The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures.
Three-dimensional representation to show anatomic structures. Models may be used in place of intact animals or organisms for teaching, practice, and study.
The scientific discipline concerned with the physiology of the nervous system.
The study of the composition, chemical structures, and chemical reactions of the NERVOUS SYSTEM or its components.
The study of the structures of organisms for applications in art: drawing, painting, sculpture, illustration, etc.
The life of a person written by himself or herself. (Harrod's Librarians' Glossary, 7th ed)
Collections of illustrative plates, charts, etc., usually with explanatory captions.
The study of the structure, growth, activities, and functions of NEURONS and the NERVOUS SYSTEM.
A technique of inputting two-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer.
The scientific disciplines concerned with the embryology, anatomy, physiology, biochemistry, pharmacology, etc., of the nervous system.
The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed)
Neural tracts connecting one part of the nervous system with another.
Study of the anatomy of the nervous system as a specialty or discipline.
Methods for visualizing REGIONAL BLOOD FLOW, metabolic, electrical, or other physiological activities in the CENTRAL NERVOUS SYSTEM using various imaging modalities.
The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulchi. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions.
Non-invasive methods of visualizing the CENTRAL NERVOUS SYSTEM, especially the brain, by various imaging modalities.
Tomography using radioactive emissions from injected RADIONUCLIDES and computer ALGORITHMS to reconstruct an image.
A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction.
Lower lateral part of the cerebral hemisphere responsible for auditory, olfactory, and semantic processing. It is located inferior to the lateral fissure and anterior to the OCCIPITAL LOBE.
Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.
The process of generating three-dimensional images by electronic, photographic, or other methods. For example, three-dimensional images can be generated by assembling multiple tomographic images with the aid of a computer, while photographic 3-D images (HOLOGRAPHY) can be made by exposing film to the interference pattern created when two laser light sources shine on an object.
Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
Subjectively experienced sensations in the absence of an appropriate stimulus, but which are regarded by the individual as real. They may be of organic origin or associated with MENTAL DISORDERS.
Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot.
The process of pictorial communication, between human and computers, in which the computer input and output have the form of charts, drawings, or other appropriate pictorial representation.
Intellectual or mental process whereby an organism obtains knowledge.
The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus.
The SKELETON of the HEAD including the FACIAL BONES and the bones enclosing the BRAIN.
Unstable isotopes of oxygen that decay or disintegrate emitting radiation. O atoms with atomic weights 13, 14, 15, 19, and 20 are radioactive oxygen isotopes.
The rostral part of the frontal lobe, bounded by the inferior precentral fissure in humans, which receives projection fibers from the MEDIODORSAL NUCLEUS OF THE THALAMUS. The prefrontal cortex receives afferent fibers from numerous structures of the DIENCEPHALON; MESENCEPHALON; and LIMBIC SYSTEM as well as cortical afferents of visual, auditory, and somatic origin.
Dominance of one cerebral hemisphere over the other in cerebral functions.
Posterior portion of the CEREBRAL HEMISPHERES responsible for processing visual sensory information. It is located posterior to the parieto-occipital sulcus and extends to the preoccipital notch.
Tests designed to assess neurological function associated with certain behaviors. They are used in diagnosing brain dysfunction or damage and central nervous system disorders or injury.
Communication through a system of conventional vocal symbols.
A severe emotional disorder of psychotic depth characteristically marked by a retreat from reality with delusion formation, HALLUCINATIONS, emotional disharmony, and regressive behavior.
The educational process of instructing.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity.
The observable response of a man or animal to a situation.
Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system.
Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells.
Relatively permanent change in behavior that is the result of past experience or practice. The concept includes the acquisition of knowledge.
Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain.
Methods developed to aid in the interpretation of ultrasound, radiographic images, etc., for diagnosis of disease.
Study of mental processes and behavior of schizophrenics.
Those characteristics that distinguish one SEX from the other. The primary sex characteristics are the OVARIES and TESTES and their related hormones. Secondary sex characteristics are those which are masculine or feminine but not directly related to reproduction.
The coordination of a sensory or ideational (cognitive) process and a motor activity.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex.
Those affective states which can be experienced and have arousing and motivational properties.
The selecting and organizing of visual stimuli based on the individual's past experience.
The circulation of blood through the BLOOD VESSELS of the BRAIN.
A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation.
The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills.
The measurement of an organ in volume, mass, or heaviness.
The observable response an animal makes to any situation.
The time from the onset of a stimulus until a response is observed.
The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior.
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
Use of sound to elicit a response in the nervous system.
Focusing on certain aspects of current experience to the exclusion of others. It is the act of heeding or taking notice or concentrating.

Progress and perspectives in computational neuroanatomy. (1/156)

The tremendous increase in processing power of personal computers has recently allowed the construction of highly sophisticated models of neuronal function and behavior. Anatomy plays a fundamental role in supporting and shaping nervous system activity, yet to date most details of such a role have escaped the efforts of experimental and theoretical neuroscientists, mainly because of the problem's complexity. When accurate cellular morphologies are included in electrophysiological computer simulations, quantitative and qualitative effects of dendritic structure on firing properties can be extensively characterized. Complete models of dendritic morphology can be implemented to allow the computer generation of virtual neurons that model the anatomical characteristics of their real counterparts to a great degree of approximation. From a restricted and already available experimental database, stochastic and statistical algorithms can create an unlimited number of non-identical virtual neurons within several mammalian morphological classes, storing them in a compact and parsimonious format. When modeled neurons are distributed in three-dimensional and biologically plausible rules governing axonal navigation and connectivity are added to the simulations, entire portions of the nervous system can be "grown" as anatomically realistic neural networks. These computational constructs are useful to determine the influence of local geometry on system neuroanatomy, and to investigate systematically the mutual interactions between anatomical parameters and electrophysiological activity at the network level. A detailed computer model of a "virtual brain" that was truly equivalent to the biological structure could in principle allow scientists to carry out experiments that could not be performed on real nervous systems because of physical constraints. The computational approach to neuroanatomy is just at its beginning, but has a great potential to enhance the intuition of investigators and to aid neuroscience education. Anat Rec (New Anat): 257:195-207, 1999.  (+info)

Professor Edward George Gray, FRS (1924-1999). (2/156)

Professor George Gray, who died in August 1999, had a notable career as a pioneer electron microscopist of neural tissues. His name is still attached to synapses, which can be classified as Gray type 1 (symmetric) or type 2 (asymmetric), and in addition he made a number of other profound contributions to our knowledge of synaptic structures.He started his academic career late, having worked before the second World War as a bank clerk, and then serving in the Navy, patrolling for U-boats in the North Sea and Atlantic for 4 years during the latter part of the war. He had an early interest in zoology, particularly in marine biology and microscopy and when he left the Navy he took the opportunity to work for a degree in Zoology at the University of Wales in Aberystwyth. A first class honours degree was followed by a PhD on melanophores in teleosts. It was fortunate that the external examiner for the thesis was J. Z. Young, who was impressed by the work and by George, and who invited George to work as his assistant in the preparation of The Life of the Mammals in the Anatomy Department at University College London.  (+info)

A four-dimensional probabilistic atlas of the human brain. (3/156)

The authors describe the development of a four-dimensional atlas and reference system that includes both macroscopic and microscopic information on structure and function of the human brain in persons between the ages of 18 and 90 years. Given the presumed large but previously unquantified degree of structural and functional variance among normal persons in the human population, the basis for this atlas and reference system is probabilistic. Through the efforts of the International Consortium for Brain Mapping (ICBM), 7,000 subjects will be included in the initial phase of database and atlas development. For each subject, detailed demographic, clinical, behavioral, and imaging information is being collected. In addition, 5,800 subjects will contribute DNA for the purpose of determining genotype- phenotype-behavioral correlations. The process of developing the strategies, algorithms, data collection methods, validation approaches, database structures, and distribution of results is described in this report. Examples of applications of the approach are described for the normal brain in both adults and children as well as in patients with schizophrenia. This project should provide new insights into the relationship between microscopic and macroscopic structure and function in the human brain and should have important implications in basic neuroscience, clinical diagnostics, and cerebral disorders.  (+info)

BrainImageJ: a Java-based framework for interoperability in neuroscience, with specific application to neuroimaging. (4/156)

The Human Brain Project consortium continues to struggle with effective sharing of tools. To facilitate reuse of its tools, the Stanford Psychiatry Neuroimaging Laboratory (SPNL) has developed BrainImageJ, a new software framework in Java. The framework consists of two components-a set of four programming interfaces and an application front end. The four interfaces define extension pathways for new data models, file loaders and savers, algorithms, and visualization tools. Any Java class that implements one of these interfaces qualifies as a BrainImageJ plug-in-a self-contained tool. After automatically detecting and incorporating new plug-ins, the application front end transparently generates graphical user interfaces that provide access to plug-in functionality. New plug-ins interoperate with existing ones immediately through the front end. BrainImageJ is used at the Stanford Psychiatry Neuroimaging Laboratory to develop image-analysis algorithms and three-dimensional visualization tools. It is the goal of our development group that, once the framework is placed in the public domain, it will serve as an interlaboratory platform for designing, distributing, and using interoperable tools.  (+info)

An integrated software suite for surface-based analyses of cerebral cortex. (5/156)

The authors describe and illustrate an integrated trio of software programs for carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit (Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical segmentation, volume visualization, surface generation, and the mapping of functional neuroimaging data onto surfaces. The second component, Caret (Computerized Anatomical Reconstruction and Editing Tool Kit), provides a wide range of surface visualization and analysis options as well as capabilities for surface flattening, surface-based deformation, and other surface manipulations. The third component, SuMS (Surface Management System), is a database and associated user interface for surface-related data. It provides for efficient insertion, searching, and extraction of surface and volume data from the database.  (+info)

Generation, description and storage of dendritic morphology data. (6/156)

It is generally assumed that the variability of neuronal morphology has an important effect on both the connectivity and the activity of the nervous system, but this effect has not been thoroughly investigated. Neuroanatomical archives represent a crucial tool to explore structure-function relationships in the brain. We are developing computational tools to describe, generate, store and render large sets of three-dimensional neuronal structures in a format that is compact, quantitative, accurate and readily accessible to the neuroscientist. Single-cell neuroanatomy can be characterized quantitatively at several levels. In computer-aided neuronal tracing files, a dendritic tree is described as a series of cylinders, each represented by diameter, spatial coordinates and the connectivity to other cylinders in the tree. This 'Cartesian' description constitutes a completely accurate mapping of dendritic morphology but it bears little intuitive information for the neuroscientist. In contrast, a classical neuroanatomical analysis characterizes neuronal dendrites on the basis of the statistical distributions of morphological parameters, e.g. maximum branching order or bifurcation asymmetry. This description is intuitively more accessible, but it only yields information on the collective anatomy of a group of dendrites, i.e. it is not complete enough to provide a precise 'blueprint' of the original data. We are adopting a third, intermediate level of description, which consists of the algorithmic generation of neuronal structures within a certain morphological class based on a set of 'fundamental', measured parameters. This description is as intuitive as a classical neuroanatomical analysis (parameters have an intuitive interpretation), and as complete as a Cartesian file (the algorithms generate and display complete neurons). The advantages of the algorithmic description of neuronal structure are immense. If an algorithm can measure the values of a handful of parameters from an experimental database and generate virtual neurons whose anatomy is statistically indistinguishable from that of their real counterparts, a great deal of data compression and amplification can be achieved. Data compression results from the quantitative and complete description of thousands of neurons with a handful of statistical distributions of parameters. Data amplification is possible because, from a set of experimental neurons, many more virtual analogues can be generated. This approach could allow one, in principle, to create and store a neuroanatomical database containing data for an entire human brain in a personal computer. We are using two programs, L-NEURON and ARBORVITAE, to investigate systematically the potential of several different algorithms for the generation of virtual neurons. Using these programs, we have generated anatomically plausible virtual neurons for several morphological classes, including guinea pig cerebellar Purkinje cells and cat spinal cord motor neurons. These virtual neurons are stored in an online electronic archive of dendritic morphology. This process highlights the potential and the limitations of the 'computational neuroanatomy' strategy for neuroscience databases.  (+info)

A graphical anatomical database of neural connectivity. (7/156)

We describe a graphical anatomical database program, called XANAT (so named because it was developed under the X window system in UNIX), that allows the results of numerous studies on neuroanatomical connections to be stored, compared and analysed in a standardized format. Data are entered into the database by drawing injection and label sites from a particular tracer study directly onto canonical representations of the neuroanatomical structures of interest, along with providing descriptive text information. Searches may then be performed on the data by querying the database graphically, for example by specifying a region of interest within the brain for which connectivity information is desired, or via text information, such as keywords describing a particular brain region, or an author name or reference. Analyses may also be performed by accumulating data across multiple studies and displaying a colour-coded map that graphically represents the total evidence for connectivity between regions. Thus, data may be studied and compared free of areal boundaries (which often vary from one laboratory to the next), and instead with respect to standard landmarks, such as the position relative to well-known neuro-anatomical substrates or stereotaxic coordinates. If desired, areal boundaries may also be defined by the user to facilitate the interpretation of results. We demonstrate the application of the database to the analysis of pulvinar-cortical connections in the macaque monkey, for which the results of over 120 neuro-anatomical experiments were entered into the database. We show how these techniques can be used to elucidate connectivity trends and patterns that may otherwise go unnoticed.  (+info)

Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). (8/156)

The need to integrate massively increasing amounts of data on the mammalian brain has driven several ambitious neuroscientific database projects that were started during the last decade. Databasing the brain's anatomical connectivity as delivered by tracing studies is of particular importance as these data characterize fundamental structural constraints of the complex and poorly understood functional interactions between the components of real neural systems. Previous connectivity databases have been crucial for analysing anatomical brain circuitry in various species and have opened exciting new ways to interpret functional data, both from electrophysiological and from functional imaging studies. The eventual impact and success of connectivity databases, however, will require the resolution of several methodological problems that currently limit their use. These problems comprise four main points: (i) objective representation of coordinate-free, parcellation-based data, (ii) assessment of the reliability and precision of individual data, especially in the presence of contradictory reports, (iii) data mining and integration of large sets of partially redundant and contradictory data, and (iv) automatic and reproducible transformation of data between incongruent brain maps. Here, we present the specific implementation of the 'collation of connectivity data on the macaque brain' (CoCoMac) database (http://www.cocomac.org). The design of this database addresses the methodological challenges listed above, and focuses on experimental and computational neuroscientists' needs to flexibly analyse and process the large amount of published experimental data from tracing studies. In this article, we explain step-by-step the conceptual rationale and methodology of CoCoMac and demonstrate its practical use by an analysis of connectivity in the prefrontal cortex.  (+info)

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

Brain mapping is a broad term that refers to the techniques used to understand the structure and function of the brain. It involves creating maps of the various cognitive, emotional, and behavioral processes in the brain by correlating these processes with physical locations or activities within the nervous system. Brain mapping can be accomplished through a variety of methods, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET) scans, electroencephalography (EEG), and others. These techniques allow researchers to observe which areas of the brain are active during different tasks or thoughts, helping to shed light on how the brain processes information and contributes to our experiences and behaviors. Brain mapping is an important area of research in neuroscience, with potential applications in the diagnosis and treatment of neurological and psychiatric disorders.

Anatomic models are three-dimensional representations of body structures used for educational, training, or demonstration purposes. They can be made from various materials such as plastic, wax, or rubber and may depict the entire body or specific regions, organs, or systems. These models can be used to provide a visual aid for understanding anatomy, physiology, and pathology, and can be particularly useful in situations where actual human specimens are not available or practical to use. They may also be used for surgical planning and rehearsal, as well as in medical research and product development.

Neurophysiology is a branch of physiology that deals with the study of the functioning of the nervous system and its components, including the neurons, neurotransmitters, and electrical signals that transmit information within the nervous system. It involves the examination of various aspects such as nerve impulse transmission, sensory processes, muscle activation, and brain function using techniques like electroencephalography (EEG), electromyography (EMG), and nerve conduction studies. The findings from neurophysiological studies can be applied to diagnose and manage neurological disorders and injuries.

Neurochemistry is a branch of neuroscience that deals with the study of biochemical processes and molecules, including neurotransmitters, neuropeptides, neuromodulators, enzymes, and receptors, that are involved in the functioning and integration of the nervous system. It investigates how these chemicals contribute to various brain functions such as cognition, memory, emotion, behavior, and perception. Additionally, neurochemistry examines the alterations in these chemical processes associated with neurological disorders and psychiatric illnesses, providing insights into potential therapeutic targets for treatments.

"Anatomy, Artistic" is not a medical term per se, but rather a term used to describe the representation of the human body in art based on anatomical knowledge. It involves the depiction of the human form with accurate proportions, shapes, and structures of bones, muscles, and other tissues, often for educational or aesthetic purposes. Artistic anatomy is studied by artists, medical illustrators, and other professionals who need to understand the human body's structure to create realistic and accurate representations.

An autobiography is a type of literature that describes the personal life experiences of an individual, written by that individual. It typically includes details about their upbringing, education, career, relationships, and other significant events in their life. The author may also reflect on their thoughts, feelings, and motivations during these experiences, providing insight into their personality and character.

Autobiographies can serve various purposes, such as sharing one's story with others, leaving a legacy for future generations, or exploring one's personal growth and development. They can be written in different styles, from straightforward and factual to introspective and reflective.

It is important to note that autobiographies are not always entirely accurate, as memory can be selective or distorted. Additionally, some individuals may choose to embellish or exaggerate certain aspects of their lives for dramatic effect or to protect the privacy of others. Nonetheless, autobiographies remain a valuable source of information about an individual's life and experiences.

An "atlas" in the medical context refers to a collection of anatomical plates or illustrations, often accompanied by detailed descriptions or explanations. A medical atlas is a type of textbook that focuses primarily on providing visual representations of human anatomy, physiology, or pathology. These atlases are used by medical students, healthcare professionals, and researchers to learn about the structure and function of the human body, as well as to identify and understand various diseases and conditions.

Medical atlases can cover a wide range of topics, including gross anatomy, histology (the study of tissues), embryology (the study of embryonic development), pathology (the study of disease), and radiology (the use of medical imaging to diagnose and treat diseases). Some atlases may focus on specific regions or systems of the body, such as the nervous system, musculoskeletal system, or cardiovascular system.

Medical atlases are often used in conjunction with other educational materials, such as textbooks, lectures, and hands-on dissections. They can be a valuable resource for students and practitioners seeking to deepen their understanding of human anatomy and related fields.

Neurobiology is not strictly a medical term, but rather a field of study that investigates the interconnections between the nervous system and living organisms' biological processes. It is a multidisciplinary area that combines neuroscience, biology, chemistry, and physics to understand how the brain and nervous system function at molecular, cellular, and systems levels.

In medical contexts, neurobiological concepts are often applied to understand the underlying mechanisms of various neurological and psychiatric disorders, develop diagnostic tools, and design treatment strategies. For instance, research in neurobiology may explore how genetic factors contribute to neurodevelopmental disorders like autism or how molecular changes in the brain lead to neurodegenerative diseases such as Alzheimer's and Parkinson's.

In summary, neurobiology is a scientific discipline concerned with understanding the biological basis of nervous system function, which has significant implications for medical research and practice.

Computer-assisted image processing is a medical term that refers to the use of computer systems and specialized software to improve, analyze, and interpret medical images obtained through various imaging techniques such as X-ray, CT (computed tomography), MRI (magnetic resonance imaging), ultrasound, and others.

The process typically involves several steps, including image acquisition, enhancement, segmentation, restoration, and analysis. Image processing algorithms can be used to enhance the quality of medical images by adjusting contrast, brightness, and sharpness, as well as removing noise and artifacts that may interfere with accurate diagnosis. Segmentation techniques can be used to isolate specific regions or structures of interest within an image, allowing for more detailed analysis.

Computer-assisted image processing has numerous applications in medical imaging, including detection and characterization of lesions, tumors, and other abnormalities; assessment of organ function and morphology; and guidance of interventional procedures such as biopsies and surgeries. By automating and standardizing image analysis tasks, computer-assisted image processing can help to improve diagnostic accuracy, efficiency, and consistency, while reducing the potential for human error.

Neurosciences is a multidisciplinary field of study that focuses on the structure, function, development, and disorders of the nervous system, which includes the brain, spinal cord, and peripheral nerves. It incorporates various scientific disciplines such as biology, chemistry, physics, mathematics, engineering, and computer science to understand the complexities of the nervous system at different levels, from molecular and cellular mechanisms to systems and behavior.

The field encompasses both basic research and clinical applications, with the aim of advancing our knowledge of the nervous system and developing effective treatments for neurological and psychiatric disorders. Specialties within neurosciences include neuroanatomy, neurophysiology, neurochemistry, neuropharmacology, neurobiology, neuroimmunology, behavioral neuroscience, cognitive neuroscience, clinical neuroscience, and computational neuroscience, among others.

The nervous system is a complex, highly organized network of specialized cells called neurons and glial cells that communicate with each other via electrical and chemical signals to coordinate various functions and activities in the body. It consists of two main parts: the central nervous system (CNS), including the brain and spinal cord, and the peripheral nervous system (PNS), which includes all the nerves and ganglia outside the CNS.

The primary function of the nervous system is to receive, process, and integrate information from both internal and external environments and then respond by generating appropriate motor outputs or behaviors. This involves sensing various stimuli through specialized receptors, transmitting this information through afferent neurons to the CNS for processing, integrating this information with other inputs and memories, making decisions based on this processed information, and finally executing responses through efferent neurons that control effector organs such as muscles and glands.

The nervous system can be further divided into subsystems based on their functions, including the somatic nervous system, which controls voluntary movements and reflexes; the autonomic nervous system, which regulates involuntary physiological processes like heart rate, digestion, and respiration; and the enteric nervous system, which is a specialized subset of the autonomic nervous system that controls gut functions. Overall, the nervous system plays a critical role in maintaining homeostasis, regulating behavior, and enabling cognition and consciousness.

Neural pathways, also known as nerve tracts or fasciculi, refer to the highly organized and specialized routes through which nerve impulses travel within the nervous system. These pathways are formed by groups of neurons (nerve cells) that are connected in a series, creating a continuous communication network for electrical signals to transmit information between different regions of the brain, spinal cord, and peripheral nerves.

Neural pathways can be classified into two main types: sensory (afferent) and motor (efferent). Sensory neural pathways carry sensory information from various receptors in the body (such as those for touch, temperature, pain, and vision) to the brain for processing. Motor neural pathways, on the other hand, transmit signals from the brain to the muscles and glands, controlling movements and other effector functions.

The formation of these neural pathways is crucial for normal nervous system function, as it enables efficient communication between different parts of the body and allows for complex behaviors, cognitive processes, and adaptive responses to internal and external stimuli.

Neuroanatomy is the branch of anatomy that deals with the study of the structure, organization, and relationships of the nervous system, including the brain, spinal cord, and peripheral nerves. It involves understanding the complex arrangement of neurons, neural pathways, and support structures that make up the nervous system, as well as how these components work together to enable various functions such as sensation, movement, cognition, and emotion. Neuroanatomy is a fundamental area of study in neuroscience, medicine, and psychology, providing critical knowledge for understanding brain function and dysfunction, developing treatments for neurological disorders, and advancing our overall understanding of the human body.

Functional neuroimaging is a branch of medical imaging that involves the use of various techniques to measure and visualize the metabolic activity or blood flow in different regions of the brain. These measurements can be used to infer the level of neural activation in specific brain areas, allowing researchers and clinicians to study the functioning of the brain in various states, such as during rest, cognitive tasks, or disease processes.

Some common functional neuroimaging techniques include:

1. Functional Magnetic Resonance Imaging (fMRI): This technique uses magnetic fields and radio waves to measure changes in blood flow and oxygenation levels in the brain, which are associated with neural activity.
2. Positron Emission Tomography (PET): This technique involves the injection of a small amount of radioactive tracer into the body, which is taken up by active brain cells. The resulting gamma rays are then detected and used to create images of brain activity.
3. Single-Photon Emission Computed Tomography (SPECT): Similar to PET, SPECT uses a radioactive tracer to measure blood flow in the brain, but with lower resolution and sensitivity.
4. Functional Near-Infrared Spectroscopy (fNIRS): This technique uses near-infrared light to measure changes in oxygenation levels in the brain, providing a non-invasive and relatively inexpensive method for studying brain function.

Functional neuroimaging has numerous applications in both research and clinical settings, including the study of cognitive processes, the diagnosis and monitoring of neurological and psychiatric disorders, and the development of new treatments and interventions.

The cerebral cortex is the outermost layer of the brain, characterized by its intricate folded structure and wrinkled appearance. It is a region of great importance as it plays a key role in higher cognitive functions such as perception, consciousness, thought, memory, language, and attention. The cerebral cortex is divided into two hemispheres, each containing four lobes: the frontal, parietal, temporal, and occipital lobes. These areas are responsible for different functions, with some regions specializing in sensory processing while others are involved in motor control or associative functions. The cerebral cortex is composed of gray matter, which contains neuronal cell bodies, and is covered by a layer of white matter that consists mainly of myelinated nerve fibers.

Neuroimaging is a medical term that refers to the use of various techniques to either directly or indirectly image the structure, function, or pharmacology of the nervous system. It includes techniques such as computed tomography (CT), magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and diffusion tensor imaging (DTI). These techniques are used to diagnose and monitor various neurological and psychiatric conditions, as well as to understand the underlying mechanisms of brain function in health and disease.

Emission computed tomography (ECT) is a type of tomographic imaging technique in which an emission signal from within the body is detected to create cross-sectional images of that signal's distribution. In Emission-Computed Tomography (ECT), a radionuclide is introduced into the body, usually through injection, inhalation or ingestion. The radionuclide emits gamma rays that are then detected by external gamma cameras.

The data collected from these cameras is then used to create cross-sectional images of the distribution of the radiopharmaceutical within the body. This allows for the identification and quantification of functional information about specific organs or systems within the body, such as blood flow, metabolic activity, or receptor density.

One common type of Emission-Computed Tomography is Single Photon Emission Computed Tomography (SPECT), which uses a single gamma camera that rotates around the patient to collect data from multiple angles. Another type is Positron Emission Tomography (PET), which uses positron-emitting radionuclides and detects the coincident gamma rays emitted by the annihilation of positrons and electrons.

Overall, ECT is a valuable tool in medical imaging for diagnosing and monitoring various diseases, including cancer, heart disease, and neurological disorders.

A nerve net, also known as a neural net or neuronal network, is not a medical term per se, but rather a concept in neuroscience and artificial intelligence (AI). It refers to a complex network of interconnected neurons that process and transmit information. In the context of the human body, the nervous system can be thought of as a type of nerve net, with the brain and spinal cord serving as the central processing unit and peripheral nerves carrying signals to and from various parts of the body.

In the field of AI, artificial neural networks are computational models inspired by the structure and function of biological nerve nets. These models consist of interconnected nodes or "neurons" that process information and learn patterns through a process of training and adaptation. They have been used in a variety of applications, including image recognition, natural language processing, and machine learning.

The temporal lobe is one of the four main lobes of the cerebral cortex in the brain, located on each side of the head roughly level with the ears. It plays a major role in auditory processing, memory, and emotion. The temporal lobe contains several key structures including the primary auditory cortex, which is responsible for analyzing sounds, and the hippocampus, which is crucial for forming new memories. Damage to the temporal lobe can result in various neurological symptoms such as hearing loss, memory impairment, and changes in emotional behavior.

Neurological models are simplified representations or simulations of various aspects of the nervous system, including its structure, function, and processes. These models can be theoretical, computational, or physical and are used to understand, explain, and predict neurological phenomena. They may focus on specific neurological diseases, disorders, or functions, such as memory, learning, or movement. The goal of these models is to provide insights into the complex workings of the nervous system that cannot be easily observed or understood through direct examination alone.

Three-dimensional (3D) imaging in medicine refers to the use of technologies and techniques that generate a 3D representation of internal body structures, organs, or tissues. This is achieved by acquiring and processing data from various imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, or confocal microscopy. The resulting 3D images offer a more detailed visualization of the anatomy and pathology compared to traditional 2D imaging techniques, allowing for improved diagnostic accuracy, surgical planning, and minimally invasive interventions.

In 3D imaging, specialized software is used to reconstruct the acquired data into a volumetric model, which can be manipulated and viewed from different angles and perspectives. This enables healthcare professionals to better understand complex anatomical relationships, detect abnormalities, assess disease progression, and monitor treatment response. Common applications of 3D imaging include neuroimaging, orthopedic surgery planning, cancer staging, dental and maxillofacial reconstruction, and interventional radiology procedures.

In the context of medical and clinical neuroscience, memory is defined as the brain's ability to encode, store, retain, and recall information or experiences. Memory is a complex cognitive process that involves several interconnected regions of the brain and can be categorized into different types based on various factors such as duration and the nature of the information being remembered.

The major types of memory include:

1. Sensory memory: The shortest form of memory, responsible for holding incoming sensory information for a brief period (less than a second to several seconds) before it is either transferred to short-term memory or discarded.
2. Short-term memory (also called working memory): A temporary storage system that allows the brain to hold and manipulate information for approximately 20-30 seconds, although this duration can be extended through rehearsal strategies. Short-term memory has a limited capacity, typically thought to be around 7±2 items.
3. Long-term memory: The memory system responsible for storing large amounts of information over extended periods, ranging from minutes to a lifetime. Long-term memory has a much larger capacity compared to short-term memory and is divided into two main categories: explicit (declarative) memory and implicit (non-declarative) memory.

Explicit (declarative) memory can be further divided into episodic memory, which involves the recollection of specific events or episodes, including their temporal and spatial contexts, and semantic memory, which refers to the storage and retrieval of general knowledge, facts, concepts, and vocabulary, independent of personal experience or context.

Implicit (non-declarative) memory encompasses various forms of learning that do not require conscious awareness or intention, such as procedural memory (skills and habits), priming (facilitated processing of related stimuli), classical conditioning (associative learning), and habituation (reduced responsiveness to repeated stimuli).

Memory is a crucial aspect of human cognition and plays a significant role in various aspects of daily life, including learning, problem-solving, decision-making, social interactions, and personal identity. Memory dysfunction can result from various neurological and psychiatric conditions, such as dementia, Alzheimer's disease, stroke, traumatic brain injury, and depression.

A hallucination is a perception in the absence of external stimuli. They are sensory experiences that feel real, but are generated from inside the mind rather than by external reality. Hallucinations can occur in any of the senses, causing individuals to hear sounds, see visions, or smell odors that aren't actually present. They can range from relatively simple experiences, such as seeing flashes of light, to complex experiences like seeing and interacting with people or objects that aren't there. Hallucinations are often associated with certain medical conditions, mental health disorders, or the use of certain substances.

Functional laterality, in a medical context, refers to the preferential use or performance of one side of the body over the other for specific functions. This is often demonstrated in hand dominance, where an individual may be right-handed or left-handed, meaning they primarily use their right or left hand for tasks such as writing, eating, or throwing.

However, functional laterality can also apply to other bodily functions and structures, including the eyes (ocular dominance), ears (auditory dominance), or legs. It's important to note that functional laterality is not a strict binary concept; some individuals may exhibit mixed dominance or no strong preference for one side over the other.

In clinical settings, assessing functional laterality can be useful in diagnosing and treating various neurological conditions, such as stroke or traumatic brain injury, where understanding any resulting lateralized impairments can inform rehabilitation strategies.

Computer graphics is the field of study and practice related to creating images and visual content using computer technology. It involves various techniques, algorithms, and tools for generating, manipulating, and rendering digital images and models. These can include 2D and 3D modeling, animation, rendering, visualization, and image processing. Computer graphics is used in a wide range of applications, including video games, movies, scientific simulations, medical imaging, architectural design, and data visualization.

Cognition refers to the mental processes involved in acquiring, processing, and utilizing information. These processes include perception, attention, memory, language, problem-solving, and decision-making. Cognitive functions allow us to interact with our environment, understand and respond to stimuli, learn new skills, and remember experiences.

In a medical context, cognitive function is often assessed as part of a neurological or psychiatric evaluation. Impairments in cognition can be caused by various factors, such as brain injury, neurodegenerative diseases (e.g., Alzheimer's disease), infections, toxins, and mental health conditions. Assessing cognitive function helps healthcare professionals diagnose conditions, monitor disease progression, and develop treatment plans.

The frontal lobe is the largest lobes of the human brain, located at the front part of each cerebral hemisphere and situated in front of the parietal and temporal lobes. It plays a crucial role in higher cognitive functions such as decision making, problem solving, planning, parts of social behavior, emotional expressions, physical reactions, and motor function. The frontal lobe is also responsible for what's known as "executive functions," which include the ability to focus attention, understand rules, switch focus, plan actions, and inhibit inappropriate behaviors. It is divided into five areas, each with its own specific functions: the primary motor cortex, premotor cortex, Broca's area, prefrontal cortex, and orbitofrontal cortex. Damage to the frontal lobe can result in a wide range of impairments, depending on the location and extent of the injury.

The skull is the bony structure that encloses and protects the brain, the eyes, and the ears. It is composed of two main parts: the cranium, which contains the brain, and the facial bones. The cranium is made up of several fused flat bones, while the facial bones include the upper jaw (maxilla), lower jaw (mandible), cheekbones, nose bones, and eye sockets (orbits).

The skull also provides attachment points for various muscles that control chewing, moving the head, and facial expressions. Additionally, it contains openings for blood vessels, nerves, and the spinal cord to pass through. The skull's primary function is to protect the delicate and vital structures within it from injury and trauma.

Oxygen radioisotopes are unstable isotopes of the element oxygen that emit radiation as they decay to a more stable form. These isotopes can be used in medical imaging and treatment, such as positron emission tomography (PET) scans. Common oxygen radioisotopes used in medicine include oxygen-15 and oxygen-18. Oxygen-15 has a very short half-life of about 2 minutes, while oxygen-18 has a longer half-life of about 2 hours. These isotopes can be incorporated into molecules such as water or carbon dioxide, which can then be used to study blood flow, metabolism and other physiological processes in the body.

The prefrontal cortex is the anterior (frontal) part of the frontal lobe in the brain, involved in higher-order cognitive processes such as planning complex cognitive behavior, personality expression, decision making, and moderating social behavior. It also plays a significant role in working memory and executive functions. The prefrontal cortex is divided into several subregions, each associated with specific cognitive and emotional functions. Damage to the prefrontal cortex can result in various impairments, including difficulties with planning, decision making, and social behavior regulation.

Cerebral dominance is a concept in neuropsychology that refers to the specialization of one hemisphere of the brain over the other for certain cognitive functions. In most people, the left hemisphere is dominant for language functions such as speaking and understanding spoken or written language, while the right hemisphere is dominant for non-verbal functions such as spatial ability, face recognition, and artistic ability.

Cerebral dominance does not mean that the non-dominant hemisphere is incapable of performing the functions of the dominant hemisphere, but rather that it is less efficient or specialized in those areas. The concept of cerebral dominance has been used to explain individual differences in cognitive abilities and learning styles, as well as the laterality of brain damage and its effects on cognition and behavior.

It's important to note that cerebral dominance is a complex phenomenon that can vary between individuals and can be influenced by various factors such as genetics, environment, and experience. Additionally, recent research has challenged the strict lateralization of functions and suggested that there is more functional overlap and interaction between the two hemispheres than previously thought.

The occipital lobe is the portion of the cerebral cortex that lies at the back of the brain (posteriorly) and is primarily involved in visual processing. It contains areas that are responsible for the interpretation and integration of visual stimuli, including color, form, movement, and recognition of objects. The occipital lobe is divided into several regions, such as the primary visual cortex (V1), secondary visual cortex (V2 to V5), and the visual association cortex, which work together to process different aspects of visual information. Damage to the occipital lobe can lead to various visual deficits, including blindness or partial loss of vision, known as a visual field cut.

Neuropsychological tests are a type of psychological assessment that measures cognitive functions, such as attention, memory, language, problem-solving, and perception. These tests are used to help diagnose and understand the cognitive impact of neurological conditions, including dementia, traumatic brain injury, stroke, Parkinson's disease, and other disorders that affect the brain.

The tests are typically administered by a trained neuropsychologist and can take several hours to complete. They may involve paper-and-pencil tasks, computerized tasks, or interactive activities. The results of the tests are compared to normative data to help identify any areas of cognitive weakness or strength.

Neuropsychological testing can provide valuable information for treatment planning, rehabilitation, and assessing response to treatment. It can also be used in research to better understand the neural basis of cognition and the impact of neurological conditions on cognitive function.

Speech is the vocalized form of communication using sounds and words to express thoughts, ideas, and feelings. It involves the articulation of sounds through the movement of muscles in the mouth, tongue, and throat, which are controlled by nerves. Speech also requires respiratory support, phonation (vocal cord vibration), and prosody (rhythm, stress, and intonation).

Speech is a complex process that develops over time in children, typically beginning with cooing and babbling sounds in infancy and progressing to the use of words and sentences by around 18-24 months. Speech disorders can affect any aspect of this process, including articulation, fluency, voice, and language.

In a medical context, speech is often evaluated and treated by speech-language pathologists who specialize in diagnosing and managing communication disorders.

Schizophrenia is a severe mental disorder characterized by disturbances in thought, perception, emotion, and behavior. It often includes hallucinations (usually hearing voices), delusions, paranoia, and disorganized speech and behavior. The onset of symptoms typically occurs in late adolescence or early adulthood. Schizophrenia is a complex, chronic condition that requires ongoing treatment and management. It significantly impairs social and occupational functioning, and it's often associated with reduced life expectancy due to comorbid medical conditions. The exact causes of schizophrenia are not fully understood, but research suggests that genetic, environmental, and neurodevelopmental factors play a role in its development.

I'm sorry for any confusion, but "teaching" is a general term that refers to the act of imparting knowledge or skills to others and is not a medical term. However, in the context of medical education, teaching refers to the instruction and training of medical students, residents, fellows, and other healthcare professionals to develop their knowledge, skills, and attitudes necessary for providing high-quality patient care. This can take place in various settings such as classrooms, clinical wards, simulation centers, or online platforms, and can involve a range of teaching methods including lectures, small group discussions, bedside teaching, case-based learning, and hands-on training.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Photic stimulation is a medical term that refers to the exposure of the eyes to light, specifically repetitive pulses of light, which is used as a method in various research and clinical settings. In neuroscience, it's often used in studies related to vision, circadian rhythms, and brain function.

In a clinical context, photic stimulation is sometimes used in the diagnosis of certain medical conditions such as seizure disorders (like epilepsy). By observing the response of the brain to this light stimulus, doctors can gain valuable insights into the functioning of the brain and the presence of any neurological disorders.

However, it's important to note that photic stimulation should be conducted under the supervision of a trained healthcare professional, as improper use can potentially trigger seizures in individuals who are susceptible to them.

'Behavior' is a term used in the medical and scientific community to describe the actions or reactions of an individual in response to internal or external stimuli. It can be observed and measured, and it involves all the responses of a person, including motor responses, emotional responses, and cognitive responses. Behaviors can be voluntary or involuntary, adaptive or maladaptive, and normal or abnormal. They can also be influenced by genetic, physiological, environmental, and social factors. In a medical context, the study of behavior is often relevant to understanding and treating various mental health conditions, such as anxiety disorders, mood disorders, and personality disorders.

The amygdala is an almond-shaped group of nuclei located deep within the temporal lobe of the brain, specifically in the anterior portion of the temporal lobes and near the hippocampus. It forms a key component of the limbic system and plays a crucial role in processing emotions, particularly fear and anxiety. The amygdala is involved in the integration of sensory information with emotional responses, memory formation, and decision-making processes.

In response to emotionally charged stimuli, the amygdala can modulate various physiological functions, such as heart rate, blood pressure, and stress hormone release, via its connections to the hypothalamus and brainstem. Additionally, it contributes to social behaviors, including recognizing emotional facial expressions and responding appropriately to social cues. Dysfunctions in amygdala function have been implicated in several psychiatric and neurological conditions, such as anxiety disorders, depression, post-traumatic stress disorder (PTSD), and autism spectrum disorder (ASD).

Neuropeptides are small protein-like molecules that are used by neurons to communicate with each other and with other cells in the body. They are produced in the cell body of a neuron, processed from larger precursor proteins, and then transported to the nerve terminal where they are stored in secretory vesicles. When the neuron is stimulated, the vesicles fuse with the cell membrane and release their contents into the extracellular space.

Neuropeptides can act as neurotransmitters or neuromodulators, depending on their target receptors and the duration of their effects. They play important roles in a variety of physiological processes, including pain perception, appetite regulation, stress response, and social behavior. Some neuropeptides also have hormonal functions, such as oxytocin and vasopressin, which are produced in the hypothalamus and released into the bloodstream to regulate reproductive and cardiovascular function, respectively.

There are hundreds of different neuropeptides that have been identified in the nervous system, and many of them have multiple functions and interact with other signaling molecules to modulate neural activity. Dysregulation of neuropeptide systems has been implicated in various neurological and psychiatric disorders, such as chronic pain, addiction, depression, and anxiety.

In the context of medicine and healthcare, learning is often discussed in relation to learning abilities or disabilities that may impact an individual's capacity to acquire, process, retain, and apply new information or skills. Learning can be defined as the process of acquiring knowledge, understanding, behaviors, and skills through experience, instruction, or observation.

Learning disorders, also known as learning disabilities, are a type of neurodevelopmental disorder that affects an individual's ability to learn and process information in one or more areas, such as reading, writing, mathematics, or reasoning. These disorders are not related to intelligence or motivation but rather result from differences in the way the brain processes information.

It is important to note that learning can also be influenced by various factors, including age, cognitive abilities, physical and mental health status, cultural background, and educational experiences. Therefore, a comprehensive assessment of an individual's learning abilities and needs should take into account these various factors to provide appropriate support and interventions.

The thalamus is a large, paired structure in the brain that serves as a relay station for sensory and motor signals to the cerebral cortex. It is located in the dorsal part of the diencephalon and is made up of two symmetrical halves, each connected to the corresponding cerebral hemisphere.

The thalamus receives inputs from almost all senses, except for the olfactory system, and processes them before sending them to specific areas in the cortex. It also plays a role in regulating consciousness, sleep, and alertness. Additionally, the thalamus is involved in motor control by relaying information between the cerebellum and the motor cortex.

The thalamus is divided into several nuclei, each with distinct connections and functions. Some of these nuclei are involved in sensory processing, while others are involved in motor function or regulation of emotions and cognition. Overall, the thalamus plays a critical role in integrating information from various brain regions and modulating cognitive and emotional processes.

Computer-assisted image interpretation is the use of computer algorithms and software to assist healthcare professionals in analyzing and interpreting medical images. These systems use various techniques such as pattern recognition, machine learning, and artificial intelligence to help identify and highlight abnormalities or patterns within imaging data, such as X-rays, CT scans, MRI, and ultrasound images. The goal is to increase the accuracy, consistency, and efficiency of image interpretation, while also reducing the potential for human error. It's important to note that these systems are intended to assist healthcare professionals in their decision making process and not to replace them.

I must clarify that there is no such thing as "Schizophrenic Psychology." The term schizophrenia is used to describe a specific and serious mental disorder that affects how a person thinks, feels, and behaves. It's important not to use the term casually or inaccurately, as it can perpetuate stigma and misunderstanding about the condition.

Schizophrenia is characterized by symptoms such as hallucinations (hearing or seeing things that aren't there), delusions (false beliefs that are not based on reality), disorganized speech, and grossly disorganized or catatonic behavior. These symptoms can impair a person's ability to function in daily life, maintain relationships, and experience emotions appropriately.

If you have any questions related to mental health conditions or psychology, I would be happy to provide accurate information and definitions.

"Sex characteristics" refer to the anatomical, chromosomal, and genetic features that define males and females. These include both primary sex characteristics (such as reproductive organs like ovaries or testes) and secondary sex characteristics (such as breasts or facial hair) that typically develop during puberty. Sex characteristics are primarily determined by the presence of either X or Y chromosomes, with XX individuals usually developing as females and XY individuals usually developing as males, although variations and exceptions to this rule do occur.

Psychomotor performance refers to the integration and coordination of mental processes (cognitive functions) with physical movements. It involves the ability to perform complex tasks that require both cognitive skills, such as thinking, remembering, and perceiving, and motor skills, such as gross and fine motor movements. Examples of psychomotor performances include driving a car, playing a musical instrument, or performing surgical procedures.

In a medical context, psychomotor performance is often used to assess an individual's ability to perform activities of daily living (ADLs) and instrumental activities of daily living (IADLs), such as bathing, dressing, cooking, cleaning, and managing medications. Deficits in psychomotor performance can be a sign of neurological or psychiatric disorders, such as dementia, Parkinson's disease, or depression.

Assessment of psychomotor performance may involve tests that measure reaction time, coordination, speed, precision, and accuracy of movements, as well as cognitive functions such as attention, memory, and problem-solving skills. These assessments can help healthcare professionals develop appropriate treatment plans and monitor the progression of diseases or the effectiveness of interventions.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

The motor cortex is a region in the frontal lobe of the brain that is responsible for controlling voluntary movements. It is involved in planning, initiating, and executing movements of the limbs, body, and face. The motor cortex contains neurons called Betz cells, which have large cell bodies and are responsible for transmitting signals to the spinal cord to activate muscles. Damage to the motor cortex can result in various movement disorders such as hemiplegia or paralysis on one side of the body.

Emotions are complex psychological states that involve three distinct components: a subjective experience, a physiological response, and a behavioral or expressive response. Emotions can be short-lived, such as a flash of anger, or more long-lasting, such as enduring sadness. They can also vary in intensity, from mild irritation to intense joy or fear.

Emotions are often distinguished from other psychological states, such as moods and temperament, which may be less specific and more enduring. Emotions are typically thought to have a clear cause or object, such as feeling happy when you receive good news or feeling anxious before a job interview.

There are many different emotions that people can experience, including happiness, sadness, anger, fear, surprise, disgust, and shame. These emotions are often thought to serve important adaptive functions, helping individuals respond to challenges and opportunities in their environment.

In medical contexts, emotions may be relevant to the diagnosis and treatment of various mental health conditions, such as depression, anxiety disorders, and bipolar disorder. Abnormalities in emotional processing and regulation have been implicated in many psychiatric illnesses, and therapies that target these processes may be effective in treating these conditions.

Visual perception refers to the ability to interpret and organize information that comes from our eyes to recognize and understand what we are seeing. It involves several cognitive processes such as pattern recognition, size estimation, movement detection, and depth perception. Visual perception allows us to identify objects, navigate through space, and interact with our environment. Deficits in visual perception can lead to learning difficulties and disabilities.

Cerebrovascular circulation refers to the network of blood vessels that supply oxygenated blood and nutrients to the brain tissue, and remove waste products. It includes the internal carotid arteries, vertebral arteries, circle of Willis, and the intracranial arteries that branch off from them.

The internal carotid arteries and vertebral arteries merge to form the circle of Willis, a polygonal network of vessels located at the base of the brain. The anterior cerebral artery, middle cerebral artery, posterior cerebral artery, and communicating arteries are the major vessels that branch off from the circle of Willis and supply blood to different regions of the brain.

Interruptions or abnormalities in the cerebrovascular circulation can lead to various neurological conditions such as stroke, transient ischemic attack (TIA), and vascular dementia.

The hippocampus is a complex, curved formation in the brain that resembles a seahorse (hence its name, from the Greek word "hippos" meaning horse and "kampos" meaning sea monster). It's part of the limbic system and plays crucial roles in the formation of memories, particularly long-term ones.

This region is involved in spatial navigation and cognitive maps, allowing us to recognize locations and remember how to get to them. Additionally, it's one of the first areas affected by Alzheimer's disease, which often results in memory loss as an early symptom.

Anatomically, it consists of two main parts: the Ammon's horn (or cornu ammonis) and the dentate gyrus. These structures are made up of distinct types of neurons that contribute to different aspects of learning and memory.

The cerebellum is a part of the brain that lies behind the brainstem and is involved in the regulation of motor movements, balance, and coordination. It contains two hemispheres and a central portion called the vermis. The cerebellum receives input from sensory systems and other areas of the brain and spinal cord and sends output to motor areas of the brain. Damage to the cerebellum can result in problems with movement, balance, and coordination.

Organ size refers to the volume or physical measurement of an organ in the body of an individual. It can be described in terms of length, width, and height or by using specialized techniques such as imaging studies (like CT scans or MRIs) to determine the volume. The size of an organ can vary depending on factors such as age, sex, body size, and overall health status. Changes in organ size may indicate various medical conditions, including growths, inflammation, or atrophy.

'Animal behavior' refers to the actions or responses of animals to various stimuli, including their interactions with the environment and other individuals. It is the study of the actions of animals, whether they are instinctual, learned, or a combination of both. Animal behavior includes communication, mating, foraging, predator avoidance, and social organization, among other things. The scientific study of animal behavior is called ethology. This field seeks to understand the evolutionary basis for behaviors as well as their physiological and psychological mechanisms.

Reaction time, in the context of medicine and physiology, refers to the time period between the presentation of a stimulus and the subsequent initiation of a response. This complex process involves the central nervous system, particularly the brain, which perceives the stimulus, processes it, and then sends signals to the appropriate muscles or glands to react.

There are different types of reaction times, including simple reaction time (responding to a single, expected stimulus) and choice reaction time (choosing an appropriate response from multiple possibilities). These measures can be used in clinical settings to assess various aspects of neurological function, such as cognitive processing speed, motor control, and alertness.

However, it is important to note that reaction times can be influenced by several factors, including age, fatigue, attention, and the use of certain medications or substances.

In the context of medicine and healthcare, "movement" refers to the act or process of changing physical location or position. It involves the contraction and relaxation of muscles, which allows for the joints to move and the body to be in motion. Movement can also refer to the ability of a patient to move a specific body part or limb, which is assessed during physical examinations. Additionally, "movement" can describe the progression or spread of a disease within the body.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

Acoustic stimulation refers to the use of sound waves or vibrations to elicit a response in an individual, typically for the purpose of assessing or treating hearing, balance, or neurological disorders. In a medical context, acoustic stimulation may involve presenting pure tones, speech sounds, or other types of auditory signals through headphones, speakers, or specialized devices such as bone conduction transducers.

The response to acoustic stimulation can be measured using various techniques, including electrophysiological tests like auditory brainstem responses (ABRs) or otoacoustic emissions (OAEs), behavioral observations, or functional imaging methods like fMRI. Acoustic stimulation is also used in therapeutic settings, such as auditory training programs for hearing impairment or vestibular rehabilitation for balance disorders.

It's important to note that acoustic stimulation should be administered under the guidance of a qualified healthcare professional to ensure safety and effectiveness.

In a medical or psychological context, attention is the cognitive process of selectively concentrating on certain aspects of the environment while ignoring other things. It involves focusing mental resources on specific stimuli, sensory inputs, or internal thoughts while blocking out irrelevant distractions. Attention can be divided into different types, including:

1. Sustained attention: The ability to maintain focus on a task or stimulus over time.
2. Selective attention: The ability to concentrate on relevant stimuli while ignoring irrelevant ones.
3. Divided attention: The capacity to pay attention to multiple tasks or stimuli simultaneously.
4. Alternating attention: The skill of shifting focus between different tasks or stimuli as needed.

Deficits in attention are common symptoms of various neurological and psychiatric conditions, such as ADHD, dementia, depression, and anxiety disorders. Assessment of attention is an essential part of neuropsychological evaluations and can be measured using various tests and tasks.

Wikimedia Commons has media related to Neuroanatomy. Neuroanatomy, an annual journal of clinical neuroanatomy Mouse, Rat, ... Neuroanatomy is the study of the structure and organization of the nervous system. In contrast to animals with radial symmetry ... The pairs of terms used most commonly in neuroanatomy are: Dorsal and ventral: dorsal loosely refers to the top or upper side, ... Modern developments in neuroanatomy are directly correlated to the technologies used to perform research. Therefore, it is ...
In neuroanatomy, a nucleus (PL: nuclei) is a cluster of neurons in the central nervous system, located deep within the cerebral ... Blumenfeld, Hal (2010). Neuroanatomy through clinical cases (2nd ed.). Sunderland, Mass.: Sinauer Associates. p. 21. ISBN ... v t e (Articles with short description, Short description is different from Wikidata, Neuroanatomy, All stub articles, ...
In neuroanatomy, a sulcus (Latin: "furrow"; PL: sulci) is a depression or groove in the cerebral cortex. It surrounds a gyrus ( ... Wikimedia Commons has media related to Sulcus (neuroanatomy). Sulcus (morphology) Carlson, N. R. (2013). Physiology of Behavior ...
In neuroanatomy, pallium (PL: pallia or palliums) refers to the layers of grey and white matter that cover the upper surface of ...
A funiculus or column is a small bundle of axons (nerve fibres), enclosed by the perineurium. A small nerve may consist of a single funiculus, but a larger nerve will have several funiculi collected together into larger bundles known as fascicles. Fascicles are bound together in a common membrane, the epineurium. Funiculi in the spinal cord are portions of white matter. Examples include: Anterior funiculus of the spinal cord Lateral funiculus of the spinal cord Posterior funiculus of the spinal cord Funiculus separans of the rhomboid fossa This article incorporates text in the public domain from page 728 of the 20th edition of Gray's Anatomy (1918) "Ascending and descending tracts of the spinal cord". Kenhub. Retrieved 2022-10-06. Gray, Henry; Lewis, Warren Harmon (1918). Anatomy of the human body. Harold B. Lee Library. Philadelphia : Lea & Febiger. Siegel, A. & Sapru, H. (2011). Essential neuroscience. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. "Spinal Cord White ...
The fornix (from Latin: fornix, lit. 'arch'; PL: fornices) is a C-shaped bundle of nerve fibers in the brain that acts as the major output tract of the hippocampus. The fornix also carries some afferent fibers to the hippocampus from structures in the diencephalon and basal forebrain. The fornix is part of the limbic system. While its exact function and importance in the physiology of the brain are still not entirely clear, it has been demonstrated in humans that surgical transection-the cutting of the fornix along its body-can cause memory loss. There is some debate over what type of memory is affected by this damage, but it has been found to most closely correlate with recall memory rather than recognition memory. This means that damage to the fornix can cause difficulty in recalling long-term information such as details of past events, but it has little effect on the ability to recognize objects or familiar situations. The fibers begin in the hippocampus on each side of the brain as fimbriae; ...
An estimated 90% of the world's human population consider themselves to be right-handed. The human brain's control of motor function is a mirror image in terms of connectivity; the left hemisphere controls the right hand and vice versa. This theoretically means that the hemisphere contralateral to the dominant hand tends to be more dominant than the ipsilateral hemisphere, however this is not always the case and there are numerous other factors which contribute in complex ways to physical hand preference. Language areas are represented unilaterally in the human brain. In around 95% of right-handers, these brain areas are often located on the left hemisphere, however the proportion reduces in left handers down to around 70%. Therefore 7 in every 100 individuals is right-hemisphered for language and left-hand dominant. It is unclear as to whether or not left-hemisphered left handers suffer any language or writing deficits because of this. Broca's area has been found to have differing grey matter ...
ISBN 0-8385-7701-6 Wikimedia Commons has media related to Topographic map (neuroanatomy). (Articles with short description, ... Short description matches Wikidata, Commons category link is on Wikidata, Neuroanatomy). ...
In the brain, the interventricular foramina (or foramina of Monro) are channels that connect the paired lateral ventricles with the third ventricle at the midline of the brain. As channels, they allow cerebrospinal fluid (CSF) produced in the lateral ventricles to reach the third ventricle and then the rest of the brain's ventricular system. The walls of the interventricular foramina also contain choroid plexus, a specialized CSF-producing structure, that is continuous with that of the lateral and third ventricles above and below it. The interventricular foramina are two holes (Latin: foramen, pl. foramina) that connect the left and the right lateral ventricles to the third ventricle. They are located on the underside near the midline of the lateral ventricles, and join the third ventricle where its roof meets its anterior surface. In front of the foramen is the fornix and behind is the thalamus. The foramen is normally crescent-shaped, but rounds and increases in size depending on the size of ...
The neuroanatomy of memory encompasses a wide variety of anatomical structures in the brain. The hippocampus is a structure in ...
Even though intimacy has been broadly defined in terms of romantic love and sexual desire, the neuroanatomy of intimacy needs ... Also, known functions of the neuroanatomy involved can be applied to observations seen in people who are experiencing any of ... Other neuroanatomy that registered unrequited love included the cerebellum, insular cortex, anterior cingulate cortex, and ... In a study, symptoms seen in nine women who had experienced a recent breakup suggested involvement of certain neuroanatomy. ...
In human neuroanatomy the word is somewhat distorted, becoming synonymous with "superior" in the forebrain, i.e. in the ... Neuroanatomy, like other aspects of anatomy, uses specific terminology to describe anatomical structures. This terminology ... Some terms are used more commonly in neuroanatomy, particularly: Rostral and caudal: In animals with linear nervous systems, ... Neuroanatomy through clinical cases (2nd ed.). Sunderland, Mass.: Sinauer Associates. ISBN 9780878930586. OCLC 473478856. ( ...
p. 4. ISBN 978-1-4511-9343-5. Fix, James D. (2002). Neuroanatomy. Hagerstwon, MD: Lippincott Williams & Wilkins. pp. 338. ISBN ... High-Yield Neuroanatomy (5th ed.). Philadelphia: Wolters Kluwer. ...
Adel K. Afifi Functional Neuroanatomy pag.51 ISBN 970-10-5504-7 Jessell, Thomas M.; Kandel, Eric R.; Schwartz, James H. (2000 ... Fix, James D. (2002). Neuroanatomy. Hagerstwon, MD: Lippincott Williams & Wilkins. pp. 133. ISBN 978-0-7817-2829-4. "Archived ... neuroanatomy and neurophysiology. ISBN 0-86577-710-1. "Rostral spinocerebellar tract". The Neuroscience Lexicon. Retrieved 19 ...
Neuroanatomy. 4th ed. Struss, DT; Alexander MP; Shallice T; Picton TW; Binns MA; Macdonald R; Borowiec A; Katz DI. (2005). " ...
Neuroanatomy. 3: 38-42. Sherman JL, Camponovo E, Citrin CM (Nov 1990). "MR imaging of CSF-like choroidal fissure and ...
Crossman, A R (2005). Neuroanatomy. Elsevier. p. 32. ISBN 978-0-443-10036-9. Unger, S; Salem, S; Wylie, L; Shah, V (February ...
Fix, James D. (2002). Neuroanatomy. Hagerstwon, MD: Lippincott Williams & Wilkins. pp. 326. ISBN 0-7817-2829-0. Ennis, Matthew ... https://web.archive.org/web/20091208125446/http://isc.temple.edu/neuroanatomy/lab/atlas/bgalic/ v t e (Articles with short ... description, Short description is different from Wikidata, All stub articles, Neuroanatomy stubs, Cerebral cortex, Olfactory ...
Martin, John Harry (2003). Neuroanatomy. McGraw-Hill Professional. ISBN 0-07-138183-X. Bullock, Theodore H.; G. Adrian Horridge ...
Oztas E (2003). "Neuronal Tracing". Neuroanatomy. 2: 2-5. Callaway, Edward M (2008). "Transneuronal circuit tracing with ...
Oztas, Emin (2003). "Neuronal tracing". Neuroanatomy. 2: 2-5. Costa, Luciano Da Fontoura; Zawadzki, Krissia; Miazaki, Mauro; ... NeuroMorpho (Articles with short description, Short description matches Wikidata, Neuroanatomy). ... Journal of Chemical Neuroanatomy. 40 (3): 199-209. doi:10.1016/j.jchemneu.2010.06.005. PMID 20600825. S2CID 178043. "What is ...
Fix, James (2009). Neuroanatomy. p. 28. ISBN 978-0781779463. v t e (Orphaned articles from February 2017, All orphaned articles ... Articles with TA98 identifiers, Central nervous system, All stub articles, Neuroanatomy stubs). ...
His background in neuroanatomy helped him in correctly locating the patient's lesion to the lateral medulla and connected it to ... wallenbergs at NINDS DeMyer, William (1998). Neuroanatomy. Williams & Wilkins. ISBN 9780683300758. "Atherosclerosis". American ...
Neuroanatomy. pp. 495-509. doi:10.1007/978-1-4684-7920-1_24. ISBN 978-1-4684-7922-5. "Fast food 'as addictive as heroin'". 2003 ...
Neuroanatomy. Lippincott Williams & Wilkins. pp. 120-. ISBN 978-0-7817-7245-7. Retrieved 17 November 2010. "upper motor neurone ...
Lower motor neuron Upper motor neuron Upper motor neuron lesion James D. Fix (1 October 2007). Neuroanatomy. Lippincott ...
In neuroanatomy, the corticobulbar (or corticonuclear) tract is a two-neuron white matter motor pathway connecting the motor ... Upper motor neuron Upper motor neuron lesion DeMyer, William (1998). Neuroanatomy. Williams & Wilkins. ISBN 9780683300758. ...
Yaprak, Mevlut (2008). "The axon reflex" (PDF). Neuroanatomy. 7: 17-19. ISSN 1303-1775. Wårdell, K.; Naver, H. K.; Nilsson, G. ...
Oztas E (2003). "Neuronal Tracing" (PDF). Neuroanatomy. 2: 2-5. Archived (PDF) from the original on 2005-10-25. Karp G, van der ...
Wikimedia Commons has media related to Neuroanatomy. Neuroanatomy, an annual journal of clinical neuroanatomy Mouse, Rat, ... Neuroanatomy is the study of the structure and organization of the nervous system. In contrast to animals with radial symmetry ... The pairs of terms used most commonly in neuroanatomy are: Dorsal and ventral: dorsal loosely refers to the top or upper side, ... Modern developments in neuroanatomy are directly correlated to the technologies used to perform research. Therefore, it is ...
JNeurosci Online ISSN: 1529-2401. The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturers claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.. ...
What is the neuroanatomy of involuntary detrusor contractions in infants?. How does the brain attain control of the urinary ... Neuroanatomy. Normal voiding is essentially a spinal reflex modulated by the central nervous system (brain and spinal cord), ... What is the role of the pontine micturition center (PMC) in the neuroanatomy of neurogenic bladder? ... What happens when pontine micturition center (PMC) is deactivated in the neuroanatomy of the neurogenic bladder? ...
What is the neuroanatomy of involuntary detrusor contractions in infants?. How does the brain attain control of the urinary ... Neuroanatomy. Normal voiding is essentially a spinal reflex modulated by the central nervous system (brain and spinal cord), ... What is the role of the pontine micturition center (PMC) in the neuroanatomy of neurogenic bladder? ... What happens when pontine micturition center (PMC) is deactivated in the neuroanatomy of the neurogenic bladder? ...
... Conscious Cogn. 2003 Jun;12 ...
Professor of Neuroanatomy. *1993 Graduation as Dr. med. at the Medical Faculty of the Justus-Liebig-University Giessen; grade: ... Frontiers in Neuroanatomy 11:54.. *Walker F, Möck M, Feyerabend M, Guy J, Wagener RJ, Schubert D, Staiger JF*, Witte M* (2016) ... of Neuroanatomy. University Medical Center Göttingen. Kreuzbergring 36. 37075 Göttingen. Germany. Tel.: +49-(0)551- 397051. Fax ... Since 2010 Full professor and director of the Department of Neuroanatomy at the University of Göttingen ...
The University of Edinburghs Anatomy Department has organised a series of six public workshops on human anatomy, allowing members of the public to handle pre-dissected anatomical specimens. Over the course…. ...
Stanford Medicine News 2018 03 Neuroanatomy lab bridges virtual reality, OR Story ... residents can navigate through an actual patients neuroanatomy, manipulating it - rotating structures, removing obstructing ...
There is a role for development and standardisation of national undergraduate neuroanatomy curricula in order to improve ... Our survey demonstrates variability in how undergraduate neuroanatomy is taught and assessed across the UK and Ireland. ... it is important to understand the current framework of neuroanatomy education. This study aims to describe how neuroanatomy is ... A survey of teaching undergraduate neuroanatomy in the United Kingdom and Ireland Br J Neurosurg. 2022 Feb;36(1):52-57. doi: ...
Home / 2015 Conference / 2015: Learning Disabilities: Neuroanatomy, Neurophysiology and Neurofeedback. 2015 Conference. 2015: ...
Neuroanatomy Course. The Neuroanatomy course is made possible in cooperation with Prof. Dr. W. Knabe, head of the Department of ... This combination creates a tangible understanding of human neuroanatomy and is enthusiastically accepted by students. ...
Stiver officially released her first set of neuroanatomy cards on September 13, selling over 165 copies in 13 countries across ... Although she has a full schedule teaching undergraduate neuroanatomy, assisting with gross anatomy labs, and finishing and ...
Neuroanatomy of Pelvic Floor. The striated muscle forming the urethral rhabdosphincter and the periurethral striated muscle ( ... What is the neuroanatomy of pelvic floor relevant to the urologic management of neurologic disease? ...
The Kings of Neuroanatomy. Sum Of R is the Swiss act featuring the multi-talented Reto Mäder, who does most of the performing ...
We provide secure, cost-effective access to the UKs richest collection of digital content: giving you access to the latest data and content from leading international publishers and providers.. Find out more at jisc.ac.uk. ...
JavaScript must be enabled in order for you to use BrainMaps.org. However, it seems JavaScript is either disabled or not supported by your browser. To view BrainMaps.org, enable JavaScript by changing your browser options, and then try again ...
JavaScript must be enabled in order for you to use BrainMaps.org. However, it seems JavaScript is either disabled or not supported by your browser. To view BrainMaps.org, enable JavaScript by changing your browser options, and then try again ...
JavaScript must be enabled in order for you to use BrainMaps.org. However, it seems JavaScript is either disabled or not supported by your browser. To view BrainMaps.org, enable JavaScript by changing your browser options, and then try again ...
Neuroanatomy is the research of the nervous systems composition and organization, and the nervous system is compri... ... Compre Exam 4 Neuroanatomy, Blood and Endocrine Physiology Compre Exam 4 Neuroanatomy, Blood and Endocrine Physiology ... 9.INTRODUCTION TO NEUROANATOMY & SPINAL CORD-AĞAÇ 9.INTRODUCTION TO NEUROANATOMY & SPINAL CORD-AĞAÇ ... Neuroanatomy and Spinal Cord Trivia Quiz! Neuroanatomy and Spinal Cord Trivia Quiz! ...
Neuroanatomy of the penile portion of the human dorsal nerve of the penis.. C. C. YANG and W. E. BRADLEY. Department of Urology ... Neuroanatomy of the penile portion of the human dorsal nerve of the penis. Br J Urol 1998;82(1):109-13. ... Neuroanatomy of penile erection: its relevance to iatrogenic impotence. J Urol 1984; 131: 273-80 ... penises were dissected to document penile shaft neuroanatomy and six specimens were used to document glanular innervation. ...
The neuroanatomy of asomatognosia and somatoparaphrenia Message subject: (Your Name) has forwarded a page to you from Journal ...
and include your entry! Enjoy your readings…Its All in the Mind…Dr Shock writes The Functional Neuroanatomy of Depression:This ... The structural neuroanatomy of depression shows high predictive potential for clinical response to antidepressant medication, ... Costafreda, S., Chu, C., Ashburner, J., & Fu, C. (2009). Prognostic and Diagnostic Potential of the Structural Neuroanatomy of ... Science Report » Blog Archive » The Functional Neuroanatomy of Depression. November 23, 2009 @ 2:22 pm ...
Accessibility , Privacy Notice , Copyright © 2020 The Trustees of Indiana University ...
In this study, the morphology of the horse brain (Equus caballus) is decribed in detail using high field MRI. The study includes sagittal, dorsal, and transverse T2-weighted images at 0.25 mm resolution at 3 Tesla and 3D models of the brain presenting the external morphology of the brain. Representative gallocyanin stained histological slides of the same brain are presented. The images represent a useful tool for MR image interpretation in horses and may serve as a starting point for further research aiming at in vivo analysis in this species.
An annual journal of clinical neuroanatomy and neuroscience] ... NEUROANATOMY is an annual journal of neuroanatomy and ... Although all the articles copyright holder is neuroanatomy.org, NEUROANATOMY is an open access journal. The term open access ... NEUROANATOMY is a peer-reviewed journal. Articles for the journal are chosen by the editors and published in English to make it ... The basic aim of the journal is to present a medium where all people concerned with neuroanatomy will have a chance to ...
... is an annual journal of neuroanatomy and neuroscience. It is mainly published as an electronic journal in Adobe ...
Integrating barcoded neuroanatomy with spatial transcriptional profiling reveals cadherin correlates of projections shared ... Integrating barcoded neuroanatomy with spatial transcriptional profiling reveals cadherin correlates of projections shared ... Integrating barcoded neuroanatomy with spatial transcriptional profiling reveals cadherin correlates of projections shared ... Integrating barcoded neuroanatomy with spatial transcriptional profiling reveals cadherin correlates of projections shared ...
  • Snell's Clinical Neuroanatomy, Eighth Edition, equips medical and health professions students with a complete, clinically oriented understanding of neuroanatomy. (google.co.uk)
  • In thus applying neuroanatomy clinically, the atlas ensures student preparedness for exams and for rotations. (etextpdf.com)
  • This authoritative approach-combined with such salutary features as full-color stained sections, extensive cranial nerve cross-referencing, and systems neurobiology coverage-sustains the legacy of this revolutionary teaching and learning tool as the neuroanatomy atlas. (etextpdf.com)
  • New and hallmark features elucidate neuroanatomy and systems neurobiology for course success! (etextpdf.com)
  • Manter & Gatz's Essentials of Clinical Neuroanatomy and Neurophysiology (7th ed. (aota.org)
  • Those who argued for the brain often contributed to the understanding of neuroanatomy as well. (wikipedia.org)
  • The Greek physician and philosopher Galen, likewise, argued strongly for the brain as the organ responsible for sensation and voluntary motion, as evidenced by his research on the neuroanatomy of oxen, Barbary apes, and other animals. (wikipedia.org)
  • There's no denying that the human brain is extremely complicated and that makes neuroanatomy difficult to learn and teach," said Dr. Claudia Krebs, a professor of anatomy in UBC's faculty of medicine. (techxplore.com)
  • With advances in visualization tools and applications, like the Holographic Brain Project-which allows for the overlay of two-dimensional MRI scans on corresponding sections of the brain -learners are given an opportunity to dive deeper into neuroanatomy than ever before. (techxplore.com)
  • In the coming weeks, Krebs, Holman and Bodnar will undertake a research study to assess the educational value of the Holographic Brain Project in neuroanatomy education. (techxplore.com)
  • It is hard to navigate through writing about the brain without having an understanding of basic neuroanatomy or visual supports. (kennedykrieger.org)
  • Here we present a comprehensive overview of the evidence regarding the functional neuroanatomy of mania. (nih.gov)
  • Steele, JD 2010, Functional neuroanatomy . (dundee.ac.uk)
  • Organized classically by system, this revised edition reflects the latest clinical approaches to neuroanatomy structures and reinforces concepts with enhanced, illustrations, diagnostic images, and surface anatomy photographs. (google.co.uk)
  • Neuroanatomy in Clinical Context, 9th Edition (PDF) provides everything the medical student needs to master the anatomy of the central nervous system, all in a clinical setting. (etextpdf.com)
  • NOTE: This product only includes the ebook Neuroanatomy in Clinical Context 9e in PDF. (etextpdf.com)
  • In this following post we share a PDF link of VISHRAM SINGH CLINICAL NEUROANATOMY 3RD EDITION PDF free with a quick review and features. (medicscenter.com)
  • As a young student studying neuroanatomy, I only had two-dimensional images in textbooks," recalls Bodnar. (techxplore.com)
  • The fourth edition of this book is thoroughly updated in accordance with the competency-based curriculum of neuroanatomy as per the revised guidelines of Medical Council of India and health universities across the country, and nearby countries.This profusely illustrated book has been designed in simple and easy to understand language provides essential knowledge of neuroanatomy without extraneous details. (medicscenter.com)
  • Neuroanatomy is the study of the structure and organization of the nervous system. (wikipedia.org)
  • In his usual style, Dr. Cox makes this neuroanatomy practical and relevant to the chiropractic physician striving to provide the best care as the back pain specialist for his or her patients. (coxtechnic.com)
  • This article discusses information pertinent to the study of neuroanatomy. (wikipedia.org)
  • However, Pope Sixtus IV effectively revitalized the study of neuroanatomy by altering the papal policy and allowing human dissection. (wikipedia.org)
  • In 1664, Thomas Willis, a physician and professor at Oxford University, coined the term neurology when he published his text Cerebri Anatome which is considered the foundation of modern neuroanatomy. (wikipedia.org)
  • The application will be used in conjunction with the many existing educational resources at UBC to help make neuroanatomy more approachable. (techxplore.com)
  • They believe the new technology could be a game changer for neuroanatomy instruction at the university. (techxplore.com)
  • The catalog culminates eight years of focused investment in neuroanatomy innovation. (labmanager.com)
  • Current set of seven neuroanatomy drawings by Santiago Ramón y Cajal will remain on rotation in Building 35. (nih.gov)