Nocodazole is an antineoplastic agent which exerts its effect by depolymerizing microtubules.
Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS.
Agents that interact with TUBULIN to inhibit or promote polymerization of MICROTUBULES.
A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE).
A microtubule subunit protein found in large quantities in mammalian brain. It has also been isolated from SPERM FLAGELLUM; CILIA; and other sources. Structurally, the protein is a dimer with a molecular weight of approximately 120,000 and a sedimentation coefficient of 5.8S. It binds to COLCHICINE; VINCRISTINE; and VINBLASTINE.
An alkaloid isolated from Colchicum autumnale L. and used as an antineoplastic.
A fungal metabolite that blocks cytoplasmic cleavage by blocking formation of contractile microfilament structures resulting in multinucleated cell formation, reversible inhibition of cell movement, and the induction of cellular extrusion. Additional reported effects include the inhibition of actin polymerization, DNA synthesis, sperm motility, glucose transport, thyroid secretion, and growth hormone release.
A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species.
A microtubule structure that forms during CELL DIVISION. It consists of two SPINDLE POLES, and sets of MICROTUBULES that may include the astral microtubules, the polar microtubules, and the kinetochore microtubules.
A cyclodecane isolated from the bark of the Pacific yew tree, TAXUS BREVIFOLIA. It stabilizes MICROTUBULES in their polymerized form leading to cell death.
Compounds with a BENZENE fused to IMIDAZOLES.
A fungal metabolite which is a macrocyclic lactone exhibiting a wide range of antibiotic activity.
The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm.
11- to 14-membered macrocyclic lactones with a fused isoindolone. Members with INDOLES attached at the C10 position are called chaetoglobosins. They are produced by various fungi. Some members interact with ACTIN and inhibit CYTOKINESIS.
A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990)
A family of Urodela consisting of 15 living genera and about 42 species and occurring in North America, Europe, Asia, and North Africa.
High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules.
The phase of cell nucleus division following PROMETAPHASE, in which the CHROMOSOMES line up across the equatorial plane of the SPINDLE APPARATUS prior to separation.
Large multiprotein complexes that bind the centromeres of the chromosomes to the microtubules of the mitotic spindle during metaphase in the cell cycle.
The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.
Established cell cultures that have the potential to propagate indefinitely.
Mad2 is a component of the spindle-assembly checkpoint apparatus. It binds to and inhibits the Cdc20 activator subunit of the anaphase-promoting complex, preventing the onset of anaphase until all chromosomes are properly aligned at the metaphase plate. Mad2 is required for proper microtubule capture at KINETOCHORES.
The cell center, consisting of a pair of CENTRIOLES surrounded by a cloud of amorphous material called the pericentriolar region. During interphase, the centrosome nucleates microtubule outgrowth. The centrosome duplicates and, during mitosis, separates to form the two poles of the mitotic spindle (MITOTIC SPINDLE APPARATUS).
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
The phase of cell nucleus division following PROPHASE, when the breakdown of the NUCLEAR ENVELOPE occurs and the MITOTIC SPINDLE APPARATUS enters the nuclear region and attaches to the KINETOCHORES.
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle.
Agents which affect CELL DIVISION and the MITOTIC SPINDLE APPARATUS resulting in the loss or gain of whole CHROMOSOMES, thereby inducing an ANEUPLOIDY.
A cytotoxic member of the CYTOCHALASINS.
Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.
The chromosomal constitution of a cell containing multiples of the normal number of CHROMOSOMES; includes triploidy (symbol: 3N), tetraploidy (symbol: 4N), etc.
Organic nitrogenous bases. Many alkaloids of medical importance occur in the animal and vegetable kingdoms, and some have been synthesized. (Grant & Hackh's Chemical Dictionary, 5th ed)
The period of the CELL CYCLE following DNA synthesis (S PHASE) and preceding M PHASE (cell division phase). The CHROMOSOMES are tetraploid in this point.
Derivatives of carbamic acid, H2NC(=O)OH. Included under this heading are N-substituted and O-substituted carbamic acids. In general carbamate esters are referred to as urethanes, and polymers that include repeating units of carbamate are referred to as POLYURETHANES. Note however that polyurethanes are derived from the polymerization of ISOCYANATES and the singular term URETHANE refers to the ethyl ester of carbamic acid.
The phase of cell nucleus division following METAPHASE, in which the CHROMATIDS separate and migrate to opposite poles of the spindle.
A lignan (LIGNANS) found in PODOPHYLLIN resin from the roots of PODOPHYLLUM plants. It is a potent spindle poison, toxic if taken internally, and has been used as a cathartic. It is very irritating to skin and mucous membranes, has keratolytic actions, has been used to treat warts and keratoses, and may have antineoplastic properties, as do some of its congeners and derivatives.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Substances that inhibit or prevent the proliferation of NEOPLASMS.
Microscopy in which television cameras are used to brighten magnified images that are otherwise too dark to be seen with the naked eye. It is used frequently in TELEPATHOLOGY.
A cyclin B subtype that colocalizes with MICROTUBULES during INTERPHASE and is transported into the CELL NUCLEUS at the end of the G2 PHASE.
Antitumor alkaloid isolated from Vinca rosea. (Merck, 11th ed.)
Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments.
A family of multisubunit cytoskeletal motor proteins that use the energy of ATP hydrolysis to power a variety of cellular functions. Dyneins fall into two major classes based upon structural and functional criteria.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
An antiprotozoal agent produced by Streptomyces cinnamonensis. It exerts its effect during the development of first-generation trophozoites into first-generation schizonts within the intestinal epithelial cells. It does not interfere with hosts' development of acquired immunity to the majority of coccidial species. Monensin is a sodium and proton selective ionophore and is widely used as such in biochemical studies.
A cyclin subtype that is transported into the CELL NUCLEUS at the end of the G2 PHASE. It stimulates the G2/M phase transition by activating CDC2 PROTEIN KINASE.
Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
Compounds that inhibit cell production of DNA or RNA.
The final phase of cell nucleus division following ANAPHASE, in which two daughter nuclei are formed, the CYTOPLASM completes division, and the CHROMOSOMES lose their distinctness and are transformed into CHROMATIN threads.
Phosphoprotein with protein kinase activity that functions in the G2/M phase transition of the CELL CYCLE. It is the catalytic subunit of the MATURATION-PROMOTING FACTOR and complexes with both CYCLIN A and CYCLIN B in mammalian cells. The maximal activity of cyclin-dependent kinase 1 is achieved when it is fully dephosphorylated.
A group of alicyclic hydrocarbons with the general formula R-C5H9.
Reduced (protonated) form of THIAZOLES. They can be oxidized to THIAZOLIDINEDIONES.
Self-replicating, short, fibrous, rod-shaped organelles. Each centriole is a short cylinder containing nine pairs of peripheral microtubules, arranged so as to form the wall of the cylinder.
The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.
Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis.

EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle. (1/1483)

The characteristics of the adenomatous polyposis coli (APC) associated protein EB1 were examined in mammalian cells. By immunocytochemistry EB1 was shown to be closely associated with the microtubule cytoskeleton throughout the cell cycle. In interphase cells EB1 was associated with microtubules along their full length but was often particularly concentrated at their tips. During early mitosis, EB1 was localized to separating centrosomes and associated microtubules, while at metaphase it was associated with the spindle poles and associated microtubules. During cytokinesis EB1 was strongly associated with the midbody microtubules. Treatment with nocodazole caused a diffuse redistribution of EB1 immunoreactivity, whereas treatment with cytochalasin D had no effect. Interestingly, treatment with taxol abolished the EB1 association with microtubules. In nocodazole washout experiments EB1 rapidly became associated with the centrosome and repolymerizing microtubules. In taxol wash-out experiments EB1 rapidly re-associated with the microtubule cytoskeleton, resembling untreated control cells within 10 min. Immunostaining of SW480 cells, which contain truncated APC incapable of interaction with EB1, showed that the association of EB1 with microtubules throughout the cell cycle was not dependent upon an interaction with APC. These results suggest a role for EB1 in the control of microtubule dynamics in mammalian cells.  (+info)

Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. (2/1483)

Adenovirus (Ad) enters target cells by receptor-mediated endocytosis, escapes to the cytosol, and then delivers its DNA genome into the nucleus. Here we analyzed the trafficking of fluorophore-tagged viruses in HeLa and TC7 cells by time-lapse microscopy. Our results show that native or taxol-stabilized microtubules (MTs) support alternating minus- and plus end-directed movements of cytosolic virus with elementary speeds up to 2.6 micrometer/s. No directed movement was observed in nocodazole-treated cells. Switching between plus- and minus end-directed elementary speeds at frequencies up to 1 Hz was observed in the periphery and near the MT organizing center (MTOC) after recovery from nocodazole treatment. MT-dependent motilities allowed virus accumulation near the MTOC at population speeds of 1-10 micrometer/min, depending on the cell type. Overexpression of p50/dynamitin, which is known to affect dynein-dependent minus end-directed vesicular transport, significantly reduced the extent and the frequency of minus end-directed migration of cytosolic virus, and increased the frequency, but not the extent of plus end-directed motility. The data imply that a single cytosolic Ad particle engages with two types of MT-dependent motor activities, the minus end- directed cytoplasmic dynein and an unknown plus end- directed activity.  (+info)

CLIP-170 highlights growing microtubule ends in vivo. (3/1483)

A chimera with the green fluorescent protein (GFP) has been constructed to visualize the dynamic properties of the endosome-microtubule linker protein CLIP170 (GFP-CLIP170). GFP-CLIP170 binds in stretches along a subset of microtubule ends. These fluorescent stretches appear to move with the growing tips of microtubules at 0.15-0.4 microm/s, comparable to microtubule elongation in vivo. Analysis of speckles along dynamic GFP-CLIP170 stretches suggests that CLIP170 treadmills on growing microtubule ends, rather than being continuously transported toward these ends. Drugs affecting microtubule dynamics rapidly inhibit movement of GFP-CLIP170 dashes. We propose that GFP-CLIP170 highlights growing microtubule ends by specifically recognizing the structure of a segment of newly polymerized tubulin.  (+info)

Distribution of 5-chloromethylfluorescein diacetate staining during meiotic maturation and fertilization in vitro of mouse oocytes. (4/1483)

The aim of this confocal microscopy study was to determine whether the pattern of CellTracker Green 5-chloromethylfluorescein diacetate (CMFDA) staining changes during meiotic maturation and fertilization in vitro of mouse oocytes. At different times during meiotic maturation and fertilization, oocytes, zygotes and two-cell embryos were stained with CMFDA to demonstrate intracellular glutathione S-transferase activity. After washing in CMFDA-free medium, most oocytes, zygotes and embryos were stained with dihydroethidium (HE) to visualize DNA structures. Meiotic maturation and fertilization in vitro of mouse oocytes were associated with changes in the pattern of intracellular CMFDA staining. In particular, accumulations of CMFDA-positive membranes were observed around the nucleus of germinal vesicle (GV) oocytes, overlaying the sperm nucleus as well as overlaying the first mitotic spindle if this approached the plasma membrane. Staining of oocytes and zygotes with the probes 3,3'-dihexyloxacarbocyanine iodine [DiOC6(3)], which stains all the intracellular membranes, and rhodamine 123, which stains active mitochondria, demonstrated that the intracellular structures evidenced by CMFDA staining did not correspond to accumulations of mitochondria. Exposure of oocytes and zygotes to the microtubule-disrupting agent nocodazole or the actin-depolymerizing drug cytochalasin D revealed an autonomous microfilament-dependent transport and relocation of CMFDA-positive membranes during meiotic maturation and fertilization. Such a transport of CMFDA-positive membranes may be envisaged as a protective shield built to prevent damage to DNA from endogenous and exogenous mutagen metabolites.  (+info)

Binding of Gal4p and bicoid to nucleosomal sites in yeast in the absence of replication. (5/1483)

The yeast transcriptional activator Gal4p can bind to sites in nucleosomal DNA in vivo which it is unable to access in vitro. One event which could allow proteins to bind to otherwise inaccessible sites in chromatin in living cells is DNA replication. To determine whether replication is required for Gal4p to bind to nucleosomal sites in yeast, we have used previously characterized chromatin reporters in which Gal4p binding sites are incorporated into nucleosomes. We find that Gal4p is able to perturb nucleosome positioning via nucleosomal binding sites in yeast arrested either in G1, with alpha-factor, or in G2/M, with nocodazole. Similar results were obtained whether Gal4p synthesis was induced from the endogenous promoter by growth in galactose medium or by an artificial, hormone-inducible system. We also examined binding of the Drosophila transcriptional activator Bicoid, which belongs to the homeodomain class of transcription factors. We show that Bicoid, like Gal4p, can bind to nucleosomal sites in SWI+ and swi1Delta yeast and in the absence of replication. Our results indicate that some feature of the intracellular environment other than DNA replication or the SWI-SNF complex permits factor access to nucleosomal sites.  (+info)

Intracellular trafficking pathways in the assembly of connexins into gap junctions. (6/1483)

Trafficking pathways underlying the assembly of connexins into gap junctions were examined using living COS-7 cells expressing a range of connexin-aequorin (Cx-Aeq) chimeras. By measuring the chemiluminescence of the aequorin fusion partner, the translocation of oligomerized connexins from intracellular stores to the plasma membrane was shown to occur at different rates that depended on the connexin isoform. Treatment of COS-7 cells expressing Cx32-Aeq and Cx43-Aeq with brefeldin A inhibited the movement of these chimera to the plasma membrane by 84 +/- 4 and 88 +/- 4%, respectively. Nocodazole treatment of the cells expressing Cx32-Aeq and Cx43-Aeq produced 29 +/- 16 and 4 +/- 7% inhibition, respectively. In contrast, the transport of Cx26 to the plasma membrane, studied using a construct (Cx26/43T-Aeq) in which the short cytoplasmic carboxyl-terminal tail of Cx26 was replaced with the extended carboxyl terminus of Cx43, was inhibited 89 +/- 5% by nocodazole and was minimally affected by exposure of cells to brefeldin A (17 +/-11%). The transfer of Lucifer yellow across gap junctions between cells expressing wild-type Cx32, Cx43, and the corresponding Cx32-Aeq and Cx43-Aeq chimeras was reduced by nocodazole treatment and abolished by brefeldin A treatment. However, the extent of dye coupling between cells expressing wild-type Cx26 or the Cx26/43T-Aeq chimeras was not significantly affected by brefeldin A treatment, but after nocodazole treatment, transfer of dye to neighboring cells was greatly reduced. These contrasting effects of brefeldin A and nocodazole on the trafficking properties and intercellular dye transfer are interpreted to suggest that two pathways contribute to the routing of connexins to the gap junction.  (+info)

The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. (7/1483)

The translationally controlled protein P23 was discovered by the early induction of its rate of synthesis after mitogenic stimulation of mouse fibroblasts. P23 is expressed in almost all mammalian tissues and it is highly conserved between animals, plants and yeast. Based on its amino acid sequence, P23 cannot be attributed to any known protein family, and its cellular function remains to be elucidated. Here, we present evidence that P23 has properties of a tubulin binding protein that associates with microtubules in a cell cycle-dependent manner. (1) P23 is a cytoplasmic protein that occurs in complexes of 100-150 kDa, and part of P23 can be immunoprecipitated from HeLa cell extracts with anti-tubulin antibodies. (2) In immunolocalisation experiments we find P23 associated with microtubules during G1, S, G2 and early M phase of the cell cycle. At metaphase, P23 is also bound to the mitotic spindle, and it is detached from the spindle during metaphase-anaphase transition. (3) A GST-P23 fusion protein interacts with alpha- and beta-tubulin, and recombinant P23 binds to taxol-stabilised microtubules in vitro. The tubulin binding domain of P23 was identified by mutational analysis; it shows similarity to part of the tubulin binding domain of the microtubule-associated protein MAP-1B. (4) Overexpression of P23 results in cell growth retardation and in alterations of cell morphology. Moreover, elevation of P23 levels leads to microtubule rearrangements and to an increase in microtubule mass and stability.  (+info)

Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. (8/1483)

Golgi stacks are often located near sites of "transitional ER" (tER), where COPII transport vesicles are produced. This juxtaposition may indicate that Golgi cisternae form at tER sites. To explore this idea, we examined two budding yeasts: Pichia pastoris, which has coherent Golgi stacks, and Saccharomyces cerevisiae, which has a dispersed Golgi. tER structures in the two yeasts were visualized using fusions between green fluorescent protein and COPII coat proteins. We also determined the localization of Sec12p, an ER membrane protein that initiates the COPII vesicle assembly pathway. In P. pastoris, Golgi stacks are adjacent to discrete tER sites that contain COPII coat proteins as well as Sec12p. This arrangement of the tER-Golgi system is independent of microtubules. In S. cerevisiae, COPII vesicles appear to be present throughout the cytoplasm and Sec12p is distributed throughout the ER, indicating that COPII vesicles bud from the entire ER network. We propose that P. pastoris has discrete tER sites and therefore generates coherent Golgi stacks, whereas S. cerevisiae has a delocalized tER and therefore generates a dispersed Golgi. These findings open the way for a molecular genetic analysis of tER sites.  (+info)

Nocodazole is not a medical condition or disease, but rather a pharmacological agent used in medical research and clinical settings. It's a synthetic chemical compound that belongs to the class of drugs known as microtubule inhibitors. Nocodazole works by binding to and disrupting the dynamic assembly and disassembly of microtubules, which are important components of the cell's cytoskeleton and play a critical role in cell division.

Nocodazole is primarily used in research settings as a tool for studying cell biology and mitosis, the process by which cells divide. It can be used to synchronize cells in the cell cycle or to induce mitotic arrest, making it useful for investigating various aspects of cell division and chromosome behavior.

In clinical settings, nocodazole has been used off-label as a component of some cancer treatment regimens, particularly in combination with other chemotherapeutic agents. Its ability to disrupt microtubules can interfere with the proliferation of cancer cells and enhance the effectiveness of certain anti-cancer drugs. However, its use is not widespread due to potential side effects and the availability of alternative treatments.

Microtubules are hollow, cylindrical structures composed of tubulin proteins in the cytoskeleton of eukaryotic cells. They play crucial roles in various cellular processes such as maintaining cell shape, intracellular transport, and cell division (mitosis and meiosis). Microtubules are dynamic, undergoing continuous assembly and disassembly, which allows them to rapidly reorganize in response to cellular needs. They also form part of important cellular structures like centrioles, basal bodies, and cilia/flagella.

Tubulin modulators are a class of drugs that target and alter the function or structure of tubulin, which is a key component of microtubules in cells. These drugs can either stabilize or destabilize microtubules by interacting with tubulin, leading to various effects on cell division and other processes that rely on microtubule dynamics.

There are two main types of tubulin modulators:

1. Microtubule stabilizers: These drugs promote the assembly and stability of microtubules by binding to tubulin, preventing its disassembly. Examples include taxanes (e.g., paclitaxel) and vinca alkaloids (e.g., vinblastine). They are primarily used as anticancer agents because they interfere with the division of cancer cells.
2. Microtubule destabilizers: These drugs inhibit the formation and stability of microtubules by binding to tubulin, promoting its disassembly. Examples include colchicine, vinca alkaloids (e.g., vinorelbine), and combretastatins. They can also be used as anticancer agents because they disrupt the mitotic spindle during cell division, leading to cancer cell death.

Tubulin modulators have various other effects on cells beyond their impact on microtubules, such as interfering with intracellular transport and signaling pathways. These diverse actions contribute to their therapeutic potential in treating diseases like cancer, but they can also lead to side effects that limit their clinical use.

Colchicine is a medication that is primarily used to treat gout, a type of arthritis characterized by sudden and severe attacks of pain, swelling, redness, and tenderness in the joints. It works by reducing inflammation and preventing the formation of uric acid crystals that cause gout symptoms.

Colchicine is also used to treat familial Mediterranean fever (FMF), a genetic disorder that causes recurrent fevers and inflammation in the abdomen, chest, and joints. It can help prevent FMF attacks and reduce their severity.

The medication comes in the form of tablets or capsules that are taken by mouth. Common side effects of colchicine include diarrhea, nausea, vomiting, and abdominal pain. In rare cases, it can cause more serious side effects such as muscle weakness, nerve damage, and bone marrow suppression.

It is important to follow the dosage instructions carefully when taking colchicine, as taking too much of the medication can be toxic. People with certain health conditions, such as liver or kidney disease, may need to take a lower dose or avoid using colchicine altogether.

Tubulin is a type of protein that forms microtubules, which are hollow cylindrical structures involved in the cell's cytoskeleton. These structures play important roles in various cellular processes, including maintaining cell shape, cell division, and intracellular transport. There are two main types of tubulin proteins: alpha-tubulin and beta-tubulin. They polymerize to form heterodimers, which then assemble into microtubules. The assembly and disassembly of microtubules are dynamic processes that are regulated by various factors, including GTP hydrolysis, motor proteins, and microtubule-associated proteins (MAPs). Tubulin is an essential component of the eukaryotic cell and has been a target for anti-cancer drugs such as taxanes and vinca alkaloids.

Demecolcine is a medication that belongs to the class of drugs called anticholinergics. It is derived from the plant alkaloid colchicine and has been used in medical research for its ability to arrest cells in metaphase, a specific stage of cell division. This property makes demecolcine useful in various laboratory procedures such as chromosome analysis and the production of cultured cell lines.

In clinical settings, demecolcine is not commonly used due to its narrow therapeutic index and potential for toxicity. However, it has been used off-label in some cases to treat conditions associated with uncontrolled cell division, such as certain types of cancer. Its use in these situations is typically reserved for when other treatments have failed or are not well tolerated.

It's important to note that demecolcine should only be administered under the close supervision of a healthcare professional and its use is generally avoided in pregnant women due to the risk of fetal harm.

Cytochalasin D is a toxin produced by certain fungi that inhibits the polymerization and elongation of actin filaments, which are crucial components of the cytoskeleton in cells. This results in the disruption of various cellular processes such as cell division, motility, and shape maintenance. It is often used in research to study actin dynamics and cellular structure.

Mitosis is a type of cell division in which the genetic material of a single cell, called the mother cell, is equally distributed into two identical daughter cells. It's a fundamental process that occurs in multicellular organisms for growth, maintenance, and repair, as well as in unicellular organisms for reproduction.

The process of mitosis can be broken down into several stages: prophase, prometaphase, metaphase, anaphase, and telophase. During prophase, the chromosomes condense and become visible, and the nuclear envelope breaks down. In prometaphase, the nuclear membrane is completely disassembled, and the mitotic spindle fibers attach to the chromosomes at their centromeres.

During metaphase, the chromosomes align at the metaphase plate, an imaginary line equidistant from the two spindle poles. In anaphase, sister chromatids are pulled apart by the spindle fibers and move toward opposite poles of the cell. Finally, in telophase, new nuclear envelopes form around each set of chromosomes, and the chromosomes decondense and become less visible.

Mitosis is followed by cytokinesis, a process that divides the cytoplasm of the mother cell into two separate daughter cells. The result of mitosis and cytokinesis is two genetically identical cells, each with the same number and kind of chromosomes as the original parent cell.

The spindle apparatus is a microtubule-based structure that plays a crucial role in the process of cell division, specifically during mitosis and meiosis. It consists of three main components:

1. The spindle poles: These are organized structures composed of microtubules and associated proteins that serve as the anchoring points for the spindle fibers. In animal cells, these poles are typically formed by centrosomes, while in plant cells, they form around nucleation sites called microtubule-organizing centers (MTOCs).
2. The spindle fibers: These are dynamic arrays of microtubules that extend between the two spindle poles. They can be categorized into three types: kinetochore fibers, which connect to the kinetochores on chromosomes; astral fibers, which radiate from the spindle poles and help position the spindle within the cell; and interpolar fibers, which lie between the two spindle poles and contribute to their separation during anaphase.
3. Regulatory proteins: Various motor proteins, such as dynein and kinesin, as well as non-motor proteins like tubulin and septins, are involved in the assembly, maintenance, and dynamics of the spindle apparatus. These proteins help to generate forces that move chromosomes, position the spindle, and ultimately segregate genetic material between two daughter cells during cell division.

The spindle apparatus is essential for ensuring accurate chromosome separation and maintaining genomic stability during cell division. Dysfunction of the spindle apparatus can lead to various abnormalities, including aneuploidy (abnormal number of chromosomes) and chromosomal instability, which have been implicated in several diseases, such as cancer and developmental disorders.

Paclitaxel is a chemotherapeutic agent derived from the bark of the Pacific yew tree (Taxus brevifolia). It is an antimicrotubule agent that promotes the assembly and stabilization of microtubules, thereby interfering with the normal dynamic reorganization of the microtubule network that is essential for cell division.

Paclitaxel is used in the treatment of various types of cancer including ovarian, breast, lung, and pancreatic cancers. It works by inhibiting the disassembly of microtubules, which prevents the separation of chromosomes during mitosis, leading to cell cycle arrest and apoptosis (programmed cell death).

Common side effects of paclitaxel include neutropenia (low white blood cell count), anemia (low red blood cell count), alopecia (hair loss), peripheral neuropathy (nerve damage causing numbness or tingling in the hands and feet), myalgias (muscle pain), arthralgias (joint pain), and hypersensitivity reactions.

Benzimidazoles are a class of heterocyclic compounds containing a benzene fused to a imidazole ring. They have a wide range of pharmacological activities and are used in the treatment of various diseases. Some of the benzimidazoles are used as antiparasitics, such as albendazole and mebendazole, which are effective against a variety of worm infestations. Other benzimidazoles have antifungal properties, such as thiabendazole and fuberidazole, and are used to treat fungal infections. Additionally, some benzimidazoles have been found to have anti-cancer properties and are being investigated for their potential use in cancer therapy.

Brefeldin A is a fungal metabolite that inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus. It disrupts the organization of the Golgi complex and causes the redistribution of its proteins to the endoplasmic reticulum. Brefeldin A is used in research to study various cellular processes, including vesicular transport, protein trafficking, and signal transduction pathways. In medicine, it has been studied as a potential anticancer agent due to its ability to induce apoptosis (programmed cell death) in certain types of cancer cells. However, its clinical use is not yet approved.

The cytoskeleton is a complex network of various protein filaments that provides structural support, shape, and stability to the cell. It plays a crucial role in maintaining cellular integrity, intracellular organization, and enabling cell movement. The cytoskeleton is composed of three major types of protein fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. These filaments work together to provide mechanical support, participate in cell division, intracellular transport, and help maintain the cell's architecture. The dynamic nature of the cytoskeleton allows cells to adapt to changing environmental conditions and respond to various stimuli.

Cytochalasins are a group of fungal metabolites that have the ability to disrupt the organization and dynamics of the cytoskeleton in eukaryotic cells. They bind to the barbed end of actin filaments, preventing the addition or loss of actin subunits, which results in the inhibition of actin polymerization and depolymerization. This can lead to changes in cell shape, motility, and cytokinesis (the process by which a cell divides into two daughter cells).

There are several different types of cytochalasins, including cytochalasin A, B, C, D, and E, among others. Each type has slightly different effects on the actin cytoskeleton and may also have other cellular targets. Cytochalasins have been widely used in research to study the role of the actin cytoskeleton in various cellular processes.

In addition to their use in research, cytochalasins have also been investigated for their potential therapeutic applications. For example, some studies have suggested that cytochalasins may have anti-cancer properties by inhibiting the proliferation and migration of cancer cells. However, more research is needed before these compounds can be developed into effective treatments for human diseases.

The Golgi apparatus, also known as the Golgi complex or simply the Golgi, is a membrane-bound organelle found in the cytoplasm of most eukaryotic cells. It plays a crucial role in the processing, sorting, and packaging of proteins and lipids for transport to their final destinations within the cell or for secretion outside the cell.

The Golgi apparatus consists of a series of flattened, disc-shaped sacs called cisternae, which are stacked together in a parallel arrangement. These stacks are often interconnected by tubular structures called tubules or vesicles. The Golgi apparatus has two main faces: the cis face, which is closest to the endoplasmic reticulum (ER) and receives proteins and lipids directly from the ER; and the trans face, which is responsible for sorting and dispatching these molecules to their final destinations.

The Golgi apparatus performs several essential functions in the cell:

1. Protein processing: After proteins are synthesized in the ER, they are transported to the cis face of the Golgi apparatus, where they undergo various post-translational modifications, such as glycosylation (the addition of sugar molecules) and sulfation. These modifications help determine the protein's final structure, function, and targeting.
2. Lipid modification: The Golgi apparatus also modifies lipids by adding or removing different functional groups, which can influence their properties and localization within the cell.
3. Protein sorting and packaging: Once proteins and lipids have been processed, they are sorted and packaged into vesicles at the trans face of the Golgi apparatus. These vesicles then transport their cargo to various destinations, such as lysosomes, plasma membrane, or extracellular space.
4. Intracellular transport: The Golgi apparatus serves as a central hub for intracellular trafficking, coordinating the movement of vesicles and other transport carriers between different organelles and cellular compartments.
5. Cell-cell communication: Some proteins that are processed and packaged in the Golgi apparatus are destined for secretion, playing crucial roles in cell-cell communication and maintaining tissue homeostasis.

In summary, the Golgi apparatus is a vital organelle involved in various cellular processes, including post-translational modification, sorting, packaging, and intracellular transport of proteins and lipids. Its proper functioning is essential for maintaining cellular homeostasis and overall organismal health.

Salamandridae is not a medical term, but a taxonomic designation in the field of biology. It refers to a family of amphibians commonly known as newts and salamanders. These creatures are characterized by their slender bodies, moist skin, and four legs. Some species have the ability to regenerate lost body parts, including limbs, spinal cord, heart, and more.

If you're looking for a medical term, please provide more context or check if you may have made a typo in your question.

Medical Definition:
Microtubule-associated proteins (MAPs) are a diverse group of proteins that bind to microtubules, which are key components of the cytoskeleton in eukaryotic cells. MAPs play crucial roles in regulating microtubule dynamics and stability, as well as in mediating interactions between microtubules and other cellular structures. They can be classified into several categories based on their functions, including:

1. Microtubule stabilizers: These MAPs promote the assembly of microtubules and protect them from disassembly by enhancing their stability. Examples include tau proteins and MAP2.
2. Microtubule dynamics regulators: These MAPs modulate the rate of microtubule polymerization and depolymerization, allowing for dynamic reorganization of the cytoskeleton during cell division and other processes. Examples include stathmin and XMAP215.
3. Microtubule motor proteins: These MAPs use energy from ATP hydrolysis to move along microtubules, transporting various cargoes within the cell. Examples include kinesin and dynein.
4. Adapter proteins: These MAPs facilitate interactions between microtubules and other cellular structures, such as membranes, organelles, or signaling molecules. Examples include MAP4 and CLASPs.

Dysregulation of MAPs has been implicated in several diseases, including neurodegenerative disorders like Alzheimer's disease (where tau proteins form abnormal aggregates called neurofibrillary tangles) and cancer (where altered microtubule dynamics can contribute to uncontrolled cell division).

Metaphase is a phase in the cell division process (mitosis or meiosis) where the chromosomes align in the middle of the cell, also known as the metaphase plate or equatorial plane. During this stage, each chromosome consists of two sister chromatids attached to each other by a protein complex called the centromere. The spindle fibers from opposite poles of the cell attach to the centromeres of each chromosome, and through a process called congression, they align the chromosomes in the middle of the cell. This alignment allows for accurate segregation of genetic material during the subsequent anaphase stage.

Kinetochores are specialized protein structures that form on the centromere region of a chromosome. They play a crucial role in the process of cell division, specifically during mitosis and meiosis. The primary function of kinetochores is to connect the chromosomes to the microtubules of the spindle apparatus, which is responsible for separating the sister chromatids during cell division. Through this connection, kinetochores facilitate the movement of chromosomes towards opposite poles of the cell during anaphase, ensuring equal distribution of genetic material to each resulting daughter cell.

The cell cycle is a series of events that take place in a cell leading to its division and duplication. It consists of four main phases: G1 phase, S phase, G2 phase, and M phase.

During the G1 phase, the cell grows in size and synthesizes mRNA and proteins in preparation for DNA replication. In the S phase, the cell's DNA is copied, resulting in two complete sets of chromosomes. During the G2 phase, the cell continues to grow and produces more proteins and organelles necessary for cell division.

The M phase is the final stage of the cell cycle and consists of mitosis (nuclear division) and cytokinesis (cytoplasmic division). Mitosis results in two genetically identical daughter nuclei, while cytokinesis divides the cytoplasm and creates two separate daughter cells.

The cell cycle is regulated by various checkpoints that ensure the proper completion of each phase before progressing to the next. These checkpoints help prevent errors in DNA replication and division, which can lead to mutations and cancer.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

The Mad2 (Mitotic Arrest Deficient 2) proteins are a part of the spindle assembly checkpoint (SAC), which is a crucial surveillance mechanism that ensures accurate chromosome segregation during cell division. The primary function of Mad2 proteins is to prevent the onset of anaphase until all chromosomes have achieved proper attachment and tension on the mitotic spindle.

Mad2 proteins exist in two major conformational states: open (O-Mad2) and closed (C-Mad2). The transition between these two forms plays a critical role in the regulation of the SAC. In response to unattached kinetochores, Mad2 proteins bind to and inhibit the anaphase-promoting complex/cyclosome (APC/C), thereby preventing premature chromosome separation.

There are two main isoforms of Mad2 in humans: Mad2L1 (Mad2A) and Mad2L2 (Mad2B). While both isoforms share similar functions, they exhibit distinct biochemical properties and interact with other SAC components differently. Dysregulation of the Mad2 proteins has been implicated in various diseases, including cancer and neurological disorders.

A centrosome is a microtubule-organizing center found in animal cells. It consists of two barrel-shaped structures called centrioles, which are surrounded by a protein matrix called the pericentriolar material. The centrosome plays a crucial role in organizing the microtubules that form the cell's cytoskeleton and help to shape the cell, as well as in separating the chromosomes during cell division.

During mitosis, the two centrioles of the centrosome separate and move to opposite poles of the cell, where they nucleate the formation of the spindle fibers that pull the chromosomes apart. The centrosome also helps to ensure that the genetic material is equally distributed between the two resulting daughter cells.

It's worth noting that while centrioles are present in many animal cells, they are not always present in all types of cells. For example, plant cells do not have centrioles or centrosomes, and instead rely on other mechanisms to organize their microtubules.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

Prometaphase is a stage in the cell division process called mitosis, where the nuclear membrane has broken down and the chromosomes are now moved into the center of the cell, also known as the metaphase plate. This movement is facilitated by the mitotic spindle, which attaches to specialized structures on the chromosomes called kinetochores. The prometaphase stage follows prophase and precedes metaphase in the mitosis process. It's characterized by the beginning of chromosome separation and the reorganization of the cell for the upcoming division into two daughter cells.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

Actin is a type of protein that forms part of the contractile apparatus in muscle cells, and is also found in various other cell types. It is a globular protein that polymerizes to form long filaments, which are important for many cellular processes such as cell division, cell motility, and the maintenance of cell shape. In muscle cells, actin filaments interact with another type of protein called myosin to enable muscle contraction. Actins can be further divided into different subtypes, including alpha-actin, beta-actin, and gamma-actin, which have distinct functions and expression patterns in the body.

Aneugens are chemical or physical agents that can cause aneuploidy, which is a condition characterized by an abnormal number of chromosomes in the cells of an organism. Aneuploidy can result from errors in cell division, such as nondisjunction, during which chromosome pairs fail to separate properly during mitosis or meiosis.

Exposure to aneugens can increase the risk of aneuploidy by interfering with the normal functioning of the mitotic spindle, the cellular structure responsible for separating chromosomes during cell division. Aneugens can cause errors in chromosome segregation by disrupting the attachment of chromosomes to the spindle or by affecting the dynamics of spindle microtubules.

Examples of aneugens include certain chemotherapeutic drugs, such as colchicine and vincristine, which are used in cancer treatment but can also cause fetal abnormalities if taken during pregnancy. Other aneugens include environmental toxins, such as pesticides and industrial chemicals, which have been linked to increased risks of birth defects and reproductive problems.

Cytochalasin B is a fungal metabolite that inhibits actin polymerization in cells, which can disrupt the cytoskeleton and affect various cellular processes such as cell division and motility. It is often used in research to study actin dynamics and cell shape.

Fluorescence microscopy is a type of microscopy that uses fluorescent dyes or proteins to highlight and visualize specific components within a sample. In this technique, the sample is illuminated with high-energy light, typically ultraviolet (UV) or blue light, which excites the fluorescent molecules causing them to emit lower-energy, longer-wavelength light, usually visible light in the form of various colors. This emitted light is then collected by the microscope and detected to produce an image.

Fluorescence microscopy has several advantages over traditional brightfield microscopy, including the ability to visualize specific structures or molecules within a complex sample, increased sensitivity, and the potential for quantitative analysis. It is widely used in various fields of biology and medicine, such as cell biology, neuroscience, and pathology, to study the structure, function, and interactions of cells and proteins.

There are several types of fluorescence microscopy techniques, including widefield fluorescence microscopy, confocal microscopy, two-photon microscopy, and total internal reflection fluorescence (TIRF) microscopy, each with its own strengths and limitations. These techniques can provide valuable insights into the behavior of cells and proteins in health and disease.

Polyploidy is a condition in which a cell or an organism has more than two sets of chromosomes, unlike the typical diploid state where there are only two sets (one from each parent). Polyploidy can occur through various mechanisms such as errors during cell division, fusion of egg and sperm cells that have an abnormal number of chromosomes, or through the reproduction process in plants.

Polyploidy is common in the plant kingdom, where it often leads to larger size, increased biomass, and sometimes hybrid vigor. However, in animals, polyploidy is less common and usually occurs in only certain types of cells or tissues, as most animals require a specific number of chromosomes for normal development and reproduction. In humans, polyploidy is typically not compatible with life and can lead to developmental abnormalities and miscarriage.

Alkaloids are a type of naturally occurring organic compounds that contain mostly basic nitrogen atoms. They are often found in plants, and are known for their complex ring structures and diverse pharmacological activities. Many alkaloids have been used in medicine for their analgesic, anti-inflammatory, and therapeutic properties. Examples of alkaloids include morphine, quinine, nicotine, and caffeine.

The G2 phase, also known as the "gap 2 phase," is a stage in the cell cycle that occurs after DNA replication (S phase) and before cell division (mitosis). During this phase, the cell prepares for mitosis by completing the synthesis of proteins and organelles needed for chromosome separation. The cell also checks for any errors or damage to the DNA before entering mitosis. This phase is a critical point in the cell cycle where proper regulation ensures the faithful transmission of genetic information from one generation of cells to the next. If significant DNA damage is detected during G2, the cell may undergo programmed cell death (apoptosis) instead of dividing.

Carbamates are a group of organic compounds that contain the carbamate functional group, which is a carbon atom double-bonded to oxygen and single-bonded to a nitrogen atom (> N-C=O). In the context of pharmaceuticals and agriculture, carbamates are a class of drugs and pesticides that have carbamate as their core structure.

Carbamate insecticides work by inhibiting the enzyme acetylcholinesterase, which is responsible for breaking down the neurotransmitter acetylcholine in the synapses of the nervous system. When this enzyme is inhibited, acetylcholine accumulates in the synaptic cleft, leading to overstimulation of the nervous system and ultimately causing paralysis and death in insects.

Carbamate drugs are used for a variety of medical indications, including as anticonvulsants, muscle relaxants, and psychotropic medications. They work by modulating various neurotransmitter systems in the brain, such as GABA, glutamate, and dopamine. Carbamates can also be used as anti- parasitic agents, such as ivermectin, which is effective against a range of parasites including nematodes, arthropods, and some protozoa.

It's important to note that carbamate pesticides can be toxic to non-target organisms, including humans, if not used properly. Therefore, it's essential to follow all safety guidelines when handling or using these products.

Anaphase is a stage in the cell division process called mitosis, where sister chromatids (the two copies of each chromosome formed during DNA replication) separate at the centromeres and move toward opposite poles of the cell. This separation is facilitated by the attachment of microtubules from the spindle apparatus to the kinetochores, protein structures located on the centromeres of each sister chromatid. Anaphase is followed by telophase, during which the nuclear membrane reforms around each set of separated chromosomes, and cytokinesis, the division of the cytoplasm to form two separate daughter cells.

Podophyllotoxin is a pharmaceutical agent derived from the podophyllum plant. It is an antimitotic compound that inhibits microtubule assembly, leading to cell cycle arrest and apoptosis. It is primarily used in topical form as a treatment for genital warts, caused by certain types of human papillomavirus (HPV). Podophyllotoxin works by interfering with the growth of the wart cells, eventually causing them to die off.

It's important to note that podophyllotoxin is a potent cytotoxic agent and should only be used under the supervision of a healthcare professional. It should not be taken orally or applied to open wounds, and it should be kept out of reach of children.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Antineoplastic agents are a class of drugs used to treat malignant neoplasms or cancer. These agents work by inhibiting the growth and proliferation of cancer cells, either by killing them or preventing their division and replication. Antineoplastic agents can be classified based on their mechanism of action, such as alkylating agents, antimetabolites, topoisomerase inhibitors, mitotic inhibitors, and targeted therapy agents.

Alkylating agents work by adding alkyl groups to DNA, which can cause cross-linking of DNA strands and ultimately lead to cell death. Antimetabolites interfere with the metabolic processes necessary for DNA synthesis and replication, while topoisomerase inhibitors prevent the relaxation of supercoiled DNA during replication. Mitotic inhibitors disrupt the normal functioning of the mitotic spindle, which is essential for cell division. Targeted therapy agents are designed to target specific molecular abnormalities in cancer cells, such as mutated oncogenes or dysregulated signaling pathways.

It's important to note that antineoplastic agents can also affect normal cells and tissues, leading to various side effects such as nausea, vomiting, hair loss, and myelosuppression (suppression of bone marrow function). Therefore, the use of these drugs requires careful monitoring and management of their potential adverse effects.

Video microscopy is a medical technique that involves the use of a microscope equipped with a video camera to capture and display real-time images of specimens on a monitor. This allows for the observation and documentation of dynamic processes, such as cell movement or chemical reactions, at a level of detail that would be difficult or impossible to achieve with the naked eye. Video microscopy can also be used in conjunction with image analysis software to measure various parameters, such as size, shape, and motion, of individual cells or structures within the specimen.

There are several types of video microscopy, including brightfield, darkfield, phase contrast, fluorescence, and differential interference contrast (DIC) microscopy. Each type uses different optical techniques to enhance contrast and reveal specific features of the specimen. For example, fluorescence microscopy uses fluorescent dyes or proteins to label specific structures within the specimen, allowing them to be visualized against a dark background.

Video microscopy is used in various fields of medicine, including pathology, microbiology, and neuroscience. It can help researchers and clinicians diagnose diseases, study disease mechanisms, develop new therapies, and understand fundamental biological processes at the cellular and molecular level.

Cyclin B1 is a type of cyclin protein that regulates the cell cycle, specifically the transition from G2 phase to mitosis (M phase) in eukaryotic cells. It forms a complex with and acts as a regulatory subunit of cyclin-dependent kinase 1 (CDK1), also known as CDC2. During the G2 phase, Cyclin B1 levels accumulate and upon reaching a certain threshold, it binds to CDK1 to form the maturation promoting factor (MPF). The activation of MPF triggers the onset of mitosis by promoting nuclear envelope breakdown, chromosome condensation, and other events required for cell division. After the completion of mitosis, Cyclin B1 is degraded by the ubiquitin-proteasome system, allowing the cell cycle to progress back into G1 phase.

Vinblastine is an alkaloid derived from the Madagascar periwinkle plant (Catharanthus roseus) and is primarily used in cancer chemotherapy. It is classified as a vinca alkaloid, along with vincristine, vinorelbine, and others.

Medically, vinblastine is an antimicrotubule agent that binds to tubulin, a protein involved in the formation of microtubules during cell division. By binding to tubulin, vinblastine prevents the assembly of microtubules, which are essential for mitosis (cell division). This leads to the inhibition of cell division and ultimately results in the death of rapidly dividing cells, such as cancer cells.

Vinblastine is used to treat various types of cancers, including Hodgkin's lymphoma, non-Hodgkin's lymphoma, testicular cancer, breast cancer, and others. It is often administered intravenously in a healthcare setting and may be given as part of a combination chemotherapy regimen with other anticancer drugs.

As with any medication, vinblastine can have side effects, including bone marrow suppression (leading to an increased risk of infection, anemia, and bleeding), neurotoxicity (resulting in peripheral neuropathy, constipation, and jaw pain), nausea, vomiting, hair loss, and mouth sores. Regular monitoring by a healthcare professional is necessary during vinblastine treatment to manage side effects and ensure the safe and effective use of this medication.

The actin cytoskeleton is a complex, dynamic network of filamentous (threadlike) proteins that provides structural support and shape to cells, allows for cell movement and division, and plays a role in intracellular transport. Actin filaments are composed of actin monomers that polymerize to form long, thin fibers. These filaments can be organized into different structures, such as stress fibers, which provide tension and support, or lamellipodia and filopodia, which are involved in cell motility. The actin cytoskeleton is constantly remodeling in response to various intracellular and extracellular signals, allowing for changes in cell shape and behavior.

Dyneins are a type of motor protein that play an essential role in the movement of cellular components and structures within eukaryotic cells. They are responsible for generating force and motion along microtubules, which are critical components of the cell's cytoskeleton. Dyneins are involved in various cellular processes, including intracellular transport, organelle positioning, and cell division.

There are several types of dyneins, but the two main categories are cytoplasmic dyneins and axonemal dyneins. Cytoplasmic dyneins are responsible for moving various cargoes, such as vesicles, organelles, and mRNA complexes, toward the minus-end of microtubules, which is usually located near the cell center. Axonemal dyneins, on the other hand, are found in cilia and flagella and are responsible for their movement by sliding adjacent microtubules past each other.

Dyneins consist of multiple subunits, including heavy chains, intermediate chains, light-intermediate chains, and light chains. The heavy chains contain the motor domain that binds to microtubules and hydrolyzes ATP to generate force. Dysfunction in dynein proteins has been linked to various human diseases, such as neurodevelopmental disorders, ciliopathies, and cancer.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

Monensin is a type of antibiotic known as a polyether ionophore, which is used primarily in the veterinary field for the prevention and treatment of coccidiosis, a parasitic disease caused by protozoa in animals. It works by selectively increasing the permeability of cell membranes to sodium ions, leading to disruption of the ion balance within the cells of the parasite and ultimately causing its death.

In addition to its use as an animal antibiotic, monensin has also been studied for its potential effects on human health, including its ability to lower cholesterol levels and improve insulin sensitivity in type 2 diabetes. However, it is not currently approved for use in humans due to concerns about toxicity and potential side effects.

Cyclin B is a type of cyclin protein that regulates the cell cycle, specifically the transition from G2 phase to mitosis (M phase) in eukaryotic cells. Cyclin B binds and activates cyclin-dependent kinase 1 (CDK1), forming the complex known as M-phase promoting factor (MPF). This complex triggers the events leading to cell division, such as chromosome condensation, nuclear envelope breakdown, and spindle formation. The levels of cyclin B increase during the G2 phase and are degraded by the anaphase-promoting complex/cyclosome (APC/C) at the onset of anaphase, allowing the cell cycle to progress into the next phase.

Cell cycle proteins are a group of regulatory proteins that control the progression of the cell cycle, which is the series of events that take place in a eukaryotic cell leading to its division and duplication. These proteins can be classified into several categories based on their functions during different stages of the cell cycle.

The major groups of cell cycle proteins include:

1. Cyclin-dependent kinases (CDKs): CDKs are serine/threonine protein kinases that regulate key transitions in the cell cycle. They require binding to a regulatory subunit called cyclin to become active. Different CDK-cyclin complexes are activated at different stages of the cell cycle.
2. Cyclins: Cyclins are a family of regulatory proteins that bind and activate CDKs. Their levels fluctuate throughout the cell cycle, with specific cyclins expressed during particular phases. For example, cyclin D is important for the G1 to S phase transition, while cyclin B is required for the G2 to M phase transition.
3. CDK inhibitors (CKIs): CKIs are regulatory proteins that bind to and inhibit CDKs, thereby preventing their activation. CKIs can be divided into two main families: the INK4 family and the Cip/Kip family. INK4 family members specifically inhibit CDK4 and CDK6, while Cip/Kip family members inhibit a broader range of CDKs.
4. Anaphase-promoting complex/cyclosome (APC/C): APC/C is an E3 ubiquitin ligase that targets specific proteins for degradation by the 26S proteasome. During the cell cycle, APC/C regulates the metaphase to anaphase transition and the exit from mitosis by targeting securin and cyclin B for degradation.
5. Other regulatory proteins: Several other proteins play crucial roles in regulating the cell cycle, such as p53, a transcription factor that responds to DNA damage and arrests the cell cycle, and the polo-like kinases (PLKs), which are involved in various aspects of mitosis.

Overall, cell cycle proteins work together to ensure the proper progression of the cell cycle, maintain genomic stability, and prevent uncontrolled cell growth, which can lead to cancer.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Nucleic acid synthesis inhibitors are a class of antimicrobial, antiviral, or antitumor agents that block the synthesis of nucleic acids (DNA or RNA) by interfering with enzymes involved in their replication. These drugs can target various stages of nucleic acid synthesis, including DNA transcription, replication, and repair, as well as RNA transcription and processing.

Examples of nucleic acid synthesis inhibitors include:

1. Antibiotics like quinolones (e.g., ciprofloxacin), rifamycins (e.g., rifampin), and trimethoprim, which target bacterial DNA gyrase, RNA polymerase, or dihydrofolate reductase, respectively.
2. Antiviral drugs like reverse transcriptase inhibitors (e.g., zidovudine, lamivudine) and integrase strand transfer inhibitors (e.g., raltegravir), which target HIV replication by interfering with viral enzymes required for DNA synthesis.
3. Antitumor drugs like antimetabolites (e.g., methotrexate, 5-fluorouracil) and topoisomerase inhibitors (e.g., etoposide, doxorubicin), which interfere with DNA replication and repair in cancer cells.

These drugs have been widely used for treating various bacterial and viral infections, as well as cancers, due to their ability to selectively inhibit the growth of target cells without affecting normal cellular functions significantly. However, they may also cause side effects related to their mechanism of action or off-target effects on non-target cells.

Telophase is a phase in the cell division process (mitosis or meiosis) where the chromosomes reach their most condensed form and move to the poles of the cell. The nuclear membrane begins to reform around each set of chromosomes, and the spindle fibers that were used to separate the chromosomes break down. This phase is followed by cytokinesis, where the cytoplasm of the cell divides, resulting in two separate daughter cells. In telophase I of meiosis, crossing over between homologous chromosomes has already occurred during prophase I and sister chromatids remain together until anaphase II.

CDC2 protein kinase, also known as cell division cycle 2 or CDK1, is a type of enzyme that plays a crucial role in the regulation of the cell cycle. The cell cycle is the series of events that cells undergo as they grow, replicate their DNA, and divide into two daughter cells.

CDC2 protein kinase is a member of the cyclin-dependent kinase (CDK) family, which are serine/threonine protein kinases that are activated by binding to regulatory subunits called cyclins. CDC2 protein kinase is primarily associated with the regulation of the G2 phase and the entry into mitosis, the stage of the cell cycle where nuclear and cytoplasmic division occur.

CDC2 protein kinase functions by phosphorylating various target proteins, which alters their activity and contributes to the coordination of the different events that occur during the cell cycle. The activity of CDC2 protein kinase is tightly regulated through a variety of mechanisms, including phosphorylation and dephosphorylation, as well as the binding and destruction of cyclin subunits.

Dysregulation of CDC2 protein kinase has been implicated in various human diseases, including cancer, where uncontrolled cell division can lead to the formation of tumors. Therefore, understanding the regulation and function of CDC2 protein kinase is an important area of research in molecular biology and medicine.

Cyclopentanes are a class of hydrocarbons that contain a cycloalkane ring of five carbon atoms. The chemical formula for cyclopentane is C5H10. It is a volatile, flammable liquid that is used as a solvent and in the production of polymers. Cyclopentanes are also found naturally in petroleum and coal tar.

Cyclopentanes have a unique structure in which the carbon atoms are arranged in a pentagonal shape, with each carbon atom bonded to two other carbon atoms and one or two hydrogen atoms. This structure gives cyclopentane its characteristic "bowl-shaped" geometry, which allows it to undergo various chemical reactions, such as ring-opening reactions, that can lead to the formation of other chemicals.

Cyclopentanes have a variety of industrial and commercial applications. For example, they are used in the production of plastics, resins, and synthetic rubbers. They also have potential uses in the development of new drugs and medical technologies, as their unique structure and reactivity make them useful building blocks for the synthesis of complex molecules.

Thiazolidinediones (TZDs), also known as glitazones, are a class of drugs used in the management of type 2 diabetes. They function as insulin sensitizers, improving the body's response to insulin, particularly in muscle, fat, and liver tissues. This helps to lower blood sugar levels.

Examples of TZDs include pioglitazone (Actos) and rosiglitazone (Avandia). While effective at controlling blood sugar, these medications have been associated with serious side effects such as an increased risk of heart failure, fractures, and bladder cancer. Therefore, their use is typically reserved for patients who cannot achieve good glucose control with other medications and who do not have a history of heart failure or bladder cancer.

It's important to note that the medical community continues to evaluate and re-evaluate the risks and benefits of thiazolidinediones, and their use may change based on new research findings. As always, patients should consult with their healthcare providers for personalized medical advice regarding their diabetes treatment plan.

Centrioles are small, cylindrical structures found in the centrosome of animal cells. They play a crucial role in organizing the microtubules that make up the cell's cytoskeleton and are also involved in the formation of the spindle apparatus during cell division. A typical centriole is made up of nine sets of triplet microtubules arranged in a ring-like fashion around a central hub or core.

Centrioles have two main functions:

1. Microtubule Organization: Centrioles serve as the primary site for microtubule nucleation and organization within the cell. They help to form the mitotic spindle during cell division, which is responsible for separating replicated chromosomes into two identical sets that are distributed equally between the two daughter cells.

2. Formation of Cilia and Flagella: In specialized cells, centrioles can also function as basal bodies for the formation of cilia and flagella. These hair-like structures protrude from the cell surface and play a role in cell movement and the movement of extracellular fluids over the cell surface.

It is important to note that plants and fungi do not have centrioles, and their cells use alternative mechanisms for microtubule organization and cell division.

Protein transport, in the context of cellular biology, refers to the process by which proteins are actively moved from one location to another within or between cells. This is a crucial mechanism for maintaining proper cell function and regulation.

Intracellular protein transport involves the movement of proteins within a single cell. Proteins can be transported across membranes (such as the nuclear envelope, endoplasmic reticulum, Golgi apparatus, or plasma membrane) via specialized transport systems like vesicles and transport channels.

Intercellular protein transport refers to the movement of proteins from one cell to another, often facilitated by exocytosis (release of proteins in vesicles) and endocytosis (uptake of extracellular substances via membrane-bound vesicles). This is essential for communication between cells, immune response, and other physiological processes.

It's important to note that any disruption in protein transport can lead to various diseases, including neurological disorders, cancer, and metabolic conditions.

Endocytosis is the process by which cells absorb substances from their external environment by engulfing them in membrane-bound structures, resulting in the formation of intracellular vesicles. This mechanism allows cells to take up large molecules, such as proteins and lipids, as well as small particles, like bacteria and viruses. There are two main types of endocytosis: phagocytosis (cell eating) and pinocytosis (cell drinking). Phagocytosis involves the engulfment of solid particles, while pinocytosis deals with the uptake of fluids and dissolved substances. Other specialized forms of endocytosis include receptor-mediated endocytosis and caveolae-mediated endocytosis, which allow for the specific internalization of molecules through the interaction with cell surface receptors.

As nocodazole affects the cytoskeleton, it is often used in cell biology experiments as a control: for example, some dominant ... Cells treated with nocodazole arrest with a G2- or M-phase DNA content when analyzed by flow cytometry. Microscopy of ... Nocodazole is an antineoplastic agent which exerts its effect in cells by interfering with the polymerization of microtubules. ... Nocodazole has been shown to decrease the oncogenic potential of cancer cells via another microtubules-independent mechanisms. ...
Nocodazole is a chemical agent that interferes with the polymerization of microtubules. Cells treated with nocodazole arrest ... Taxol works in the opposite way of nocodazole, instead stabilizing the microtubule polymer and preventing it from disassembly. ... Xu K, Schwarz PM, Ludueña RF (Feb 2002). "Interaction of nocodazole with tubulin isotypes". Drug Development Research. 55 (2): ... Kuhn M (March 1998). "The microtubule depolymerizing drugs nocodazole and colchicine inhibit the uptake of Listeria ...
Oxfendazole Nocodazole Praziquantel Plumb DC (2005). Plumb's veterinary drug handbook (Fifth ed.). Stockholm, Wis.: PhrmaVet. ...
Fenbendazole Oxfendazole Nocodazole "Farnam Pet Press Release. TRUSTED D-WORM offers product for tapeworm management". Farnam ...
Experiments using nocodazole and taxol support this observation. Taxol, which stabilized microtubules, forced a significant ... Moreover, disruption of microtubule polymerization with nocodazole, and of actin polymerization with cytochalisin B, shows the ... Moreover, embryos treated with nocodazole, which sequesters tubulin dimers and promotes microtubule depolymerization, similarly ...
Cells will remain arrested until the nocodazole has been washed out. Nocodazole does not appear to disrupt interphase ... "Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor Nocodazole: Nocodazole ... Nocodazole is a rapidly-reversible inhibitor of microtubule polymerization that can be used to arrest cells before Anaphase at ... Because microtubules are vital in other cellular functions, sustained use of nocodazole can result in disruption of those ...
However, nocodazole also blocks formation of aggresomes, complicating interpretation of these observations. Partial inhibition ... Inhibition of microtubule polymerization with nocodazole blocks formation of the purinosome macrobodies, and reduces the flux ...
Vasquez RJ, Howell B, Yvon AM, Wadsworth P, Cassimeris L (June 1997). "Nanomolar concentrations of nocodazole alter microtubule ...
Vinorelbine, Nocodazole, vincristine, and colchicine have the opposite effect, blocking the polymerization of tubulin into ... microtubule dynamics and lamellipodium formation revealed by direct imaging of microtubules in cells treated with nocodazole or ...
2005). "Overexpression of DRG2 increases G2/M phase cells and decreases sensitivity to nocodazole-induced apoptosis". J. ...
Nocodazole, for example, has been used in biological research for synchronization, although some evidence suggests it may lack ... 2006). "Nocodazole does not synchronize cells: implications for cell-cycle control and whole-culture synchronization" (PDF). ...
Microtubule-disruptive drugs like vinblastine, colcemid, and nocodazole have been reported to act by two mechanisms. At very ...
Effects of substances interacting with microtubular function and axonal flow [nocodazole, taxol and erythro-9-3-(2-hydroxynonyl ...
When cells overexpressing Aurora C were treated with nocodazole to turn on the SAC, Aurora B protein stability and activity ...
Using drugs such as nocodazole and colchicine, the mitotic spindle disassembles and the cell cycle is blocked at the metaphase- ... Wang Y, Burke DJ (December 1995). "Checkpoint genes required to delay cell division in response to nocodazole respond to ... laevis meiosis II extracts without the addition of sperm of nuclei and nocodazole to prevent spindle assembly. The leading ...
This hypothesis is based on the fact that disruption of microtubules with the chemical nocodazole blocks the appearance of the ...
Microtubule inhibitors, such as nocodazole, are used to arrest the oocyte in M phase, during which its nuclear membrane is ...
... proteins and is proteolytically activated in response to arachidonic acid and the microtubule-depolymerizing drug nocodazole". ...
In fact, when metaphase mammalian cells are treated with the spindle-depolymerizing agent nocodazole, Mad2 proteins become ... it was essential to execute a block in the metaphase-to-anaphase transition in response to the microtubule poison nocodazole. ...
Evidence that CDKs regulate the localization of Mcm2-7 is that inactivation of CDKs in nocodazole arrested cells induced ...
... cells and its localization at the apical junctional complex is perturbed by treatment with the microtubule drug nocodazole. ...
Accordingly, studies of HT-29 cells have shown induced differentation as a result of forskolin, Colchicine, nocodazole, and ...
Treating embryos with the microtubule depolymerizing agent nocodazole completely blocks epiboly of the YSL and partially blocks ...
... nocodazole MeSH D03.438.103.675 - omeprazole MeSH D03.438.103.732 - pimozide MeSH D03.438.103.850 - thiabendazole MeSH D03.438. ...
... nocodazole (INN) nofecainide (INN) nogalamycin (INN) Nogenic HC nolatrexed (INN) nolinium bromide (INN) nolpitantium besilate ( ...
They found that when the cells were released and concurrently treated with nocodazole, a G2/M phase cell cycle inhibitor, ...
They partially overlap the calmodulin binding domain and stabilize microtubules against both cold and nocodazole-induced ...
As nocodazole affects the cytoskeleton, it is often used in cell biology experiments as a control: for example, some dominant ... Cells treated with nocodazole arrest with a G2- or M-phase DNA content when analyzed by flow cytometry. Microscopy of ... Nocodazole is an antineoplastic agent which exerts its effect in cells by interfering with the polymerization of microtubules. ... Nocodazole has been shown to decrease the oncogenic potential of cancer cells via another microtubules-independent mechanisms. ...
View and buy high quality Nocodazole from Tocris Bioscience. Microtubule inhibitor. Cited in 12 publications. ... 12 Citations for Nocodazole. Citations are publications that use Tocris products. Selected citations for Nocodazole include: ... Biological Activity for Nocodazole. Nocodazole is a microtubule inhibitor; inhibits mitosis. Also inhibits autophagosome- ... Keywords: Nocodazole, Nocodazole supplier, Microtubule, inhibitors, inhibits, Tau, Tubulin, Microtubules, Mitosis, crispr, cas9 ...
noc., nocodazole. f, Immunoblot analysis showing rapid degradation of CIP2A-FKBP12(F36V) after 4 h treatment of mitotic cells ... One day after transfection, cells were arrested in mitosis with 100 ng ml−1 nocodazole for 8 h. Mitotic cells were collected by ... b) Image of RPE-1 cell harbouring a micronucleus containing chromosome 1. RPE-1 cells were arrested in mitosis using nocodazole ... e) Live-cell images of dCas9-SunTag signals from nocodazole-arrested DLD-1 cells showing increased SunTag-positive fragments ...
Nocodazole Grants and funding * R01 DK056216-07/DK/NIDDK NIH HHS/United States ...
β-Secretase Inhibitor IV β-Secretase Inhibitor IV, CAS 797035-11-1, is a cell-permeable inhibitor that binds to BACE-1 active site and blocks its proteolytic activity (IC₅₀ = 15 nM for human BACE-1).; CAS Number: 797035-11-1; Synonyms: β-Secretase Inhibitor IV,BACE Inhibitor C3; find Sigma-Aldrich-565788 MSDS, related peer-reviewed papers, technical documents, similar products & more at Sigma-Aldrich
Nocodazole-induced changes in microtubule dynamics impair the morphology and directionality of migrating medial ganglionic ...
Nocodazole also inhibited assembly. Taxol (30 µM) and nocodazole (30 µM) were added as positive and negative controls, ... 4B). Nocodazole was used as a control in both assays, demonstrating that the fluorescence signal reflected MT assembly (Fig. 4B ... After treatment with nocodazole, exposure to shear stress led to no further decrease in paracellular permeability (n=5; * p, ... n=6; * p,0.025 with ANOVA one-way) C. NHBE cells exposed to nocodazole (20 µM) had a decrease in FITC-dextran permeability, ...
Nocodazole. Microtubule inhibitor; inhibits autophagosome-lysosome fusion. 1190. Pepstatin A. Protease inhibitor; interferes ...
We next tested the effect of the microtubule depolymerizer nocodazole. Treatment with nocodazole (1 μM) disrupted microtubule ... S2; Movie 8, right). Many of the nocodazole-treated cells sprouted exuberant protrusions and strongly agitated the cell soma, ... GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA ... or nocodazole (1 μM; Sigma) dissolved in DMSO. For imaging of migration in organotypic slice cultures, cerebella were dissected ...
A Method for Astral Microtubule Tracking in Fluorescence Images of Cells Doped with Taxol and Nocodazole (Articles) ...
LECs were incubated in the starvation medium as non-proliferative control or treated with 100 ng/mL nocodazole (Sigma) as ... and nocodazole-treated sample to gate mitotic cells. ...
Nocodazole and cycloheximide differentially regulate CBP80- and eIF4E-RNPs. (A) Microimages of CBP80-staining of SH-SY5Y cells ... C) The procedure of the biochemical fractionation assay for analysis of SH-SY5Y cells treated with taxol or nocodazole. sup: ... If necessary, the cells were treated with nocodazole (10 ng/ml, for 30 min), cytochalasinD (25 ng/ml, for 30 min) or ... Conversely, nocodazole treatment destabilizes microtubules thus releases components such as α-tubulin monomers and associating ...
Nocodazole induced rapid microtubule disruption which resulted in cellular contraction at both 3 hours and 24 hours. The matrix ... Overall, the effects of nocodazole were much more dramatic at 24 hours. Cytochalasin D induced cell elongation, ECM relaxation ...
I found that application of low doses of the microtubule destabilizing drug nocodazole selectively reduced the formation of ... I found that application of low doses of the microtubule destabilizing drug nocodazole selectively reduced the formation of ...
On the other hand, one compound inhibited tubluin assembly in a way similar to nocodazole. These compounds exhibited novel ...
Figure 1: Effect of nocodazole (NCZ) on rabies-virus-induced stress granules (SGs). U373-MG cells were infected and treated ...
... using nocodazole- or MG132-treated cells, respectively. In nocodazole-treated cells, wild-type SGO1-GFP localized to the inner ... One day later, cells were treated with nocodazole for 1.5 h or with MG132 for 2 h, and mitotic cells were collected by shake- ... 7a ). Whereas SGO1 efficiently localized to the inner centromeres in wild-type and SA1W337A cells following nocodazole ... Immunofluorescence For immunofluorescence, cells were treated with nocodazole, fixed and stained as described previously 31 . ...
Nocodazole was added as the cells were released 10 h before harvest. (B) 48 h after SET8 siRNA transfection, cells were pulse ... Nocodazole was added as the cells were released 10 h before harvest. (B) 48 h after SET8 siRNA transfection, cells were pulse ... Nocodazole was added during the last 16 h, and cells were processed for immunoblotting analysis. The inhibition of SET8 ... SET8 depletion leads to a delay in S-phase progression. (A) SET8 was depleted in U2OS cells using siRNA for 52 h. Nocodazole ...
G1/G2 arrest and protect normal cells under both normal and low glucose conditions against the mitotic inhibitor nocodazole, a ...
Here we show that treatment of cells with nocodazole or paclitaxel does cause phosphorylation of BIM(EL), which is independent ...
A) MKs and marrow cells were co-cultured in the presence of 1μM nocodazole, latrunculin A, cytochalasin D, or control vehicle ... The microtubule polymerization inhibitor nocodazole showed a negligible effect, but emperipolesis was dramatically curtailed by ...
HeLa cells were treated with anti-SENP6 siRNA for 36 h and then with nocodazole for further 12 hours. Cells were fixed and ...
Tubulin polymerization must also be responsive to polymerization enhancers (paclitaxel) and inhibitors (nocodazole) at 5 µM ... nocodazole) alter tubulin polymerization. For enhancers, we recommend using 3 mg/ml tubulin whereas for inhibitors, 4 mg/ml ...
... can prevent branch retraction caused by laser-induced severing or nocodazole-induced microtubule depolymerization. Together, ... can prevent branch retraction caused by laser-induced severing or nocodazole-induced microtubule depolymerization. Together, ...
... the effects of taxol and nocodazole on the microtubule system of Pt K2 cells at different stages of the mitotic cycle. Int Rev ...
... suppression by the microtubule inhibitor nocodazole. A Schöller, N J Hong, P Bischer and J J Reiners ...
Cal51 cells treated with nocodazole for 4 or 15 hours to induce mitotic arrest were monitored for mitotic index (b), and ... Some cells were treated with 200 ng/ml of nocodazole (Sigma) for 4 or 15 hours to induce mitotic arrest prior to harvest. ...
Embryo were placed in ASW with 15 µM of Cytochalasin B (Sigma-Aldrich, C6762), 10 µM Nocodazole (Sigma-Aldrich, M1414), and ... Embryos were treated with Cytochalasin B (15µM) and Nocodazole (10µM) from Nuclear Envelop Break Down to soften the cell cortex ... B-treated embryos were dependent on microtubules since they were completely abolished when embryos were treated with Nocodazole ... B-treated embryos were dependent on microtubules since they were completely abolished when embryos were treated with Nocodazole ...
  • Nocodazole is an antineoplastic agent which exerts its effect in cells by interfering with the polymerization of microtubules. (wikipedia.org)
  • Nocodazole has been shown to decrease the oncogenic potential of cancer cells via another microtubules-independent mechanisms. (wikipedia.org)
  • Microscopy of nocodazole-treated cells shows that they do enter mitosis but cannot form metaphase spindles because microtubules (of which the spindles are made) cannot polymerise. (wikipedia.org)
  • These functional Golgi ministacks remain distributed about the cell, unable to track forward to form a perinuclear Golgi since nocodazole has depolymerized the microtubules. (wikipedia.org)
  • During time-lapse image, fresh media buffered with HEPES was continuously perfused through the dish and temperature was maintained at 37°C. After 1-2 hours, cells were treated with cytochalasin D (to disrupt f-actin) and/or nocodazole (to depolymerize microtubules). (arvojournals.org)
  • Nocodazole stimulates the expression of LATS2 which potently inhibits the Wnt signaling pathway by abrogating the interaction between the Wnt-dependent transcriptional co-factors beta-catenin and BCL9. (wikipedia.org)
  • Prolonged arrest of cells in mitosis due to nocodazole treatment typically results in cell death by apoptosis. (wikipedia.org)
  • ESP1 , ESP1-myc13 and pGAL-SWE1 ESP1-13myc cells were grown in YEP + raffinose, arrested in mitosis with nocodazole and switched to YEP + galactose media to induce expression of Swe1. (figshare.com)
  • Short and long term effects of cytoskeleton-disrupting drugs on cytochrome P450 Cyp1a-1 induction in murine hepatoma 1c1c7 cells: suppression by the microtubule inhibitor nocodazole. (aspetjournals.org)
  • Nocodazole-induced changes in microtubule dynamics impair the morphology and directionality of migrating medial ganglionic eminence cells. (ifm-institute.org)
  • This unique binding property, which is not observed for other MAPs, can prevent branch retraction caused by laser-induced severing or nocodazole-induced microtubule depolymerization. (jefferson.edu)
  • In cells recovering from nocodazole-induced spindle depolymerization and G 2 /M arrest, cohesin-STB association can be established coincident with spindle restoration. (elsevierpure.com)
  • Tubulin polymerization must also be responsive to polymerization enhancers (paclitaxel) and inhibitors (nocodazole) at 5 µM drug concentration. (cytoskeleton.com)
  • As nocodazole affects the cytoskeleton, it is often used in cell biology experiments as a control: for example, some dominant negative Rho small GTPases cause a similar effect as nocodazole, and constitutively activated mutants often reverse or negate the effect. (wikipedia.org)
  • Another standard cell biological application of nocodazole is to induce the formation of Golgi ministacks in eukaryotic cells. (wikipedia.org)
  • Cells treated with nocodazole arrest with a G2- or M-phase DNA content when analyzed by flow cytometry. (wikipedia.org)
  • HeLa cells were treated with anti-SENP6 siRNA for 36 h and then with nocodazole for further 12 hours. (ucsd.edu)
  • In this study, we examined the effects of quercetin on cell cycle, viability, and proliferation of cancer cells, either singly or in combination with the microtubule-targeting drugs taxol and nocodazole. (vdocuments.net)
  • We examined the effect of the cotreatment of cancer cells with the flavonoid quercetin and 2 antimicrotubule drugs, namely, taxol and nocodazole. (vdocuments.net)
  • This thought is supported by the findings that siRNA mediated downregulation of Chk2 diminished the potential of LANA in mediating the release of nocodazole induced G2/M arrest (Fig. four). (cathepsin-s.com)
  • A hypothetical model shows the putative mechanisms for the bypassing in the nocodazole Ristomycin sulfate induced G2/M block by LANA. (cathepsin-s.com)
  • Nocodazole induced rapid microtubule disruption which resulted in cellular contraction at both 3 hours and 24 hours. (arvojournals.org)
  • For cell synchronization experiments, nocodazole is usually used at a concentration of 40-100 ng/mL of culture medium for a duration of 12-18 hours. (wikipedia.org)
  • I found that application of low doses of the microtubule destabilizing drug nocodazole selectively reduced the formation of future dendrites. (uni-muenchen.de)
  • The perinuclear structural organization of the Golgi apparatus in eukaryotes is dependent on microtubule trafficking, but disrupting the trafficking of Golgi elements from the endoplasmic reticulum treatment with nocodazole (33 μM for 3 hours) induces numerous Golgi elements to form adjacent to ER exit sites. (wikipedia.org)
  • Overall, the effects of nocodazole were much more dramatic at 24 hours. (arvojournals.org)
  • Several drugs including vincristine and colcemid are similar to nocodazole in that they interfere with microtubule polymerization. (wikipedia.org)