Inorganic oxides that contain nitrogen.
Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical.
Gases, fumes, vapors, and odors escaping from the cylinders of a gasoline or diesel internal-combustion engine. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed & Random House Unabridged Dictionary, 2d ed)
Nitrogen oxide (NO2). A highly poisonous gas. Exposure produces inflammation of lungs that may only cause slight pain or pass unnoticed, but resulting edema several days later may cause death. (From Merck, 11th ed) It is a major atmospheric pollutant that is able to absorb UV light that does not reach the earth's surface.
Salts of nitrous acid or compounds containing the group NO2-. The inorganic nitrites of the type MNO2 (where M=metal) are all insoluble, except the alkali nitrites. The organic nitrites may be isomeric, but not identical with the corresponding nitro compounds. (Grant & Hackh's Chemical Dictionary, 5th ed)
Substances that are energetically unstable and can produce a sudden expansion of the material, called an explosion, which is accompanied by heat, pressure and noise. Other things which have been described as explosive that are not included here are explosive action of laser heating, human performance, sudden epidemiological outbreaks, or fast cell growth.
A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP.
Any substance in the air which could, if present in high enough concentration, harm humans, animals, vegetation or material. Substances include GASES; PARTICULATE MATTER; and volatile ORGANIC CHEMICALS.
The presence of contaminants or pollutant substances in the air (AIR POLLUTANTS) that interfere with human health or welfare, or produce other harmful environmental effects. The substances may include GASES; PARTICULATE MATTER; or volatile ORGANIC CHEMICALS.
An NADPH-dependent enzyme that catalyzes the conversion of L-ARGININE and OXYGEN to produce CITRULLINE and NITRIC OXIDE.
A highly toxic, colorless, nonflammable gas. It is used as a pharmaceutical aid and antioxidant. It is also an environmental air pollutant.
The unstable triatomic form of oxygen, O3. It is a powerful oxidant that is produced for various chemical and industrial uses. Its production is also catalyzed in the ATMOSPHERE by ULTRAVIOLET RAY irradiation of oxygen or other ozone precursors such as VOLATILE ORGANIC COMPOUNDS and NITROGEN OXIDES. About 90% of the ozone in the atmosphere exists in the stratosphere (STRATOSPHERIC OZONE).
Nitroso compounds are organic or inorganic substances containing the nitroso functional group, which consists of a nitrogen atom bonded to an oxygen atom through a single covalent bond, often abbreviated as -NO.
Particles of any solid substance, generally under 30 microns in size, often noted as PM30. There is special concern with PM1 which can get down to PULMONARY ALVEOLI and induce MACROPHAGE ACTIVATION and PHAGOCYTOSIS leading to FOREIGN BODY REACTION and LUNG DISEASES.
The vapor state of matter; nonelastic fluids in which the molecules are in free movement and their mean positions far apart. Gases tend to expand indefinitely, to diffuse and mix readily with other gases, to have definite relations of volume, temperature, and pressure, and to condense or liquefy at low temperatures or under sufficient pressure. (Grant & Hackh's Chemical Dictionary, 5th ed)
An essential amino acid that is physiologically active in the L-form.
Five-carbon saturated hydrocarbon group of the methane series. Include isomers and derivatives.
The monitoring of the level of toxins, chemical pollutants, microbial contaminants, or other harmful substances in the environment (soil, air, and water), workplace, or in the bodies of people and animals present in that environment.
The process in certain BACTERIA; FUNGI; and CYANOBACTERIA converting free atmospheric NITROGEN to biologically usable forms of nitrogen, such as AMMONIA; NITRATES; and amino compounds.
Nitrogen oxide (N2O). A colorless, odorless gas that is used as an anesthetic and analgesic. High concentrations cause a narcotic effect and may replace oxygen, causing death by asphyxia. It is also used as a food aerosol in the preparation of whipping cream.
The gaseous envelope surrounding a planet or similar body. (From Random House Unabridged Dictionary, 2d ed)
A potent oxidant synthesized by the cell during its normal metabolism. Peroxynitrite is formed from the reaction of two free radicals, NITRIC OXIDE and the superoxide anion (SUPEROXIDES).
Carbon monoxide (CO). A poisonous colorless, odorless, tasteless gas. It combines with hemoglobin to form carboxyhemoglobin, which has no oxygen carrying capacity. The resultant oxygen deprivation causes headache, dizziness, decreased pulse and respiratory rates, unconsciousness, and death. (From Merck Index, 11th ed)
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
The exposure to potentially harmful chemical, physical, or biological agents in the environment or to environmental factors that may include ionizing radiation, pathogenic organisms, or toxic chemicals.
A diverse group of agents, with unique chemical structures and biochemical requirements, which generate NITRIC OXIDE. These compounds have been used in the treatment of cardiovascular diseases and the management of acute myocardial infarction, acute and chronic congestive heart failure, and surgical control of blood pressure. (Adv Pharmacol 1995;34:361-81)
The contamination of indoor air.
Stable nitrogen atoms that have the same atomic number as the element nitrogen, but differ in atomic weight. N-15 is a stable nitrogen isotope.
Inorganic compounds that contain nitrogen as an integral part of the molecule.
A CALCIUM-independent subtype of nitric oxide synthase that may play a role in immune function. It is an inducible enzyme whose expression is transcriptionally regulated by a variety of CYTOKINES.
The process of altering the morphology and functional activity of macrophages so that they become avidly phagocytic. It is initiated by lymphokines, such as the macrophage activation factor (MAF) and the macrophage migration-inhibitory factor (MMIF), immune complexes, C3b, and various peptides, polysaccharides, and immunologic adjuvants.
The circulation of nitrogen in nature, consisting of a cycle of biochemical reactions in which atmospheric nitrogen is compounded, dissolved in rain, and deposited in the soil, where it is assimilated and metabolized by bacteria and plants, eventually returning to the atmosphere by bacterial decomposition of organic matter.
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
The urea concentration of the blood stated in terms of nitrogen content. Serum (plasma) urea nitrogen is approximately 12% higher than blood urea nitrogen concentration because of the greater protein content of red blood cells. Increases in blood or serum urea nitrogen are referred to as azotemia and may have prerenal, renal, or postrenal causes. (From Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984)
Binary compounds of oxygen containing the anion O(2-). The anion combines with metals to form alkaline oxides and non-metals to form acidic oxides.
Nitrogenous products of NITRIC OXIDE synthases, ranging from NITRIC OXIDE to NITRATES. These reactive nitrogen intermediates also include the inorganic PEROXYNITROUS ACID and the organic S-NITROSOTHIOLS.
A CALCIUM-dependent, constitutively-expressed form of nitric oxide synthase found primarily in ENDOTHELIAL CELLS.

Inhibition of copper/zinc superoxide dismutase impairs NO.-mediated endothelium-dependent relaxations. (1/938)

The superoxide anion (O-2.) appears to be an important modulator of nitric oxide (NO.) bioavailability. The present study was designed to characterize the role of copper/zinc superoxide dismutase (Cu/Zn SOD) in endothelium-dependent relaxations. Cu/Zn SOD was inhibited with the Cu2+ chelator diethyldithiocarbamic acid (DETCA). In isolated canine basilar arteries, DETCA (7.6 x 10(-3) M) inhibited total vascular SOD activity by 46% (P < 0.0001, n = 6-8 dogs). DETCA (7.6 x 10(-3) M) significantly reduced relaxations to bradykinin and A-23187 (P < 0.05, n = 7-11). The inhibitory effect of DETCA was abolished by the O-2. scavenger 4,5-dihydroxy-1,3-benzenedisulfonic acid (Tiron; 9.4 x 10(-3) M; P < 0.05, n = 6-13). Tiron significantly potentiated the relaxations to bradykinin in control rings (P < 0.05, n = 13), and the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME; 3 x 10(-4) M) abolished these relaxations (P < 0.0001, n = 6). DETCA and Tiron had no effect on the relaxations to diethylamine-NONOate or forskolin (P > 0.05, n = 6). Our results demonstrate that endothelium-dependent relaxations mediated by NO. are impaired after the inhibition of Cu/Zn SOD. Relaxations to bradykinin (but not A-23187) were significantly augmented by Tiron. Pharmacological scavenging of O-2. reverses the effect of Cu/Zn SOD inhibition.  (+info)

Amyloid beta peptides do not form peptide-derived free radicals spontaneously, but can enhance metal-catalyzed oxidation of hydroxylamines to nitroxides. (2/938)

Amyloid beta (Abeta) peptides play an important role in the pathogenesis of Alzheimer's disease. Free radical generation by Abeta peptides was suggested to be a key mechanism of their neurotoxicity. Reports that neurotoxic free radicals derived from Abeta-(1-40) and Abeta-(25-35) peptides react with the spin trap N-tert-butyl-alpha-phenylnitrone (PBN) to form a PBN/.Abeta peptide radical adduct with a specific triplet ESR signal assert that the peptide itself was the source of free radicals. We now report that three Abeta peptides, Abeta-(1-40), Abeta-(25-35), and Abeta-(40-1), do not yield radical adducts with PBN from the Oklahoma Medical Research Foundation (OMRF). In contrast to OMRF PBN, incubation of Sigma PBN in phosphate buffer without Abeta peptides produced a three-line ESR spectrum. It was shown that this nitroxide is di-tert-butylnitroxide and is formed in the Sigma PBN solution as a result of transition metal-catalyzed auto-oxidation of the respective hydroxylamine present as an impurity in the Sigma PBN. Under some conditions, incubation of PBN from Sigma with Abeta-(1-40) or Abeta-(25-35) can stimulate the formation of di-tert-butylnitroxide. It was shown that Abeta peptides enhanced oxidation of cyclic hydroxylamine 1-hydroxy-4-oxo-2,2,6, 6-tetramethylpiperidine (TEMPONE-H), which was strongly inhibited by the treatment of phosphate buffer with Chelex-100. It was shown that ferric and cupric ions are effective oxidants of TEMPONE-H. The data obtained allow us to conclude that under some conditions toxic Abeta peptides Abeta-(1-40) and Abeta-(25-35) enhance metal-catalyzed oxidation of hydroxylamine derivatives, but do not spontaneously form peptide-derived free radicals.  (+info)

Nitric Oxide. III. A molecular prelude to intestinal inflammation. (3/938)

Nitric oxide (NO) synthesis is markedly augmented in states of inflammation, largely due to the expression of inducible nitric oxide synthase (iNOS). Although NO has anti-inflammatory consequences under basal conditions, it remains enigmatic as to why NO displays proinflammatory characteristics in chronic inflammation. Either the anti-inflammatory actions are weak and of little consequence or, alternatively, other factors influence the role of NO in chronic inflammation. We propose that the answer to this enigma lies in the conversion of NO to other higher oxides of nitrogen (NO2, nitrogen dioxide; N2O3, dinitrogen trioxide; and ONOO-, peroxynitrite). Emerging therapeutic strategies may be independent of NO synthesis; e.g., antioxidants have no direct interaction with NO but attenuate the levels and activity of higher nitrogen oxides. Thus, whereas iNOS may be a marker for the proinflammatory actions of NO, the species that mediate tissue injury/dysfunction in inflammation are likely to be nitrogen oxides other than NO.  (+info)

Regulation of transforming growth factor beta1 by nitric oxide. (4/938)

Many tumor cells or their secreted products suppress the function of tumor-infiltrating macrophages. Tumor cells often produce abundant transforming growth factor beta1 (TGF-beta1), which in addition to other immunosuppressive actions suppresses the inducible isoform of NO synthase. TGF-beta1 is secreted in a latent form, which consists of TGF-beta1 noncovalently associated with latency-associated peptide (LAP) and which can be activated efficiently by exposure to reactive oxygen species. Coculture of the human lung adenocarcinoma cell line A549 and ANA-1 macrophages activated with IFN-gamma plus lipopolysaccharide resulted in increased synthesis and activation of latent TGF-beta1 protein by both A549 and ANA-1 cells, whereas unstimulated cultures of either cell type alone expressed only latent TGF-beta1. We investigated whether exposure of tumor cells to NO influences the production, activation, or activity of TGF-beta1.A549 human lung adenocarcinoma cells exposed to the chemical NO donor diethylamine-NONOate showed increased immunoreactivity of cell-associated latent and active TGF-beta1 in a time- and dose-dependent fashion at 24-48 h after treatment. Exposure of latent TGF-beta1 to solution sources of NO neither led to recombinant latent TGF-beta1 activation nor modified recombinant TGF-beta1 activity. A novel mechanism was observed, however: treatment of recombinant LAP with NO resulted in its nitrosylation and interfered with its ability to neutralize active TGF-beta1. These results provide the first evidence that nitrosative stress influences the regulation of TGF-beta1 and raise the possibility that NO production may augment TGF-beta1 activity by modifying a naturally occurring neutralizing peptide.  (+info)

Azide reduces the hydrophobic barrier of the bacteriorhodopsin proton channel. (5/938)

The sensitivity of a nitroxide spin label to the polarity of its environment has been used to estimate the hydrophobic barrier of the proton channel of the transmembrane proton pump bacteriorhodopsin. By means of site-specific mutagenesis, single cysteine residues were introduced at 10 positions located at the protein surface, in the protein interior, and along the proton pathway. After reaction with a methanethiosulfonate spin label, the principle values of the hyperfine tensor A and the g-tensor were determined from electron paramagnetic resonance spectra measured at 170 K. The shape of the hydrophobic barrier of the proton channel is characterized in terms of a polarity index, DeltaA, determined from the variation of the hyperfine coupling constant Azz. The maximum of the hydrophobic barrier is found to be close to the retinal chromophore in the proton uptake pathway. The effect of the asymmetric distribution of charged and polar residues in the proton release and uptake pathways is clearly reflected in the behavior of the hydrophobic barrier. The presence of azide reduces the barrier height of both the cytoplasmic and extracellular channels. This finding supports the view of azide and other weakly acidic anions as catalysts for the formation of hydrogen-bonded networks in proton pathways of proteins.  (+info)

Relationships between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite. (6/938)

This review is concerned mainly with the three redox-related, but chemically distinct, species NO-, NO. and NO+, with greatest emphasis being placed on the chemistry and biology of the nitroxyl ion. Biochemical routes for the formation of nitroxyl ion and methods for showing the intermediacy of this species are discussed, together with chemical methods for generating nitroxyl ion in solution. Reactions of nitroxyl ion with NO., thiols, iron centres in haem and with dioxygen are reviewed The significance of the reaction between NO- and dioxygen as a source of peroxynitrite is assessed, and attention drawn to the possible significance of the spin state of the nitroxyl ion in this context. The biological significance of nitrosation and the importance of S-nitrosothiols and certain metal nitrosyl complexes as carriers of NO+ at physiological pH is stressed. Some features in the chemistry of peroxynitrite are noted.  (+info)

Nitrite and nitrosyl compounds in food preservation. (7/938)

Nitrite is consumed in the diet, through vegetables and drinking water. It is also added to meat products as a preservative. The potential risks of this practice are balanced against the unique protective effect against toxin-forming bacteria such as Clostridium botulinum. The chemistry of nitrite, and compounds derived from it, in food systems and bacterial cells are complex. It is known that the bactericidal species is not nitrite itself, but a compound or compounds derived from it during food preparation. Of a range of nitrosyl compounds tested, the anion of Roussin's black salt [Fe4S3(NO)7]- was the most inhibitory to C. sporogenes. This compound is active against both anaerobic and aerobic food-spoilage bacteria, while some other compounds are selective, indicating multiple sites of action. There are numerous possible targets for inhibition in the bacterial cells, including respiratory chains, iron-sulfur proteins and other metalloproteins, membranes and the genetic apparatus.  (+info)

noxR3, a novel gene from Mycobacterium tuberculosis, protects Salmonella typhimurium from nitrosative and oxidative stress. (8/938)

Reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI) produced by activated macrophages participate in host defense against the facultative intracellular pathogens Mycobacterium tuberculosis and Salmonella typhimurium. To survive within macrophages, such pathogens may have evolved ROI and RNI resistance mechanisms. ROI resistance pathways have been intensively studied. Much less is known about the mechanisms of resistance to RNI. To identify possible RNI resistance genes in M. tuberculosis, a mycobacterial library was expressed in S. typhimurium and subjected to selection by exposure to the NO donor S-nitrosoglutathione (GSNO) in concentrations sufficient to kill the vast majority of nontransformed salmonellae. Among the rare surviving recombinants was a clone expressing noxR3, a novel and previously anonymous M. tuberculosis gene predicted to encode a small, basic protein. Expression of noxR3 protected S. typhimurium not only from GSNO and acidified nitrite but also from H2O2. noxR3 is the third gene cloned from M. tuberculosis that has been shown to protect heterologous cells from both RNI and ROI. This suggests diversity in the repertoire of mechanisms that help pathogens resist the oxidative and nitrosative defenses of the host.  (+info)

Nitrogen oxides (NOx) are a group of highly reactive gases, primarily composed of nitric oxide (NO) and nitrogen dioxide (NO2). They are formed during the combustion of fossil fuels, such as coal, oil, gas, or biomass, and are emitted from various sources, including power plants, industrial boilers, transportation vehicles, and residential heating systems. Exposure to NOx can have adverse health effects, particularly on the respiratory system, and contribute to the formation of harmful air pollutants like ground-level ozone and fine particulate matter.

Nitrates are chemical compounds that consist of a nitrogen atom bonded to three oxygen atoms (NO3-). In the context of medical science, nitrates are often discussed in relation to their use as medications or their presence in food and water.

As medications, nitrates are commonly used to treat angina (chest pain) caused by coronary artery disease. Nitrates work by relaxing and widening blood vessels, which improves blood flow and reduces the workload on the heart. Some examples of nitrate medications include nitroglycerin, isosorbide dinitrate, and isosorbide mononitrate.

In food and water, nitrates are naturally occurring compounds that can be found in a variety of vegetables, such as spinach, beets, and lettuce. They can also be present in fertilizers and industrial waste, which can contaminate groundwater and surface water sources. While nitrates themselves are not harmful, they can be converted into potentially harmful compounds called nitrites under certain conditions, particularly in the digestive system of young children or in the presence of bacteria such as those found in unpasteurized foods. Excessive levels of nitrites can react with hemoglobin in the blood to form methemoglobin, which cannot transport oxygen effectively and can lead to a condition called methemoglobinemia.

'Vehicle Emissions' is not a term typically used in medical definitions. However, in a broader context, it refers to the gases and particles released into the atmosphere by vehicles such as cars, trucks, buses, and airplanes. The main pollutants found in vehicle emissions include carbon monoxide (CO), nitrogen oxides (NOx), particulate matter (PM), and volatile organic compounds (VOCs). Exposure to these pollutants can have negative health effects, including respiratory symptoms, cardiovascular disease, and cancer. Therefore, vehicle emissions are a significant public health concern.

Nitrogen dioxide (NO2) is a gaseous air pollutant and respiratory irritant. It is a reddish-brown toxic gas with a pungent, choking odor. NO2 is a major component of smog and is produced from the combustion of fossil fuels in vehicles, power plants, and industrial processes.

Exposure to nitrogen dioxide can cause respiratory symptoms such as coughing, wheezing, and difficulty breathing, especially in people with asthma or other respiratory conditions. Long-term exposure has been linked to the development of chronic lung diseases, including bronchitis and emphysema. NO2 also contributes to the formation of fine particulate matter (PM2.5), which can penetrate deep into the lungs and cause additional health problems.

In a medical context, nitrites are typically referred to as organic compounds that contain a functional group with the formula R-N=O, where R represents an alkyl or aryl group. They are commonly used in medicine as vasodilators, which means they widen and relax blood vessels, improving blood flow and lowering blood pressure.

One example of a nitrite used medically is amyl nitrite, which was previously used to treat angina pectoris, a type of chest pain caused by reduced blood flow to the heart muscle. However, its use has largely been replaced by other medications due to safety concerns and the availability of more effective treatments.

It's worth noting that inorganic nitrites, such as sodium nitrite, are also used in medicine for various purposes, including as a preservative in food and as a medication to treat cyanide poisoning. However, these compounds have different chemical properties and uses than organic nitrites.

Explosive agents are substances or materials that can undergo rapid chemical reactions, leading to a sudden release of gas and heat, resulting in a large increase in pressure and volume. This rapid expansion creates an explosion, which can cause significant damage to surrounding structures and pose serious risks to human health and safety.

Explosive agents are typically classified into two main categories: low explosives and high explosives. Low explosives burn more slowly than high explosives and rely on the confinement of the material to build up pressure and cause an explosion. Examples of low explosives include black powder, smokeless powder, and certain types of pyrotechnics.

High explosives, on the other hand, decompose rapidly and can detonate with great speed and force. They are often used in military applications such as bombs, artillery shells, and demolitions. Examples of high explosives include TNT (trinitrotoluene), RDX (cyclotrimethylenetrinitramine), and PETN (pentaerythritol tetranitrate).

It is important to note that the handling, storage, and use of explosive agents require specialized training and strict safety protocols, as they can pose significant risks if not managed properly.

Nitric oxide (NO) is a molecule made up of one nitrogen atom and one oxygen atom. In the body, it is a crucial signaling molecule involved in various physiological processes such as vasodilation, immune response, neurotransmission, and inhibition of platelet aggregation. It is produced naturally by the enzyme nitric oxide synthase (NOS) from the amino acid L-arginine. Inhaled nitric oxide is used medically to treat pulmonary hypertension in newborns and adults, as it helps to relax and widen blood vessels, improving oxygenation and blood flow.

Air pollutants are substances or mixtures of substances present in the air that can have negative effects on human health, the environment, and climate. These pollutants can come from a variety of sources, including industrial processes, transportation, residential heating and cooking, agricultural activities, and natural events. Some common examples of air pollutants include particulate matter, nitrogen dioxide, sulfur dioxide, ozone, carbon monoxide, and volatile organic compounds (VOCs).

Air pollutants can cause a range of health effects, from respiratory irritation and coughing to more serious conditions such as bronchitis, asthma, and cancer. They can also contribute to climate change by reacting with other chemicals in the atmosphere to form harmful ground-level ozone and by directly absorbing or scattering sunlight, which can affect temperature and precipitation patterns.

Air quality standards and regulations have been established to limit the amount of air pollutants that can be released into the environment, and efforts are ongoing to reduce emissions and improve air quality worldwide.

Air pollution is defined as the contamination of air due to the presence of substances or harmful elements that exceed the acceptable limits. These pollutants can be in the form of solid particles, liquid droplets, gases, or a combination of these. They can be released from various sources, including industrial processes, vehicle emissions, burning of fossil fuels, and natural events like volcanic eruptions.

Exposure to air pollution can have significant impacts on human health, contributing to respiratory diseases, cardiovascular issues, and even premature death. It can also harm the environment, damaging crops, forests, and wildlife populations. Stringent regulations and measures are necessary to control and reduce air pollution levels, thereby protecting public health and the environment.

Nitric Oxide Synthase (NOS) is a group of enzymes that catalyze the production of nitric oxide (NO) from L-arginine. There are three distinct isoforms of NOS, each with different expression patterns and functions:

1. Neuronal Nitric Oxide Synthase (nNOS or NOS1): This isoform is primarily expressed in the nervous system and plays a role in neurotransmission, synaptic plasticity, and learning and memory processes.
2. Inducible Nitric Oxide Synthase (iNOS or NOS2): This isoform is induced by various stimuli such as cytokines, lipopolysaccharides, and hypoxia in a variety of cells including immune cells, endothelial cells, and smooth muscle cells. iNOS produces large amounts of NO, which functions as a potent effector molecule in the immune response, particularly in the defense against microbial pathogens.
3. Endothelial Nitric Oxide Synthase (eNOS or NOS3): This isoform is constitutively expressed in endothelial cells and produces low levels of NO that play a crucial role in maintaining vascular homeostasis by regulating vasodilation, inhibiting platelet aggregation, and preventing smooth muscle cell proliferation.

Overall, NOS plays an essential role in various physiological processes, including neurotransmission, immune response, cardiovascular function, and respiratory regulation. Dysregulation of NOS activity has been implicated in several pathological conditions such as hypertension, atherosclerosis, neurodegenerative diseases, and inflammatory disorders.

Sulfur dioxide (SO2) is not a medical term per se, but it's an important chemical compound with implications in human health and medicine. Here's a brief definition:

Sulfur dioxide (SO2) is a colorless gas with a sharp, pungent odor. It is primarily released into the atmosphere as a result of human activities such as the burning of fossil fuels (like coal and oil) and the smelting of metals. SO2 is also produced naturally during volcanic eruptions and some biological processes.

In medical terms, exposure to high levels of sulfur dioxide can have adverse health effects, particularly for people with respiratory conditions like asthma or chronic obstructive pulmonary disease (COPD). SO2 can irritate the eyes, nose, throat, and lungs, causing coughing, wheezing, shortness of breath, and a tight feeling in the chest. Prolonged exposure to elevated levels of SO2 may exacerbate existing respiratory issues and lead to decreased lung function.

Regulations are in place to limit sulfur dioxide emissions from industrial sources to protect public health and reduce air pollution.

Ozone (O3) is not a substance that is typically considered a component of health or medicine in the context of human body or physiology. It's actually a form of oxygen, but with three atoms instead of two, making it unstable and reactive. Ozone is naturally present in the Earth's atmosphere, where it forms a protective layer in the stratosphere that absorbs harmful ultraviolet (UV) radiation from the sun.

However, ozone can have both beneficial and detrimental effects on human health depending on its location and concentration. At ground level or in indoor environments, ozone is considered an air pollutant that can irritate the respiratory system and aggravate asthma symptoms when inhaled at high concentrations. It's important to note that ozone should not be confused with oxygen (O2), which is essential for human life and breathing.

Nitroso compounds are a class of chemical compounds that contain a nitroso functional group, which is composed of a nitrogen atom bonded to an oxygen atom with a single covalent bond. The general formula for nitroso compounds is R-N=O, where R represents an organic group such as an alkyl or aryl group.

Nitroso compounds are known to be reactive and can form under various physiological conditions. They have been implicated in the formation of carcinogenic substances and have been linked to DNA damage and mutations. In the medical field, nitroso compounds have been studied for their potential use as therapeutic agents, particularly in the treatment of cancer and cardiovascular diseases. However, their use is limited due to their potential toxicity and carcinogenicity.

It's worth noting that exposure to high levels of nitroso compounds can be harmful to human health, and may cause respiratory, dermal, and ocular irritation, as well as potential genotoxic effects. Therefore, handling and storage of nitroso compounds should be done with caution, following appropriate safety guidelines.

Particulate Matter (PM) refers to the mixture of tiny particles and droplets in the air that are solid or liquid in nature. These particles vary in size, with some being visible to the naked eye while others can only be seen under a microscope. PM is classified based on its diameter:

* PM10 includes particles with a diameter of 10 micrometers or smaller. These particles are often found in dust, pollen, and smoke.
* PM2.5 includes particles with a diameter of 2.5 micrometers or smaller. These fine particles are produced from sources such as power plants, industrial processes, and vehicle emissions. They can also come from natural sources like wildfires.

Exposure to particulate matter has been linked to various health problems, including respiratory issues, cardiovascular disease, and premature death. The smaller the particle, the deeper it can penetrate into the lungs, making PM2.5 particularly harmful to human health.

In medical terms, gases refer to the state of matter that has no fixed shape or volume and expands to fill any container it is placed in. Gases in the body can be normal, such as the oxygen, carbon dioxide, and nitrogen that are present in the lungs and blood, or abnormal, such as gas that accumulates in the digestive tract due to conditions like bloating or swallowing air.

Gases can also be used medically for therapeutic purposes, such as in the administration of anesthesia or in the treatment of certain respiratory conditions with oxygen therapy. Additionally, measuring the amount of gas in the body, such as through imaging studies like X-rays or CT scans, can help diagnose various medical conditions.

Arginine is an α-amino acid that is classified as a semi-essential or conditionally essential amino acid, depending on the developmental stage and health status of the individual. The adult human body can normally synthesize sufficient amounts of arginine to meet its needs, but there are certain circumstances, such as periods of rapid growth or injury, where the dietary intake of arginine may become necessary.

The chemical formula for arginine is C6H14N4O2. It has a molecular weight of 174.20 g/mol and a pKa value of 12.48. Arginine is a basic amino acid, which means that it contains a side chain with a positive charge at physiological pH levels. The side chain of arginine is composed of a guanidino group, which is a functional group consisting of a nitrogen atom bonded to three methyl groups.

In the body, arginine plays several important roles. It is a precursor for the synthesis of nitric oxide, a molecule that helps regulate blood flow and immune function. Arginine is also involved in the detoxification of ammonia, a waste product produced by the breakdown of proteins. Additionally, arginine can be converted into other amino acids, such as ornithine and citrulline, which are involved in various metabolic processes.

Foods that are good sources of arginine include meat, poultry, fish, dairy products, nuts, seeds, and legumes. Arginine supplements are available and may be used for a variety of purposes, such as improving exercise performance, enhancing wound healing, and boosting immune function. However, it is important to consult with a healthcare provider before taking arginine supplements, as they can interact with certain medications and have potential side effects.

I'm sorry for any confusion, but "Pentanes" is not a medical term. It is a chemical term that refers to a group of five-carbon alkane hydrocarbons, including n-pentane and iso-pentane. These substances can be used in medical settings as anesthetics or for medical research, but "Pentanes" itself does not have a specific medical definition.

Environmental monitoring is the systematic and ongoing surveillance, measurement, and assessment of environmental parameters, pollutants, or other stressors in order to evaluate potential impacts on human health, ecological systems, or compliance with regulatory standards. This process typically involves collecting and analyzing data from various sources, such as air, water, soil, and biota, and using this information to inform decisions related to public health, environmental protection, and resource management.

In medical terms, environmental monitoring may refer specifically to the assessment of environmental factors that can impact human health, such as air quality, water contamination, or exposure to hazardous substances. This type of monitoring is often conducted in occupational settings, where workers may be exposed to potential health hazards, as well as in community-based settings, where environmental factors may contribute to public health issues. The goal of environmental monitoring in a medical context is to identify and mitigate potential health risks associated with environmental exposures, and to promote healthy and safe environments for individuals and communities.

Nitrogen fixation is a process by which nitrogen gas (N2) in the air is converted into ammonia (NH3) or other chemically reactive forms, making it available to plants and other organisms for use as a nutrient. This process is essential for the nitrogen cycle and for the growth of many types of plants, as most plants cannot utilize nitrogen gas directly from the air.

In the medical field, nitrogen fixation is not a commonly used term. However, in the context of microbiology and infectious diseases, some bacteria are capable of fixing nitrogen and this ability can contribute to their pathogenicity. For example, certain species of bacteria that colonize the human body, such as those found in the gut or on the skin, may be able to fix nitrogen and use it for their own growth and survival. In some cases, these bacteria may also release fixed nitrogen into the environment, which can have implications for the ecology and health of the host and surrounding ecosystems.

Nitrous oxide, also known as laughing gas, is a colorless and non-flammable gas with a slightly sweet odor and taste. In medicine, it's commonly used for its anesthetic and pain reducing effects. It is often used in dental procedures, surgery, and childbirth to help reduce anxiety and provide mild sedation. Nitrous oxide works by binding to the hemoglobin in red blood cells, which reduces the oxygen-carrying capacity of the blood, but this effect is usually not significant at the low concentrations used for analgesia and anxiolysis. It's also considered relatively safe when administered by a trained medical professional because it does not cause depression of the respiratory system or cardiovascular function.

In medical terms, the term "atmosphere" is not typically used as a standalone definition or diagnosis. However, in some contexts, it may refer to the physical environment or surroundings in which medical care is provided. For example, some hospitals and healthcare facilities may have different atmospheres depending on their specialties, design, or overall ambiance.

Additionally, "atmosphere" may also be used more broadly to describe the social or emotional climate of a particular healthcare setting. For instance, a healthcare provider might describe a patient's home atmosphere as warm and welcoming, or a hospital ward's atmosphere as tense or chaotic.

It is important to note that "atmosphere" is not a medical term with a specific definition, so its meaning may vary depending on the context in which it is used.

Peroxynitrous acid (ONOOH) is a highly reactive nitrogen species formed from the reaction between nitric oxide (NO) and superoxide radical (O2-). It is an unstable compound that quickly decomposes to form other reactive species, such as nitrogen dioxide (NO2) and hydroxyl radical (HO•), which can cause significant damage to biological molecules, including proteins, lipids, and DNA. Peroxynitrous acid has been implicated in the pathogenesis of various diseases, including neurodegenerative disorders, cardiovascular disease, and cancer.

Carbon monoxide (CO) is a colorless, odorless, and tasteless gas that is slightly less dense than air. It is toxic to hemoglobic animals when encountered in concentrations above about 35 ppm. This compound is a product of incomplete combustion of organic matter, and is a major component of automobile exhaust.

Carbon monoxide is poisonous because it binds to hemoglobin in red blood cells much more strongly than oxygen does, forming carboxyhemoglobin. This prevents the transport of oxygen throughout the body, which can lead to suffocation and death. Symptoms of carbon monoxide poisoning include headache, dizziness, weakness, nausea, vomiting, confusion, and disorientation. Prolonged exposure can lead to unconsciousness and death.

Carbon monoxide detectors are commonly used in homes and other buildings to alert occupants to the presence of this dangerous gas. It is important to ensure that these devices are functioning properly and that they are placed in appropriate locations throughout the building. Additionally, it is essential to maintain appliances and heating systems to prevent the release of carbon monoxide into living spaces.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

Environmental exposure refers to the contact of an individual with any chemical, physical, or biological agent in the environment that can cause a harmful effect on health. These exposures can occur through various pathways such as inhalation, ingestion, or skin contact. Examples of environmental exposures include air pollution, water contamination, occupational chemicals, and allergens. The duration and level of exposure, as well as the susceptibility of the individual, can all contribute to the risk of developing an adverse health effect.

Nitric oxide (NO) donors are pharmacological agents that release nitric oxide in the body when they are metabolized. Nitric oxide is a molecule that plays an important role as a signaling messenger in the cardiovascular, nervous, and immune systems. It helps regulate blood flow, relax smooth muscle, inhibit platelet aggregation, and modulate inflammatory responses.

NO donors can be used medically to treat various conditions, such as hypertension, angina, heart failure, and pulmonary hypertension, by promoting vasodilation and improving blood flow. Some examples of NO donors include nitroglycerin, isosorbide dinitrate, sodium nitroprusside, and molsidomine. These drugs work by releasing nitric oxide slowly over time, which then interacts with the enzyme soluble guanylate cyclase to produce cyclic guanosine monophosphate (cGMP), leading to relaxation of smooth muscle and vasodilation.

It is important to note that NO donors can have side effects, such as headache, dizziness, and hypotension, due to their vasodilatory effects. Therefore, they should be used under the guidance of a healthcare professional.

Indoor air pollution refers to the contamination of air within buildings and structures due to presence of particles, gases, or biological materials that can harmfully affect the health of occupants. These pollutants can originate from various sources including cooking stoves, heating systems, building materials, furniture, tobacco products, outdoor air, and microbial growth. Some common indoor air pollutants include particulate matter, carbon monoxide, nitrogen dioxide, sulfur dioxide, volatile organic compounds (VOCs), and mold. Prolonged exposure to these pollutants can cause a range of health issues, from respiratory problems to cancer, depending on the type and level of exposure. Effective ventilation, air filtration, and source control are some of the strategies used to reduce indoor air pollution.

Nitrogen isotopes are different forms of the nitrogen element (N), which have varying numbers of neutrons in their atomic nuclei. The most common nitrogen isotope is N-14, which contains 7 protons and 7 neutrons in its nucleus. However, there are also heavier stable isotopes such as N-15, which contains one extra neutron.

In medical terms, nitrogen isotopes can be used in research and diagnostic procedures to study various biological processes. For example, N-15 can be used in a technique called "nitrogen-15 nuclear magnetic resonance (NMR) spectroscopy" to investigate the metabolism of nitrogen-containing compounds in the body. Additionally, stable isotope labeling with nitrogen-15 has been used in clinical trials and research studies to track the fate of drugs and nutrients in the body.

In some cases, radioactive nitrogen isotopes such as N-13 or N-16 may also be used in medical imaging techniques like positron emission tomography (PET) scans to visualize and diagnose various diseases and conditions. However, these applications are less common than the use of stable nitrogen isotopes.

Nitrogen compounds are chemical substances that contain nitrogen, which is a non-metal in group 15 of the periodic table. Nitrogen forms compounds with many other elements due to its ability to form multiple bonds, including covalent bonds with hydrogen, oxygen, carbon, sulfur, and halogens.

Nitrogen can exist in several oxidation states, ranging from -3 to +5, which leads to a wide variety of nitrogen compounds with different properties and uses. Some common examples of nitrogen compounds include:

* Ammonia (NH3), a colorless gas with a pungent odor, used in fertilizers, cleaning products, and refrigeration systems.
* Nitric acid (HNO3), a strong mineral acid used in the production of explosives, dyes, and fertilizers.
* Ammonium nitrate (NH4NO3), a white crystalline solid used as a fertilizer and explosive ingredient.
* Hydrazine (N2H4), a colorless liquid with a strong odor, used as a rocket fuel and reducing agent.
* Nitrous oxide (N2O), a colorless gas used as an anesthetic and laughing gas in dental procedures.

Nitrogen compounds have many important applications in various industries, such as agriculture, pharmaceuticals, chemicals, and energy production. However, some nitrogen compounds can also be harmful or toxic to humans and the environment if not handled properly.

Nitric Oxide Synthase Type II (NOS2), also known as Inducible Nitric Oxide Synthase (iNOS), is an enzyme that catalyzes the production of nitric oxide (NO) from L-arginine. Unlike other isoforms of NOS, NOS2 is not constitutively expressed and its expression can be induced by various stimuli such as cytokines, lipopolysaccharides, and bacterial products. Once induced, NOS2 produces large amounts of NO, which plays a crucial role in the immune response against invading pathogens. However, excessive or prolonged production of NO by NOS2 has been implicated in various pathological conditions such as inflammation, septic shock, and neurodegenerative disorders.

Macrophage activation is a process in which these immune cells become increasingly active and responsive to various stimuli, such as pathogens or inflammatory signals. This activation triggers a series of changes within the macrophages, allowing them to perform important functions like phagocytosis (ingesting and destroying foreign particles or microorganisms), antigen presentation (presenting microbial fragments to T-cells to stimulate an immune response), and production of cytokines and chemokines (signaling molecules that help coordinate the immune response).

There are two main types of macrophage activation: classical (or M1) activation and alternative (or M2) activation. Classical activation is typically induced by interferon-gamma (IFN-γ) and lipopolysaccharide (LPS), leading to a proinflammatory response, enhanced microbicidal activity, and the production of reactive oxygen and nitrogen species. Alternative activation, on the other hand, is triggered by cytokines like interleukin-4 (IL-4) and IL-13, resulting in an anti-inflammatory response, tissue repair, and the promotion of wound healing.

It's important to note that macrophage activation plays a crucial role in various physiological and pathological processes, including immune defense, inflammation, tissue remodeling, and even cancer progression. Dysregulation of macrophage activation has been implicated in several diseases, such as autoimmune disorders, chronic infections, and cancer.

I'm sorry for any confusion, but "nitrogen cycle" is not a medical term. It is a biological concept that refers to the process through which nitrogen, an essential element for life, is converted between various chemical forms as it circulates through the atmosphere, terrestrial ecosystems, and aquatic environments.

The nitrogen cycle includes several key processes:

1. Nitrogen fixation: Certain bacteria are capable of converting atmospheric nitrogen (N2) into ammonia (NH3), a form that can be used by plants and other organisms. This process is called nitrogen fixation.
2. Nitrification: Some types of bacteria convert ammonia into nitrites (NO2-) and then into nitrates (NO3-). This two-step process is known as nitrification.
3. Denitrification: Certain bacteria can convert nitrates back into nitrogen gas, releasing it into the atmosphere. This process is called denitrification.
4. Assimilation: Plants and other organisms take up nitrogen in the form of ammonia or nitrates from the soil or water and incorporate it into their tissues through a process called assimilation.
5. Ammonification: When organisms die and decompose, or when they excrete waste products, nitrogen is released back into the environment in the form of ammonia. This process is known as ammonification.

While not a medical term, understanding the nitrogen cycle is important for many areas of science, including environmental science, agriculture, and ecology.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

Blood Urea Nitrogen (BUN) is a laboratory value that measures the amount of urea nitrogen in the blood. Urea nitrogen is a waste product that is formed when proteins are broken down in the liver. The kidneys filter urea nitrogen from the blood and excrete it as urine.

A high BUN level may indicate impaired kidney function, as the kidneys are not effectively removing urea nitrogen from the blood. However, BUN levels can also be affected by other factors such as dehydration, heart failure, or gastrointestinal bleeding. Therefore, BUN should be interpreted in conjunction with other laboratory values and clinical findings.

The normal range for BUN is typically between 7-20 mg/dL (milligrams per deciliter) or 2.5-7.1 mmol/L (millimoles per liter), but the reference range may vary depending on the laboratory.

I'm sorry for any confusion, but "oxides" is not a term that has a specific medical definition. Oxides are a class of chemical compounds that contain at least one oxygen atom and one other element. They can be formed through the process of oxidation, which involves the combination of oxygen with another substance.

In a broader sense, you might encounter the term "oxide" in a medical context when discussing various materials or substances used in medical devices, treatments, or research. For instance, titanium dioxide is a common ingredient in medical-grade sunscreens due to its ability to block and scatter UV light. However, it's important to note that the term "oxides" itself doesn't have a direct connection to medicine or human health.

Reactive Nitrogen Species (RNS) are a group of highly reactive and chemically diverse molecules that are derived from nitric oxide (NO) or other nitrogen-containing compounds. They play important roles in various biological processes, such as cell signaling, neurotransmission, and immune response. However, an overproduction of RNS can also contribute to the development of several pathological conditions, including inflammation, neurodegenerative diseases, and cancer. Examples of RNS include nitric oxide (NO), peroxynitrite (ONOO-), and nitrogen dioxide (NO2). These species are generated through various biochemical reactions, such as the conversion of L-arginine to citrulline by nitric oxide synthase (NOS) enzymes, which leads to the production of NO. RNS can then react with other molecules in the body, such as reactive oxygen species (ROS), leading to the formation of harmful compounds that can damage cellular structures and disrupt normal physiological functions.

Nitric Oxide Synthase Type III (NOS-III), also known as endothelial Nitric Oxide Synthase (eNOS), is an enzyme responsible for the production of nitric oxide (NO) in the endothelium, the lining of blood vessels. This enzyme catalyzes the conversion of L-arginine to L-citrulline, producing NO as a byproduct. The release of NO from eNOS plays an important role in regulating vascular tone and homeostasis, including the relaxation of smooth muscle cells in the blood vessel walls, inhibition of platelet aggregation, and modulation of immune function. Mutations or dysfunction in NOS-III can contribute to various cardiovascular diseases such as hypertension, atherosclerosis, and erectile dysfunction.

Mixed oxides of nitrogen (MON) are solutions of nitric oxide (NO) in dinitrogen tetroxide/nitrogen dioxide (N2O4 and NO2). It ... Articles with short description, Short description is different from Wikidata, Chemical mixtures, Nitrogen compounds, Nitrogen ... nitric oxide, MON25 25% nitric oxide). An upper limit is MON40 (40% by weight). In Europe MON 1.3 is mostly used for rocket ... The freezing point of pure nitrogen tetroxide is −9 °C (16 °F), while MON3 is −15 °C (5 °F) and MON25 is −55 °C (−67 °F). ...
Nitrogen dioxide and nitric oxide have been found in at least 9 and 6 of the 1,585 National Priorities List sites identified by ... Exposure to high levels of nitrogen oxides can damage the respiratory airways. Contact with the skin or eyes can cause burns. ... Everybody is exposed to small amounts of nitrogen oxides in ambient air. Higher exposure may occur by burning wood or kerosene ... What are nitrogen oxides?. Nitrogen oxides are a mixture of gases that are composed of nitrogen and oxygen. Two of the most ...
Nitrogen oxides are used in the production of nitric acid, lacquers, dyes, and other chemicals. Nitrogen oxides are also used ... Two of the most toxicologically significant nitrogen oxides are nitric oxide and nitrogen dioxide; both are nonflammable and ... Nitric oxide is a sharp sweet-smelling gas at room temperature, whereas nitrogen dioxide has a strong, harsh odor and is a ... Nitrogen oxides are released to the air from the exhaust of motor vehicles, the burning of coal, oil, or natural gas, and ...
... nitrogen oxide (NOx) emissions are controlled through emission standards for marine diesel engines with a power output greater ... Reduction of nitrogen oxide emissions from marine diesel engines. Globally, nitrogen oxide (NOx) emissions are controlled ... Since the 2000s, Nitrogen oxide (NOx) emissions from vessels have been regulated through the International Maritime ... Reduction of nitrogen oxide emissions from marine diesel engines. ...
Diesel SUVs emitting 25-65 times nitrogen oxides than small petrol car: Study. Hindustan Times , ByHT Correspondent, New Delhi ... "Adding one diesel SUV to the city fleet in Delhi-NCR is equal to adding 25 to 65 small petrol cars in terms of nitrogen oxide, ... News / Cities / Delhi News / Diesel SUVs emitting 25-65 times nitrogen oxides than small petrol car: Study ...
Nitrogen oxide - Annual limit value for the protection of vegetation This website has limited functionality with javascript off ... This page was archived on 04 Sep 2014 with reason: Other (New version data-and-maps/figures/nitrogen-oxide-annual-limit-value- ... data-and-maps/figures/ga-downloads/5F01DE44-F4BD-44DD-9F4C-0F8EB336D4CA/nitrogen-oxide-annual-limit-value-for-the-protection-of ... 12 Nov 2009 - Nitrogen oxide 2007. Annual limit value for the protection of vegetation ...
Listing of chemicals Nitrogen mustard oxide hy through Nocceler H with links to more detailed information for each chemical. ... Nitrogen oxide*Nitrogen oxide (N2O) *Nitrogen oxide (N2O) [QR]*Nitrogen Oxide (N2o3) *Nitrogen Oxide (N2o4) *Nitrogen oxide (NO ... Nitrogen oxide (NO) [QR]*Nitrogen oxide (NO2) *Nitrogen oxide (NO2) [QR]*Nitrogen oxide (NOx) *Nitrogen oxide cation*Nitrogen ... Nitrogen oxide [QR]*Nitrogen oxide, ion*Nitrogen oxychloride*Nitrogen oxychloride (NOCl) *Nitrogen peroxide*Nitrogen peroxide ...
The purpose of NOx regulations is to reduce the emission of nitrogen oxide (NOx) from ships since it contributes to air ... Nitrogen oxide (NOx) The purpose of NOx regulations is to reduce the emission of nitrogen oxide (NOx) from ships since it ...
Home Daily News Auto Parts Manufacturer Faurecia Acquires Amminex to Accelerate Nitrogen Oxide Reduction for... ... Auto Parts Manufacturer Faurecia Acquires Amminex to Accelerate Nitrogen Oxide Reduction for Vehicles. By ... which can almost completely eliminate nitrogen oxide pollutants from diesel engines. ...
... but increasing concentrations of nitrous oxide over the past two centuries have also contributed significantly to climate ... Nitrous Oxide (N2O) is an important greenhouse gas that is often overshadowed by the focus on Carbon Dioxide (CO2), ... New methods to measure global Nitrous Oxide (N2O) emissions show that synthetic nitrogen fertilizer in croplands is a ... New methods to measure global Nitrous Oxide (N2O) emissions show that synthetic nitrogen fertilizer in croplands is a ...
Nano-scale investigation of the association of microbial nitrogen residues with iron (hydr)oxides in a forest soil O-horizon. ... Nano-scale investigation of the association of microbial nitrogen residues with iron (hydr)oxides in a forest soil O-horizon. ... Nano-scale investigation of the association of microbial nitrogen residues with iron (hydr)oxides in a forest soil O-horizon ...
... the standard method for the measurement of nitrogen oxides (EN 14211). QAL1 certified by the TÜV, US-EPA approved. With its ... the standard method for the measurement of nitrogen oxides (EN 14211). QAL1 certified by the TÜV, US-EPA approved. With its ...
... reduce nitrogen oxide (NOx) emissions and comply with a stringent new emissions standard. ... Sulzer develops gas turbine solution for Chinese powerplant to reduce nitrogen oxide emissions by 120 tonnes per year pdf ... Sulzer develops gas turbine solution for Chinese powerplant to reduce nitrogen oxide emissions by 120 tonnes per year Sulzer ... reduce nitrogen oxide (NOx) emissions and comply with a stringent new emissions standard. ...
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience ...
Are black cabs responsible for nearly a fifth of central Londons road transport Nitrogen Oxide emissions?. Ask Question ... black taxis are responsible for 18 per cent of road transport nitrogen oxide emissions in central London." ...
... with nitrogen oxide standards ??? Is Biden targetting small businesses, truckers & farmers, with nitrogen oxide standards ??? ... Andrew John of the John N John Trucking Company warned that the costs associated with the nitrogen oxide standards could kill ... Forums , Owner Operators , Ask An Owner Operator , Is Biden targetting small businesses, truckers & farmers, with nitrogen ...
... results is presented in the form of a comparison between a comprehensive model with focus on the modelling of nitrogen oxide ... Modelling of emissions of nitrogen oxides from circulating fluidized bed combustors Övrigt konferensbidrag, 2003 ... results is presented in the form of a comparison between a comprehensive model with focus on the modelling of nitrogen oxide ...
Three-dimensional nitrogen and sulfur co-doped holey-reduced graphene oxide frameworks anchored with MoO2 nanodots for advanced ... Three-dimensional nitrogen and sulfur co-doped holey-reduced graphene oxide frameworks anchored with MoO2 nanodots for advanced ... First, the NP-NSG is formed via hydrothermal treatment using graphene oxide, hydrogen peroxide (H2O2), and thiourea as the co- ... the synergistic effect contribution from N and S co-doped in the reduced graphene oxide (rGO), and the uniform distribution of ...
Introduction to special section: Subsonic Assessment Ozone and Nitrogen Oxide.... Thompson, A. M., H. Singh, and H. Schlager ( ... Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX) and Pollution from Aircraft Emissions in the North Atlantic ...
... nitrogen dioxide) Cite CITE. Title : Nitrogen oxides : CAS#: 10102-43-9 (nitric oxide); #10102-44-0 (nitrogen dioxide) ... Nitrogen oxides : CAS#: 10102-43-9 (nitric oxide); #10102-44-0 (nitrogen dioxide) [Spanish] Esta hoja informativa contesta las ... 2002). Nitrogen oxides : CAS#: 10102-43-9 (nitric oxide); #10102-44-0 (nitrogen dioxide). United States. Agency for Toxic ... "Nitrogen oxides : CAS#: 10102-43-9 (nitric oxide); #10102-44-0 (nitrogen dioxide)" (2002). United States. Agency for Toxic ...
Compounds and Properties of Nitrogen. By Dr. Vikas Jasrotia. December 7, 2020. ... Compounds and Properties of Nitrogen Dinitrogen Preparation of Dinitrogen: Dinitrogen is produced commercially by the ... Home » Oxides of Nitrogen. Browsing: Oxides of Nitrogen Class 12 ...
The removal of nitrogen oxides present in the gases emitted from sources such as electric power generation boilers, stationary ... Reduction of Nitrogen Oxides by Hydrocarbons Performance of Platinum Metals Catalysts Investigated ... The addition of some hydrocarbons to the exhaust is necessary to compensate for the greater amount of nitrogen oxides generally ... "Performance of Platinum-Group Metal Catalysts for the Selective Reduction of Nitrogen Oxides by Hydrocarbons", Appl. Catal. B: ...
Nitric oxide (NO):. Nitric oxide (nitrogen oxide or nitrogen monoxide) is a colorless gas with the formula NO. It is one of the ... Nitric oxide reacts with the hydroperoxy radical (HO2•) to form nitrogen dioxide (NO2), which then can react with a hydroxyl ... In this process, nitric oxide reacts with stratospheric ozone to form O2 and nitrogen dioxide:. As seen in the Concentration ... As seen in the Acid deposition section, nitric oxide can transform into nitrogen dioxide (this can happen with the hydroperoxy ...
In 2021, nitrogen oxide emissions amounted to 142.1 thousand tonnes of nitrogen dioxide in Belgium. To achieve the sustainable ... Nitrogen oxide emissions (NOx) measure the total NOx emissions on Belgian territory, expressed in kilotonnes of nitrogen ... This objective will be reached by continuing the trend since 2000 (data available in April 2023). The nitrogen oxide emissions ... Goal: Nitrogen oxide emissions must decrease by 59% between 2005 and 2030. ...
5WK9 6749 5WK96749 4326872 Nitrogen Oxide NOx Sensor Free Shipping by DHL(3-4days to US&CA). Application:. for Cummins 4B3.9 ... 5WK9 6749 5WK96749 4326872 Nitrogen Oxide NOx Sensor 12V for Cummins 4B3.9 B4.5 6B5.9 B6.7 ISB QSB. Save $-190.80 ... nitrogen oxide NOx oxygen sensor Outlet- 915mm ... nitrogen oxide NOx oxygen sensor Outlet- 915mm. Condition:New, ...
... on a cerium oxide-based product used to reduce nitrogen oxide emissions in diesel vehicle engines. ... Neo Chemicals & Oxides Ltd. won a major court decision in Germany last week as the Federal Patent Court in Munich revoked the ...
Nitrogen Oxiode Gas probe, including 1.5 meter connecting cable, for measuring gas in air. Measuring Range 0-50ppm. ... Nitrogen Oxide Gas Probe. Home/Industry/Ahlborn/Almemo Sensors/Gas Concentration/Nitrogen Oxide Gas Probe. Return to Previous ... Nitrogen Dioxide Gas Probe. Nitrogen Dioxiode Gas probe, including 1.5 meter connecting cable, for measuring gas in air. ... Nitrogen Oxiode Gas probe, including 1.5 meter connecting cable, for measuring gas in air. Measuring Range 0-50ppm. ...
Smog can also contain sulphur dioxide, nitrogen dioxide, total reduced sulphur, and carbon monoxide. ... Nitrogen Oxides (NOx). Nitrogen oxide is a reddish-brown gas that smells foul. ... Ground-level ozone is not emitted directly into the air, but forms when nitrogen oxide and volatile organic compounds (VOCs) ... Smog can also contain sulphur dioxide, nitrogen dioxide, total reduced sulphur, and carbon monoxide. ...
Nitrogen Oxides: What is NOx , E … Nitrogen Oxides: What is NO x? Nitrogen Oxides (mainly NO and NO 2), or NO x, is the generic ... NO x is a generic term for the nitrogen oxides that are most relevant for air pollution, namely nitric oxide (NO) and nitrogen ... Low Nitrogen Oxide boiler. Jenny Wu , , Updated: NOx - Wikipedia In atmospheric chemistry, ... Nitrogen Family - examples, body, used, water, process, Earth … The nitrogen family consists of the five elements that make up ...

No FAQ available that match "nitrogen oxides"

No images available that match "nitrogen oxides"