Differentiated tissue of the central nervous system composed of NERVE CELLS, fibers, DENDRITES, and specialized supporting cells.
'Nerve tissue proteins' are specialized proteins found within the nervous system's biological tissue, including neurofilaments, neuronal cytoskeletal proteins, and neural cell adhesion molecules, which facilitate structural support, intracellular communication, and synaptic connectivity essential for proper neurological function.
A nerve which originates in the lumbar and sacral spinal cord (L4 to S3) and supplies motor and sensory innervation to the lower extremity. The sciatic nerve, which is the main continuation of the sacral plexus, is the largest nerve in the body. It has two major branches, the TIBIAL NERVE and the PERONEAL NERVE.
The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium.
Neoplasms composed of nerve tissue. This concept does not refer to neoplasms located in the nervous system or its component nerves.
A plant genus of the family PORTULACACEAE.
Renewal or physiological repair of damaged nerve tissue.
The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM.
The conformation, properties, reaction processes, and the properties of the reactions of carbon compounds.
Propane is a colorless, odorless, and chemically simple hydrocarbon (C3H8), commonly used as a fuel for heating, cooking, and engines, which exists as a gas at room temperature but can be liquefied under pressure and stored in cylinders or tanks.
The use of light interaction (scattering, absorption, and fluorescence) with biological tissue to obtain morphologically based information. It includes measuring inherent tissue optical properties such as scattering, absorption, and autofluorescence; or optical properties of exogenous targeted fluorescent molecular probes such as those used in optical MOLECULAR IMAGING, or nontargeted optical CONTRAST AGENTS.
Submicron-sized fibers with diameters typically between 50 and 500 nanometers. The very small dimension of these fibers can generate a high surface area to volume ratio, which makes them potential candidates for various biomedical and other applications.
Neuroglial cells of the peripheral nervous system which form the insulating myelin sheaths of peripheral axons.
Glyoxal is a chemical compound, an organic dicarbonyl compound, with the formula O=C-CH-CH=O, which is a colorless liquid that can be used as a reagent in various chemical reactions, including the formation of Schiff bases and other adducts with amines.
One of a group of nonenzymatic reactions in which aldehydes, ketones, or reducing sugars react with amino acids, peptides, or proteins. Food browning reactions, such as those that occur with cooking of meats, and also food deterioration reactions, resulting in decreased nutritional value and color changes, are attributed to this reaction type. The Maillard reaction is studied by scientists in the agriculture, food, nutrition, and carbohydrate chemistry fields.
Cell growth support structures composed of BIOCOMPATIBLE MATERIALS. They are specially designed solid support matrices for cell attachment in TISSUE ENGINEERING and GUIDED TISSUE REGENERATION uses.
Tissue that supports and binds other tissues. It consists of CONNECTIVE TISSUE CELLS embedded in a large amount of EXTRACELLULAR MATRIX.
Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
A cytosolic carbonic anhydrase isoenzyme primarily expressed in skeletal muscle (MUSCLES, SKELETAL). EC 4.2.1.-
Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body.
An essential branched-chain amino acid important for hemoglobin formation.
The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS.
Yoshida sarcoma is a rare and aggressive type of soft tissue cancer, specifically a malignant mesenchymal tumor, which was initially reported in Japan and typically occurs in children and young adults, often associated with a poor prognosis due to its rapid growth and high metastatic potential.
A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER.
The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Interruption of NEURAL CONDUCTION in peripheral nerves or nerve trunks by the injection of a local anesthetic agent (e.g., LIDOCAINE; PHENOL; BOTULINUM TOXINS) to manage or treat pain.
An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS.
A branch of the tibial nerve which supplies sensory innervation to parts of the lower leg and foot.
Contractile tissue that produces movement in animals.
A major nerve of the upper extremity. In humans, the fibers of the median nerve originate in the lower cervical and upper thoracic spinal cord (usually C6 to T1), travel via the brachial plexus, and supply sensory and motor innervation to parts of the forearm and hand.
The 7th cranial nerve. The facial nerve has two parts, the larger motor root which may be called the facial nerve proper, and the smaller intermediate or sensory root. Together they provide efferent innervation to the muscles of facial expression and to the lacrimal and SALIVARY GLANDS, and convey afferent information for TASTE from the anterior two-thirds of the TONGUE and for TOUCH from the EXTERNAL EAR.
Treatment of muscles and nerves under pressure as a result of crush injuries.
Injuries to the PERIPHERAL NERVES.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
The medial terminal branch of the sciatic nerve. The tibial nerve fibers originate in lumbar and sacral spinal segments (L4 to S2). They supply motor and sensory innervation to parts of the calf and foot.
A major nerve of the upper extremity. In humans, the fibers of the ulnar nerve originate in the lower cervical and upper thoracic spinal cord (usually C7 to T1), travel via the medial cord of the brachial plexus, and supply sensory and motor innervation to parts of the hand and forearm.
Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
A nerve originating in the lumbar spinal cord (usually L2 to L4) and traveling through the lumbar plexus to provide motor innervation to extensors of the thigh and sensory innervation to parts of the thigh, lower leg, and foot, and to the hip and knee joints.
Products derived from the nonenzymatic reaction of GLUCOSE and PROTEINS in vivo that exhibit a yellow-brown pigmentation and an ability to participate in protein-protein cross-linking. These substances are involved in biological processes relating to protein turnover and it is believed that their excessive accumulation contributes to the chronic complications of DIABETES MELLITUS.
The 31 paired peripheral nerves formed by the union of the dorsal and ventral spinal roots from each spinal cord segment. The spinal nerve plexuses and the spinal roots are also included.
A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles.
An essential amino acid. It is often added to animal feed.
A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH).
Proteins obtained from foods. They are the main source of the ESSENTIAL AMINO ACIDS.
NERVE GROWTH FACTOR is the first of a series of neurotrophic factors that were found to influence the growth and differentiation of sympathetic and sensory neurons. It is comprised of alpha, beta, and gamma subunits. The beta subunit is responsible for its growth stimulating activity.
The 5th and largest cranial nerve. The trigeminal nerve is a mixed motor and sensory nerve. The larger sensory part forms the ophthalmic, mandibular, and maxillary nerves which carry afferents sensitive to external or internal stimuli from the skin, muscles, and joints of the face and mouth and from the teeth. Most of these fibers originate from cells of the TRIGEMINAL GANGLION and project to the TRIGEMINAL NUCLEUS of the brain stem. The smaller motor part arises from the brain stem trigeminal motor nucleus and innervates the muscles of mastication.
Factors which enhance the growth potentialities of sensory and sympathetic nerve cells.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
The motor nerve of the diaphragm. The phrenic nerve fibers originate in the cervical spinal column (mostly C4) and travel through the cervical plexus to the diaphragm.
The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms.
A major nerve of the upper extremity. In humans the fibers of the radial nerve originate in the lower cervical and upper thoracic spinal cord (usually C5 to T1), travel via the posterior cord of the brachial plexus, and supply motor innervation to extensor muscles of the arm and cutaneous sensory fibers to extensor regions of the arm and hand.
Twelve pairs of nerves that carry general afferent, visceral afferent, special afferent, somatic efferent, and autonomic efferent fibers.
An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Paired bundles of NERVE FIBERS entering and leaving the SPINAL CORD at each segment. The dorsal and ventral nerve roots join to form the mixed segmental spinal nerves. The dorsal roots are generally afferent, formed by the central projections of the spinal (dorsal root) ganglia sensory cells, and the ventral roots are efferent, comprising the axons of spinal motor and PREGANGLIONIC AUTONOMIC FIBERS.
Mechanical compression of nerves or nerve roots from internal or external causes. These may result in a conduction block to nerve impulses (due to MYELIN SHEATH dysfunction) or axonal loss. The nerve and nerve sheath injuries may be caused by ISCHEMIA; INFLAMMATION; or a direct mechanical effect.
The measurement of an organ in volume, mass, or heaviness.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
Stable carbon atoms that have the same atomic number as the element carbon, but differ in atomic weight. C-13 is a stable carbon isotope.
The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
A sensory branch of the trigeminal (5th cranial) nerve. The ophthalmic nerve carries general afferents from the superficial division of the face including the eyeball, conjunctiva, upper eyelid, upper nose, nasal mucosa, and scalp.
Tritium is an isotope of hydrogen (specifically, hydrogen-3) that contains one proton and two neutrons in its nucleus, making it radioactive with a half-life of about 12.3 years, and is used in various applications including nuclear research, illumination, and dating techniques due to its low energy beta decay.
A branch of the trigeminal (5th cranial) nerve. The mandibular nerve carries motor fibers to the muscles of mastication and sensory fibers to the teeth and gingivae, the face in the region of the mandible, and parts of the dura.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios.
The cochlear part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The cochlear nerve fibers originate from neurons of the SPIRAL GANGLION and project peripherally to cochlear hair cells and centrally to the cochlear nuclei (COCHLEAR NUCLEUS) of the BRAIN STEM. They mediate the sense of hearing.
The major nerves supplying sympathetic innervation to the abdomen. The greater, lesser, and lowest (or smallest) splanchnic nerves are formed by preganglionic fibers from the spinal cord which pass through the paravertebral ganglia and then to the celiac ganglia and plexuses. The lumbar splanchnic nerves carry fibers which pass through the lumbar paravertebral ganglia to the mesenteric and hypogastric ganglia.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
The 9th cranial nerve. The glossopharyngeal nerve is a mixed motor and sensory nerve; it conveys somatic and autonomic efferents as well as general, special, and visceral afferents. Among the connections are motor fibers to the stylopharyngeus muscle, parasympathetic fibers to the parotid glands, general and taste afferents from the posterior third of the tongue, the nasopharynx, and the palate, and afferents from baroreceptors and CHEMORECEPTOR CELLS of the carotid sinus.
An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers.
The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus.
Injuries to the optic nerve induced by a trauma to the face or head. These may occur with closed or penetrating injuries. Relatively minor compression of the superior aspect of orbit may also result in trauma to the optic nerve. Clinical manifestations may include visual loss, PAPILLEDEMA, and an afferent pupillary defect.
Conditions which produce injury or dysfunction of the second cranial or optic nerve, which is generally considered a component of the central nervous system. Damage to optic nerve fibers may occur at or near their origin in the retina, at the optic disk, or in the nerve, optic chiasm, optic tract, or lateral geniculate nuclei. Clinical manifestations may include decreased visual acuity and contrast sensitivity, impaired color vision, and an afferent pupillary defect.
The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow.
The twelve spinal nerves on each side of the thorax. They include eleven INTERCOSTAL NERVES and one subcostal nerve. Both sensory and motor, they supply the muscles and skin of the thoracic and abdominal walls.
A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves.
The systematic study of the complete complement of proteins (PROTEOME) of organisms.
The 11th cranial nerve which originates from NEURONS in the MEDULLA and in the CERVICAL SPINAL CORD. It has a cranial root, which joins the VAGUS NERVE (10th cranial) and sends motor fibers to the muscles of the LARYNX, and a spinal root, which sends motor fibers to the TRAPEZIUS and the sternocleidomastoid muscles.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
The rate dynamics in chemical or physical systems.
Traumatic injuries to the facial nerve. This may result in FACIAL PARALYSIS, decreased lacrimation and salivation, and loss of taste sensation in the anterior tongue. The nerve may regenerate and reform its original pattern of innervation, or regenerate aberrantly, resulting in inappropriate lacrimation in response to gustatory stimuli (e.g., "crocodile tears") and other syndromes.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
The 6th cranial nerve which originates in the ABDUCENS NUCLEUS of the PONS and sends motor fibers to the lateral rectus muscles of the EYE. Damage to the nerve or its nucleus disrupts horizontal eye movement control.
The 3d cranial nerve. The oculomotor nerve sends motor fibers to the levator muscles of the eyelid and to the superior rectus, inferior rectus, and inferior oblique muscles of the eye. It also sends parasympathetic efferents (via the ciliary ganglion) to the muscles controlling pupillary constriction and accommodation. The motor fibers originate in the oculomotor nuclei of the midbrain.
The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time.
The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system.
Benign and malignant neoplasms that arise from one or more of the twelve cranial nerves.
Diseases of the facial nerve or nuclei. Pontine disorders may affect the facial nuclei or nerve fascicle. The nerve may be involved intracranially, along its course through the petrous portion of the temporal bone, or along its extracranial course. Clinical manifestations include facial muscle weakness, loss of taste from the anterior tongue, hyperacusis, and decreased lacrimation.

FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. (1/25163)

Beads containing recombinant FGF8 (FGF8-beads) were implanted in the prospective caudal diencephalon or midbrain of chick embryos at stages 9-12. This induced the neuroepithelium rostral and caudal to the FGF8-bead to form two ectopic, mirror-image midbrains. Furthermore, cells in direct contact with the bead formed an outgrowth that protruded laterally from the neural tube. Tissue within such lateral outgrowths developed proximally into isthmic nuclei and distally into a cerebellum-like structure. These morphogenetic effects were apparently due to FGF8-mediated changes in gene expression in the vicinity of the bead, including a repressive effect on Otx2 and an inductive effect on En1, Fgf8 and Wnt1 expression. The ectopic Fgf8 and Wnt1 expression domains formed nearly complete concentric rings around the FGF8-bead, with the Wnt1 ring outermost. These observations suggest that FGF8 induces the formation of a ring-like ectopic signaling center (organizer) in the lateral wall of the brain, similar to the one that normally encircles the neural tube at the isthmic constriction, which is located at the boundary between the prospective midbrain and hindbrain. This ectopic isthmic organizer apparently sends long-range patterning signals both rostrally and caudally, resulting in the development of the two ectopic midbrains. Interestingly, our data suggest that these inductive signals spread readily in a caudal direction, but are inhibited from spreading rostrally across diencephalic neuromere boundaries. These results provide insights into the mechanism by which FGF8 induces an ectopic organizer and suggest that a negative feedback loop between Fgf8 and Otx2 plays a key role in patterning the midbrain and anterior hindbrain.  (+info)

Deletion analysis of the Drosophila Inscuteable protein reveals domains for cortical localization and asymmetric localization. (2/25163)

The Drosophila Inscuteable protein acts as a key regulator of asymmetric cell division during the development of the nervous system [1] [2]. In neuroblasts, Inscuteable localizes into an apical cortical crescent during late interphase and most of mitosis. During mitosis, Inscuteable is required for the correct apical-basal orientation of the mitotic spindle and for the asymmetric segregation of the proteins Numb [3] [4] [5], Prospero [5] [6] [7] and Miranda [8] [9] into the basal daughter cell. When Inscuteable is ectopically expressed in epidermal cells, which normally orient their mitotic spindle parallel to the embryo surface, these cells reorient their mitotic spindle and divide perpendicularly to the surface [1]. Like the Inscuteable protein, the inscuteable RNA is asymmetrically localized [10]. We show here that inscuteable RNA localization is not required for Inscuteable protein localization. We found that a central 364 amino acid domain - the Inscuteable asymmetry domain - was necessary and sufficient for Inscuteable localization and function. Within this domain, a separate 100 amino acid region was required for asymmetric localization along the cortex, whereas a 158 amino acid region directed localization to the cell cortex. The same 158 amino acid fragment could localize asymmetrically when coexpressed with the full-length protein, however, and could bind to Inscuteable in vitro, suggesting that this domain may be involved in the self-association of Inscuteable in vivo.  (+info)

p38 mitogen-activated protein kinase can be involved in transforming growth factor beta superfamily signal transduction in Drosophila wing morphogenesis. (3/25163)

p38 mitogen-activated protein kinase (p38) has been extensively studied as a stress-responsive kinase, but its role in development remains unknown. The fruit fly, Drosophila melanogaster, has two p38 genes, D-p38a and D-p38b. To elucidate the developmental function of the Drosophila p38's, we used various genetic and pharmacological manipulations to interfere with their functions: expression of a dominant-negative form of D-p38b, expression of antisense D-p38b RNA, reduction of the D-p38 gene dosage, and treatment with the p38 inhibitor SB203580. Expression of a dominant-negative D-p38b in the wing imaginal disc caused a decapentaplegic (dpp)-like phenotype and enhanced the phenotype of a dpp mutant. Dpp is a secretory ligand belonging to the transforming growth factor beta superfamily which triggers various morphogenetic processes through interaction with the receptor Thick veins (Tkv). Inhibition of D-p38b function also caused the suppression of the wing phenotype induced by constitutively active Tkv (TkvCA). Mosaic analysis revealed that D-p38b regulates the Tkv-dependent transcription of the optomotor-blind (omb) gene in non-Dpp-producing cells, indicating that the site of D-p38b action is downstream of Tkv. Furthermore, forced expression of TkvCA induced an increase in the phosphorylated active form(s) of D-p38(s). These results demonstrate that p38, in addition to its role as a transducer of emergency stress signaling, may function to modulate Dpp signaling.  (+info)

Conserved domains and lack of evidence for polyglutamine length polymorphism in the chicken homolog of the Machado-Joseph disease gene product ataxin-3. (4/25163)

Ataxin-3 is a protein of unknown function which is mutated in Machado-Joseph disease by expansion of a genetically unstable CAG repeat encoding polyglutamine. By analysis of chicken ataxin-3 we were able to identify four conserved domains of the protein and detected widespread expression in chicken tissues. In the first such analysis in a non-primate species we found that in contrast to primates, the chicken CAG repeat is short and genetically stable.  (+info)

A processive single-headed motor: kinesin superfamily protein KIF1A. (5/25163)

A single kinesin molecule can move "processively" along a microtubule for more than 1 micrometer before detaching from it. The prevailing explanation for this processive movement is the "walking model," which envisions that each of two motor domains (heads) of the kinesin molecule binds coordinately to the microtubule. This implies that each kinesin molecule must have two heads to "walk" and that a single-headed kinesin could not move processively. Here, a motor-domain construct of KIF1A, a single-headed kinesin superfamily protein, was shown to move processively along the microtubule for more than 1 micrometer. The movement along the microtubules was stochastic and fitted a biased Brownian-movement model.  (+info)

A concise promoter region of the heart fatty acid-binding protein gene dictates tissue-appropriate expression. (6/25163)

The heart fatty acid-binding protein (HFABP) is a member of a family of binding proteins with distinct tissue distributions and diverse roles in fatty acid metabolism, trafficking, and signaling. Other members of this family have been shown to possess concise promoter regions that direct appropriate tissue-specific expression. The basis for the specific expression of the HFABP has not been previously evaluated, and the mechanisms governing expression of metabolic genes in the heart are not completely understood. We used transient and permanent transfections in ventricular myocytes, skeletal myocytes, and nonmyocytic cells to map regulatory elements in the HFABP promoter, and audited results in transgenic mice. Appropriate tissue-specific expression in cell culture and in transgenic mice was dictated by 1.2 kb of the 5'-flanking sequence of FABP3, the HFABP gene. Comparison of orthologous murine and human genomic sequences demonstrated multiple regions of near-identity within this promoter region, including a CArG-like element close to the TATA box. Binding and transactivation studies demonstrated that this element can function as an atypical myocyte enhancer-binding factor 2 site. Interactions with adjacent sites are likely to be necessary for fully appropriate, tissue-specific, developmental and metabolic regulation.  (+info)

Induction of serotonin transporter by hypoxia in pulmonary vascular smooth muscle cells. Relationship with the mitogenic action of serotonin. (7/25163)

-The increased delivery of serotonin (5-hydroxytryptamine, 5-HT) to the lung aggravates the development of hypoxia-induced pulmonary hypertension in rats, possibly through stimulation of the proliferation of pulmonary artery smooth muscle cells (PA-SMCs). In cultured rat PA-SMCs, 5-HT (10(-8) to 10(-6) mol/L) induced DNA synthesis and potentiated the mitogenic effect of platelet-derived growth factor-BB (10 ng/mL). This effect was dependent on the 5-HT transporter (5-HTT), since it was prevented by the 5-HTT inhibitors fluoxetine (10(-6) mol/L) and paroxetine (10(-7) mol/L), but it was unaltered by ketanserin (10(-6) mol/L), a 5-HT2A receptor antagonist. In PA-SMCs exposed to hypoxia, the levels of 5-HTT mRNA (measured by competitive reverse transcriptase-polymerase chain reaction) increased by 240% within 2 hours, followed by a 3-fold increase in the uptake of [3H]5-HT at 24 hours. Cotransfection of the cells with a construct of human 5-HTT promoter-luciferase gene reporter and of pCMV-beta-galactosidase gene allowed the demonstration that exposure of cells to hypoxia produced a 5.5-fold increase in luciferase activity, with no change in beta-galactosidase activity. The increased expression of 5-HTT in hypoxic cells was associated with a greater mitogenic response to 5-HT (10(-8) to 10(-6) mol/L) in the absence as well as in the presence of platelet-derived growth factor-BB. 5-HTT expression assessed by quantitative reverse transcriptase-polymerase chain reaction and in situ hybridization in the lungs was found to predominate in the media of pulmonary artery, in which a marked increase was noted in rats that had been exposed to hypoxia for 15 days. These data show that in vitro and in vivo exposure to hypoxia induces, via a transcriptional mechanism, 5-HTT expression in PA-SMCs, and that this effect contributes to the stimulatory action of 5-HT on PA-SMC proliferation. In vivo expression of 5-HTT by PA-SMC may play a key role in serotonin-mediated pulmonary vascular remodeling.  (+info)

Functional consequences of mutations in the human alpha1A calcium channel subunit linked to familial hemiplegic migraine. (8/25163)

Mutations in alpha1A, the pore-forming subunit of P/Q-type calcium channels, are linked to several human diseases, including familial hemiplegic migraine (FHM). We introduced the four missense mutations linked to FHM into human alpha1A-2 subunits and investigated their functional consequences after expression in human embryonic kidney 293 cells. By combining single-channel and whole-cell patch-clamp recordings, we show that all four mutations affect both the biophysical properties and the density of functional channels. Mutation R192Q in the S4 segment of domain I increased the density of functional P/Q-type channels and their open probability. Mutation T666M in the pore loop of domain II decreased both the density of functional channels and their unitary conductance (from 20 to 11 pS). Mutations V714A and I1815L in the S6 segments of domains II and IV shifted the voltage range of activation toward more negative voltages, increased both the open probability and the rate of recovery from inactivation, and decreased the density of functional channels. Mutation V714A decreased the single-channel conductance to 16 pS. Strikingly, the reduction in single-channel conductance induced by mutations T666M and V714A was not observed in some patches or periods of activity, suggesting that the abnormal channel may switch on and off, perhaps depending on some unknown factor. Our data show that the FHM mutations can lead to both gain- and loss-of-function of human P/Q-type calcium channels.  (+info)

Nerve tissue, also known as neural tissue, is a type of specialized tissue that is responsible for the transmission of electrical signals and the processing of information in the body. It is a key component of the nervous system, which includes the brain, spinal cord, and peripheral nerves. Nerve tissue is composed of two main types of cells: neurons and glial cells.

Neurons are the primary functional units of nerve tissue. They are specialized cells that are capable of generating and transmitting electrical signals, known as action potentials. Neurons have a unique structure, with a cell body (also called the soma) that contains the nucleus and other organelles, and processes (dendrites and axons) that extend from the cell body and are used to receive and transmit signals.

Glial cells, also known as neuroglia or glia, are non-neuronal cells that provide support and protection for neurons. There are several different types of glial cells, including astrocytes, oligodendrocytes, microglia, and Schwann cells. These cells play a variety of roles in the nervous system, such as providing structural support, maintaining the proper environment for neurons, and helping to repair and regenerate nerve tissue after injury.

Nerve tissue is found throughout the body, but it is most highly concentrated in the brain and spinal cord, which make up the central nervous system (CNS). The peripheral nerves, which are the nerves that extend from the CNS to the rest of the body, also contain nerve tissue. Nerve tissue is responsible for transmitting sensory information from the body to the brain, controlling muscle movements, and regulating various bodily functions such as heart rate, digestion, and respiration.

Nerve tissue proteins are specialized proteins found in the nervous system that provide structural and functional support to nerve cells, also known as neurons. These proteins include:

1. Neurofilaments: These are type IV intermediate filaments that provide structural support to neurons and help maintain their shape and size. They are composed of three subunits - NFL (light), NFM (medium), and NFH (heavy).

2. Neuronal Cytoskeletal Proteins: These include tubulins, actins, and spectrins that provide structural support to the neuronal cytoskeleton and help maintain its integrity.

3. Neurotransmitter Receptors: These are specialized proteins located on the postsynaptic membrane of neurons that bind neurotransmitters released by presynaptic neurons, triggering a response in the target cell.

4. Ion Channels: These are transmembrane proteins that regulate the flow of ions across the neuronal membrane and play a crucial role in generating and transmitting electrical signals in neurons.

5. Signaling Proteins: These include enzymes, receptors, and adaptor proteins that mediate intracellular signaling pathways involved in neuronal development, differentiation, survival, and death.

6. Adhesion Proteins: These are cell surface proteins that mediate cell-cell and cell-matrix interactions, playing a crucial role in the formation and maintenance of neural circuits.

7. Extracellular Matrix Proteins: These include proteoglycans, laminins, and collagens that provide structural support to nerve tissue and regulate neuronal migration, differentiation, and survival.

The sciatic nerve is the largest and longest nerve in the human body, running from the lower back through the buttocks and down the legs to the feet. It is formed by the union of the ventral rami (branches) of the L4 to S3 spinal nerves. The sciatic nerve provides motor and sensory innervation to various muscles and skin areas in the lower limbs, including the hamstrings, calf muscles, and the sole of the foot. Sciatic nerve disorders or injuries can result in symptoms such as pain, numbness, tingling, or weakness in the lower back, hips, legs, and feet, known as sciatica.

Peripheral nerves are nerve fibers that transmit signals between the central nervous system (CNS, consisting of the brain and spinal cord) and the rest of the body. These nerves convey motor, sensory, and autonomic information, enabling us to move, feel, and respond to changes in our environment. They form a complex network that extends from the CNS to muscles, glands, skin, and internal organs, allowing for coordinated responses and functions throughout the body. Damage or injury to peripheral nerves can result in various neurological symptoms, such as numbness, weakness, or pain, depending on the type and severity of the damage.

Neoplasms of nerve tissue are abnormal growths or tumors that originate in the nervous system, including the brain, spinal cord, and peripheral nerves. These neoplasms can be benign or malignant (cancerous) and can cause a variety of symptoms depending on their location and size.

Benign nerve tissue neoplasms are typically slow-growing and do not spread to other parts of the body. Examples include schwannomas, neurofibromas, and meningiomas. These tumors arise from the supporting cells of the nervous system, such as Schwann cells, which produce the myelin sheath that insulates nerve fibers.

Malignant nerve tissue neoplasms, on the other hand, are cancerous and can invade nearby tissues and spread to other parts of the body. These tumors are less common than benign neoplasms and can be difficult to treat. Examples include glioblastoma multiforme, a highly aggressive brain cancer, and malignant peripheral nerve sheath tumors, which arise from the cells that surround peripheral nerves.

Symptoms of nerve tissue neoplasms can vary widely depending on their location and size. Some common symptoms include headaches, seizures, weakness or numbness in the limbs, difficulty with coordination or balance, and changes in vision, hearing, or speech. Treatment options for nerve tissue neoplasms may include surgery, radiation therapy, chemotherapy, or a combination of these approaches.

"Portulaca" is a botanical term that refers to a genus of plants commonly known as "purslanes." These are mostly annual or perennial herbs or subshrubs, often with succulent leaves and stems. They belong to the family Portulacaceae.

However, in a medical context, 'Portulaca' is not typically used as a medical term or diagnosis. If you're referring to a specific medical use or component of a purslane plant, please provide more context so I can give a more accurate response.

Nerve regeneration is the process of regrowth and restoration of functional nerve connections following damage or injury to the nervous system. This complex process involves various cellular and molecular events, such as the activation of support cells called glia, the sprouting of surviving nerve fibers (axons), and the reformation of neural circuits. The goal of nerve regeneration is to enable the restoration of normal sensory, motor, and autonomic functions impaired due to nerve damage or injury.

The optic nerve, also known as the second cranial nerve, is the nerve that transmits visual information from the retina to the brain. It is composed of approximately one million nerve fibers that carry signals related to vision, such as light intensity and color, from the eye's photoreceptor cells (rods and cones) to the visual cortex in the brain. The optic nerve is responsible for carrying this visual information so that it can be processed and interpreted by the brain, allowing us to see and perceive our surroundings. Damage to the optic nerve can result in vision loss or impairment.

I believe there may be some confusion in your question as "Organic chemistry phenomena" is a broad term and not a medical definition. However, I can provide you with an explanation of organic chemistry phenomena in a general context.

Organic chemistry is the study of carbon-containing compounds, their synthesis, reactions, properties, and structures. The term "organic" was originally used to describe biological materials, but now it refers to any compound that contains carbon atoms bonded to hydrogen atoms, except for some simple oxides, sulfides, and halides.

Organic chemistry phenomena encompass a wide range of processes and events related to organic compounds. These can include:

1. Structural properties: Understanding the arrangement of atoms in organic molecules and how they influence chemical behavior and reactivity.
2. Stereochemistry: The study of three-dimensional spatial arrangements of atoms in organic molecules, which can significantly impact their properties and biological activity.
3. Functional groups: Recognizing and understanding the behavior of specific groupings of atoms within organic molecules that determine their chemical reactivity.
4. Reaction mechanisms: Investigating and describing the step-by-step processes by which organic reactions occur, including the movement of electrons, formation and breaking of bonds, and energy changes.
5. Synthetic methodologies: Developing strategies and techniques for creating complex organic molecules from simpler precursors, often involving multiple steps and protecting group strategies.
6. Physical properties: Examining how factors such as molecular weight, polarity, solubility, and melting/boiling points affect the behavior of organic compounds in various conditions.
7. Spectroscopic analysis: Utilizing techniques like NMR (Nuclear Magnetic Resonance), IR (Infrared) spectroscopy, and mass spectrometry to analyze the structure and composition of organic molecules.
8. Biochemistry and medicinal chemistry: Exploring how organic compounds interact with biological systems, including drug design, development, and delivery.

While not a medical definition per se, understanding organic chemistry phenomena is crucial for many areas within medicine, such as pharmaceutical research, toxicology, and biochemistry.

I'm sorry for any confusion, but "Propane" is not a medical term. It is a chemical compound commonly used as a fuel for heating, cooking, and engines. Propane is a gas at room temperature and pressure, but it can be liquefied under moderate pressure and stored in cylinders or tanks.

If you have any questions about a medical term or concept, I'd be happy to try to help answer those for you!

Optical imaging is a non-invasive medical imaging technique that uses light to capture images of internal structures and processes within the body. This method often involves the use of endoscopes, microscopes, or specialized cameras to visualize targeted areas, such as organs, tissues, or cells. Optical imaging can be used for various diagnostic and therapeutic purposes, including monitoring disease progression, guiding surgical procedures, and studying biological functions at the cellular level. Different optical imaging techniques include reflectance imaging, fluorescence imaging, bioluminescence imaging, and optical coherence tomography (OCT).

In summary, optical imaging is a versatile and non-ionizing medical imaging technique that utilizes light to visualize internal body structures and processes for diagnostic and therapeutic applications.

Nanofibers are defined in the medical field as fibrous structures with extremely small diameters, typically measuring between 100 nanometers to 1 micrometer. They can be made from various materials such as polymers, ceramics, or composites and have a high surface area-to-volume ratio, which makes them useful in a variety of biomedical applications. These include tissue engineering, drug delivery, wound healing, and filtration. Nanofibers can be produced using different techniques such as electrospinning, self-assembly, and phase separation.

Schwann cells, also known as neurolemmocytes, are a type of glial cell that form the myelin sheath around peripheral nervous system (PNS) axons, allowing for the rapid and efficient transmission of nerve impulses. These cells play a crucial role in the maintenance and function of the PNS.

Schwann cells originate from the neural crest during embryonic development and migrate to the developing nerves. They wrap around the axons in a spiral fashion, forming multiple layers of myelin, which insulates the nerve fibers and increases the speed of electrical impulse transmission. Each Schwann cell is responsible for myelinating a single segment of an axon, with the gaps between these segments called nodes of Ranvier.

Schwann cells also provide structural support to the neurons and contribute to the regeneration of injured peripheral nerves by helping to guide the regrowth of axons to their targets. Additionally, Schwann cells can participate in immune responses within the PNS, such as releasing cytokines and chemokines to recruit immune cells during injury or infection.

Glyoxal is an organic compound with the formula CH(O)CHO. It is a colorless liquid that is used primarily as a building block in the synthesis of other chemicals, including pharmaceuticals and agrochemicals. Glyoxal is also found in small amounts in the environment, including in tobacco smoke and in certain foods.

In the body, glyoxal can be produced as a byproduct of normal metabolic processes, particularly when sugars are broken down. Under some circumstances, high levels of glyoxal may contribute to the development of chronic diseases, including diabetes and its complications. This is because glyoxal can react with proteins and other biological molecules in the body, forming advanced glycation end-products (AGEs) that can disrupt normal cellular function and contribute to tissue damage. However, more research is needed to fully understand the role of glyoxal in human health and disease.

I'm sorry for any confusion, but the term "Maillard reaction" is not a medical definition, but rather a chemical one. It refers to a specific type of chemical reaction between amino acids and reducing sugars that gives browned food its distinctive flavor. This reaction is named after French chemist Louis-Camille Maillard, who first described it in the early 20th century.

In culinary terms, the Maillard reaction is responsible for the browning of many foods, such as the crust of bread, the surface of roasted meats, and the flavor of seared vegetables. The reaction occurs when food is cooked or heated at high temperatures, causing amino acids and sugars to react and form new compounds that contribute to the food's color, taste, and aroma.

While the Maillard reaction is not a medical term, it is worth noting that some of the compounds formed during this reaction have been linked to potential health effects. For example, acrylamide, a compound that can form during high-temperature cooking of certain foods, has been classified as a probable human carcinogen by the International Agency for Research on Cancer (IARC). However, more research is needed to fully understand the health implications of these compounds and their role in the diet.

Tissue scaffolds, also known as bioactive scaffolds or synthetic extracellular matrices, refer to three-dimensional structures that serve as templates for the growth and organization of cells in tissue engineering and regenerative medicine. These scaffolds are designed to mimic the natural extracellular matrix (ECM) found in biological tissues, providing a supportive environment for cell attachment, proliferation, differentiation, and migration.

Tissue scaffolds can be made from various materials, including naturally derived biopolymers (e.g., collagen, alginate, chitosan, hyaluronic acid), synthetic polymers (e.g., polycaprolactone, polylactic acid, poly(lactic-co-glycolic acid)), or a combination of both. The choice of material depends on the specific application and desired properties, such as biocompatibility, biodegradability, mechanical strength, and porosity.

The primary functions of tissue scaffolds include:

1. Cell attachment: Providing surfaces for cells to adhere, spread, and form stable focal adhesions.
2. Mechanical support: Offering a structural framework that maintains the desired shape and mechanical properties of the engineered tissue.
3. Nutrient diffusion: Ensuring adequate transport of nutrients, oxygen, and waste products throughout the scaffold to support cell survival and function.
4. Guided tissue growth: Directing the organization and differentiation of cells through spatial cues and biochemical signals.
5. Biodegradation: Gradually degrading at a rate that matches tissue regeneration, allowing for the replacement of the scaffold with native ECM produced by the cells.

Tissue scaffolds have been used in various applications, such as wound healing, bone and cartilage repair, cardiovascular tissue engineering, and neural tissue regeneration. The design and fabrication of tissue scaffolds are critical aspects of tissue engineering, aiming to create functional substitutes for damaged or diseased tissues and organs.

Connective tissue is a type of biological tissue that provides support, strength, and protection to various structures in the body. It is composed of cells called fibroblasts, which produce extracellular matrix components such as collagen, elastin, and proteoglycans. These components give connective tissue its unique properties, including tensile strength, elasticity, and resistance to compression.

There are several types of connective tissue in the body, each with its own specific functions and characteristics. Some examples include:

1. Loose or Areolar Connective Tissue: This type of connective tissue is found throughout the body and provides cushioning and support to organs and other structures. It contains a large amount of ground substance, which allows for the movement and gliding of adjacent tissues.
2. Dense Connective Tissue: This type of connective tissue has a higher concentration of collagen fibers than loose connective tissue, making it stronger and less flexible. Dense connective tissue can be further divided into two categories: regular (or parallel) and irregular. Regular dense connective tissue, such as tendons and ligaments, has collagen fibers that run parallel to each other, providing great tensile strength. Irregular dense connective tissue, such as the dermis of the skin, has collagen fibers arranged in a more haphazard pattern, providing support and flexibility.
3. Adipose Tissue: This type of connective tissue is primarily composed of fat cells called adipocytes. Adipose tissue serves as an energy storage reservoir and provides insulation and cushioning to the body.
4. Cartilage: A firm, flexible type of connective tissue that contains chondrocytes within a matrix of collagen and proteoglycans. Cartilage is found in various parts of the body, including the joints, nose, ears, and trachea.
5. Bone: A specialized form of connective tissue that consists of an organic matrix (mainly collagen) and an inorganic mineral component (hydroxyapatite). Bone provides structural support to the body and serves as a reservoir for calcium and phosphate ions.
6. Blood: Although not traditionally considered connective tissue, blood does contain elements of connective tissue, such as plasma proteins and leukocytes (white blood cells). Blood transports nutrients, oxygen, hormones, and waste products throughout the body.

Nerve fibers are specialized structures that constitute the long, slender processes (axons) of neurons (nerve cells). They are responsible for conducting electrical impulses, known as action potentials, away from the cell body and transmitting them to other neurons or effector organs such as muscles and glands. Nerve fibers are often surrounded by supportive cells called glial cells and are grouped together to form nerve bundles or nerves. These fibers can be myelinated (covered with a fatty insulating sheath called myelin) or unmyelinated, which influences the speed of impulse transmission.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

Carbonic anhydrase III (CAIII) is a member of the carbonic anhydrase enzyme family, which catalyzes the reversible reaction between carbon dioxide and water to form bicarbonate and protons. This enzyme is primarily found in muscle tissues, where it plays a role in regulating pH levels during muscle contraction and relaxation. CAIII has a lower catalytic activity compared to other carbonic anhydrase isoforms, suggesting that it may have additional functions beyond simple CO2 hydration. Additionally, CAIII has been implicated in various physiological processes such as protection against oxidative stress and regulation of muscle metabolism.

An axon is a long, slender extension of a neuron (a type of nerve cell) that conducts electrical impulses (nerve impulses) away from the cell body to target cells, such as other neurons or muscle cells. Axons can vary in length from a few micrometers to over a meter long and are typically surrounded by a myelin sheath, which helps to insulate and protect the axon and allows for faster transmission of nerve impulses.

Axons play a critical role in the functioning of the nervous system, as they provide the means by which neurons communicate with one another and with other cells in the body. Damage to axons can result in serious neurological problems, such as those seen in spinal cord injuries or neurodegenerative diseases like multiple sclerosis.

Leucine is an essential amino acid, meaning it cannot be produced by the human body and must be obtained through the diet. It is one of the three branched-chain amino acids (BCAAs), along with isoleucine and valine. Leucine is critical for protein synthesis and muscle growth, and it helps to regulate blood sugar levels, promote wound healing, and produce growth hormones.

Leucine is found in various food sources such as meat, dairy products, eggs, and certain plant-based proteins like soy and beans. It is also available as a dietary supplement for those looking to increase their intake for athletic performance or muscle recovery purposes. However, it's important to consult with a healthcare professional before starting any new supplement regimen.

Protein biosynthesis is the process by which cells generate new proteins. It involves two major steps: transcription and translation. Transcription is the process of creating a complementary RNA copy of a sequence of DNA. This RNA copy, or messenger RNA (mRNA), carries the genetic information to the site of protein synthesis, the ribosome. During translation, the mRNA is read by transfer RNA (tRNA) molecules, which bring specific amino acids to the ribosome based on the sequence of nucleotides in the mRNA. The ribosome then links these amino acids together in the correct order to form a polypeptide chain, which may then fold into a functional protein. Protein biosynthesis is essential for the growth and maintenance of all living organisms.

I'm sorry for the confusion, but "Sarcoma, Yoshida" is not a recognized medical term or a specific type of sarcoma in any major oncology reference or database. It appears that "Yoshida" might be referring to a person who described or studied a particular type of sarcoma. However, I cannot find any relevant information related to this exact term.

Sarcomas are cancers that develop from connective tissues such as bones, muscles, tendons, cartilages, nerves, and blood vessels. They can be categorized into two main groups: bone sarcomas and soft tissue sarcomas. There are many subtypes of sarcoma, each with its unique features, diagnostic criteria, and treatment approaches.

If you have more context or information about "Sarcoma, Yoshida," I would be happy to help you further research the topic. However, based on the available data, it is not possible to provide a medical definition for this term.

The spinal cord is a major part of the nervous system, extending from the brainstem and continuing down to the lower back. It is a slender, tubular bundle of nerve fibers (axons) and support cells (glial cells) that carries signals between the brain and the rest of the body. The spinal cord primarily serves as a conduit for motor information, which travels from the brain to the muscles, and sensory information, which travels from the body to the brain. It also contains neurons that can independently process and respond to information within the spinal cord without direct input from the brain.

The spinal cord is protected by the bony vertebral column (spine) and is divided into 31 segments: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal. Each segment corresponds to a specific region of the body and gives rise to pairs of spinal nerves that exit through the intervertebral foramina at each level.

The spinal cord is responsible for several vital functions, including:

1. Reflexes: Simple reflex actions, such as the withdrawal reflex when touching a hot surface, are mediated by the spinal cord without involving the brain.
2. Muscle control: The spinal cord carries motor signals from the brain to the muscles, enabling voluntary movement and muscle tone regulation.
3. Sensory perception: The spinal cord transmits sensory information, such as touch, temperature, pain, and vibration, from the body to the brain for processing and awareness.
4. Autonomic functions: The sympathetic and parasympathetic divisions of the autonomic nervous system originate in the thoracolumbar and sacral regions of the spinal cord, respectively, controlling involuntary physiological responses like heart rate, blood pressure, digestion, and respiration.

Damage to the spinal cord can result in various degrees of paralysis or loss of sensation below the level of injury, depending on the severity and location of the damage.

Muscle proteins are a type of protein that are found in muscle tissue and are responsible for providing structure, strength, and functionality to muscles. The two major types of muscle proteins are:

1. Contractile proteins: These include actin and myosin, which are responsible for the contraction and relaxation of muscles. They work together to cause muscle movement by sliding along each other and shortening the muscle fibers.
2. Structural proteins: These include titin, nebulin, and desmin, which provide structural support and stability to muscle fibers. Titin is the largest protein in the human body and acts as a molecular spring that helps maintain the integrity of the sarcomere (the basic unit of muscle contraction). Nebulin helps regulate the length of the sarcomere, while desmin forms a network of filaments that connects adjacent muscle fibers together.

Overall, muscle proteins play a critical role in maintaining muscle health and function, and their dysregulation can lead to various muscle-related disorders such as muscular dystrophy, myopathies, and sarcopenia.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

A nerve block is a medical procedure in which an anesthetic or neurolytic agent is injected near a specific nerve or bundle of nerves to block the transmission of pain signals from that area to the brain. This technique can be used for both diagnostic and therapeutic purposes, such as identifying the source of pain, providing temporary or prolonged relief, or facilitating surgical procedures in the affected region.

The injection typically contains a local anesthetic like lidocaine or bupivacaine, which numbs the nerve, preventing it from transmitting pain signals. In some cases, steroids may also be added to reduce inflammation and provide longer-lasting relief. Depending on the type of nerve block and its intended use, the injection might be administered close to the spine (neuraxial blocks), at peripheral nerves (peripheral nerve blocks), or around the sympathetic nervous system (sympathetic nerve blocks).

While nerve blocks are generally safe, they can have side effects such as infection, bleeding, nerve damage, or in rare cases, systemic toxicity from the anesthetic agent. It is essential to consult with a qualified medical professional before undergoing this procedure to ensure proper evaluation, technique, and post-procedure care.

Nitrogen is not typically referred to as a medical term, but it is an element that is crucial to medicine and human life.

In a medical context, nitrogen is often mentioned in relation to gas analysis, respiratory therapy, or medical gases. Nitrogen (N) is a colorless, odorless, and nonreactive gas that makes up about 78% of the Earth's atmosphere. It is an essential element for various biological processes, such as the growth and maintenance of organisms, because it is a key component of amino acids, nucleic acids, and other organic compounds.

In some medical applications, nitrogen is used to displace oxygen in a mixture to create a controlled environment with reduced oxygen levels (hypoxic conditions) for therapeutic purposes, such as in certain types of hyperbaric chambers. Additionally, nitrogen gas is sometimes used in cryotherapy, where extremely low temperatures are applied to tissues to reduce pain, swelling, and inflammation.

However, it's important to note that breathing pure nitrogen can be dangerous, as it can lead to unconsciousness and even death due to lack of oxygen (asphyxiation) within minutes.

Nerve endings, also known as terminal branches or sensory receptors, are the specialized structures present at the termination point of nerve fibers (axons) that transmit electrical signals to and from the central nervous system (CNS). They primarily function in detecting changes in the external environment or internal body conditions and converting them into electrical impulses.

There are several types of nerve endings, including:

1. Free Nerve Endings: These are unencapsulated nerve endings that respond to various stimuli like temperature, pain, and touch. They are widely distributed throughout the body, especially in the skin, mucous membranes, and visceral organs.

2. Encapsulated Nerve Endings: These are wrapped by specialized connective tissue sheaths, which can modify their sensitivity to specific stimuli. Examples include Pacinian corpuscles (responsible for detecting deep pressure and vibration), Meissner's corpuscles (for light touch), Ruffini endings (for stretch and pressure), and Merkel cells (for sustained touch).

3. Specialised Nerve Endings: These are nerve endings that respond to specific stimuli, such as auditory, visual, olfactory, gustatory, and vestibular information. They include hair cells in the inner ear, photoreceptors in the retina, taste buds in the tongue, and olfactory receptors in the nasal cavity.

Nerve endings play a crucial role in relaying sensory information to the CNS for processing and initiating appropriate responses, such as reflex actions or conscious perception of the environment.

The sural nerve is a purely sensory peripheral nerve in the lower leg and foot. It provides sensation to the outer ( lateral) aspect of the little toe and the adjacent side of the fourth toe, as well as a small portion of the skin on the back of the leg between the ankle and knee joints.

The sural nerve is formed by the union of branches from the tibial and common fibular nerves (branches of the sciatic nerve) in the lower leg. It runs down the calf, behind the lateral malleolus (the bony prominence on the outside of the ankle), and into the foot.

The sural nerve is often used as a donor nerve during nerve grafting procedures due to its consistent anatomy and relatively low risk for morbidity at the donor site.

A muscle is a soft tissue in our body that contracts to produce force and motion. It is composed mainly of specialized cells called muscle fibers, which are bound together by connective tissue. There are three types of muscles: skeletal (voluntary), smooth (involuntary), and cardiac. Skeletal muscles attach to bones and help in movement, while smooth muscles are found within the walls of organs and blood vessels, helping with functions like digestion and circulation. Cardiac muscle is the specific type that makes up the heart, allowing it to pump blood throughout the body.

The median nerve is one of the major nerves in the human body, providing sensation and motor function to parts of the arm and hand. It originates from the brachial plexus, a network of nerves that arise from the spinal cord in the neck. The median nerve travels down the arm, passing through the cubital tunnel at the elbow, and continues into the forearm and hand.

In the hand, the median nerve supplies sensation to the palm side of the thumb, index finger, middle finger, and half of the ring finger. It also provides motor function to some of the muscles that control finger movements, allowing for flexion of the fingers and opposition of the thumb.

Damage to the median nerve can result in a condition called carpal tunnel syndrome, which is characterized by numbness, tingling, and weakness in the hand and fingers.

The facial nerve, also known as the seventh cranial nerve (CN VII), is a mixed nerve that carries both sensory and motor fibers. Its functions include controlling the muscles involved in facial expressions, taste sensation from the anterior two-thirds of the tongue, and secretomotor function to the lacrimal and salivary glands.

The facial nerve originates from the brainstem and exits the skull through the internal acoustic meatus. It then passes through the facial canal in the temporal bone before branching out to innervate various structures of the face. The main branches of the facial nerve include:

1. Temporal branch: Innervates the frontalis, corrugator supercilii, and orbicularis oculi muscles responsible for eyebrow movements and eyelid closure.
2. Zygomatic branch: Supplies the muscles that elevate the upper lip and wrinkle the nose.
3. Buccal branch: Innervates the muscles of the cheek and lips, allowing for facial expressions such as smiling and puckering.
4. Mandibular branch: Controls the muscles responsible for lower lip movement and depressing the angle of the mouth.
5. Cervical branch: Innervates the platysma muscle in the neck, which helps to depress the lower jaw and wrinkle the skin of the neck.

Damage to the facial nerve can result in various symptoms, such as facial weakness or paralysis, loss of taste sensation, and dry eyes or mouth due to impaired secretion.

A nerve crush injury is a type of peripheral nerve injury that occurs when there is excessive pressure or compression applied to a nerve, causing it to become damaged or dysfunctional. This can happen due to various reasons such as trauma from accidents, surgical errors, or prolonged pressure on the nerve from tight casts, clothing, or positions.

The compression disrupts the normal functioning of the nerve, leading to symptoms such as numbness, tingling, weakness, or pain in the affected area. In severe cases, a nerve crush injury can cause permanent damage to the nerve, leading to long-term disability or loss of function. Treatment for nerve crush injuries typically involves relieving the pressure on the nerve, providing supportive care, and in some cases, surgical intervention may be necessary to repair the damaged nerve.

Peripheral nerve injuries refer to damage or trauma to the peripheral nerves, which are the nerves outside the brain and spinal cord. These nerves transmit information between the central nervous system (CNS) and the rest of the body, including sensory, motor, and autonomic functions. Peripheral nerve injuries can result in various symptoms, depending on the type and severity of the injury, such as numbness, tingling, weakness, or paralysis in the affected area.

Peripheral nerve injuries are classified into three main categories based on the degree of damage:

1. Neuropraxia: This is the mildest form of nerve injury, where the nerve remains intact but its function is disrupted due to a local conduction block. The nerve fiber is damaged, but the supporting structures remain intact. Recovery usually occurs within 6-12 weeks without any residual deficits.
2. Axonotmesis: In this type of injury, there is damage to both the axons and the supporting structures (endoneurium, perineurium). The nerve fibers are disrupted, but the connective tissue sheaths remain intact. Recovery can take several months or even up to a year, and it may be incomplete, with some residual deficits possible.
3. Neurotmesis: This is the most severe form of nerve injury, where there is complete disruption of the nerve fibers and supporting structures (endoneurium, perineurium, epineurium). Recovery is unlikely without surgical intervention, which may involve nerve grafting or repair.

Peripheral nerve injuries can be caused by various factors, including trauma, compression, stretching, lacerations, or chemical exposure. Treatment options depend on the type and severity of the injury and may include conservative management, such as physical therapy and pain management, or surgical intervention for more severe cases.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

The Tibial nerve is a major branch of the sciatic nerve that originates in the lower back and runs through the buttock and leg. It provides motor (nerve impulses that control muscle movement) and sensory (nerve impulses that convey information about touch, temperature, and pain) innervation to several muscles and skin regions in the lower limb.

More specifically, the Tibial nerve supplies the following structures:

1. Motor Innervation: The Tibial nerve provides motor innervation to the muscles in the back of the leg (posterior compartment), including the calf muscles (gastrocnemius and soleus) and the small muscles in the foot (intrinsic muscles). These muscles are responsible for plantarflexion (pointing the foot downward) and inversion (turning the foot inward) of the foot.
2. Sensory Innervation: The Tibial nerve provides sensory innervation to the skin on the sole of the foot, as well as the heel and some parts of the lower leg.

The Tibial nerve travels down the leg, passing behind the knee and through the calf, where it eventually joins with the common fibular (peroneal) nerve to form the tibial-fibular trunk. This trunk then divides into several smaller nerves that innervate the foot's intrinsic muscles and skin.

Damage or injury to the Tibial nerve can result in various symptoms, such as weakness or paralysis of the calf and foot muscles, numbness or tingling sensations in the sole of the foot, and difficulty walking or standing on tiptoes.

The Ulnar nerve is one of the major nerves in the forearm and hand, which provides motor function to the majority of the intrinsic muscles of the hand (except for those innervated by the median nerve) and sensory innervation to the little finger and half of the ring finger. It originates from the brachial plexus, passes through the cubital tunnel at the elbow, and continues down the forearm, where it runs close to the ulna bone. The ulnar nerve then passes through the Guyon's canal in the wrist before branching out to innervate the hand muscles and provide sensation to the skin on the little finger and half of the ring finger.

Blood proteins, also known as serum proteins, are a group of complex molecules present in the blood that are essential for various physiological functions. These proteins include albumin, globulins (alpha, beta, and gamma), and fibrinogen. They play crucial roles in maintaining oncotic pressure, transporting hormones, enzymes, vitamins, and minerals, providing immune defense, and contributing to blood clotting.

Albumin is the most abundant protein in the blood, accounting for about 60% of the total protein mass. It functions as a transporter of various substances, such as hormones, fatty acids, and drugs, and helps maintain oncotic pressure, which is essential for fluid balance between the blood vessels and surrounding tissues.

Globulins are divided into three main categories: alpha, beta, and gamma globulins. Alpha and beta globulins consist of transport proteins like lipoproteins, hormone-binding proteins, and enzymes. Gamma globulins, also known as immunoglobulins or antibodies, are essential for the immune system's defense against pathogens.

Fibrinogen is a protein involved in blood clotting. When an injury occurs, fibrinogen is converted into fibrin, which forms a mesh to trap platelets and form a clot, preventing excessive bleeding.

Abnormal levels of these proteins can indicate various medical conditions, such as liver or kidney disease, malnutrition, infections, inflammation, or autoimmune disorders. Blood protein levels are typically measured through laboratory tests like serum protein electrophoresis (SPE) and immunoelectrophoresis (IEP).

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

The femoral nerve is a major nerve in the thigh region of the human body. It originates from the lumbar plexus, specifically from the ventral rami (anterior divisions) of the second, third, and fourth lumbar nerves (L2-L4). The femoral nerve provides motor and sensory innervation to various muscles and areas in the lower limb.

Motor Innervation:
The femoral nerve is responsible for providing motor innervation to several muscles in the anterior compartment of the thigh, including:

1. Iliacus muscle
2. Psoas major muscle
3. Quadriceps femoris muscle (consisting of four heads: rectus femoris, vastus lateralis, vastus medialis, and vastus intermedius)

These muscles are involved in hip flexion, knee extension, and stabilization of the hip joint.

Sensory Innervation:
The sensory distribution of the femoral nerve includes:

1. Anterior and medial aspects of the thigh
2. Skin over the anterior aspect of the knee and lower leg (via the saphenous nerve, a branch of the femoral nerve)

The saphenous nerve provides sensation to the skin on the inner side of the leg and foot, as well as the medial malleolus (the bony bump on the inside of the ankle).

In summary, the femoral nerve is a crucial component of the lumbar plexus that controls motor functions in the anterior thigh muscles and provides sensory innervation to the anterior and medial aspects of the thigh and lower leg.

Advanced Glycosylation End Products (AGEs) are formed through the non-enzymatic glycation and oxidative modification of proteins, lipids, and nucleic acids. This process occurs when a sugar molecule, such as glucose, binds to a protein or lipid without the regulation of an enzyme, leading to the formation of a Schiff base. This then rearranges to form a more stable ketoamine, known as an Amadori product. Over time, these Amadori products can undergo further reactions, including oxidation, fragmentation, and cross-linking, resulting in the formation of AGEs.

AGEs can alter the structure and function of proteins and lipids, leading to damage in tissues and organs. They have been implicated in the development and progression of several age-related diseases, including diabetes, atherosclerosis, kidney disease, and Alzheimer's disease. AGEs can also contribute to inflammation and oxidative stress, which can further exacerbate tissue damage.

In summary, Advanced Glycosylation End Products (AGEs) are the result of non-enzymatic glycation and oxidation of proteins, lipids, and nucleic acids, leading to structural and functional changes in tissues and organs, and contributing to the development and progression of several age-related diseases.

Spinal nerves are the bundles of nerve fibers that transmit signals between the spinal cord and the rest of the body. There are 31 pairs of spinal nerves in the human body, which can be divided into five regions: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal. Each spinal nerve carries both sensory information (such as touch, temperature, and pain) from the periphery to the spinal cord, and motor information (such as muscle control) from the spinal cord to the muscles and other structures in the body. Spinal nerves also contain autonomic fibers that regulate involuntary functions such as heart rate, digestion, and blood pressure.

Skeletal muscle, also known as striated or voluntary muscle, is a type of muscle that is attached to bones by tendons or aponeuroses and functions to produce movements and support the posture of the body. It is composed of long, multinucleated fibers that are arranged in parallel bundles and are characterized by alternating light and dark bands, giving them a striped appearance under a microscope. Skeletal muscle is under voluntary control, meaning that it is consciously activated through signals from the nervous system. It is responsible for activities such as walking, running, jumping, and lifting objects.

Lysine is an essential amino acid, which means that it cannot be synthesized by the human body and must be obtained through the diet. Its chemical formula is (2S)-2,6-diaminohexanoic acid. Lysine is necessary for the growth and maintenance of tissues in the body, and it plays a crucial role in the production of enzymes, hormones, and antibodies. It is also essential for the absorption of calcium and the formation of collagen, which is an important component of bones and connective tissue. Foods that are good sources of lysine include meat, poultry, fish, eggs, and dairy products.

Collagen is the most abundant protein in the human body, and it is a major component of connective tissues such as tendons, ligaments, skin, and bones. Collagen provides structure and strength to these tissues and helps them to withstand stretching and tension. It is made up of long chains of amino acids, primarily glycine, proline, and hydroxyproline, which are arranged in a triple helix structure. There are at least 16 different types of collagen found in the body, each with slightly different structures and functions. Collagen is important for maintaining the integrity and health of tissues throughout the body, and it has been studied for its potential therapeutic uses in various medical conditions.

Dietary proteins are sources of protein that come from the foods we eat. Protein is an essential nutrient for the human body, required for various bodily functions such as growth, repair, and immune function. Dietary proteins are broken down into amino acids during digestion, which are then absorbed and used to synthesize new proteins in the body.

Dietary proteins can be classified as complete or incomplete based on their essential amino acid content. Complete proteins contain all nine essential amino acids that cannot be produced by the human body and must be obtained through the diet. Examples of complete protein sources include meat, poultry, fish, eggs, dairy products, soy, and quinoa.

Incomplete proteins lack one or more essential amino acids and are typically found in plant-based foods such as grains, legumes, nuts, and seeds. However, by combining different incomplete protein sources, it is possible to obtain all the essential amino acids needed for a complete protein diet. This concept is known as complementary proteins.

It's important to note that while dietary proteins are essential for good health, excessive protein intake can have negative effects on the body, such as increased stress on the kidneys and bones. Therefore, it's recommended to consume protein in moderation as part of a balanced and varied diet.

Nerve Growth Factor (NGF) is a small secreted protein that is involved in the growth, maintenance, and survival of certain neurons (nerve cells). It was the first neurotrophin to be discovered and is essential for the development and function of the nervous system. NGF binds to specific receptors on the surface of nerve cells and helps to promote their differentiation, axonal growth, and synaptic plasticity. Additionally, NGF has been implicated in various physiological processes such as inflammation, immune response, and wound healing. Deficiencies or excesses of NGF have been linked to several neurological disorders, including Alzheimer's disease, Parkinson's disease, and pain conditions.

The trigeminal nerve, also known as the fifth cranial nerve or CNV, is a paired nerve that carries both sensory and motor information. It has three major branches: ophthalmic (V1), maxillary (V2), and mandibular (V3). The ophthalmic branch provides sensation to the forehead, eyes, and upper portion of the nose; the maxillary branch supplies sensation to the lower eyelid, cheek, nasal cavity, and upper lip; and the mandibular branch is responsible for sensation in the lower lip, chin, and parts of the oral cavity, as well as motor function to the muscles involved in chewing. The trigeminal nerve plays a crucial role in sensations of touch, pain, temperature, and pressure in the face and mouth, and it also contributes to biting, chewing, and swallowing functions.

Nerve Growth Factors (NGFs) are a family of proteins that play an essential role in the growth, maintenance, and survival of certain neurons (nerve cells). They were first discovered by Rita Levi-Montalcini and Stanley Cohen in 1956. NGF is particularly crucial for the development and function of the peripheral nervous system, which connects the central nervous system to various organs and tissues throughout the body.

NGF supports the differentiation and survival of sympathetic and sensory neurons during embryonic development. In adults, NGF continues to regulate the maintenance and repair of these neurons, contributing to neuroplasticity – the brain's ability to adapt and change over time. Additionally, NGF has been implicated in pain transmission and modulation, as well as inflammatory responses.

Abnormal levels or dysfunctional NGF signaling have been associated with various medical conditions, including neurodegenerative diseases (e.g., Alzheimer's and Parkinson's), chronic pain disorders, and certain cancers (e.g., small cell lung cancer). Therefore, understanding the role of NGF in physiological and pathological processes may provide valuable insights into developing novel therapeutic strategies for these conditions.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

The phrenic nerve is a motor nerve that originates from the cervical spine (C3-C5) and descends through the neck to reach the diaphragm, which is the primary muscle used for breathing. The main function of the phrenic nerve is to innervate the diaphragm and control its contraction and relaxation, thereby enabling respiration.

Damage or injury to the phrenic nerve can result in paralysis of the diaphragm, leading to difficulty breathing and potentially causing respiratory failure. Certain medical conditions, such as neuromuscular disorders, spinal cord injuries, and tumors, can affect the phrenic nerve and impair its function.

Body weight is the measure of the force exerted on a scale or balance by an object's mass, most commonly expressed in units such as pounds (lb) or kilograms (kg). In the context of medical definitions, body weight typically refers to an individual's total weight, which includes their skeletal muscle, fat, organs, and bodily fluids.

Healthcare professionals often use body weight as a basic indicator of overall health status, as it can provide insights into various aspects of a person's health, such as nutritional status, metabolic function, and risk factors for certain diseases. For example, being significantly underweight or overweight can increase the risk of developing conditions like malnutrition, diabetes, heart disease, and certain types of cancer.

It is important to note that body weight alone may not provide a complete picture of an individual's health, as it does not account for factors such as muscle mass, bone density, or body composition. Therefore, healthcare professionals often use additional measures, such as body mass index (BMI), waist circumference, and blood tests, to assess overall health status more comprehensively.

The Radial nerve is a major peripheral nerve in the human body that originates from the brachial plexus, which is a network of nerves formed by the union of the ventral rami (anterior divisions) of spinal nerves C5-T1. The radial nerve provides motor function to extensor muscles of the upper limb and sensation to parts of the skin on the back of the arm, forearm, and hand.

More specifically, the radial nerve supplies motor innervation to:

* Extensor muscles of the shoulder (e.g., teres minor, infraspinatus)
* Rotator cuff muscles
* Elbow joint stabilizers (e.g., lateral head of the triceps)
* Extensors of the wrist, fingers, and thumb

The radial nerve also provides sensory innervation to:

* Posterior aspect of the upper arm (from the lower third of the humerus to the elbow)
* Lateral forearm (from the lateral epicondyle of the humerus to the wrist)
* Dorsum of the hand (skin over the radial side of the dorsum, including the first web space)

Damage or injury to the radial nerve may result in various symptoms, such as weakness or paralysis of the extensor muscles, numbness or tingling sensations in the affected areas, and difficulty with extension movements of the wrist, fingers, and thumb. Common causes of radial nerve injuries include fractures of the humerus bone, compression during sleep or prolonged pressure on the nerve (e.g., from crutches), and entrapment syndromes like radial tunnel syndrome.

Cranial nerves are a set of twelve pairs of nerves that originate from the brainstem and skull, rather than the spinal cord. These nerves are responsible for transmitting sensory information (such as sight, smell, hearing, and taste) to the brain, as well as controlling various muscles in the head and neck (including those involved in chewing, swallowing, and eye movement). Each cranial nerve has a specific function and is named accordingly. For example, the optic nerve (cranial nerve II) transmits visual information from the eyes to the brain, while the vagus nerve (cranial nerve X) controls parasympathetic functions in the body such as heart rate and digestion.

Phenylalanine is an essential amino acid, meaning it cannot be produced by the human body and must be obtained through diet or supplementation. It's one of the building blocks of proteins and is necessary for the production of various molecules in the body, such as neurotransmitters (chemical messengers in the brain).

Phenylalanine has two forms: L-phenylalanine and D-phenylalanine. L-phenylalanine is the form found in proteins and is used by the body for protein synthesis, while D-phenylalanine has limited use in humans and is not involved in protein synthesis.

Individuals with a rare genetic disorder called phenylketonuria (PKU) must follow a low-phenylalanine diet or take special medical foods because they are unable to metabolize phenylalanine properly, leading to its buildup in the body and potential neurological damage.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Spinal nerve roots are the initial parts of spinal nerves that emerge from the spinal cord through the intervertebral foramen, which are small openings between each vertebra in the spine. These nerve roots carry motor, sensory, and autonomic fibers to and from specific regions of the body. There are 31 pairs of spinal nerve roots in total, with 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal pair. Each root has a dorsal (posterior) and ventral (anterior) ramus that branch off to form the peripheral nervous system. Irritation or compression of these nerve roots can result in pain, numbness, weakness, or loss of reflexes in the affected area.

Nerve compression syndromes refer to a group of conditions characterized by the pressure or irritation of a peripheral nerve, causing various symptoms such as pain, numbness, tingling, and weakness in the affected area. This compression can occur due to several reasons, including injury, repetitive motion, bone spurs, tumors, or swelling. Common examples of nerve compression syndromes include carpal tunnel syndrome, cubital tunnel syndrome, radial nerve compression, and ulnar nerve entrapment at the wrist or elbow. Treatment options may include physical therapy, splinting, medications, injections, or surgery, depending on the severity and underlying cause of the condition.

Organ size refers to the volume or physical measurement of an organ in the body of an individual. It can be described in terms of length, width, and height or by using specialized techniques such as imaging studies (like CT scans or MRIs) to determine the volume. The size of an organ can vary depending on factors such as age, sex, body size, and overall health status. Changes in organ size may indicate various medical conditions, including growths, inflammation, or atrophy.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Carbon isotopes are variants of the chemical element carbon that have different numbers of neutrons in their atomic nuclei. The most common and stable isotope of carbon is carbon-12 (^{12}C), which contains six protons and six neutrons. However, carbon can also come in other forms, known as isotopes, which contain different numbers of neutrons.

Carbon-13 (^{13}C) is a stable isotope of carbon that contains seven neutrons in its nucleus. It makes up about 1.1% of all carbon found on Earth and is used in various scientific applications, such as in tracing the metabolic pathways of organisms or in studying the age of fossilized materials.

Carbon-14 (^{14}C), also known as radiocarbon, is a radioactive isotope of carbon that contains eight neutrons in its nucleus. It is produced naturally in the atmosphere through the interaction of cosmic rays with nitrogen gas. Carbon-14 has a half-life of about 5,730 years, which makes it useful for dating organic materials, such as archaeological artifacts or fossils, up to around 60,000 years old.

Carbon isotopes are important in many scientific fields, including geology, biology, and medicine, and are used in a variety of applications, from studying the Earth's climate history to diagnosing medical conditions.

In medical terms, the skin is the largest organ of the human body. It consists of two main layers: the epidermis (outer layer) and dermis (inner layer), as well as accessory structures like hair follicles, sweat glands, and oil glands. The skin plays a crucial role in protecting us from external factors such as bacteria, viruses, and environmental hazards, while also regulating body temperature and enabling the sense of touch.

The ophthalmic nerve, also known as the first cranial nerve or CN I, is a sensory nerve that primarily transmits information about vision, including light intensity and color, and sensation in the eye and surrounding areas. It is responsible for the sensory innervation of the upper eyelid, conjunctiva, cornea, iris, ciliary body, and nasal cavity. The ophthalmic nerve has three major branches: the lacrimal nerve, frontal nerve, and nasociliary nerve. Damage to this nerve can result in various visual disturbances and loss of sensation in the affected areas.

Tritium is not a medical term, but it is a term used in the field of nuclear physics and chemistry. Tritium (symbol: T or 3H) is a radioactive isotope of hydrogen with two neutrons and one proton in its nucleus. It is also known as heavy hydrogen or superheavy hydrogen.

Tritium has a half-life of about 12.3 years, which means that it decays by emitting a low-energy beta particle (an electron) to become helium-3. Due to its radioactive nature and relatively short half-life, tritium is used in various applications, including nuclear weapons, fusion reactors, luminous paints, and medical research.

In the context of medicine, tritium may be used as a radioactive tracer in some scientific studies or medical research, but it is not a term commonly used to describe a medical condition or treatment.

The mandibular nerve is a branch of the trigeminal nerve (the fifth cranial nerve), which is responsible for sensations in the face and motor functions such as biting and chewing. The mandibular nerve provides both sensory and motor innervation to the lower third of the face, below the eye and nose down to the chin.

More specifically, it carries sensory information from the lower teeth, lower lip, and parts of the oral cavity, as well as the skin over the jaw and chin. It also provides motor innervation to the muscles of mastication (chewing), which include the masseter, temporalis, medial pterygoid, and lateral pterygoid muscles.

Damage to the mandibular nerve can result in numbness or loss of sensation in the lower face and mouth, as well as weakness or difficulty with chewing and biting.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Tissue distribution, in the context of pharmacology and toxicology, refers to the way that a drug or xenobiotic (a chemical substance found within an organism that is not naturally produced by or expected to be present within that organism) is distributed throughout the body's tissues after administration. It describes how much of the drug or xenobiotic can be found in various tissues and organs, and is influenced by factors such as blood flow, lipid solubility, protein binding, and the permeability of cell membranes. Understanding tissue distribution is important for predicting the potential effects of a drug or toxin on different parts of the body, and for designing drugs with improved safety and efficacy profiles.

The cochlear nerve, also known as the auditory nerve, is the sensory nerve that transmits sound signals from the inner ear to the brain. It consists of two parts: the outer spiral ganglion and the inner vestibular portion. The spiral ganglion contains the cell bodies of the bipolar neurons that receive input from hair cells in the cochlea, which is the snail-shaped organ in the inner ear responsible for hearing. These neurons then send their axons to form the cochlear nerve, which travels through the internal auditory meatus and synapses with neurons in the cochlear nuclei located in the brainstem.

Damage to the cochlear nerve can result in hearing loss or deafness, depending on the severity of the injury. Common causes of cochlear nerve damage include acoustic trauma, such as exposure to loud noises, viral infections, meningitis, and tumors affecting the nerve or surrounding structures. In some cases, cochlear nerve damage may be treated with hearing aids, cochlear implants, or other assistive devices to help restore or improve hearing function.

The splanchnic nerves are a set of nerve fibers that originate from the thoracic and lumbar regions of the spinal cord and innervate various internal organs. They are responsible for carrying both sensory information, such as pain and temperature, from the organs to the brain, and motor signals, which control the function of the organs, from the brain to the organs.

There are several splanchnic nerves, including the greater, lesser, and least splanchnic nerves, as well as the lumbar splanchnic nerves. These nerves primarily innervate the autonomic nervous system, which controls the involuntary functions of the body, such as heart rate, digestion, and respiration.

The greater splanchnic nerve arises from the fifth to the ninth thoracic ganglia and passes through the diaphragm to reach the abdomen. It innervates the stomach, esophagus, liver, pancreas, and adrenal glands.

The lesser splanchnic nerve arises from the tenth and eleventh thoracic ganglia and innervates the upper part of the small intestine, the pancreas, and the adrenal glands.

The least splanchnic nerve arises from the twelfth thoracic ganglion and innervates the lower part of the small intestine and the colon.

The lumbar splanchnic nerves arise from the first three or four lumbar ganglia and innervate the lower parts of the colon, the rectum, and the reproductive organs.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

The glossopharyngeal nerve, also known as the ninth cranial nerve (IX), is a mixed nerve that carries both sensory and motor fibers. It originates from the medulla oblongata in the brainstem and has several functions:

1. Sensory function: The glossopharyngeal nerve provides general sensation to the posterior third of the tongue, the tonsils, the back of the throat (pharynx), and the middle ear. It also carries taste sensations from the back one-third of the tongue.
2. Special visceral afferent function: The nerve transmits information about the stretch of the carotid artery and blood pressure to the brainstem.
3. Motor function: The glossopharyngeal nerve innervates the stylopharyngeus muscle, which helps elevate the pharynx during swallowing. It also provides parasympathetic fibers to the parotid gland, stimulating saliva production.
4. Visceral afferent function: The glossopharyngeal nerve carries information about the condition of the internal organs in the thorax and abdomen to the brainstem.

Overall, the glossopharyngeal nerve plays a crucial role in swallowing, taste, saliva production, and monitoring blood pressure and heart rate.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

Neural conduction is the process by which electrical signals, known as action potentials, are transmitted along the axon of a neuron (nerve cell) to transmit information between different parts of the nervous system. This electrical impulse is generated by the movement of ions across the neuronal membrane, and it propagates down the length of the axon until it reaches the synapse, where it can then stimulate the release of neurotransmitters to communicate with other neurons or target cells. The speed of neural conduction can vary depending on factors such as the diameter of the axon, the presence of myelin sheaths (which act as insulation and allow for faster conduction), and the temperature of the environment.

Optic nerve injuries refer to damages or trauma inflicted on the optic nerve, which is a crucial component of the visual system. The optic nerve transmits visual information from the retina to the brain, enabling us to see. Injuries to the optic nerve can result in various visual impairments, including partial or complete vision loss, decreased visual acuity, changes in color perception, and reduced field of view.

These injuries may occur due to several reasons, such as:

1. Direct trauma to the eye or head
2. Increased pressure inside the eye (glaucoma)
3. Optic neuritis, an inflammation of the optic nerve
4. Ischemia, or insufficient blood supply to the optic nerve
5. Compression from tumors or other space-occupying lesions
6. Intrinsic degenerative conditions affecting the optic nerve
7. Toxic exposure to certain chemicals or medications

Optic nerve injuries are diagnosed through a comprehensive eye examination, including visual acuity testing, slit-lamp examination, dilated fundus exam, and additional diagnostic tests like optical coherence tomography (OCT) and visual field testing. Treatment options vary depending on the cause and severity of the injury but may include medications, surgery, or vision rehabilitation.

Optic nerve diseases refer to a group of conditions that affect the optic nerve, which transmits visual information from the eye to the brain. These diseases can cause various symptoms such as vision loss, decreased visual acuity, changes in color vision, and visual field defects. Examples of optic nerve diseases include optic neuritis (inflammation of the optic nerve), glaucoma (damage to the optic nerve due to high eye pressure), optic nerve damage from trauma or injury, ischemic optic neuropathy (lack of blood flow to the optic nerve), and optic nerve tumors. Treatment for optic nerve diseases varies depending on the specific condition and may include medications, surgery, or lifestyle changes.

The myocardium is the middle layer of the heart wall, composed of specialized cardiac muscle cells that are responsible for pumping blood throughout the body. It forms the thickest part of the heart wall and is divided into two sections: the left ventricle, which pumps oxygenated blood to the rest of the body, and the right ventricle, which pumps deoxygenated blood to the lungs.

The myocardium contains several types of cells, including cardiac muscle fibers, connective tissue, nerves, and blood vessels. The muscle fibers are arranged in a highly organized pattern that allows them to contract in a coordinated manner, generating the force necessary to pump blood through the heart and circulatory system.

Damage to the myocardium can occur due to various factors such as ischemia (reduced blood flow), infection, inflammation, or genetic disorders. This damage can lead to several cardiac conditions, including heart failure, arrhythmias, and cardiomyopathy.

Thoracic nerves are the 12 paired nerves that originate from the thoracic segment (T1-T12) of the spinal cord. These nerves provide motor and sensory innervation to the trunk and abdomen, specifically to the muscles of the chest wall, the skin over the back and chest, and some parts of the abdomen. They also contribute to the formation of the sympathetic trunk, which is a part of the autonomic nervous system that regulates unconscious bodily functions such as heart rate and digestion. Each thoracic nerve emerges from the intervertebral foramen, a small opening between each vertebra, and splits into anterior and posterior branches to innervate the corresponding dermatomes and myotomes.

Myelinated nerve fibers are neuronal processes that are surrounded by a myelin sheath, a fatty insulating substance that is produced by Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. This myelin sheath helps to increase the speed of electrical impulse transmission, also known as action potentials, along the nerve fiber. The myelin sheath has gaps called nodes of Ranvier where the electrical impulses can jump from one node to the next, which also contributes to the rapid conduction of signals. Myelinated nerve fibers are typically found in the peripheral nerves and the optic nerve, but not in the central nervous system (CNS) tracts that are located within the brain and spinal cord.

Proteomics is the large-scale study and analysis of proteins, including their structures, functions, interactions, modifications, and abundance, in a given cell, tissue, or organism. It involves the identification and quantification of all expressed proteins in a biological sample, as well as the characterization of post-translational modifications, protein-protein interactions, and functional pathways. Proteomics can provide valuable insights into various biological processes, diseases, and drug responses, and has applications in basic research, biomedicine, and clinical diagnostics. The field combines various techniques from molecular biology, chemistry, physics, and bioinformatics to study proteins at a systems level.

The accessory nerve, also known as the eleventh cranial nerve (XI), has both a cranial and spinal component. It primarily controls the function of certain muscles in the back of the neck and shoulder.

The cranial part arises from nuclei in the brainstem and innervates some of the muscles that help with head rotation, including the sternocleidomastoid muscle. The spinal root originates from nerve roots in the upper spinal cord (C1-C5), exits the spine, and joins the cranial part to form a single trunk. This trunk then innervates the trapezius muscle, which helps with shoulder movement and stability.

Damage to the accessory nerve can result in weakness or paralysis of the affected muscles, causing symptoms such as difficulty turning the head, weak shoulder shrugging, or winged scapula (a condition where the shoulder blade protrudes from the back).

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Facial nerve injuries refer to damages or trauma inflicted on the facial nerve, also known as the seventh cranial nerve (CN VII). This nerve is responsible for controlling the muscles involved in facial expressions, eyelid movement, and taste sensation in the front two-thirds of the tongue.

There are two main types of facial nerve injuries:

1. Peripheral facial nerve injury: This type of injury occurs when damage affects the facial nerve outside the skull base, usually due to trauma from cuts, blunt force, or surgical procedures in the parotid gland or neck region. The injury may result in weakness or paralysis on one side of the face, known as Bell's palsy, and may also impact taste sensation and salivary function.

2. Central facial nerve injury: This type of injury occurs when damage affects the facial nerve within the skull base, often due to stroke, brain tumors, or traumatic brain injuries. Central facial nerve injuries typically result in weakness or paralysis only on the lower half of the face, as the upper motor neurons responsible for controlling the upper face receive innervation from both sides of the brain.

Treatment for facial nerve injuries depends on the severity and location of the damage. For mild to moderate injuries, physical therapy, protective eyewear, and medications like corticosteroids and antivirals may be prescribed. Severe cases might require surgical intervention, such as nerve grafts or muscle transfers, to restore function. In some instances, facial nerve injuries may heal on their own over time, particularly when the injury is mild and there is no ongoing compression or tension on the nerve.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

The abducens nerve, also known as the sixth cranial nerve (CN VI), is a motor nerve that controls the lateral rectus muscle of the eye. This muscle is responsible for moving the eye away from the midline (towards the temple) and enables the eyes to look towards the side while keeping them aligned. Any damage or dysfunction of the abducens nerve can result in strabismus, where the eyes are misaligned and point in different directions, specifically an adduction deficit, also known as abducens palsy or sixth nerve palsy.

The oculomotor nerve, also known as the third cranial nerve (CN III), is a motor nerve that originates from the midbrain. It controls the majority of the eye muscles, including the levator palpebrae superioris muscle that raises the upper eyelid, and the extraocular muscles that enable various movements of the eye such as looking upward, downward, inward, and outward. Additionally, it carries parasympathetic fibers responsible for pupillary constriction and accommodation (focusing on near objects). Damage to this nerve can result in various ocular motor disorders, including strabismus, ptosis, and pupillary abnormalities.

Aging is a complex, progressive and inevitable process of bodily changes over time, characterized by the accumulation of cellular damage and degenerative changes that eventually lead to increased vulnerability to disease and death. It involves various biological, genetic, environmental, and lifestyle factors that contribute to the decline in physical and mental functions. The medical field studies aging through the discipline of gerontology, which aims to understand the underlying mechanisms of aging and develop interventions to promote healthy aging and extend the human healthspan.

The sympathetic nervous system (SNS) is a part of the autonomic nervous system that operates largely below the level of consciousness, and it functions to produce appropriate physiological responses to perceived danger. It's often associated with the "fight or flight" response. The SNS uses nerve impulses to stimulate target organs, causing them to speed up (e.g., increased heart rate), prepare for action, or otherwise respond to stressful situations.

The sympathetic nervous system is activated due to stressful emotional or physical situations and it prepares the body for immediate actions. It dilates the pupils, increases heart rate and blood pressure, accelerates breathing, and slows down digestion. The primary neurotransmitter involved in this system is norepinephrine (also known as noradrenaline).

Cranial nerve neoplasms refer to abnormal growths or tumors that develop within or near the cranial nerves. These nerves are responsible for transmitting sensory and motor information between the brain and various parts of the head, neck, and trunk. There are 12 pairs of cranial nerves, each with a specific function and location in the skull.

Cranial nerve neoplasms can be benign or malignant and may arise from the nerve itself (schwannoma, neurofibroma) or from surrounding tissues that invade the nerve (meningioma, epidermoid cyst). The growth of these tumors can cause various symptoms depending on their size, location, and rate of growth. Common symptoms include:

* Facial weakness or numbness
* Double vision or other visual disturbances
* Hearing loss or tinnitus (ringing in the ears)
* Difficulty swallowing or speaking
* Loss of smell or taste
* Uncontrollable eye movements or drooping eyelids

Treatment for cranial nerve neoplasms depends on several factors, including the type, size, location, and extent of the tumor, as well as the patient's overall health. Treatment options may include surgery, radiation therapy, chemotherapy, or a combination of these approaches. Regular follow-up care is essential to monitor for recurrence or complications.

Facial nerve diseases refer to a group of medical conditions that affect the function of the facial nerve, also known as the seventh cranial nerve. This nerve is responsible for controlling the muscles of facial expression, and it also carries sensory information from the taste buds in the front two-thirds of the tongue, and regulates saliva flow and tear production.

Facial nerve diseases can cause a variety of symptoms, depending on the specific location and extent of the nerve damage. Common symptoms include:

* Facial weakness or paralysis on one or both sides of the face
* Drooping of the eyelid and corner of the mouth
* Difficulty closing the eye or keeping it closed
* Changes in taste sensation or dryness of the mouth and eyes
* Abnormal sensitivity to sound (hyperacusis)
* Twitching or spasms of the facial muscles

Facial nerve diseases can be caused by a variety of factors, including:

* Infections such as Bell's palsy, Ramsay Hunt syndrome, and Lyme disease
* Trauma or injury to the face or skull
* Tumors that compress or invade the facial nerve
* Neurological conditions such as multiple sclerosis or Guillain-Barre syndrome
* Genetic disorders such as Moebius syndrome or hemifacial microsomia

Treatment for facial nerve diseases depends on the underlying cause and severity of the symptoms. In some cases, medication, physical therapy, or surgery may be necessary to restore function and relieve symptoms.

Nerve tissue is a biological molecule related to the function and maintenance of normal nervous tissue. An example would ... Calcium-Sensor Proteins Neuropeptides Olfactory Marker Protein S100 Proteins Synapsins Synaptophysin Synucleins Tubulin Nerve+ ... Brain Nerve Growth Factors Neuroendocrine Secretory Protein 7B2 Neurofilament Proteins Neurogranin Neuronal Apoptosis- ... Peripheral nerves rely on communication between axons and Schwaan cells. Prion protein triggers are an important factor in the ...
This list covers nerve tissue proteins. For other protein-related codes, see List of MeSH codes (D12.776). Codes before these ... MeSH D12.776.641.580.510.500 - myelin p2 protein MeSH D12.776.641.600.381.500 - glial cell line-derived neurotrophic factor ...
... is a type of nerve tissue protein. Chimerins are a family of non-protein kinase C phorbol ester receptors. They were ... Over expression of this protein in hippocampus tissue can inhibit the formation of new spines and remove existing spines. ... August 1993). "Alpha 2-chimerin, an SH2-containing GTPase-activating protein for the ras-related protein p21rac derived by ... Chimerin+Proteins at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Van de Ven TJ, VanDongen HM, ...
Kardos J, Kovács I, Hajós F, Kálmán M, Simonyi M (August 1989). "Nerve endings from rat brain tissue release copper upon ... in the prion protein. Others insert additional amino acids into the protein or cause an abnormally short protein to be made. ... The abnormal protein PrPSc accumulates in the brain and destroys nerve cells, which leads to the mental and behavioral features ... Specific sites along the protein bind other proteins, biomolecules, and metals. These interfaces allow specific sets of cells ...
Misfolded proteins called prions aggregate in brain tissue leading to nerve cell death. Variant Creutzfeldt-Jakob disease (vCJD ... Amyloid beta is a fragment from a larger protein called amyloid precursor protein (APP), a transmembrane protein that ... myelin basic protein, and proteolipid protein, causing an autoimmune response. This sets off a cascade of signaling molecules ... protein ubiquitin along with enzymes is key for the degradation of many proteins that cause proteopathies including polyQ ...
Why does this specific method stain nerve tissues? Why does it only color a random portion of the cells? Why does biological ... Protein folding. What is the folding code? What is the folding mechanism? Can the native structure of a protein be predicted ... of proteins are still unknown. Many of these proteins are conserved across most eukaryotic species and some are conserved in ... In cell theory, what is the exact transport mechanism by which proteins travel through the Golgi apparatus? Mechanism of action ...
Peripheral nervous system damage is typically treated by an autograft of nerve tissue to bridge a severed gap. This treatment ... or autologous tissue may produce the protein coating. Immediately following insertion, an implant (and the tissue damage from ... As proteins are made up of different sequences of amino acids, proteins can have various functions as its structural shape ... Protein adhesion can be encouraged by favorably altering the surface charge of a biomaterial. Improved protein adhesion leads ...
Encephalopsins and neuropsins are highly expressed in nerve cells and brain tissue, but so far their function is unknown. ... a protein moiety and a reversibly covalently bound non-protein cofactor, retinal (retinaldehyde). The protein structure of ... Retinylidene proteins, or rhodopsins in a broad sense, are proteins that use retinal as a chromophore for light reception. They ... Retinylidene proteins include all forms of opsin and rhodopsin (in the broad sense). While rhodopsin in the narrow sense refers ...
Degeneration of nerve tissue in the spinal cord causes the ataxia; particularly affected are the sensory neurons essential for ... acyl carrier protein and ATPase-mediated transfer to recipient proteins". Current Opinion in Chemical Biology. 55: 34-44. doi: ... Degeneration of nerve tissue in the spinal cord causes ataxia. The sensory neurons essential for directing muscle movement of ... The disease primarily affects the spinal cord and peripheral nerves. The spinal cord becomes thinner and nerve cells lose some ...
It has moderate expression in testis, larynx, nerve, blood, and adipose tissue sites. According to the Human Protein Atlas, ... "Tissue Atlas". The Human Protein Atlas. "Ensembl". Ensembl. "Ensembl". Ensembl. "Uniprot". Uniprot. "Expasy". Expasy. "PSORT II ... The protein is largely coiled. The DUF is composed mainly of alpha helices and coils. It has slightly fewer beta sheets ... PROSER1 is a protein that in humans is encoded by the PROSER1 gene. PROSER1 has several aliases: C13orf23, KIAA2032, and ...
... ilin expression in human tissues is mainly restricted to striated muscles and nerves. In muscles, myotilin is predominantly ... Myotilin is a protein that in humans is encoded by the MYOT gene. Myotilin (myofibrillar titin-like protein) also known as TTID ... TiTin Immunoglobulin Domain) is a muscle protein that is found within the Z-disc of sarcomeres. Myotilin is a 55.3 kDa protein ... "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173-8. Bibcode:2005Natur. ...
As a result, muscle atrophy and soft tissue injuries due to delayed nerve transmission can occur. In males, due to the ... Gap junction beta-1 protein (GJB1), also known as connexin 32 (Cx32), is a transmembrane protein that in humans is encoded by ... As a result, muscle atrophy and soft tissue injuries due to delayed nerve transmission can occur. In males, due to the ... The majority of these mutations only change a single amino acid within the protein chain, which result in a different protein ...
... shows that weakness is caused by destruction of muscle tissue rather than by damage to nerves.) Genetic testing (looks for ... if a primary protein is not functioning properly then maybe another protein could take its place by augmenting it. Upregulation ... checks the level of Creatine Kinase proteins in the blood. Creatine Kinase proteins are normally found inside of healthy muscle ... but the enlarged muscle tissue is eventually replaced by fat and connective tissue (pseudohypertrophy) as the legs become less ...
... and tibial nerve of RNA sequencing. These tissues also express the protein, excluding the tibial nerve and including the retina ... The protein is found in six tissues: the immune, nervous, muscle, internal, secretory, and reproductive systems. There are 37 ... The smooth muscle only shows expression of the protein in Microarray. There is expression of the gene in all major tissues of ... The medium amount of RPL41 expression was 27 out of 37 tissues in Microarray. In the immune system, the protein is expressed in ...
MHV-JHM (especially the more virulent JHM.SD and JHM-cl2), which infects nerve tissue, may not require surface exposure[ ... In addition to the four structural proteins of coronaviruses - spike protein (S), membrane protein (M), envelope protein (E) ... All four auxiliary proteins are dispensable for viral replication. The E protein is divided into the E1 and E2 glycoproteins, ... The types of auxiliary proteins in different virus strains may differ. For example, MHV-S lacks auxiliary protein 5a, so it is ...
Endogenous cellular responses are activated within nerve tissue in response to damage in order to protect cellular, protein, ... Either of these scenarios can result in calcium overload, protein degradation, the unfolded protein response or an accumulation ... In various tissues, such as the skin, the release of bioactive tachykinins by sensory nerve fibers C, that extend from the ... tissue healing and cell proliferation have been linked to both SP and neurokinin A release into surrounding tissues. The ...
... found in nerve tissue. The word galactose was coined by Charles Weissman in the mid-19th century and is derived from Greek ... D-Galactose is also known as brain sugar since it is a component of glycoproteins (oligosaccharide-protein compounds) ... It is also synthesized by the body, where it forms part of glycolipids and glycoproteins in several tissues; and is a by- ... molecules with at least one sugar attached to a protein or lipid. Many speculate that it is for this reason that a pathway for ...
Proteins are important to supply the essential amino acids for the development of body tissues like muscles, nerves, cartilage ... Distillers dried grains with solubles (DDGS), which are rich in energy and protein, have been used in place of corn and soybean ... Swine rations are generally based on a ground cereal grain as a carbohydrate source, soybean meal as a protein source, minerals ... Meals from soybean, canola, and corn gluten are the major source of plant protein in poultry diets. Supplementation of minerals ...
... that harm tissues including nerves and the heart. The U.S. Food and Drug Administration considers tafamidis to be a first-in- ... Tafamidis is a pharmacological chaperone that stabilizes the correctly folded tetrameric form of the transthyretin protein by ... Tafamidis is used to delay nerve damage in adults who have transthyretin amyloidosis with polyneuropathy, or heart disease in ... Tafamidis was approved by the European Medicines Agency in November 2011, to delay peripheral nerve impairment in adults with ...
... such as three-dimensional microstructural scaffolding and protein components inherent to nerve tissue. One of the adverse ... Another option to bridge the gap is nerve allotransplantation. Nerve allografts are prepared from donated human nerve tissue. ... In case of insufficient amount of autologous nerve tissue or the inability to attach both nerve ends securely and tension free ... Golden standard therapy for transected nerves is an end-to-end repair of the nerve, also known as primary nerve repair. With a ...
... and BMP associated proteins in human trabecular meshwork and optic nerve head cells and tissues". Molecular Vision. 8: 241-50. ... Bone morphogenetic protein 5 is a protein that in humans is encoded by the BMP5 gene. The protein encoded by this gene is ... These proteins are synthesized as prepropeptides, cleaved, and then processed into dimeric proteins. This protein may act as an ... "Decrease in expression of bone morphogenetic proteins 4 and 5 in synovial tissue of patients with osteoarthritis and rheumatoid ...
Connective tissue in the peripheral nervous system Epineurium Nerve Nerve fascicle Nerve fiber Nervous system Perineurium " ... The endoneurium contains a liquid known as endoneurial fluid, which contains little protein. In the peripheral nervous system ... In sufficiently large nerves multiple fascicles, each with its blood supply and fatty tissue, may be bundled within yet another ... Peripheral nerve injuries commonly release increased amounts of endoneurial fluid into surrounding tissues; these can be ...
... its abundant expression in brain suggests that it may have an essential role in nerve tissue. Several alternatively spliced ... Olfactomedin 1, also known as noelin 1 or pancortin, is a protein that in humans is encoded by the OLFM1 gene. The name noelin ... "Identification and cloning of neuroblastoma-specific and nerve tissue-specific genes through compiled expression profiles". DNA ... "Entrez Gene: OLFM1 olfactomedin 1". Anholt, Robert R. H. (2014). "Olfactomedin proteins: central players in development and ...
Inside the tunic is the body wall or mantle composed of connective tissue, muscle fibres, blood vessels, and nerves. Two ... The cellulose body wall can be broken down and converted into ethanol, and other parts of the animal are protein-rich and can ... Nerves arise from the two ends of the ganglion; those from the anterior end innervate the buccal siphon and those from the ... Their name derives from their unique outer covering or "tunic", which is formed from proteins and carbohydrates, and acts as an ...
These muscular diseases usually arise from a pathology within the muscle tissue itself rather than the nerves innervating that ... Abnormal levels of these proteins are indicative of both inflammatory myopathy and ANIM. EMGs are particularly useful in ... A myopathy refers to a problem or abnormality with the myofibrils, which compose muscle tissue. In general, non-inflammatory ... Statins induce myopathy by inhibiting protein synthesis within the muscle. Statin therapy tends to not show any ...
... the protein that causes cell growth due to stimulated nerve tissue. On 1 August 2001, she was appointed as Senator for Life by ... the nerves took over areas that would become other tissues and even entered veins in the embryo. But nerves did not grow into ... from observations of certain cancerous tissues that cause extremely rapid growth of nerve cells. By transferring pieces of ... The discovery of nerves growing everywhere like a halo around the tumor cells was surprising. When describing it, Montalcini ...
... can facilitate speed of transmission of electrical impulses along nerve tissue. For many neuron fibers, a myelin sheath, rich ... sterol regulatory element-binding protein 1 and 2). In the presence of cholesterol, SREBP is bound to two other proteins: SCAP ... Chylomicrons carry fats from the intestine to muscle and other tissues in need of fatty acids for energy or fat production. ... HDL particles are thought to transport cholesterol back to the liver, either for excretion or for other tissues that synthesize ...
It was discovered that MSC is able to induce blood vessel and nerve growth during damaged tissues recovery. It was also ... After that it was classified as T-Cadherin - a protein from the group of cadherins responsible for hemophilic intracellular ... tissue and organ regeneration and reparation, as well as the role of mesenchyme stem cells (MSC) of various tissues in this ... These results formed the basis of the development of a drug for therapeutic angiogenesis via uPA gene delivery to the tissues ...
Juvenile retinoschisis is a disease that affects the nerve tissue in the eye. This disease is an X-linked recessive ... When mutations occur in the rhodopsin the directional protein movement is affected because the mutations can affect protein ... The protein RPE65 is used in the retinoid cycle where the all-trans-retinol within the rod outer segment is isomerized to its ... In normal tissues VEGF stimulates endothelial cell proliferation in a dose dependent manner, but such activity is lost with ...
Since disease progression is the result of degeneration of neurons, the roles of proteins showing loss of nerve tissue such as ... These features interact in a complex and not yet fully understood manner to produce the breakdown of nerve tissue, and in turn ... These lesions most commonly affect the white matter in the optic nerve, brain stem, basal ganglia, and spinal cord, or white ... A majority of these oligoclonal bands do have an affinity to the viral protein EBNA1, which is cross-reactive to GlialCAM. ...
Nerve tissue is a biological molecule related to the function and maintenance of normal nervous tissue. An example would ... Calcium-Sensor Proteins Neuropeptides Olfactory Marker Protein S100 Proteins Synapsins Synaptophysin Synucleins Tubulin Nerve+ ... Brain Nerve Growth Factors Neuroendocrine Secretory Protein 7B2 Neurofilament Proteins Neurogranin Neuronal Apoptosis- ... Peripheral nerves rely on communication between axons and Schwaan cells. Prion protein triggers are an important factor in the ...
PrPres, prion protein resistant; BSE, bovine spongiform encephalopathy; mpi, months postinoculation; +, positive for PrPres ... Accumulation of L-type Bovine Prions in Peripheral Nerve Tissues Yoshifumi Iwamaru. , Morikazu Imamura, Yuichi Matsuura, ... Accumulation of L-type Bovine Prions in Peripheral Nerve Tissues. ... Western blot detection of PrPres in tissue samples obtained from cattle intracerebrally challenged with BSE/JP24 prion* ...
It is useful to think of an ischemic lesion as a densely ischemic core surrounded by better perfused penumbra tissue that is ... Heat-Shock Proteins * Nerve Tissue Proteins * Neuroprotective Agents * Neurotoxins * Calcium-Calmodulin-Dependent Protein ... Immunohistochemical and biochemical investigations of Ca2+/calmodulin-dependent protein kinase II(CaM kinase II) and protein ... It is useful to think of an ischemic lesion as a densely ischemic core surrounded by better perfused "penumbra" tissue that is ...
... are fatal neurodegenerative disorders characterized by the conversion of the normal prion protein (PrP(C)) into aggregates of ... Nerve Tissue Proteins / chemistry* * Nerve Tissue Proteins / metabolism* * PrPSc Proteins / analysis * Prion Diseases / ... In situ identification of protein structural changes in prion-infected tissue Biochim Biophys Acta. 2003 Nov 20;1639(3):152-8. ... We report the identification of disease-related protein structural differences directly within the tissue environment. ...
Tissue-culture; Animals; Laboratory-animals; Fibrosis; Bone-structure; Muscles; Nerve-tissue; Nerve-function; Proteins; ... Increased tendon calcification and a bone mineralization protein in musculoskeletal tissues with repetitive reaching task. ... Musculoskeletal tissues were harvested. Soft tissues were dissected out and frozen sectioned en bloc into 15 micrometer ... nerves and associated loose connective tissues. Osteoactivin (OA) is a recently identified factor that plays a role in bone ...
Nerve Tissue Proteins / genetics * Nerve Tissue Proteins / metabolism * PAX7 Transcription Factor / genetics ...
Nerve Tissue Proteins. *Cancer Gene Expression Regulation. *Gene Expression Profiling. *Transurethral Resection of Prostate ... and apoptosis through protein-protein interaction and transcriptional regulation of signaling pathways. The protein is ... This gene encodes a protein with protease activity and is expressed in the placenta. The protein may be useful as a tumor ... This fusion protein represents a clear therapeutic target and molecules specifically targeting SYT-SSX1 fusion protein are ...
Proteins [D12.776]. *Membrane Proteins [D12.776.543]. *Myelin Proteins [D12.776.543.620]. *Nerve Tissue Proteins [D12.776.641] ... The major proteins of peripheral nervous system myelin include: MYELIN BASIC PROTEINS (myelin P1 protein and MYELIN P2 PROTEIN ... Proteins found in the myelin sheath. The major proteins of central nervous system myelin include: MYELIN PROTEOLIPID PROTEIN; ... Protein citrullination marks myelin protein aggregation and disease progression in mouse ALS models. Acta Neuropathol Commun. ...
Diffusibility of the local anesthetic through tissue other than nerve tissue also influences the speed of action onset. ... Protein binding is related to the duration of action. The more firmly the local anesthetic binds to the protein of the sodium ... Local anesthetics produce anesthesia by inhibiting excitation of nerve endings or by blocking conduction in peripheral nerves. ... Local anesthetics produce anesthesia by inhibiting excitation of nerve endings or by blocking conduction in peripheral nerves. ...
and the surrounding brain tissue; it protects the brains delicate nerve tissue by preventing many other types of molecules ... The GLUT1 protein also moves glucose between cells in the brain called glia, which protect and maintain nerve cells (neurons). ... SLC2A1 gene variants reduce or eliminate the function of the GLUT1 protein. Having less functional GLUT1 protein reduces the ... This gene provides instructions for producing a protein called the glucose transporter protein type 1 (GLUT1). The GLUT1 ...
a.1.1.4: Nerve tissue mini-hemoglobin (neural globin) [74660] (1 protein). ... SCOP: Structural Classification of Proteins and ASTRAL. Release 1.61 (November 2002) Copyright © 1994-2009 The SCOP and Astral ...
Science Horizons: The Protein Data Bank, Earth Science and Regenerating Nerve Tissue (6/23/1999) ...
She isolated a protein that she called nerve growth factor (NGF) from these cancerous tissues. This was painstaking and ... and discovered that the cancerous tissues caused the rapid growth of nerve fibres. Somehow the tumour was encouraging nerve ... They knew that they could use mRNA to order cells to make any protein, including insulin, hormones or diabetes drugs. They ... Rita Levi-Montalcini was a neurobiologist who discovered nerve growth factor in collaboration with her colleague, Stanley Cohen ...
In addition to cardiomyocytes, the cardiac tissue also consists of fibroblasts, nerve endings, and immune cells. These cells ... The addition of LAV-BPIFB4 led to the upregulation of the protein synthesis machinery in the pericytes isolated from the hearts ... Endothelial cells regulate the blood flow as well as the exchange of fluids and molecules between the blood and the tissue. The ... the small blood vessels that transport oxygen and nutrients to tissues.. Thus, endothelial cell dysfunction can lead to a ...
A deformed protein damages vital tissues and organs like nerves and the heart. I talked about this with Patrick Doherty. Hes ... And within weeks, Doherty says he started feeling better as the levels of the bad protein causing the disease just plummeted. ...
Others prevent premature aging, tumors, nerve disease and connective tissue disorders. Pet foods high in protein may or may not ... Necessary for the synthesis of body proteins and many other tissue constituents. Amino acids aid in building new muscle, bone ... Papains activity helps to cleanse the tissues and intestinal walls. The unique ability of Papain to break down protein and ... WHEY PROTEIN The importance of protein in any carnivores diet cannot be understated, for it is critical in building and ...
NeurosciencesCytologyAxonsSynapsesSynaptic vesiclesNerve tissue proteins * « Previous * Next » * 1 ... 7. Distinct Roles for Dynein Regulatory Proteins NudE and NudEL in Brain Development Kemal, Shahrnaz 2013 Theses Neurosciences ... Charcot-Marie-Tooth diseaseNerves, Peripheral--DiseasesNeuropathyPathologyAxons 2. A Precision Medicine Approach to ...
Copper proteins are necessary for the body to build bone, nerves, and other tissue. Babies with Menkes syndrome have a genetic ...
Misfolded amyloid proteins produced by plasma cells cause buildup in and around tissues, nerves and organs, gradually affecting ... is a clinical-stage biopharmaceutical company pioneering a novel class of CAR-T cell therapies and Tissue-Specific Therapeutics ...
Misfolded amyloid proteins produced by plasma cells cause buildup in and around tissues, nerves and organs, gradually affecting ... Our proprietary SMARxT Tissue-Specific™ Platform produces drug candidates that circulate in the bloodstream, exit through tumor ... ImmixBio™) (Nasdaq: IMMX) is a clinical-stage biopharmaceutical company pioneering a novel class of Tissue-Specific ...
The pulp is a living tissue that contains connective tissue, nerves, and blood vessels. ... Bones are mostly made of collagen, which is a type of protein. Theyre also made up of calcium phosphate, which is a mineral. ... Old bone tissue is broken down and removed, while new tissue is created to replace the old. This cycle keeps your bones strong ... Unlike your bones, enamel doesnt contain any living tissues.. Beneath your tooths enamel, theres a bone-like tissue called ...
A deformed protein damages vital tissues and organs like nerves and the heart. I talked about this with Patrick Doherty. Hes ... And within weeks, Doherty says he started feeling better as the levels of the bad protein causing the disease just plummeted. ...
... virus-like protein may play a key role in amyotrophic lateral sclerosis (ALS), a fatal and incurable condition. The finding may ... The study, published in eLife, found elevated levels of PEG10 in the nerve tissue of ALS patients, suggesting it can alter ... spinal cord tissue, potentially disrupting communication between brain and nerve cells. ... Ancient virus-like protein. The study of the human genome has found that a significant portion of the human genome consists of ...
Nerve Tissue Proteins--metabolism; Platelet-Derived Growth Factor--genetics; Platelet-Derived Growth Factor--metabolism; ...
Destruction of nerve tissue results in S100B protein release from astrocytes and elevation of its levels in cerebrospinal fluid ... OBJECTIVES: The S100B protein subgroup is a thermolabile acidic calcium-binding protein, which was first described in ... Our results indicate that the rate of decrease of S100B protein levels back to normal values is more meaningful than its ... CONCLUSIONS: Due to high variability in S100B protein serum levels in children (dependent on age and gender) no correlation ...
Misfolded amyloid proteins produced by these cells cause a buildup of misfolded immunoglobulin proteins in and around tissues, ... nerves and organs, gradually affecting their function. This can cause progressive and widespread organ damage and high ...
Misfolded amyloid proteins produced by these cells cause a buildup of misfolded immunoglobulin proteins in and around tissues, ... nerves and organs, gradually affecting their function. This can cause progressive and widespread organ damage and high ...
The disease is a prion disease that seems to be found in the brain and nerve tissue of the animal. Since prions are smaller ... than bacteria ( a type of protein actually ). I body shot the animal and bagged the head and sent it to County Lab for analysis ... The prion itself will form in the lymph nodes and nerve cells of the animal. Colorado parks and wildlife has a good amount of ... My understanding is you must be very careful with the brain and spinal cord blood/nerves. Prions are a scary entity. Neither ...
Membrane Transport Proteins /genetics /physiology; Middle Aged; Minisatellite Repeats; Nerve Tissue Proteins /genetics / ... Serotonin Plasma Membrane Transport Proteins; Serotonin Uptake Inhibitors /pharmacology /therapeutic use; Treatment Outcome ...
These anti-AQP4 antibodies leak into the tissue at sites of nerve damage that also show massive accumulation of neutrophils. ... Protein implicated in tumor growth found to be heavily associated with pancreatic cancer. 13 hours ago ... In most cases, NMO is caused by antibodies that the body develops to a protein called aquaporin-4 (AQP4). ... Importantly, treating rats with an antibody to RGMa prevented these effects, resulting in fewer neutrophils around nerve ...

No FAQ available that match "nerve tissue proteins"

No images available that match "nerve tissue proteins"