Two-ring crystalline hydrocarbons isolated from coal tar. They are used as intermediates in chemical synthesis, as insect repellents, fungicides, lubricants, preservatives, and, formerly, as topical antiseptics.
Non-heme iron-containing enzymes that incorporate two atoms of OXYGEN into the substrate. They are important in biosynthesis of FLAVONOIDS; GIBBERELLINS; and HYOSCYAMINE; and for degradation of AROMATIC HYDROCARBONS.
Elimination of ENVIRONMENTAL POLLUTANTS; PESTICIDES and other waste using living organisms, usually involving intervention of environmental or sanitation engineers.
Naphthalene derivatives carrying one or more hydroxyl (-OH) groups at any ring position. They are often used in dyes and pigments, as antioxidants for rubber, fats, and oils, as insecticides, in pharmaceuticals, and in numerous other applications.
Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules.
A species of gram-negative, aerobic bacteria isolated from soil and water as well as clinical specimens. Occasionally it is an opportunistic pathogen.
A class of organic compounds which contain an anilino (phenylamino) group linked to a salt or ester of naphthalenesulfonic acid. They are frequently used as fluorescent dyes and sulfhydryl reagents.
A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants.
Imides are organic compounds characterized by the presence of a functional group with the structure R-C(=O)-N-R', where R and R' are organic radicals, often found in pharmaceuticals, dyes, and as intermediates in chemical synthesis.
A by-product of the destructive distillation of coal used as a topical antieczematic. It is an antipruritic and keratoplastic agent used also in the treatment of psoriasis and other skin conditions. Occupational exposure to soots, tars, and certain mineral oils is known to be carcinogenic according to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985) (Merck Index, 11th ed).
A major group of unsaturated cyclic hydrocarbons containing two or more rings. The vast number of compounds of this important group, derived chiefly from petroleum and coal tar, are rather highly reactive and chemically versatile. The name is due to the strong and not unpleasant odor characteristic of most substances of this nature. (From Hawley's Condensed Chemical Dictionary, 12th ed, p96)
Tricyclic ethylene-bridged naphthalene derivatives. They are found in petroleum residues and coal tar and used as dye intermediates, in the manufacture of plastics, and in insecticides and fungicides.
Organic compounds containing carbon and hydrogen in the form of an unsaturated, usually hexagonal ring structure. The compounds can be single ring, or double, triple, or multiple fused rings.
A family of gram-negative aerobic bacteria in the class BETA PROTEOBACTERIA, encompassing the acidovorans rRNA complex. Some species are pathogenic for PLANTS.
Salts and esters of gentisic acid.
Hydrocarbons are organic compounds consisting entirely of hydrogen and carbon atoms, forming the basis of classes such as alkanes, alkenes, alkynes, and aromatic hydrocarbons, which play a vital role in energy production and chemical synthesis.
A genus in the family BURKHOLDERIACEAE, comprised of many species. They are associated with a variety of infections including MENINGITIS; PERITONITIS; and URINARY TRACT INFECTIONS.
Agents that remove, correct, repress, or mask undesirable ODORS. In personal hygiene, deodorants often contain astringent preparations that reduce SWEATING, referred to as ANTIPERSPIRANTS. (From Grant & Hackh's Chemical Dictionary, 5th ed)
Substances which pollute the soil. Use for soil pollutants in general or for which there is no specific heading.
A greasy substance with a smoky odor and burned taste created by high temperature treatment of BEECH and other WOOD; COAL TAR; or resin of the CREOSOTE BUSH. It contains CRESOLS and POLYCYCLIC AROMATIC HYDROCARBONS which are CARCINOGENS. It has been widely used as wood preservative and in PESTICIDES and had former use medicinally in DISINFECTANTS; LAXATIVES; and DERMATOLOGIC AGENTS.
Compounds consisting of two or more fused ring structures.
Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES.
A group of compounds with three aromatic rings joined in linear arrangement.
An enzyme that catalyzes the oxidation of catechol to muconic acid with the use of Fe3+ as a cofactor. This enzyme was formerly characterized as EC 1.13.1.1 and EC 1.99.2.2.
Substances causing insects to turn away from them or reject them as food.
The presence of bacteria, viruses, and fungi in the soil. This term is not restricted to pathogenic organisms.
A widely used industrial solvent.
A carbamate insecticide and parasiticide. It is a potent anticholinesterase agent belonging to the carbamate group of reversible cholinesterase inhibitors. It has a particularly low toxicity from dermal absorption and is used for control of head lice in some countries.
Naphthalene rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
A class of organic compounds that contains a naphthalene moiety linked to a sulfonic acid salt or ester.
A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds.
A group of condensed ring hydrocarbons.
The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
A chlorinated organic herbicide.
'Benzene derivatives' are organic compounds that contain a benzene ring as the core structure, with various functional groups attached to it, and can have diverse chemical properties and uses, including as solvents, intermediates in chemical synthesis, and pharmaceuticals.
The small airways branching off the TERTIARY BRONCHI. Terminal bronchioles lead into several orders of respiratory bronchioles which in turn lead into alveolar ducts and then into PULMONARY ALVEOLI.
A compound obtained from the bark of the white willow and wintergreen leaves. It has bacteriostatic, fungicidal, and keratolytic actions.
A naphthalene derivative with carcinogenic action.
A weight-carrying structure for navigation of the air that is supported either by its own buoyancy or by the dynamic action of the air against its surfaces. (Webster, 1973)
A group of 1,2-benzenediols that contain the general formula R-C6H5O2.
Naturally occurring complex liquid hydrocarbons which, after distillation, yield combustible fuels, petrochemicals, and lubricants.
Air pollutants found in the work area. They are usually produced by the specific nature of the occupation.
Toxic, volatile, flammable liquid hydrocarbon byproduct of coal distillation. It is used as an industrial solvent in paints, varnishes, lacquer thinners, gasoline, etc. Benzene causes central nervous system damage acutely and bone marrow damage chronically and is carcinogenic. It was formerly used as parasiticide.
Chemical compounds which pollute the water of rivers, streams, lakes, the sea, reservoirs, or other bodies of water.
The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
A bacterial genus of the order ACTINOMYCETALES.
Naphthalene derivatives containing the -CH2CCO2H radical at the 1-position, the 2-position, or both. Compounds are used as plant growth regulators to delay sprouting, exert weed control, thin fruit, etc.
Agents that are capable of inserting themselves between the successive bases in DNA, thus kinking, uncoiling or otherwise deforming it and therefore preventing its proper functioning. They are used in the study of DNA.
A species of gram-negative bacteria in the genus PSEUDOMONAS, containing multiple genomovars. It is distinguishable from other pseudomonad species by its ability to use MALTOSE and STARCH as sole carbon and energy sources. It can degrade ENVIRONMENTAL POLLUTANTS and has been used as a model organism to study denitrification.
The exposure to potentially harmful chemical, physical, or biological agents by inhaling them.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
Catalyzes the oxidation of catechol to 2-hydroxymuconate semialdehyde in the carbazole and BENZOATE degradation via HYDROXYLATION pathways. It also catalyzes the conversion of 3-methylcatechol to cis, cis-2-hydroxy-6-oxohept-2,4-dienoate in the TOLUENE and XYLENE degradation pathway. This enzyme was formerly characterized as EC 1.13.1.2.
Measurement of the intensity and quality of fluorescence.
Animals that are generated from breeding two genetically dissimilar strains of the same species.
Substances or energies, for example heat or light, which when introduced into the air, water, or land threaten life or health of individuals or ECOSYSTEMS.
A group of tetraterpenes, with four terpene units joined head-to-tail. Biologically active members of this class are used clinically in the treatment of severe cystic ACNE; PSORIASIS; and other disorders of keratinization.
Indolesulfonic acid used as a dye in renal function testing for the detection of nitrates and chlorates, and in the testing of milk.
A refined petroleum fraction used as a fuel as well as a solvent.
A genus of gram-negative, aerobic, rod-shaped bacteria. Organisms in this genus had originally been classified as members of the PSEUDOMONAS genus but overwhelming biochemical and chemical findings indicated the need to separate them from other Pseudomonas species, and hence, this new genus was created.
One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive.
The monitoring of the level of toxins, chemical pollutants, microbial contaminants, or other harmful substances in the environment (soil, air, and water), workplace, or in the bodies of people and animals present in that environment.
A subclass of enzymes which includes all dehydrogenases acting on carbon-carbon bonds. This enzyme group includes all the enzymes that introduce double bonds into substrates by direct dehydrogenation of carbon-carbon single bonds.
Benzocycloheptenes are organic compounds characterized by a seven-membered carbocyclic ring fused with a benzene ring, forming a bicyclic structure, and can be found as core structures in various natural and synthetic bioactive molecules.
The functional hereditary units of BACTERIA.
A family of diphenylenemethane derivatives.
The presence of bacteria, viruses, and fungi in water. This term is not restricted to pathogenic organisms.
A quinone fungicide used for treatment of seeds and foliage.
**Maleates** are organic compounds that contain a carboxylic acid group and a hydroxyl group attached to adjacent carbon atoms, often used as intermediates in the synthesis of pharmaceuticals and other chemicals, or as drugs themselves, such as maleic acid or its salts.
The exposure to potentially harmful chemical, physical, or biological agents that occurs as a result of one's occupation.
Compounds with 1,2-diphenylethane. They are structurally like reduced STILBENES.
Inorganic or organic compounds that contain divalent iron.
Salts and esters of the 12-carbon saturated monocarboxylic acid--lauric acid.
Biphenyl compounds are organic substances consisting of two phenyl rings connected by a single covalent bond, and can exhibit various properties and uses, including as intermediates in chemical synthesis, components in plastics and dyes, and as additives in fuels.
Derivatives of BENZOIC ACID that contain one or more amino groups attached to the benzene ring structure. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the aminobenzoate structure.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
Organic compounds that contain silicon as an integral part of the molecule.
A genus of gram-negative, aerobic, rod-shaped bacteria characterized by an outer membrane that contains glycosphingolipids but lacks lipopolysaccharide. They have the ability to degrade a broad range of substituted aromatic compounds.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
A genus of gram-negative, straight or slightly curved rods which are motile by polar flagella and which accumulate poly-beta-hydroxybutyrate within the cells.
Oxidoreductases that are specific for ALDEHYDES.
Substances or organisms which pollute the water or bodies of water. Use for water pollutants in general or those for which there is no specific heading.
The generic name for the group of aliphatic hydrocarbons Cn-H2n+2. They are denoted by the suffix -ane. (Grant & Hackh's Chemical Dictionary, 5th ed)
Hydrocarbons with at least one triple bond in the linear portion, of the general formula Cn-H2n-2.
Agents that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags.
A species of nonpathogenic fluorescent bacteria found in feces, sewage, soil, and water, and which liquefy gelatin.
Water containing no significant amounts of salts, such as water from RIVERS and LAKES.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
A group of gram-negative bacteria consisting of rod- and coccus-shaped cells. They are both aerobic (able to grow under an air atmosphere) and microaerophilic (grow better in low concentrations of oxygen) under nitrogen-fixing conditions but, when supplied with a source of fixed nitrogen, they grow as aerobes.
A phase transition from liquid state to gas state, which is affected by Raoult's law. It can be accomplished by fractional distillation.
Organic compounds that have a relatively high VAPOR PRESSURE at room temperature.
A genus of gram-negative, facultatively anaerobic bacteria including species which are often associated with grasses (POACEAE) and which fix nitrogen as well as species which anaerobically degrade toluene and other mono-aromatic hydrocarbons.
A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism.
Contamination of bodies of water (such as LAKES; RIVERS; SEAS; and GROUNDWATER.)
A residue of coal, left after dry (destructive) distillation, used as a fuel.
Changing an open-chain hydrocarbon to a closed ring. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
The administration of drugs by the respiratory route. It includes insufflation into the respiratory tract.
Uptake of substances through the SKIN.
Partially saturated 1,2,3,4-tetrahydronaphthalene compounds.
A group of PROTEOBACTERIA represented by morphologically diverse, anaerobic sulfidogens. Some members of this group are considered bacterial predators, having bacteriolytic properties.
A colorless, toxic liquid with a strong aromatic odor. It is used to make rubbers, polymers and copolymers, and polystyrene plastics.
The rate dynamics in chemical or physical systems.
A group of gram-negative, anaerobic bacteria that is able to oxidize acetate completely to carbon dioxide using elemental sulfur as the electron acceptor.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
Iron-containing proteins that transfer electrons, usually at a low potential, to flavoproteins; the iron is not present as in heme. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
An enzyme that catalyzes the oxidation and reduction of FERREDOXIN or ADRENODOXIN in the presence of NADP. EC 1.18.1.2 was formerly listed as EC 1.6.7.1 and EC 1.6.99.4.
Inorganic salts of sulfuric acid.
Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation.
The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
The vapor state of matter; nonelastic fluids in which the molecules are in free movement and their mean positions far apart. Gases tend to expand indefinitely, to diffuse and mix readily with other gases, to have definite relations of volume, temperature, and pressure, and to condense or liquefy at low temperatures or under sufficient pressure. (Grant & Hackh's Chemical Dictionary, 5th ed)
That branch of medicine dealing with the studies and effects of flight through the atmosphere or in space upon the human body and with the prevention or cure of physiological or psychological malfunctions arising from these effects. (from NASA Thesaurus)
Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.
A mass of organic or inorganic solid fragmented material, or the solid fragment itself, that comes from the weathering of rock and is carried by, suspended in, or dropped by air, water, or ice. It refers also to a mass that is accumulated by any other natural agent and that forms in layers on the earth's surface, such as sand, gravel, silt, mud, fill, or loess. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1689)
A family of fused-ring hydrocarbons isolated from coal tar that act as intermediates in various chemical reactions and are used in the production of coumarone-indene resins.

Activation of stress-activated protein kinase/c-Jun NH2-terminal kinase and p38 kinase in calphostin C-induced apoptosis requires caspase-3-like proteases but is dispensable for cell death. (1/2851)

Apoptosis was induced in human glioma cell lines by exposure to 100 nM calphostin C, a specific inhibitor of protein kinase C. Calphostin C-induced apoptosis was associated with synchronous down-regulation of Bcl-2 and Bcl-xL as well as activation of caspase-3 but not caspase-1. The exposure to calphostin C led to activation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) and p38 kinase and concurrent inhibition of extracellular signal-regulated kinase (ERK). Upstream of ERK, Shc was shown to be activated, but its downstream Raf1 and ERK were inhibited. The pretreatment with acetyl-Tyr-Val-Ala-Asp-aldehyde, a relatively selective inhibitor of caspase-3, or benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD.fmk), a broad spectrum caspase inhibitor, similarly inhibited calphostin C-induced activation of SAPK/JNK and p38 kinase as well as apoptotic nuclear damages (chromatin condensation and DNA fragmentation) and cell shrinkage, suggesting that caspase-3 functions upstream of SAPK/JNK and p38 kinase, but did not block calphostin C-induced surface blebbing and cell death. On the other hand, the inhibition of SAPK/JNK by transfection of dominant negative SAPK/JNK and that of p38 kinase by SB203580 induced similar effects on the calphostin C-induced apoptotic phenotypes and cell death as did z-VAD.fmk and acetyl-Tyr-Val-Ala-Asp-aldehyde, but the calphostin C-induced PARP cleavage was not changed, suggesting that SAPK/JNK and p38 kinase are involved in the DNA fragmentation pathway downstream of caspase-3. The present findings suggest, therefore, that the activation of SAPK/JNK and p38 kinase is dispensable for calphostin C-mediated and z-VAD.fmk-resistant cell death.  (+info)

Development of muscarinic analgesics derived from epibatidine: role of the M4 receptor subtype. (2/2851)

Epibatidine, a neurotoxin isolated from the skin of Epipedobates tricolor, is an efficacious antinociceptive agent with a potency 200 times that of morphine. The toxicity of epibatidine, because of its nonspecificity for both peripheral and central nicotinic receptors, precludes its development as an analgesic. During the synthesis of epibatidine analogs we developed potent antinociceptive agents, typified by CMI-936 and CMI-1145, whose antinociception, unlike that of epibatidine, is mediated via muscarinic receptors. Subsequently, we used specific muscarinic toxins and antagonists to delineate the muscarinic receptor subtype involved in the antinociception evoked by these agents. Thus, the antinociception produced by CMI-936 and CMI-1145 is inhibited substantially by 1) intrathecal injection of the specific muscarinic M4 toxin, muscarinic toxin-3; 2) intrathecally administered pertussis toxin, which inhibits the G proteins coupled to M2 and M4 receptors; and 3) s.c. injection of the M2/M4 muscarinic antagonist himbacine. These results demonstrate that the antinociception elicited by these epibatidine analogs is mediated via muscarinic M4 receptors located in the spinal cord. Compounds that specifically target the M4 receptor therefore may be of substantial value as alternative analgesics to the opiates.  (+info)

Cannabinoid suppression of noxious heat-evoked activity in wide dynamic range neurons in the lumbar dorsal horn of the rat. (3/2851)

The effects of cannabinoid agonists on noxious heat-evoked firing of 62 spinal wide dynamic range (WDR) neurons were examined in urethan-anesthetized rats (1 cell/animal). Noxious thermal stimulation was applied with a Peltier device to the receptive fields in the ipsilateral hindpaw of isolated WDR neurons. To assess the site of action, cannabinoids were administered systemically in intact and spinally transected rats and intraventricularly. Both the aminoalkylindole cannabinoid WIN55,212-2 (125 microg/kg iv) and the bicyclic cannabinoid CP55,940 (125 microg/kg iv) suppressed noxious heat-evoked activity. Responses evoked by mild pressure in nonnociceptive neurons were not altered by CP55,940 (125 microg/kg iv), consistent with previous observations with another cannabinoid agonist, WIN55,212-2. The cannabinoid induced-suppression of noxious heat-evoked activity was blocked by pretreatment with SR141716A (1 mg/kg iv), a competitive antagonist for central cannabinoid CB1 receptors. By contrast, intravenous administration of either vehicle or the receptor-inactive enantiomer WIN55,212-3 (125 microg/kg) failed to alter noxious heat-evoked activity. The suppression of noxious heat-evoked activity induced by WIN55,212-2 in the lumbar dorsal horn of intact animals was markedly attenuated in spinal rats. Moreover, intraventricular administration of WIN55,212-2 suppressed noxious heat-evoked activity in spinal WDR neurons. By contrast, both vehicle and enantiomer were inactive. These findings suggest that cannabinoids selectively modulate the activity of nociceptive neurons in the spinal dorsal horn by actions at CB1 receptors. This modulation represents a suppression of pain neurotransmission because the inhibitory effects are selective for pain-sensitive neurons and are observed with different modalities of noxious stimulation. The data also provide converging lines of evidence for a role for descending antinociceptive mechanisms in cannabinoid modulation of spinal nociceptive processing.  (+info)

Comparison of local anesthetic activities between optical isomers of cis-1-benzoyloxy-2-dimethylamino-1,2,3,4-tetrahydronaphthalene. (4/2851)

The optical isomers of cis-1-benzoyloxy-2-dimethylamino-1,2,3,4-tetrahydronaphthalene (YAU-17) were compared for their local anesthetic activity, acute toxicity, spasmolytic activity, and partition coefficient between chloroform and phosphate buffer. 1-YAU-17 was more active than d-YAU-17 in blocking the conduction of action potentials in isolated frog sciatic nerves. The difference in local anesthetic activities between the optical isomers was further substantiated by in vivo tests for corneal anesthesia, intracutaneous anesthesia and sciatic nerve block in quinea-pigs. Similarly, the i.v. injection to mice revealed a higher toxicity for 1-YAU-17 as compared to its d-isomer. In these tests, the potency ratios of the enantiomers ranged from 2 to 4, and the racemate had an intermediate potency. On the contrary, no difference among the compounds was found in their liposolubility, partition coefficient, and spasmolytic activity examined with isolated guinea-pig ileum. These results indicate that the steric factors play an important role in the production of different local anesthetic activities between the optical isomers of YAU-17, and their local anesthetic potency tends to be correlated to their intravenous acute toxicity but not to their spasmolytic activity.  (+info)

Contrasting effects of a nonionic surfactant on the biotransformation of polycyclic aromatic hydrocarbons to cis-dihydrodiols by soil bacteria. (5/2851)

The biotransformation of the polycyclic aromatic hydrocarbons (PAHs) naphthalene and phenanthrene was investigated by using two dioxygenase-expressing bacteria, Pseudomonas sp. strain 9816/11 and Sphingomonas yanoikuyae B8/36, under conditions which facilitate mass-transfer limited substrate oxidation. Both of these strains are mutants that accumulate cis-dihydrodiol metabolites under the reaction conditions used. The effects of the nonpolar solvent 2,2,4, 4,6,8,8-heptamethylnonane (HMN) and the nonionic surfactant Triton X-100 on the rate of accumulation of these metabolites were determined. HMN increased the rate of accumulation of metabolites for both microorganisms, with both substrates. The enhancement effect was most noticeable with phenanthrene, which has a lower aqueous solubility than naphthalene. Triton X-100 increased the rate of oxidation of the PAHs with strain 9816/11 with the effect being most noticeable when phenanthrene was used as a substrate. However, the surfactant inhibited the biotransformation of both naphthalene and phenanthrene with strain B8/36 under the same conditions. The observation that a nonionic surfactant could have such contrasting effects on PAH oxidation by different bacteria, which are known to be important for the degradation of these compounds in the environment, may explain why previous research on the application of the surfactants to PAH bioremediation has yielded inconclusive results. The surfactant inhibited growth of the wild-type strain S. yanoikuyae B1 on aromatic compounds but did not inhibit B8/36 dioxygenase enzyme activity in vitro.  (+info)

Role of iNOS in the vasodilator responses induced by L-arginine in the middle cerebral artery from normotensive and hypertensive rats. (6/2851)

1. The substrate of nitric oxide synthase (NOS), L-arginine (L-Arg, 0.01 microM - 1 mM), induced endothelium-independent relaxations in segments of middle cerebral arteries (MCAs) from normotensive Wistar-Kyoto (WKY) and hypertensive rats (SHR) precontracted with prostaglandin F2alpha (PGF2alpha). These relaxations were higher in SHR than WKY arteries. 2. L-N(G)-nitroarginine methyl ester (L-NAME) and 2-amine-5,6-dihydro-6-methyl-4H-1,3-tiazine (AMT), unspecific and inducible NOS (iNOS) inhibitors, respectively, reduced those relaxations, specially in SHR. 3. Four- and seven-hours incubation with dexamethasone reduced the relaxations in MCAs from WKY and SHR, respectively. 4. Polymyxin B and calphostin C, protein kinase C (PKC) inhibitors, reduced the L-Arg-induced relaxation. 5. Lipopolysaccharide (LPS, 7 h incubation) unaltered and inhibited these relaxations in WKY and SHR segments, respectively. LPS antagonized the effect polymyxin B in WKY and potentiated L-Arg-induced relaxations in SHR in the presence of polymyxin B. 6. The contraction induced by PGF2alpha was greater in SHR than WKY arteries. This contraction was potentiated by dexamethasone and polymyxin B although the effect of polymyxin B was higher in SHR segments. LPS reduced that contraction and antagonized dexamethasone- and polymyxin B-induced potentiation, these effects being greater in arteries from SHR. 7. These results suggest that in MCAs: (1) the induction of iNOS participates in the L-Arg relaxation and modulates the contraction to PGF2alpha; (2) that induction is partially mediated by a PKC-dependent mechanism; and (3) the involvement of iNOS in such responses is greater in the hypertensive strain.  (+info)

Protein kinase C-activated oxidant generation in endothelial cells signals intercellular adhesion molecule-1 gene transcription. (7/2851)

We tested the hypothesis that activation of protein kinase C (PKC) and generation of oxidants are critical sequential signals mediating tumor necrosis factor (TNF)-alpha-induced activation of nuclear factor-kappaB (NF-kappaB) and transcription of the intercellular adhesion molecule (ICAM)-1 gene. Stimulation of human pulmonary artery endothelial (HPAE) cells with TNF-alpha (100 U/ml) induced the activation of PKC and, subsequently, generation of oxidants. Pretreatment with calphostin C, a specific PKC inhibitor, prevented oxidant generation after TNF-alpha stimulation, indicating that PKC activation mediated the production of oxidants in HPAE cells. In contrast, pretreatment of HPAE cells with N-acetylcysteine, an antioxidant and a precursor of glutathione, failed to prevent PKC activation, indicating that PKC activation was not secondary to the oxidant production. These findings suggest that oxidant generation in endothelial cells occurs downstream of PKC activation. However, both PKC activation and oxidant generation were necessary for ICAM-1 mRNA expression because the pretreatment of HPAE cells with either calphostin C or N-acetylcysteine inhibited the TNF-alpha-induced activation of NF-kappaB and prevented the activation of ICAM-1 promoter. Prolonged exposure of HPAE cells to the phorbol ester, phorbol-12-myristate-13-acetate, which is known to deplete all except atypical PKC isozymes, failed to prevent TNF-alpha-induced ICAM-1 mRNA expression. We conclude that TNF-alpha-induced oxidant generation secondary to the activation of a phorbol ester-insensitive PKC isozyme signals the activation NF-kappaB and ICAM-1 gene transcription.  (+info)

Role of a conserved lysine residue in the peripheral cannabinoid receptor (CB2): evidence for subtype specificity. (8/2851)

The human cannabinoid receptors, central cannabinoid receptor (CB1) and peripheral cannabinoid receptor (CB2), share only 44% amino acid identity overall, yet most ligands do not discriminate between receptor subtypes. Site-directed mutagenesis was employed as a means of mapping the ligand recognition site for the human CB2 cannabinoid receptor. A lysine residue in the third transmembrane domain of the CB2 receptor (K109), which is conserved between the CB1 and CB2 receptors, was mutated to alanine or arginine to determine the role of this charged amino acid in receptor function. The analogous mutation in the CB1 receptor (K192A) was found to be crucial for recognition of several cannabinoid compounds excluding (R)-(+)-[2, 3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1, 4-benzoxazin-6-yl](1-naphthalenyl)methanone (WIN 55,212-2). In contrast, in human embryonic kidney (HEK)-293 cells expressing the mutant or wild-type CB2 receptors, we found no significant differences in either the binding profile of several cannabinoid ligands nor in inhibition of cAMP accumulation. We identified a high-affinity site for (-)-3-[2-hydroxyl-4-(1, 1-dimethylheptyl)phenyl]-4-[3-hydroxyl propyl] cyclohexan-1-ol (CP-55,940) in the region of helices 3, 6, and 7, with S3.31(112), T3.35(116), and N7.49(295) in the K109A mutant using molecular modeling. The serine residue, unique to the CB2 receptor, was then mutated to glycine in the K109A mutant. This double mutant, K109AS112G, retains the ability to bind aminoalkylindoles but loses affinity for classical cannabinoids, as predicted by the molecular model. Distinct cellular localization of the mutant receptors observed with immunofluorescence also suggests differences in receptor function. In summary, we identified amino acid residues in the CB2 receptor that could lead to subtype specificity.  (+info)

Naphthalene is not typically referred to as a medical term, but it is a chemical compound with the formula C10H8. It is a white crystalline solid that is aromatic and volatile, and it is known for its distinctive mothball smell. In a medical context, naphthalene is primarily relevant as a potential toxin or irritant.

Naphthalene can be found in some chemical products, such as mothballs and toilet deodorant blocks. Exposure to high levels of naphthalene can cause symptoms such as nausea, vomiting, diarrhea, and headaches. Long-term exposure has been linked to anemia and damage to the liver and nervous system.

In addition, naphthalene is a known environmental pollutant that can be found in air, water, and soil. It is produced by the combustion of fossil fuels and is also released from some industrial processes. Naphthalene has been shown to have toxic effects on aquatic life and may pose a risk to human health if exposure levels are high enough.

Dioxygenases are a class of enzymes that catalyze the incorporation of both atoms of molecular oxygen (O2) into their substrates. They are classified based on the type of reaction they catalyze and the number of iron atoms in their active site. The two main types of dioxygenases are:

1. Intradiol dioxygenases: These enzymes cleave an aromatic ring by inserting both atoms of O2 into a single bond between two carbon atoms, leading to the formation of an unsaturated diol (catechol) intermediate and the release of CO2. They contain a non-heme iron(III) center in their active site.

An example of intradiol dioxygenase is catechol 1,2-dioxygenase, which catalyzes the conversion of catechol to muconic acid.

2. Extradiol dioxygenases: These enzymes cleave an aromatic ring by inserting one atom of O2 at a position adjacent to the hydroxyl group and the other atom at a more distant position, leading to the formation of an unsaturated lactone or cyclic ether intermediate. They contain a non-heme iron(II) center in their active site.

An example of extradiol dioxygenase is homogentisate 1,2-dioxygenase, which catalyzes the conversion of homogentisate to maleylacetoacetate in the tyrosine degradation pathway.

Dioxygenases play important roles in various biological processes, including the metabolism of aromatic compounds, the biosynthesis of hormones and signaling molecules, and the detoxification of xenobiotics.

Environmental biodegradation is the breakdown of materials, especially man-made substances such as plastics and industrial chemicals, by microorganisms such as bacteria and fungi in order to use them as a source of energy or nutrients. This process occurs naturally in the environment and helps to break down organic matter into simpler compounds that can be more easily absorbed and assimilated by living organisms.

Biodegradation in the environment is influenced by various factors, including the chemical composition of the substance being degraded, the environmental conditions (such as temperature, moisture, and pH), and the type and abundance of microorganisms present. Some substances are more easily biodegraded than others, and some may even be resistant to biodegradation altogether.

Biodegradation is an important process for maintaining the health and balance of ecosystems, as it helps to prevent the accumulation of harmful substances in the environment. However, some man-made substances, such as certain types of plastics and industrial chemicals, may persist in the environment for long periods of time due to their resistance to biodegradation, leading to negative impacts on wildlife and ecosystems.

In recent years, there has been increasing interest in developing biodegradable materials that can break down more easily in the environment as a way to reduce waste and minimize environmental harm. These efforts have led to the development of various biodegradable plastics, coatings, and other materials that are designed to degrade under specific environmental conditions.

Naphthols are chemical compounds that consist of a naphthalene ring (a polycyclic aromatic hydrocarbon made up of two benzene rings) substituted with a hydroxyl group (-OH). They can be classified as primary or secondary naphthols, depending on whether the hydroxyl group is directly attached to the naphthalene ring (primary) or attached through a carbon atom (secondary). Naphthols are important intermediates in the synthesis of various chemical and pharmaceutical products. They have been used in the production of azo dyes, antioxidants, and pharmaceuticals such as analgesics and anti-inflammatory agents.

Oxygenases are a class of enzymes that catalyze the incorporation of molecular oxygen (O2) into their substrates. They play crucial roles in various biological processes, including the biosynthesis of many natural products, as well as the detoxification and degradation of xenobiotics (foreign substances).

There are two main types of oxygenases: monooxygenases and dioxygenases. Monooxygenases introduce one atom of molecular oxygen into a substrate while reducing the other to water. An example of this type of enzyme is cytochrome P450, which is involved in drug metabolism and steroid hormone synthesis. Dioxygenases, on the other hand, incorporate both atoms of molecular oxygen into their substrates, often leading to the formation of new carbon-carbon bonds or the cleavage of existing ones.

It's important to note that while oxygenases are essential for many life-sustaining processes, they can also contribute to the production of harmful reactive oxygen species (ROS) during normal cellular metabolism. An imbalance in ROS levels can lead to oxidative stress and damage to cells and tissues, which has been linked to various diseases such as cancer, neurodegeneration, and cardiovascular disease.

"Pseudomonas putida" is a species of gram-negative, rod-shaped bacteria that is commonly found in soil and water environments. It is a non-pathogenic, opportunistic microorganism that is known for its versatile metabolism and ability to degrade various organic compounds. This bacterium has been widely studied for its potential applications in bioremediation and industrial biotechnology due to its ability to break down pollutants such as toluene, xylene, and other aromatic hydrocarbons. It is also known for its resistance to heavy metals and antibiotics, making it a valuable tool in the study of bacterial survival mechanisms and potential applications in bioremediation and waste treatment.

Anilino Naphthalenesulfonates are a group of compounds that contain both aniline and naphthalene sulfonate components. Aniline is a organic compound with the formula C6H5NH2, and naphthalene sulfonate is the sodium salt of naphthalene-1,5-disulfonic acid.

Anilino Naphthalenesulfonates are commonly used as fluorescent dyes in various applications such as histology, microscopy, and flow cytometry. These compounds exhibit strong fluorescence under ultraviolet light and can be used to label and visualize specific structures or molecules of interest. Examples of Anilino Naphthalenesulfonates include Propidium Iodide, Acridine Orange, and Hoechst 33258.

It is important to note that while these compounds are widely used in research and diagnostic settings, they may also have potential hazards and should be handled with appropriate safety precautions.

"Pseudomonas" is a genus of Gram-negative, rod-shaped bacteria that are widely found in soil, water, and plants. Some species of Pseudomonas can cause disease in animals and humans, with P. aeruginosa being the most clinically relevant as it's an opportunistic pathogen capable of causing various types of infections, particularly in individuals with weakened immune systems.

P. aeruginosa is known for its remarkable ability to resist many antibiotics and disinfectants, making infections caused by this bacterium difficult to treat. It can cause a range of healthcare-associated infections, such as pneumonia, bloodstream infections, urinary tract infections, and surgical site infections. In addition, it can also cause external ear infections and eye infections.

Prompt identification and appropriate antimicrobial therapy are crucial for managing Pseudomonas infections, although the increasing antibiotic resistance poses a significant challenge in treatment.

I'm not aware of a medical definition for the term "imides." It is a chemical term that refers to a specific type of organic compound containing a functional group with the structure R-C(=O)-N-R', where R and R' are organic groups, and the nitrogen atom is bonded to two organic groups. This term is more commonly used in chemistry and biochemistry rather than in medical contexts.

Coal tar is a thick, dark liquid that is a byproduct of coal manufacturing processes, specifically the distillation of coal at high temperatures. It is a complex mixture of hundreds of different compounds, including polycyclic aromatic hydrocarbons (PAHs), which are known to be carcinogenic.

In medical terms, coal tar has been used topically for various skin conditions such as psoriasis, eczema, and seborrheic dermatitis due to its anti-inflammatory and keratolytic properties. Coal tar can help reduce scaling, itching, and inflammation of the skin. However, its use is limited due to potential side effects such as skin irritation, increased sun sensitivity, and potential risk of cancer with long-term use. Coal tar products should be used under the guidance of a healthcare provider and according to the instructions on the label.

Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds characterized by the presence of two or more fused benzene rings. They are called "polycyclic" because they contain multiple cyclic structures, and "aromatic" because these structures contain alternating double bonds that give them distinctive chemical properties and a characteristic smell.

PAHs can be produced from both natural and anthropogenic sources. Natural sources include wildfires, volcanic eruptions, and the decomposition of organic matter. Anthropogenic sources include the incomplete combustion of fossil fuels, such as coal, oil, and gasoline, as well as tobacco smoke, grilled foods, and certain industrial processes.

PAHs are known to be environmental pollutants and can have harmful effects on human health. They have been linked to an increased risk of cancer, particularly lung, skin, and bladder cancers, as well as reproductive and developmental toxicity. PAHs can also cause skin irritation, respiratory problems, and damage to the immune system.

PAHs are found in a variety of environmental media, including air, water, soil, and food. They can accumulate in the food chain, particularly in fatty tissues, and have been detected in a wide range of foods, including meat, fish, dairy products, and vegetables. Exposure to PAHs can occur through inhalation, ingestion, or skin contact.

It is important to limit exposure to PAHs by avoiding tobacco smoke, reducing consumption of grilled and smoked foods, using ventilation when cooking, and following safety guidelines when working with industrial processes that produce PAHs.

Acenaphthene is an organic compound that is classified as a polycyclic aromatic hydrocarbon (PAH). It is made up of four benzene rings arranged in a specific structure. Acenaphthene is not typically used in medical applications, but it can be found in some industrial products and may be produced as a byproduct of certain chemical reactions or processes.

In the environment, acenaphthene can be released into the air, water, and soil through various sources, including the burning of coal and oil, the exhaust from vehicles, and the incineration of waste. It is not considered to be highly toxic to humans, but long-term exposure to high levels of acenaphthene has been linked to an increased risk of cancer in laboratory animals.

There are no specific medical definitions associated with acenaphthene, as it is not a substance that is typically used in medical treatments or procedures. However, it is important for healthcare professionals and researchers to be aware of the potential presence of acenaphthene and other PAHs in the environment, as these substances can have harmful effects on human health.

Aromatic hydrocarbons, also known as aromatic compounds or arenes, are a class of organic compounds characterized by a planar ring structure with delocalized electrons that give them unique chemical properties. The term "aromatic" was originally used to describe their distinctive odors, but it now refers to their characteristic molecular structure and stability.

Aromatic hydrocarbons contain one or more benzene rings, which are cyclic structures consisting of six carbon atoms arranged in a planar hexagonal shape. Each carbon atom in the benzene ring is bonded to two other carbon atoms and one hydrogen atom, forming alternating double and single bonds between the carbon atoms. However, the delocalized electrons in the benzene ring are evenly distributed around the ring, leading to a unique electronic structure that imparts stability and distinctive chemical properties to aromatic hydrocarbons.

Examples of aromatic hydrocarbons include benzene, toluene, xylene, and naphthalene. These compounds have important uses in industry, but they can also pose health risks if not handled properly. Exposure to high levels of aromatic hydrocarbons has been linked to various health effects, including cancer, neurological damage, and respiratory problems.

Comamonadaceae is a family of gram-negative, aerobic or facultatively anaerobic bacteria that are commonly found in various environments such as soil, water, and the rhizosphere of plants. The name Comamonadaceae comes from the type genus Comamonas. Members of this family are known to be metabolically versatile and can degrade a wide range of organic compounds, including aromatic compounds and polysaccharides. Some species in this family are also known to be opportunistic pathogens in humans, causing infections such as pneumonia, bacteremia, and meningitis.

I'm sorry for any confusion, but "Gentisates" does not appear to be a recognized term in medical or physiological sciences. It is possible that you may have misspelled or misremembered the term. If you meant "Gentiates," then it refers to a class of enzymes (also known as beta-galactosidases) that can break down certain complex carbohydrates, such as the disaccharide melibiose into galactose and glucose. However, I would recommend double-checking the spelling or context to ensure you have the correct term, as my response is based on the assumption that "Gentiates" was the intended word.

I'm sorry for any confusion, but "hydrocarbons" is not a term that has a specific medical definition. Hydrocarbons are organic compounds consisting entirely of hydrogen and carbon. They are primarily used in industry as fuel, lubricants, and as raw materials for the production of plastics, fibers, and other chemicals.

However, in a broader scientific context, hydrocarbons can be relevant to medical discussions. For instance, in toxicology, exposure to certain types of hydrocarbons (like those found in gasoline or solvents) can lead to poisoning and related health issues. In environmental medicine, the pollution of air, water, and soil with hydrocarbons is a concern due to potential health effects.

But in general clinical medicine, 'hydrocarbons' wouldn't have a specific definition.

"Ralstonia" is a genus of gram-negative, aerobic bacteria that are commonly found in soil and water. Some species of Ralstonia are known to cause healthcare-associated infections, particularly in patients with compromised immune systems. These infections can include pneumonia, bacteremia, and meningitis. One notable species, Ralstonia solanacearum, is a plant pathogen that causes bacterial wilt in a wide range of plants.

Ralstonia bacteria are known for their ability to form biofilms, which can make them resistant to antibiotics and disinfectants. They can also survive in harsh environments, such as those with low nutrient availability and high salt concentrations. These characteristics make Ralstonia a challenging organism to control in healthcare settings and in the environment.

It's important to note that while Ralstonia bacteria can cause serious infections, they are not typically considered highly virulent or contagious. Instead, infections are often associated with contaminated medical equipment or solutions, such as intravenous fluids, respiratory therapy equipment, and contaminated water sources. Proper infection control practices, including environmental cleaning and disinfection, can help prevent the spread of Ralstonia in healthcare settings.

Deodorants are substances that are applied to the body, usually under the arms, to help prevent or mask body odor caused by the bacterial breakdown of sweat. Deodorants typically contain alcohol and fragrances, which can help to kill bacteria and cover up any remaining odor. Some deodorants also contain antiperspirants, which work by blocking the sweat glands and reducing the amount of sweat that is produced. This can help to further reduce body odor.

It's important to note that while deodorants can help to mask body odor, they do not prevent sweating. If you are looking for a product that can help to control sweating, you may want to consider using an antiperspirant instead. Some products combine both deodorant and antiperspirant in one product.

Deodorants are available in several forms, including sprays, roll-ons, gels, creams, and solid sticks. It's important to choose a deodorant that is right for your skin type and personal preferences. If you have sensitive skin, you may want to look for a deodorant that is labeled as "hypoallergenic" or "unscented."

It's also a good idea to apply deodorant to clean, dry skin, as this can help the product to work more effectively. If you are using an antiperspirant deodorant, it's best to apply it at night before bed, as this can help to reduce sweating and body odor throughout the day.

I'm sorry for any confusion, but "soil pollutants" is not a term typically used in medical definitions. Soil pollution refers to the presence or accumulation of hazardous substances, chemicals, or other pollutants in soil that can have negative effects on plant life, human health, and the environment.

However, if you're asking about potential health effects of exposure to soil pollutants, it could include a variety of symptoms or diseases, depending on the specific pollutant. For example, exposure to lead-contaminated soil can lead to developmental delays in children, while exposure to certain pesticides or industrial chemicals can cause neurological problems, respiratory issues, and even cancer.

If you have more specific information about a particular substance or context, I may be able to provide a more precise answer.

Creosote is a thick, dark brown or black liquid that has a strong, tarry odor and is produced when wood, coal, or other organic materials are burned or distilled. It is a complex mixture of chemicals, including polycyclic aromatic hydrocarbons (PAHs), which have been linked to an increased risk of cancer.

In the medical context, creosote is not typically used as a treatment for any condition. However, it has been used historically as a topical antiseptic and wound dressing, due to its antibacterial properties. However, its use in this way has largely been replaced by more modern and effective treatments.

It's important to note that creosote is considered a hazardous substance and can be harmful if swallowed, inhaled, or comes into contact with the skin. It can cause irritation to the eyes, skin, and respiratory tract, and prolonged exposure has been linked to an increased risk of cancer. Therefore, it should be handled with care and used only under the supervision of a medical professional.

Medical definitions typically focus on the relevance of a term to medicine or healthcare, so here's a medical perspective on polycyclic compounds:

Polycyclic compounds are organic substances that contain two or more chemical rings in their structure. While not all polycyclic compounds are relevant to medicine, some can have significant medical implications. For instance, polycyclic aromatic hydrocarbons (PAHs) are a type of polycyclic compound that can be found in tobacco smoke and certain types of air pollution. PAHs have been linked to an increased risk of cancer, particularly lung cancer, due to their ability to damage DNA.

Another example is the class of drugs called steroids, which include hormones like cortisol and sex hormones like testosterone and estrogen. These compounds are polycyclic because they contain several interconnected rings in their structure. Steroid medications are used to treat a variety of medical conditions, including inflammation, asthma, and Addison's disease.

In summary, while not all polycyclic compounds are relevant to medicine, some can have important medical implications, either as harmful environmental pollutants or as useful therapeutic agents.

Multienzyme complexes are specialized protein structures that consist of multiple enzymes closely associated or bound together, often with other cofactors and regulatory subunits. These complexes facilitate the sequential transfer of substrates along a series of enzymatic reactions, also known as a metabolic pathway. By keeping the enzymes in close proximity, multienzyme complexes enhance reaction efficiency, improve substrate specificity, and maintain proper stoichiometry between different enzymes involved in the pathway. Examples of multienzyme complexes include the pyruvate dehydrogenase complex, the citrate synthase complex, and the fatty acid synthetase complex.

Anthracene is an organic compound with the chemical formula C6H6. It is a solid polycyclic aromatic hydrocarbon, and is composed of three benzene rings arranged in a linear fashion. Anthracene is used primarily for research purposes, including studying DNA damage and mutagenesis. It is not known to have any significant biological role or uses in medicine. Exposure to anthracene may occur through coal tar or coal tar pitch volatiles, but it does not have established medical definitions related to human health or disease.

Catechol 1,2-dioxygenase is an enzyme that catalyzes the conversion of catechols to muconic acids as part of the meta-cleavage pathway in the breakdown of aromatic compounds in bacteria. The enzyme requires iron as a cofactor and functions by cleaving the aromatic ring between the two hydroxyl groups in the catechol molecule. This reaction is an important step in the degradation of various environmental pollutants, such as polychlorinated biphenyls (PCBs) and lignin, by certain bacterial species.

Insect repellents are substances that are applied to the skin, clothing, or other surfaces to deter insects from landing or crawling on that surface. They work by masking the scents that attract insects or by repelling them with unpleasant odors. Insect repellents can be chemical-based, such as those containing DEET (N,N-diethyl-m-toluamide), picaridin, or IR3535, or they can be natural, such as those containing oil of lemon eucalyptus or citronella. These substances work by interfering with the insect's ability to detect human scent, making it less likely that they will come into contact with the person using the repellent. Insect repellents are an important tool in preventing insect-borne diseases such as Lyme disease, West Nile virus, and Zika virus.

I apologize, but there seems to be a misunderstanding. "Soil microbiology" is not a medical term; rather, it is a branch of microbiology that deals with the study of microorganisms in soil. It involves understanding the diversity, ecology, and biochemistry of bacteria, fungi, algae, protozoa, and other microscopic life forms found in soil. This field has applications in agriculture, environmental science, and waste management but is not directly related to medical definitions or human health.

Toluene is not a medical condition or disease, but it is a chemical compound that is widely used in various industrial and commercial applications. Medically, toluene can be relevant as a substance of abuse due to its intoxicating effects when inhaled or sniffed. It is a colorless liquid with a distinctive sweet aroma, and it is a common solvent found in many products such as paint thinners, adhesives, and rubber cement.

In the context of medical toxicology, toluene exposure can lead to various health issues, including neurological damage, cognitive impairment, memory loss, nausea, vomiting, and hearing and vision problems. Chronic exposure to toluene can also cause significant harm to the developing fetus during pregnancy, leading to developmental delays, behavioral problems, and physical abnormalities.

Carbaryl is a carbamate pesticide that is used to control a wide variety of insects, including fleas, ticks, and mosquitoes. It works by inhibiting the action of an enzyme called cholinesterase, which is necessary for the proper functioning of the nervous system in insects. This leads to paralysis and death of the pests. Carbaryl is also used in some veterinary products to treat parasitic infestations. It can be found in various forms, such as powders, granules, and solutions, and can be applied to plants, animals, and indoor/outdoor surfaces. However, it can be harmful to non-target organisms, including humans, if not used properly. Therefore, it is important to follow the label instructions carefully when using carbaryl products.

Naphthoquinones are a type of organic compound that consists of a naphthalene ring (two benzene rings fused together) with two ketone functional groups (=O) at the 1 and 2 positions. They exist in several forms, including natural and synthetic compounds. Some well-known naphthoquinones include vitamin K1 (phylloquinone) and K2 (menaquinone), which are important for blood clotting and bone metabolism. Other naphthoquinones have been studied for their potential medicinal properties, including anticancer, antibacterial, and anti-inflammatory activities. However, some naphthoquinones can also be toxic or harmful to living organisms, so they must be used with caution.

Naphthalenesulfonates are a group of chemical compounds that consist of a naphthalene ring, which is a bicyclic aromatic hydrocarbon, substituted with one or more sulfonate groups. Sulfonates are salts or esters of sulfuric acid. Naphthalenesulfonates are commonly used as detergents, dyes, and research chemicals.

In the medical field, naphthalenesulfonates may be used in diagnostic tests to detect certain enzyme activities or metabolic disorders. For example, 1-naphthyl sulfate is a substrate for the enzyme arylsulfatase A, which is deficient in individuals with the genetic disorder metachromatic leukodystrophy. By measuring the activity of this enzyme using 1-naphthyl sulfate as a substrate, doctors can diagnose or monitor the progression of this disease.

It's worth noting that some naphthalenesulfonates have been found to have potential health hazards and environmental concerns. For instance, sodium naphthalenesulfonate has been classified as a possible human carcinogen by the International Agency for Research on Cancer (IARC). Therefore, their use should be handled with caution and in accordance with established safety protocols.

Gas Chromatography-Mass Spectrometry (GC-MS) is a powerful analytical technique that combines the separating power of gas chromatography with the identification capabilities of mass spectrometry. This method is used to separate, identify, and quantify different components in complex mixtures.

In GC-MS, the mixture is first vaporized and carried through a long, narrow column by an inert gas (carrier gas). The various components in the mixture interact differently with the stationary phase inside the column, leading to their separation based on their partition coefficients between the mobile and stationary phases. As each component elutes from the column, it is then introduced into the mass spectrometer for analysis.

The mass spectrometer ionizes the sample, breaks it down into smaller fragments, and measures the mass-to-charge ratio of these fragments. This information is used to generate a mass spectrum, which serves as a unique "fingerprint" for each compound. By comparing the generated mass spectra with reference libraries or known standards, analysts can identify and quantify the components present in the original mixture.

GC-MS has wide applications in various fields such as forensics, environmental analysis, drug testing, and research laboratories due to its high sensitivity, specificity, and ability to analyze volatile and semi-volatile compounds.

I'm sorry for any confusion, but "Pyrenes" is not a medical term. It is a term used in chemistry and materials science, referring to a type of aromatic hydrocarbon molecule that consists of two benzene rings fused together. If you have a different term or concept in mind, please provide it so I can give you an accurate definition or information.

Biotransformation is the metabolic modification of a chemical compound, typically a xenobiotic (a foreign chemical substance found within an living organism), by a biological system. This process often involves enzymatic conversion of the parent compound to one or more metabolites, which may be more or less active, toxic, or mutagenic than the original substance.

In the context of pharmacology and toxicology, biotransformation is an important aspect of drug metabolism and elimination from the body. The liver is the primary site of biotransformation, but other organs such as the kidneys, lungs, and gastrointestinal tract can also play a role.

Biotransformation can occur in two phases: phase I reactions involve functionalization of the parent compound through oxidation, reduction, or hydrolysis, while phase II reactions involve conjugation of the metabolite with endogenous molecules such as glucuronic acid, sulfate, or acetate to increase its water solubility and facilitate excretion.

Dicamba is a selective herbicide that is used to control broadleaf weeds in crops such as corn, soybeans, and wheat. It works by inhibiting the growth of the weed's shoots and roots, which ultimately leads to their death. Dicamba is available in various forms, including liquids, powders, and granules, and can be applied using different methods such as spraying or spreading.

Dicamba is a type of chemical known as a benzoic acid, and it works by interfering with the plant's growth hormones. It is absorbed through the leaves and roots of the weed, and then moves throughout the plant to disrupt its normal growth processes. Dicamba is generally considered to be safe for use around animals and humans when used according to label instructions, but it can be harmful if ingested or if it comes into contact with the skin or eyes in large quantities.

It's important to note that dicamba has been the subject of controversy in recent years due to concerns about its potential to drift off target and damage nearby crops that are not resistant to it. As a result, there have been restrictions placed on the use of dicamba in some areas, and efforts are underway to develop new formulations of the herbicide that are less prone to drifting.

Benzene derivatives are chemical compounds that are derived from benzene, which is a simple aromatic hydrocarbon with the molecular formula C6H6. Benzene has a planar, hexagonal ring structure, and its derivatives are formed by replacing one or more of the hydrogen atoms in the benzene molecule with other functional groups.

Benzene derivatives have a wide range of applications in various industries, including pharmaceuticals, dyes, plastics, and explosives. Some common examples of benzene derivatives include toluene, xylene, phenol, aniline, and nitrobenzene. These compounds can have different physical and chemical properties depending on the nature and position of the substituents attached to the benzene ring.

It is important to note that some benzene derivatives are known to be toxic or carcinogenic, and their production, use, and disposal must be carefully regulated to ensure safety and protect public health.

Bronchioles are the smallest airways in the respiratory system that carry air into the lungs. They are branching tubes within the lungs that further divide and become smaller than bronchi, ending in tiny air sacs called alveoli where the exchange of oxygen and carbon dioxide occurs. Bronchioles do not have cartilage in their walls, unlike larger bronchi, making them more flexible and able to adjust to changes in lung volume during breathing.

Salicylic Acid is a type of beta hydroxy acid (BHA) that is commonly used in dermatology due to its keratolytic and anti-inflammatory properties. It works by causing the cells of the epidermis to shed more easily, preventing the pores from becoming blocked and promoting the growth of new skin cells. Salicylic Acid is also a potent anti-inflammatory agent, which makes it useful in the treatment of inflammatory acne and other skin conditions associated with redness and irritation. It can be found in various over-the-counter skincare products, such as cleansers, creams, and peels, as well as in prescription-strength formulations.

2-Naphthylamine is a crystalline solid organic compound that is classified as a primary aromatic amine. Its chemical formula is C10H9N. It is an intensely orange-red to reddish-brown substance that is slightly soluble in water and more soluble in organic solvents.

2-Naphthylamine is produced by the reduction of 2-naphthol or its derivatives. Historically, it was used as an intermediate in the synthesis of azo dyes and other chemical compounds. However, due to its toxicity and carcinogenicity, its use has been largely discontinued in many industries.

Exposure to 2-Naphthylamine can occur through inhalation, skin contact, or ingestion, and it has been associated with an increased risk of bladder cancer and other health effects. Therefore, appropriate safety measures must be taken when handling this compound, including the use of personal protective equipment (PPE) such as gloves, lab coats, and eye protection.

An "aircraft" is not a medical term, but rather a general term used to describe any vehicle or machine designed to be powered and operated in the air. This includes fixed-wing aircraft such as airplanes and gliders, as well as rotary-wing aircraft such as helicopters and autogyros.

However, there are some medical conditions that can affect a person's ability to safely operate an aircraft, such as certain cardiovascular or neurological disorders. In these cases, the individual may be required to undergo medical evaluation and obtain clearance from aviation medical examiners before they are allowed to fly.

Additionally, there are some medical devices and equipment that are used in aircraft, such as oxygen systems and medical evacuation equipment. These may be used to provide medical care to passengers or crew members during flight.

Catechols are a type of chemical compound that contain a benzene ring with two hydroxyl groups (-OH) attached to it in the ortho position. The term "catechol" is often used interchangeably with "ortho-dihydroxybenzene." Catechols are important in biology because they are produced through the metabolism of certain amino acids, such as phenylalanine and tyrosine, and are involved in the synthesis of various neurotransmitters and hormones. They also have antioxidant properties and can act as reducing agents. In chemistry, catechols can undergo various reactions, such as oxidation and polymerization, to form other classes of compounds.

Petroleum is not a medical term, but it is a term used in the field of geology and petrochemicals. It refers to a naturally occurring liquid found in rock formations, which is composed of a complex mixture of hydrocarbons, organic compounds consisting primarily of carbon and hydrogen.

Petroleum is not typically associated with medical definitions; however, it's worth noting that petroleum and its derivatives are widely used in the production of various medical supplies, equipment, and pharmaceuticals. Some examples include plastic syringes, disposable gloves, catheters, lubricants for medical devices, and many active ingredients in medications.

In a broader sense, environmental or occupational exposure to petroleum and its byproducts could lead to health issues, but these are not typically covered under medical definitions of petroleum itself.

Occupational air pollutants refer to harmful substances present in the air in workplaces or occupational settings. These pollutants can include dusts, gases, fumes, vapors, or mists that are produced by industrial processes, chemical reactions, or other sources. Examples of occupational air pollutants include:

1. Respirable crystalline silica: A common mineral found in sand, stone, and concrete that can cause lung disease and cancer when inhaled in high concentrations.
2. Asbestos: A naturally occurring mineral fiber that was widely used in construction materials and industrial applications until the 1970s. Exposure to asbestos fibers can cause lung diseases such as asbestosis, lung cancer, and mesothelioma.
3. Welding fumes: Fumes generated during welding processes can contain harmful metals such as manganese, chromium, and nickel that can cause neurological damage and respiratory problems.
4. Isocyanates: Chemicals used in the production of foam insulation, spray-on coatings, and other industrial applications that can cause asthma and other respiratory symptoms.
5. Coal dust: Fine particles generated during coal mining, transportation, and handling that can cause lung disease and other health problems.
6. Diesel exhaust: Emissions from diesel engines that contain harmful particulates and gases that can cause respiratory and cardiovascular problems.

Occupational air pollutants are regulated by various government agencies, including the Occupational Safety and Health Administration (OSHA) in the United States, to protect workers from exposure and minimize health risks.

Benzene is a colorless, flammable liquid with a sweet odor. It has the molecular formula C6H6 and is composed of six carbon atoms arranged in a ring, bonded to six hydrogen atoms. Benzene is an important industrial solvent and is used as a starting material in the production of various chemicals, including plastics, rubber, resins, and dyes. It is also a natural component of crude oil and gasoline.

In terms of medical relevance, benzene is classified as a human carcinogen by the International Agency for Research on Cancer (IARC) and the Environmental Protection Agency (EPA). Long-term exposure to high levels of benzene can cause various health effects, including anemia, leukemia, and other blood disorders. Occupational exposure to benzene is regulated by the Occupational Safety and Health Administration (OSHA) to protect workers from potential health hazards.

It's important to note that while benzene has legitimate uses in industry, it should be handled with care due to its known health risks. Exposure to benzene can occur through inhalation, skin contact, or accidental ingestion, so appropriate safety measures must be taken when handling this chemical.

Chemical water pollutants refer to harmful chemicals or substances that contaminate bodies of water, making them unsafe for human use and harmful to aquatic life. These pollutants can come from various sources, including industrial and agricultural runoff, sewage and wastewater, oil spills, and improper disposal of hazardous materials.

Examples of chemical water pollutants include heavy metals (such as lead, mercury, and cadmium), pesticides and herbicides, volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and petroleum products. These chemicals can have toxic effects on aquatic organisms, disrupt ecosystems, and pose risks to human health through exposure or consumption.

Regulations and standards are in place to monitor and limit the levels of chemical pollutants in water sources, with the aim of protecting public health and the environment.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

Rhodococcus is a genus of gram-positive, aerobic, actinomycete bacteria that are widely distributed in the environment, including soil and water. Some species of Rhodococcus can cause opportunistic infections in humans and animals, particularly in individuals with weakened immune systems. These infections can affect various organs and tissues, such as the lungs, skin, and brain, and can range from mild to severe.

Rhodococcus species are known for their ability to degrade a wide variety of organic compounds, including hydrocarbons, making them important players in bioremediation processes. They also have complex cell walls that make them resistant to many antibiotics and disinfectants, which can complicate treatment of Rhodococcus infections.

Naphthaleneacetic acids (NAAs) are a type of synthetic auxin, which is a plant hormone that promotes growth and development. Specifically, NAAs are derivatives of naphthalene, a polycyclic aromatic hydrocarbon, with a carboxylic acid group attached to one of the carbon atoms in the ring structure.

NAAs are commonly used in horticulture and agriculture as plant growth regulators. They can stimulate rooting in cuttings, promote fruit set and growth, and inhibit vegetative growth. NAAs can also be used in plant tissue culture to regulate cell division and differentiation.

In medical terms, NAAs are not typically used as therapeutic agents. However, they have been studied for their potential use in cancer therapy due to their ability to regulate cell growth and differentiation. Some research has suggested that NAAs may be able to inhibit the growth of certain types of cancer cells, although more studies are needed to confirm these findings and determine the safety and efficacy of NAAs as a cancer treatment.

Intercalating agents are chemical substances that can be inserted between the stacked bases of DNA, creating a separation or "intercalation" of the base pairs. This property is often exploited in cancer chemotherapy, where intercalating agents like doxorubicin and daunorubicin are used to inhibit the replication and transcription of cancer cells by preventing the normal functioning of their DNA. However, these agents can also have toxic effects on normal cells, particularly those that divide rapidly, such as bone marrow and gut epithelial cells. Therefore, their use must be carefully monitored and balanced against their therapeutic benefits.

"Pseudomonas stutzeri" is a gram-negative, rod-shaped bacterium that is widely found in various environments such as soil, water, and plants. It is a non-fermentative, motile bacterium that can survive in diverse conditions due to its metabolic versatility. While it is not typically considered a human pathogen, there have been reports of P. stutzeri causing infections in immunocompromised individuals or those with underlying medical conditions. These infections can include respiratory tract infections, urinary tract infections, and bacteremia. However, such cases are relatively rare, and the bacterium is generally considered to have low pathogenic potential for humans.

Inhalation exposure is a term used in occupational and environmental health to describe the situation where an individual breathes in substances present in the air, which could be gases, vapors, fumes, mist, or particulate matter. These substances can originate from various sources, such as industrial processes, chemical reactions, or natural phenomena.

The extent of inhalation exposure is determined by several factors, including:

1. Concentration of the substance in the air
2. Duration of exposure
3. Frequency of exposure
4. The individual's breathing rate
5. The efficiency of the individual's respiratory protection, if any

Inhalation exposure can lead to adverse health effects, depending on the toxicity and concentration of the inhaled substances. Short-term or acute health effects may include irritation of the eyes, nose, throat, or lungs, while long-term or chronic exposure can result in more severe health issues, such as respiratory diseases, neurological disorders, or cancer.

It is essential to monitor and control inhalation exposures in occupational settings to protect workers' health and ensure compliance with regulatory standards. Various methods are employed for exposure assessment, including personal air sampling, area monitoring, and biological monitoring. Based on the results of these assessments, appropriate control measures can be implemented to reduce or eliminate the risks associated with inhalation exposure.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

Catechol 2,3-dioxygenase is an enzyme that catalyzes the conversion of catechols to muconic acids as part of the meta-cleavage pathway in the breakdown of aromatic compounds. This enzyme plays a crucial role in the degradation of various aromatic hydrocarbons, including lignin and environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Catechol 2,3-dioxygenase requires Fe(II) as a cofactor for its activity. The gene that encodes this enzyme is often used as a bioremediation marker to monitor the degradation of aromatic pollutants in the environment.

Fluorescence spectrometry is a type of analytical technique used to investigate the fluorescent properties of a sample. It involves the measurement of the intensity of light emitted by a substance when it absorbs light at a specific wavelength and then re-emits it at a longer wavelength. This process, known as fluorescence, occurs because the absorbed energy excites electrons in the molecules of the substance to higher energy states, and when these electrons return to their ground state, they release the excess energy as light.

Fluorescence spectrometry typically measures the emission spectrum of a sample, which is a plot of the intensity of emitted light versus the wavelength of emission. This technique can be used to identify and quantify the presence of specific fluorescent molecules in a sample, as well as to study their photophysical properties.

Fluorescence spectrometry has many applications in fields such as biochemistry, environmental science, and materials science. For example, it can be used to detect and measure the concentration of pollutants in water samples, to analyze the composition of complex biological mixtures, or to study the properties of fluorescent nanomaterials.

"Outbred strains" of animals in a medical context refers to populations of animals that are not genetically identical or inbred. These animals are derived from matings between individuals from different genetic backgrounds and are characterized by a high degree of genetic variability. This genetic diversity is maintained through random mating and selection, allowing for a wide range of phenotypic traits to be expressed within the population.

Outbred strains are often used in biomedical research as they provide a more genetically diverse background compared to inbred or genetically modified animal models. This genetic diversity can help to better represent human populations and improve the translatability of research findings to clinical applications. Additionally, outbred animals may be less susceptible to certain experimental artifacts that can arise from the use of highly inbred strains, such as reduced immune function or increased susceptibility to disease.

Examples of commonly used outbred animal models include the Sprague-Dawley rat and the Swiss Webster mouse. These animals are widely used in a variety of research areas, including toxicology, pharmacology, behavioral studies, and basic biomedical research.

Environmental pollutants are defined as any substances or energy (such as noise, heat, or light) that are present in the environment and can cause harm or discomfort to humans or other living organisms, or damage the natural ecosystems. These pollutants can come from a variety of sources, including industrial processes, transportation, agriculture, and household activities. They can be in the form of gases, liquids, solids, or radioactive materials, and can contaminate air, water, and soil. Examples include heavy metals, pesticides, volatile organic compounds (VOCs), particulate matter, and greenhouse gases.

It is important to note that the impact of environmental pollutants on human health and the environment can be acute (short-term) or chronic (long-term) and it depends on the type, concentration, duration and frequency of exposure. Some common effects of environmental pollutants include respiratory problems, cancer, neurological disorders, reproductive issues, and developmental delays in children.

It is important to monitor, control and reduce the emissions of these pollutants through regulations, technology advancements, and sustainable practices to protect human health and the environment.

Retinoids are a class of chemical compounds that are derivatives of vitamin A. They are widely used in dermatology for the treatment of various skin conditions, including acne, psoriasis, and photoaging. Retinoids can help to reduce inflammation, improve skin texture and tone, and stimulate collagen production.

Retinoids work by binding to specific receptors in the skin cells, which triggers a series of biochemical reactions that regulate gene expression and promote cell differentiation and turnover. This can help to unclog pores, reduce the appearance of fine lines and wrinkles, and improve the overall health and appearance of the skin.

There are several different types of retinoids used in skincare products, including retinoic acid, retinaldehyde, and retinol. Retinoic acid is the most potent form of retinoid and is available by prescription only. Retinaldehyde and retinol are weaker forms of retinoid that can be found in over-the-counter skincare products.

While retinoids can be highly effective for treating various skin conditions, they can also cause side effects such as dryness, irritation, and sensitivity to the sun. It is important to use retinoids as directed by a healthcare professional and to follow proper sun protection measures when using these products.

Indigo Carmine is not a medical term, but it is a chemical compound that is sometimes used in medical settings. Indigo Carmine is a type of dye that is often used as a marker in various medical tests and procedures. It can be used during surgeries to help identify structures or tissues within the body, such as the urinary tract or the gastrointestinal tract.

Indigo Carmine is also sometimes used as a diagnostic aid in urological procedures, such as cystoscopy, to help visualize the flow of urine and detect any abnormalities in the urinary tract. The dye is usually introduced into the body through a catheter or other medical device, and it is excreted in the urine, turning it blue or green.

It's important to note that Indigo Carmine should only be used under the supervision of a healthcare professional, as improper use can lead to adverse effects.

I'm sorry for any confusion, but "Kerosene" is not a medical term. It is a type of fuel that is commonly used in lamps, stoves, and heating systems. Medically, the term "kerosene sniffing" or "huffing" is used to describe the dangerous practice of inhaling kerosene vapors to get high, which can lead to serious health consequences, including death.

Burkholderia is a genus of gram-negative, rod-shaped bacteria that are widely distributed in the environment, including soil, water, and associated with plants. Some species of Burkholderia are opportunistic pathogens, meaning they can cause infection in individuals with weakened immune systems or underlying medical conditions.

One of the most well-known species of Burkholderia is B. cepacia, which can cause respiratory infections in people with cystic fibrosis and chronic granulomatous disease. Other notable species include B. pseudomallei, the causative agent of melioidosis, a potentially serious infection that primarily affects the respiratory system; and B. mallei, which causes glanders, a rare but severe disease that can affect humans and animals.

Burkholderia species are known for their resistance to many antibiotics, making them difficult to treat in some cases. Proper identification of the specific Burkholderia species involved in an infection is important for determining the most appropriate treatment approach.

Bacteria are single-celled microorganisms that are among the earliest known life forms on Earth. They are typically characterized as having a cell wall and no membrane-bound organelles. The majority of bacteria have a prokaryotic organization, meaning they lack a nucleus and other membrane-bound organelles.

Bacteria exist in diverse environments and can be found in every habitat on Earth, including soil, water, and the bodies of plants and animals. Some bacteria are beneficial to their hosts, while others can cause disease. Beneficial bacteria play important roles in processes such as digestion, nitrogen fixation, and biogeochemical cycling.

Bacteria reproduce asexually through binary fission or budding, and some species can also exchange genetic material through conjugation. They have a wide range of metabolic capabilities, with many using organic compounds as their source of energy, while others are capable of photosynthesis or chemosynthesis.

Bacteria are highly adaptable and can evolve rapidly in response to environmental changes. This has led to the development of antibiotic resistance in some species, which poses a significant public health challenge. Understanding the biology and behavior of bacteria is essential for developing strategies to prevent and treat bacterial infections and diseases.

Environmental monitoring is the systematic and ongoing surveillance, measurement, and assessment of environmental parameters, pollutants, or other stressors in order to evaluate potential impacts on human health, ecological systems, or compliance with regulatory standards. This process typically involves collecting and analyzing data from various sources, such as air, water, soil, and biota, and using this information to inform decisions related to public health, environmental protection, and resource management.

In medical terms, environmental monitoring may refer specifically to the assessment of environmental factors that can impact human health, such as air quality, water contamination, or exposure to hazardous substances. This type of monitoring is often conducted in occupational settings, where workers may be exposed to potential health hazards, as well as in community-based settings, where environmental factors may contribute to public health issues. The goal of environmental monitoring in a medical context is to identify and mitigate potential health risks associated with environmental exposures, and to promote healthy and safe environments for individuals and communities.

Oxidoreductases acting on CH-CH group donors are a class of enzymes within the larger group of oxidoreductases, which are responsible for catalyzing oxidation-reduction reactions. Specifically, this subclass of enzymes acts upon donors containing a carbon-carbon (CH-CH) bond, where one atom or group of atoms is oxidized and another is reduced during the reaction process. These enzymes play crucial roles in various metabolic pathways, including the breakdown and synthesis of carbohydrates, lipids, and amino acids.

The reactions catalyzed by these enzymes involve the transfer of electrons and hydrogen atoms between the donor and an acceptor molecule. This process often results in the formation or cleavage of carbon-carbon bonds, making them essential for numerous biological processes. The systematic name for this class of enzymes is typically structured as "donor:acceptor oxidoreductase," where donor and acceptor represent the molecules involved in the electron transfer process.

Examples of enzymes that fall under this category include:

1. Aldehyde dehydrogenases (EC 1.2.1.3): These enzymes catalyze the oxidation of aldehydes to carboxylic acids, using NAD+ as an electron acceptor.
2. Dihydrodiol dehydrogenase (EC 1.3.1.14): This enzyme is responsible for the oxidation of dihydrodiols to catechols in the biodegradation of aromatic compounds.
3. Succinate dehydrogenase (EC 1.3.5.1): A key enzyme in the citric acid cycle, succinate dehydrogenase catalyzes the oxidation of succinate to fumarate and reduces FAD to FADH2.
4. Xylose reductase (EC 1.1.1.307): This enzyme is involved in the metabolism of pentoses, where it reduces xylose to xylitol using NADPH as a cofactor.

Benzocycloheptenes are organic compounds that contain a benzene fused to a seven-membered carbocycle. In other words, it is a chemical structure consisting of a benzene ring (a cyclic compound made up of six carbon atoms joined by alternating double bonds) attached to a seven-membered saturated or unsaturated ring.

These compounds are found in various natural and synthetic substances and can have a range of biological activities. Some benzocycloheptenes have been studied for their potential medicinal properties, such as anti-inflammatory, antiviral, and anticancer effects. However, more research is needed to fully understand the therapeutic potential and safety of these compounds.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

I believe there may be some confusion in your question. "Fluorenes" is not a medical term, but rather a chemical term referring to organic compounds that contain a fluorene moiety, which is a bicyclic compound made up of two benzene rings fused to a five-membered ring containing two carbon atoms and one double bond.

Fluorenes have various applications in the field of materials science, including organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), and organic field-effect transistors (OFETs). They are not typically used in a medical context, although some fluorene derivatives have been explored for potential therapeutic applications.

Therefore, I cannot provide a medical definition of "Fluorenes." However, if you have any questions about the chemical properties or applications of fluorenes, I would be happy to try and answer them.

Water microbiology is not a formal medical term, but rather a branch of microbiology that deals with the study of microorganisms found in water. It involves the identification, enumeration, and characterization of bacteria, viruses, parasites, and other microscopic organisms present in water sources such as lakes, rivers, oceans, groundwater, drinking water, and wastewater.

In a medical context, water microbiology is relevant to public health because it helps to assess the safety of water supplies for human consumption and recreational activities. It also plays a critical role in understanding and preventing waterborne diseases caused by pathogenic microorganisms that can lead to illnesses such as diarrhea, skin infections, and respiratory problems.

Water microbiologists use various techniques to study water microorganisms, including culturing, microscopy, genetic analysis, and biochemical tests. They also investigate the ecology of these organisms, their interactions with other species, and their response to environmental factors such as temperature, pH, and nutrient availability.

Overall, water microbiology is a vital field that helps ensure the safety of our water resources and protects public health.

Chloranil is the common name for 2,3,5,6-tetrachloro-1,4-benzoquinone, which is an organic compound with the formula C6Cl4O2. It is a light yellow to orange crystalline powder that is slightly soluble in water and more soluble in organic solvents.

Chloranil is used as a chemical intermediate in the synthesis of other organic compounds, including dyes and pigments. It is also used as a catalyst in some chemical reactions and has been studied for its potential use as a bactericide or fungicide.

Like many other halogenated aromatic compounds, chloranil can be harmful if swallowed, inhaled, or contacted on the skin. It can cause irritation to the eyes, skin, and respiratory tract, and prolonged exposure may lead to more serious health effects. Therefore, it is important to handle chloranil with care and follow appropriate safety precautions when working with this compound.

"Maleate" is not a medical term in and of itself, but it is a chemical compound that can be found in some medications. Maleic acid or its salts (maleates) are used as a keratolytic agent in topical medications, which means they help to break down and remove dead skin cells. They can also be used as a preservative or a buffering agent in various pharmaceutical preparations.

Maleic acid is a type of organic compound known as a dicarboxylic acid, which contains two carboxyl groups. In the case of maleic acid, these carboxyl groups are located on a single carbon atom, which makes it a cis-conjugated diacid. This structural feature gives maleic acid unique chemical properties that can be useful in various pharmaceutical and industrial applications.

It's worth noting that maleic acid and its salts should not be confused with "maleate" as a gender-specific term, which refers to something related to or characteristic of males.

Occupational exposure refers to the contact of an individual with potentially harmful chemical, physical, or biological agents as a result of their job or occupation. This can include exposure to hazardous substances such as chemicals, heavy metals, or dusts; physical agents such as noise, radiation, or ergonomic stressors; and biological agents such as viruses, bacteria, or fungi.

Occupational exposure can occur through various routes, including inhalation, skin contact, ingestion, or injection. Prolonged or repeated exposure to these hazards can increase the risk of developing acute or chronic health conditions, such as respiratory diseases, skin disorders, neurological damage, or cancer.

Employers have a legal and ethical responsibility to minimize occupational exposures through the implementation of appropriate control measures, including engineering controls, administrative controls, personal protective equipment, and training programs. Regular monitoring and surveillance of workers' health can also help identify and prevent potential health hazards in the workplace.

Bibenzyls are a type of chemical compound that consist of two benzene rings linked by a two-carbon bridge. They are found in various plants and have been studied for their potential pharmacological properties, including anti-cancer, anti-inflammatory, and antioxidant activities. Some examples of bibenzyls include chlorogenic acid, which is found in coffee and tea, and orcinol, which is a component of some types of mold.

In the medical context, bibenzyls may be mentioned in relation to research on their potential therapeutic uses or as a component of certain medications or supplements. However, it's important to note that while some bibenzyls have shown promise in preclinical studies, more research is needed to determine their safety and efficacy in humans before they can be widely used as treatments for various conditions.

Ferrous compounds are inorganic substances that contain iron (Fe) in its +2 oxidation state. The term "ferrous" is derived from the Latin word "ferrum," which means iron. Ferrous compounds are often used in medicine, particularly in the treatment of iron-deficiency anemia due to their ability to provide bioavailable iron to the body.

Examples of ferrous compounds include ferrous sulfate, ferrous gluconate, and ferrous fumarate. These compounds are commonly found in dietary supplements and multivitamins. Ferrous sulfate is one of the most commonly used forms of iron supplementation, as it has a high iron content and is relatively inexpensive.

It's important to note that ferrous compounds can be toxic in large doses, so they should be taken under the guidance of a healthcare professional. Overdose can lead to symptoms such as nausea, vomiting, diarrhea, abdominal pain, and potentially fatal consequences if left untreated.

"Laureates" is not a medical term. However, if you are referring to "laurates" as a salt or ester of lauric acid, then here's the definition:

Laurates are organic compounds that contain a laurate group, which is the anion (negatively charged ion) derived from lauric acid. Lauric acid is a saturated fatty acid with a 12-carbon chain, and its anion has the chemical formula CH3(CH2)10COO-.

Laurates can be formed by reacting lauric acid with a base to form a salt (e.g., sodium laurate, potassium laurate) or by reacting it with an alcohol to form an ester (e.g., methyl laurate, ethyl laurate). These compounds have various applications in industry, including as surfactants, emulsifiers, and solubilizers in personal care products, cosmetics, and pharmaceuticals.

Biphenyl compounds, also known as diphenyls, are a class of organic compounds consisting of two benzene rings linked by a single carbon-carbon bond. The chemical structure of biphenyl compounds can be represented as C6H5-C6H5. These compounds are widely used in the industrial sector, including as intermediates in the synthesis of other chemicals, as solvents, and in the production of plastics and dyes. Some biphenyl compounds also have biological activity and can be found in natural products. For example, some plant-derived compounds that belong to this class have been shown to have anti-inflammatory, antioxidant, and anticancer properties.

Aminobenzoates are a group of chemical compounds that contain an amino (NH2) group and a benzoate (C6H5COO-) group in their structure. They are widely used in the pharmaceutical and cosmetic industries due to their various properties, such as ultraviolet light absorption, antimicrobial activity, and anti-inflammatory effects.

One of the most well-known aminobenzoates is para-aminobenzoic acid (PABA), which is a naturally occurring compound found in some foods and also synthesized by bacteria in the human gut. PABA has been used as a topical sunscreen agent due to its ability to absorb ultraviolet B (UVB) radiation, but its use as a sunscreen ingredient has declined in recent years due to concerns about skin irritation and potential allergic reactions.

Other aminobenzoates have various medical uses, such as:

* Antimicrobial agents: Some aminobenzoates, such as benzalkonium chloride and cetylpyridinium chloride, are used as antiseptics and disinfectants due to their ability to disrupt bacterial cell membranes.
* Analgesic and anti-inflammatory agents: Aminobenzoates such as methyl salicylate and acetaminophen (paracetamol) are commonly used as pain relievers and fever reducers.
* Vitamin B supplements: PABA is a component of folic acid, which is an essential vitamin for human health. Some people take PABA supplements to treat or prevent various conditions, such as graying hair, rheumatoid arthritis, and vitiligo, although there is limited scientific evidence to support these uses.

It's important to note that some aminobenzoates can be toxic in high doses or with prolonged exposure, so they should be used under the guidance of a healthcare professional.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Organosilicon compounds are a class of chemical compounds that contain at least one organic group (a group of atoms composed mainly of carbon and hydrogen) bonded to a silicon atom. The organic group can be an alkyl group, aryl group, or any other group that is derived from a hydrocarbon.

The term "organosilicon" is used to describe the covalent bond between carbon and silicon atoms, which is a type of bond known as a "sigma bond." This bond is formed by the overlap of atomic orbitals between the carbon and silicon atoms. The resulting organosilicon compound can have a wide range of physical and chemical properties, depending on the nature of the organic group and the number of such groups attached to the silicon atom.

Organosilicon compounds are widely used in various industries, including electronics, coatings, adhesives, and pharmaceuticals. They are also used as intermediates in the synthesis of other chemical compounds. Some common examples of organosilicon compounds include silicones, which are polymers that contain repeating units of siloxane (Si-O-Si) bonds, and organofunctional silanes, which are used as coupling agents to improve the adhesion of materials to surfaces.

Sphingomonas is a genus of gram-negative, aerobic bacteria that are widely distributed in the environment. They are known for their ability to degrade various organic compounds and are often found in water, soil, and air samples. The cells of Sphingomonas species are typically straight or slightly curved rods, and they do not form spores.

One distinctive feature of Sphingomonas species is the presence of a unique lipid called sphingolipid in their cell membranes. This lipid contains a long-chain base called sphingosine, which is not found in the cell membranes of other gram-negative bacteria. The genus Sphingomonas includes several species that have been associated with human infections, particularly in immunocompromised individuals. These infections can include bacteremia, pneumonia, and urinary tract infections. However, Sphingomonas species are generally considered to be of low virulence and are not typically regarded as major pathogens.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

'Comamonas' is a genus of gram-negative, aerobic, motile bacteria that are commonly found in various environments such as soil, water, and clinical specimens. The cells are typically rod-shaped and may be straight or curved. Comamonas species are capable of utilizing a wide range of organic compounds as carbon and energy sources. Some species have been associated with human infections, although they are generally considered to be of low pathogenicity.

It's worth noting that while some strains of Comamonas have been found to cause infections in humans, they are relatively rare and often occur in individuals with compromised immune systems or underlying medical conditions. Further research is needed to fully understand the role of Comamonas species in human health and disease.

Aldehyde oxidoreductases are a class of enzymes that catalyze the oxidation of aldehydes to carboxylic acids using NAD+ or FAD as cofactors. They play a crucial role in the detoxification of aldehydes generated from various metabolic processes, such as lipid peroxidation and alcohol metabolism. These enzymes are widely distributed in nature and have been identified in bacteria, yeast, plants, and animals.

The oxidation reaction catalyzed by aldehyde oxidoreductases involves the transfer of electrons from the aldehyde substrate to the cofactor, resulting in the formation of a carboxylic acid and reduced NAD+ or FAD. The enzymes are classified into several families based on their sequence similarity and cofactor specificity.

One of the most well-known members of this family is alcohol dehydrogenase (ADH), which catalyzes the oxidation of alcohols to aldehydes or ketones as part of the alcohol metabolism pathway. Another important member is aldehyde dehydrogenase (ALDH), which further oxidizes the aldehydes generated by ADH to carboxylic acids, thereby preventing the accumulation of toxic aldehydes in the body.

Deficiencies in ALDH enzymes have been linked to several human diseases, including alcoholism and certain types of cancer. Therefore, understanding the structure and function of aldehyde oxidoreductases is essential for developing new therapeutic strategies to treat these conditions.

Water pollutants refer to any substances or materials that contaminate water sources and make them unsafe or unsuitable for use. These pollutants can include a wide range of chemicals, microorganisms, and physical particles that can have harmful effects on human health, aquatic life, and the environment as a whole. Examples of water pollutants include heavy metals like lead and mercury, industrial chemicals such as polychlorinated biphenyls (PCBs) and dioxins, agricultural runoff containing pesticides and fertilizers, sewage and wastewater, oil spills, and microplastics. Exposure to water pollutants can cause a variety of health problems, ranging from minor irritations to serious illnesses or even death in extreme cases. Additionally, water pollution can have significant impacts on the environment, including harming or killing aquatic life, disrupting ecosystems, and reducing biodiversity.

Alkanes are a group of saturated hydrocarbons, which are characterized by the presence of single bonds between carbon atoms in their molecular structure. The general formula for alkanes is CnH2n+2, where n represents the number of carbon atoms in the molecule.

The simplest and shortest alkane is methane (CH4), which contains one carbon atom and four hydrogen atoms. As the number of carbon atoms increases, the length and complexity of the alkane chain also increase. For example, ethane (C2H6) contains two carbon atoms and six hydrogen atoms, while propane (C3H8) contains three carbon atoms and eight hydrogen atoms.

Alkanes are important components of fossil fuels such as natural gas, crude oil, and coal. They are also used as starting materials in the production of various chemicals and materials, including plastics, fertilizers, and pharmaceuticals. In the medical field, alkanes may be used as anesthetics or as solvents for various medical applications.

Alkynes are a type of hydrocarbons that contain at least one carbon-carbon triple bond in their molecular structure. The general chemical formula for alkynes is CnH2n-2, where n represents the number of carbon atoms in the molecule.

The simplest and shortest alkyne is ethyne, also known as acetylene, which has two carbon atoms and four hydrogen atoms (C2H2). Ethyne is a gas at room temperature and pressure, and it is commonly used as a fuel in welding torches.

Alkynes are unsaturated hydrocarbons, meaning that they have the potential to undergo chemical reactions that add atoms or groups of atoms to the molecule. In particular, alkynes can be converted into alkenes (hydrocarbons with a carbon-carbon double bond) through a process called partial reduction, or they can be fully reduced to alkanes (hydrocarbons with only single bonds between carbon atoms) through a process called complete reduction.

Alkynes are important intermediates in the chemical industry and are used to produce a wide range of products, including plastics, resins, fibers, and pharmaceuticals. They can be synthesized from other hydrocarbons through various chemical reactions, such as dehydrogenation, oxidative coupling, or metathesis.

Fluorescent dyes are substances that emit light upon excitation by absorbing light of a shorter wavelength. In a medical context, these dyes are often used in various diagnostic tests and procedures to highlight or mark certain structures or substances within the body. For example, fluorescent dyes may be used in imaging techniques such as fluorescence microscopy or fluorescence angiography to help visualize cells, tissues, or blood vessels. These dyes can also be used in flow cytometry to identify and sort specific types of cells. The choice of fluorescent dye depends on the specific application and the desired properties, such as excitation and emission spectra, quantum yield, and photostability.

"Pseudomonas fluorescens" is a gram-negative, rod-shaped bacterium found in various environments such as soil, water, and some plants. It is a non-pathogenic species of the Pseudomonas genus, which means it does not typically cause disease in humans. The name "fluorescens" comes from its ability to produce a yellow-green pigment that fluoresces under ultraviolet light. This bacterium is known for its versatility and adaptability, as well as its ability to break down various organic compounds, making it useful in bioremediation and other industrial applications.

I'm sorry for any confusion, but "Fresh Water" is not a medical term. It is a term used to describe water that contains low concentrations of dissolved salts and other dissolved minerals. It is distinguished from saline water, which includes saltwater found in the ocean and brackish water found in estuaries. Fresh water is essential for many biological processes and is the primary source of water for human consumption, agriculture, and industrial use.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

'Gram-Negative Aerobic Rods and Cocci' are categorizations used in microbiology to describe certain types of bacteria based on their shape and staining characteristics.

1. Gram-Negative: This refers to the bacterial cells that do not retain crystal violet dye during the Gram staining procedure. Instead, they take up a counterstain such as safranin or fuchsin, making them appear pink or red under a microscope. Gram-negative bacteria possess an outer membrane in addition to the inner cytoplasmic membrane, which contains lipopolysaccharides (endotoxins) that can cause severe reactions and illnesses in humans. Examples of gram-negative bacteria include Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae.

2. Aerobic: This term describes organisms that require oxygen to grow and metabolize. Aerobic bacteria use molecular oxygen as the final electron acceptor in their respiratory chain, which allows them to generate more energy compared to anaerobic bacteria. Many gram-negative bacteria are aerobic or facultatively anaerobic, meaning they can grow with or without oxygen.

3. Rods and Cocci: These terms describe the shape of bacterial cells. Rods (bacilli) are elongated, rod-shaped bacteria, while cocci are round or oval-shaped bacteria. Examples of gram-negative aerobic rods include Pseudomonas aeruginosa and Escherichia coli, while Neisseria meningitidis and Moraxella catarrhalis are examples of gram-negative aerobic cocci.

In summary, 'Gram-Negative Aerobic Rods and Cocci' is a collective term for bacteria that do not retain crystal violet during Gram staining, require oxygen to grow, and have either rod or coccus shapes. These bacteria can cause various infections and diseases in humans and are often resistant to multiple antibiotics.

Volatilization, in the context of pharmacology and medicine, refers to the process by which a substance (usually a medication or drug) transforms into a vapor state at room temperature or upon heating. This change in physical state allows the substance to evaporate and be transferred into the air, potentially leading to inhalation exposure.

In some medical applications, volatilization is used intentionally, such as with essential oils for aromatherapy or topical treatments that utilize a vapor action. However, it can also pose concerns when volatile substances are unintentionally released into the air, potentially leading to indoor air quality issues or exposure risks.

It's important to note that in clinical settings, volatilization is not typically used as a route of administration for medications, as other methods such as oral, intravenous, or inhalation via nebulizers are more common and controlled.

Volatile Organic Compounds (VOCs) are organic chemicals that have a low boiling point and easily evaporate at room temperature. They can be liquids or solids. VOCs include a variety of chemicals, such as benzene, toluene, xylene, and formaldehyde, which are found in many household products, including paints, paint strippers, and other solvents; cleaning supplies; pesticides; building materials and furnishings; office equipment such as copiers and printers, correction fluids and carbonless copy paper; and glues and adhesives.

VOCs can cause both short- and long-term health effects. Short-term exposure to high levels of VOCs can cause headaches, dizziness, visual disturbances, and memory problems. Long-term exposure can cause damage to the liver, kidneys, and central nervous system. Some VOCs are also suspected or known carcinogens.

It is important to properly use, store, and dispose of products that contain VOCs to minimize exposure. Increasing ventilation by opening windows and doors or using fans can also help reduce exposure to VOCs.

Azoarcus is a genus of bacteria that have the ability to degrade aromatic compounds, including toluene and benzene. These bacteria are found in various environments such as soil, water, and the rhizosphere of plants. They are gram-negative, motile rods that are capable of denitrification, which means they can use nitrate as an electron acceptor during respiration instead of oxygen. Some species of Azoarcus can also fix nitrogen, making them important contributors to the nitrogen cycle in their environments.

The name "Azoarcus" comes from the Greek word "azo," meaning nitrogen, and the Latin word "arcus," meaning bow or arc, referring to the shape of the nitrate reduction pathway in these bacteria.

It's worth noting that while Azoarcus species have potential applications in bioremediation and wastewater treatment, some strains can also cause disease in plants, so their use in certain environments must be carefully considered.

The Cytochrome P-450 (CYP450) enzyme system is a group of enzymes found primarily in the liver, but also in other organs such as the intestines, lungs, and skin. These enzymes play a crucial role in the metabolism and biotransformation of various substances, including drugs, environmental toxins, and endogenous compounds like hormones and fatty acids.

The name "Cytochrome P-450" refers to the unique property of these enzymes to bind to carbon monoxide (CO) and form a complex that absorbs light at a wavelength of 450 nm, which can be detected spectrophotometrically.

The CYP450 enzyme system is involved in Phase I metabolism of xenobiotics, where it catalyzes oxidation reactions such as hydroxylation, dealkylation, and epoxidation. These reactions introduce functional groups into the substrate molecule, which can then undergo further modifications by other enzymes during Phase II metabolism.

There are several families and subfamilies of CYP450 enzymes, each with distinct substrate specificities and functions. Some of the most important CYP450 enzymes include:

1. CYP3A4: This is the most abundant CYP450 enzyme in the human liver and is involved in the metabolism of approximately 50% of all drugs. It also metabolizes various endogenous compounds like steroids, bile acids, and vitamin D.
2. CYP2D6: This enzyme is responsible for the metabolism of many psychotropic drugs, including antidepressants, antipsychotics, and beta-blockers. It also metabolizes some endogenous compounds like dopamine and serotonin.
3. CYP2C9: This enzyme plays a significant role in the metabolism of warfarin, phenytoin, and nonsteroidal anti-inflammatory drugs (NSAIDs).
4. CYP2C19: This enzyme is involved in the metabolism of proton pump inhibitors, antidepressants, and clopidogrel.
5. CYP2E1: This enzyme metabolizes various xenobiotics like alcohol, acetaminophen, and carbon tetrachloride, as well as some endogenous compounds like fatty acids and prostaglandins.

Genetic polymorphisms in CYP450 enzymes can significantly affect drug metabolism and response, leading to interindividual variability in drug efficacy and toxicity. Understanding the role of CYP450 enzymes in drug metabolism is crucial for optimizing pharmacotherapy and minimizing adverse effects.

Water pollution is defined medically as the contamination of water sources by harmful or sufficient amounts of foreign substances (pathogens, chemicals, toxic compounds, etc.) which tend to interfere with its normal functioning and can have negative effects on human health. Such pollutants can find their way into water bodies through various means including industrial waste disposal, agricultural runoff, oil spills, sewage and wastewater discharges, and accidental chemical releases, among others.

Exposure to polluted water can lead to a range of health issues, from minor problems like skin irritation or stomach upset, to severe conditions such as neurological disorders, reproductive issues, cancer, and even death in extreme cases. It also poses significant risks to aquatic life, disrupting ecosystems and leading to the decline or extinction of various species. Therefore, maintaining clean and safe water supplies is critical for both human health and environmental preservation.

'Coke' is a term that can have different meanings depending on the context. In the medical field, coke most commonly refers to a solid form of carbon or a type of char produced by heating coal or other organic materials in the absence of air. This form of carbon is relatively pure and low in impurities, making it useful for various industrial applications, including the production of steel and aluminum.

However, 'coke' can also refer to a street name for cocaine, which is a highly addictive stimulant drug derived from the leaves of the coca plant. It is important to note that this usage of the term 'coke' is more commonly associated with illicit drug use and addiction rather than medical terminology.

Therefore, when using the term 'coke' in a medical context, it is essential to clarify its meaning to avoid any confusion or misunderstandings.

Cyclization is a chemical process that involves forming a cyclic structure or ring-shaped molecule from a linear or open-chain compound. In the context of medicinal chemistry and drug design, cyclization reactions are often used to synthesize complex molecules, including drugs, by creating rings or fused ring systems within the molecule's structure.

Cyclization can occur through various mechanisms, such as intramolecular nucleophilic substitution, electrophilic addition, or radical reactions. The resulting cyclized compounds may exhibit different chemical and biological properties compared to their linear precursors, making them valuable targets for drug discovery and development.

In some cases, the cyclization process can lead to the formation of stereocenters within the molecule, which can impact its three-dimensional shape and how it interacts with biological targets. Therefore, controlling the stereochemistry during cyclization reactions is crucial in medicinal chemistry to optimize the desired biological activity.

Overall, cyclization plays a significant role in the design and synthesis of many pharmaceutical compounds, enabling the creation of complex structures that can interact specifically with biological targets for therapeutic purposes.

"Inhalation administration" is a medical term that refers to the method of delivering medications or therapeutic agents directly into the lungs by inhaling them through the airways. This route of administration is commonly used for treating respiratory conditions such as asthma, COPD (chronic obstructive pulmonary disease), and cystic fibrosis.

Inhalation administration can be achieved using various devices, including metered-dose inhalers (MDIs), dry powder inhalers (DPIs), nebulizers, and soft-mist inhalers. Each device has its unique mechanism of delivering the medication into the lungs, but they all aim to provide a high concentration of the drug directly to the site of action while minimizing systemic exposure and side effects.

The advantages of inhalation administration include rapid onset of action, increased local drug concentration, reduced systemic side effects, and improved patient compliance due to the ease of use and non-invasive nature of the delivery method. However, proper technique and device usage are crucial for effective therapy, as incorrect usage may result in suboptimal drug deposition and therapeutic outcomes.

Skin absorption, also known as percutaneous absorption, refers to the process by which substances are taken up by the skin and pass into the systemic circulation. This occurs when a substance is applied topically to the skin and penetrates through the various layers of the epidermis and dermis until it reaches the capillaries, where it can be transported to other parts of the body.

The rate and extent of skin absorption depend on several factors, including the physicochemical properties of the substance (such as its molecular weight, lipophilicity, and charge), the concentration and formulation of the product, the site of application, and the integrity and condition of the skin.

Skin absorption is an important route of exposure for many chemicals, drugs, and cosmetic ingredients, and it can have both therapeutic and toxicological consequences. Therefore, understanding the mechanisms and factors that influence skin absorption is crucial for assessing the safety and efficacy of topical products and for developing strategies to enhance or reduce their absorption as needed.

Tetrahydronaphthalenes are organic compounds that consist of a naphthalene ring with two hydrogens replaced by saturated carbon chains. It is a polycyclic aromatic hydrocarbon (PAH) with a chemical formula C10H12. Tetrahydronaphthalenes can be found in various natural sources, including coal tar and some essential oils. They also have potential applications in the synthesis of pharmaceuticals and other organic compounds.

Deltaproteobacteria is a class of proteobacteria, which are a group of gram-negative bacteria. Deltaproteobacteria are characterized by their unique arrangement of flagella and their ability to perform anaerobic respiration, which means they can grow without oxygen. They play important roles in various environments such as soil, freshwater, and marine ecosystems, where they are involved in processes like sulfur cycling and denitrification. Some members of this class are also known to cause diseases in humans, such as the genera Myxococcus, Bdellovibrio, and Desulfovibrio.

Styrene is an organic compound that is primarily used in the production of polystyrene plastics and resins. In a medical context, styrene is not a term that is typically used to describe a specific disease or condition. However, exposure to high levels of styrene has been linked to potential health effects, including neurological damage, irritation of the eyes, nose, and throat, and possible increased risk of cancer.

Styrene is classified as a possible human carcinogen by the International Agency for Research on Cancer (IARC) based on evidence from animal studies. However, more research is needed to fully understand the potential health risks associated with exposure to styrene in humans.

If you have further questions about styrene or its potential health effects, I would recommend consulting with a healthcare professional or toxicologist who can provide more detailed and personalized advice based on your specific situation and concerns.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Sulfate-reducing bacteria (SRB) are a group of bacteria that chemically reduce sulfates to produce hydrogen sulfide, elemental sulfur, and other sulfur compounds. They are anaerobic, meaning they do not require oxygen to live and grow. These bacteria are commonly found in environments like soil, water, and the digestive tracts of animals, including humans.

In the medical context, SRB can be associated with certain health conditions. For example, they can contribute to dental cavities by producing acid as a byproduct of their metabolism. They can also cause infections in people with compromised immune systems or implanted medical devices, such as heart valves or joint replacements. These infections can lead to the production of harmful sulfur compounds that can damage tissues and cause symptoms like pain, swelling, and discharge.

SRB are also known to play a role in some types of anaerobic digestion, where they help break down organic matter in wastewater treatment plants and other industrial settings. However, their ability to produce corrosive sulfur compounds can cause problems in these environments, such as damage to pipes and equipment.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Ferredoxins are iron-sulfur proteins that play a crucial role in electron transfer reactions in various biological systems, particularly in photosynthesis and nitrogen fixation. They contain one or more clusters of iron and sulfur atoms (known as the iron-sulfur cluster) that facilitate the movement of electrons between different molecules during metabolic processes.

Ferredoxins have a relatively simple structure, consisting of a polypeptide chain that binds to the iron-sulfur cluster. This simple structure allows ferredoxins to participate in a wide range of redox reactions and makes them versatile electron carriers in biological systems. They can accept electrons from various donors and transfer them to different acceptors, depending on the needs of the cell.

In photosynthesis, ferredoxins play a critical role in the light-dependent reactions by accepting electrons from photosystem I and transferring them to NADP+, forming NADPH. This reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) is then used in the Calvin cycle for carbon fixation and the production of glucose.

In nitrogen fixation, ferredoxins help transfer electrons to the nitrogenase enzyme complex, which reduces atmospheric nitrogen gas (N2) into ammonia (NH3), making it available for assimilation by plants and other organisms.

Overall, ferredoxins are essential components of many metabolic pathways, facilitating electron transfer and energy conversion in various biological systems.

Ferredoxin-NADP Reductase (FDNR) is an enzyme that catalyzes the electron transfer from ferredoxin to NADP+, reducing it to NADPH. This reaction plays a crucial role in several metabolic pathways, including photosynthesis and nitrogen fixation.

In photosynthesis, FDNR is located in the stroma of chloroplasts and receives electrons from ferredoxin, which is reduced by photosystem I. The enzyme then transfers these electrons to NADP+, generating NADPH, which is used in the Calvin cycle for carbon fixation.

In nitrogen fixation, FDNR is found in the nitrogen-fixing bacteria and receives electrons from ferredoxin, which is reduced by nitrogenase. The enzyme then transfers these electrons to NADP+, generating NADPH, which is used in the reduction of nitrogen gas (N2) to ammonia (NH3).

FDNR is a flavoprotein that contains a FAD cofactor and an iron-sulfur cluster. The enzyme catalyzes the electron transfer through a series of conformational changes that bring ferredoxin and NADP+ in close proximity, allowing for efficient electron transfer.

In the context of medicine and biology, sulfates are ions or compounds that contain the sulfate group (SO4−2). Sulfate is a polyatomic anion with the structure of a sphere. It consists of a central sulfur atom surrounded by four oxygen atoms in a tetrahedral arrangement.

Sulfates can be found in various biological molecules, such as glycosaminoglycans and proteoglycans, which are important components of connective tissue and the extracellular matrix. Sulfate groups play a crucial role in these molecules by providing negative charges that help maintain the structural integrity and hydration of tissues.

In addition to their biological roles, sulfates can also be found in various medications and pharmaceutical compounds. For example, some laxatives contain sulfate salts, such as magnesium sulfate (Epsom salt) or sodium sulfate, which work by increasing the water content in the intestines and promoting bowel movements.

It is important to note that exposure to high levels of sulfates can be harmful to human health, particularly in the form of sulfur dioxide (SO2), a common air pollutant produced by burning fossil fuels. Prolonged exposure to SO2 can cause respiratory problems and exacerbate existing lung conditions.

Mixed Function Oxygenases (MFOs) are a type of enzyme that catalyze the addition of one atom each from molecular oxygen (O2) to a substrate, while reducing the other oxygen atom to water. These enzymes play a crucial role in the metabolism of various endogenous and exogenous compounds, including drugs, carcinogens, and environmental pollutants.

MFOs are primarily located in the endoplasmic reticulum of cells and consist of two subunits: a flavoprotein component that contains FAD or FMN as a cofactor, and an iron-containing heme protein. The most well-known example of MFO is cytochrome P450, which is involved in the oxidation of xenobiotics and endogenous compounds such as steroids, fatty acids, and vitamins.

MFOs can catalyze a variety of reactions, including hydroxylation, epoxidation, dealkylation, and deamination, among others. These reactions often lead to the activation or detoxification of xenobiotics, making MFOs an important component of the body's defense system against foreign substances. However, in some cases, these reactions can also produce reactive intermediates that may cause toxicity or contribute to the development of diseases such as cancer.

Anaerobiosis is a state in which an organism or a portion of an organism is able to live and grow in the absence of molecular oxygen (O2). In biological contexts, "anaerobe" refers to any organism that does not require oxygen for growth, and "aerobe" refers to an organism that does require oxygen for growth.

There are two types of anaerobes: obligate anaerobes, which cannot tolerate the presence of oxygen and will die if exposed to it; and facultative anaerobes, which can grow with or without oxygen but prefer to grow in its absence. Some organisms are able to switch between aerobic and anaerobic metabolism depending on the availability of oxygen, a process known as "facultative anaerobiosis."

Anaerobic respiration is a type of metabolic process that occurs in the absence of molecular oxygen. In this process, organisms use alternative electron acceptors other than oxygen to generate energy through the transfer of electrons during cellular respiration. Examples of alternative electron acceptors include nitrate, sulfate, and carbon dioxide.

Anaerobic metabolism is less efficient than aerobic metabolism in terms of energy production, but it allows organisms to survive in environments where oxygen is not available or is toxic. Anaerobic bacteria are important decomposers in many ecosystems, breaking down organic matter and releasing nutrients back into the environment. In the human body, anaerobic bacteria can cause infections and other health problems if they proliferate in areas with low oxygen levels, such as the mouth, intestines, or deep tissue wounds.

In medical terms, gases refer to the state of matter that has no fixed shape or volume and expands to fill any container it is placed in. Gases in the body can be normal, such as the oxygen, carbon dioxide, and nitrogen that are present in the lungs and blood, or abnormal, such as gas that accumulates in the digestive tract due to conditions like bloating or swallowing air.

Gases can also be used medically for therapeutic purposes, such as in the administration of anesthesia or in the treatment of certain respiratory conditions with oxygen therapy. Additionally, measuring the amount of gas in the body, such as through imaging studies like X-rays or CT scans, can help diagnose various medical conditions.

Aerospace medicine is a branch of medicine that deals with the health and safety of pilots, astronauts, and passengers during space travel or aircraft flight. It involves studying the effects of various factors such as altitude, weightlessness, radiation, noise, vibration, and temperature extremes on the human body, and developing measures to prevent or mitigate any adverse effects.

Aerospace medicine also encompasses the diagnosis and treatment of medical conditions that occur during space travel or aircraft flight, as well as the development of medical standards and guidelines for pilot and astronaut selection, training, and fitness for duty. Additionally, it includes research into the physiological and psychological challenges of long-duration space missions and the development of countermeasures to maintain crew health and performance during such missions.

Culture media is a substance that is used to support the growth of microorganisms or cells in an artificial environment, such as a petri dish or test tube. It typically contains nutrients and other factors that are necessary for the growth and survival of the organisms being cultured. There are many different types of culture media, each with its own specific formulation and intended use. Some common examples include blood agar, which is used to culture bacteria; Sabouraud dextrose agar, which is used to culture fungi; and Eagle's minimum essential medium, which is used to culture animal cells.

I'm sorry for any confusion, but "geologic sediments" is not a term used in medical definitions. Geological sediments are deposits of material that accumulate over time, usually in layers, as a result of natural geological processes such as weathering, erosion, and deposition. These sediments can eventually become rock formations and provide important clues about the Earth's history, including information about past climates, environments, and life on Earth.

I'm sorry for any confusion, but "Indenes" is not a recognized medical term or concept in the field of medicine or healthcare. It may be that there is a spelling mistake or typo in your question. If you are referring to "Indenes" as a chemical compound, it is a polycyclic aromatic hydrocarbon (PAH) with the molecular formula C9H8. However, I would recommend consulting a chemistry or toxicology resource for information on its non-medical uses and properties.

The peri-naphthalene 1-amino-naphthalene-8-sulfonic acid is a precursor to other peri-naphthalenes. It is prepared by nitration ... Several peri-naphthalenes are prepared via nitrations. Dinitration of naphthalene gives 1,8-dinitronaphthalene, which undergoes ... In organic chemistry, peri-naphthalenes are particular derivatives of naphthalene with the formula C10H6-1,8-X2. Owing to the ... Kilian, P.; Knight, F. R.; Woollins, J. D., "Synthesis of ligands based on naphthalene peri-substituted by Group 15 and 16 ...
... -National Pesticide Information Center Naphthalene-EPA Air Toxics Web Site Naphthalene (PIM 363)-mostly on toxicity ... naphthalene forms the dark blue-green radical anion salts such as sodium naphthalene, Na+C10H− 8. The naphthalene anions are ... Most naphthalene is derived from coal tar. From the 1960s until the 1990s, significant amounts of naphthalene were also ... Naphthalene is used mainly as a precursor to derivative chemicals. The single largest use of naphthalene is the industrial ...
The reaction of naphthalene with lithium can be accelerated by sonication. Methods for assaying lithium naphthalene have been ... 2 LiOH Alkali metal salts of the naphthalene radical anion are used to prepare complexes of naphthalene. Many related radical ... Lithium naphthalene is an organic salt with the chemical formula Li+C 10H− 8. In the research laboratory, it is used as a ... Lithium naphthalene crystallizes with ligands bound to Li+. The compound is prepared by stirring the metallic lithium with ...
The naphthalene tank was enclosed in a water jacket, which was heated to boiling point by engine exhaust. Once the naphthalene ... "Naphthalene evaporating device". Espacenet. Retrieved 30 March 2018. Hamlin, M. L. (1914). "Naphthalene as a Fuel for Motor ... A Naphthalene locomotive was tested in France in 1913. It was built by Schneider-Creusot for use in their own plant. At the ... Naphthalene seemed attractive because of its low cost, due to its origin from coal tar. An experiment was carried out by ...
The alkali metal naphthalene salts are prepared by stirring the metal with naphthalene in an ethereal solvent, usually as ... 2 NaOH Alkali metal salts of the naphthalene radical anion are used to prepare complexes of naphthalene. Connelly, Neil G.; ... Sodium naphthalene is an organic salt with the chemical formula Na+C 10H− 8. In the research laboratory, it is used as a ... With a reduction potential near −2.5 V vs NHE, the naphthalene radical anion is a strong reducing agent. The anion is strongly ...
Alkylated naphthalenes are chemical compounds made by the alkylation of naphthalene or its derivatives with an olefin. These ... "Alkylated Naphthalene Synthetic Base Stocks & Modifiers". King Industries. Retrieved 2023-03-29. (Lubricants, Naphthalenes). ... Not being part of any previous classification, alkylated naphthalenes are considered Group V base oils. For 2020, demand for ... Having an aromatic core, alkylated naphthalenes are better at solvating polar compounds than alkane mineral oils and ...
The naphthalene within cigarettes is different to other sources of naphthalene. The naphthalene that is produced in cigarette ... Naphthalene has also been found to be secreted by termites in order to protect their nests. The termites use naphthalene to ... Naphthalene poisoning (or mothball poisoning) is a form of poisoning that occurs when naphthalene is ingested. Severe poisoning ... Naphthalene exposure is usually insignificant unless exposed to large amounts of naphthalene within production or being near ...
... (PCN) are the products obtained upon treatment of naphthalene with chlorine. The generic chemical ... Chlorinated naphthalenes, International Programme on Chemical Safety CICAD, 2001, volume 34 Neoprene FB Archived 2007-09-27 at ... Chlorinated naphthalenes Archived 2005-07-18 at the Wayback Machine, Chemical Assessment Report S48, 2002, National Industrial ... Flinn, F.B.; Jarvik, N.E. (1936). "Action of certain chlorinated naphthalenes on the liver". Proceedings of the Society for ...
It is one of two monosulfonic acids of naphthalene, the other being naphthalene-1-sulfonic acid. The compound is mainly used in ... Naphthalene-2-sulfonic acid condenses with formaldehyde to give polymeric sulfonic acids. Gerald Booth (2005). "Naphthalene ... Naphthalene-2-sulfonic acid is an organic compound with the formula C10H7SO3H. A colorless, water-soluble solid, it is often ... Naphthalene-2-sulfonic acid undergoes many reactions, some of which are or were of commercial interest. Fusion with sodium ...
It is one of two monosulfonic acids of naphthalene, the other being the more stable naphthalene-2-sulfonic acid. The compound ... Naphthalene-1-sulfonic acid is an organic compound with the formula C10H7SO3H. A colorless, water-soluble solid, it is often ... Naphthalene-1-sulfonic acid undergoes many reactions, some of which are or were of commercial interest. Upon heating with ... Gerald Booth (2005). "Naphthalene Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi: ...
In enzymology, a naphthalene 1,2-dioxygenase (EC 1.14.12.12) is an enzyme that catalyzes the chemical reaction naphthalene + ... Other names in common use include naphthalene dioxygenase, and naphthalene oxygenase. This enzyme participates in 4 metabolic ... Jeffrey AM, Yeh HJ, Jerina DM, Patel TR, Davey JF, Gibson DT (1975). "Initial reactions in the oxidation of naphthalene by ... Ensley BD, Gibson DT (1983). "Naphthalene dioxygenase: purification and properties of a terminal oxygenase component". J. ...
It is classified as a peri-naphthalene, i.e. a 1,8-disubstituted derivative of naphthalene. Owing to its unusual structure, it ... With a pKa of 12.34 for its conjugate acid in aqueous solution, 1,8-bis(dimethylamino)naphthalene is one of the strongest ... 1,8-Bis(dimethylamino)naphthalene is an organic compound with the formula C10H6(NMe2)2 (Me = methyl). ... 1,8-bis(hexamethyltriaminophosphazenyl)naphthalene or HMPN is prepared from 1,8-diaminonaphthalene by reaction with tris( ...
One example is the 1,8-selenosulfide of naphthalene. The selenium-sulfur bond length is about 220 picometers, the average of a ... Meinwald, Jerrold; Dauplaise, David; Clardy, Jon (1977). "Peri-Bridged Naphthalenes. 2. Unsymmetrical Diatomic Chalcogen ...
... naphthalene > fulvene > cyclopentadiene > anthracene > butadiene Dienophile: N2 > CO2 > naphthalene > benzene, nitriles > ...
Older mothballs consisted primarily of naphthalene, but due to naphthalene's flammability, many modern mothball formulations ... IARC classifies naphthalene as possibly carcinogenic to humans and other animals (see also Group 2B). IARC points out that ... Both naphthalene and 1,4-dichlorobenzene undergo sublimation, meaning that they transition from a solid state directly into a ... Mothballs containing naphthalene have been banned within the EU since 2008. As discussed in more detail at Tineola bisselliella ...
De-aromatization of the first ring of the naphthalene system occurs at the expense of 25 kcal/mol. In the next step a bisulfite ... "Naphthalene Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_009. ...
The naphthols are naphthalene homologues of phenol, but more reactive. Both isomers are soluble in simple alcohols, ethers, and ... Traditionally, 2-naphthol is produced by a two-step process that begins with the sulfonation of naphthalene in sulfuric acid: ... It is an isomer of 1-naphthol, differing by the location of the hydroxyl group on the naphthalene ring. ... Booth, Gerald (2005). "Naphthalene Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi: ...
v t e Gerald Booth (2005). "Naphthalene Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi: ...
p. 976-7. ISBN 0-205-05838-8. Gerald Booth (2005). "Naphthalene Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. ...
ISBN 0-471-58589-0 • Gerald Booth "Naphthalene Derivatives" in Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH ... "Naphthalene Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/ ...
... s Naphthalenesulfonates are derivatives of sulfonic acid which contain a naphthalene functional unit. A ... Collin, Gerd; Höke, Hartmut; Greim, Helmut (2003). "Naphthalene and Hydronaphthalenes". Ullmann's Encyclopedia of Industrial ... "Naphthalene Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_009. ...
ISBN 978-1-55861-712-4. "Mamdouh: Naphthalene , The Modern Novel". www.themodernnovel.org. Retrieved 2022-03-25. "The Tank , ...
... is an aromatic amine derived from naphthalene. It can cause bladder cancer (transitional cell carcinoma). It ... 0441". National Institute for Occupational Safety and Health (NIOSH). Gerald Booth (2005). "Naphthalene Derivatives". Ullmann's ...
It is a precursor to naphthalene-1,5-diisocyanate, a precursor to specialty polyurethanes. C10H10N2 Bernes, S.; Pastrana, M.R ... Booth, Gerald (2005). "Naphthalene Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. (Articles ...
It is a precursor to 1,8-bis(dimethylamino)naphthalene. This compound used to produce perimidines by various aldehydes. ... C10H10N2 Booth, Gerald (2005). "Naphthalene Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH ...
Booth, Gerald (2005). "Naphthalene Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi: ... 1,5-Dihydroxynaphthalene is prepared from naphthalene-1,5-disulfonic acid by hydrolysis with strong base followed by ...
Gerd Collin; Hartmut Höke; Helmut Greim (2003). "Naphthalene and Hydronaphthalenes". Ullmann's Encyclopedia of Industrial ... Weinheim: Wiley-VCH.. (Articles with short description, Short description matches Wikidata, Naphthalenes, Aromatic hydrocarbons ...
Gerd Collin; Hartmut Höke; Helmut Greim (2003). "Naphthalene and Hydronaphthalenes". Ullmann's Encyclopedia of Industrial ...
The enthalpy of hydrogenation of naphthalene is relatively low, which allows the tetrahydronaphthalene to be regenerated in the ... The classic hydrogen-donor solvent (or just donor solvent) is tetrahydronaphthalene, which converts to naphthalene by transfer ... Collin, Gerd; Höke, Hartmut; Greim, Helmut (2003). "Naphthalene and Hydronaphthalenes". Ullmann's Encyclopedia of Industrial ...
It is a precursor to the high performance polyester polyethylene naphthalate (PEN, poly(ethylene-2,6-naphthalene dicarboxylate ... Gerd Collin; Hartmut Höke; Helmut Greim (2003). "Naphthalene and Hydronaphthalenes". Ullmann's Encyclopedia of Industrial ... Naphthalenes, All stub articles, Aromatic compound stubs). ...
Chlorinated naphthalenes  Howe, Paul D; Melber, Christine; Kielhorn, Janet; Mangelsdorf, Inge; World Health Organization; ...
Poisoning from naphthalene destroys or changes red blood cells so they cannot carry oxygen. This can cause organ damage. ... Naphthalene is a white solid substance with a strong smell. ... Naphthalene is a white solid substance with a strong smell. ... Poisoning from naphthalene destroys or changes red blood cells so they cannot carry oxygen. This can cause organ damage. ... Note: Naphthalene can sometimes be found in household products abused as inhalants. ...
Naphthalene has caused cancer in animals. Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene have been found in at least ... Exposure to large amounts of naphthalene may damage or destroy some of your red blood cells. ... Exposure to naphthalene, 1-methylnaphthalene, or 2-methylnaphthalene happens mostly from breathing air contaminated from the ... in naphthalene mothballs. Naphthalene can move from a pregnant womans blood to the unborn babys blood. Naphthalene has been ...
5-Naphthalene ester of isocyanic acid, NDI White to light-yellow, crystalline flakes. ... 1,5-Diisocyanatonaphthalene, 1,5-Naphthalene diisocyanate, 1,5-Naphthalene ester of isocyanic acid, NDI ...
Nations Environment Programme, the International Labour Organisation and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of ...
NAPHTHALENE (UNII: 2166IN72UN) (NAPHTHALENE - UNII:2166IN72UN) NAPHTHALENE. 30 [hp_C] in 30 [hp_C]. ... NAPHTHALINUM- naphthalene pellet. Out of scope - Out of scope for RxNorm and will not receive RxNorm normal forms. Out of scope ... NAPHTHALINUM- naphthalene pellet. To receive this label RSS feed. Copy the URL below and paste it into your RSS Reader ... NAPHTHALINUM- naphthalene pellet. If this SPL contains inactivated NDCs listed by the FDA initiated compliance action, they ...
Other names: Decahydro-2,6-dimethylnaphthalene; 2,6-Dimethyldecalin; 2,6-dimethyldecahydro-naphthalene ...
Testing Status of Methyl naphthalene 1321944. Testing Status of Methyl naphthalene 1321944. CASRN: 1321-94-4. Formula: C11-H10 ...
Naphthalene poisoning Naphthalene is a white solid substance with a strong smell. Poisoning from naphthalene destroys or ... associated with chewing or sniffing tobacco include aniline, naphthalene, phenol, pyrene, tar, and 2-naphthylamine. ... oxidative stress, enzyme deficiency, mothballs, fava beans, favism, naphthalene, malaria, anti-malarial drugs, sulfonamides, ...
Naphthalene or mothballs, a commonly used substance in households and freely available in the market is an uncommon form of ... Naphthalene or mothballs, a commonly used substance in households and freely available in the market is an uncommon form of ... Prenatal diagnosis of multiple fetal anomalies in naphthalene-addicted pregnant women: a case report. Boynukalin FK, Baykal C. ... We report an adolescent with addiction to naphthalene balls who developed severe anemia. ...
You have to enable JavaScript in your browsers settings in order to use the eReader.. Or try downloading the content offline. DOWNLOAD ...
NIEHS intramural scientists have defined descriptive terms of particular relevance to their own research, and have ranked those terms accordingly. This search feature obtains best-matches with the terms you choose, and shows an overall score based on the scientific rankings.. View our page to search various areas of interest and methodology.. ...
Information on naphthalene (also called naphthene or naphthalin), for responding to chemical incidents. ... Information on naphthalene (also called naphthene or naphthalin), for responding to chemical incidents. ...
... reaction between arylacetic acids and arylglyoxylic acids efficiently allowed the multistep condensation of seven naphthalene ... Synthesis of a [20]phenacene dodeca-ester by controlled condensation of seven naphthalene-based building blocks† ... Synthesis of a [20]phenacene dodeca-ester by controlled condensation of seven naphthalene-based building blocks G. Naulet, S. ... reaction between arylacetic acids and arylglyoxylic acids efficiently allowed the multistep condensation of seven naphthalene ...
Griffith, B.G. 1940: Effect of indole-butyric acid, indole-acetic acid, and alpha naphthalene-acetic acid on rooting of ... l.) by spraying 2, 4-dichlorophenoxy acetic acid and naphthalene acetic acid Allahabad farmer: (Pub 1972), 45 (6) 581-583. ... Khan, R.U.; Khan, M.S.; Rashid, A.; Farooq, A. 2007: Effect of exogenous indole-3-acetic acid and naphthalene acetic acid on ... Satyanarayana, G.; Rangaswami, G. 1959: Effect of indole acetic acid and a-naphthalene acetic acid on the growth, flowering and ...
Bridged Piperidine Analogues of a High Affinity Naphthalene-Based P2Y14R Antagonist Zhiwei Wen 1 , Veronica Salmaso 1 , Young- ... Bridged Piperidine Analogues of a High Affinity Naphthalene-Based P2Y14R Antagonist Zhiwei Wen et al. J Med Chem. 2022. . ...
与5-Diisocyanato naphthalene 相关的文章列表 ...
Chlorinated naphthalenes. Contributor(s): Howe, Paul D , Melber, Christine , Kielhorn, Janet , Mangelsdorf, Inge , World Health ... Naphthalenes -- toxicity , Risk assessment , Environmental exposure , Occupational exposure , Chemical Toxicology and ...
Prihláste sa k odberu nášho newsletteru.Budeme vás informovať o všetkých zaujímavých akciách a zľavách, ktoré chystáme. A sľubujeme, že spravodajca budeme posielať len občas, aby sme nezahltili vaše e-mailovej schránky. Ak sa vám spravodajca prestane páčiť, máte možnosť sa kedykoľvek odhlásiť.. ...
Toxicokinetic Evaluation (S0571) of Naphthalene (DTXSID8020913) in Rat and Mouse Data. * Annotated Group Parameters (36 kB) ... Toxicokinetic Evaluation (S0606) of Naphthalene (91-20-3) in F344/N Rats via Whole Body Respiratory Exposure Data. * Individual ... TR-500 Toxicology and Carcinogenesis Studies of Naphthalene (CASRN 91-20-3) in F344/N Rats (Inhalation Studies). *[Abstract] ... Genetic Toxicity Evaluation of Naphthalene in Salmonella/E.coli Mutagenicity Test or Ames Test. Study 471098 Summary Data. * ...
Toxicokinetic Evaluation (S0571) of Naphthalene (DTXSID8020913) in Rat and Mouse Data. * Annotated Group Parameters (36 kB) ... Toxicokinetic Evaluation (S0606) of Naphthalene (91-20-3) in F344/N Rats via Whole Body Respiratory Exposure Data. * Individual ... TR-500 Toxicology and Carcinogenesis Studies of Naphthalene (CASRN 91-20-3) in F344/N Rats (Inhalation Studies). *[Abstract] ... Genetic Toxicity Evaluation of Naphthalene in Salmonella/E.coli Mutagenicity Test or Ames Test. Study 471098 Summary Data. * ...
The following discussion is partly quoted from the EU RAR on naphthalene [EU RAR]: ... EU RAR] European Union Risk Assessment Report NAPHTHALENE [CAS No: 91-20-3; EINECS No: 202-049-5] RISK ASSESSMENT European ... A limited set of studies regarding toxicity of naphthalene to microorganisms is available. Blum and Speece (1991) studied the ... Vaishnav (1986) studied the effect of naphthalene on the biodegradation of primary alcohols by a mixed microbial culture. An ...
Search for abbreviations and long forms in lifescience, always up-to-date
Both have similar resonance energy per ring, even Naphthalene has a little higher Resonance energy (127.5 KJ per mol per ring v ... begingroup$ In naphthalene, both rings are similar. In anthracene, the middle one is significantly different (less aromatic) ... Why is naphthalene less stable than benzene according to per benzene ring? ...
We manufacture best quality of naphthalene balls and export it in all india. We also export all kind of cleaning products ... We consistently improve our products and Bigwash naphthalene balls is the result of that. With a singal use. Reveal a rich ... assembly of toilet air fresheners like urinal cube, naphthalene balls, solid air fresheners etc. Manufactured in a variety of ...
Лабораторное оборудование купить с доставкой по всей России в «Донау Инжиниринг». Надежный поставщик • Высокое качество • Гарантия • Сервисное обслуживание.
Experimentation with naphthalene continued for several decades after it was discovered that burning naphthalene produced ... Older mothballs contained naphthalene, which was first registered as a pesticide in the United States in 1948. ... Individuals exposed to naphthalene-containing mothball vapors may experience headaches, nausea, dizziness, respiratory ... 1,4-dichlorobenzene, like naphthalene, is a hazardous chemical to human and animal health. This mothball chemical, according to ...
It features a carboxylmethyl group (CH2CO2H) linked to the 1-position of naphthalene.NAA is a synthetic plant hormone in the ... Naphthalene Acetic Acid 萘乙酸 - NAA - plant growth regulator / rooting powder. 1 review ... It features a carboxylmethyl group (CH2CO2H) linked to the "1-position" of naphthalene.. NAA is a synthetic plant hormone in ...
  • Accumulation of radiolabelled naphthalene-1-acetic acid (1-NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), and indole-3-acetic acid (IAA) has been measured in suspension-cultured tobacco (Nicotiana tabacum) cells. (eurekamag.com)
  • The kinetic parameters and specificity of each carrier have been determined and new information concerning interactions with naphthylphthalamic acid, pyrenoylbenzoic acid, and naphthalene-2-acetic acid are provided. (eurekamag.com)
  • A limited set of studies regarding toxicity of naphthalene to microorganisms is available. (europa.eu)
  • HIGHLIGHTS: Exposure to naphthalene, 1-methylnaphthalene, or 2- methylnaphthalene happens mostly from breathing air contaminated from the burning of wood, tobacco, or fossil fuels, industrial discharges, or moth repellents. (cdc.gov)
  • The major commercial use of ` Breathing air contaminated from industrial discharges or smoke naphthalene is in the manufacture of polyvinyl chloride (PVC) from burning wood, tobacco, or fossil fuels. (cdc.gov)
  • Fuels such as petroleum and coal contain naphthalene. (cdc.gov)
  • An overview of Genetic Toxicology Mammalian Cell Cytogenetics study conclusions related to Naphthalene (91-20-3). (nih.gov)
  • Investigation of the complexation of pyrene and naphthalene with hydro" by Jonathan B. Zung, Thilivhali T. Ndou et al. (lsu.edu)
  • The complexation of the now commercially available chemically modified cyclodextrin hydroxypropyl-β-cyclodextrin with pyrene and naphthalene is compared against the unmodified β-cyclodextrin with the use of fluorescence measurements. (lsu.edu)
  • A pronounced difference in the complexation properties of the two cyclodextrins is observed for the interaction with both pyrene and naphthalene. (lsu.edu)
  • Theoretical investigations regarding the aromatic character of naphthalene, quinoline and isoquinoline have been performed. (upt.ro)
  • This compound was created by replacing a quinoline moeity with a naphthalene moeity which gave rise to a class of molecules that are not susceptible to aldehyde oxidase (AO) metabolism, a major pathway for quinoline-containing molecules. (nih.gov)
  • They have replaced the more toxic camphor and naphthalene types. (nih.gov)
  • People who have recently eaten many mothballs containing naphthalene may be forced to vomit. (medlineplus.gov)
  • Naphthalene or mothballs, a commonly used substance in households and freely available in the market is an uncommon form of inhalant abuse which may lead to severe medical complications. (nih.gov)
  • Older mothballs contained naphthalene, which was first registered as a pesticide in the United States in 1948. (ceylonorganicstore.com)
  • The regiospecific oxidation of the polycyclic aromatic hydrocarbons naphthalene and fluorene was examined with Escherichia coli strains expressing wildtype toluene 4-monooxygenase (T4MO) from Pseudomonas mendocina KR1, toluene para-monooxygenase (TpMO) from Ralstonia pickettii PKO1, toluene ortho-monooxygenase (TOM) from Burkholderia cepacia G4, and toluene/ ortho-xylene monooxygenase (ToMO) from P. stutzeri OX1. (psu.edu)
  • This paper reports the results of mass loss and potentiodynamic polarization measurements on the corrosion inhibition of mild steel in 0.5 M H 2 SO 4 in the temperature range 30-60 °C using sodium naphthalene disulphonic acid (NDSA) as an inhibitor. (uaeu.ac.ae)
  • Bayoumi, FM & Ghanem, WA 2005, ' Corrosion inhibition of mild steel using naphthalene disulfonic acid ', Materials Letters , vol. 59, no. 29-30, pp. 3806-3809. (uaeu.ac.ae)
  • This paper reports the results of mass loss and potentiodynamic polarization measurements on the corrosion inhibition of mild steel in 0.5 M H2SO4 in the temperature range 30-60 °C using sodium naphthalene disulphonic acid (NDSA) as an inhibitor. (uaeu.ac.ae)
  • A series of 4-amino-3-hydroxy-naphthalene-1-sulfonic acid derivatives (1-18) was synthesized and tested in vitro for its anti-microbial potential. (biu.ac.il)
  • The mt-QSAR model for anti-microbial activity revealed the importance of topological parameter, valence zero-order molecular connectivity index ( 0 χ v ) in describing the antimicrobial activity of synthesized 4-amino-3-hydroxy-naphthalene-1-sulfonic acid derivatives. (biu.ac.il)
  • Herein, the synthesis of new naphthalene derivatives and their evaluation as anti-β-amyloidogenic agents are presented. (nih.gov)
  • A graded series of 4 naphthalene concentrations were tested and cultures without toxicant were used as controls. (europa.eu)
  • Why is naphthalene less stable than benzene according to per benzene ring? (stackexchange.com)
  • Touching fabrics that are treated with moth repellents containing naphthalene. (cdc.gov)
  • Note: People with a condition called glucose-6-phosphate dehydrogenase deficiency are more vulnerable to the effects of naphthalene. (medlineplus.gov)
  • Genetic Toxicity Evaluation of Naphthalene in Salmonella/E.coli Mutagenicity Test or Ames Test. (nih.gov)
  • Burning tobacco or wood produces naphthalene. (cdc.gov)
  • Exposure to large amounts of naphthalene may damage or destroy some of your red blood cells. (cdc.gov)
  • Exposure to large amounts of naphthalene may also sites and landfills. (cdc.gov)
  • Exposure to naphthalene, 1-methylnaphthalene and 2-methylnaphthalene from eating foods or drinking beverages is unlikely. (cdc.gov)
  • Exposure to large amounts of naphthalene may also cause nausea, vomiting, diarrhea, blood in the urine, and a yellow color to the skin. (cdc.gov)
  • We investigated the association between biomarkers of dermal exposure, naphthyl-keratin adducts (NKA), and urine naphthalene biomarker levels in 105 workers routinely exposed to jet-fuel. (cdc.gov)
  • dermal exposure to naphthalene. (cdc.gov)
  • Further studies are warranted to characterize the relationship between NKA, other exposure biomarkers, and/or biomarkers of biological effects due to naphthalene and/or PAH exposure. (cdc.gov)
  • Naphthalene is a white solid substance with a strong smell. (medlineplus.gov)
  • 1983) exposed the microorganism Tetrahymena pyriformis to naphthalene and studied the effect on biological activity monitored as population growth. (europa.eu)
  • Reveal a rich assembly of toilet air fresheners like urinal cube, naphthalene balls, solid air fresheners etc. (bigwashindia.com)
  • Studies are made for the following binary systems: (1) naphthalene-h8 and -d8, (2) naphthalene-h8 and -ad1, and (3) naphthalene-h8 and -bd1 , corresponding to strong, medium, and weak perturbations, respectively. (caltech.edu)
  • Kiene and Capone (1984) studied the effect of naphthalene (1,000 µg/kg) on methanogenesis, sulphate reduction and carbon dioxide evolution of anaerobic salt marsh sediment over a 7- to 9-day period. (europa.eu)
  • Naphthalene is a white solid that evaporates easily. (cdc.gov)
  • 1-Methylnaphthalene and 2-methylnaphthalene are expected to act like naphthalene in air, water, or soil because they have similar chemical and physical properties. (cdc.gov)
  • begingroup$ In naphthalene, both rings are similar. (stackexchange.com)
  • We report an adolescent with addiction to naphthalene balls who developed severe anemia. (nih.gov)
  • We consistently improve our products and Bigwash naphthalene balls is the result of that. (bigwashindia.com)
  • The density-of-states functions and optical spectra for binary mixtures of normal naphthalene and"'deuterated~naphthalene were calculated using the pure-crystal density-of-states functions. (caltech.edu)
  • This fact sheet answers the most frequently asked health questions (FAQs) about naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene. (cdc.gov)
  • How can naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene affect my health? (cdc.gov)
  • 1,4-dichlorobenzene, like naphthalene, is a hazardous chemical to human and animal health. (ceylonorganicstore.com)
  • Poisoning from naphthalene destroys or changes red blood cells so they cannot carry oxygen. (medlineplus.gov)
  • Naphthalene enters the environment from industrial and few red blood cells until your body replaces the destroyed cells. (cdc.gov)
  • A moderate correlation was observed between NKA and urine naphthalene levels (p=0.061). (cdc.gov)
  • It features a carboxylmethyl group (CH2CO2H) linked to the "1-position" of naphthalene. (takeitglobal.my)
  • Note: Naphthalene can sometimes be found in household products abused as inhalants. (medlineplus.gov)
  • Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene have been found in at least 687, 36, and 412, respectively, of the 1,662 National Priority List sites identified by the Environmental Protection Agency (EPA). (cdc.gov)
  • Information on naphthalene (also called naphthene or naphthalin), for responding to chemical incidents. (www.gov.uk)