Devices that cause a liquid or solid to be converted into an aerosol (spray) or a vapor. It is used in drug administration by inhalation, humidification of ambient air, and in certain analytical instruments.
A group of compounds that contain the general formula R-OCH3.
Anesthesia caused by the breathing of anesthetic gases or vapors or by insufflating anesthetic gases or vapors into the respiratory tract.
Gases or volatile liquids that vary in the rate at which they induce anesthesia; potency; the degree of circulation, respiratory, or neuromuscular depression they produce; and analgesic effects. Inhalation anesthetics have advantages over intravenous agents in that the depth of anesthesia can be changed rapidly by altering the inhaled concentration. Because of their rapid elimination, any postoperative respiratory depression is of relatively short duration. (From AMA Drug Evaluations Annual, 1994, p173)
Colloids with a gaseous dispersing phase and either liquid (fog) or solid (smoke) dispersed phase; used in fumigation or in inhalation therapy; may contain propellant agents.
Inhalation anesthesia where the gases exhaled by the patient are rebreathed as some carbon dioxide is simultaneously removed and anesthetic gas and oxygen are added so that no anesthetic escapes into the room. Closed-circuit anesthesia is used especially with explosive anesthetics to prevent fires where electrical sparking from instruments is possible.
Freedom of equipment from actual or potential hazards.
A phase transition from liquid state to gas state, which is affected by Raoult's law. It can be accomplished by fractional distillation.
A stable, non-explosive inhalation anesthetic, relatively free from significant side effects.
An extremely stable inhalation anesthetic that allows rapid adjustments of anesthesia depth with little change in pulse or respiratory rate.
The administration of drugs by the respiratory route. It includes insufflation into the respiratory tract.
Methods of creating machines and devices.
Helium. A noble gas with the atomic symbol He, atomic number 2, and atomic weight 4.003. It is a colorless, odorless, tasteless gas that is not combustible and does not support combustion. It was first detected in the sun and is now obtained from natural gas. Medically it is used as a diluent for other gases, being especially useful with oxygen in the treatment of certain cases of respiratory obstruction, and as a vehicle for general anesthetics. (Dorland, 27th ed)
A short-acting beta-2 adrenergic agonist that is primarily used as a bronchodilator agent to treat ASTHMA. Albuterol is prepared as a racemic mixture of R(-) and S(+) stereoisomers. The stereospecific preparation of R(-) isomer of albuterol is referred to as levalbuterol.
Agents that cause an increase in the expansion of a bronchus or bronchial tubes.
A muscarinic antagonist structurally related to ATROPINE but often considered safer and more effective for inhalation use. It is used for various bronchial disorders, in rhinitis, and as an antiarrhythmic.
A small aerosol canister used to release a calibrated amount of medication for inhalation.
Care of patients with deficiencies and abnormalities associated with the cardiopulmonary system. It includes the therapeutic use of medical gases and their administrative apparatus, environmental control systems, humidification, aerosols, ventilatory support, bronchopulmonary drainage and exercise, respiratory rehabilitation, assistance with cardiopulmonary resuscitation, and maintenance of natural, artificial, and mechanical airways.
Devices that cover the nose and mouth to maintain aseptic conditions or to administer inhaled anesthetics or other gases. (UMDNS, 1999)
A form of bronchial disorder with three distinct components: airway hyper-responsiveness (RESPIRATORY HYPERSENSITIVITY), airway INFLAMMATION, and intermittent AIRWAY OBSTRUCTION. It is characterized by spasmodic contraction of airway smooth muscle, WHEEZING, and dyspnea (DYSPNEA, PAROXYSMAL).
Relating to the size of solids.
A variety of devices used in conjunction with METERED DOSE INHALERS. Their purpose is to hold the released medication for inhalation and make it easy for the patients to inhale the metered dose of medication into their lungs.
Systems for the delivery of drugs to target sites of pharmacological actions. Technologies employed include those concerning drug preparation, route of administration, site targeting, metabolism, and toxicity.
Apparatus, devices, or supplies intended for one-time or temporary use.
An autosomal recessive genetic disease of the EXOCRINE GLANDS. It is caused by mutations in the gene encoding the CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR expressed in several organs including the LUNG, the PANCREAS, the BILIARY SYSTEM, and the SWEAT GLANDS. Cystic fibrosis is characterized by epithelial secretory dysfunction associated with ductal obstruction resulting in AIRWAY OBSTRUCTION; chronic RESPIRATORY INFECTIONS; PANCREATIC INSUFFICIENCY; maldigestion; salt depletion; and HEAT PROSTRATION.
A chromone complex that acts by inhibiting the release of chemical mediators from sensitized mast cells. It is used in the prophylactic treatment of both allergic and exercise-induced asthma, but does not affect an established asthmatic attack.
A selective beta-2 adrenergic agonist used as a bronchodilator and tocolytic.
Further or repeated use of equipment, instruments, devices, or materials. It includes additional use regardless of the original intent of the producer as to disposability or durability. It does not include the repeated use of fluids or solutions.
Three-dimensional representation to show anatomic structures. Models may be used in place of intact animals or organisms for teaching, practice, and study.
A series of hydrocarbons containing both chlorine and fluorine. These have been used as refrigerants, blowing agents, cleaning fluids, solvents, and as fire extinguishing agents. They have been shown to cause stratospheric ozone depletion and have been banned for many uses.
A technetium imaging agent used in renal scintigraphy, computed tomography, lung ventilation imaging, gastrointestinal scintigraphy, and many other procedures which employ radionuclide imaging agents.
Any materials used in providing care specifically in the hospital.
Tests involving inhalation of allergens (nebulized or in dust form), nebulized pharmacologically active solutions (e.g., histamine, methacholine), or control solutions, followed by assessment of respiratory function. These tests are used in the diagnosis of asthma.
Hypertonic sodium chloride solution. A solution having an osmotic pressure greater than that of physiologic salt solution (0.9 g NaCl in 100 ml purified water).
Analogs and derivatives of atropine.
An aminoglycoside, broad-spectrum antibiotic produced by Streptomyces tenebrarius. It is effective against gram-negative bacteria, especially the PSEUDOMONAS species. It is a 10% component of the antibiotic complex, NEBRAMYCIN, produced by the same species.
Antiprotozoal agent effective in trypanosomiasis, leishmaniasis, and some fungal infections; used in treatment of PNEUMOCYSTIS pneumonia in HIV-infected patients. It may cause diabetes mellitus, central nervous system damage, and other toxic effects.
Pharmacologic agents delivered into the nostrils in the form of a mist or spray.
A subfield of acoustics dealing in the radio frequency range higher than acoustic SOUND waves (approximately above 20 kilohertz). Ultrasonic radiation is used therapeutically (DIATHERMY and ULTRASONIC THERAPY) to generate HEAT and to selectively destroy tissues. It is also used in diagnostics, for example, ULTRASONOGRAPHY; ECHOENCEPHALOGRAPHY; and ECHOCARDIOGRAPHY, to visually display echoes received from irradiated tissues.
Cyclic polypeptide antibiotic from Bacillus colistinus. It is composed of Polymyxins E1 and E2 (or Colistins A, B, and C) which act as detergents on cell membranes. Colistin is less toxic than Polymyxin B, but otherwise similar; the methanesulfonate is used orally.
A long-acting beta-2-adrenergic receptor agonist.
Compressed gases or vapors in a container which, upon release of pressure and expansion through a valve, carry another substance from the container. They are used for cosmetics, household cleaners, and so on. Examples are BUTANES; CARBON DIOXIDE; FLUOROCARBONS; NITROGEN; and PROPANE. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Any disorder marked by obstruction of conducting airways of the lung. AIRWAY OBSTRUCTION may be acute, chronic, intermittent, or persistent.
A glucocorticoid used in the management of ASTHMA, the treatment of various skin disorders, and allergic RHINITIS.
Drugs used for their effects on the respiratory system.
Rendering pathogens harmless through the use of heat, antiseptics, antibacterial agents, etc.
A source of inorganic fluoride which is used topically to prevent dental caries.
Measure of the maximum amount of air that can be expelled in a given number of seconds during a FORCED VITAL CAPACITY determination . It is usually given as FEV followed by a subscript indicating the number of seconds over which the measurement is made, although it is sometimes given as a percentage of forced vital capacity.
The quality of not being miscible with another given substance without a chemical change. One drug is not of suitable composition to be combined or mixed with another agent or substance. The incompatibility usually results in an undesirable reaction, including chemical alteration or destruction. (Dorland, 27th ed; Stedman, 25th ed)
In the medical field, manikins are realistic, full-size models of human bodies used for teaching and practicing medical skills, such as CPR, intubation, or surgical procedures, as they provide a realistic and safe training environment without the use of actual patients.
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
A device that delivers medication to the lungs in the form of a dry powder.

An animal exposure system using ultrasonic nebulizer that generates well controlled aerosols from liquids. (1/1018)

Various aerosol generators have been developed for animal inhalation experiments and the performance tests of measuring instruments and respirators. It has been, however, difficult to generate aerosols from an aqueous solution or suspension keeping the concentration and particle size distribution constant for a long time. Resolving such difficulties, the present study developed an animal exposure system that generates well-controlled and stable aerosols from liquids. The exposure system consists of an aerosol generator using ultrasonic nebulizer, a mixing chamber and an exposure chamber. The validity of this system was confirmed in the generation of NiCl2 and TiO2 aerosol from solution and suspension, respectively. The concentration levels of NiCl2 aerosol were kept at 3.2 mg/m3 and 0.89 mg/m3 for 5 hours with good coefficients of variation (CVs) of 2.5% and 1.7%, respectively. For TiO2 aerosol, the concentration levels of 1.59 mg/m3 and 0.90 mg/m3 were kept for 5 hours with small CVs of 1.3% and 2.0%, respectively. This exposure system could be sufficiently used for inhalation experiments with even high toxic aerosols such as NiCl2 because a momentary high concentration possibly affects results and an extremely stable concentration is required.  (+info)

Randomised controlled trial of budesonide for the prevention of post-bronchiolitis wheezing. (2/1018)

BACKGROUND: Previous studies suggest that recurrent episodes of coughing and wheezing occur in up to 75% of infants after acute viral bronchiolitis. AIM: To assess the efficacy of budesonide given by means of a metered dose inhaler, spacer, and face mask in reducing the incidence of coughing and wheezing episodes up to 12 months after acute viral bronchiolitis. METHODS: Children under the age of 12 months admitted to hospital with acute viral bronchiolitis were randomised to receive either budesonide or placebo (200 microg or one puff twice daily) for the next eight weeks. Parents kept a diary card record of all episodes of coughing and wheezing over the next 12 months. RESULTS: Full follow up data were collected for 49 infants. There were no significant differences between the two study groups for the number of infants with symptom episodes up to six months after hospital discharge. At 12 months, 21 infants in the budesonide group had symptom episodes compared with 12 of 24 in the placebo group. The median number of symptom episodes was 2 (range, 0-13) in those who received budesonide and 1 (range, 0-11) in those who received placebo. Because there is no pharmacological explanation for these results, they are likely to be caused by a type 1 error, possibly exacerbated by there being more boys in the treatment group. CONCLUSION: Routine administration of budesonide by means of a metered dose inhaler, spacer, and face mask system immediately after acute viral bronchiolitis cannot be recommended.  (+info)

Improvement of nebulised antibiotic delivery in cystic fibrosis. (3/1018)

AIM: To investigate deposition patterns and to assess the delivery rate of two nebuliser systems in children with cystic fibrosis (CF). METHODS: Thirty three children with CF on regular treatment with nebulised antibiotics had radioisotope scans performed using technetium-99m labelled aerosol antibiotic generated by a Ventstream nebuliser (median mass diameter (MMD), 3.3 microm; delivery rate, 0. 075 ml/min) under conditions similar to their routine home practice. The inhomogeneity of the images was scored on a 1-10 rating scale (a low score indicating even distribution of the antibiotic), and stomach deposition was measured as a percentage of overall deposition. Twenty patients had a repeat scan using an Optimist nebuliser (MMD, 1.8 microm; delivery rate, 0.02 ml/min). RESULTS: The mean inhomogeneity scores were 5.4 in the Ventstream group and 3. 5 in the Optimist group. Mean stomach deposition was 17.3% in the 33 patients using the Ventstream nebuliser. There was an inverse relation between height and stomach deposition (r = 0.69). In the 20 patients who had both nebulisers, the mean percentages of stomach deposition for the Ventstream and Optimist nebulisers were 11.8% and 1.6%, respectively. The Ventstream nebuliser delivered antibiotic at an average 2.8 times faster rate than the Optimist nebuliser. IMPLICATIONS: A smaller particle size results in a more homogenous distribution of the antibiotic in the lungs with decreased stomach deposition. This should not be seen as a recommendation to use the Optimist nebuliser because more antibiotic was delivered to most parts of the lung with the Ventstream because of its increased delivery rate.  (+info)

Early use of inhaled nedocromil sodium in children following an acute episode of asthma. (4/1018)

BACKGROUND: Current guidelines on the treatment of childhood asthma recommend the introduction of an anti-inflammatory drug in children who have persistent symptoms and require regular treatment with a bronchodilator. The efficacy and safety of inhaled nedocromil sodium (Tilade Mint aerosol) administered using a Fisonair spacer at a dose of 4 mg three times daily was compared with placebo in the treatment of asthmatic children aged 6-12 years who are symptomatic and recovering from an acute exacerbation of asthma. METHODS: A group comparative, double blind, placebo controlled trial was performed in children who were recovering from an acute episode of asthma following treatment in the emergency department of the hospital or in children referred from their general practitioner following a wheezing episode and documented evidence of at least two previous episodes of wheezing. A two week baseline period on existing bronchodilator treatment was followed by a 12 week treatment period on either nedocromil sodium (2 mg/puff) or placebo. Both treatments were administered using a Fisonair spacer at a dose of two puffs three times daily. Changes from baseline values in daytime asthma and night time asthma symptom scores, usage of rescue bronchodilators, mean peak expiratory flow (PEF) recorded twice daily on diary cards, patients' opinion of treatment, and withdrawals due to treatment failure were measured during the primary treatment period (last six weeks of treatment). RESULTS: One hundred and forty two children aged 6-12 years entered the baseline period. Sixty three were withdrawn due to failure to meet the entry criteria (18) or the criteria for asthma symptom severity (15) or reversibility (9), because they developed uncontrolled asthma (2), because they took disallowed treatment (2), or for other non-trial related reasons (17). Seventy nine patients (46 boys) of mean age 8. 8 years entered the treatment period. There were significant differences in the changes from baseline values during the last six weeks of treatment in favour of nedocromil sodium compared with placebo in the primary variables of daytime asthma and night time asthma, morning and evening PEF, and the usage of rescue inhaled bronchodilators; 53% of patients reported nedocromil sodium to be very or moderately effective compared with 44% placebo. Improvement in asthma symptoms, PEF, and reduction in use of rescue bronchodilators did not reach statistical significance until after six weeks of treatment. Twenty two patients were withdrawn or dropped out during the treatment phase, 12 due to uncontrolled asthma or persistence of asthma symptoms, four due to suspected adverse drug reactions (nedocromil sodium 3 (headaches 2, angio-oedema/urticaria 1), placebo 1(persistent cough)), and six due to non-treatment related reasons. Seventy one adverse events were reported by 27 patients in the nedocromil group and 75 by 30 patients in the placebo group. CONCLUSIONS: Asthma symptoms, use of bronchodilators, and lung function can be improved significantly in children recovering from an acute exacerbation of asthma or wheeze and currently receiving treatment with bronchodilators alone by the addition of inhaled nedocromil sodium at a dose of 4 mg three times daily administered using a Fisonair holding chamber.  (+info)

Long-term management of asthma: how to improve outcomes. (5/1018)

Improved clinical outcomes in asthma patients have been demonstrated in several clinical trials that applied the National Institutes of Health (NIH) guidelines for the long-term management of asthma. Environmental control, objective monitoring, drug therapy, and partnership in patient education are the major components of optimal management. Inhaled antiinflammatory agents are of major importance for long-term control in patients with persistent asthma. Adequate patient education is absolutely essential for excellent, cost-effective care of patients with asthma. Improved outcomes in adults with asthma have been demonstrated at clinics initiated and managed by pharmacists. Further trials are needed with large numbers of patients in managed care organizations.  (+info)

Comparison of spontaneous and induced sputum for investigation of airway inflammation in chronic obstructive pulmonary disease. (6/1018)

BACKGROUND: Although sputum induction is used as a technique to investigate lower airway inflammation in asthmatic subjects, advantages over spontaneous sputum in patients with chronic obstructive pulmonary disease (COPD) have not been investigated. METHODS: Samples of spontaneous sputum and sputum induced with 3% hypertonic saline for 14 minutes were collected from 27 patients with chronic obstructive pulmonary disease (COPD) who usually produced spontaneous sputum. Spirometric indices and oxygen saturation (Sao2) were measured at seven minute intervals. The spontaneous, seven and 14 minute sputum samples were analysed for total and differential cell counts, cell viability, and interleukin 8 levels. RESULTS: Analysis of the sputum revealed that median cell viability was higher in the seven minute (62.8%; p = 0.004) and 14 minute (65%; p = 0.001) induced sputum samples than in spontaneous sputum (41.2%). There was no significant difference in total and differential cell counts or in interleukin 8 levels between spontaneous and induced sputum. During the sputum induction procedure the mean (SD) fall in forced expiratory volume in one second (FEV1) was 0.098 (0.111) 1 (p < 0.001) and in forced vital capacity (FVC) was 0.247 (0.233) 1 (p < 0.001). There was a small but significant fall in Sao2 during sputum induction (p = 0.03). CONCLUSIONS: Induced sputum contains a higher proportion of viable cells than spontaneous sputum. There are no significant differences between the sputum samples obtained at seven minutes and at 14 minutes of hypertonic saline nebulisation. Sputum induction is safe and well tolerated in patients with COPD.  (+info)

Airway hyperresponsiveness to ultrasonically nebulized distilled water in subjects with tetraplegia. (7/1018)

The majority of otherwise healthy subjects with chronic cervical spinal cord injury (SCI) demonstrate airway hyperresponsiveness to aerosolized methacholine or histamine. The present study was performed to determine whether ultrasonically nebulized distilled water (UNDW) induces airway hyperresponsiveness and to further elucidate potential mechanisms in this population. Fifteen subjects with SCI, nine with tetraplegia (C4-7) and six with paraplegia (T9-L1), were initially exposed to UNDW for 30 s; spirometry was performed immediately and again 2 min after exposure. The challenge continued by progressively increasing exposure time until the forced expiratory volume in 1 s decreased 20% or more from baseline (PD20) or the maximal exposure time was reached. Five subjects responding to UNDW returned for a second challenge 30 min after inhalation of aerosolized ipratropium bromide (2.5 ml of a 0.6% solution). Eight of nine subjects with tetraplegia had significant bronchoconstrictor responses to UNDW (geometric mean PD20 = 7.76 +/- 7.67 ml), whereas none with paraplegia demonstrated a response (geometric mean PD20 = 24 ml). Five of the subjects with tetraplegia who initially responded to distilled water (geometric mean PD20 = 5.99 +/- 4.47 ml) were not responsive after pretreatment with ipratropium bromide (geometric mean PD20 = 24 ml). Findings that subjects with tetraplegia are hyperreactive to UNDW, a physicochemical agent, combined with previous observations of hyperreactivity to methacholine and histamine, suggest that overall airway hyperresponsiveness in these individuals is a nonspecific phenomenon similar to that observed in patients with asthma. The ability of ipratropium bromide to completely block UNDW-induced bronchoconstriction suggests that, in part, airway hyperresponsiveness in subjects with tetraplegia represents unopposed parasympathetic activity.  (+info)

Systemic activity of inhaled and swallowed beclomethasone dipropionate and the effect of different inhaler devices. (8/1018)

Inhaled glucocorticoids such as beclomethasone dipropionate, which are used in the treatment of asthma, may be associated with systemic adverse effects. To determine whether any systemic absorption following the inhalation of beclomethasone was a result of drug being absorbed from the lung (inhaled fraction) or the gastrointestinal tract (swallowed fraction), we studied normal subjects after the inhalation or swallowing of 2 mg beclomethasone dipropionate. Systemic activity was assessed using early morning cortisol suppression. Both inhaled and swallowed fractions produced significant systemic activity, the degree of which depended on the inhaler device used. Systemic activity was greater using a dry powder inhaler (52%) than using a metered dose inhaler with a large volume spacer (28%). These findings suggest that to limit potential adverse effects from high-dose beclomethasone dipropionate it is better to use a metered dose aerosol with large volume spacer than a dry powder.  (+info)

Nebulizer: A nebulizer is a medical device that delivers medication in the form of a mist to the respiratory system. It is often used for people who have difficulty inhaling medication through traditional inhalers, such as young children or individuals with severe respiratory conditions. The medication is placed in the nebulizer cup and then converted into a fine mist by the machine. This allows the user to breathe in the medication directly through a mouthpiece or mask.

Vaporizer: A vaporizer, on the other hand, is a device that heats up a liquid, often water or essential oils, to produce steam or vapor. While some people use vaporizers for therapeutic purposes, such as to help relieve congestion or cough, it is important to note that vaporizers are not considered medical devices and their effectiveness for these purposes is not well-established.

It's worth noting that nebulizers and vaporizers are different from each other in terms of their purpose and usage. Nebulizers are used specifically for delivering medication, while vaporizers are used to produce steam or vapor, often for non-medical purposes.

Methyl ethers are a type of organic compound where a methyl group (CH3-) is attached to an oxygen atom, which in turn is connected to another carbon atom. They are formed by the process of methylation, where a methyl group replaces a hydrogen atom in another molecule.

Methyl ethers can be found in various natural and synthetic substances. For example, dimethyl ether (CH3-O-CH3) is a common fuel used in refrigeration systems and as a propellant in aerosol sprays. Anisole (CH3-O-C6H5), another methyl ether, is found in anise oil and is used as a flavoring agent and solvent.

It's worth noting that some methyl ethers have been associated with potential health risks, particularly when they are volatile and can be inhaled or ingested. For example, exposure to high levels of dimethyl ether can cause respiratory irritation, headaches, and dizziness. Therefore, it's important to handle these substances with care and follow appropriate safety guidelines.

Inhalational anesthesia is a type of general anesthesia that is induced by the inhalation of gases or vapors. It is administered through a breathing system, which delivers the anesthetic agents to the patient via a face mask, laryngeal mask airway, or endotracheal tube.

The most commonly used inhalational anesthetics include nitrous oxide, sevoflurane, isoflurane, and desflurane. These agents work by depressing the central nervous system, causing a reversible loss of consciousness, amnesia, analgesia, and muscle relaxation.

The depth of anesthesia can be easily adjusted during the procedure by changing the concentration of the anesthetic agent. Once the procedure is complete, the anesthetic agents are eliminated from the body through exhalation, allowing for a rapid recovery.

Inhalational anesthesia is commonly used in a wide range of surgical procedures due to its ease of administration, quick onset and offset of action, and ability to rapidly adjust the depth of anesthesia. However, it requires careful monitoring and management by trained anesthesia providers to ensure patient safety and optimize outcomes.

Inhalational anesthetics are a type of general anesthetic that is administered through the person's respiratory system. They are typically delivered in the form of vapor or gas, which is inhaled through a mask or breathing tube. Commonly used inhalational anesthetics include sevoflurane, desflurane, isoflurane, and nitrous oxide. These agents work by depressing the central nervous system, leading to a loss of consciousness and an inability to feel pain. They are often used for their rapid onset and offset of action, making them useful for both induction and maintenance of anesthesia during surgical procedures.

Aerosols are defined in the medical field as suspensions of fine solid or liquid particles in a gas. In the context of public health and medicine, aerosols often refer to particles that can remain suspended in air for long periods of time and can be inhaled. They can contain various substances, such as viruses, bacteria, fungi, or chemicals, and can play a role in the transmission of respiratory infections or other health effects.

For example, when an infected person coughs or sneezes, they may produce respiratory droplets that can contain viruses like influenza or SARS-CoV-2 (the virus that causes COVID-19). Some of these droplets can evaporate quickly and leave behind smaller particles called aerosols, which can remain suspended in the air for hours and potentially be inhaled by others. This is one way that respiratory viruses can spread between people in close proximity to each other.

Aerosols can also be generated through medical procedures such as bronchoscopy, suctioning, or nebulizer treatments, which can produce aerosols containing bacteria, viruses, or other particles that may pose an infection risk to healthcare workers or other patients. Therefore, appropriate personal protective equipment (PPE) and airborne precautions are often necessary to reduce the risk of transmission in these settings.

Closed-circuit anesthesia is a type of anesthesia delivery system in which the exhaled gases from the patient are rebreathed after being scrubbed of carbon dioxide and reoxygenated. This is different from open-circuit anesthesia, where the exhaled gases are vented out of the system and fresh gas is continuously supplied to the patient.

In a closed-circuit anesthesia system, the amount of anesthetic agent used can be more precisely controlled, which can lead to a reduction in overall drug usage and potentially fewer side effects for the patient. Additionally, because the exhaled gases are reused, there is less waste and a smaller environmental impact.

Closed-circuit anesthesia systems typically consist of a breathing system, an anesthetic vaporizer, a soda lime canister to remove carbon dioxide, a ventilator to assist with breathing if necessary, and monitors to track the patient's vital signs. These systems are commonly used in veterinary medicine and in human surgery where long-term anesthesia is required.

Equipment safety in a medical context refers to the measures taken to ensure that medical equipment is free from potential harm or risks to patients, healthcare providers, and others who may come into contact with the equipment. This includes:

1. Designing and manufacturing the equipment to meet safety standards and regulations.
2. Properly maintaining and inspecting the equipment to ensure it remains safe over time.
3. Providing proper training for healthcare providers on how to use the equipment safely.
4. Implementing safeguards, such as alarms and warnings, to alert users of potential hazards.
5. Conducting regular risk assessments to identify and address any potential safety concerns.
6. Reporting and investigating any incidents or accidents involving the equipment to determine their cause and prevent future occurrences.

Volatilization, in the context of pharmacology and medicine, refers to the process by which a substance (usually a medication or drug) transforms into a vapor state at room temperature or upon heating. This change in physical state allows the substance to evaporate and be transferred into the air, potentially leading to inhalation exposure.

In some medical applications, volatilization is used intentionally, such as with essential oils for aromatherapy or topical treatments that utilize a vapor action. However, it can also pose concerns when volatile substances are unintentionally released into the air, potentially leading to indoor air quality issues or exposure risks.

It's important to note that in clinical settings, volatilization is not typically used as a route of administration for medications, as other methods such as oral, intravenous, or inhalation via nebulizers are more common and controlled.

Isoflurane is a volatile halogenated ether used for induction and maintenance of general anesthesia. It is a colorless liquid with a pungent, sweet odor. Isoflurane is an agonist at the gamma-aminobutyric acid type A (GABAA) receptor and inhibits excitatory neurotransmission in the brain, leading to unconsciousness and immobility. It has a rapid onset and offset of action due to its low blood solubility, allowing for quick adjustments in anesthetic depth during surgery. Isoflurane is also known for its bronchodilator effects, making it useful in patients with reactive airway disease. However, it can cause dose-dependent decreases in heart rate and blood pressure, so careful hemodynamic monitoring is required during its use.

Enflurane is a volatile halogenated ether that was commonly used as an inhalational general anesthetic agent. Its chemical formula is C3H2ClF5O. It has been largely replaced by newer and safer anesthetics, but it is still occasionally used in certain clinical situations due to its favorable properties such as rapid onset and offset of action, stable hemodynamics, and low blood solubility. However, it can cause adverse effects such as respiratory depression, arrhythmias, and neurotoxicity, particularly with prolonged use or high doses. Therefore, its use requires careful monitoring and management by anesthesia professionals.

"Inhalation administration" is a medical term that refers to the method of delivering medications or therapeutic agents directly into the lungs by inhaling them through the airways. This route of administration is commonly used for treating respiratory conditions such as asthma, COPD (chronic obstructive pulmonary disease), and cystic fibrosis.

Inhalation administration can be achieved using various devices, including metered-dose inhalers (MDIs), dry powder inhalers (DPIs), nebulizers, and soft-mist inhalers. Each device has its unique mechanism of delivering the medication into the lungs, but they all aim to provide a high concentration of the drug directly to the site of action while minimizing systemic exposure and side effects.

The advantages of inhalation administration include rapid onset of action, increased local drug concentration, reduced systemic side effects, and improved patient compliance due to the ease of use and non-invasive nature of the delivery method. However, proper technique and device usage are crucial for effective therapy, as incorrect usage may result in suboptimal drug deposition and therapeutic outcomes.

Equipment design, in the medical context, refers to the process of creating and developing medical equipment and devices, such as surgical instruments, diagnostic machines, or assistive technologies. This process involves several stages, including:

1. Identifying user needs and requirements
2. Concept development and brainstorming
3. Prototyping and testing
4. Design for manufacturing and assembly
5. Safety and regulatory compliance
6. Verification and validation
7. Training and support

The goal of equipment design is to create safe, effective, and efficient medical devices that meet the needs of healthcare providers and patients while complying with relevant regulations and standards. The design process typically involves a multidisciplinary team of engineers, clinicians, designers, and researchers who work together to develop innovative solutions that improve patient care and outcomes.

Helium is not a medical term, but it's a chemical element with symbol He and atomic number 2. It's a colorless, odorless, tasteless, non-toxic, inert, monatomic gas that heads the noble gases section of the periodic table. In medicine, helium is sometimes used in medical settings for its unique properties, such as being less dense than air, which can help improve the delivery of oxygen to patients with respiratory conditions. For example, heliox, a mixture of helium and oxygen, may be used to reduce the work of breathing in patients with conditions like chronic obstructive pulmonary disease (COPD) or asthma. Additionally, helium is also used in cryogenic medical equipment and in magnetic resonance imaging (MRI) machines to cool the superconducting magnets.

Albuterol is a medication that is used to treat bronchospasm, or narrowing of the airways in the lungs, in conditions such as asthma and chronic obstructive pulmonary disease (COPD). It is a short-acting beta-2 agonist, which means it works by relaxing the muscles around the airways, making it easier to breathe. Albuterol is available in several forms, including an inhaler, nebulizer solution, and syrup, and it is typically used as needed to relieve symptoms of bronchospasm. It may also be used before exercise to prevent bronchospasm caused by physical activity.

The medical definition of Albuterol is: "A short-acting beta-2 adrenergic agonist used to treat bronchospasm in conditions such as asthma and COPD. It works by relaxing the muscles around the airways, making it easier to breathe."

Bronchodilators are medications that relax and widen the airways (bronchioles) in the lungs, making it easier to breathe. They work by relaxing the smooth muscle around the airways, which allows them to dilate or open up. This results in improved airflow and reduced symptoms of bronchoconstriction, such as wheezing, coughing, and shortness of breath.

Bronchodilators can be classified into two main types: short-acting and long-acting. Short-acting bronchodilators are used for quick relief of symptoms and last for 4 to 6 hours, while long-acting bronchodilators are used for maintenance therapy and provide symptom relief for 12 hours or more.

Examples of bronchodilator agents include:

* Short-acting beta-agonists (SABAs) such as albuterol, levalbuterol, and pirbuterol
* Long-acting beta-agonists (LABAs) such as salmeterol, formoterol, and indacaterol
* Anticholinergics such as ipratropium, tiotropium, and aclidinium
* Combination bronchodilators that contain both a LABA and an anticholinergic, such as umeclidinium/vilanterol and glycopyrrolate/formoterol.

Ipratropium is an anticholinergic bronchodilator medication that is often used to treat respiratory conditions such as chronic obstructive pulmonary disease (COPD) and asthma. It works by blocking the action of acetylcholine, a chemical messenger in the body that causes muscles around the airways to tighten and narrow. By preventing this effect, ipratropium helps to relax the muscles around the airways, making it easier to breathe.

Ipratropium is available in several forms, including an aerosol spray, nebulizer solution, and dry powder inhaler. It is typically used in combination with other respiratory medications, such as beta-agonists or corticosteroids, to provide more effective relief of symptoms. Common side effects of ipratropium include dry mouth, throat irritation, and headache.

A Metered Dose Inhaler (MDI) is a medical device used to administer a specific amount or "metered dose" of medication, usually in the form of an aerosol, directly into the lungs of a patient. The MDI consists of a pressurized canister that contains the medication mixed with a propellant, a metering valve that releases a precise quantity of the medication, and a mouthpiece or mask for the patient to inhale the medication.

MDIs are commonly used to treat respiratory conditions such as asthma, chronic obstructive pulmonary disease (COPD), and bronchitis. They are also used to deliver other medications such as corticosteroids, anticholinergics, and beta-agonists. Proper use of an MDI requires coordination between the pressing of the canister and inhalation of the medication, which may be challenging for some patients. Therefore, it is essential to receive proper training on how to use an MDI effectively.

Respiratory therapy is a healthcare profession that specializes in the diagnosis, treatment, and management of respiratory disorders and diseases. Respiratory therapists (RTs) work under the direction of physicians to provide care for patients with conditions such as chronic obstructive pulmonary disease (COPD), asthma, cystic fibrosis, sleep apnea, and neuromuscular diseases that affect breathing.

RTs use a variety of techniques and treatments to help patients breathe more easily, including oxygen therapy, aerosol medication delivery, chest physiotherapy, mechanical ventilation, and patient education. They also perform diagnostic tests such as pulmonary function studies to assess lung function and help diagnose respiratory conditions.

RTs work in a variety of healthcare settings, including hospitals, clinics, long-term care facilities, and home health agencies. They may provide care for patients of all ages, from premature infants to the elderly. The overall goal of respiratory therapy is to help patients achieve and maintain optimal lung function and quality of life.

In a medical context, masks are typically used as personal protective equipment (PPE) to protect the wearer from inhaling airborne particles and contaminants. They can also help prevent the spread of respiratory droplets from the wearer to others, which is particularly important in clinical settings where patients may have infectious diseases.

There are several types of masks used in medical settings, including:

1. Medical Masks: These are loose-fitting, disposable masks that create a physical barrier between the mouth and nose of the wearer and potential contaminants in the immediate environment. They are commonly used by healthcare professionals during medical procedures to protect themselves and patients from respiratory droplets and aerosols.
2. N95 Respirators: These are tight-fitting masks that can filter out both large droplets and small aerosol particles, including those containing viruses. They offer a higher level of protection than medical masks and are recommended for use in healthcare settings where there is a risk of exposure to airborne contaminants, such as during certain medical procedures or when caring for patients with infectious diseases like tuberculosis or COVID-19.
3. Surgical N95 Respirators: These are a specialized type of N95 respirator designed for use in surgical settings. They have a clear plastic window that allows the wearer's mouth and nose to be visible, which is useful during surgery where clear communication and identification of the wearer's facial features are important.
4. Powered Air-Purifying Respirators (PAPRs): These are motorized masks that use a fan to draw air through a filter, providing a continuous supply of clean air to the wearer. They offer a high level of protection and are often used in healthcare settings where there is a risk of exposure to highly infectious diseases or hazardous substances.

It's important to note that masks should be used in conjunction with other infection prevention measures, such as hand hygiene and social distancing, to provide the best possible protection against respiratory illnesses.

Asthma is a chronic respiratory disease characterized by inflammation and narrowing of the airways, leading to symptoms such as wheezing, coughing, shortness of breath, and chest tightness. The airway obstruction in asthma is usually reversible, either spontaneously or with treatment.

The underlying cause of asthma involves a combination of genetic and environmental factors that result in hypersensitivity of the airways to certain triggers, such as allergens, irritants, viruses, exercise, and emotional stress. When these triggers are encountered, the airways constrict due to smooth muscle spasm, swell due to inflammation, and produce excess mucus, leading to the characteristic symptoms of asthma.

Asthma is typically managed with a combination of medications that include bronchodilators to relax the airway muscles, corticosteroids to reduce inflammation, and leukotriene modifiers or mast cell stabilizers to prevent allergic reactions. Avoiding triggers and monitoring symptoms are also important components of asthma management.

There are several types of asthma, including allergic asthma, non-allergic asthma, exercise-induced asthma, occupational asthma, and nocturnal asthma, each with its own set of triggers and treatment approaches. Proper diagnosis and management of asthma can help prevent exacerbations, improve quality of life, and reduce the risk of long-term complications.

In the context of medical and health sciences, particle size generally refers to the diameter or dimension of particles, which can be in the form of solid particles, droplets, or aerosols. These particles may include airborne pollutants, pharmaceutical drugs, or medical devices such as nanoparticles used in drug delivery systems.

Particle size is an important factor to consider in various medical applications because it can affect the behavior and interactions of particles with biological systems. For example, smaller particle sizes can lead to greater absorption and distribution throughout the body, while larger particle sizes may be filtered out by the body's natural defense mechanisms. Therefore, understanding particle size and its implications is crucial for optimizing the safety and efficacy of medical treatments and interventions.

An inhalation spacer is a medical device used in conjunction with metered-dose inhalers (MDIs) to improve the delivery and effectiveness of respiratory medications. It creates a space or chamber between the MDI and the patient's airways, allowing the medication to be more evenly distributed in a fine mist. This helps reduce the amount of medication that may otherwise be deposited in the back of the throat or lost in the air, ensuring that more of it reaches the intended target in the lungs. Inhalation spacers are particularly useful for children and older adults who may have difficulty coordinating their breathing with the activation of the MDI.

Drug delivery systems (DDS) refer to techniques or technologies that are designed to improve the administration of a pharmaceutical compound in terms of its efficiency, safety, and efficacy. A DDS can modify the drug release profile, target the drug to specific cells or tissues, protect the drug from degradation, and reduce side effects.

The goal of a DDS is to optimize the bioavailability of a drug, which is the amount of the drug that reaches the systemic circulation and is available at the site of action. This can be achieved through various approaches, such as encapsulating the drug in a nanoparticle or attaching it to a biomolecule that targets specific cells or tissues.

Some examples of DDS include:

1. Controlled release systems: These systems are designed to release the drug at a controlled rate over an extended period, reducing the frequency of dosing and improving patient compliance.
2. Targeted delivery systems: These systems use biomolecules such as antibodies or ligands to target the drug to specific cells or tissues, increasing its efficacy and reducing side effects.
3. Nanoparticle-based delivery systems: These systems use nanoparticles made of polymers, lipids, or inorganic materials to encapsulate the drug and protect it from degradation, improve its solubility, and target it to specific cells or tissues.
4. Biodegradable implants: These are small devices that can be implanted under the skin or into body cavities to deliver drugs over an extended period. They can be made of biodegradable materials that gradually break down and release the drug.
5. Inhalation delivery systems: These systems use inhalers or nebulizers to deliver drugs directly to the lungs, bypassing the digestive system and improving bioavailability.

Overall, DDS play a critical role in modern pharmaceutical research and development, enabling the creation of new drugs with improved efficacy, safety, and patient compliance.

Disposable equipment in a medical context refers to items that are designed to be used once and then discarded. These items are often patient-care products that come into contact with patients or bodily fluids, and are meant to help reduce the risk of infection transmission. Examples of disposable medical equipment include gloves, gowns, face masks, syringes, and bandages.

Disposable equipment is intended for single use only and should not be reused or cleaned for reuse. This helps ensure that the equipment remains sterile and free from potential contaminants that could cause harm to patients or healthcare workers. Proper disposal of these items is also important to prevent the spread of infection and maintain a safe and clean environment.

Cystic fibrosis (CF) is a genetic disorder that primarily affects the lungs and digestive system. It is caused by mutations in the CFTR gene, which regulates the movement of salt and water in and out of cells. When this gene is not functioning properly, thick, sticky mucus builds up in various organs, leading to a range of symptoms.

In the lungs, this mucus can clog the airways, making it difficult to breathe and increasing the risk of lung infections. Over time, lung damage can occur, which may lead to respiratory failure. In the digestive system, the thick mucus can prevent the release of digestive enzymes from the pancreas, impairing nutrient absorption and leading to malnutrition. CF can also affect the reproductive system, liver, and other organs.

Symptoms of cystic fibrosis may include persistent coughing, wheezing, lung infections, difficulty gaining weight, greasy stools, and frequent greasy diarrhea. The severity of the disease can vary significantly among individuals, depending on the specific genetic mutations they have inherited.

Currently, there is no cure for cystic fibrosis, but treatments are available to help manage symptoms and slow the progression of the disease. These may include airway clearance techniques, medications to thin mucus, antibiotics to treat infections, enzyme replacement therapy, and a high-calorie, high-fat diet. Lung transplantation is an option for some individuals with advanced lung disease.

Cromolyn sodium is a medication that belongs to a class of drugs known as mast cell stabilizers. It works by preventing the release of certain chemicals from mast cells, which are immune system cells found in various tissues throughout the body, including the skin, lungs, and gastrointestinal tract.

Mast cells play an important role in the body's allergic response. When a person is exposed to an allergen, such as pollen or pet dander, mast cells release chemicals like histamine, which can cause symptoms of an allergic reaction, such as itching, swelling, and inflammation.

Cromolyn sodium is used to prevent asthma attacks, hay fever, and other allergic reactions. It is often prescribed for people who have difficulty controlling their symptoms with other medications, such as inhaled corticosteroids or antihistamines.

The medication is available in various forms, including inhalers, nasal sprays, and eye drops. When used as an inhaler, cromolyn sodium is typically administered four times a day to prevent asthma symptoms. As a nasal spray or eye drop, it is usually used several times a day to prevent allergic rhinitis or conjunctivitis.

While cromolyn sodium can be effective in preventing allergic reactions, it does not provide immediate relief of symptoms. It may take several days or even weeks of regular use before the full benefits of the medication are felt.

Terbutaline is a medication that belongs to a class of drugs called beta-2 adrenergic agonists. It works by relaxing muscles in the airways and increasing the flow of air into the lungs, making it easier to breathe. Terbutaline is used to treat bronchospasm (wheezing, shortness of breath) associated with asthma, chronic bronchitis, emphysema, and other lung diseases. It may also be used to prevent or treat bronchospasm caused by exercise or to prevent premature labor in pregnant women.

The medical definition of Terbutaline is: "A synthetic sympathomimetic amine used as a bronchodilator for the treatment of asthma, bronchitis, and emphysema. It acts as a nonselective beta-2 adrenergic agonist, relaxing smooth muscle in the airways and increasing airflow to the lungs."

I cannot provide a medical definition for "equipment reuse" as it is not a term that is commonly used in the medical field. However, I can give you some general information about equipment reuse in healthcare settings.

Equipment reuse refers to the practice of using previously owned or disposable medical equipment and supplies multiple times after they have been sterilized or disinfected according to established protocols. This practice is often adopted by healthcare facilities as a way to reduce costs, conserve resources, and minimize waste.

Examples of medical equipment that may be reused include anesthesia breathing circuits, blood pressure cuffs, stethoscopes, and electronic thermometers. It's important to note that any reprocessed or reused medical equipment must undergo strict cleaning, disinfection, and sterilization procedures to ensure the safety of patients and healthcare workers.

Reusing medical equipment can have benefits such as reducing costs and waste, but it also carries risks if not done properly. Proper training and adherence to established protocols are crucial to ensuring that reused equipment is safe for use.

Anatomic models are three-dimensional representations of body structures used for educational, training, or demonstration purposes. They can be made from various materials such as plastic, wax, or rubber and may depict the entire body or specific regions, organs, or systems. These models can be used to provide a visual aid for understanding anatomy, physiology, and pathology, and can be particularly useful in situations where actual human specimens are not available or practical to use. They may also be used for surgical planning and rehearsal, as well as in medical research and product development.

Chlorofluorocarbons (CFCs) are synthetic, volatile organic compounds that consist of carbon atoms, chlorine atoms, and fluorine atoms. They were widely used in various applications such as refrigerants, aerosol propellants, solvents, and fire extinguishing agents due to their non-toxicity, non-flammability, and chemical stability.

However, CFCs have been found to contribute significantly to the depletion of the Earth's ozone layer when released into the atmosphere. This is because they are stable enough to reach the upper atmosphere, where they react with ultraviolet radiation to release chlorine atoms that can destroy ozone molecules. As a result, the production and use of CFCs have been phased out under the Montreal Protocol, an international treaty aimed at protecting the ozone layer.

Technetium Tc 99m Pentetate is a radioactive pharmaceutical preparation used as a radiopharmaceutical agent in medical imaging. It is a salt of technetium-99m, a metastable nuclear isomer of technetium-99, which emits gamma rays and has a half-life of 6 hours.

Technetium Tc 99m Pentetate is used in various diagnostic procedures, including renal imaging, brain scans, lung perfusion studies, and bone scans. It is distributed throughout the body after intravenous injection and is excreted primarily by the kidneys, making it useful for evaluating renal function and detecting abnormalities in the urinary tract.

The compound itself is a colorless, sterile, pyrogen-free solution that is typically supplied in a lead shielded container to protect against radiation exposure. It should be used promptly after preparation and handled with care to minimize radiation exposure to healthcare workers and patients.

Hospital equipment and supplies refer to the physical resources used in a hospital setting to provide patient care and treatment. This includes both reusable and disposable medical devices and items used for diagnostic, therapeutic, monitoring, or supportive purposes. Examples of hospital equipment include but are not limited to:

1. Medical beds and mattresses
2. Wheelchairs and stretchers
3. Infusion pumps and syringe drivers
4. Defibrillators and ECG machines
5. Anesthesia machines and ventilators
6. Operating room tables and lights
7. X-ray machines, CT scanners, and MRI machines
8. Ultrasound machines and other imaging devices
9. Laboratory equipment for testing and analysis

Hospital supplies include items used in the delivery of patient care, such as:

1. Syringes, needles, and IV catheters
2. Bandages, dressings, and wound care products
3. Gloves, gowns, and other personal protective equipment (PPE)
4. Sterile surgical instruments and sutures
5. Incontinence pads and briefs
6. Nutritional supplements and feeding tubes
7. Medications and medication administration supplies
8. Disinfectants, cleaning agents, and sterilization equipment.

Proper management of hospital equipment and supplies is essential for ensuring patient safety, providing high-quality care, and controlling healthcare costs.

Bronchial provocation tests are a group of medical tests used to assess the airway responsiveness of the lungs by challenging them with increasing doses of a specific stimulus, such as methacholine or histamine, which can cause bronchoconstriction (narrowing of the airways) in susceptible individuals. These tests are often performed to diagnose and monitor asthma and other respiratory conditions that may be associated with heightened airway responsiveness.

The most common type of bronchial provocation test is the methacholine challenge test, which involves inhaling increasing concentrations of methacholine aerosol via a nebulizer. The dose response is measured by monitoring lung function (usually through spirometry) before and after each exposure. A positive test is indicated when there is a significant decrease in forced expiratory volume in one second (FEV1) or other measures of airflow, which suggests bronchial hyperresponsiveness.

Other types of bronchial provocation tests include histamine challenges, exercise challenges, and mannitol challenges. These tests have specific indications, contraindications, and protocols that should be followed to ensure accurate results and patient safety. Bronchial provocation tests are typically conducted in a controlled clinical setting under the supervision of trained healthcare professionals.

A hypertonic saline solution is a type of medical fluid that contains a higher concentration of salt (sodium chloride) than is found in the average person's blood. This solution is used to treat various medical conditions, such as dehydration, brain swelling, and increased intracranial pressure.

The osmolarity of a hypertonic saline solution typically ranges from 1500 to 23,400 mOsm/L, with the most commonly used solutions having an osmolarity of around 3000 mOsm/L. The high sodium concentration in these solutions creates an osmotic gradient that draws water out of cells and into the bloodstream, helping to reduce swelling and increase fluid volume in the body.

It is important to note that hypertonic saline solutions should be administered with caution, as they can cause serious side effects such as electrolyte imbalances, heart rhythm abnormalities, and kidney damage if not used properly. Healthcare professionals must carefully monitor patients receiving these solutions to ensure safe and effective treatment.

Atropine derivatives are a class of drugs that are chemically related to atropine, an alkaloid found in the nightshade family of plants. These drugs have anticholinergic properties, which means they block the action of the neurotransmitter acetylcholine in the body.

Atropine derivatives can be used for a variety of medical purposes, including:

1. Treating motion sickness and vertigo
2. Dilating the pupils during eye examinations
3. Reducing saliva production during surgical procedures
4. Treating certain types of poisoning, such as organophosphate or nerve gas poisoning
5. Managing symptoms of some neurological disorders, such as Parkinson's disease and myasthenia gravis

Some examples of atropine derivatives include hyoscyamine, scopolamine, and ipratropium. These drugs can have side effects, including dry mouth, blurred vision, constipation, difficulty urinating, and rapid heartbeat. They should be used with caution and under the supervision of a healthcare provider.

Tobramycin is an aminoglycoside antibiotic used to treat various types of bacterial infections. According to the Medical Subject Headings (MeSH) terminology of the National Library of Medicine (NLM), the medical definition of Tobramycin is:

"A semi-synthetic modification of the aminoglycoside antibiotic, NEOMYCIN, that retains its antimicrobial activity but has less nephrotoxic and neurotoxic side effects. Tobramycin is used in the treatment of serious gram-negative infections, especially Pseudomonas infections in patients with cystic fibrosis."

Tobramycin works by binding to the 30S ribosomal subunit of bacterial cells, inhibiting protein synthesis and ultimately leading to bacterial cell death. It is commonly used to treat severe infections caused by susceptible strains of gram-negative bacteria, including Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Serratia marcescens, and Enterobacter species.

Tobramycin is available in various formulations, such as injectable solutions, ophthalmic ointments, and inhaled powder for nebulization. The choice of formulation depends on the type and location of the infection being treated. As with any antibiotic, it's essential to use Tobramycin appropriately and under medical supervision to minimize the risk of antibiotic resistance and potential side effects.

Pentamidine is an antimicrobial drug that is primarily used to treat and prevent certain types of pneumonia caused by the parasitic organisms Pneumocystis jirovecii (formerly known as P. carinii) and Leishmania donovani. It can also be used for the treatment of some fungal infections caused by Histoplasma capsulatum and Cryptococcus neoformans.

Pentamidine works by interfering with the DNA replication and protein synthesis of these microorganisms, which ultimately leads to their death. It is available as an injection or inhaled powder for medical use. Common side effects of pentamidine include nausea, vomiting, diarrhea, abdominal pain, and changes in blood sugar levels. More serious side effects can include kidney damage, hearing loss, and heart rhythm disturbances.

It is important to note that the use of pentamidine should be under the supervision of a healthcare professional due to its potential for serious side effects and drug interactions.

A nasal spray is a medication delivery device that delivers a liquid formulation directly into the nostrils, where it can then be absorbed through the nasal mucosa and into the bloodstream. Nasal sprays are commonly used to administer medications for local effects in the nose, such as decongestants, corticosteroids, and antihistamines, as well as for systemic absorption of drugs like vaccines and pain relievers.

The medication is typically contained in a small bottle or container that is pressurized or uses a pump mechanism to create a fine mist or spray. This allows the medication to be easily and precisely administered in a controlled dose, reducing the risk of overdose or incorrect dosing. Nasal sprays are generally easy to use, non-invasive, and can provide rapid onset of action for certain medications.

Ultrasonics is a branch of physics and acoustics that deals with the study and application of sound waves with frequencies higher than the upper limit of human hearing, typically 20 kilohertz or above. In the field of medicine, ultrasonics is commonly used in diagnostic and therapeutic applications through the use of medical ultrasound.

Diagnostic medical ultrasound, also known as sonography, uses high-frequency sound waves to produce images of internal organs, tissues, and bodily structures. A transducer probe emits and receives sound waves that bounce off body structures and reflect back to the probe, creating echoes that are then processed into an image. This technology is widely used in various medical specialties, such as obstetrics and gynecology, cardiology, radiology, and vascular medicine, to diagnose a range of conditions and monitor the health of organs and tissues.

Therapeutic ultrasound, on the other hand, uses lower-frequency sound waves to generate heat within body tissues, promoting healing, increasing local blood flow, and reducing pain and inflammation. This modality is often used in physical therapy and rehabilitation settings to treat soft tissue injuries, joint pain, and musculoskeletal disorders.

In summary, ultrasonics in medicine refers to the use of high-frequency sound waves for diagnostic and therapeutic purposes, providing valuable information about internal body structures and facilitating healing processes.

Colistin is an antibiotic that belongs to a class of drugs called polymyxins. It is primarily used to treat infections caused by Gram-negative bacteria, including some that are resistant to other antibiotics. Colistin works by disrupting the bacterial cell membrane and causing the bacterium to lose essential components, leading to its death.

Colistin can be administered intravenously or inhaled, depending on the type of infection being treated. It is important to note that colistin has a narrow therapeutic index, meaning that there is a small difference between the effective dose and the toxic dose. Therefore, it must be used with caution and under the close supervision of a healthcare professional.

Common side effects of colistin include kidney damage, nerve damage, and muscle weakness. It may also cause allergic reactions in some people. Colistin should not be used during pregnancy or breastfeeding unless the benefits outweigh the risks.

Procaterol is not a medication that has been approved by the US Food and Drug Administration (FDA) for use in the United States. However, it is a medication that is available in some other countries as a bronchodilator, which is a type of medication that is used to open up the airways in the lungs and make it easier to breathe.

Procaterol belongs to a class of medications called long-acting beta-agonists (LABAs). LABAs work by relaxing the muscles in the airways and increasing the size of the airways, which makes it easier for air to flow in and out of the lungs. Procaterol is often used to prevent symptoms of chronic obstructive pulmonary disease (COPD), such as shortness of breath and coughing.

It's important to note that procaterol has been associated with an increased risk of asthma-related deaths, so it should only be used under the close supervision of a healthcare professional and should not be used in people with asthma who are not also using a corticosteroid inhaler.

Aerosol propellants are substances used to expel aerosolized particles from a container. They are typically gases that are stored under pressure in a container and, when the container is opened or activated, the gas expands and forces the contents out through a small opening. The most commonly used aerosol propellants are hydrocarbons such as butane and propane, although fluorinated hydrocarbons such as difluoroethane and tetrafluoroethane are also used. Aerosol propellants can be found in various products including medical inhalers, cosmetics, and food products. It is important to handle aerosol propellants with care, as they can be flammable or harmful if inhaled or ingested.

Obstructive lung disease is a category of respiratory diseases characterized by airflow limitation that causes difficulty in completely emptying the alveoli (tiny air sacs) of the lungs during exhaling. This results in the trapping of stale air and prevents fresh air from entering the alveoli, leading to various symptoms such as coughing, wheezing, shortness of breath, and decreased exercise tolerance.

The most common obstructive lung diseases include:

1. Chronic Obstructive Pulmonary Disease (COPD): A progressive disease that includes chronic bronchitis and emphysema, often caused by smoking or exposure to harmful pollutants.
2. Asthma: A chronic inflammatory disorder of the airways characterized by variable airflow obstruction, bronchial hyperresponsiveness, and an underlying inflammation. Symptoms can be triggered by various factors such as allergens, irritants, or physical activity.
3. Bronchiectasis: A condition in which the airways become abnormally widened, scarred, and thickened due to chronic inflammation or infection, leading to mucus buildup and impaired clearance.
4. Cystic Fibrosis: An inherited genetic disorder that affects the exocrine glands, resulting in thick and sticky mucus production in various organs, including the lungs. This can lead to chronic lung infections, inflammation, and airway obstruction.
5. Alpha-1 Antitrypsin Deficiency: A genetic condition characterized by low levels of alpha-1 antitrypsin protein, which leads to uncontrolled protease enzyme activity that damages the lung tissue, causing emphysema-like symptoms.

Treatment for obstructive lung diseases typically involves bronchodilators (to relax and widen the airways), corticosteroids (to reduce inflammation), and lifestyle modifications such as smoking cessation and pulmonary rehabilitation programs. In severe cases, oxygen therapy or even lung transplantation may be considered.

Budesonide is a corticosteroid medication that is used to reduce inflammation in the body. It works by mimicking the effects of hormones produced naturally by the adrenal glands, which help regulate the immune system and suppress inflammatory responses. Budesonide is available as an inhaler, nasal spray, or oral tablet, and is used to treat a variety of conditions, including asthma, chronic obstructive pulmonary disease (COPD), rhinitis, and Crohn's disease.

When budesonide is inhaled or taken orally, it is absorbed into the bloodstream and travels throughout the body, where it can reduce inflammation in various tissues and organs. In the lungs, for example, budesonide can help prevent asthma attacks by reducing inflammation in the airways, making it easier to breathe.

Like other corticosteroid medications, budesonide can have side effects, particularly if used at high doses or for long periods of time. These may include thrush (a fungal infection in the mouth), hoarseness, sore throat, cough, headache, and easy bruising or skin thinning. Long-term use of corticosteroids can also lead to more serious side effects, such as adrenal suppression, osteoporosis, and increased risk of infections.

It is important to follow the dosage instructions provided by your healthcare provider when taking budesonide or any other medication, and to report any unusual symptoms or side effects promptly.

Respiratory system agents are substances that affect the respiratory system, which includes the nose, throat (pharynx), voice box (larynx), windpipe (trachea), bronchi, and lungs. These agents can be classified into different categories based on their effects:

1. Respiratory Stimulants: Agents that increase respiratory rate or depth by acting on the respiratory center in the brainstem.
2. Respiratory Depressants: Agents that decrease respiratory rate or depth, often as a side effect of their sedative or analgesic effects. Examples include opioids, benzodiazepines, and barbiturates.
3. Bronchodilators: Agents that widen the airways (bronchioles) in the lungs by relaxing the smooth muscle around them. They are used to treat asthma, chronic obstructive pulmonary disease (COPD), and other respiratory conditions. Examples include albuterol, ipratropium, and theophylline.
4. Anti-inflammatory Agents: Agents that reduce inflammation in the airways, which can help relieve symptoms of asthma, COPD, and other respiratory conditions. Examples include corticosteroids, leukotriene modifiers, and mast cell stabilizers.
5. Antitussives: Agents that suppress coughing, often by numbing the throat or acting on the cough center in the brainstem. Examples include dextromethorphan and codeine.
6. Expectorants: Agents that help thin and loosen mucus in the airways, making it easier to cough up and clear. Examples include guaifenesin and iodinated glycerol.
7. Decongestants: Agents that narrow blood vessels in the nose and throat, which can help relieve nasal congestion and sinus pressure. Examples include pseudoephedrine and phenylephrine.
8. Antimicrobial Agents: Agents that kill or inhibit the growth of microorganisms such as bacteria, viruses, and fungi that can cause respiratory infections. Examples include antibiotics, antiviral drugs, and antifungal agents.

Disinfection is the process of eliminating or reducing harmful microorganisms from inanimate objects and surfaces through the use of chemicals, heat, or other methods. The goal of disinfection is to reduce the number of pathogens to a level that is considered safe for human health. Disinfection is an important step in preventing the spread of infectious diseases in healthcare settings, food processing facilities, and other environments where there is a risk of infection transmission.

It's important to note that disinfection is not the same as sterilization, which is the complete elimination of all microorganisms, including spores. Disinfection is generally less effective than sterilization but is often sufficient for most non-critical surfaces and objects. The choice between disinfection and sterilization depends on the level of risk associated with the item or surface being treated and the intended use of that item or surface.

Sodium fluoride is an inorganic compound with the chemical formula NaF. Medically, it is commonly used as a dental treatment to prevent tooth decay, as it is absorbed into the structure of teeth and helps to harden the enamel, making it more resistant to acid attacks from bacteria. It can also reduce the ability of bacteria to produce acid. Sodium fluoride is often found in toothpastes, mouth rinses, and various dental treatments. However, excessive consumption can lead to dental fluorosis and skeletal fluorosis, which cause changes in bone structure and might negatively affect health.

Forced Expiratory Volume (FEV) is a medical term used to describe the volume of air that can be forcefully exhaled from the lungs in one second. It is often measured during pulmonary function testing to assess lung function and diagnose conditions such as chronic obstructive pulmonary disease (COPD) or asthma.

FEV is typically expressed as a percentage of the Forced Vital Capacity (FVC), which is the total volume of air that can be exhaled from the lungs after taking a deep breath in. The ratio of FEV to FVC is used to determine whether there is obstruction in the airways, with a lower ratio indicating more severe obstruction.

There are different types of FEV measurements, including FEV1 (the volume of air exhaled in one second), FEV25-75 (the average volume of air exhaled during the middle 50% of the FVC maneuver), and FEV0.5 (the volume of air exhaled in half a second). These measurements can provide additional information about lung function and help guide treatment decisions.

Drug incompatibility refers to a situation where two or more drugs cannot be mixed, combined, or administered together because they will interact in a way that reduces their effectiveness, causes unintended side effects, or even results in harm to the patient. This can occur due to chemical reactions between the drugs, physical interactions (such as precipitation), or pharmacological interactions (such as one drug inhibiting the metabolism of another).

Drug incompatibilities can be identified through various methods, including laboratory testing, literature review, and clinical experience. Healthcare professionals must be aware of potential drug incompatibilities and take steps to avoid them when prescribing or administering medications to patients. This may involve using different administration routes, changing the timing of medication administration, or selecting alternative drugs that are compatible with each other.

A manikin is commonly referred to as a full-size model of the human body used for training in various medical and healthcare fields. Medical manikins are often made from materials that simulate human skin and tissues, allowing for realistic practice in procedures such as physical examinations, resuscitation, and surgical techniques.

These manikins can be highly advanced, with built-in mechanisms to simulate physiological responses, such as breathing, heartbeats, and pupil dilation. They may also have interchangeable parts, allowing for the simulation of various medical conditions and scenarios. Medical manikins are essential tools in healthcare education, enabling learners to develop their skills and confidence in a controlled, safe environment before working with real patients.

A lung is a pair of spongy, elastic organs in the chest that work together to enable breathing. They are responsible for taking in oxygen and expelling carbon dioxide through the process of respiration. The left lung has two lobes, while the right lung has three lobes. The lungs are protected by the ribcage and are covered by a double-layered membrane called the pleura. The trachea divides into two bronchi, which further divide into smaller bronchioles, leading to millions of tiny air sacs called alveoli, where the exchange of gases occurs.

Dry powder inhalers (DPIs) are medical devices used to administer medication in the form of a dry powder to the lungs. They are commonly used for treating respiratory conditions such as asthma and chronic obstructive pulmonary disease (COPD).

To use a DPI, the patient places a pre-measured dose of medication into the device and then inhales deeply through the mouthpiece. The force of the inhalation causes the powder to become airborne and disperse into small particles that can be easily inhaled into the lungs.

DPIs offer several advantages over other types of inhalers, such as metered-dose inhalers (MDIs). For example, DPIs do not require the use of a propellant to deliver the medication, which can make them more environmentally friendly and cost-effective. Additionally, because the medication is in powder form, it is less likely to deposit in the mouth and throat, reducing the risk of oral thrush and other side effects.

However, DPIs can be more difficult to use than MDIs, as they require a strong and sustained inhalation to properly disperse the medication. Patients may need to practice using their DPI regularly to ensure that they are able to use it effectively.

Look up vaporizer in Wiktionary, the free dictionary. Anesthetic vaporizer Aromatherapy Chasing the dragon Eagle Bill Nebulizer ... A vaporizer or vaporiser, colloquially known as a vape, is a device used to vaporize substances for inhalation. Plant ... Vaporizer with water-cooling A conduction-style vaporizer A passive-convection "vaporization pipe" with flame filter A man ... Vaporizers are sometimes used by chefs as a method of applying controlled heat to herbs and spices to release flavors that are ...
Instead, the electronic cigarettes now use an electric vaporizer, either in direct contact with the absorbent material in the " ... The most commonly used nebulizers are jet nebulizers, which are also called "atomizers". Jet nebulizers are connected by tubing ... Available VMT nebulizers include: Pari eFlow, Respironics i-Neb, Beurer Nebulizer IH50, and Aerogen Aeroneb. As the price of ... In medicine, a nebulizer (American English) or nebuliser (British English) is a drug delivery device used to administer ...
Carburetor Nebulizer Ultrasonic nozzle This disambiguation page lists articles associated with the title Vaporizer. If an ... Look up vaporiser or vaporizer in Wiktionary, the free dictionary. Vaporizer or vaporiser may refer to: Anesthetic vaporizer, a ... "personal vaporizer") Humidifier, a household appliance that increases humidity Vaporizer (inhalation device), a device used to ... extract for inhalation the active ingredients of chemicals or plant materials Vaporizer (internal combustion engine), a device ...
... nebulizers and vaporizers MeSH E07.858.442 - orthopedic equipment MeSH E07.858.442.050 - artificial limbs MeSH E07.858.442.250 ...
... "vaporizer", implying that it would heat the liquid until it entered a gaseous state, but is in fact a nebulizer, a machine that ... which refer to a couple of mechanisms used by the nebulizer drug delivery device for inhalation. Although the AWOL machine is ... Mixture of carbon dioxide and oxygen Nebulizer - Drug delivery device Vodka eyeballing Glatter, Robert (June 21, 2013). "The ...
Aerosolized medication Dry-powder Inhalers or metered dose inhalers Nebulizer-administered medication Smoking Vaporizer- ...
A copper vaporizer block is electrically heated with two 100 watt cartridge heaters and a stainless steel capillary allow ... Thus, conceptually this can be thought of as a pneumatic process where the expanding solvent vapor is used as a nebulizer gas. ... This combination allows the third representation of vaporizer to handle fluctuations in flow rate coming of the LC column. The ... The capillary and the vaporizer block are soldered together to ensure stable thermal contact. The resultant supersonic jet then ...
Ultrasonic wave nebulizers trap the mineral deposits over time, even if filters are used, and require cleaning with vinegar or ... Vaporizers may be healthier than cool mist types of humidifiers because steam is less likely to convey mineral impurities or ... It is easy to remove the buildup from the nebulizer in humidifiers with removable base parts. Other models must be screwed. ... Wick humidifiers trap the mineral deposits in the wick; vaporizer types tend to collect minerals on or around the heating ...
The sample solution is aspirated by a pneumatic analytical nebulizer, transformed into an aerosol, which is introduced into a ... While flame and electrothermal vaporizers are the most common atomization techniques, several other atomization methods are ...
This method involves the liquid sample from the LC flowing through an electrically heated vaporizer that simply heats the ... produced by a separate nebulizer. This method requires no sample preparation in that the electrospray of solvent extracts the ...
acoustics, concerts, health, nebulizer, Recording, roberta flack, smartphone, steamer, sw2, vaporizer ... Steamer, Vaporizer or Nebulizer - Whats the Diff??. Singers been raving about the healing effects of steam on the voice for ... 0 replies on "Singers Distancing with Smartphone , Steamer, Vaporizer or Nebulizer , Creative Concerts" ... decades, but now everyone seems to be talking about Nebulizers. Before you rush and buy a nebulizer, read this ENT doctors ...
Nebulizers and Vaporizers * Practice Patterns, Physicians / statistics & numerical data* * Respiration, Artificial* * Steroids ... thought that ultrasonic nebulizers outperform jet nebulizers, while 69 % had no opinion concerning mesh nebulizers. ... Nebulization relied on jet, ultrasonic and vibrating mesh nebulizers (55 %, 44 % and 14 % of respondents, respectively). ... exclusively used nebulizers and 55 % also used metered dose inhalers. ...
Nebulizers and Vaporizers* * Patient Compliance * Patient Education as Topic / methods * Pulmonary Disease, Chronic Obstructive ... Maximum errors observed in subjects using MDI (94.3%), followed by DPI (82.3%), MDI with Spacer (78%) while Nebulizer users (70 ...
... vaporizer temperature, 350°C; drying gas flow, 12 L/min (N2); nebulizer pressure, 35 psi. ...
Look up vaporizer in Wiktionary, the free dictionary. Anesthetic vaporizer Aromatherapy Chasing the dragon Eagle Bill Nebulizer ... A vaporizer or vaporiser, colloquially known as a vape, is a device used to vaporize substances for inhalation. Plant ... Vaporizer with water-cooling A conduction-style vaporizer A passive-convection "vaporization pipe" with flame filter A man ... Vaporizers are sometimes used by chefs as a method of applying controlled heat to herbs and spices to release flavors that are ...
Nebulizer, Small Volume Set, Full Kit, Tee Connect, 7 ft. Tube and Reservoir Tubing, Non-SterileReliamed ... Humidifiers, vaporizers and heat moisture exchangers for tracheostomy patients. If you are looking for high grade medical ... Nebulizer Compressors and replacement masks for adults and children. CPAP masks, pillows and filters. Oxygen regulators and ...
Portable Medical Nebulizer Handheld Ultrasonic Atomize Inhalator Adult Child Vaporizer Silent Steam Nasal Humidifier Inhaler ... Ultrasonic Nebulizer Portable Mini Handheld Inhaler Medical Ultrsound Electric Mesh Atomizer For Child ... Mesh Nebulizador Inhale Medical Portable Asthma Inhaler Nebulizer Machine Three-gear Adjustment For Baby Adult ... Portable Electronic Inhaler Reachmed Nebulizer Machine Medical Handheld Ultrasonic Atomizer With USB Charge Rechargeable ...
Nebulizers and Vaporizers, Smoking/blood, South Africa, Tobacco/metabolism, Water, Young Adult ...
A) USING A VAPORIZER: Mix 40 to 80 drops of Ox-E-Drops Concentrate with the one (1) gallon of water in a vaporizer. NOTE: ... B) USING A NEBULIZER: Mix 7-8 DROPS of Ox-E-Drops Concentrate with each OUNCE of water in the nebulizer reservoir (A reservoir ... Option A): Place the vaporizer on the night stand next to your side the bed and breathe the vapors overnight. ...
Handheld Medical Nebulizer Machine, Digital Blood Pressure Monitor and ECG Monitor System offered by Metro Surgical & ... Offering you a complete choice of products which include ozocheck premia nebulizer medical machine, handheld medical nebulizer ... Packaging Details: Premium Piston Compressor based Nebulizer Wear Resistant Piston Ring In built compartment for hygienic ... our company is involved in offering a superb quality range of Compressor Nebulizer. ...
Cotify Portable Mini Vaporizers Machine Suitable for Traveling Type: Ultrasonic. Home or Portable: Portable ...
COVID-19 , SARS-CoV-2 , Aerosols , Animals , Nebulizers and Vaporizers , Particle Size ... COVID-19 , Pandemics , Humans , Nebulizers and Vaporizers , Particle Size , SARS-CoV-2 ... Nebulizers and Vaporizers , Peptidyl-Dipeptidase A/metabolism , Renin/metabolism , Renin-Angiotensin System , SARS-CoV-2 ... Nebulizers and Vaporizers , Retrospective Studies , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Severity of Illness ...
If you cannot obtain a medical nebulizer in time, you could also use a diffuser, vaporizer, mister, or cool mist humidifier, or ... I have used both ultrasonic and compressor nebulizers. Pretty much any nebulizer should work. ... Also, I have a friend in L.A. that I sent a nebulizer to recently. He told me he had been feeling something in his lungs for a ... My mom had sent me some colloidal copper, 10ppm some time ago, and advised me to use it in a nebulizer for any kind of lung ...
Nebulizers and Vaporizers Medicine & Life Sciences 8% * Medication Adherence Medicine & Life Sciences 7% ...
BPM-N07 Medical Vaporizer Household Compressed Atomizer Nebulizer. BPM-V204 ICU Ventilator Machine ...
Nebulizers. *Vaporizers. *Wheelchairs. *Walking frames. Please contact the centre on 5570 1304 to arrange equipment needs. ...
Nebulizers. Nebulizers are relatively new in the world of essential oils. Unlike mist diffusers and vaporizers, they dont heat ... Mist diffusers heat water to create a mist containing the oil, vaporizers heat the oil itself to vaporize it, and nebulizers ... Vaporizers. Vaporizers, on the other hand, are ideal for small enclosings. This is because they turn essential oils into vapors ... As such, vaporizers provide a strong aroma to the small room in which they are placed. The good news is that two or three drops ...
A nebulizer differs significantly from a cool mist vaporizer or humidifier in that when it runs, it micro-atomizes any liquid ( ... "I have put a few ounces in my humidifier/vaporizer at night to sanitize the air and breathe colloidal silver into my lungs to ... If I feel Bronchitis coming on, I will also use the humidifier/vaporizer during the day and increase my internal dose up to 2 ... First, if you have a nasty cold or flu thats really got you down, you can put some colloidal silver into a cool mist vaporizer ...
Medpro Nebulizer Manufacturers, Factory, Suppliers From China, We warmly welcome merchants from home and abroad to call us and ... 2000 puffs CBD Disposable vaporizer e shisha hookah disposable vape pen devices ... Medpro Nebulizer. Medpro Nebulizer - Manufacturers, Factory, Suppliers from China. Our well-equipped facilities and exceptional ... AUPO 90% dual flow medical grade 10l portable oxygen concentrator with nebulizer. ...
Nebulizers & Vaporizers (5). *Oximeters & Pedometers (5). *Oxygen Concentrators & Cans (5). *Supports & Braces (35) *Ankle & ...
Nebulizers and Vaporizers; Patient Acceptance of Health Care / statistics & numerical data; Patient Education as Topic / ... Estimating the impact of self-management education, influenza vaccines, nebulizers, and spacers on health utilization and ... Estimating the Impact of Self-Management Education, Influenza Vaccines, Nebulizers, and Spacers on Healthcare Utilization and ...
Nebulizers & Vaporizers (5). *Oximeters & Pedometers (5). *Oxygen Concentrators & Cans (5). *Supports & Braces (35) *Ankle & ...
A nebulizer is a machine that aerosolizes medicine into a fine mist; it is like spraying medicine. You hold a face mask to your ... A vaporizer is not the same as a nebulizer. A vaporizer is typically used for sinus or upper respiratory issues rather than ... A nebulizer can be purchased from human medical supply stores, online, or from eBay. There are several good nebulizer brands, ... When the pieces are completely dry, reassemble the nebulizer.. What do I do if I have Cleaned my Nebulizer and the Tubing is ...
Humans , Nebulizers and Vaporizers , User-Centered Design , Metered Dose Inhalers , Performance-Enhancing Substances ... Asthma , Dry Powder Inhalers , Inhalation , Nebulizers and Vaporizers , Nigeria , Organization and Administration , Patients ...
Nebulizers and Vaporizers 64% * Airway exposure to urban aerosolized PM2.5 particles induces neuroinflammation and endothelin- ...
Nebulizers and Vaporizers 100% * Asthma 66% * Equipment and Supplies 50% * Child 36% ...
  • Keeping the diverse requirements of the customers in mind, our company is involved in offering a superb quality range of Compressor Nebulizer. (
  • Of the respondents, who represented 611 departments in 70 countries, 99 % reported using aerosol therapy during mechanical ventilation (including non-invasive), 43 % exclusively used nebulizers and 55 % also used metered dose inhalers. (
  • A high-output ultrasonic nebulizer with valve box and tubing were used to deliver 4.5% saline in doubling time periods from 0.5 s to 4 min. (
  • A vaporizer or vaporiser, colloquially known as a vape, is a device used to vaporize substances for inhalation. (
  • These medications use a nebulizer or other type of aerosol generator when given to patients. (
  • A variety of drugs can be given using a nebulizer: bronchodilators like albuterol (open up the bronchioles allowing debris to more easily be removed from the lungs), steroids, water-soluble antibiotics, saline, N-acetylcysteine, etc. (
  • gt;This system is a Vaporizer that is very effective at aromatizing the immediate environments without humidifying the air, and tends to spread aroma over a larger area than the Aroma Therapy Spa Diffuser - Vaporizer. (
  • Nebulization relied on jet, ultrasonic and vibrating mesh nebulizers (55 %, 44 % and 14 % of respondents, respectively). (
  • The tubing, T-piece (a t-shaped tube that attaches the machine to the pet and to an exit) and medicine cup are called a nebulizer kit. (
  • Singers been raving about the healing effects of steam on the voice for decades, but now everyone seems to be talking about Nebulizers. (
  • Providing you the best range of philips bipap device and vaporiser steam machine with effective & timely delivery. (
  • A majority of respondents (87 %) thought that ultrasonic nebulizers outperform jet nebulizers, while 69 % had no opinion concerning mesh nebulizers. (
  • Offering you a complete choice of products which include ozocheck premia nebulizer medical machine, handheld medical nebulizer machine, digital blood pressure monitor, ecg monitor system, handheld ecg device and compressor nebulizer. (
  • Finding your suitable nebulizer machine battery operated is not easy. (
  • In this article, we make a short list of the best nebulizer machine battery operated including detail information and customer reviews. (
  • You might want to practice placing the mask against the pet's face before using the nebulizer. (
  • Mix 40 to 80 drops of Ox-E-Drops Concentrate with the one (1) gallon of water in a vaporizer. (
  • Mix 7-8 DROPS of Ox-E-Drops Concentrate with each OUNCE of water in the nebulizer reservoir (A reservoir usually hold 2 ounces). (
  • An electronic cigarette is a handheld battery-powered vaporizer that simulates smoking by providing some of the behavioral aspects of smoking, including the hand-to-mouth action of smoking, but without combusting tobacco. (
  • This makes CBD active+ highly suitable for use in a vaporizer, nebulizer or inhaler. (
  • Use a key-filler or other closed-system device when filling anesthesia vaporizers. (
  • What Medications can be Given with a Nebulizer? (
  • You can add inhalants to the vaporizers like Vicks and other medicines. (
  • When the pieces are completely dry, put the nebulizer back together. (
  • When the pieces are completely dry, reassemble the nebulizer. (
  • A dog receives a nebulizer treatment. (
  • Cannabis concentrate is also commonly used in e-cigarette style vaporizer pens in the form of liquid containers known as cartridges. (
  • A nebulizer can be purchased from human medical supply stores, online, or from eBay. (
  • Unlike mist diffusers and vaporizers, they don't heat the essential oils or use any water in the process. (
  • Mist diffusers heat water to create a mist containing the oil, vaporizers heat the oil itself to vaporize it, and nebulizers atomize the oil. (
  • instead, studies usually focus on the mode of usage of the vaporizers. (