A nuclear receptor coactivator with specificity for ESTROGEN RECEPTORS and PROGESTERONE RECEPTORS. It contains a histone acetyltransferase activity that may play a role in CHROMATIN REMODELING during the process of nuclear receptor-induced transcription. The coactivator has been found at elevated levels in certain HORMONE-DEPENDENT NEOPLASMS such as those found in BREAST CANCER.
A transcription factor that partners with ligand bound GLUCOCORTICOID RECEPTORS and ESTROGEN RECEPTORS to stimulate GENETIC TRANSCRIPTION. It plays an important role in FERTILITY as well as in METABOLISM of LIPIDS.
A nuclear receptor coactivator with specificity for ESTROGEN RECEPTORS; PROGESTERONE RECEPTORS; and THYROID HORMONE RECEPTORS. It contains a histone acetyltransferase activity that may play a role in the transcriptional activation of chromatin regions.
Proteins that enhance gene expression when associated with ligand bound activated NUCLEAR RECEPTORS. The coactivators may act through an enzymatic process that affects the rate of transcription or the structure of chromatin. Alternatively nuclear receptor coactivators can function as adaptor proteins that bring nuclear receptors into close proximity with transcriptional complexes.
Intracellular receptors that can be found in the cytoplasm or in the nucleus. They bind to extracellular signaling molecules that migrate through or are transported across the CELL MEMBRANE. Many members of this class of receptors occur in the cytoplasm and are transported to the CELL NUCLEUS upon ligand-binding where they signal via DNA-binding and transcription regulation. Also included in this category are receptors found on INTRACELLULAR MEMBRANES that act via mechanisms similar to CELL SURFACE RECEPTORS.
Enzymes that catalyze acyl group transfer from ACETYL-CoA to HISTONES forming CoA and acetyl-histones.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
A mediator complex subunit that is believed to play a key role in the coactivation of nuclear receptor-activated transcription by the mediator complex. It interacts with a variety of nuclear receptors including RETINOIC ACID RECEPTORS; THYROID HORMONE RECEPTORS; VITAMIN D RECEPTORS; PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS; ESTROGEN RECEPTORS; and GLUCOCORTICOID RECEPTORS.
A member of the p300-CBP transcription factor family that was initially identified as a binding partner for CAMP RESPONSE ELEMENT-BINDING PROTEIN. Mutations in CREB-binding protein are associated with RUBINSTEIN-TAYBI SYNDROME.
Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.
Enzymes that catalyze the methylation of arginine residues of proteins to yield N-mono- and N,N-dimethylarginine. This enzyme is found in many organs, primarily brain and spleen.
Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
Screening techniques first developed in yeast to identify genes encoding interacting proteins. Variations are used to evaluate interplay between proteins and other molecules. Two-hybrid techniques refer to analysis for protein-protein interactions, one-hybrid for DNA-protein interactions, three-hybrid interactions for RNA-protein interactions or ligand-based interactions. Reverse n-hybrid techniques refer to analysis for mutations or other small molecules that dissociate known interactions.
One of the ESTROGEN RECEPTORS that has marked affinity for ESTRADIOL. Its expression and function differs from, and in some ways opposes, ESTROGEN RECEPTOR BETA.
Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
CELL LINES derived from the CV-1 cell line by transformation with a replication origin defective mutant of SV40 VIRUS, which codes for wild type large T antigen (ANTIGENS, POLYOMAVIRUS TRANSFORMING). They are used for transfection and cloning. (The CV-1 cell line was derived from the kidney of an adult male African green monkey (CERCOPITHECUS AETHIOPS).)
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
An orphan nuclear receptor that is closely related to members of the thyroid-steroid receptor gene family. It was originally identified in NERVE CELLS and may play a role in mediation of NERVE GROWTH FACTOR-induced CELL DIFFERENTIATION. However, several other functions have been attributed to this protein including the positive and negative regulation of APOPTOSIS.
Specific high affinity binding proteins for THYROID HORMONES in target cells. They are usually found in the nucleus and regulate DNA transcription. These receptors are activated by hormones that leads to transcription, cell differentiation, and growth suppression. Thyroid hormone receptors are encoded by two genes (GENES, ERBA): erbA-alpha and erbA-beta for alpha and beta thyroid hormone receptors, respectively.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
A nuclear protein that regulates the expression of genes involved in a diverse array of processes related to metabolism and reproduction. The protein contains three nuclear receptor interaction domains and three repressor domains and is closely-related in structure to NUCLEAR RECEPTOR CO-REPRESSOR 2.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
Proteins and peptides that are involved in SIGNAL TRANSDUCTION within the cell. Included here are peptides and proteins that regulate the activity of TRANSCRIPTION FACTORS and cellular processes in response to signals from CELL SURFACE RECEPTORS. Intracellular signaling peptide and proteins may be part of an enzymatic signaling cascade or act through binding to and modifying the action of other signaling factors.
Proteins in the nucleus or cytoplasm that specifically bind RETINOIC ACID or RETINOL and trigger changes in the behavior of cells. Retinoic acid receptors, like steroid receptors, are ligand-activated transcription regulators. Several types have been recognized.
A family of histone acetyltransferases that is structurally-related to CREB-BINDING PROTEIN and to E1A-ASSOCIATED P300 PROTEIN. They function as transcriptional coactivators by bridging between DNA-binding TRANSCRIPTION FACTORS and the basal transcription machinery. They also modify transcription factors and CHROMATIN through ACETYLATION.
A cell line derived from cultured tumor cells.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
An orphan nuclear receptor that is found at high levels in BRAIN tissue. The protein is believed to play a role in development and maintenance of NEURONS, particularly dopaminergic neurons.
Transport proteins that carry specific substances in the blood or across cell membranes.
A broad category of receptor-like proteins that may play a role in transcriptional-regulation in the CELL NUCLEUS. Many of these proteins are similar in structure to known NUCLEAR RECEPTORS but appear to lack a functional ligand-binding domain, while in other cases the specific ligands have yet to be identified.
A subtype of RETINOIC ACID RECEPTORS that are specific for 9-cis-retinoic acid which function as nuclear TRANSCRIPTION FACTORS that regulate multiple signaling pathways.
A subclass of repressor proteins that do not directly bind DNA. Instead, co-repressors generally act via their interaction with DNA-BINDING PROTEINS such as a TRANSCRIPTIONAL SILENCING FACTORS or NUCLEAR RECEPTORS.
Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important.
A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed)
A member of the p300-CBP transcription factors that was originally identified as a binding partner for ADENOVIRUS E1A PROTEINS.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
A DNA-binding orphan nuclear receptor that positively regulates expression of ARNTL TRANSCRIPTION FACTORS and is a regulatory component of the circadian clock system. The protein also has a role in neuron cell survival and differentiation in that loss of function mutations of its gene result in the mouse phenotype referred to as the STAGGERER MOUSE.
Nucleotide sequences, usually upstream, which are recognized by specific regulatory transcription factors, thereby causing gene response to various regulatory agents. These elements may be found in both promoter and enhancer regions.
A DNA-binding orphan nuclear receptor that negatively regulates expression of ARNTL TRANSCRIPTION FACTORS and plays a role as a regulatory component of the circadian clock system. The Nr1d1 nuclear receptor expression is cyclically-regulated by a feedback loop involving its positive regulation by CLOCK PROTEIN; BMAL1 PROTEIN heterodimers and its negative regulation by CRYPTOCHROME and PERIOD PROTEINS.
A nuclear co-repressor protein that shows specificity for RETINOIC ACID RECEPTORS and THYROID HORMONE RECEPTORS. The dissociation of this co-repressor from nuclear receptors is generally ligand-dependent, but can also occur by way of its phosphorylation by members of the MAP KINASE SIGNALING SYSTEM. The protein contains two nuclear receptor interaction domains and four repressor domains and is closely-related in structure to NUCLEAR RECEPTOR CO-REPRESSOR 1.
Proteins, generally found in the CYTOPLASM, that specifically bind ANDROGENS and mediate their cellular actions. The complex of the androgen and receptor migrates to the CELL NUCLEUS where it induces transcription of specific segments of DNA.
Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
High affinity receptors for THYROID HORMONES, especially TRIIODOTHYRONINE. These receptors are usually found in the nucleus where they regulate DNA transcription. They are encoded by the THRB gene (also known as NR1A2, THRB1, or ERBA2 gene) as several isoforms produced by alternative splicing. Mutations in the THRB gene cause THYROID HORMONE RESISTANCE SYNDROME.
An orphan nuclear receptor that has specificity for hormone response elements found in the promoters of target genes. It binds DNA either as a homodimer or as heterodimer with the closely-related orphan nuclear receptor NUCLEAR RECEPTOR SUBFAMILY 2, GROUP C, MEMBER 1. The protein was originally identified as a TESTES-specific protein and is involved in the regulation of variety of cellular processes, including CELL DIFFERENTIATION; CELL PROLIFERATION; and APOPTOSIS.
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
Established cell cultures that have the potential to propagate indefinitely.
An orphan nuclear receptor that is implicated in regulation of steroidogenic pathways. It is unlike most orphan nuclear receptors in that it appears to lack an essential DNA-binding domain and instead acts as a transcriptional co-repressor. Mutations in the gene Dax-1 cause congenital adrenal hypoplasia.
A DNA-binding orphan nuclear receptor that has specificity for directly repeated (DR) AGGTCA sequences. It binds DNA as either as a homodimer or as a heterodimer with the closely-related orphan nuclear receptor NUCLEAR RECEPTOR SUBFAMILY 2, GROUP C, MEMBER 2. The protein was originally identified as a PROSTATE-specific protein and is involved in the regulation of variety of cellular processes, including CELL DIFFERENTIATION; CELL PROLIFERATION; and APOPTOSIS.
An orphan nuclear receptor that is expressed at high levels in neuronal tissues, the RETINA; EPIDIDYMIS; and VAS DEFERENS. The receptor is believed to play a role in regulating a variety of functions including the processing of sensory information, the differentiation of PHOTORECEPTOR CELLS and the CIRCADIAN RHYTHM.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Commonly observed structural components of proteins formed by simple combinations of adjacent secondary structures. A commonly observed structure may be composed of a CONSERVED SEQUENCE which can be represented by a CONSENSUS SEQUENCE.
Genes whose expression is easily detectable and therefore used to study promoter activity at many positions in a target genome. In recombinant DNA technology, these genes may be attached to a promoter region of interest.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
A transcription factor and member of the nuclear receptor family NR5 that is expressed throughout the adrenal and reproductive axes during development. It plays an important role in sexual differentiation, formation of primary steroidogenic tissues, and their functions in post-natal and adult life. It regulates the expression of key steroidogenic enzymes.
Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example.
Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds.
Proteins, usually found in the cytoplasm, that specifically bind calcitriol, migrate to the nucleus, and regulate transcription of specific segments of DNA with the participation of D receptor interacting proteins (called DRIP). Vitamin D is converted in the liver and kidney to calcitriol and ultimately acts through these receptors.
Specific proteins found in or on cells of progesterone target tissues that specifically combine with progesterone. The cytosol progesterone-receptor complex then associates with the nucleic acids to initiate protein synthesis. There are two kinds of progesterone receptors, A and B. Both are induced by estrogen and have short half-lives.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
One of the ESTROGEN RECEPTORS that has greater affinity for ISOFLAVONES than ESTROGEN RECEPTOR ALPHA does. There is great sequence homology with ER alpha in the DNA-binding domain but not in the ligand binding and hinge domains.
A technique for identifying specific DNA sequences that are bound, in vivo, to proteins of interest. It involves formaldehyde fixation of CHROMATIN to crosslink the DNA-BINDING PROTEINS to the DNA. After shearing the DNA into small fragments, specific DNA-protein complexes are isolated by immunoprecipitation with protein-specific ANTIBODIES. Then, the DNA isolated from the complex can be identified by PCR amplification and sequencing.
A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey (C. pygerythrus) is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
Proteins coded by oncogenes. They include proteins resulting from the fusion of an oncogene and another gene (ONCOGENE PROTEINS, FUSION).
Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates.
Fushi tarazu transcription factors were originally identified in DROSOPHILA. They are found throughout ARTHROPODS and play important roles in segmentation and CENTRAL NERVOUS SYSTEM development.
The process by which two molecules of the same chemical composition form a condensation product or polymer.
Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.
A subfamily of nuclear receptors that regulate GENETIC TRANSCRIPTION of a diverse group of GENES involved in the synthesis of BLOOD COAGULATION FACTORS; and in GLUCOSE; CHOLESTEROL; and FATTY ACIDS metabolism.
A nuclear transcription factor. Heterodimerization with PPAR GAMMA is important in regulation of GLUCOSE metabolism and CELL GROWTH PROCESSES.
Tumors or cancer of the human BREAST.
A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite.
An orphan nuclear receptor expressed mainly in the GERM CELLS of GONADS. It functions as a transcription factor that binds to a direct repeat of the sequence AGGTCA and may play a role in the regulation of EMBRYOGENESIS and germ cell differentiation.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
A large class of structurally-related proteins that contain one or more LIM zinc finger domains. Many of the proteins in this class are involved in intracellular signaling processes and mediate their effects via LIM domain protein-protein interactions. The name LIM is derived from the first three proteins in which the motif was found: LIN-11, Isl1 and Mec-3.
Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power.
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
A nuclear transcription factor. Heterodimerization with RETINOID X RECEPTOR ALPHA is important in regulation of GLUCOSE metabolism and CELL GROWTH PROCESSES. It is a target of THIAZOLIDINEDIONES for control of DIABETES MELLITUS.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
TRANSCRIPTION FACTORS that are activated by ligands and heterodimerize with RETINOID X RECEPTORS and bind to peroxisome proliferator response elements in the promoter regions of target genes.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
One of the SELECTIVE ESTROGEN RECEPTOR MODULATORS with tissue-specific activities. Tamoxifen acts as an anti-estrogen (inhibiting agent) in the mammary tissue, but as an estrogen (stimulating agent) in cholesterol metabolism, bone density, and cell proliferation in the ENDOMETRIUM.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
An orphan nuclear receptor found in the THYMUS where it plays a role in regulating the development and maturation of thymocytes. An isoform of this protein, referred to as RORgammaT, is produced by an alternatively transcribed mRNA.
A nuclear transcription factor. Heterodimerization with RETINOID X RECEPTOR GAMMA is important to metabolism of LIPIDS. It is the target of FIBRATES to control HYPERLIPIDEMIAS.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
A COUP transcription factor that negatively regulates GENETIC TRANSCRIPTION and competes with other hormone receptors for the common response element AGGTCA. It can also stimulate transcription of genes involved in the metabolism of GLUCOSE and CHOLESTEROL.
Tumors or cancer of the PROSTATE.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE).
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
A large protein complex which acts as a signaling adaptor protein that allows communication between the various regulatory and functional components of GENETIC TRANSCRIPTION including DNA POLYMERASE II; GENERAL TRANSCRIPTION FACTORS; and TRANSCRIPTION FACTORS that are bound to upstream ENHANCER ELEMENTS. The mediator complex was originally studied in YEAST where at least 21 subunits were identified. Many of the yeast subunits are homologs to proteins in higher organisms that are found associated with specific nuclear receptors such as THYROID HORMONE RECEPTORS and VITAMIN D RECEPTORS.
A T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5' position of the outer ring of the iodothyronine nucleus. The hormone finally delivered and used by the tissues is mainly T3.
A COUP transcription factor that was originally identified as a homodimer that binds to a direct repeat regulatory element in the chicken albumin promoter. It is a transcription factor that plays an important role in EMBRYONIC DEVELOPMENT of the CENTRAL NERVOUS SYSTEM.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
A steroid hormone that regulates the processes of MOLTING or ecdysis in insects.
Formation of an acetyl derivative. (Stedman, 25th ed)
The main structural component of the LIVER. They are specialized EPITHELIAL CELLS that are organized into interconnected plates called lobules.
Chemical substances that are foreign to the biological system. They include naturally occurring compounds, drugs, environmental agents, carcinogens, insecticides, etc.
An orphan nuclear receptor that is closely related to members of the thyroid-steroid receptor family. It was originally identified in NERVE CELLS, however it may play regulatory roles in a variety of other tissues.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Deacetylases that remove N-acetyl groups from amino side chains of the amino acids of HISTONES. The enzyme family can be divided into at least three structurally-defined subclasses. Class I and class II deacetylases utilize a zinc-dependent mechanism. The sirtuin histone deacetylases belong to class III and are NAD-dependent enzymes.

Competition between thyroid hormone receptor-associated protein (TRAP) 220 and transcriptional intermediary factor (TIF) 2 for binding to nuclear receptors. Implications for the recruitment of TRAP and p160 coactivator complexes. (1/267)

Transcriptional activation by nuclear receptors (NRs) involves the concerted action of coactivators, chromatin components, and the basal transcription machinery. Crucial NR coactivators, which target primarily the conserved ligand-regulated activation (AF-2) domain, include p160 family members, such as TIF2, as well as p160-associated coactivators, such as CBP/p300. Because these coactivators possess intrinsic histone acetyltransferase activity, they are believed to function mainly by regulating chromatin-dependent transcriptional activation. Recent evidence suggests the existence of an additional NR coactivator complex, referred to as the thyroid hormone receptor-associated protein (TRAP) complex, which may function more directly as a bridging complex to the basal transcription machinery. TRAP220, the 220-kDa NR-binding subunit of the complex, has been identified in independent studies using both biochemical and genetic approaches. In light of the functional differences identified between p160 and TRAP coactivator complexes in NR activation, we have attempted to compare interaction and functional characteristics of TIF 2 and TRAP220. Our findings imply that competition between the NR-binding subunits of distinct coactivator complexes may act as a putative regulatory step in establishing either a sequential activation cascade or the formation of independent coactivator complexes.  (+info)

The activity of the activation function 2 of the human hepatocyte nuclear factor 4 (HNF-4alpha) is differently modulated by F domains from various origins. (2/267)

Hepatocyte nuclear factor 4 (HNF-4) is a member of the nuclear hormone-receptor superfamily, which plays an important role in the regulation of several genes involved in numerous metabolic pathways. HNF-4 contains a DNA-binding domain located in domain C and two activation-function domains, designated AF-1 and AF-2, located in domains A/B and E, respectively. The seven isoforms of human HNF-4, termed alpha1-alpha6 and gamma, differ mainly by their A/B and F domains. The high sequence variability of the F domain led us to investigate whether this domain modulates the transcriptional activity of HNF-4. Using constructs having the same core receptor and different F domains, we observed that the F domains of HNF-4 modulate the transactivating activity of the full-length HNF-4. A more precise analysis using HNF-4alpha AF-2 fused to GAL4 protein and various F domains demonstrated that F domains of isoforms alpha3 and gamma exhibited inhibitory effects on the activation function AF-2 but that their inhibition behaviours were weaker than that of HNF-4alpha2 F domain, which has been reported previously. The presence of domain F results in a decreased interaction with the co-activator glucocorticoid receptor-interacting protein 1. For a given F domain, the modulating effects on the full-length HNF-4 as well as on the AF-2 depended on the target promoters. Our results suggest that the presence of domain F results in conformation changes in HNF-4 AF-2 or in its spatial environment, which probably modify the interaction of the AF-2 activation domain with co-factors and transcription factors bound to cis-elements of the target promoters.  (+info)

Phosphorylation of the nuclear receptor SF-1 modulates cofactor recruitment: integration of hormone signaling in reproduction and stress. (3/267)

Steroidogenic factor 1 (SF-1) is an orphan nuclear receptor that serves as an essential regulator of many hormone-induced genes in the vertebrate endocrine system. The apparent absence of a SF-1 ligand prompted speculation that this receptor is regulated by alternative mechanisms involving signal transduction pathways. Here we show that maximal SF-1-mediated transcription and interaction with general nuclear receptor cofactors depends on phosphorylation of a single serine residue (Ser-203) located in a major activation domain (AF-1) of the protein. Moreover, phosphorylation-dependent SF-1 activation is likely mediated by the mitogen-activated protein kinase (MAPK) signaling pathway. We propose that this single modification of SF-1 and the subsequent recruitment of nuclear receptor cofactors couple extracellular signals to steroid and peptide hormone synthesis, thereby maintaining dynamic homeostatic responses in stress and reproduction.  (+info)

The autonomous transactivation domain in helix H3 of the vitamin D receptor is required for transactivation and coactivator interaction. (4/267)

A ligand-inducible transactivation function (AF-2) exists in the extreme carboxyl terminus of the vitamin D receptor (VDR) that is essential for 1alpha,25-dihydroxyvitamin D3 (1,25-(OH)2D3)-activated transcription and p160 coactivator interaction. Crystallographic data of related nuclear receptors suggest that binding of 1, 25-(OH)2D3 by VDR induces conformational changes in the ligand-binding domain (LBD), the most striking of which is a packing of the AF-2 helix onto the LBD adjacent to helices H3 and H4. In this study, a panel of VDR helix H3 mutants was generated, and residues in helix H3 that are important for ligand-activated transcription by the full-length VDR were identified. In particular, one mutant (VDR (Y236A)) exhibited normal ligand binding and heterodimerization with the retinoid X receptor (RXR) but was transcriptionally inactive. Yeast two-hybrid studies and in vitro protein interaction assays demonstrated that VDR (Y236A) was selectively impaired in interaction with AF-2-interacting coactivator proteins such as SRC-1 and GRIP-1. These data indicate an importance of helix H3 in the mechanism of VDR-mediated transcription, and they support the concept that helix H3 functions in concert with the AF-2 domain to form a transactivation surface for binding the p160 class of nuclear receptor coactivators.  (+info)

20-Epi analogues of 1,25-dihydroxyvitamin D3 are highly potent inducers of DRIP coactivator complex binding to the vitamin D3 receptor. (5/267)

1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) plays a major role in the stimulation of bone growth, mineralization, and intestinal calcium and phosphate absorption; it also acts as a general inhibitor of cellular proliferation. Several new, clinically relevant compounds dissociate antiproliferative and calcemic activities of 1,25(OH)2D3, but the molecular basis for this has not been clearly elucidated. Here, we tested whether the potency of one class of compounds, 20-epi analogues, to induce myeloid cell differentiation, is because of direct molecular effects on vitamin D receptor (VDR). We report that two 20-epi analogues, MC1627 and MC1288, induced differentiation and transcription of p21(Waf1,Cip1), a key VDR target gene involved in growth inhibition, at a concentration 100-fold lower than that of 1,25(OH)2D3. We compared this sensitivity to analogue effects on VDR interacting proteins: RXR, GRIP-1, and DRIP205, a subunit of the DRIP coactivator complex. Compared with the interaction of VDR with RXR or GRIP-1, the differentiation dose-response most closely correlated to the ligand-dependent recruitment of the DRIP coactivator complex to VDR and to the ability of the receptor to activate transcription in a cell-free system. These results provide compelling links between the efficiency of the 20-epi analogue in inducing VDR/DRIP interactions, transactivation in vitro, and its enhanced ability to induce cellular differentiation.  (+info)

Oligospermic infertility associated with an androgen receptor mutation that disrupts interdomain and coactivator (TIF2) interactions. (6/267)

Structural changes in the androgen receptor (AR) are one of the causes of defective spermatogenesis. We screened the AR gene of 173 infertile men with impaired spermatogenesis and identified 3 of them, unrelated, who each had a single adenine-->guanine transition that changed codon 886 in exon 8 from methionine to valine. This mutation was significantly associated with the severely oligospermic phenotype and was not detected in 400 control AR alleles. Despite the location of this substitution in the ligand-binding domain (LBD) of the AR, neither the genital skin fibroblasts of the subjects nor transfected cell types expressing the mutant receptor had any androgen-binding abnormality. However, the mutant receptor had a consistently (approximately 50%) reduced capacity to transactivate each of 2 different androgen-inducible reporter genes in 3 different cell lines. Deficient transactivation correlated with reduced binding of mutant AR complexes to androgen response elements. Coexpression of AR domain fragments in mammalian and yeast two-hybrid studies suggests that the mutation disrupts interactions of the LBD with another LBD, with the NH2-terminal transactivation domain, and with the transcriptional intermediary factor TIF2. These data suggest that a functional element centered around M886 has a role, not for ligand binding, but for interdomain and coactivator interactions culminating in the formation of a normal transcription complex.  (+info)

Receptor interacting protein RIP140 inhibits both positive and negative gene regulation by glucocorticoids. (7/267)

Recent development in the field of gene regulation by nuclear receptors (NRs) have identified a role for cofactors in transcriptional control. While some of the NR-associated proteins serve as coactivators, the effect of the receptor interacting protein 140 (RIP140) on NR transcriptional responses is complex. In this report we have studied the effect of RIP140 on gene regulation by the glucocorticoid receptor (GR). We demonstrate that RIP140 antagonized all GR-mediated responses tested, which included activation through classical GRE, the synergistic effects of glucocorticoids on AP-1 and Pbx1/HOXB1 responsive elements, as well as gene repression through a negative GRE and cross-talk with NF-kappaB (RelA). This involved the ligand-binding domain of the GR and did not occur when the GR was bound to the antagonist RU486. The strong repressive effect of RIP140 was restricted to glucocorticoid-mediated responses in as much as it slightly increased signaling through the RelA and the Pit-1/Pbx proteins and only slightly repressed signaling through the Pbx1/HOXB1 and AP-1 proteins, excluding general squelching as a mechanism. Instead, this suggests that RIP140 acts as a direct inhibitor of GR function. In line with a direct effect of RIP140 on the GR, we demonstrate a GR-RIP140 interaction in vitro by a glutathione S-transferase-pull down assay. Furthermore, the repressive effect of RIP140 could partially be overcome by overexpression of the coactivator TIF2, which involved a competition between TIF2 and RIP140 for binding to the GR.  (+info)

Regulation of transcription by a protein methyltransferase. (8/267)

The p160 family of coactivators, SRC-1, GRIP1/TIF2, and p/CIP, mediate transcriptional activation by nuclear hormone receptors. Coactivator-associated arginine methyltransferase 1 (CARM1), a previously unidentified protein that binds to the carboxyl-terminal region of p160 coactivators, enhanced transcriptional activation by nuclear receptors, but only when GRIP1 or SRC-1a was coexpressed. Thus, CARM1 functions as a secondary coactivator through its association with p160 coactivators. CARM1 can methylate histone H3 in vitro, and a mutation in the putative S-adenosylmethionine binding domain of CARM1 substantially reduced both methyltransferase and coactivator activities. Thus, coactivator-mediated methylation of proteins in the transcription machinery may contribute to transcriptional regulation.  (+info)

Nuclear Receptor Coactivator 3 (NCOA3), also known as AIB1 (Amplified in Breast Cancer 1), is a protein that functions as a coactivator for several nuclear receptors. Nuclear receptors are transcription factors that regulate gene expression in response to various signals, such as hormones and vitamins.

NCOA3/AIB1 contains several functional domains, including an N-terminal basic helix-loop-helix Per-Arnt-Sim (bHLH-PAS) domain, two nuclear receptor interaction motifs, and a C-terminal activation domain. These domains enable NCOA3/AIB1 to interact with various nuclear receptors, recruit additional coactivators, and stimulate transcription of target genes.

NCOA3/AIB1 has been implicated in the development and progression of several types of cancer, including breast, prostate, and ovarian cancers. Amplification or overexpression of NCOA3/AIB1 has been observed in these cancers, leading to increased cell growth, survival, and metastasis. Additionally, NCOA3/AIB1 has been linked to endocrine resistance in breast cancer, making it a potential target for therapeutic intervention.

Nuclear Receptor Coactivator 2 (NCoA-2, also known as SRC-2 or TIF2) is a protein that functions as a transcriptional coactivator. It plays an essential role in the regulation of gene expression by interacting with nuclear receptors, which are transcription factors that bind to specific DNA sequences and control the expression of target genes.

NCoA-2 contains several functional domains, including an intrinsic histone acetyltransferase (HAT) domain, which can acetylate histone proteins and modify chromatin structure, leading to the activation of gene transcription. NCoA-2 also has a bromodomain, which recognizes and binds to acetylated lysine residues on histones, further contributing to its ability to modulate chromatin structure and function.

NCoA-2 interacts with various nuclear receptors, such as the estrogen receptor (ER), glucocorticoid receptor (GR), progesterone receptor (PR), and androgen receptor (AR). By binding to these receptors, NCoA-2 enhances their transcriptional activity, ultimately influencing various physiological processes, including cell growth, differentiation, and metabolism.

Dysregulation of NCoA-2 has been implicated in several diseases, such as cancer, where its overexpression can contribute to tumor progression and hormone resistance. Therefore, understanding the molecular mechanisms underlying NCoA-2 function is crucial for developing novel therapeutic strategies targeting nuclear receptor signaling pathways.

Nuclear Receptor Coactivator 1 (NCOA1), also known as Steroid Receptor Coactivator-1 (SRC-1), is a protein that functions as a transcriptional coactivator. It plays an essential role in the regulation of gene expression by interacting with various nuclear receptors, such as estrogen receptor, androgen receptor, glucocorticoid receptor, and thyroid hormone receptor. NCOA1 contains several functional domains that enable it to bind to these nuclear receptors and recruit other coregulatory proteins, including histone modifiers and chromatin remodeling factors, to form a large transcriptional activation complex. This results in the modification of chromatin structure and the recruitment of RNA polymerase II, leading to the initiation of transcription of target genes. NCOA1 has been implicated in various physiological processes, including development, differentiation, metabolism, and reproduction, as well as in several pathological conditions, such as cancer and metabolic disorders.

Nuclear receptor coactivators are a group of proteins that interact with nuclear receptors, which are transcription factors that regulate gene expression in response to various signals such as hormones and metabolites. Nuclear receptor coactivators function to enhance the ability of nuclear receptors to activate transcription of their target genes. They do this by binding to nuclear receptors and recruiting additional proteins, including histone modifiers and chromatin remodeling complexes, which help to create a permissive environment for transcription. Nuclear receptor coactivators play important roles in various physiological processes, including development, metabolism, and reproduction, and their dysregulation has been implicated in several diseases, including cancer.

Cytoplasmic receptors and nuclear receptors are two types of intracellular receptors that play crucial roles in signal transduction pathways and regulation of gene expression. They are classified based on their location within the cell. Here are the medical definitions for each:

1. Cytoplasmic Receptors: These are a group of intracellular receptors primarily found in the cytoplasm of cells, which bind to specific hormones, growth factors, or other signaling molecules. Upon binding, these receptors undergo conformational changes that allow them to interact with various partners, such as adapter proteins and enzymes, leading to activation of downstream signaling cascades. These pathways ultimately result in modulation of cellular processes like proliferation, differentiation, and apoptosis. Examples of cytoplasmic receptors include receptor tyrosine kinases (RTKs), serine/threonine kinase receptors, and cytokine receptors.
2. Nuclear Receptors: These are a distinct class of intracellular receptors that reside primarily in the nucleus of cells. They bind to specific ligands, such as steroid hormones, thyroid hormones, vitamin D, retinoic acid, and various other lipophilic molecules. Upon binding, nuclear receptors undergo conformational changes that facilitate their interaction with co-regulatory proteins and the DNA. This interaction results in the modulation of gene transcription, ultimately leading to alterations in protein expression and cellular responses. Examples of nuclear receptors include estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR), thyroid hormone receptor (TR), vitamin D receptor (VDR), and peroxisome proliferator-activated receptors (PPARs).

Both cytoplasmic and nuclear receptors are essential components of cellular communication networks, allowing cells to respond appropriately to extracellular signals and maintain homeostasis. Dysregulation of these receptors has been implicated in various diseases, including cancer, diabetes, and autoimmune disorders.

Histone Acetyltransferases (HATs) are a group of enzymes that play a crucial role in the regulation of gene expression. They function by adding acetyl groups to specific lysine residues on the N-terminal tails of histone proteins, which make up the structural core of nucleosomes - the fundamental units of chromatin.

The process of histone acetylation neutralizes the positive charge of lysine residues, reducing their attraction to the negatively charged DNA backbone. This leads to a more open and relaxed chromatin structure, facilitating the access of transcription factors and other regulatory proteins to the DNA, thereby promoting gene transcription.

HATs are classified into two main categories: type A HATs, which are primarily found in the nucleus and associated with transcriptional activation, and type B HATs, which are located in the cytoplasm and participate in chromatin assembly during DNA replication and repair. Dysregulation of HAT activity has been implicated in various human diseases, including cancer, neurodevelopmental disorders, and cardiovascular diseases.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

Mediator Complex Subunit 1 (MED1) is a protein that is a component of the mediator complex, which is a multi-protein complex that acts as a bridge between transcription factors and RNA polymerase II to regulate gene expression. MED1 is also known as TRAP220 or DRIP205, and it plays a role in the recruitment of the mediator complex to specific target genes. It contains several domains that are involved in protein-protein interactions, including a PHD finger domain, a bromodomain, and a proline-rich region. MED1 has been implicated in various cellular processes, such as cell cycle regulation, differentiation, and development, and its dysregulation has been associated with several diseases, including cancer.

CREB-binding protein (CBP) is a transcription coactivator that plays a crucial role in regulating gene expression. It is called a "coactivator" because it works together with other proteins, such as transcription factors, to enhance the process of gene transcription. CBP is so named because it can bind to the cAMP response element-binding (CREB) protein, which is a transcription factor that regulates the expression of various genes in response to different signals within cells.

CBP has intrinsic histone acetyltransferase (HAT) activity, which means it can add acetyl groups to histone proteins around which DNA is wound. This modification loosens the chromatin structure, making it more accessible for transcription factors and other proteins involved in gene expression. As a result, CBP acts as a global regulator of gene expression, influencing various cellular processes such as development, differentiation, and homeostasis.

Mutations in the CBP gene have been associated with several human diseases, including Rubinstein-Taybi syndrome, a rare genetic disorder characterized by growth retardation, mental deficiency, and distinct facial features. Additionally, CBP has been implicated in cancer, as its dysregulation can lead to uncontrolled cell growth and malignant transformation.

Trans-activators are proteins that increase the transcriptional activity of a gene or a set of genes. They do this by binding to specific DNA sequences and interacting with the transcription machinery, thereby enhancing the recruitment and assembly of the complexes needed for transcription. In some cases, trans-activators can also modulate the chromatin structure to make the template more accessible to the transcription machinery.

In the context of HIV (Human Immunodeficiency Virus) infection, the term "trans-activator" is often used specifically to refer to the Tat protein. The Tat protein is a viral regulatory protein that plays a critical role in the replication of HIV by activating the transcription of the viral genome. It does this by binding to a specific RNA structure called the Trans-Activation Response Element (TAR) located at the 5' end of all nascent HIV transcripts, and recruiting cellular cofactors that enhance the processivity and efficiency of RNA polymerase II, leading to increased viral gene expression.

Protein-Arginine N-Methyltransferases (PRMTs) are a group of enzymes that catalyze the transfer of methyl groups from S-adenosylmethionine to specific arginine residues in proteins, leading to the formation of N-methylarginines. This post-translational modification plays a crucial role in various cellular processes such as signal transduction, DNA repair, and RNA processing. There are nine known PRMTs in humans, which can be classified into three types based on the type of methylarginine produced: Type I (PRMT1, 2, 3, 4, 6, and 8) produce asymmetric dimethylarginines, Type II (PRMT5 and 9) produce symmetric dimethylarginines, and Type III (PRMT7) produces monomethylarginine. Aberrant PRMT activity has been implicated in several diseases, including cancer and neurological disorders.

Transcriptional activation is the process by which a cell increases the rate of transcription of specific genes from DNA to RNA. This process is tightly regulated and plays a crucial role in various biological processes, including development, differentiation, and response to environmental stimuli.

Transcriptional activation occurs when transcription factors (proteins that bind to specific DNA sequences) interact with the promoter region of a gene and recruit co-activator proteins. These co-activators help to remodel the chromatin structure around the gene, making it more accessible for the transcription machinery to bind and initiate transcription.

Transcriptional activation can be regulated at multiple levels, including the availability and activity of transcription factors, the modification of histone proteins, and the recruitment of co-activators or co-repressors. Dysregulation of transcriptional activation has been implicated in various diseases, including cancer and genetic disorders.

Nuclear proteins are a category of proteins that are primarily found in the nucleus of a eukaryotic cell. They play crucial roles in various nuclear functions, such as DNA replication, transcription, repair, and RNA processing. This group includes structural proteins like lamins, which form the nuclear lamina, and regulatory proteins, such as histones and transcription factors, that are involved in gene expression. Nuclear localization signals (NLS) often help target these proteins to the nucleus by interacting with importin proteins during active transport across the nuclear membrane.

A two-hybrid system technique is a type of genetic screening method used in molecular biology to identify protein-protein interactions within an organism, most commonly baker's yeast (Saccharomyces cerevisiae) or Escherichia coli. The name "two-hybrid" refers to the fact that two separate proteins are being examined for their ability to interact with each other.

The technique is based on the modular nature of transcription factors, which typically consist of two distinct domains: a DNA-binding domain (DBD) and an activation domain (AD). In a two-hybrid system, one protein of interest is fused to the DBD, while the second protein of interest is fused to the AD. If the two proteins interact, the DBD and AD are brought in close proximity, allowing for transcriptional activation of a reporter gene that is linked to a specific promoter sequence recognized by the DBD.

The main components of a two-hybrid system include:

1. Bait protein (fused to the DNA-binding domain)
2. Prey protein (fused to the activation domain)
3. Reporter gene (transcribed upon interaction between bait and prey proteins)
4. Promoter sequence (recognized by the DBD when brought in proximity due to interaction)

The two-hybrid system technique has several advantages, including:

1. Ability to screen large libraries of potential interacting partners
2. High sensitivity for detecting weak or transient interactions
3. Applicability to various organisms and protein types
4. Potential for high-throughput analysis

However, there are also limitations to the technique, such as false positives (interactions that do not occur in vivo) and false negatives (lack of detection of true interactions). Additionally, the fusion proteins may not always fold or localize correctly, leading to potential artifacts. Despite these limitations, two-hybrid system techniques remain a valuable tool for studying protein-protein interactions and have contributed significantly to our understanding of various cellular processes.

Estrogen Receptor alpha (ERα) is a type of nuclear receptor protein that is activated by the hormone estrogen. It is encoded by the gene ESR1 and is primarily expressed in the cells of the reproductive system, breast, bone, liver, heart, and brain tissue.

When estrogen binds to ERα, it causes a conformational change in the receptor, which allows it to dimerize and translocate to the nucleus. Once in the nucleus, ERα functions as a transcription factor, binding to specific DNA sequences called estrogen response elements (EREs) and regulating the expression of target genes.

ERα plays important roles in various physiological processes, including the development and maintenance of female reproductive organs, bone homeostasis, and lipid metabolism. It is also a critical factor in the growth and progression of certain types of breast cancer, making ERα status an important consideration in the diagnosis and treatment of this disease.

Steroid receptors are a type of nuclear receptor protein that are activated by the binding of steroid hormones or related molecules. These receptors play crucial roles in various physiological processes, including development, homeostasis, and metabolism. Steroid receptors function as transcription factors, regulating gene expression when activated by their respective ligands.

There are several subtypes of steroid receptors, classified based on the specific steroid hormones they bind to:

1. Glucocorticoid receptor (GR): Binds to glucocorticoids, which regulate metabolism, immune response, and stress response.
2. Mineralocorticoid receptor (MR): Binds to mineralocorticoids, which regulate electrolyte and fluid balance.
3. Androgen receptor (AR): Binds to androgens, which are male sex hormones that play a role in the development and maintenance of male sexual characteristics.
4. Estrogen receptor (ER): Binds to estrogens, which are female sex hormones that play a role in the development and maintenance of female sexual characteristics.
5. Progesterone receptor (PR): Binds to progesterone, which is a female sex hormone involved in the menstrual cycle and pregnancy.
6. Vitamin D receptor (VDR): Binds to vitamin D, which plays a role in calcium homeostasis and bone metabolism.

Upon ligand binding, steroid receptors undergo conformational changes that allow them to dimerize, interact with co-regulatory proteins, and bind to specific DNA sequences called hormone response elements (HREs) in the promoter regions of target genes. This interaction leads to the recruitment of transcriptional machinery, ultimately resulting in the modulation of gene expression. Dysregulation of steroid receptor signaling has been implicated in various diseases, including cancer, metabolic disorders, and inflammatory conditions.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

COS cells are a type of cell line that are commonly used in molecular biology and genetic research. The name "COS" is an acronym for "CV-1 in Origin," as these cells were originally derived from the African green monkey kidney cell line CV-1. COS cells have been modified through genetic engineering to express high levels of a protein called SV40 large T antigen, which allows them to efficiently take up and replicate exogenous DNA.

There are several different types of COS cells that are commonly used in research, including COS-1, COS-3, and COS-7 cells. These cells are widely used for the production of recombinant proteins, as well as for studies of gene expression, protein localization, and signal transduction.

It is important to note that while COS cells have been a valuable tool in scientific research, they are not without their limitations. For example, because they are derived from monkey kidney cells, there may be differences in the way that human genes are expressed or regulated in these cells compared to human cells. Additionally, because COS cells express SV40 large T antigen, they may have altered cell cycle regulation and other phenotypic changes that could affect experimental results. Therefore, it is important to carefully consider the choice of cell line when designing experiments and interpreting results.

Promoter regions in genetics refer to specific DNA sequences located near the transcription start site of a gene. They serve as binding sites for RNA polymerase and various transcription factors that regulate the initiation of gene transcription. These regulatory elements help control the rate of transcription and, therefore, the level of gene expression. Promoter regions can be composed of different types of sequences, such as the TATA box and CAAT box, and their organization and composition can vary between different genes and species.

Nuclear Receptor Subfamily 4, Group A, Member 1 (NR4A1) is a protein that in humans is encoded by the NR4A1 gene. NR4A1 is a member of the nuclear receptor superfamily, which are transcription factors that regulate gene expression in response to hormonal and other signals.

NR4A1 is also known as Nur77, TR3, or NGFI-B and it plays important roles in various biological processes such as cell proliferation, differentiation, apoptosis, and inflammation. It can be activated by a variety of stimuli including stress, hormones, and growth factors. Once activated, NR4A1 translocates to the nucleus where it binds to specific DNA sequences and regulates the expression of target genes.

Mutations in the NR4A1 gene have been associated with several diseases, including cancer, inflammatory bowel disease, and rheumatoid arthritis. Therefore, NR4A1 is a potential therapeutic target for these conditions.

Thyroid hormone receptors (THRs) are nuclear receptor proteins that bind to thyroid hormones, triiodothyronine (T3) and thyroxine (T4), and regulate gene transcription in target cells. These receptors play a crucial role in the development, growth, and metabolism of an organism by mediating the actions of thyroid hormones. THRs are encoded by genes THRA and THRB, which give rise to two major isoforms: TRα1 and TRβ1. Additionally, alternative splicing results in other isoforms with distinct tissue distributions and functions. THRs function as heterodimers with retinoid X receptors (RXRs) and bind to thyroid hormone response elements (TREs) in the regulatory regions of target genes. The binding of T3 or T4 to THRs triggers a conformational change, which leads to recruitment of coactivators or corepressors, ultimately resulting in activation or repression of gene transcription.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

NCOR1 (Nuclear Receptor Co-Repressor 1) is a corepressor protein that interacts with nuclear receptors and other transcription factors to regulate gene expression. It functions as a part of large multiprotein complexes, which also include histone deacetylases (HDACs), to mediate the repression of gene transcription. NCOR1 is involved in various cellular processes, including development, differentiation, and metabolism. Mutations in the NCOR1 gene have been associated with certain genetic disorders, such as Rubinstein-Taybi syndrome.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Intracellular signaling peptides and proteins are molecules that play a crucial role in transmitting signals within cells, which ultimately lead to changes in cell behavior or function. These signals can originate from outside the cell (extracellular) or within the cell itself. Intracellular signaling molecules include various types of peptides and proteins, such as:

1. G-protein coupled receptors (GPCRs): These are seven-transmembrane domain receptors that bind to extracellular signaling molecules like hormones, neurotransmitters, or chemokines. Upon activation, they initiate a cascade of intracellular signals through G proteins and secondary messengers.
2. Receptor tyrosine kinases (RTKs): These are transmembrane receptors that bind to growth factors, cytokines, or hormones. Activation of RTKs leads to autophosphorylation of specific tyrosine residues, creating binding sites for intracellular signaling proteins such as adapter proteins, phosphatases, and enzymes like Ras, PI3K, and Src family kinases.
3. Second messenger systems: Intracellular second messengers are small molecules that amplify and propagate signals within the cell. Examples include cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), diacylglycerol (DAG), inositol triphosphate (IP3), calcium ions (Ca2+), and nitric oxide (NO). These second messengers activate or inhibit various downstream effectors, leading to changes in cellular responses.
4. Signal transduction cascades: Intracellular signaling proteins often form complex networks of interacting molecules that relay signals from the plasma membrane to the nucleus. These cascades involve kinases (protein kinases A, B, C, etc.), phosphatases, and adapter proteins, which ultimately regulate gene expression, cell cycle progression, metabolism, and other cellular processes.
5. Ubiquitination and proteasome degradation: Intracellular signaling pathways can also control protein stability by modulating ubiquitin-proteasome degradation. E3 ubiquitin ligases recognize specific substrates and conjugate them with ubiquitin molecules, targeting them for proteasomal degradation. This process regulates the abundance of key signaling proteins and contributes to signal termination or amplification.

In summary, intracellular signaling pathways involve a complex network of interacting proteins that relay signals from the plasma membrane to various cellular compartments, ultimately regulating gene expression, metabolism, and other cellular processes. Dysregulation of these pathways can contribute to disease development and progression, making them attractive targets for therapeutic intervention.

Retinoic acid receptors (RARs) are a type of nuclear receptor proteins that play crucial roles in the regulation of gene transcription. They are activated by retinoic acid, which is a metabolite of vitamin A. There are three subtypes of RARs, namely RARα, RARβ, and RARγ, each encoded by different genes.

Once retinoic acid binds to RARs, they form heterodimers with another type of nuclear receptor called retinoid X receptors (RXRs). The RAR-RXR complex then binds to specific DNA sequences called retinoic acid response elements (RAREs) in the promoter regions of target genes. This binding event leads to the recruitment of coactivator proteins and the modification of chromatin structure, ultimately resulting in the activation or repression of gene transcription.

Retinoic acid and its receptors play essential roles in various biological processes, including embryonic development, cell differentiation, apoptosis, and immune function. In addition, RARs have been implicated in several diseases, such as cancer, where they can act as tumor suppressors or oncogenes depending on the context. Therefore, understanding the mechanisms of RAR signaling has important implications for the development of novel therapeutic strategies for various diseases.

P300 and CREB binding protein (CBP) are both transcriptional coactivators that play crucial roles in regulating gene expression. They function by binding to various transcription factors and modifying the chromatin structure to allow for the recruitment of the transcriptional machinery. The P300-CBP complex is essential for many cellular processes, including development, differentiation, and oncogenesis.

P300-CBP transcription factors refer to a family of proteins that include both p300 and CBP, as well as their various isoforms and splice variants. These proteins share structural and functional similarities and are often referred to together due to their overlapping roles in transcriptional regulation.

The P300-CBP complex plays a key role in the P300-CBP-mediated signal integration, which allows for the coordinated regulation of gene expression in response to various signals and stimuli. Dysregulation of P300-CBP transcription factors has been implicated in several diseases, including cancer, neurodevelopmental disorders, and inflammatory diseases.

In summary, P300-CBP transcription factors are a family of proteins that play crucial roles in regulating gene expression through their ability to bind to various transcription factors and modify the chromatin structure. Dysregulation of these proteins has been implicated in several diseases, making them important targets for therapeutic intervention.

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Nuclear Receptor Subfamily 4, Group A, Member 2 (NR4A2) is a gene that encodes for a protein called Nurr1, which belongs to the nuclear receptor superfamily. These are transcription factors that regulate gene expression by binding to specific DNA sequences. Nurr1 plays crucial roles in the development and function of dopaminergic neurons, which are critical for movement control and are affected in neurodegenerative disorders such as Parkinson's disease. Additionally, Nurr1 has been implicated in various biological processes, including inflammation, immunity, and cancer.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Orphan nuclear receptors are a subfamily of nuclear receptor proteins that are classified as "orphans" because their specific endogenous ligands (natural activating molecules) have not yet been identified. These receptors are still functional transcription factors, which means they can bind to specific DNA sequences and regulate the expression of target genes when activated by a ligand. However, in the case of orphan nuclear receptors, the identity of these ligands remains unknown or unconfirmed.

These receptors play crucial roles in various biological processes, including development, metabolism, and homeostasis. Some orphan nuclear receptors have been found to bind to synthetic ligands (man-made molecules), which has led to the development of potential therapeutic agents for various diseases. Over time, as research progresses, some orphan nuclear receptors may eventually have their endogenous ligands identified and be reclassified as non-orphan nuclear receptors.

Retinoid X receptors (RXRs) are a subfamily of nuclear receptor proteins that function as transcription factors, playing crucial roles in the regulation of gene expression. They are activated by binding to retinoids, which are derivatives of vitamin A. RXRs can form heterodimers with other nuclear receptors, such as peroxisome proliferator-activated receptors (PPARs), liver X receptors (LXRs), farnesoid X receptors (FXRs), and thyroid hormone receptors (THRs). Upon activation by their respective ligands, these heterodimers bind to specific DNA sequences called response elements in the promoter regions of target genes, leading to modulation of transcription. RXRs are involved in various biological processes, including cell differentiation, development, metabolism, and homeostasis. Dysregulation of RXR-mediated signaling pathways has been implicated in several diseases, such as cancer, diabetes, and inflammatory disorders.

Co-repressor proteins are regulatory molecules that bind to DNA-bound transcription factors, forming a complex that prevents the transcription of genes. These proteins function to repress gene expression by inhibiting the recruitment of RNA polymerase or other components required for transcription. They can be recruited directly by transcription factors or through interactions with other corepressor molecules.

Co-repressors often possess enzymatic activity, such as histone deacetylase (HDAC) or methyltransferase activity, which modifies histone proteins and condenses chromatin structure, making it less accessible to the transcription machinery. This results in a decrease in gene expression.

Examples of co-repressor proteins include:

1. Histone deacetylases (HDACs): These enzymes remove acetyl groups from histone proteins, leading to chromatin condensation and transcriptional repression.
2. Nucleosome remodeling and histone deacetylation (NuRD) complex: This multi-protein complex contains HDACs, histone demethylases, and ATP-dependent chromatin remodeling proteins that work together to repress gene expression.
3. Sin3A/Sin3B: These are corepressor proteins that interact with various transcription factors and recruit HDACs to specific genomic loci for transcriptional repression.
4. CoREST (Co-Repressor of RE1 Silencing Transcription factor): This is a complex containing HDACs, LSD1 (lysine-specific demethylase 1), and other proteins that mediate transcriptional repression through histone modifications.
5. CtBP (C-terminal binding protein): These are co-repressors that interact with various transcription factors and recruit HDACs, leading to chromatin condensation and gene silencing.

These co-repressor proteins play crucial roles in various cellular processes, including development, differentiation, and homeostasis, by fine-tuning gene expression patterns. Dysregulation of these proteins has been implicated in several diseases, such as cancer and neurological disorders.

Estrogen receptors (ERs) are a type of nuclear receptor protein that are expressed in various tissues and cells throughout the body. They play a critical role in the regulation of gene expression and cellular responses to the hormone estrogen. There are two main subtypes of ERs, ERα and ERβ, which have distinct molecular structures, expression patterns, and functions.

ERs function as transcription factors that bind to specific DNA sequences called estrogen response elements (EREs) in the promoter regions of target genes. When estrogen binds to the ER, it causes a conformational change in the receptor that allows it to recruit co-activator proteins and initiate transcription of the target gene. This process can lead to a variety of cellular responses, including changes in cell growth, differentiation, and metabolism.

Estrogen receptors are involved in a wide range of physiological processes, including the development and maintenance of female reproductive tissues, bone homeostasis, cardiovascular function, and cognitive function. They have also been implicated in various pathological conditions, such as breast cancer, endometrial cancer, and osteoporosis. As a result, ERs are an important target for therapeutic interventions in these diseases.

A ligand, in the context of biochemistry and medicine, is a molecule that binds to a specific site on a protein or a larger biomolecule, such as an enzyme or a receptor. This binding interaction can modify the function or activity of the target protein, either activating it or inhibiting it. Ligands can be small molecules, like hormones or neurotransmitters, or larger structures, like antibodies. The study of ligand-protein interactions is crucial for understanding cellular processes and developing drugs, as many therapeutic compounds function by binding to specific targets within the body.

E1A-associated protein, also known as p300, is a transcriptional coactivator that plays a crucial role in the regulation of gene expression. It was initially identified as a protein that interacts with the E1A protein of adenovirus.

The p300 protein contains several functional domains, including a histone acetyltransferase (HAT) domain, which can modify histone proteins and alter chromatin structure to promote gene transcription. It also has a bromodomain that recognizes acetylated lysine residues on histones and other proteins, further enhancing its ability to regulate gene expression.

In addition to its role in transcriptional regulation, p300 is involved in various cellular processes such as DNA repair, differentiation, and apoptosis. Dysregulation of p300 function has been implicated in several human diseases, including cancer, neurodevelopmental disorders, and cardiovascular disease.

DNA-binding proteins are a type of protein that have the ability to bind to DNA (deoxyribonucleic acid), the genetic material of organisms. These proteins play crucial roles in various biological processes, such as regulation of gene expression, DNA replication, repair and recombination.

The binding of DNA-binding proteins to specific DNA sequences is mediated by non-covalent interactions, including electrostatic, hydrogen bonding, and van der Waals forces. The specificity of binding is determined by the recognition of particular nucleotide sequences or structural features of the DNA molecule.

DNA-binding proteins can be classified into several categories based on their structure and function, such as transcription factors, histones, and restriction enzymes. Transcription factors are a major class of DNA-binding proteins that regulate gene expression by binding to specific DNA sequences in the promoter region of genes and recruiting other proteins to modulate transcription. Histones are DNA-binding proteins that package DNA into nucleosomes, the basic unit of chromatin structure. Restriction enzymes are DNA-binding proteins that recognize and cleave specific DNA sequences, and are widely used in molecular biology research and biotechnology applications.

Nuclear Receptor Subfamily 1, Group F, Member 1 (NR1F1) is a gene that encodes for the retinoic acid-related orphan receptor alpha (RORα) protein. RORα is a type of nuclear receptor, which are transcription factors that regulate gene expression in response to various signals, including hormones and other molecules.

RORα plays important roles in several biological processes, including the regulation of circadian rhythm, immune function, and metabolism. It does this by binding to specific DNA sequences called response elements in the promoter regions of target genes, thereby modulating their transcription.

NR1F1/RORα has been identified as a potential therapeutic target for various diseases, including cancer, inflammatory disorders, and metabolic disorders. However, more research is needed to fully understand its functions and regulatory mechanisms in these contexts.

"Response elements" is a term used in molecular biology, particularly in the study of gene regulation. Response elements are specific DNA sequences that can bind to transcription factors, which are proteins that regulate gene expression. When a transcription factor binds to a response element, it can either activate or repress the transcription of the nearby gene.

Response elements are often found in the promoter region of genes and are typically short, conserved sequences that can be recognized by specific transcription factors. The binding of a transcription factor to a response element can lead to changes in chromatin structure, recruitment of co-activators or co-repressors, and ultimately, the regulation of gene expression.

Response elements are important for many biological processes, including development, differentiation, and response to environmental stimuli such as hormones, growth factors, and stress. The specificity of transcription factor binding to response elements allows for precise control of gene expression in response to changing conditions within the cell or organism.

"Nuclear Receptor Subfamily 1, Group D, Member 1" is a gene that encodes for the estrogen receptor alpha (ER-α). ER-α is a type of nuclear receptor protein that binds to estrogen, a female sex hormone, and mediates various biological responses such as cell growth, differentiation, and reproduction. The gene is also known as "ESR1" in medical and scientific literature. Mutations in this gene have been associated with various types of cancer, particularly breast cancer.

NCOR2 (Nuclear Receptor Co-Repressor 2), also known as SMRT (Silencing Mediator for Retinoid and Thyroid hormone receptors), is a corepressor protein that plays a crucial role in the regulation of gene transcription. It interacts with various nuclear receptors, such as thyroid hormone receptor, retinoic acid receptor, vitamin D receptor, and others, to mediate the repression of their target genes. NCOR2 forms a complex with other corepressor proteins, histone deacetylases (HDACs), and nuclear receptors, leading to the formation of a compact chromatin structure that inhibits transcription. Post-translational modifications, such as phosphorylation, sumoylation, and ubiquitination, regulate NCOR2's activity, stability, and interactions with other proteins. Mutations in NCOR2 have been associated with various human diseases, including cancer and neurodevelopmental disorders.

Androgen receptors (ARs) are a type of nuclear receptor protein that are expressed in various tissues throughout the body. They play a critical role in the development and maintenance of male sexual characteristics and reproductive function. ARs are activated by binding to androgens, which are steroid hormones such as testosterone and dihydrotestosterone (DHT). Once activated, ARs function as transcription factors that regulate gene expression, ultimately leading to various cellular responses.

In the context of medical definitions, androgen receptors can be defined as follows:

Androgen receptors are a type of nuclear receptor protein that bind to androgens, such as testosterone and dihydrotestosterone, and mediate their effects on gene expression in various tissues. They play critical roles in the development and maintenance of male sexual characteristics and reproductive function, and are involved in the pathogenesis of several medical conditions, including prostate cancer, benign prostatic hyperplasia, and androgen deficiency syndromes.

Acetyltransferases are a type of enzyme that facilitates the transfer of an acetyl group (a chemical group consisting of an acetyl molecule, which is made up of carbon, hydrogen, and oxygen atoms) from a donor molecule to a recipient molecule. This transfer of an acetyl group can modify the function or activity of the recipient molecule.

In the context of biology and medicine, acetyltransferases are important for various cellular processes, including gene expression, DNA replication, and protein function. For example, histone acetyltransferases (HATs) are a type of acetyltransferase that add an acetyl group to the histone proteins around which DNA is wound. This modification can alter the structure of the chromatin, making certain genes more or less accessible for transcription, and thereby influencing gene expression.

Abnormal regulation of acetyltransferases has been implicated in various diseases, including cancer, neurodegenerative disorders, and infectious diseases. Therefore, understanding the function and regulation of these enzymes is an important area of research in biomedicine.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Thyroid hormone receptors (THRs) are nuclear receptor proteins that bind to thyroid hormones and mediate their effects in target cells. There are two main types of THRs, referred to as THR alpha and THR beta. THR beta is further divided into two subtypes, THR beta1 and THR beta2.

THR beta is a type of nuclear receptor that is primarily expressed in the liver, kidney, and heart, as well as in the central nervous system. It plays an important role in regulating the metabolism of carbohydrates, lipids, and proteins, as well as in the development and function of the heart. THR beta is also involved in the regulation of body weight and energy expenditure.

THR beta1 is the predominant subtype expressed in the liver and is responsible for many of the metabolic effects of thyroid hormones in this organ. THR beta2, on the other hand, is primarily expressed in the heart and plays a role in regulating cardiac function.

Abnormalities in THR beta function can lead to various diseases, including thyroid hormone resistance, a condition in which the body's cells are unable to respond properly to thyroid hormones. This can result in symptoms such as weight gain, fatigue, and cold intolerance.

"Nuclear Receptor Subfamily 2, Group C, Member 2" is a genetic term that refers to a specific nuclear receptor protein called NR2C2, also known as TR4 (Testicular Receptor 4). It is a type of transcription factor that binds to DNA and regulates the expression of target genes. The NR2C2 gene provides instructions for making this receptor, which plays important roles in various biological processes such as cell growth, differentiation, and metabolism.

NR2C2 has been found to be involved in several diseases, including cancer, diabetes, and neurological disorders. For example, mutations in the NR2C2 gene have been associated with developmental delay, intellectual disability, and autistic spectrum disorder. Additionally, changes in NR2C2 expression or activity have been implicated in the progression of various types of cancer, such as prostate, breast, and liver cancer.

Overall, "Nuclear Receptor Subfamily 2, Group C, Member 2" is a crucial gene that plays a significant role in maintaining normal cellular function and homeostasis, and its dysregulation has been linked to various pathological conditions.

The cell nucleus is a membrane-bound organelle found in the eukaryotic cells (cells with a true nucleus). It contains most of the cell's genetic material, organized as DNA molecules in complex with proteins, RNA molecules, and histones to form chromosomes.

The primary function of the cell nucleus is to regulate and control the activities of the cell, including growth, metabolism, protein synthesis, and reproduction. It also plays a crucial role in the process of mitosis (cell division) by separating and protecting the genetic material during this process. The nuclear membrane, or nuclear envelope, surrounding the nucleus is composed of two lipid bilayers with numerous pores that allow for the selective transport of molecules between the nucleoplasm (nucleus interior) and the cytoplasm (cell exterior).

The cell nucleus is a vital structure in eukaryotic cells, and its dysfunction can lead to various diseases, including cancer and genetic disorders.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

DAX-1 (Dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1) is a nuclear receptor protein that functions as a transcriptional regulator. It is also known as NR0B1 (Nuclear Receptor Subfamily 0, Group B, Member 1).

DAX-1 plays crucial roles in various developmental processes, including sexual differentiation and adrenal gland development. Mutations in the DAX-1 gene have been associated with X-linked adrenal hypoplasia congenita (AHC), a condition characterized by defective adrenal gland development and primary adrenal insufficiency.

The term "Orphan Nuclear Receptor" refers to a class of nuclear receptors for which no natural ligand has been identified yet. DAX-1 is one such orphan nuclear receptor, as its specific endogenous ligand remains unknown. However, recent studies suggest that steroids and other small molecules might interact with DAX-1 and modulate its activity.

Nuclear Receptor Subfamily 2, Group C, Member 1 (NR2C1) is a gene that encodes for the nuclear receptor called TR2 or testicular receptor 2. This protein is a member of the NR2 subfamily of nuclear receptors and is involved in the regulation of gene transcription. It functions as a homodimer or heterodimer with other nuclear receptors, such as RXRs (retinoid X receptors), and binds to specific DNA sequences called hormone response elements (HREs) in the promoter regions of target genes. The activation of these genes is regulated by ligands, which can be endogenous molecules such as steroids or synthetic compounds. TR2 has been shown to play a role in various biological processes, including development, differentiation, and metabolism. However, its precise functions and mechanisms of action are still being studied.

"Nuclear Receptor Subfamily 1, Group F, Member 2" is a genetic term referring to a specific nuclear receptor protein called estrogen related receptor gamma (ERRγ). This protein belongs to the nuclear receptor superfamily, which are transcription factors that regulate gene expression in response to various signals. ERRγ is activated by molecules similar to estrogen but with much weaker activity, and it plays a role in energy metabolism, mitochondrial function, and cell differentiation. Mutations or dysregulation of this gene can contribute to various diseases, including cancer and metabolic disorders.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Amino acid motifs are recurring patterns or sequences of amino acids in a protein molecule. These motifs can be identified through various sequence analysis techniques and often have functional or structural significance. They can be as short as two amino acids in length, but typically contain at least three to five residues.

Some common examples of amino acid motifs include:

1. Active site motifs: These are specific sequences of amino acids that form the active site of an enzyme and participate in catalyzing chemical reactions. For example, the catalytic triad in serine proteases consists of three residues (serine, histidine, and aspartate) that work together to hydrolyze peptide bonds.
2. Signal peptide motifs: These are sequences of amino acids that target proteins for secretion or localization to specific organelles within the cell. For example, a typical signal peptide consists of a positively charged n-region, a hydrophobic h-region, and a polar c-region that directs the protein to the endoplasmic reticulum membrane for translocation.
3. Zinc finger motifs: These are structural domains that contain conserved sequences of amino acids that bind zinc ions and play important roles in DNA recognition and regulation of gene expression.
4. Transmembrane motifs: These are sequences of hydrophobic amino acids that span the lipid bilayer of cell membranes and anchor transmembrane proteins in place.
5. Phosphorylation sites: These are specific serine, threonine, or tyrosine residues that can be phosphorylated by protein kinases to regulate protein function.

Understanding amino acid motifs is important for predicting protein structure and function, as well as for identifying potential drug targets in disease-associated proteins.

A "reporter gene" is a type of gene that is linked to a gene of interest in order to make the expression or activity of that gene detectable. The reporter gene encodes for a protein that can be easily measured and serves as an indicator of the presence and activity of the gene of interest. Commonly used reporter genes include those that encode for fluorescent proteins, enzymes that catalyze colorimetric reactions, or proteins that bind to specific molecules.

In the context of genetics and genomics research, a reporter gene is often used in studies involving gene expression, regulation, and function. By introducing the reporter gene into an organism or cell, researchers can monitor the activity of the gene of interest in real-time or after various experimental treatments. The information obtained from these studies can help elucidate the role of specific genes in biological processes and diseases, providing valuable insights for basic research and therapeutic development.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

Repressor proteins are a type of regulatory protein in molecular biology that suppress the transcription of specific genes into messenger RNA (mRNA) by binding to DNA. They function as part of gene regulation processes, often working in conjunction with an operator region and a promoter region within the DNA molecule. Repressor proteins can be activated or deactivated by various signals, allowing for precise control over gene expression in response to changing cellular conditions.

There are two main types of repressor proteins:

1. DNA-binding repressors: These directly bind to specific DNA sequences (operator regions) near the target gene and prevent RNA polymerase from transcribing the gene into mRNA.
2. Allosteric repressors: These bind to effector molecules, which then cause a conformational change in the repressor protein, enabling it to bind to DNA and inhibit transcription.

Repressor proteins play crucial roles in various biological processes, such as development, metabolism, and stress response, by controlling gene expression patterns in cells.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Steroidogenic Factor 1 (SF-1 or NR5A1) is a nuclear receptor protein that functions as a transcription factor, playing a crucial role in the development and regulation of the endocrine system. It is involved in the differentiation and maintenance of steroidogenic tissues such as the adrenal glands, gonads (ovaries and testes), and the hypothalamus and pituitary glands in the brain.

SF-1 regulates the expression of genes that are essential for steroid hormone biosynthesis, including enzymes involved in the production of cortisol, aldosterone, and sex steroids (androgens, estrogens). Mutations in the SF-1 gene can lead to various disorders related to sexual development, adrenal function, and fertility.

In summary, Steroidogenic Factor 1 is a critical transcription factor that regulates the development and function of steroidogenic tissues and the biosynthesis of steroid hormones.

Glucocorticoid receptors (GRs) are a type of nuclear receptor proteins found inside cells that bind to glucocorticoids, a class of steroid hormones. These receptors play an essential role in the regulation of various physiological processes, including metabolism, immune response, and stress response.

When a glucocorticoid hormone such as cortisol binds to the GR, it undergoes a conformational change that allows it to translocate into the nucleus of the cell. Once inside the nucleus, the GR acts as a transcription factor, binding to specific DNA sequences called glucocorticoid response elements (GREs) located in the promoter regions of target genes. The binding of the GR to the GRE can either activate or repress gene transcription, depending on the context and the presence of co-regulatory proteins.

Glucocorticoids have diverse effects on the body, including anti-inflammatory and immunosuppressive actions. They are commonly used in clinical settings to treat a variety of conditions such as asthma, rheumatoid arthritis, and inflammatory bowel disease. However, long-term use of glucocorticoids can lead to several side effects, including osteoporosis, weight gain, and increased risk of infections, due to the widespread effects of these hormones on multiple organ systems.

Estrogens are a group of steroid hormones that are primarily responsible for the development and regulation of female sexual characteristics and reproductive functions. They are also present in lower levels in males. The main estrogen hormone is estradiol, which plays a key role in promoting the growth and development of the female reproductive system, including the uterus, fallopian tubes, and breasts. Estrogens also help regulate the menstrual cycle, maintain bone density, and have important effects on the cardiovascular system, skin, hair, and cognitive function.

Estrogens are produced primarily by the ovaries in women, but they can also be produced in smaller amounts by the adrenal glands and fat cells. In men, estrogens are produced from the conversion of testosterone, the primary male sex hormone, through a process called aromatization.

Estrogen levels vary throughout a woman's life, with higher levels during reproductive years and lower levels after menopause. Estrogen therapy is sometimes used to treat symptoms of menopause, such as hot flashes and vaginal dryness, or to prevent osteoporosis in postmenopausal women. However, estrogen therapy also carries risks, including an increased risk of certain cancers, blood clots, and stroke, so it is typically recommended only for women who have a high risk of these conditions.

Calcitriol receptors, also known as Vitamin D receptors (VDR), are nuclear receptor proteins that bind to calcitriol (1,25-dihydroxyvitamin D3), the active form of vitamin D. These receptors are found in various tissues and cells throughout the body, including the small intestine, bone, kidney, and parathyroid gland.

When calcitriol binds to its receptor, it forms a complex that regulates the expression of genes involved in calcium and phosphate homeostasis, cell growth, differentiation, and immune function. Calcitriol receptors play a critical role in maintaining normal levels of calcium and phosphate in the blood by increasing the absorption of these minerals from the gut, promoting bone mineralization, and regulating the production of parathyroid hormone (PTH).

Calcitriol receptors have also been implicated in various disease processes, including cancer, autoimmune disorders, and infectious diseases. Modulation of calcitriol receptor activity has emerged as a potential therapeutic strategy for the treatment of these conditions.

Progesterone receptors (PRs) are a type of nuclear receptor proteins that are expressed in the nucleus of certain cells and play a crucial role in the regulation of various physiological processes, including the menstrual cycle, embryo implantation, and maintenance of pregnancy. These receptors bind to the steroid hormone progesterone, which is produced primarily in the ovaries during the second half of the menstrual cycle and during pregnancy.

Once progesterone binds to the PRs, it triggers a series of molecular events that lead to changes in gene expression, ultimately resulting in the modulation of various cellular functions. Progesterone receptors exist in two main isoforms, PR-A and PR-B, which differ in their size, structure, and transcriptional activity. Both isoforms are expressed in a variety of tissues, including the female reproductive tract, breast, brain, and bone.

Abnormalities in progesterone receptor expression or function have been implicated in several pathological conditions, such as uterine fibroids, endometriosis, breast cancer, and osteoporosis. Therefore, understanding the molecular mechanisms underlying PR signaling is essential for developing novel therapeutic strategies to treat these disorders.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Estrogen Receptor beta (ER-β) is a protein that is encoded by the gene ESR2 in humans. It belongs to the family of nuclear receptors, which are transcription factors that regulate gene expression in response to hormonal signals. ER-β is one of two main estrogen receptors, the other being Estrogen Receptor alpha (ER-α), and it plays an important role in mediating the effects of estrogens in various tissues, including the breast, uterus, bone, brain, and cardiovascular system.

Estrogens are steroid hormones that play a critical role in the development and maintenance of female reproductive and sexual function. They also have important functions in other tissues, such as maintaining bone density and promoting cognitive function. ER-β is widely expressed in many tissues, including those outside of the reproductive system, suggesting that it may have diverse physiological roles beyond estrogen-mediated reproduction.

ER-β has been shown to have both overlapping and distinct functions from ER-α, and its expression patterns differ between tissues. For example, in the breast, ER-β is expressed at higher levels in normal tissue compared to cancerous tissue, suggesting that it may play a protective role against breast cancer development. In contrast, in the uterus, ER-β has been shown to have anti-proliferative effects and may protect against endometrial cancer.

Overall, ER-β is an important mediator of estrogen signaling and has diverse physiological roles in various tissues. Understanding its functions and regulation may provide insights into the development of novel therapies for a range of diseases, including cancer, osteoporosis, and cardiovascular disease.

Chromatin Immunoprecipitation (ChIP) is a molecular biology technique used to analyze the interaction between proteins and DNA in the cell. It is a powerful tool for studying protein-DNA binding, such as transcription factor binding to specific DNA sequences, histone modification, and chromatin structure.

In ChIP assays, cells are first crosslinked with formaldehyde to preserve protein-DNA interactions. The chromatin is then fragmented into small pieces using sonication or other methods. Specific antibodies against the protein of interest are added to precipitate the protein-DNA complexes. After reversing the crosslinking, the DNA associated with the protein is purified and analyzed using PCR, sequencing, or microarray technologies.

ChIP assays can provide valuable information about the regulation of gene expression, epigenetic modifications, and chromatin structure in various biological processes and diseases, including cancer, development, and differentiation.

'Cercopithecus aethiops' is the scientific name for the monkey species more commonly known as the green monkey. It belongs to the family Cercopithecidae and is native to western Africa. The green monkey is omnivorous, with a diet that includes fruits, nuts, seeds, insects, and small vertebrates. They are known for their distinctive greenish-brown fur and long tail. Green monkeys are also important animal models in biomedical research due to their susceptibility to certain diseases, such as SIV (simian immunodeficiency virus), which is closely related to HIV.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Oncogene proteins are derived from oncogenes, which are genes that have the potential to cause cancer. Normally, these genes help regulate cell growth and division, but when they become altered or mutated, they can become overactive and lead to uncontrolled cell growth and division, which is a hallmark of cancer. Oncogene proteins can contribute to tumor formation and progression by promoting processes such as cell proliferation, survival, angiogenesis, and metastasis. Examples of oncogene proteins include HER2/neu, EGFR, and BCR-ABL.

Luciferases are a class of enzymes that catalyze the oxidation of their substrates, leading to the emission of light. This bioluminescent process is often associated with certain species of bacteria, insects, and fish. The term "luciferase" comes from the Latin word "lucifer," which means "light bearer."

The most well-known example of luciferase is probably that found in fireflies, where the enzyme reacts with a compound called luciferin to produce light. This reaction requires the presence of oxygen and ATP (adenosine triphosphate), which provides the energy needed for the reaction to occur.

Luciferases have important applications in scientific research, particularly in the development of sensitive assays for detecting gene expression and protein-protein interactions. By labeling a protein or gene of interest with luciferase, researchers can measure its activity by detecting the light emitted during the enzymatic reaction. This allows for highly sensitive and specific measurements, making luciferases valuable tools in molecular biology and biochemistry.

Fushi Tarazu (FTZ) transcription factors are a family of proteins that regulate gene expression during development in various organisms, including insects and mammals. The name "Fushi Tarazu" comes from the phenotype observed in Drosophila melanogaster (fruit fly) mutants, which have segmentation defects resembling a "broken rosary bead" or "incomplete abdomen."

FTZ transcription factors contain a zinc finger DNA-binding domain and are involved in the regulation of homeotic genes, which control body pattern formation during development. They play crucial roles in establishing and maintaining proper segmentation and regional identity along the anterior-posterior axis of the organism. In mammals, FTZ transcription factors have been implicated in various processes, including neurogenesis, adipogenesis, and energy metabolism.

Dimerization is a process in which two molecules, usually proteins or similar structures, bind together to form a larger complex. This can occur through various mechanisms, such as the formation of disulfide bonds, hydrogen bonding, or other non-covalent interactions. Dimerization can play important roles in cell signaling, enzyme function, and the regulation of gene expression.

In the context of medical research and therapy, dimerization is often studied in relation to specific proteins that are involved in diseases such as cancer. For example, some drugs have been developed to target and inhibit the dimerization of certain proteins, with the goal of disrupting their function and slowing or stopping the progression of the disease.

Small interfering RNA (siRNA) is a type of short, double-stranded RNA molecule that plays a role in the RNA interference (RNAi) pathway. The RNAi pathway is a natural cellular process that regulates gene expression by targeting and destroying specific messenger RNA (mRNA) molecules, thereby preventing the translation of those mRNAs into proteins.

SiRNAs are typically 20-25 base pairs in length and are generated from longer double-stranded RNA precursors called hairpin RNAs or dsRNAs by an enzyme called Dicer. Once generated, siRNAs associate with a protein complex called the RNA-induced silencing complex (RISC), which uses one strand of the siRNA (the guide strand) to recognize and bind to complementary sequences in the target mRNA. The RISC then cleaves the target mRNA, leading to its degradation and the inhibition of protein synthesis.

SiRNAs have emerged as a powerful tool for studying gene function and have shown promise as therapeutic agents for a variety of diseases, including viral infections, cancer, and genetic disorders. However, their use as therapeutics is still in the early stages of development, and there are challenges associated with delivering siRNAs to specific cells and tissues in the body.

Hepatocyte Nuclear Factor 4 (HNF4) is a type of transcription factor that plays a crucial role in the development and function of the liver. It belongs to the nuclear receptor superfamily and is specifically involved in the regulation of genes that are essential for glucose, lipid, and drug metabolism, as well as bile acid synthesis and transport.

HNF4 exists in two major isoforms, HNF4α and HNF4γ, which are encoded by separate genes but share a high degree of sequence similarity. Both isoforms are expressed in the liver, as well as in other tissues such as the kidney, pancreas, and intestine.

HNF4α is considered to be the predominant isoform in the liver, where it helps regulate the expression of genes involved in hepatocyte differentiation, function, and survival. Mutations in the HNF4α gene have been associated with various forms of diabetes and liver disease, highlighting its importance in maintaining normal metabolic homeostasis.

In summary, Hepatocyte Nuclear Factor 4 is a key transcriptional regulator involved in the development, function, and maintenance of the liver and other tissues, with specific roles in glucose and lipid metabolism, bile acid synthesis, and drug detoxification.

Retinoid X Receptor alpha (RXR-alpha) is a type of nuclear receptor protein that plays a crucial role in the regulation of gene transcription. It binds to specific sequences of DNA, known as response elements, and regulates the expression of target genes involved in various biological processes such as cell differentiation, development, and homeostasis.

RXR-alpha can form heterodimers with other nuclear receptors, including retinoic acid receptors (RARs), vitamin D receptor (VDR), thyroid hormone receptor (THR), and peroxisome proliferator-activated receptors (PPARs). The formation of these heterodimers allows RXR-alpha to modulate the transcriptional activity of its partner nuclear receptors, thereby regulating a wide range of physiological functions.

Retinoid X Receptor alpha is widely expressed in various tissues and organs, including the liver, kidney, heart, brain, and retina. Mutations in the RXR-alpha gene have been associated with several human diseases, such as metabolic disorders, developmental abnormalities, and cancer. Therefore, RXR-alpha is an important therapeutic target for the treatment of various diseases.

Breast neoplasms refer to abnormal growths in the breast tissue that can be benign or malignant. Benign breast neoplasms are non-cancerous tumors or growths, while malignant breast neoplasms are cancerous tumors that can invade surrounding tissues and spread to other parts of the body.

Breast neoplasms can arise from different types of cells in the breast, including milk ducts, milk sacs (lobules), or connective tissue. The most common type of breast cancer is ductal carcinoma, which starts in the milk ducts and can spread to other parts of the breast and nearby structures.

Breast neoplasms are usually detected through screening methods such as mammography, ultrasound, or MRI, or through self-examination or clinical examination. Treatment options for breast neoplasms depend on several factors, including the type and stage of the tumor, the patient's age and overall health, and personal preferences. Treatment may include surgery, radiation therapy, chemotherapy, hormone therapy, or targeted therapy.

Glutathione transferases (GSTs) are a group of enzymes involved in the detoxification of xenobiotics and endogenous compounds. They facilitate the conjugation of these compounds with glutathione, a tripeptide consisting of cysteine, glutamic acid, and glycine, which results in more water-soluble products that can be easily excreted from the body.

GSTs play a crucial role in protecting cells against oxidative stress and chemical injury by neutralizing reactive electrophilic species and peroxides. They are found in various tissues, including the liver, kidneys, lungs, and intestines, and are classified into several families based on their structure and function.

Abnormalities in GST activity have been associated with increased susceptibility to certain diseases, such as cancer, neurological disorders, and respiratory diseases. Therefore, GSTs have become a subject of interest in toxicology, pharmacology, and clinical research.

Nuclear Receptor Subfamily 6, Group A, Member 1 (NR6A1) is a gene that encodes for the steroidogenic factor-1 (SF-1) protein, which is a member of the nuclear receptor superfamily. These proteins are transcription factors that regulate gene expression by binding to specific DNA sequences.

The SF-1 protein plays critical roles in the development and function of the endocrine system, including the regulation of steroid hormone biosynthesis, gonadal development, and reproductive function. Mutations in the NR6A1 gene have been associated with several genetic disorders, such as congenital adrenal hyperplasia, primary ovarian insufficiency, and XY female disorder of sex development.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

LIM domain proteins are a group of transcription factors that contain LIM domains, which are cysteine-rich zinc-binding motifs. These proteins play crucial roles in various cellular processes such as gene regulation, cell proliferation, differentiation, and migration. They are involved in the development and functioning of several organ systems including the nervous system, cardiovascular system, and musculoskeletal system. LIM domain proteins can interact with other proteins and DNA to regulate gene expression and have been implicated in various diseases such as cancer and neurological disorders.

Androgens are a class of hormones that are primarily responsible for the development and maintenance of male sexual characteristics and reproductive function. Testosterone is the most well-known androgen, but other androgens include dehydroepiandrosterone (DHEA), androstenedione, and dihydrotestosterone (DHT).

Androgens are produced primarily by the testes in men and the ovaries in women, although small amounts are also produced by the adrenal glands in both sexes. They play a critical role in the development of male secondary sexual characteristics during puberty, such as the growth of facial hair, deepening of the voice, and increased muscle mass.

In addition to their role in sexual development and function, androgens also have important effects on bone density, mood, and cognitive function. Abnormal levels of androgens can contribute to a variety of medical conditions, including infertility, erectile dysfunction, acne, hirsutism (excessive hair growth), and prostate cancer.

'Tumor cells, cultured' refers to the process of removing cancerous cells from a tumor and growing them in controlled laboratory conditions. This is typically done by isolating the tumor cells from a patient's tissue sample, then placing them in a nutrient-rich environment that promotes their growth and multiplication.

The resulting cultured tumor cells can be used for various research purposes, including the study of cancer biology, drug development, and toxicity testing. They provide a valuable tool for researchers to better understand the behavior and characteristics of cancer cells outside of the human body, which can lead to the development of more effective cancer treatments.

It is important to note that cultured tumor cells may not always behave exactly the same way as they do in the human body, so findings from cell culture studies must be validated through further research, such as animal models or clinical trials.

PPAR gamma, or Peroxisome Proliferator-Activated Receptor gamma, is a nuclear receptor protein that functions as a transcription factor. It plays a crucial role in the regulation of genes involved in adipogenesis (the process of forming mature fat cells), lipid metabolism, insulin sensitivity, and glucose homeostasis. PPAR gamma is primarily expressed in adipose tissue but can also be found in other tissues such as the immune system, large intestine, and brain.

PPAR gamma forms a heterodimer with another nuclear receptor protein, RXR (Retinoid X Receptor), and binds to specific DNA sequences called PPREs (Peroxisome Proliferator Response Elements) in the promoter regions of target genes. Upon binding, PPAR gamma modulates the transcription of these genes, either activating or repressing their expression.

Agonists of PPAR gamma, such as thiazolidinediones (TZDs), are used clinically to treat type 2 diabetes due to their insulin-sensitizing effects. These drugs work by binding to and activating PPAR gamma, which in turn leads to the upregulation of genes involved in glucose uptake and metabolism in adipose tissue and skeletal muscle.

In summary, PPAR gamma is a nuclear receptor protein that regulates gene expression related to adipogenesis, lipid metabolism, insulin sensitivity, and glucose homeostasis. Its activation has therapeutic implications for the treatment of type 2 diabetes and other metabolic disorders.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

Estradiol is a type of estrogen, which is a female sex hormone. It is the most potent and dominant form of estrogen in humans. Estradiol plays a crucial role in the development and maintenance of secondary sexual characteristics in women, such as breast development and regulation of the menstrual cycle. It also helps maintain bone density, protect the lining of the uterus, and is involved in cognition and mood regulation.

Estradiol is produced primarily by the ovaries, but it can also be synthesized in smaller amounts by the adrenal glands and fat cells. In men, estradiol is produced from testosterone through a process called aromatization. Abnormal levels of estradiol can contribute to various health issues, such as hormonal imbalances, infertility, osteoporosis, and certain types of cancer.

Neoplastic gene expression regulation refers to the processes that control the production of proteins and other molecules from genes in neoplastic cells, or cells that are part of a tumor or cancer. In a normal cell, gene expression is tightly regulated to ensure that the right genes are turned on or off at the right time. However, in cancer cells, this regulation can be disrupted, leading to the overexpression or underexpression of certain genes.

Neoplastic gene expression regulation can be affected by a variety of factors, including genetic mutations, epigenetic changes, and signals from the tumor microenvironment. These changes can lead to the activation of oncogenes (genes that promote cancer growth and development) or the inactivation of tumor suppressor genes (genes that prevent cancer).

Understanding neoplastic gene expression regulation is important for developing new therapies for cancer, as targeting specific genes or pathways involved in this process can help to inhibit cancer growth and progression.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Peroxisome Proliferator-Activated Receptors (PPARs) are a group of nuclear receptor proteins that function as transcription factors, regulating the expression of specific genes. They play crucial roles in the regulation of energy homeostasis, lipid metabolism, glucose homeostasis, and inflammation.

There are three major subtypes of PPARs: PPAR-α, PPAR-β/δ, and PPAR-γ. These subtypes have different tissue distributions and functions:

1. PPAR-α: Predominantly expressed in the liver, heart, kidney, and brown adipose tissue. It regulates fatty acid oxidation, lipoprotein metabolism, and glucose homeostasis.
2. PPAR-β/δ: Expressed more widely in various tissues, including the brain, muscle, adipose tissue, and skin. It is involved in fatty acid oxidation, cell differentiation, and wound healing.
3. PPAR-γ: Primarily expressed in adipose tissue, macrophages, and the colon. It plays a central role in adipocyte differentiation, lipid storage, insulin sensitivity, and inflammation.

PPARs are activated by specific ligands, such as fatty acids, eicosanoids, and synthetic compounds like fibrates (PPAR-α agonists) and thiazolidinediones (PPAR-γ agonists). These agonists have been used in the treatment of metabolic disorders, including dyslipidemia and type 2 diabetes.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Complementary DNA (cDNA) is a type of DNA that is synthesized from a single-stranded RNA molecule through the process of reverse transcription. In this process, the enzyme reverse transcriptase uses an RNA molecule as a template to synthesize a complementary DNA strand. The resulting cDNA is therefore complementary to the original RNA molecule and is a copy of its coding sequence, but it does not contain non-coding regions such as introns that are present in genomic DNA.

Complementary DNA is often used in molecular biology research to study gene expression, protein function, and other genetic phenomena. For example, cDNA can be used to create cDNA libraries, which are collections of cloned cDNA fragments that represent the expressed genes in a particular cell type or tissue. These libraries can then be screened for specific genes or gene products of interest. Additionally, cDNA can be used to produce recombinant proteins in heterologous expression systems, allowing researchers to study the structure and function of proteins that may be difficult to express or purify from their native sources.

Tamoxifen is a selective estrogen receptor modulator (SERM) medication that is primarily used in the treatment and prevention of breast cancer. It works by blocking the action of estrogen in the body, particularly in breast tissue. This can help to stop or slow the growth of hormone-sensitive tumors.

Tamoxifen has been approved by the U.S. Food and Drug Administration (FDA) for use in both men and women. It is often used as a part of adjuvant therapy, which is treatment given after surgery to reduce the risk of cancer recurrence. Tamoxifen may also be used to treat metastatic breast cancer that has spread to other parts of the body.

Common side effects of tamoxifen include hot flashes, vaginal discharge, and changes in mood or vision. Less commonly, tamoxifen can increase the risk of blood clots, stroke, and endometrial cancer (cancer of the lining of the uterus). However, for many women with breast cancer, the benefits of taking tamoxifen outweigh the risks.

It's important to note that while tamoxifen can be an effective treatment option for some types of breast cancer, it is not appropriate for all patients. A healthcare professional will consider a variety of factors when determining whether tamoxifen is the right choice for an individual patient.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Nuclear Receptor Subfamily 1, Group F, Member 3 (NR1F3) is a gene that encodes for the retinoic acid-related orphan receptor alpha (RORα) protein. RORα is a type of nuclear receptor, which are transcription factors that regulate gene expression in response to various signals, including hormones and other molecules. RORα plays important roles in several biological processes, such as the regulation of circadian rhythm, immune function, and metabolism.

NR1F3/RORα has been identified as a critical regulator of the development and function of various immune cells, including T cells, B cells, and dendritic cells. It is also involved in the regulation of lipid metabolism and energy homeostasis, and its dysregulation has been implicated in several metabolic disorders, such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease.

Furthermore, NR1F3/RORα has been shown to play a role in the development of certain cancers, including breast cancer, prostate cancer, and leukemia. Therefore, understanding the function and regulation of NR1F3/RORα is an active area of research with potential therapeutic implications for various diseases.

PPAR-alpha (Peroxisome Proliferator-Activated Receptor alpha) is a type of nuclear receptor protein that functions as a transcription factor, regulating the expression of specific genes involved in lipid metabolism. It plays a crucial role in the breakdown of fatty acids and the synthesis of high-density lipoproteins (HDL or "good" cholesterol) in the liver. PPAR-alpha activation also has anti-inflammatory effects, making it a potential therapeutic target for metabolic disorders such as diabetes, hyperlipidemia, and non-alcoholic fatty liver disease (NAFLD).

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

COUP-TFII, also known as Nuclear Receptor Related 1 Protein (NURR1), is a transcription factor that belongs to the steroid hormone receptor superfamily. It plays crucial roles in the development and function of the nervous system, particularly in the differentiation and survival of dopaminergic neurons, which are important for movement control and motivation. COUP-TFII regulates gene expression by binding to specific DNA sequences called response elements in the promoter regions of target genes. It has also been implicated in various physiological and pathological processes, including energy metabolism, inflammation, and cancer.

Prostatic neoplasms refer to abnormal growths in the prostate gland, which can be benign or malignant. The term "neoplasm" simply means new or abnormal tissue growth. When it comes to the prostate, neoplasms are often referred to as tumors.

Benign prostatic neoplasms, such as prostate adenomas, are non-cancerous overgrowths of prostate tissue. They usually grow slowly and do not spread to other parts of the body. While they can cause uncomfortable symptoms like difficulty urinating, they are generally not life-threatening.

Malignant prostatic neoplasms, on the other hand, are cancerous growths. The most common type of prostate cancer is adenocarcinoma, which arises from the glandular cells in the prostate. Prostate cancer often grows slowly and may not cause any symptoms for many years. However, some types of prostate cancer can be aggressive and spread quickly to other parts of the body, such as the bones or lymph nodes.

It's important to note that while prostate neoplasms can be concerning, early detection and treatment can significantly improve outcomes for many men. Regular check-ups with a healthcare provider are key to monitoring prostate health and catching any potential issues early on.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Tretinoin is a form of vitamin A that is used in the treatment of acne vulgaris, fine wrinkles, and dark spots caused by aging or sun damage. It works by increasing the turnover of skin cells, helping to unclog pores and promote the growth of new skin cells. Tretinoin is available as a cream, gel, or liquid, and is usually applied to the affected area once a day in the evening. Common side effects include redness, dryness, and peeling of the skin. It is important to avoid sunlight and use sunscreen while using tretinoin, as it can make the skin more sensitive to the sun.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

The Mediator complex is a multi-subunit protein structure that acts as a bridge in the communication between regulatory elements, such as transcription factors, and the RNA polymerase II enzyme. It plays a crucial role in the regulation of gene expression by modulating the initiation and rate of transcription.

The Mediator complex is composed of approximately 30 subunits that are highly conserved across eukaryotes. The complex can be divided into four modules: the head, middle, tail, and kinase modules. Each module has a unique set of functions in regulating gene expression. For example, the tail module interacts with transcription factors to receive signals about which genes should be activated or repressed, while the kinase module phosphorylates the carboxy-terminal domain (CTD) of RNA polymerase II to promote its recruitment and activation at gene promoters.

Overall, the Mediator complex is an essential component of the eukaryotic transcriptional machinery, playing a critical role in regulating various cellular processes such as development, differentiation, and metabolism. Dysregulation of the Mediator complex has been implicated in several human diseases, including cancer and neurological disorders.

Triiodothyronine (T3) is a thyroid hormone, specifically the active form of thyroid hormone, that plays a critical role in the regulation of metabolism, growth, and development in the human body. It is produced by the thyroid gland through the iodination and coupling of the amino acid tyrosine with three atoms of iodine. T3 is more potent than its precursor, thyroxine (T4), which has four iodine atoms, as T3 binds more strongly to thyroid hormone receptors and accelerates metabolic processes at the cellular level.

In circulation, about 80% of T3 is bound to plasma proteins, while the remaining 20% is unbound or free, allowing it to enter cells and exert its biological effects. The primary functions of T3 include increasing the rate of metabolic reactions, promoting protein synthesis, enhancing sensitivity to catecholamines (e.g., adrenaline), and supporting normal brain development during fetal growth and early infancy. Imbalances in T3 levels can lead to various medical conditions, such as hypothyroidism or hyperthyroidism, which may require clinical intervention and management.

COUP-TFI, also known as Nuclear Receptor Subfamily 2 Group F Member 1 (NR2F1), is a protein that functions as a transcription factor. It belongs to the family of nuclear receptors and plays crucial roles in various biological processes, including brain development, angiogenesis, and cancer. COUP-TFI regulates gene expression by binding to specific DNA sequences called hormone response elements (HREs) in the promoter regions of its target genes.

The name "COUP" stands for "Chicken Ovalbumin Upstream Promoter-element Binding Protein," as it was initially identified through its ability to bind to the ovalbumin upstream promoter element in chickens. However, COUP-TFI is highly conserved across species and has similar functions in humans and other mammals.

In summary, COUP-TFI is a nuclear receptor and transcription factor that plays essential roles in brain development, angiogenesis, and cancer by regulating the expression of specific target genes.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Ecdysone is a steroid hormone that triggers molting in arthropods, including insects. It's responsible for the regulation of growth and development in these organisms. When ecdysone binds to specific receptors within the cell, it initiates a cascade of events leading to the shedding of the old exoskeleton and the formation of a new one. This process is essential for the growth and survival of arthropods, as their rigid exoskeletons do not allow for expansion. By understanding ecdysone and its role in insect development, researchers can develop targeted strategies to control pest insect populations.

Acetylation is a chemical process that involves the addition of an acetyl group (-COCH3) to a molecule. In the context of medical biochemistry, acetylation often refers to the post-translational modification of proteins, where an acetyl group is added to the amino group of a lysine residue in a protein by an enzyme called acetyltransferase. This modification can alter the function or stability of the protein and plays a crucial role in regulating various cellular processes such as gene expression, DNA repair, and cell signaling. Acetylation can also occur on other types of molecules, including lipids and carbohydrates, and has important implications for drug metabolism and toxicity.

Hepatocytes are the predominant type of cells in the liver, accounting for about 80% of its cytoplasmic mass. They play a key role in protein synthesis, protein storage, transformation of carbohydrates, synthesis of cholesterol, bile salts and phospholipids, detoxification, modification, and excretion of exogenous and endogenous substances, initiation of formation and secretion of bile, and enzyme production. Hepatocytes are essential for the maintenance of homeostasis in the body.

Xenobiotics are substances that are foreign to a living organism and usually originate outside of the body. This term is often used in the context of pharmacology and toxicology to refer to drugs, chemicals, or other agents that are not naturally produced by or expected to be found within the body.

When xenobiotics enter the body, they undergo a series of biotransformation processes, which involve metabolic reactions that convert them into forms that can be more easily excreted from the body. These processes are primarily carried out by enzymes in the liver and other organs.

It's worth noting that some xenobiotics can have beneficial effects on the body when used as medications or therapeutic agents, while others can be harmful or toxic. Therefore, understanding how the body metabolizes and eliminates xenobiotics is important for developing safe and effective drugs, as well as for assessing the potential health risks associated with exposure to environmental chemicals and pollutants.

Nuclear Receptor Subfamily 4, Group A, Member 3 (NR4A3) is a protein that belongs to the nuclear receptor superfamily. NR4A3, also known as Nurr1 or RNR-1, is a transcription factor that plays crucial roles in the development and function of the nervous system, particularly in the differentiation and survival of dopaminergic neurons. These neurons are essential for movement control, reward processing, and various cognitive functions.

NR4A3 regulates gene expression by binding to specific DNA sequences called hormone response elements (HREs) in the promoter regions of its target genes. This protein can be activated by various stimuli, including growth factors, cytokines, and stress signals. Once activated, NR4A3 forms homodimers or heterodimers with other nuclear receptors and recruits coactivators or corepressors to modulate the transcription of its target genes.

Mutations in the NR4A3 gene have been associated with several neurological disorders, including Parkinson's disease, multiple sclerosis, and schizophrenia. Additionally, NR4A3 has been implicated in cancer biology, as it can act as a tumor suppressor or an oncogene depending on the context.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Histone deacetylases (HDACs) are a group of enzymes that play a crucial role in the regulation of gene expression. They work by removing acetyl groups from histone proteins, which are the structural components around which DNA is wound to form chromatin, the material that makes up chromosomes.

Histone acetylation is a modification that generally results in an "open" chromatin structure, allowing for the transcription of genes into proteins. When HDACs remove these acetyl groups, the chromatin becomes more compact and gene expression is reduced or silenced.

HDACs are involved in various cellular processes, including development, differentiation, and survival. Dysregulation of HDAC activity has been implicated in several diseases, such as cancer, neurodegenerative disorders, and cardiovascular diseases. As a result, HDAC inhibitors have emerged as promising therapeutic agents for these conditions.

  • Using a recombinant endonuclease-deficient Cas9-based gene promoter pulldown approach coupled with mass spectrometry, we found that MCUb is upregulated in the T2D heart due to loss of glucose homeostasis regulator nuclear receptor corepressor 2 repression, and chromatin immunoprecipitation assays identified peroxisome proliferator-activated receptor α as a mediator of MCUb gene expression in T2D cardiomyocytes. (diabetesjournals.org)
  • Given the established role of estrogens in breast cancer, we hypothesized that coding variation in steroid receptor coactivator and corepressor genes may alter inter-individual response to estrogen and serve as markers of breast cancer risk. (biomedcentral.com)
  • Cataloging and testing of coding variants in coactivator and corepressor genes should continue and may serve as a valuable resource for investigations of other hormone-related phenotypes, such as inter-individual response to hormonal therapies used for cancer treatment and prevention. (biomedcentral.com)
  • Cellular response to estrogens is mediated through estrogen receptors (ERα and ERβ), which upon binding to ligand and DNA hormone response elements, recruit coactivator and corepressor proteins that regulate the expression of steroid hormone target genes. (biomedcentral.com)
  • In this study, we systematically screened the coding exons of steroid hormone receptor coactivator and corepressor genes in a multiethnic panel of women with breast cancer in an attempt to identify and catalogue potentially functional coding polymorphisms that may serve as genetic markers of breast cancer risk. (biomedcentral.com)
  • SMILE acts as a corepressor for nuclear receptors related transcriptional activity and other transcription factors. (etals.org)
  • 핵수용체는 표적유전자의 프로모터 전사조절부위에 직접 결합하여, 보조활성인자(coactivator) 혹은 보조억제인자(corepressor)와의 상호작용을 통해 유전자 발현을 조절하는 리간드 의존성 전사조절인자이다[ 11 ]. (etals.org)
  • This is the first study describing the production and distribution of ETS-1 and ETS-2 mRNAs and proteins using in situ hybridization and immunohistochemistry in murine ocular tissue sections of normal control eyes and tumoral eyes from mice of the same age. (molvis.org)
  • The levels of peroxisome proliferator‑activated receptor gamma coactivator (PGC)‑1α/nuclear factor erythroid‑2‑related factor 2 (Nrf2) signalling, oxidative stress and pyroptosis‑related proteins were detected by western blotting. (spandidos-publications.com)
  • The AF-1 plays an important role in the interaction of the receptor with molecules necessary for the initiation of transcription, such as coactivators, chromatin modulators, and basal transcription factors, including RNA polymerase II, TATA-binding protein (TBP), and a host of TBP-associated proteins (TAFIIs). (medscape.com)
  • The response elements for the progesterone, androgen, glucocorticoid, and mineralocorticoid receptors are closely related and are collectively referred to as the glucocorticoid response element (GRE) consisting of a palindromic (symmetrical) sequence 5'-GGTACAnnnTGTTCT-3', where n = any nucleotide. (nogas.in)
  • NCoA-2 is also frequently called glucocorticoid receptor-interacting protein 1 (GRIP1), steroid receptor coactivator-2 (SRC-2), or transcriptional mediators/intermediary factor 2 (TIF2). (wikipedia.org)
  • GRIP1 is a transcriptional co-activator of the glucocorticoid receptor and interferon regulatory factor 1 (IRF1). (wikipedia.org)
  • Involved in the positive regulation of the transcriptional activity of the glucocorticoid receptor NR3C1 by sumoylation enhancer RWDD3. (nih.gov)
  • At the cellular level, the actions of glucocorticoids are mediated by a 94-kd protein, the glucocorticoid receptor (GR). The human (h) GR belongs to the steroid/thyroid/retinoic acid superfamily of nuclear receptors and functions as a ligand-dependent transcription factor that regulates the expression of glucocorticoid-responsive genes positively or negatively. (medscape.com)
  • A) Schematic representation of the structure of the human glucocorticoid receptor (hGR) gene. (medscape.com)
  • BACKGROUND Nuclear hormone receptors are ligand-dependent transcription factors that require coactivators to regulate target gene expression. (sputnic-group.ru)
  • The gene product is a member of the nuclear hormone receptor family, a group of transcription factors regulated by small hydrophobic hormones, a subset of which do not have known ligands and are referred to as orphan nuclear receptors. (cancerindex.org)
  • Studies suggest that the protein represses nuclear hormone receptor-mediated transactivation via two separate steps: competition with coactivators and the direct effects of its transcriptional repressor function. (cancerindex.org)
  • The pleiotropic harmful effects of EDCs act through hormone-dependent downstream signaling pathways responsible for gonad development either through direct interaction with steroid hormone receptor or via epigenetic regulation. (intechopen.com)
  • We used logistic regression to estimate odds ratios for allelic effects in ethnic-pooled analyses as well as in subgroups defined by disease stage and steroid hormone receptor status. (biomedcentral.com)
  • May be a nuclear hormone receptor coactivator. (lu.se)
  • The DNA-binding domain (DBD) of the hGRα corresponds to amino acids 420-480 and contains 2 zinc finger motifs through which the hGRα binds to specific DNA sequences, the glucocorticoid-response elements (GREs) in the promoter region(s) of target genes. (medscape.com)
  • The receptors function as dimeric molecules in nuclei to regulate the transcription of target genes in a ligand-responsive manner. (embl.de)
  • These response elements position the receptors, and the complexes recruited by them, close to the genes of which transcription is affected. (embl.de)
  • Small heterodimer partner(SHP)-interacting leucine zipper protein(SMILE)은 처음에 Zhangfei라고 불리는 basic leucin zipper protein(bZIP) 전사조절인자로, 바이러스 단백질 VP16을 통해 단순포진바이러스(Herpes simplex virus, HSV)의 극초기 유전자(immediate early genes) 전이 활성화를 위해 필요한 수용체 세포 인자(host cell factor, HCF)에 결합하는 보조조절인자(coregulator) 중 하나로 알려졌다[ 1 , 2 ]. (etals.org)
  • The nuclear receptor coactivator 2 also known as NCoA-2 is a protein that in humans is encoded by the NCOA2 gene. (wikipedia.org)
  • NCoA-2 is a transcriptional coregulatory protein that contains several nuclear receptor interacting domains and an intrinsic histone acetyltransferase activity. (wikipedia.org)
  • Jun dimerization protein-2 (JDP-2) is a progesterone receptor (PR) coregulatory protein that acts by inducing structure and transcriptional activity in the disordered amino-terminal domain (NTD) of PR. (nih.gov)
  • The protein encoded by this gene is an unusual orphan receptor that contains a putative ligand-binding domain but lacks a conventional DNA-binding domain. (cancerindex.org)
  • The protein has been shown to interact with retinoid and thyroid hormone receptors, inhibiting their ligand-dependent transcriptional activation. (cancerindex.org)
  • The protein encoded by this gene functions as a transcriptional coactivator for nuclear hormone receptors, including steroid, thyroid, retinoid, and vitamin D receptors. (nih.gov)
  • Using semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR) and western blots experiments, we compared changes in ETS-1 and ETS-2 expression, their protein levels, and the regulation of some of their target gene expressions at different stages of the ocular tumoral progression in the transgenic mouse model, Tyrp-1-TAg, with those in normal eyes from control mice of the same age. (molvis.org)
  • ETS-1 and ETS-2 mRNA and protein levels were much higher in the ocular tissues of Tyrp-1-TAg mice than in control ocular tissues from wild-type mice. (molvis.org)
  • Alternative splicing of the primary transcript gives rise to the 2 mRNA and protein isoforms, hGR-alpha and hGR-beta. (medscape.com)
  • The human GR is a modular protein composed of distinct regions illustrated in panel B in the image below, as follows: (1) The amino-terminal A/B region, also called immunogenic or N-terminal domain (NTD) and (2) the C, D, and E regions, which correspond to the DNA-binding domain, the hinge region, and the ligand-binding domain, respectively. (medscape.com)
  • Although initially discovered as a retinoblastoma binding protein it has an affinity for core HISTONES and is a subunit of chromatin assembly factor-1 and polycomb repressive complex 2. (lookformedical.com)
  • It is found as a subunit of protein complexes that are in involved in the enzymatic modification of histones including the Mi2 and Sin3 histone deacetylase complexes and the polycomb repressive complex 2. (lookformedical.com)
  • A cardiomelic developmental field has also been postulated to relate the genetic heterogeneity of HOS (and other similar syndromes) to a cascade of molecules, including the brachyury, sonic hedgehog, bone morphogenetic protein, retinoic acid receptor, and transforming growth factor beta families. (medscape.com)
  • NCOA2 is recruited to DNA promotion sites by ligand-activated nuclear receptors. (wikipedia.org)
  • Hence, NCOA2 assists nuclear receptors in the upregulation of DNA expression. (wikipedia.org)
  • T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. (nature.com)
  • It has been reported that SIRT1/peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α/nuclear factor erythroid-2-related factor 2 (Nrf2) signalling can mediate oxidative stress, which plays an important role in myocardial I/R injury ( 14 , 15 ). (spandidos-publications.com)
  • Recent studies have identified the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) as a regulator of mitochondrial function in tissues specialized for thermogenesis, such as brown adipose. (jci.org)
  • Transcriptional coactivator for steroid receptors and nuclear receptors. (nih.gov)
  • The steroid receptor coactivator-3 (SRC-3), also known as p/CIP, RAC3, AIB1, ACTR and TRAM-1, is a cancer-amplified coactivator in the SRC gene family that also contains SRC-1 and SRC-2. (sputnic-group.ru)
  • 리간드가 없을 때 SMILE은 핵수용체 전사활성을 저해하는 보조억제인자로 작용하며, 실제로 constitutive androstane receptors(CAR), retinoid X receptors(RXR), and estrogen-related receptor gamma(ERR γ ) 등 여러 핵수용체의 전사활성을 저해한다[ 10 , 12 ]. (etals.org)
  • In addition, interaction with estrogen receptors has been demonstrated, leading to inhibition of function. (cancerindex.org)
  • 12 , 13 ] Polymorphic variants in these mediators of hormonal responsiveness could affect the functional activity of estrogen receptors following stimulation by endogenous or exogenous (i.e. (biomedcentral.com)
  • We also found that SRC-3 depletion in cultured HESCs results in a significant attenuation in the induction of a wide-range of established biomarkers of decidualization, despite exposure of these cells to a deciduogenic stimulus and normal progesterone receptor expression. (frontiersin.org)
  • Thus, threonine 350 seems to regulate hormone responsiveness of mCAR by interfering indirectly an interaction of the receptor with a coactivator. (aspetjournals.org)
  • 1 SRC-3 phosphorylation and methylation have been shown to regulate such coactivator complex assembly. (sputnic-group.ru)
  • NCOA6 is a nuclear receptor that interacts with transcription factors such as PPARγ, which is a major regulator of bovine milk fat synthesis. (nofima.no)
  • SRC-3 interacts with nuclear receptors and certain other transcription factors, recruits histone acetyltransferases and methyltransferases for chromatin remodeling and facilitates target gene transcription. (sputnic-group.ru)
  • The farnesoid-X-receptor (FXR) protects against inflammation and cancer of the colon through maintenance of intestinal bile acid (BA) homeostasis. (cancerindex.org)
  • Steroid or nuclear hormone receptors constitute an important superfamily of transcription regulators that are involved in widely diverse physiological functions, including control of embryonic development, cell differentiation and homeostasis. (embl.de)
  • Cyclin-dependent kinase 2 (Cdk2)/cyclin A is a novel PR coregulator that binds the NTD and acts by phosphorylating steroid receptor coactivator-1 and modulating steroid receptor coactivator-1 interaction with PR. (nih.gov)
  • however, phosphorylation of serine 400 was not required, indicating that JDP-2 and Cdk2/cyclin A act by distinct mechanisms. (nih.gov)
  • Nuclear antigen with a role in DNA synthesis, DNA repair, and cell cycle progression. (lookformedical.com)
  • Mutation of phosphorylation sites within this region of the NTD showed that phosphorylation of serine 400 was required for the partial agonist activity of RU486 stimulated by JDP-2, but was not required for activity of hormone agonist, either in the presence or absence of JDP-2. (nih.gov)
  • We conclude that PR bound to RU486 and associated with JDP-2 adopts an active conformation in a subregion of the NTD requiring phosphorylation of serine 400 that is distinct from that promoted by progestin agonists. (nih.gov)
  • Critical regulator of glucose metabolism regulation, acts as RORA coactivator to specifically modulate G6PC expression. (nih.gov)
  • Steroid hormones modulate activity of the nuclear receptor constitutive active receptor (CAR, or constitutive androstane receptor) in mouse liver. (aspetjournals.org)
  • We also demonstrated upregulation of ETS-1 and ETS-2 target expressions in Tyrp-1-TAg mice when comparing with the same target expressions in control mice. (molvis.org)
  • The A to T mutation at position 458 that could produce a dimerization defective receptor is shown. (medscape.com)
  • [ 2 , 3 , 4 ] A full list of the described mutations is available at the TBX5 Gene Mutation Database , an online locus-specific database that contains germline and somatic mutations of the TBX5 gene. (medscape.com)
  • also known as NCOA3 or AIB1) is a member of the multifunctional p160/SRC family of coactivators, which also includes SRC-1 and SRC-2. (frontiersin.org)
  • C) Enlargement of part of the DBD showing the amino acid sequence (single letter codes) of the 2 zinc fingers and the dimerization loop (in bold). (medscape.com)
  • The 2 zinc finger motifs are able to tetrahedrally coordinate a zinc atom and are held by 4 cysteine (Cys) residues (see the image below, panel C). (medscape.com)
  • The DNA-binding domains of nuclear receptors consist of two zinc-nucleated modules and a C-terminal extension, where residues in the first zinc module determine the specificity of the DNA recognition and residues in the second zinc module are involved in dimerisation. (embl.de)
  • 11 ] The relative recruitment of coactivators versus corepressors for a given ligand (e.g. estradiol vs tamoxifen) is tissue specific and may account for agonist vs. antagonist activity of the same ligand in different tissues. (biomedcentral.com)
  • Proliferation of breast cancer cells directed by constrained ligands is associated with DNA binding, coactivator recruitment and activation of the estrogen-induced gene GREB1, reflecting a highly interconnected signaling network. (rcsb.org)
  • The human SMCC/Mediator complex has recently been shown to be equivalent to the earlier-described TRAP complex and, through subunit specific interactions, to mediate the function of a variety of activators (including several nuclear receptors, the tumor suppressor p53, and the herpes virus activator VP16). (rockefeller.edu)
  • Progesterone and testosterone repress the constitutive activity of mouse CAR (mCAR) in cell-mediated transfection assays, whereas estrogens activate the repressed receptor. (aspetjournals.org)
  • This cytosolic arginine is then translocated into the mitochondria where it is split by arginase 2 to urea and ornithine. (biomed.news)
  • [ 1 , 2 ] Loss of mitochondria occurs in many of these maladies, but defects in the remaining mitochondria are emerging as key players in diabetes [ 3 ] and aging-related dysfunctions. (medscape.com)
  • Alternative splicing of the hGR gene in exon 9 generates 2 highly homologous receptor isoforms, termed α and β. (medscape.com)
  • The contribution of altered mitochondrial Ca 2+ handling to metabolic and functional defects in type 2 diabetic (T2D) mouse hearts is not well understood. (diabetesjournals.org)
  • In vivo mitochondrial function [maximal ATP synthesis rate (ATPmax), ATPflux/O 2 (P/O)] was determined by 31 P-magnetic resonance spectroscopy and optical spectroscopy, and body composition was determined by dual-energy X-ray absorptiometry. (medscape.com)
  • We conducted an ancillary study to the CALERIE 2 randomized controlled trial to examine the effects of 12 months of 25% CR on in vivo skeletal muscle mitochondrial energetics, mitochondrial content, and markers of oxidative stress. (medscape.com)
  • Positively regulates the circadian clock by acting as a transcriptional coactivator for the CLOCK-ARNTL/BMAL1 heterodimer (By similarity). (nih.gov)