdown of glucose into pyruvate, producing a small amount of ATP and nicotinamide adenine dinucleotide (NADH). The citric acid cycle takes place in the mitochondria and involves the further breakdown of pyruvate to produce more ATP, NADH, and carbon dioxide. Oxidative phosphorylation is the final stage of energy metabolism and occurs in the inner mitochondrial membrane. It involves the transfer of electrons from NADH and other electron carriers to oxygen, which generates a proton gradient across the membrane. This gradient drives the synthesis of ATP, producing the majority of the cell's energy.

Overall, energy metabolism is a complex and essential process that allows organisms to grow, reproduce, and maintain their bodily functions. Disruptions in energy metabolism can lead to various diseases, including diabetes, obesity, and neurodegenerative disorders.

Smooth muscle myosin is a type of motor protein that is responsible for the contraction and relaxation of smooth muscles, which are found in various organs such as the bladder, blood vessels, and digestive tract. Smooth muscle myosin is composed of two heavy chains and four light chains, forming a hexameric structure. The heavy chains have an N-terminal head domain that contains the ATPase activity and a C-terminal tail domain that mediates filament assembly.

The smooth muscle myosin molecule has several unique features compared to other types of myosins, such as skeletal or cardiac myosin. For example, smooth muscle myosin has a longer lever arm, which allows for greater force generation during contraction. Additionally, the regulatory mechanism of smooth muscle myosin is different from that of skeletal or cardiac myosin. In smooth muscles, the contractile activity is regulated by phosphorylation of the light chains, which is mediated by a specific kinase called myosin light chain kinase (MLCK).

Overall, the proper regulation and function of smooth muscle myosin are critical for maintaining normal physiological functions in various organs. Dysregulation or mutations in smooth muscle myosin can lead to several diseases, such as hypertension, atherosclerosis, and gastrointestinal motility disorders.

Cholinergic receptors are a type of receptor in the body that are activated by the neurotransmitter acetylcholine. Acetylcholine is a chemical that nerve cells use to communicate with each other and with muscles. There are two main types of cholinergic receptors: muscarinic and nicotinic.

Muscarinic receptors are found in the heart, smooth muscle, glands, and the central nervous system. They are activated by muscarine, a type of alkaloid found in certain mushrooms. When muscarinic receptors are activated, they can cause changes in heart rate, blood pressure, and other bodily functions.

Nicotinic receptors are found in the nervous system and at the junction between nerves and muscles (the neuromuscular junction). They are activated by nicotine, a type of alkaloid found in tobacco plants. When nicotinic receptors are activated, they can cause the release of neurotransmitters and the contraction of muscles.

Cholinergic receptors play an important role in many physiological processes, including learning, memory, and movement. They are also targets for drugs used to treat a variety of medical conditions, such as Alzheimer's disease, Parkinson's disease, and myasthenia gravis (a disorder that causes muscle weakness).

In the context of medicine and healthcare, "movement" refers to the act or process of changing physical location or position. It involves the contraction and relaxation of muscles, which allows for the joints to move and the body to be in motion. Movement can also refer to the ability of a patient to move a specific body part or limb, which is assessed during physical examinations. Additionally, "movement" can describe the progression or spread of a disease within the body.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

A stretch reflex, also known as myotatic reflex, is a rapid muscle contraction in response to stretching within the muscle itself. It is a type of reflex that helps to maintain muscle tone, protect muscles and tendons from injury, and assists in coordinating movements.

The stretch reflex is mediated by the stretch (or length) receptors called muscle spindles, which are located within the muscle fibers. When a muscle is stretched suddenly or rapidly, the muscle spindles detect the change in muscle length and activate a rapid motor neuron response, leading to muscle contraction. This reflex helps to stabilize the joint and prevent further stretching or injury.

The most common example of a stretch reflex is the knee-jerk reflex (also known as the patellar reflex), which is elicited by tapping the patellar tendon just below the knee, causing the quadriceps muscle to stretch and contract. This results in a quick extension of the lower leg. Other examples of stretch reflexes include the ankle jerk reflex (Achilles reflex) and the biceps reflex.

An action potential is a brief electrical signal that travels along the membrane of a nerve cell (neuron) or muscle cell. It is initiated by a rapid, localized change in the permeability of the cell membrane to specific ions, such as sodium and potassium, resulting in a rapid influx of sodium ions and a subsequent efflux of potassium ions. This ion movement causes a brief reversal of the electrical potential across the membrane, which is known as depolarization. The action potential then propagates along the cell membrane as a wave, allowing the electrical signal to be transmitted over long distances within the body. Action potentials play a crucial role in the communication and functioning of the nervous system and muscle tissue.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

Tropomyosin is a protein that plays a crucial role in muscle contraction. It is a long, thin filamentous protein that runs along the length of actin filaments in muscle cells, forming part of the troponin-tropomyosin complex. This complex regulates the interaction between actin and myosin, which are the other two key proteins involved in muscle contraction.

In a relaxed muscle, tropomyosin blocks the myosin-binding sites on actin, preventing muscle contraction from occurring. When a signal is received to contract, calcium ions are released into the muscle cell, which binds to troponin and causes a conformational change that moves tropomyosin out of the way, exposing the myosin-binding sites on actin. This allows myosin to bind to actin and generate force, leading to muscle contraction.

Tropomyosin is composed of two alpha-helical chains that wind around each other in a coiled-coil structure. There are several isoforms of tropomyosin found in different types of muscle cells, including skeletal, cardiac, and smooth muscle. Mutations in the genes encoding tropomyosin have been associated with various inherited muscle disorders, such as hypertrophic cardiomyopathy and distal arthrogryposis.

Organ size refers to the volume or physical measurement of an organ in the body of an individual. It can be described in terms of length, width, and height or by using specialized techniques such as imaging studies (like CT scans or MRIs) to determine the volume. The size of an organ can vary depending on factors such as age, sex, body size, and overall health status. Changes in organ size may indicate various medical conditions, including growths, inflammation, or atrophy.

Mechanical stress, in the context of physiology and medicine, refers to any type of force that is applied to body tissues or organs, which can cause deformation or displacement of those structures. Mechanical stress can be either external, such as forces exerted on the body during physical activity or trauma, or internal, such as the pressure changes that occur within blood vessels or other hollow organs.

Mechanical stress can have a variety of effects on the body, depending on the type, duration, and magnitude of the force applied. For example, prolonged exposure to mechanical stress can lead to tissue damage, inflammation, and chronic pain. Additionally, abnormal or excessive mechanical stress can contribute to the development of various musculoskeletal disorders, such as tendinitis, osteoarthritis, and herniated discs.

In order to mitigate the negative effects of mechanical stress, the body has a number of adaptive responses that help to distribute forces more evenly across tissues and maintain structural integrity. These responses include changes in muscle tone, joint positioning, and connective tissue stiffness, as well as the remodeling of bone and other tissues over time. However, when these adaptive mechanisms are overwhelmed or impaired, mechanical stress can become a significant factor in the development of various pathological conditions.

Physiological adaptation refers to the changes or modifications that occur in an organism's biological functions or structures as a result of environmental pressures or changes. These adaptations enable the organism to survive and reproduce more successfully in its environment. They can be short-term, such as the constriction of blood vessels in response to cold temperatures, or long-term, such as the evolution of longer limbs in animals that live in open environments.

In the context of human physiology, examples of physiological adaptation include:

1. Acclimatization: The process by which the body adjusts to changes in environmental conditions, such as altitude or temperature. For example, when a person moves to a high-altitude location, their body may produce more red blood cells to compensate for the lower oxygen levels, leading to improved oxygen delivery to tissues.

2. Exercise adaptation: Regular physical activity can lead to various physiological adaptations, such as increased muscle strength and endurance, enhanced cardiovascular function, and improved insulin sensitivity.

3. Hormonal adaptation: The body can adjust hormone levels in response to changes in the environment or internal conditions. For instance, during prolonged fasting, the body releases stress hormones like cortisol and adrenaline to help maintain energy levels and prevent muscle wasting.

4. Sensory adaptation: Our senses can adapt to different stimuli over time. For example, when we enter a dark room after being in bright sunlight, it takes some time for our eyes to adjust to the new light level. This process is known as dark adaptation.

5. Aging-related adaptations: As we age, various physiological changes occur that help us adapt to the changing environment and maintain homeostasis. These include changes in body composition, immune function, and cognitive abilities.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Regional blood flow (RBF) refers to the rate at which blood flows through a specific region or organ in the body, typically expressed in milliliters per minute per 100 grams of tissue (ml/min/100g). It is an essential physiological parameter that reflects the delivery of oxygen and nutrients to tissues while removing waste products. RBF can be affected by various factors such as metabolic demands, neural regulation, hormonal influences, and changes in blood pressure or vascular resistance. Measuring RBF is crucial for understanding organ function, diagnosing diseases, and evaluating the effectiveness of treatments.

Protein isoforms are different forms or variants of a protein that are produced from a single gene through the process of alternative splicing, where different exons (or parts of exons) are included in the mature mRNA molecule. This results in the production of multiple, slightly different proteins that share a common core structure but have distinct sequences and functions. Protein isoforms can also arise from genetic variations such as single nucleotide polymorphisms or mutations that alter the protein-coding sequence of a gene. These differences in protein sequence can affect the stability, localization, activity, or interaction partners of the protein isoform, leading to functional diversity and specialization within cells and organisms.

Acetylcholine is a neurotransmitter, a type of chemical messenger that transmits signals across a chemical synapse from one neuron (nerve cell) to another "target" neuron, muscle cell, or gland cell. It is involved in both peripheral and central nervous system functions.

In the peripheral nervous system, acetylcholine acts as a neurotransmitter at the neuromuscular junction, where it transmits signals from motor neurons to activate muscles. Acetylcholine also acts as a neurotransmitter in the autonomic nervous system, where it is involved in both the sympathetic and parasympathetic systems.

In the central nervous system, acetylcholine plays a role in learning, memory, attention, and arousal. Disruptions in cholinergic neurotransmission have been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, and myasthenia gravis.

Acetylcholine is synthesized from choline and acetyl-CoA by the enzyme choline acetyltransferase and is stored in vesicles at the presynaptic terminal of the neuron. When a nerve impulse arrives, the vesicles fuse with the presynaptic membrane, releasing acetylcholine into the synapse. The acetylcholine then binds to receptors on the postsynaptic membrane, triggering a response in the target cell. Acetylcholine is subsequently degraded by the enzyme acetylcholinesterase, which terminates its action and allows for signal transduction to be repeated.

Electrophysiology is a branch of medicine that deals with the electrical activities of the body, particularly the heart. In a medical context, electrophysiology studies (EPS) are performed to assess abnormal heart rhythms (arrhythmias) and to evaluate the effectiveness of certain treatments, such as medication or pacemakers.

During an EPS, electrode catheters are inserted into the heart through blood vessels in the groin or neck. These catheters can record the electrical activity of the heart and stimulate it to help identify the source of the arrhythmia. The information gathered during the study can help doctors determine the best course of treatment for each patient.

In addition to cardiac electrophysiology, there are also other subspecialties within electrophysiology, such as neuromuscular electrophysiology, which deals with the electrical activity of the nervous system and muscles.

Body weight is the measure of the force exerted on a scale or balance by an object's mass, most commonly expressed in units such as pounds (lb) or kilograms (kg). In the context of medical definitions, body weight typically refers to an individual's total weight, which includes their skeletal muscle, fat, organs, and bodily fluids.

Healthcare professionals often use body weight as a basic indicator of overall health status, as it can provide insights into various aspects of a person's health, such as nutritional status, metabolic function, and risk factors for certain diseases. For example, being significantly underweight or overweight can increase the risk of developing conditions like malnutrition, diabetes, heart disease, and certain types of cancer.

It is important to note that body weight alone may not provide a complete picture of an individual's health, as it does not account for factors such as muscle mass, bone density, or body composition. Therefore, healthcare professionals often use additional measures, such as body mass index (BMI), waist circumference, and blood tests, to assess overall health status more comprehensively.

Potassium is a essential mineral and an important electrolyte that is widely distributed in the human body. The majority of potassium in the body (approximately 98%) is found within cells, with the remaining 2% present in blood serum and other bodily fluids. Potassium plays a crucial role in various physiological processes, including:

1. Regulation of fluid balance and maintenance of normal blood pressure through its effects on vascular tone and sodium excretion.
2. Facilitation of nerve impulse transmission and muscle contraction by participating in the generation and propagation of action potentials.
3. Protein synthesis, enzyme activation, and glycogen metabolism.
4. Regulation of acid-base balance through its role in buffering systems.

The normal serum potassium concentration ranges from 3.5 to 5.0 mEq/L (milliequivalents per liter) or mmol/L (millimoles per liter). Potassium levels outside this range can have significant clinical consequences, with both hypokalemia (low potassium levels) and hyperkalemia (high potassium levels) potentially leading to serious complications such as cardiac arrhythmias, muscle weakness, and respiratory failure.

Potassium is primarily obtained through the diet, with rich sources including fruits (e.g., bananas, oranges, and apricots), vegetables (e.g., leafy greens, potatoes, and tomatoes), legumes, nuts, dairy products, and meat. In cases of deficiency or increased needs, potassium supplements may be recommended under the guidance of a healthcare professional.

Locomotion, in a medical context, refers to the ability to move independently and change location. It involves the coordinated movement of the muscles, bones, and nervous system that enables an individual to move from one place to another. This can include walking, running, jumping, or using assistive devices such as wheelchairs or crutches. Locomotion is a fundamental aspect of human mobility and is often assessed in medical evaluations to determine overall health and functioning.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Sarcopenia is a medical term that refers to the age-related decline in muscle mass, strength, and function. It's a natural process that occurs as we get older, but it can also be accelerated by various factors such as sedentary lifestyle, poor nutrition, and chronic diseases. Sarcopenia can lead to decreased mobility, weakness, frailty, and increased risk of falls and fractures in older adults. It's important to note that sarcopenia is different from cachexia, which is a muscle wasting condition associated with chronic illnesses such as cancer, HIV/AIDS, and heart failure.

Histochemistry is the branch of pathology that deals with the microscopic localization of cellular or tissue components using specific chemical reactions. It involves the application of chemical techniques to identify and locate specific biomolecules within tissues, cells, and subcellular structures. This is achieved through the use of various staining methods that react with specific antigens or enzymes in the sample, allowing for their visualization under a microscope. Histochemistry is widely used in diagnostic pathology to identify different types of tissues, cells, and structures, as well as in research to study cellular and molecular processes in health and disease.

Neuromuscular diseases are a group of disorders that involve the peripheral nervous system, which includes the nerves and muscles outside of the brain and spinal cord. These conditions can affect both children and adults, and they can be inherited or acquired. Neuromuscular diseases can cause a wide range of symptoms, including muscle weakness, numbness, tingling, pain, cramping, and twitching. Some common examples of neuromuscular diseases include muscular dystrophy, amyotrophic lateral sclerosis (ALS), peripheral neuropathy, and myasthenia gravis. The specific symptoms and severity of these conditions can vary widely depending on the underlying cause and the specific muscles and nerves that are affected. Treatment for neuromuscular diseases may include medications, physical therapy, assistive devices, or surgery, depending on the individual case.

"Rana temporaria" is the scientific name for the common European frog, also known as the grass frog. It's a widespread species found throughout Europe and into western Asia. These frogs are typically brown or green in color with darker spots, and they can change their color to some extent based on their environment. They are semi-aquatic, spending time both in water and on land, and are known for their distinctive mating call.

However, if you're looking for a medical definition, there isn't one for "Rana temporaria." The term is strictly biological and refers to this specific species of frog.

The deltoid muscle is a large, triangular-shaped muscle that covers the shoulder joint. It is responsible for shoulder abduction (raising the arm away from the body), flexion (lifting the arm forward), and extension (pulling the arm backward). The muscle is divided into three sections: the anterior deltoid, which lies on the front of the shoulder and is responsible for flexion and internal rotation; the middle deltoid, which lies on the side of the shoulder and is responsible for abduction; and the posterior deltoid, which lies on the back of the shoulder and is responsible for extension and external rotation. Together, these muscles work to provide stability and mobility to the shoulder joint.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

In medical terms, the heart is a muscular organ located in the thoracic cavity that functions as a pump to circulate blood throughout the body. It's responsible for delivering oxygen and nutrients to the tissues and removing carbon dioxide and other wastes. The human heart is divided into four chambers: two atria on the top and two ventricles on the bottom. The right side of the heart receives deoxygenated blood from the body and pumps it to the lungs, while the left side receives oxygenated blood from the lungs and pumps it out to the rest of the body. The heart's rhythmic contractions and relaxations are regulated by a complex electrical conduction system.

Lactic acid, also known as 2-hydroxypropanoic acid, is a chemical compound that plays a significant role in various biological processes. In the context of medicine and biochemistry, lactic acid is primarily discussed in relation to muscle metabolism and cellular energy production. Here's a medical definition for lactic acid:

Lactic acid (LA): A carboxylic acid with the molecular formula C3H6O3 that plays a crucial role in anaerobic respiration, particularly during strenuous exercise or conditions of reduced oxygen availability. It is formed through the conversion of pyruvate, catalyzed by the enzyme lactate dehydrogenase (LDH), when there is insufficient oxygen to complete the final step of cellular respiration in the Krebs cycle. The accumulation of lactic acid can lead to acidosis and muscle fatigue. Additionally, lactic acid serves as a vital intermediary in various metabolic pathways and is involved in the production of glucose through gluconeogenesis in the liver.

Caffeine is a central nervous system stimulant that occurs naturally in the leaves, seeds, or fruits of some plants. It can also be produced artificially and added to various products, such as food, drinks, and medications. Caffeine has a number of effects on the body, including increasing alertness, improving mood, and boosting energy levels.

In small doses, caffeine is generally considered safe for most people. However, consuming large amounts of caffeine can lead to negative side effects, such as restlessness, insomnia, rapid heart rate, and increased blood pressure. It is also possible to become dependent on caffeine, and withdrawal symptoms can occur if consumption is suddenly stopped.

Caffeine is found in a variety of products, including coffee, tea, chocolate, energy drinks, and some medications. The amount of caffeine in these products can vary widely, so it is important to pay attention to serving sizes and labels to avoid consuming too much.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Myogenic regulatory factors (MRFs) are a group of transcription factors that play crucial roles in the development, growth, and maintenance of skeletal muscle cells. They are essential for the determination and differentiation of myoblasts into multinucleated myotubes and ultimately mature muscle fibers. The MRF family includes four key members: MyoD, Myf5, Mrf4 (also known as Myf6), and myogenin. These factors work together to regulate the expression of genes involved in various aspects of skeletal muscle formation and function.

1. MyoD: This MRF is a critical regulator of muscle cell differentiation and can induce non-muscle cells to adopt a muscle-like fate. It binds to specific DNA sequences, known as E-boxes, within the regulatory regions of target genes to activate or repress their transcription.
2. Myf5: Similar to MyoD, Myf5 is involved in the early determination and differentiation of myoblasts. However, it has a more restricted expression pattern during development compared to MyoD.
3. Mrf4 (Myf6): This MRF plays a role in both muscle cell differentiation and maintenance. It is expressed later than MyoD and Myf5 during development and helps regulate the terminal differentiation of myotubes into mature muscle fibers.
4. Myogenin: Among all MRFs, myogenin has the most specific function in muscle cell differentiation. It is required for the fusion of myoblasts to form multinucleated myotubes and is essential for the maturation and maintenance of skeletal muscle fibers.

In summary, Myogenic Regulatory Factors are a group of transcription factors that regulate skeletal muscle development, growth, and maintenance by controlling the expression of genes involved in various aspects of muscle cell differentiation and function.

A motor endplate, also known as the neuromuscular junction, is the site where a motor neuron's axon terminal synapses with a muscle fiber. It is a specialized chemical synapse that allows for the transmission of electrical signals from the nervous system to the skeletal muscles, resulting in muscle contraction. The motor endplate is composed of several structures including the presynaptic membrane, which contains neurotransmitter-filled vesicles, and the postsynaptic membrane, which contains numerous nicotinic acetylcholine receptors. When an action potential reaches the axon terminal, it triggers the release of acetylcholine into the synaptic cleft, where it binds to receptors on the postsynaptic membrane and causes the opening of ion channels, leading to the generation of an endplate potential that can trigger muscle contraction.

A reflex is an automatic, involuntary and rapid response to a stimulus that occurs without conscious intention. In the context of physiology and neurology, it's a basic mechanism that involves the transmission of nerve impulses between neurons, resulting in a muscle contraction or glandular secretion.

Reflexes are important for maintaining homeostasis, protecting the body from harm, and coordinating movements. They can be tested clinically to assess the integrity of the nervous system, such as the knee-j jerk reflex, which tests the function of the L3-L4 spinal nerve roots and the sensitivity of the stretch reflex arc.

Glucose Transporter Type 4 (GLUT4) is a type of glucose transporter protein that plays a crucial role in regulating insulin-mediated glucose uptake into cells, particularly in muscle and fat tissues. GLUT4 is primarily located in intracellular vesicles within these cell types and moves to the plasma membrane upon stimulation by insulin or muscle contraction, facilitating the influx of glucose into the cell. Dysfunction in GLUT4 regulation has been implicated in various metabolic disorders, including type 2 diabetes and insulin resistance.

Organ specificity, in the context of immunology and toxicology, refers to the phenomenon where a substance (such as a drug or toxin) or an immune response primarily affects certain organs or tissues in the body. This can occur due to various reasons such as:

1. The presence of specific targets (like antigens in the case of an immune response or receptors in the case of drugs) that are more abundant in these organs.
2. The unique properties of certain cells or tissues that make them more susceptible to damage.
3. The way a substance is metabolized or cleared from the body, which can concentrate it in specific organs.

For example, in autoimmune diseases, organ specificity describes immune responses that are directed against antigens found only in certain organs, such as the thyroid gland in Hashimoto's disease. Similarly, some toxins or drugs may have a particular affinity for liver cells, leading to liver damage or specific drug interactions.

"Rana pipiens" is not a medical term. It is the scientific name for the Northern Leopard Frog, a species of frog that is native to North America. This frog is commonly found in wetlands and near bodies of water in fields and forests. The Northern Leopard Frog is a smooth-skinned frog with large, well-defined spots on its back and legs. It is a common subject of study in biology and ecology due to its widespread distribution and adaptability to different habitats.

If you have any medical concerns or questions, it's best to consult with a healthcare professional for accurate information.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

The nerves in the cupula report the motion to both the brain and oculomotor muscles, stabilizing eye movements. A transfer ... These cells transmit motion information to the brain and oculomotor muscles. Studies indicate that the otoliths detect the ... Proprioceptors respond to stimuli generated by muscle movement and muscle tension. Signals generated by exteroceptors and ... Proprioceptors are receptors located in muscles, tendons, joints and gut, which send signals to the brain in proportion to ...
It may occur due to ciliary muscle paralysis or oculomotor nerve paralysis. Parasypatholytic drugs like atropine will also ... Premature sclerosis of lens or ciliary muscle weaknesses due to systemic or local cases may cause accommodative insufficiency. ... Systemic causes of ciliary muscle weakness include diabetes, pregnancy, stress, malnutrition etc. Open angle glaucoma, ... and ciliary muscle power. AI is commonly present in people with convergence insufficiency. Accommodative insufficiency is ...
1985). "A new X-linked syndrome with muscle atrophy, congenital contractures, and oculomotor apraxia". American Journal of ... Elevated muscular tone in lower extremities Spasticity Dystonia Autonomic storms Camptodactyly Apraxia of speech Oculomotor ...
The oculomotor nerve controls all the muscles that move the eye except for the lateral rectus and superior oblique muscles. It ... General muscle strengthening exercises will help to maintain muscle strength and reduce muscle wasting. Aerobic exercise such ... All the oculomotor muscles innervated by the third nerve may be affected, but those that control pupil size are usually well- ... These programs may include general muscle stretching to maintain muscle length and a person's range of motion. ...
... the oculomotor nerve supplies the majority of the muscles controlling eye movements (four of the six extraocular muscles, ... The condition can also result from aplasia or hypoplasia of one or more of the muscles supplied by the oculomotor nerve. It can ... Oculomotor nerve palsy or oculomotor neuropathy is an eye condition resulting from damage to the third cranial nerve or a ... oculomotor nerve palsy. The "surgical" type of oculomotor nerve palsy is caused by external structures compressing on the nerve ...
Close to the midline are the motor efferent nuclei, such as the oculomotor nucleus, which control skeletal muscle. Just lateral ... motor Oculomotor nucleus (III) - motor Edinger-Westphal nucleus (III) - visceromotor Nuclei present in the Pons Cochlear nuclei ...
The oculomotor nerve controls all the other extraocular muscles, as well as a muscle of the upper eyelid. The conjugate gaze is ... The three nerves that control the extraocular muscles are the oculomotor, trochlear, and abducens nerves, which are the third, ... The trochlear nerve controls the superior oblique muscle to rotate the eye along its axis in the orbit medially, which is ... the abducens nerve is responsible for abducting the eye, which it controls through contraction of the lateral rectus muscle. ...
In addition, by the medial longitudinal fasciculus and oculomotor nuclei, they activate the medial rectus muscles on the right ... specifically activating the medial rectus muscle of the eye through the oculomotor nerve. Another pathway (not in picture) ... If the gain of the VOR is wrong (different from 1)-for example, if eye muscles are weak, or if a person puts on a new pair of ... One pathway projects directly to the lateral rectus muscle of the eye via the abducens nerve. Another nerve tract projects from ...
Moreover, while the abducens and the trochlear nerve each innervate one specific muscle, the oculomotor nerve has many ... This is in contrast to areas of body where miswiring of the larger muscles is less evident due to the size of the muscles. ... The six muscles around the eye (extraocular muscles) are innervated by three different cranial nerves: Abducens (6th nerve), ... Facial muscles contain few to none intrinsic muscle sensory receptors (used for proprioceptive feedback) and additionally they ...
Oculomotor ataxia accompanies gait ataxia which causes dysarthria, muscle weakness, loss of joint position sense and limb ... In most cases, between the age of 2 and 4 oculomotor signals are present. Between the age of 2 and 8, telangiectasias appears. ...
The oculomotor nerve (cranial nerve III) supplies the inferior oblique muscle (along with four other eye muscles - superior ... The six muscles are the lateral, medial, inferior and superior recti muscles, and the inferior and superior oblique muscles. ... mediated by the inferior oblique muscle of the eye. The inferior oblique muscle is innervated by cranial nerve III (oculomotor ... These are the oculomotor nerve, which controls the majority of the muscles, the trochlear nerve, which controls the superior ...
The oculomotor nerve controls all muscles of the eye except for the superior oblique muscle controlled by the trochlear nerve ( ... Most muscles are supplied by the cortex on the opposite side of the brain; the exception is the frontalis muscle of the ... The muscle, skin, or additional function supplied by a nerve, on the same side of the body as the side it originates from, is ... This is where a person is unable to move the muscles on one or both sides of their face. The most common cause of this is ...
In humans, the movements of oculomotor muscles ("eye-blink reflex" or "eye-blink response" assessed using electromyographic ... By this step, artifacts from eye movements and muscle activity independent of blink responses are removed. To avoid aliasing ... recording of orbicularis oculi muscle and by oculography) could be used as a measure. Pulse-alone results are compared to ...
... ectodermal dysplasia cleft lip palate Contractures hyperkeratosis lethal Contractures of feet-muscle atrophy-oculomotor apraxia ... photocontact Continuous muscle fiber activity hereditary Continuous spike-wave during slow sleep syndrome Contractural ...
For example, the oculomotor nucleus contains α-MNs that innervate muscles of the eye, and is found in the midbrain, the most ... denervated muscles are prone to atrophy. A secondary cause of muscle atrophy is that denervated muscles are no longer supplied ... For example, the muscles of a single finger have more α-MNs per fibre, and more α-MNs in total, than the muscles of the ... Voluntary muscle control is lost because α-MNs relay voluntary signals from upper motor neurons to muscle fibers. Loss of ...
... orbital muscle innervated by the oculomotor nerve and notes on the metameric character of the head in craniates. Zoologica ...
... orbital muscle innervated by the oculomotor nerve and notes on the metameric character of the head in craniates. Zoologica ... H. C. (1971). The nerve supply to the second metamere basicranial muscle in osteolepiform vertebrates, with some remarks on the ... Bjerring, H. C. (1967). Does a homology exist between the basicranial muscle and the polar cartilage? Colloques Internationaux ... Bjerring, H. C. (1993). Yet another interpretation of the coelacanthiform basicranial muscle and its innervation. Acta ...
The muscles it controls are the striated muscle in levator palpebrae superioris and other extraocular muscles except for the ... to the smooth muscle of superior tarsal (Mueller's) muscle. The oculomotor nerve includes axons of type GSE, general somatic ... Since the oculomotor nerve controls most of the eye muscles, it may be easier to detect damage to it. Damage to this nerve, ... Paralysis of the oculomotor nerve, i.e., oculomotor nerve palsy, can arise due to: direct trauma, demyelinating diseases (e.g ...
The oculomotor nerve controls all muscles of the eye except for the superior oblique muscle controlled by the trochlear nerve ( ... the superior rectus muscle, lateral rectus muscle, medial rectus muscle, and inferior rectus muscle. The recti muscles are all ... The extraocular muscles, or extrinsic ocular muscles, are the seven extrinsic muscles of the human eye. Six of the extraocular ... The two oblique muscles are the inferior oblique muscle, and the superior oblique muscle. The movements of the extraocular ...
Parasympathetic fibers travel with cranial nerve III, the oculomotor nerve, to innervate the circular layer of muscle of the ... There are two types of muscle that control the size of the iris: the iris sphincter, composed of circularly arranged muscle ... In cases of head injury or orbit trauma (eye injury), the iris sphincter (the muscle responsible for closing the pupil) or the ... Sympathetic stimulation of the adrenergic receptors causes the contraction of the radial muscle and subsequent dilation of the ...
Ptosis caused by oculomotor palsy can be unilateral or bilateral, as the subnucleus to the levator muscle is a shared midline ... Ptosis occurs as the result of dysfunction of the muscles that raise the eyelid or their nerve supply (oculomotor nerve for ... For example, myogenic ptosis results from a direct injury to the levator muscle and/or Müller's muscle. On the other hand, ... damage to the superior cervical sympathetic ganglion or damage to the oculomotor nerve, which controls the muscle. Such damage ...
... oculomotor nerve palsy, or paralysis of the eye muscles. Newborns are susceptible to particularly severe effects of Chikungunya ... Pain may also occur in the muscles or ligaments. In more than half of cases, normal activity is limited by significant fatigue ... June 2007). "Human muscle satellite cells as targets of Chikungunya virus infection". PLOS ONE. 2 (6): e527. Bibcode:2007PLoSO ... Other symptoms may include headache, muscle pain, joint swelling, and a rash. Symptoms usually improve within a week; however, ...
The inferior rectus muscle is supplied by the inferior division of the oculomotor nerve (III). The inferior rectus muscle ... The inferior rectus muscle is a muscle in the orbit near the eye. It is one of the four recti muscles in the group of ... The inferior rectus muscle depresses, adducts, and helps extort the eye. It is the only muscle that is capable of depressing ... The insertion of the inferior rectus muscle is around 6 mm from the insertion of the medial rectus muscle, and around 8 mm from ...
Each superior rectus muscle is innervated by contralateral oculomotor nucleus in the mesencephalon. The superior rectus muscle ... Superior rectus muscle Superior rectus muscle Extrinsic eye muscle. Nerves of orbita. Deep dissection. Extrinsic eye muscle. ... The superior rectus muscle is a muscle in the orbit. It is one of the extraocular muscles. It is innervated by the superior ... The superior rectus muscle may be weakened or paralysed by problems with nerve conduction of the oculomotor nerve (III). This ...
The medial rectus muscle is supplied by the inferior division of the oculomotor nerve (III). A branch of it enters the muscle ... The medial rectus muscle is a muscle in the orbit near the eye. It is one of the extraocular muscles. It originates from the ... Vestibulo-ocular reflex Medial rectus muscle Medial rectus muscle Extrinsic eye muscle. Nerves of orbita. Deep dissection. ... The insertion of the medial rectus muscle is around 7.5 mm from the insertion of the superior rectus muscle, and around 6 mm ...
In humans, the muscle is about 35 mm long. The inferior oblique is innervated by the inferior division of the oculomotor nerve ... Inferior oblique muscle Extrinsic eye muscle. Nerves of orbita. Deep dissection. Extrinsic eye muscle. Nerves of orbita. Deep ... The inferior oblique muscle is the only muscle that is capable of elevating the eye when it is in a fully adducted position. ... The inferior oblique muscle or obliquus oculi inferior is a thin, narrow muscle placed near the anterior margin of the floor of ...
The oculomotor nerve, trochlear nerve, and abducens nerve are motor nerves that control one or more of the eye muscles. The ... It thus seems that the lateral rectus muscle evolved later and independently of the other eye muscles, and presents an ... The oculomotor and trochlear nerves originate from the midbrain and cross the midline as predicted by the theory. The abducens ... The trochlear nerve crosses the midline in a chiasma on the dorsal side and the abducens innervates an eye muscle on the same ...
In half of these cases, the oculomotor nerve (the third cranial nerve), which controls a number of eye muscles, is affected. ... The oculomotor nerve is predominantly affected as it lies closest to the pituitary. The cavernous sinus also contains the ... The most common problem is growth hormone deficiency, which is often left untreated but may cause decreased muscle mass and ... This contains a number of nerves that control the eye muscles. 70% of people with pituitary apoplexy experience double vision ...
Lesions in CN III can cause ptosis, because without stimulation from the oculomotor nerve the levator palpebrae cannot oppose ... Levator palpebrae superioris muscle Levator palpebrae superioris muscle Extrinsic eye muscle. Nerves of orbita. Deep dissection ... It is a skeletal muscle. The superior tarsal muscle, a smooth muscle, is attached to the levator palpebrae superioris, and ... The smooth muscle that originates from its undersurface, called the superior tarsal muscle is innervated by postganglionic ...
... and inferior oblique muscles. Fibers to the trochlear (IV) nucleus control the superior oblique muscle. Fibers to the ... Then, it courses posteriorly toward the nuclei of the oculomotor nerve (III), trochlear nerve (IV) and abducens nerve (VI), the ... Also, fibers to the paramedian pontine reticular formation mediates the movements with the oculomotor (III) and trochlear (IV) ... Cross section of the midbrain at the level of the superior colliculus showing oculomotor nucleus . Scheme showing central ...
Start Over You searched for: Subjects Oculomotor Muscles -- injuries ✖Remove constraint Subjects: Oculomotor Muscles -- ... Oculomotor Muscles -- injuries. Paresis. Diplopia 2. Three cases of partial paralysis of the ocular muscles from injury to the ... Three cases of partial paralysis of the ocular muscles from injury to the head1 ...
Oculomotor Muscles / physiopathology * Oculomotor Muscles / surgery * Postoperative Care / methods * Recovery of Function ... the techniques can be combined to recess the lower eyelid without disturbing the already compromised lower orbicularis muscle ( ...
Abnormalities of the oculomotor nerve in congenital fibrosis of the extraocular muscles and congenital oculomotor palsy. ... Abnormalities of the oculomotor nerve in congenital fibrosis of the extraocular muscles and congenital oculomotor palsy. ...
The nerves in the cupula report the motion to both the brain and oculomotor muscles, stabilizing eye movements. A transfer ... These cells transmit motion information to the brain and oculomotor muscles. Studies indicate that the otoliths detect the ... Proprioceptors respond to stimuli generated by muscle movement and muscle tension. Signals generated by exteroceptors and ... Proprioceptors are receptors located in muscles, tendons, joints and gut, which send signals to the brain in proportion to ...
... as well as bulbar muscles. Rectal and bladder sphincters and oculomotor muscles are usually spared. Sensory examination is ... intercostal muscles, and diaphragm are noted. The skeletal muscle is grossly pale. Because of the loss of muscle bulk through ... 17, 18, 19] This condition is characterized by late-onset muscle weakness and fatigue in skeletal or bulbar muscles, unrelated ... The muscle pathology in SMA type III is variable, ranging from minimal changes to small or large group atrophy with fiber type ...
Dividing the tendon between the medial and inferior rectus muscle allows the identification of the main trunk of the oculomotor ... The role of Mullers muscle is confirmed, and the utility of the maxillary and optic strut is outlined. Mullers muscle extends ...
Cranial nerve IV (trochlear) innervates the superior oblique muscle. Cranial nerve III (oculomotor) innervates all other ... cranial nerve IV travels outside of the muscle cone to innervate the superior oblique muscle. It is likely affected by the ... The extraocular muscles form a cone about the globe. The apex is at the optic foramen and the base is formed by the insertions ... When the needle is felt to be within the muscle cone, the syringe is aspirated to ensure that no blood returns. At this point, ...
Oculomotor Muscles / pathology* Actions. * Search in PubMed * Search in MeSH * Add to Search ... Clinical and oculomotor characteristics of albinism compared to FRMD7 associated infantile nystagmus Anil Kumar 1 , Irene ... Clinical and oculomotor characteristics of albinism compared to FRMD7 associated infantile nystagmus Anil Kumar et al. Invest ... Methods: Oculomotor characteristics and related clinical features between albinism (n = 52) and idiopathic nystagmus associated ...
Learn about Congenital Fibrosis of the Extraocular Muscles, including symptoms, causes, and treatments. If you or a loved one ... Oculomotor Nerve and Muscle Abnormalities in Congenital Fibrosis of the Extraocular Muscles. Annals of Neurology. 1997;41:314- ... The oculomotor nucleus and nerve (cranial nerve III) and the muscles it serves and, in some cases the trochlear nucleus and ... Brown syndrome is thought to be caused by abnormalities in the superior oblique tendon sheath in the muscle that surrounds the ...
Oculomotor Muscles/pathology; Ophthalmologic Surgical Procedures; Radiotherapy; Risk Factors ...
Oculomotor dysfunction (bilateral abducens nerve palsy-eye muscle paralysis). •. Ataxia (loss of muscle coordination) ... Cardiomyopathy is caused by degenerative changes of the cardiac muscle with enlargement of the heart (cardiomegaly) and left ... Some of the physical symptoms of anxiety include sweating, tremors, palpitations, muscle tension, and increased urination. ...
... extraocular muscles, orbital, and brain abnormalities. Duane retraction syndrome shows absent or hypoplas … ... Oculomotor Muscles Actions. * Search in PubMed * Search in MeSH * Add to Search ... J Cachexia Sarcopenia Muscle. 2022 Dec;13(6):2820-2834. doi: 10.1002/jcsm.13089. Epub 2022 Sep 29. J Cachexia Sarcopenia Muscle ... Congenital Fibrosis of the Extraocular Muscles: An Overview from Genetics to Management. Xia W, Wei Y, Wu L, Zhao C. Xia W, et ...
NOVEL THERAPEUTIC AND PATHOGENETIC STUDIES OF OCULOMOTOR DISORDERS RFA-EY-03-001. NEI ... The etiology of the differential involvement of eye muscles and the oculomotor system in these disorders is unknown. One goal ... There is evidence of extraocular muscle tissue abnormalities secondary to neuropathology in the oculomotor, abducens, and ... The skeletal muscles involved vary; most myasthenia gravis patients have ocular muscle involvement. The fluctuating weakness in ...
Close to the midline are the motor efferent nuclei, such as the oculomotor nucleus, which control skeletal muscle. Just lateral ... motor Oculomotor nucleus (III) - motor Edinger-Westphal nucleus (III) - visceromotor Nuclei present in the Pons Cochlear nuclei ...
1996). Atrophy was specific to muscle innervated by spinal and not oculomotor neurons (Porter et al. 1996). Finally, Nav1.8 ... Skeletal muscle. Increases with agef. Only slightly modified by 10 μM deltamethrin when expressed in HEK 293t cellsg. ... Heart, uterus, skeletal muscle, astrocytes, DRG. Transient between PND2 and 15 in HP; peak expression at PND2 in CB, SC; large ... Uninnervated skeletal muscle, heart, brain. mRNA expressed in rat PND0 limbic structures and medulla; expressed in fetal and ...
Epidemiological studies of eye-neck/scapular area muscle interactions; Epi_Focus. *Effects of sustained oculomotor load during ... Experimental studies of the effect of oculomotor load on neck/scapular area muscle activation; Focus. ...
A 54-year-old man with generalized muscle atrophy and oculomotor paresis].. Komiya T; Shike T; Mori H; Santo ML; Suda K; Kondo ... A 54-year-old man with progressive proximal muscle atrophy and gynecomastia].. Anno M; Gotoh K; Hirasawa E; Mori H; Nakajima Y ... An 80-year-old woman with four years history of muscle atrophy involving lower extremities predominantly on the right side].. ...
Cranial nerve IV (trochlear) innervates the superior oblique muscle. Cranial nerve III (oculomotor) innervates all other ... cranial nerve IV travels outside of the muscle cone to innervate the superior oblique muscle. It is likely affected by the ... The extraocular muscles form a cone about the globe. The apex is at the optic foramen and the base is formed by the insertions ... When the needle is felt to be within the muscle cone, the syringe is aspirated to ensure that no blood returns. At this point, ...
The oculomotor nerve (cranial nerve III) supplies the inferior oblique muscle (along with four other eye muscles - superior ... The six muscles are the lateral, medial, inferior and superior recti muscles, and the inferior and superior oblique muscles. ... Main article: Extraocular muscles. Six extraocular muscles facilitate eye movement. These muscles arise from the common ... mediated by the inferior oblique muscle of the eye. The inferior oblique muscle is innervated by cranial nerve III (oculomotor ...
Finally, problems in the oculomotor muscles or the strategy to find an object would also be present with deficient visual ...
It appears that you may have a Cranial nerve palsy or oculomotor muscle weakness. I would recommend to make an appointmen... ... You may need physical therapy, non-steroidal antiinflammatory medications and may be muscle relaxants.. Created for people with ... Is my insomnia cause for muscle twitches, dizziness, temp high in 96, and tiredness all the time. cant fall sleep and get 4 to ...
Oculomotor function in the rhesus monkey after deafferentation of the extraocular muscles. Exp Brain Res 141, 349-358. ... A corollary discharge (CD) is a copy of a motor command that is sent to the muscles to produce a movement. This copy or ... The CD signal, like that sent to the motor neurons driving the muscles, occurs before the movement actually occurs, and is an ... Both of these are illustrated with examples from the visual - oculomotor system in primates where the CD has been extensively ...
... the awareness of clinicians regarding the genetic causes and management of congenital fibrosis of the extraocular muscles ( ... Absent oculomotor & trochlear nerves, small or absent extraocular muscles. Reported only in consanguineous families from the ... and their innervated muscles (superior oblique muscle and lateral rectus muscle, respectively). ... Hypoplastic oculomotor nerve & small extraocular muscles; small optic nerves. Other findings (extremely rare) incl cerebellar ...
... and a smaller saccade spike potential related to the contraction of oculomotor muscles at onset of a saccade (Dimigen et al., ... As subjects maintained a stable stance during the viewing of pictures, EEG data showed minimal neck muscle or head movement ... evidence from oculomotor behavior and electrocortical activity. Front. Syst. Neurosci. 7:17. doi: 10.3389/fnsys.2013.00017 ... would be affected either by low-level visual features of stimuli or differences in oculo-motor activity during viewing the ...
Electric organs derive from different muscles in different lineages including tail muscles, axial muscles and even oculomotor ... As in striated muscle in other species, the muscle fibers are of four different subtypes as defined by ATPase histochemistry ... The muscle fibers in the fascicles overlying the electrocytes are also denervated. Unlike the electrocytes, denervated muscle ... Between the skin and the electric organ are small fascicles of striated muscle fibers. These are typical muscle fibers (Fig. 1 ...
Oculomotor Muscles. Neuro-Ophthalmic Conditions Manifestations of Disease Occupational Ophthalmology. Eye Injuries Age Groups ...
Ataxia with oculomotor apraxia is a condition characterized by problems with movement that worsen over time. Explore symptoms, ... This protein is normally found primarily in muscle tissue. The effect of abnormally high levels of AFP or CPK in people with ... Ataxia with oculomotor apraxia type 4 begins around age 4. In addition to ataxia and oculomotor apraxia, individuals with this ... Genetic Testing Registry: Ataxia with oculomotor apraxia type 3 *Genetic Testing Registry: Ataxia, early-onset, with oculomotor ...
Total oculomotor nerve palsy implies involvement of all muscles innervated by the oculomotor nerve with pupillary involvement. ... Managing the patient with oculomotor nerve palsy. Current opinion in ophthalmology. 2013;24(5):438-47.,/ref> {{#ev:youtube, ...
  • These tests are used to assess the proper function of eye muscles and are very important in determining the type of extraocular muscle dysfunction. (muni.cz)
  • Whole mounts of rat EOMs stained with antibody specific to the embryonic MyHC isoform (green) or with antibody specific to the extraocular muscle MyHC isoform (EO-MyHC) at specific days postpartum. (upenn.edu)
  • However, the consent among strabismus surgeons regarding the dose effect of the extraocular muscle (EOM) recession or resection was not achieved yet and the disagreement about the appropriate amount of strabismus surgery still exists. (bmj.com)
  • Four mathematical models as potential instruments for extraocular muscle (EOM) resection length, EOM recession length and postoperative angle of deviation modelling in esotropia and exotropia surgery were developed. (bmj.com)
  • An experimental study was performed to quantitatively evaluate the tensile strength of extraocular muscle imbrication as it relates to the positioning of the imbricating suture. (elsevierpure.com)
  • In addition to clinical criteria, orbital CT scan and measurement of extraocular muscle thickness and increment of retroorbital fat volume were carried out. (ui.ac.id)
  • Extraocular muscle involvement on MRI (100%) and orbital fat obliteration (80% MRI, 86% CT) had the highest positive predictive values of the criteria evaluated. (johnshopkins.edu)
  • Adaptation of saccadic and vestibulo-ocular systems after extraocular muscle tenectomy. (ox.ac.uk)
  • Total oculomotor nerve palsy implies involvement of all muscles innervated by the oculomotor nerve with pupillary involvement. (physio-pedia.com)
  • This injection provides akinesia of the extraocular muscles by blocking cranial nerves II, III, and VI, which prevents movement of the globe. (medscape.com)
  • Structures located within the cone (after passing through the annulus of Zinn) include the motor innervations to the rectus muscles (cranial nerves III and VI) and the afferent sensory fibers from the globe, which are carried by the short and long posterior ciliary nerves before joining the nasociliary nerve (a branch of cranial nerve V1). (medscape.com)
  • While cranial nerves III and VI pass within the cone, cranial nerve IV travels outside of the muscle cone to innervate the superior oblique muscle. (medscape.com)
  • Cranial nerves IV (trochlear nerve) and III (oculomotor nerve) originate from the midbrain. (proprofs.com)
  • Diseases of the eye muscles or oculomotor cranial nerves (III, IV, and VI) are considered infranuclear. (bvsalud.org)
  • [2] Damage to the oculomotor nerve or any of its branches could lead to oculomotor motor nerve palsy (Third nerve palsy). (physio-pedia.com)
  • With unilateral third cranial nerve palsy (ie, oculomotor nerve palsy), the involved eye usually is deviated "down and out" (ie, infraducted and abducted), and there may be partial or complete ptosis. (physio-pedia.com)
  • Cranial nerve VI (abducens) innervates the lateral rectus muscle. (medscape.com)
  • [1] The oculomotor nerves send somatic motor fibres to all extraocular muscles, except the superior oblique and lateral rectus. (physio-pedia.com)
  • Results suggest that imbrications performed 0.5 mm or less from the cut muscle edge or 0.5 mm or less from the lateral margin may be prone to tensile failure. (elsevierpure.com)
  • The condition is caused by aberrant innervation of the lateral rectus by fibers of the OCULOMOTOR NERVE. (lookformedical.com)
  • In most cases, the abducens nucleus and nerve are absent or hypoplastic, and the lateral rectus muscle is innervated by a branch of the oculomotor nerve. (bionity.com)
  • In both cases the sixth cranial nerve nucleus was absent, as was the sixth nerve, and the lateral rectus muscle was innervated by the inferior division of the third or oculomotor cranial nerve. (bionity.com)
  • Analogous to the study in monkey, the SIF and MIF motoneurons of the medial and lateral rectus muscle of rats were identified with tracer injections and further characterized by immunolabelling. (studyres.com)
  • The upward and downward muscular movement of the eye is monitored by the muscles of the upper and lower rectus, while with the aid of medial and lateral rectus muscles, side movement and remaining at level is controlled. (globalstemcellcare.com)
  • The fifth pair is trigeminal nerve responsible for sensation on areas such as face, mouth and teeth along with some control over chewing muscles too.The sixth pair is known as abducens nerves which control lateral gaze by contraction of certain muscles around eyes allowing us look sideways without moving our head. (studyhippo.com)
  • One of the described techniques for management of oculomotor palsy has been medial transposition of the lateral rectus muscle which provides a good surgical alternative but often can result in undercorrection. (bmj.com)
  • The oculomotor nerve has no direct function, but sympathetic fibres run with the oculomotor nerve to innervate the superior tarsal muscle (helps to raise the eyelid). (physio-pedia.com)
  • Expression of mutant alpha2-chimaerin constructs in chick embryos resulted in failure of oculomotor axons to innervate their target extraocular muscles. (elsevierpure.com)
  • In the first part of the publication we describe the properties of extraocular muscles including their origin, courses, insertion, innervation and function. (muni.cz)
  • Duane's retraction syndrome (DRS) is a complex congenital eye movement disorder caused by aberrant innervation of the extraocular muscles by axons of brainstem motor neurons. (elsevierpure.com)
  • Control of contractile protein synthesis in the extraocular muscles: Although oculomotor disorders such as strabismus or nystagmus can have marked, deleterious effects on the development of vision, little is known about the final common pathway of oculomotor control: the extraocular muscles (EOMs). (upenn.edu)
  • Brooks, SE 2017, ' Securing extraocular muscles in strabismus surgery: biomechanical analysis of muscle imbrication ', Journal of AAPOS , vol. 21, no. 5, pp. 408-409. (elsevierpure.com)
  • PBP is a progressive degenerative disorder of the motor nuclei in the medulla (specifically involving the glossopharyngeal, vagus, and hypoglossal nerves) that produces atrophy and fasciculations of the lingual muscles, dysarthria, and dysphagia. (medscape.com)
  • The motor nerves enter the rectus muscles on the intraconal surface. (medscape.com)
  • Most of the muscle sensory nerves pass close to the nerves that relay sound from your acoustic nerve, so it would not be surprising that pressure on the muscles on the head can trigger tinnitus. (studyres.com)
  • With the assistance of oculomotor nerves, these muscles are regulated in turn. (globalstemcellcare.com)
  • It is a fatal disorder and is characterized by progressive skeletal muscle weakness and wasting or atrophy (ie, amyotrophy), spasticity, and fasciculations as a result of degeneration of the UMNs and LMNs, culminating in respiratory paralysis. (medscape.com)
  • Its use is supported by a series of randomized and controlled trials assessing diseases that affect the peripheral nerve, neuromuscular junction, and skeletal muscle. (nursingcenter.com)
  • Close to the midline are the motor efferent nuclei, such as the oculomotor nucleus, which control skeletal muscle. (wikipedia.org)
  • We have previously demonstrated that a layer of skeletal muscle cells in the EOMs demonstrate a longitudinal variation in their myosin heavy chain (MyHC) isoforms. (upenn.edu)
  • It is composed of skeletal striated muscle fibers but on its undersurface, smooth muscle fibers form the superior tarsal muscle (Müller muscle) , which is under sympathetic control (and sometimes considered a separate muscle). (radiopaedia.org)
  • They are classified as skeletal, cardiac, or smooth muscles. (absoluteastronomy.com)
  • It originates from the oculomotor nucleus and the Edinger-Westphal nucleus within the midbrain of the brainstem . (physio-pedia.com)
  • C) Granular staining in the neuropil and perineuronal staining (arrows) in the oculomotor nucleus of the midbrain. (cdc.gov)
  • The oculomotor nerve exits the brainstem near midline at the base of the midbrain just caudal to the mammillary bodies. (physio-pedia.com)
  • There are two primary functions of the autonomic parasympathetic (involuntary) oculomotor nerve. (physio-pedia.com)
  • The levator palpebrae superioris muscle is a small muscle of the superior orbit that elevates and retracts the upper eyelid . (radiopaedia.org)
  • The superior tarsal muscle is a smooth muscle adjoining the levator palpebrae superioris muscle that helps to raise the upper eyelid. (absoluteastronomy.com)
  • It can affect one eye or both eyes and is more common in the elderly, as muscles in the eyelids may begin to deteriorate. (absoluteastronomy.com)
  • Los trastornos nucleares son originados por enfermedades de los núcleos oculomotores, trocleares o abducens en el TRONCO CEREBRAL. (bvsalud.org)
  • Nuclear disorders are caused by disease of the oculomotor, trochlear, or abducens nuclei in the BRAIN STEM. (bvsalud.org)
  • Cranial nerve IV (trochlear) innervates the superior oblique muscle. (medscape.com)
  • Cranial nerve III (oculomotor) innervates all other extraocular muscles. (medscape.com)
  • It also innervates the ciliary muscles. (physio-pedia.com)
  • Use of anticholinergic drugs , which block neurotransmitters and suppress nerve impulses that cause involuntary muscle movements. (allaboutvision.com)
  • In addition to ataxia and oculomotor apraxia, individuals with this type typically develop dystonia, which is involuntary, sustained muscle tensing that causes unusual positioning of body parts. (medlineplus.gov)
  • The levator palpebrae superioris is the muscle in the orbit that elevates the superior eyelid. (absoluteastronomy.com)
  • The oculomotor nerve divides into superior and inferior branches in the anterior part of the cavernous sinus. (physio-pedia.com)
  • The binocular coordination of movements of the eyes is a complex issue controlled by many brainstem nuclei, and is subject to a wide variety of forms of disruption by traumatic brain injury and oculomotor muscles disorders. (ski.org)
  • Variants in multiple tubulin genes have been implicated in neurodevelopmental disorders, including malformations of cortical development (MCD) and congenital fibrosis of the extraocular muscles (CFEOM). (bvsalud.org)
  • The oculomotor nerve is the chief motor nerve to the ocular and extraocular muscles . (physio-pedia.com)
  • D) Granular PrP Sc deposition in the muscle spindle of the ocular muscle. (cdc.gov)
  • This is followed by placing non-absorbable sutures to fix each split belly of the transposed muscles to the sclera at the equator adjacent to the medial rectus such that the split muscles lie nearly parallel to the medial rectus till the equator before reflecting away. (bmj.com)
  • These sutures augment the force of the transposed muscles by redirecting the force vectors in the direction of action of the medial rectus. (bmj.com)
  • The trochlear nerve controls the superior oblique muscle, which helps with eye movement, while the oculomotor nerve controls several eye muscles responsible for eye movement, pupil constriction, and focusing. (proprofs.com)
  • The fourth pair is known as trochlear nerve which controls movement of one eye muscle in particular called superior oblique muscle. (studyhippo.com)
  • But it is considered to be one of the facial muscles . (radiopaedia.org)
  • The seventh paired facial nerve allows us sense taste on front two thirds of tongue along with helping us talk by controlling facial muscles like those involved in smiling or frowning etc.[1] Eighth cranial nerve (vestibulocochlear) helps us maintain balance while also transmitting sound signals from inner ear to brain. (studyhippo.com)
  • People with oculomotor apraxia have to turn their head to see things in their side (peripheral) vision. (medlineplus.gov)
  • The study provides clinically translatable data to inform surgical technique regarding secure muscle imbrication. (elsevierpure.com)
  • Multiple lines of evidence indicate that an anatomically discrete region within the dorsal medial frontal cortex--the supplementary eye field (SEF)--is involved in oculomotor control. (ox.ac.uk)
  • These results provide evidence of a causal role for the SEF in oculomotor control in the absence of visual feedback. (ox.ac.uk)
  • It constricts the pupil (miosis) by innervating the smooth muscle (sphincter pupillae) near the pupil. (physio-pedia.com)
  • Myasthenia gravis is an autoimmune neuromuscular disease leading to fluctuating muscle weakness and fatiguability. (absoluteastronomy.com)
  • The trigeminal nerve is responsible for transmitting sensory information from the face and controlling the muscles involved in chewing. (proprofs.com)
  • Ataxia with oculomotor apraxia is a condition characterized by problems with movement that worsen over time. (medlineplus.gov)
  • Individuals with this type may also develop muscle wasting in their hands and feet, which further impairs movement. (medlineplus.gov)
  • Many individuals with ataxia with oculomotor apraxia require wheelchair assistance, typically 10 to 15 years after the start of movement problems. (medlineplus.gov)
  • Thus, co-contraction of the muscles takes place, limiting the amount of movement achievable and also resulting in retraction of the eye into the socket. (bionity.com)
  • [5] The ciliary muscle changes the shape of the lens during accommodation. (physio-pedia.com)
  • Building the field of consciousness on a clearly formed structure centered accurately in the ego is like building a perfect eye with the power of precise focalization through the lens and the eye's muscles, so that the image reflected upon the retina falls exactly on the "yellow spot" of the retina which alone is endowed with full sensitiveness to light. (diaryofamundaneastrologer.net)
  • Thin-section orbital T2-weighted imaging was performed in the orthogonal coronal plane with a turbo spin-echo technique to evaluate the extraocular muscles, using the following parameters: repetition time/echo time 3657/120 ms, field of view 150×150 mm, matrix 256×256 and section thickness 2 mm. (bmj.com)
  • A key feature of ataxia with oculomotor apraxia type 2 is high amounts of a protein called alpha-fetoprotein (AFP) in the blood. (medlineplus.gov)
  • This protein is normally found primarily in muscle tissue. (medlineplus.gov)
  • Muscle is a contractile tissue of animals and is derived from the mesodermal layer of embryonic germ cells. (absoluteastronomy.com)
  • Muscle cells contain contractile filaments that move past each other and change the size of the cell. (absoluteastronomy.com)