Myocardial Perfusion Imaging
Tomography, Emission-Computed, Single-Photon
Technetium Tc 99m Sestamibi
Thallium Radioisotopes
Organotechnetium Compounds
Dipyridamole
Radiopharmaceuticals
Cardiac-Gated Single-Photon Emission Computer-Assisted Tomography
Perfusion Imaging
Gated Blood-Pool Imaging
Exercise Test
Myocardial Ischemia
Rubidium Radioisotopes
Coronary Angiography
Coronary Artery Disease
Organophosphorus Compounds
Nitrogen Radioisotopes
Coronary Disease
Adenosine
Myocardial Reperfusion
Sensitivity and Specificity
Tomography, Emission-Computed
Artifacts
Fractional Flow Reserve, Myocardial
Myocardial Infarction
Ventriculography, First-Pass
Reproducibility of Results
Image Interpretation, Computer-Assisted
Image Enhancement
Predictive Value of Tests
Ventricular Function, Left
Electrocardiography
Echocardiography
Positron-Emission Tomography
Ventricular Dysfunction, Left
Image Processing, Computer-Assisted
Myocardium
Echocardiography, Stress
Dobutamine
Angina Pectoris
Gadolinium DTPA
Feasibility Studies
Radioisotopes
Stroke Volume
Magnetic Resonance Angiography
Dogs
Tomography, X-Ray Computed
Hyperemia
Hemodynamics
Radionuclide Angiography
Tellurium
Microspheres
Gamma Cameras
Magnetic Resonance Imaging
Radionuclide Imaging
Oximes
Blood Flow Velocity
Magnetic Resonance Imaging, Cine
Myocardial Revascularization
Ammonia
Subtraction Technique
Nuclear Medicine
Observer Variation
Collateral Circulation
Prognosis
Oxygen Radioisotopes
Technetium
Heart Diseases
Microvascular Angina
Fluorocarbons
Diatrizoate
Prospective Studies
Angioplasty, Balloon, Coronary
Severity of Illness Index
Phantoms, Imaging
Myocardial Stunning
Risk Assessment
Algorithms
ROC Curve
Nuclear Medicine Department, Hospital
Fluorine Radioisotopes
Chemotherapy, Cancer, Regional Perfusion
Cardiac-Gated Imaging Techniques
Swine
Heart Ventricles
Radionuclide Generators
Follow-Up Studies
Multidetector Computed Tomography
Cardiac Catheterization
No-Reflow Phenomenon
Organometallic Compounds
Treatment Outcome
Risk Factors
Retrospective Studies
Cardiotonic Agents
Tomography, Spiral Computed
Models, Cardiovascular
Bundle-Branch Block
Adenosine A2 Receptor Agonists
Chi-Square Distribution
Vascular Resistance
Albumins
Radioactive Tracers
Cardiomyopathies
Counterpulsation
Transposition of Great Vessels
Radiographic Image Interpretation, Computer-Assisted
Death
Swine, Miniature
Polygonum cuspidatum
False Positive Reactions
Reference Values
Expert Systems
Imaging, Three-Dimensional
Echocardiography, Doppler
Vasodilation
Microbubbles
Proportional Hazards Models
Radionuclide Ventriculography
Disease Models, Animal
Coronary Artery Bypass
Cardiomyopathy, Hypertrophic
Pericardium
Analysis of Variance
Fluorodeoxyglucose F18
Kaplan-Meier Estimate
Sulfur Hexafluoride
Multivariate Analysis
Radiography, Dual-Energy Scanned Projection
Radiation Dosage
Ventilation-Perfusion Ratio
Stress, Physiological
Infusions, Intravenous
Ischemia
Oxygen Consumption
Heart Failure
Gadolinium
Cardiomyopathy, Dilated
Endpoint Determination
Diabetes Complications
Nitriles
Laser-Doppler Flowmetry
Cardiovascular Agents
Percutaneous Coronary Intervention
Iopamidol
Purines
Radiographic Image Enhancement
Evaluation Studies as Topic
Pilot Projects
3-Iodobenzylguanidine
Physical Exertion
Nitroglycerin
Xenon
Spin Labels
Iohexol
Dilatation, Pathologic
Echo-Planar Imaging
Phosphines
Constriction, Pathologic
Cardiac Pacing, Artificial
Thrombolytic Therapy
Multimodal Imaging
Predicting breast attenuation in patients undergoing myocardial perfusion scintigraphy: a digital x-ray study. (1/557)
Attenuation artifacts are the most common sources of error in myocardial single-photon emission computed tomography (SPECT) imaging. Breast artifacts are the most frequent causes of false positive planar images in female subjects. The purpose of this study was to predict breast adverse attenuation by measuring breast tissue thickness with digital x-ray. Sixty-five consecutive female patients with angina pectoris, who were referred to myocardial perfusion scintigraphy were enrolled in this study. Eighteen patients with normal perfusion imaging and normal coronary angiography composed the first group, whereas the second group consisted of 28 patients with a positive exercise electrocardiogram with anterior ischemia on myocardial perfusion imaging and greater than 50% left anterior descending artery stenosis on angiography. Nineteen patients in the third group had normal exercise electrocardiograms and normal coronary angiographies, but anterior ischemia on perfusion imaging. Digital x-ray records were obtained for measuring breast tissue thickness and Hounsfield density. The rate of breast adverse attenuation was 40% (19/47) in patients with anterior ischemia. The sensitivity and specificity of the prediction of breast adverse attenuation (lateral density less than 550 Hounsfield) were 79% and 11%, respectively. When breast attenuation for a breast thickness greater than 6 cm measured in the left anterior oblique view was predicted, the sensitivity and specificity were 79% and 93%, respectively. In conclusion, breast thickness greater than 6 cm measured from the left anterior oblique view with digital x-ray can predict breast adverse attenuation in female patients, and thereby may decrease the number of unnecessary invasive diagnostic procedures to be performed. (+info)Left ventricular dyssynchrony assessed by two three-dimensional imaging modalities: phase analysis of gated myocardial perfusion SPECT and tri-plane tissue Doppler imaging. (2/557)
PURPOSE: To compare left ventricular (LV) dyssynchrony assessment by phase analysis from gated myocardial perfusion SPECT (GMPS) with LV dyssynchrony assessment by tri-plane tissue Doppler imaging (TDI). Baseline LV dyssynchrony assessed with standard deviation (SD) of time-to-peak systolic velocity of 12 LV segments (Ts-SD) with TDI has proven to be a powerful predictor of response to CRT. Information on LV dyssynchrony can also be provided by GMPS with phase analysis of regional LV maximal count changes throughout the cardiac cycle. METHODS: Forty heart failure patients, referred for evaluation of potential eligibility for CRT, underwent both 3D echocardiography, with tri-plane TDI, and resting GMPS. From tri-plane TDI, Ts-SD was used as a validated parameter of LV dyssynchrony and compared with different indices (histogram bandwidth, phase SD, histogram skewness and kurtosis) derived from phase analysis of GMPS. RESULTS: Histogram bandwidth and phase SD showed good correlation with Ts-SD (r=0.77 and r=0.74, p<0.0001, respectively). Patients with substantial LV dyssynchrony assessed with tri-plane TDI (Ts-SD >or=33 ms) had also significantly higher values of histogram bandwidth and phase SD. CONCLUSIONS: The results of this study support the use of phase analysis by GMPS to evaluate LV dyssynchrony. Histogram bandwidth and phase SD showed the best correlation with Ts-SD assessed with tri-plane TDI and appeared the most optimal variables for assessment of LV dyssynchrony with GMPS. (+info)(99m)Tc-sestamibi uptake in rat skeletal muscle and heart: physiological determinants and correlations. (3/557)
The lipophilic cationic radiotracer (99m)Tc-sestamibi, known to be concentrated within mitochondria, is widely used for myocardial perfusion and to a lesser extent for muscle metabolism imaging. However, the exact distribution pattern in skeletal muscle has not been yet studied in detail. The present study aims to investigate the (99m)Tc-sestamibi uptake in rat skeletal muscle and myocardium in relation to their metabolic characteristics. (99m)Tc-sestamibi was i.v. administered in twenty adult male Wistar rats and uptake, as percent of injected dose per tissue gram (%ID/g), in the myocardium, soleus, extensor digitorum longus and gastrocnemius muscles was assessed 2 h after the injection. Muscle uptake was also correlated with myocardial uptake, muscle weight and body weight. Skeletal muscle (99m)Tc-sestamibi uptake was a small (9-16 %) fraction of that found in myocardium (1.71+/-0.63 %ID/g). Among the three hindlimb muscles considered, the slow-oxidative soleus muscle showed the highest uptake (0.28+/-0.16 %ID/g). Metabolically diverse parts of the gastrocnemius muscle showed different uptake. Skeletal muscle uptake was positively correlated with myocardial uptake and both were negatively correlated with tissue and body weight. Skeletal muscle and myocardium (99m)Tc-sestamibi uptake is related to their metabolic profile. Myocardium, with an exceptional rich mitochondrial concentration, shows much higher (99m)Tc-sestamibi uptake compared to skeletal muscles. Among muscles, uptake is dependent on their mitochondrial content. Evidence of matching exists between myocardial and muscle uptake, and both are size-dependent. (+info)Direct comparison between pharmacological stress with adenosine triphosphate disodium and exercise stress myocardial perfusion imagings. (4/557)
(+info)High spatial resolution myocardial perfusion cardiac magnetic resonance for the detection of coronary artery disease. (5/557)
(+info)Low-flow perfusion of guinea pig isolated hearts with 26 degrees C air-saturated Lifor solution for 20 hours preserves function and metabolism. (6/557)
(+info)Semi-automated analysis of dynamic changes in myocardial contrast from real-time three-dimensional echocardiographic images as a basis for volumetric quantification of myocardial perfusion. (7/557)
(+info)Recurrent myocardial infarction in a young football player with antithrombin III deficiency. (8/557)
Acute myocardial infarction is a rare condition in young athletes. One of the causes could be a hypercoagulable state due to congenital antithrombin III deficiency, together with a prothrombotic state soon after strenuous physical training. We present the case of myocardial reinfarction in young football player with antithrombin III deficiency, treated with primary percutaneous coronary intervention and drug eluting stent, as well as the functional repercussions of continuous intensive physical activity. (+info)Myocardial ischemia can be caused by a variety of factors, including coronary artery disease, high blood pressure, diabetes, and smoking. It can also be triggered by physical exertion or stress.
There are several types of myocardial ischemia, including:
1. Stable angina: This is the most common type of myocardial ischemia, and it is characterized by a predictable pattern of chest pain that occurs during physical activity or emotional stress.
2. Unstable angina: This is a more severe type of myocardial ischemia that can occur without any identifiable trigger, and can be accompanied by other symptoms such as shortness of breath or vomiting.
3. Acute coronary syndrome (ACS): This is a condition that includes both stable angina and unstable angina, and it is characterized by a sudden reduction in blood flow to the heart muscle.
4. Heart attack (myocardial infarction): This is a type of myocardial ischemia that occurs when the blood flow to the heart muscle is completely blocked, resulting in damage or death of the cardiac tissue.
Myocardial ischemia can be diagnosed through a variety of tests, including electrocardiograms (ECGs), stress tests, and imaging studies such as echocardiography or cardiac magnetic resonance imaging (MRI). Treatment options for myocardial ischemia include medications such as nitrates, beta blockers, and calcium channel blockers, as well as lifestyle changes such as quitting smoking, losing weight, and exercising regularly. In severe cases, surgical procedures such as coronary artery bypass grafting or angioplasty may be necessary.
The buildup of plaque in the coronary arteries is often caused by high levels of low-density lipoprotein (LDL) cholesterol, smoking, high blood pressure, diabetes, and a family history of heart disease. The plaque can also rupture, causing a blood clot to form, which can completely block the flow of blood to the heart muscle, leading to a heart attack.
CAD is the most common type of heart disease and is often asymptomatic until a serious event occurs. Risk factors for CAD include:
* Age (men over 45 and women over 55)
* Gender (men are at greater risk than women, but women are more likely to die from CAD)
* Family history of heart disease
* High blood pressure
* High cholesterol
* Diabetes
* Smoking
* Obesity
* Lack of exercise
Diagnosis of CAD typically involves a physical exam, medical history, and results of diagnostic tests such as:
* Electrocardiogram (ECG or EKG)
* Stress test
* Echocardiogram
* Coronary angiography
Treatment for CAD may include lifestyle changes such as a healthy diet, regular exercise, stress management, and quitting smoking. Medications such as beta blockers, ACE inhibitors, and statins may also be prescribed to manage symptoms and slow the progression of the disease. In severe cases, surgical intervention such as coronary artery bypass grafting (CABG) or percutaneous coronary intervention (PCI) may be necessary.
Prevention of CAD includes managing risk factors such as high blood pressure, high cholesterol, and diabetes, quitting smoking, maintaining a healthy weight, and getting regular exercise. Early detection and treatment of CAD can help to reduce the risk of complications and improve quality of life for those affected by the disease.
Coronary disease is often caused by a combination of genetic and lifestyle factors, such as high blood pressure, high cholesterol levels, smoking, obesity, and a lack of physical activity. It can also be triggered by other medical conditions, such as diabetes and kidney disease.
The symptoms of coronary disease can vary depending on the severity of the condition, but may include:
* Chest pain or discomfort (angina)
* Shortness of breath
* Fatigue
* Swelling of the legs and feet
* Pain in the arms and back
Coronary disease is typically diagnosed through a combination of physical examination, medical history, and diagnostic tests such as electrocardiograms (ECGs), stress tests, and cardiac imaging. Treatment for coronary disease may include lifestyle changes, medications to control symptoms, and surgical procedures such as angioplasty or bypass surgery to improve blood flow to the heart.
Preventative measures for coronary disease include:
* Maintaining a healthy diet and exercise routine
* Quitting smoking and limiting alcohol consumption
* Managing high blood pressure, high cholesterol levels, and other underlying medical conditions
* Reducing stress through relaxation techniques or therapy.
There are different types of myocardial infarctions, including:
1. ST-segment elevation myocardial infarction (STEMI): This is the most severe type of heart attack, where a large area of the heart muscle is damaged. It is characterized by a specific pattern on an electrocardiogram (ECG) called the ST segment.
2. Non-ST-segment elevation myocardial infarction (NSTEMI): This type of heart attack is less severe than STEMI, and the damage to the heart muscle may not be as extensive. It is characterized by a smaller area of damage or a different pattern on an ECG.
3. Incomplete myocardial infarction: This type of heart attack is when there is some damage to the heart muscle but not a complete blockage of blood flow.
4. Collateral circulation myocardial infarction: This type of heart attack occurs when there are existing collateral vessels that bypass the blocked coronary artery, which reduces the amount of damage to the heart muscle.
Symptoms of a myocardial infarction can include chest pain or discomfort, shortness of breath, lightheadedness, and fatigue. These symptoms may be accompanied by anxiety, fear, and a sense of impending doom. In some cases, there may be no noticeable symptoms at all.
Diagnosis of myocardial infarction is typically made based on a combination of physical examination findings, medical history, and diagnostic tests such as an electrocardiogram (ECG), cardiac enzyme tests, and imaging studies like echocardiography or cardiac magnetic resonance imaging.
Treatment of myocardial infarction usually involves medications to relieve pain, reduce the amount of work the heart has to do, and prevent further damage to the heart muscle. These may include aspirin, beta blockers, ACE inhibitors or angiotensin receptor blockers, and statins. In some cases, a procedure such as angioplasty or coronary artery bypass surgery may be necessary to restore blood flow to the affected area.
Prevention of myocardial infarction involves managing risk factors such as high blood pressure, high cholesterol, smoking, diabetes, and obesity. This can include lifestyle changes such as a healthy diet, regular exercise, and stress reduction, as well as medications to control these conditions. Early detection and treatment of heart disease can help prevent myocardial infarction from occurring in the first place.
The severity of coronary stenosis can range from mild to severe, with blockages ranging from 15% to over 90%. In mild cases, lifestyle changes and medication may be enough to manage symptoms. However, more severe cases typically require interventional procedures such as angioplasty or bypass surgery to improve blood flow to the heart.
There are several potential causes of LVD, including:
1. Coronary artery disease: The buildup of plaque in the coronary arteries can lead to a heart attack, which can damage the left ventricle and impair its ability to function properly.
2. Heart failure: When the heart is unable to pump enough blood to meet the body's needs, it can lead to LVD.
3. Cardiomyopathy: This is a condition where the heart muscle becomes weakened or enlarged, leading to impaired function of the left ventricle.
4. Heart valve disease: Problems with the heart valves can disrupt the normal flow of blood and cause LVD.
5. Hypertension: High blood pressure can cause damage to the heart muscle and lead to LVD.
6. Genetic factors: Some people may be born with genetic mutations that predispose them to developing LVD.
7. Viral infections: Certain viral infections, such as myocarditis, can inflame and damage the heart muscle, leading to LVD.
8. Alcohol or drug abuse: Substance abuse can damage the heart muscle and lead to LVD.
9. Nutritional deficiencies: A diet lacking essential nutrients can lead to damage to the heart muscle and increase the risk of LVD.
Diagnosis of LVD typically involves a physical exam, medical history, and results of diagnostic tests such as electrocardiograms (ECGs), echocardiograms, and stress tests. Treatment options for LVD depend on the underlying cause, but may include medications to improve cardiac function, lifestyle changes, and in severe cases, surgery or other procedures.
Preventing LVD involves taking steps to maintain a healthy heart and reducing risk factors such as high blood pressure, smoking, and obesity. This can be achieved through a balanced diet, regular exercise, stress management, and avoiding substance abuse. Early detection and treatment of underlying conditions that increase the risk of LVD can also help prevent the condition from developing.
Angina pectoris is a medical condition that is characterized by recurring chest pain or discomfort due to reduced blood flow and oxygen supply to the heart muscle, specifically the myocardium. It is also known as stable angina or effort angina. The symptoms of angina pectoris typically occur during physical activity or emotional stress and are relieved by rest.
The term "angina" comes from the Latin word for "strangulation," which refers to the feeling of tightness or constriction in the chest that is associated with the condition. Angina pectoris can be caused by atherosclerosis, or the buildup of plaque in the coronary arteries, which supply blood to the heart muscle. This buildup can lead to the formation of atherosclerotic plaques that can narrow the coronary arteries and reduce blood flow to the heart muscle, causing chest pain.
There are several types of angina pectoris, including:
1. Stable angina: This is the most common type of angina and is characterized by predictable and reproducible symptoms that occur during specific situations or activities, such as exercise or emotional stress.
2. Unstable angina: This type of angina is characterized by unpredictable and changing symptoms that can occur at rest or with minimal exertion. It is often a sign of a more severe underlying condition, such as a heart attack.
3. Variant angina: This type of angina occurs during physical activity, but the symptoms are not relieved by rest.
4. Prinzmetal's angina: This is a rare type of angina that occurs at rest and is characterized by a feeling of tightness or constriction in the chest.
The diagnosis of angina pectoris is typically made based on a combination of physical examination, medical history, and diagnostic tests such as electrocardiogram (ECG), stress test, and imaging studies. Treatment for angina pectoris usually involves lifestyle modifications, such as regular exercise, a healthy diet, and stress management, as well as medications to relieve symptoms and reduce the risk of complications. In some cases, surgery or other procedures may be necessary to treat the underlying condition causing the angina.
In some cases, hyperemia can be a sign of a more serious underlying condition that requires medical attention. For example, if hyperemia is caused by an inflammatory or infectious process, it may lead to tissue damage or organ dysfunction if left untreated.
Hyperemia can occur in various parts of the body, including the skin, muscles, organs, and other tissues. It is often diagnosed through physical examination and imaging tests such as ultrasound, computed tomography (CT), or magnetic resonance imaging (MRI). Treatment for hyperemia depends on its underlying cause, and may include antibiotics, anti-inflammatory medications, or surgery.
In the context of dermatology, hyperemia is often used to describe a condition called erythema, which is characterized by redness and swelling of the skin due to increased blood flow. Erythema can be caused by various factors, such as sun exposure, allergic reactions, or skin infections. Treatment for erythema may include topical medications, oral medications, or other therapies depending on its underlying cause.
There are many different types of heart diseases, including:
1. Coronary artery disease: The buildup of plaque in the coronary arteries, which supply blood to the heart muscle, leading to chest pain or a heart attack.
2. Heart failure: When the heart is unable to pump enough blood to meet the body's needs, leading to fatigue, shortness of breath, and swelling in the legs.
3. Arrhythmias: Abnormal heart rhythms, such as atrial fibrillation or ventricular tachycardia, which can cause palpitations, dizziness, and shortness of breath.
4. Heart valve disease: Problems with the heart valves, which can lead to blood leaking back into the chambers or not being pumped effectively.
5. Cardiomyopathy: Disease of the heart muscle, which can lead to weakened heart function and heart failure.
6. Heart murmurs: Abnormal sounds heard during a heartbeat, which can be caused by defects in the heart valves or abnormal blood flow.
7. Congenital heart disease: Heart defects present at birth, such as holes in the heart or abnormal blood vessels.
8. Myocardial infarction (heart attack): Damage to the heart muscle due to a lack of oxygen, often caused by a blockage in a coronary artery.
9. Cardiac tamponade: Fluid accumulation around the heart, which can cause compression of the heart and lead to cardiac arrest.
10. Endocarditis: Infection of the inner lining of the heart, which can cause fever, fatigue, and heart valve damage.
Heart diseases can be diagnosed through various tests such as electrocardiogram (ECG), echocardiogram, stress test, and blood tests. Treatment options depend on the specific condition and may include lifestyle changes, medication, surgery, or a combination of these.
The symptoms of microvascular angina are similar to those of stable angina, including chest pain or discomfort, shortness of breath, and fatigue. However, microvascular angina episodes can be more frequent and unpredictable than stable angina, and may occur at rest or with minimal exertion.
The diagnosis of microvascular angina is based on a combination of clinical symptoms, physical examination findings, and diagnostic tests such as electrocardiography (ECG), echocardiography, and coronary angiography. Treatment for microvascular angina typically involves medications to relax the blood vessels and improve blood flow to the heart, as well as lifestyle changes such as regular exercise and a healthy diet. In severe cases, surgical intervention may be necessary.
Microvascular angina is considered a syndrome rather than a disease, and it is believed to be caused by a combination of genetic and environmental factors, including smoking, high blood pressure, and high cholesterol levels. It is more common in people who are middle-aged or older, and affects men and women equally.
Overall, microvascular angina is a serious condition that can have a significant impact on quality of life, and it is important for individuals who experience symptoms to seek medical attention to receive an accurate diagnosis and appropriate treatment. With proper management, many people with microvascular angina are able to lead active and fulfilling lives.
There are several possible causes of chest pain, including:
1. Coronary artery disease: The most common cause of chest pain is coronary artery disease, which occurs when the coronary arteries that supply blood to the heart become narrowed or blocked. This can lead to a heart attack if the blood flow to the heart muscle is severely reduced.
2. Heart attack: A heart attack occurs when the heart muscle becomes damaged or dies due to a lack of oxygen and nutrients. This can cause severe chest pain, as well as other symptoms such as shortness of breath, lightheadedness, and fatigue.
3. Acute coronary syndrome: This is a group of conditions that occur when the blood flow to the heart muscle is suddenly blocked or reduced, leading to chest pain or discomfort. In addition to heart attack, acute coronary syndrome can include unstable angina and non-ST-segment elevation myocardial infarction (NSTEMI).
4. Pulmonary embolism: A pulmonary embolism occurs when a blood clot forms in the lungs and blocks the flow of blood to the heart, causing chest pain and shortness of breath.
5. Pneumonia: An infection of the lungs can cause chest pain, fever, and difficulty breathing.
6. Costochondritis: This is an inflammation of the cartilage that connects the ribs to the breastbone (sternum), which can cause chest pain and tenderness.
7. Tietze's syndrome: This is a condition that occurs when the cartilage and muscles in the chest are injured, leading to chest pain and swelling.
8. Heart failure: When the heart is unable to pump enough blood to meet the body's needs, it can cause chest pain, shortness of breath, and fatigue.
9. Pericarditis: An inflammation of the membrane that surrounds the heart (pericardium) can cause chest pain, fever, and difficulty breathing.
10. Precordial catch syndrome: This is a condition that occurs when the muscles and tendons between the ribs become inflamed, causing chest pain and tenderness.
These are just a few of the many possible causes of chest pain. If you are experiencing chest pain, it is important to seek medical attention right away to determine the cause and receive proper treatment.
During myocardial stunning, the heart muscle cells experience a temporary reduction in contractility and an increase in the amount of lactic acid produced. This can lead to symptoms such as chest pain, shortness of breath, and fatigue. In severe cases, myocardial stunning can progress to myocardial infarction (heart attack) or cardiac arrest.
Myocardial stunning is often seen in athletes who engage in intense exercise, such as marathon runners or professional football players. It can also occur in people with pre-existing heart conditions, such as coronary artery disease or hypertension.
Treatment of myocardial stunning typically involves addressing the underlying cause, such as reducing stress on the heart or improving blood flow to the myocardium. In severe cases, medications such as nitrates or beta blockers may be used to reduce the workload on the heart and improve contractility. In some cases, hospitalization may be necessary to monitor the condition and provide appropriate treatment.
Prevention of myocardial stunning involves taking steps to reduce the risk factors for heart disease, such as maintaining a healthy diet, exercising regularly, and managing stress. It is also important to seek medical attention if symptoms of myocardial stunning are present, as prompt treatment can help prevent more severe complications.
The "no-reflow" phenomenon is defined as the absence of hyperemia (increased blood flow) in the myocardium after successful reperfusion therapy, which includes primary percutaneous coronary intervention (PCI) or thrombolysis. It is characterized by a decrease in the size of the infarct area, but not complete resolution of the infarction.
The no-reflow phenomenon can be diagnosed using various techniques such as echocardiography, cardiac magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) myocardial perfusion imaging. Treatment for the no-reflow phenomenon is aimed at addressing the underlying cause, such as managing blood pressure, controlling blood sugar levels, and administering medications to reduce inflammation and improve coronary blood flow.
In summary, the no-reflow phenomenon is a complex condition that can occur after reperfusion therapy, characterized by reduced or absent blood flow to certain areas of the heart muscle despite adequate perfusion pressure. Prompt diagnosis and appropriate treatment are essential to prevent further damage and improve outcomes in patients with this condition.
The term "asymptomatic" means "not showing symptoms."
In medical terminology, the word asymptomatic is used to describe a person who has a disease or condition but does not show any symptoms. Symptoms are changes in the body or mind that indicate the presence of a disease or condition. For example, fever, pain, and fatigue are all symptoms of an infection.
Asymptomatic diseases can be difficult to diagnose because they do not cause any noticeable symptoms. In many cases, these diseases are only discovered through routine medical testing or exams. For example, a person may have high blood pressure without knowing it, as there are usually no noticeable symptoms until the condition is advanced.
The importance of screening tests and early diagnosis
Screening tests are medical tests that are performed on people who do not have any symptoms of a disease or condition. These tests are designed to detect diseases or conditions before they cause any noticeable symptoms. Examples of screening tests include blood pressure checks, cholesterol tests, mammograms, and colonoscopies.
Early diagnosis is critical for successfully treating many asymptomatic diseases. When a disease or condition is detected early, it can be treated more effectively before it causes any significant damage. In some cases, early diagnosis may even prevent the development of complications.
The importance of screening tests and early diagnosis cannot be overstated. By detecting diseases or conditions before they cause symptoms, individuals can receive treatment before any long-term damage occurs. This can help to improve their quality of life, increase their lifespan, and reduce the risk of complications.
The importance of screening tests and early diagnosis is particularly important for certain populations, such as older adults or those with a family history of certain diseases or conditions. These individuals may be at a higher risk for developing certain asymptomatic diseases, and screening tests can help to detect these conditions before they cause any noticeable symptoms.
The benefits of early diagnosis include:
1. Improved treatment outcomes: When a disease or condition is detected early, it can be treated more effectively before it causes any significant damage. This can improve the chances of successful treatment and reduce the risk of complications.
2. Prevention of long-term damage: By detecting diseases or conditions before they cause any noticeable symptoms, individuals can receive treatment before any long-term damage occurs. This can help to preserve their quality of life and increase their lifespan.
3. Reduced healthcare costs: Early diagnosis can reduce healthcare costs by preventing the need for more expensive treatments or hospitalizations that may be required if a condition is allowed to progress untreated.
4. Increased awareness: Screening tests and early diagnosis can increase awareness of certain diseases or conditions, which can lead to increased education and advocacy efforts aimed at prevention and treatment.
5. Improved patient outcomes: Early diagnosis can lead to improved patient outcomes by allowing for earlier intervention and treatment, which can improve the chances of successful treatment and reduce the risk of complications.
6. Reduced suffering: By detecting diseases or conditions before they cause any noticeable symptoms, individuals can receive treatment before they experience any unnecessary suffering.
7. Increased survival rates: Early diagnosis can lead to increased survival rates for certain diseases or conditions, particularly those that are more treatable when detected early.
8. Better management of chronic conditions: Screening tests and early diagnosis can help individuals with chronic conditions to manage their condition more effectively, which can improve their quality of life and increase their lifespan.
9. Improved patient satisfaction: Early diagnosis can lead to improved patient satisfaction by providing individuals with a sense of control over their health and well-being.
10. Reduced anxiety: By detecting diseases or conditions before they cause any noticeable symptoms, individuals may experience reduced anxiety about their health and well-being.
Overall, early diagnosis has the potential to significantly improve patient outcomes and quality of life for individuals with a wide range of medical conditions. It is important for healthcare providers to prioritize early diagnosis and screening tests in order to provide the best possible care for their patients.
There are three main types of bundle branch blocks:
1. Right bundle branch block (RBBB): This occurs when the electrical conduction bundle that carries the heart's rhythm from the right atrium to the right ventricle is damaged or diseased.
2. Left bundle branch block (LBBB): This occurs when the electrical conduction bundle that carries the heart's rhythm from the left atrium to the left ventricle is damaged or diseased.
3. Bifascicular bundle branch block: This occurs when two of the electrical conduction bundles are damaged or diseased.
Symptoms of bundle branch block may include:
* Heart palpitations
* Slow or irregular heartbeat
* Shortness of breath
* Fatigue
* Dizziness or lightheadedness
* Chest pain or discomfort
Diagnosis of bundle branch block is typically made using an electrocardiogram (ECG) test, which measures the electrical activity of the heart. Treatment options for BBB may include medications to regulate the heartbeat, cardiac resynchronization therapy (CRT) to help both ventricles beat together, or implantable cardioverter-defibrillator (ICD) to prevent life-threatening arrhythmias. In some cases, surgery may be necessary to repair or replace damaged heart tissue.
It is important to note that bundle branch block can increase the risk of developing other cardiac conditions such as heart failure, atrial fibrillation, and ventricular tachycardia. Therefore, it is essential for individuals with BBB to work closely with their healthcare provider to manage their condition and reduce the risk of complications.
There are several types of cardiomyopathies, each with distinct characteristics and symptoms. Some of the most common forms of cardiomyopathy include:
1. Hypertrophic cardiomyopathy (HCM): This is the most common form of cardiomyopathy and is characterized by an abnormal thickening of the heart muscle, particularly in the left ventricle. HCM can lead to obstruction of the left ventricular outflow tract and can increase the risk of sudden death.
2. Dilated cardiomyopathy: This type of cardiomyopathy is characterized by a decrease in the heart's ability to pump blood effectively, leading to enlargement of the heart and potentially life-threatening complications such as congestive heart failure.
3. Restrictive cardiomyopathy: This type of cardiomyopathy is characterized by stiffness of the heart muscle, which makes it difficult for the heart to fill with blood. This can lead to shortness of breath and fatigue.
4. Left ventricular non-compaction (LVNC): This is a rare type of cardiomyopathy that occurs when the left ventricle does not properly compact, leading to reduced cardiac function and potentially life-threatening complications.
5. Cardiac amyloidosis: This is a condition in which abnormal proteins accumulate in the heart tissue, leading to stiffness and impaired cardiac function.
6. Right ventricular cardiomyopathy (RVCM): This type of cardiomyopathy is characterized by impaired function of the right ventricle, which can lead to complications such as pulmonary hypertension and heart failure.
7. Endocardial fibroelastoma: This is a rare type of cardiomyopathy that occurs when abnormal tissue grows on the inner lining of the heart, leading to reduced cardiac function and potentially life-threatening complications.
8. Cardiac sarcoidosis: This is a condition in which inflammatory cells accumulate in the heart, leading to impaired cardiac function and potentially life-threatening complications.
9. Hypertrophic cardiomyopathy (HCM): This is a condition in which the heart muscle thickens, leading to reduced cardiac function and potentially life-threatening complications such as arrhythmias and sudden death.
10. Hypokinetic left ventricular cardiomyopathy: This type of cardiomyopathy is characterized by decreased contraction of the left ventricle, leading to reduced cardiac function and potentially life-threatening complications such as heart failure.
It's important to note that some of these types of cardiomyopathy are more common in certain populations, such as hypertrophic cardiomyopathy being more common in young athletes. Additionally, some types of cardiomyopathy may have overlapping symptoms or co-occurring conditions, so it's important to work with a healthcare provider for an accurate diagnosis and appropriate treatment.
In a normal heart, the aorta arises from the left ventricle and the pulmonary artery arises from the right ventricle. In TGV, the positions of these vessels are reversed, with the aorta arising from the right ventricle and the pulmonary artery arising from the left ventricle. This can lead to a variety of complications, including cyanosis (blue discoloration of the skin), tachycardia (rapid heart rate), and difficulty breathing.
TGV is often diagnosed during infancy or early childhood, and treatment typically involves surgery to repair the defect. In some cases, a procedure called an arterial switch may be performed, in which the aorta and pulmonary artery are surgically reversed to their normal positions. In other cases, a heart transplant may be necessary. With proper treatment, many individuals with TGV can lead active and healthy lives. However, they may require ongoing monitoring and care throughout their lives to manage any potential complications.
In medical terms, death is defined as the irreversible cessation of all bodily functions that are necessary for life. This includes the loss of consciousness, the absence of breathing, heartbeat, and other vital signs. Brain death, which occurs when the brain no longer functions, is considered a definitive sign of death.
The medical professionals use various criteria to determine death, such as:
1. Cessation of breathing: When an individual stops breathing for more than 20 minutes, it is considered a sign of death.
2. Cessation of heartbeat: The loss of heartbeat for more than 20 minutes is another indicator of death.
3. Loss of consciousness: If an individual is unresponsive and does not react to any stimuli, it can be assumed that they have died.
4. Brain death: When the brain no longer functions, it is considered a definitive sign of death.
5. Decay of body temperature: After death, the body's temperature begins to decrease, which is another indicator of death.
In some cases, medical professionals may use advanced technologies such as electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) to confirm brain death. These tests can help determine whether the brain has indeed ceased functioning and if there is no hope of reviving the individual.
It's important to note that while death is a natural part of life, it can be a difficult and emotional experience for those who are left behind. It's essential to provide support and care to the family members and loved ones of the deceased during this challenging time.
1) They share similarities with humans: Many animal species share similar biological and physiological characteristics with humans, making them useful for studying human diseases. For example, mice and rats are often used to study diseases such as diabetes, heart disease, and cancer because they have similar metabolic and cardiovascular systems to humans.
2) They can be genetically manipulated: Animal disease models can be genetically engineered to develop specific diseases or to model human genetic disorders. This allows researchers to study the progression of the disease and test potential treatments in a controlled environment.
3) They can be used to test drugs and therapies: Before new drugs or therapies are tested in humans, they are often first tested in animal models of disease. This allows researchers to assess the safety and efficacy of the treatment before moving on to human clinical trials.
4) They can provide insights into disease mechanisms: Studying disease models in animals can provide valuable insights into the underlying mechanisms of a particular disease. This information can then be used to develop new treatments or improve existing ones.
5) Reduces the need for human testing: Using animal disease models reduces the need for human testing, which can be time-consuming, expensive, and ethically challenging. However, it is important to note that animal models are not perfect substitutes for human subjects, and results obtained from animal studies may not always translate to humans.
6) They can be used to study infectious diseases: Animal disease models can be used to study infectious diseases such as HIV, TB, and malaria. These models allow researchers to understand how the disease is transmitted, how it progresses, and how it responds to treatment.
7) They can be used to study complex diseases: Animal disease models can be used to study complex diseases such as cancer, diabetes, and heart disease. These models allow researchers to understand the underlying mechanisms of the disease and test potential treatments.
8) They are cost-effective: Animal disease models are often less expensive than human clinical trials, making them a cost-effective way to conduct research.
9) They can be used to study drug delivery: Animal disease models can be used to study drug delivery and pharmacokinetics, which is important for developing new drugs and drug delivery systems.
10) They can be used to study aging: Animal disease models can be used to study the aging process and age-related diseases such as Alzheimer's and Parkinson's. This allows researchers to understand how aging contributes to disease and develop potential treatments.
The exact cause of HCM is not fully understood, but it is thought to be related to a combination of genetic and environmental factors. Some people with HCM have a family history of the condition, and it is also more common in certain populations such as athletes and individuals with a history of hypertension or diabetes.
Symptoms of HCM can vary from person to person and may include shortness of breath, fatigue, palpitations, and chest pain. In some cases, HCM may not cause any symptoms at all and may be detected only through a physical examination or diagnostic tests such as an echocardiogram or electrocardiogram (ECG).
Treatment for HCM typically focuses on managing symptoms and reducing the risk of complications. This may include medications to reduce blood pressure, control arrhythmias, or improve heart function, as well as lifestyle modifications such as regular exercise and a healthy diet. In some cases, surgery or other procedures may be necessary to treat HCM.
Prognosis for individuals with HCM varies depending on the severity of the condition and the presence of any complications. With appropriate treatment and management, many people with HCM can lead active and fulfilling lives, but it is important to receive regular monitoring and care from a healthcare provider to manage the condition effectively.
There are several types of diabetic angiopathies, including:
1. Peripheral artery disease (PAD): This occurs when the blood vessels in the legs and arms become narrowed or blocked, leading to reduced blood flow and oxygen supply to the limbs.
2. Peripheral neuropathy: This is damage to the nerves in the hands and feet, which can cause pain, numbness, and weakness.
3. Retinopathy: This is damage to the blood vessels in the retina, which can lead to vision loss and blindness.
4. Nephropathy: This is damage to the kidneys, which can lead to kidney failure and the need for dialysis.
5. Cardiovascular disease: This includes heart attack, stroke, and other conditions that affect the heart and blood vessels.
The risk of developing diabetic angiopathies increases with the duration of diabetes and the level of blood sugar control. Other factors that can increase the risk include high blood pressure, high cholesterol, smoking, and a family history of diabetes-related complications.
Symptoms of diabetic angiopathies can vary depending on the specific type of complication and the location of the affected blood vessels or nerves. Common symptoms include:
* Pain or discomfort in the arms, legs, hands, or feet
* Numbness or tingling sensations in the hands and feet
* Weakness or fatigue in the limbs
* Difficulty healing wounds or cuts
* Vision changes or blindness
* Kidney problems or failure
* Heart attack or stroke
Diagnosis of diabetic angiopathies typically involves a combination of physical examination, medical history, and diagnostic tests such as ultrasound, MRI, or CT scans. Treatment options vary depending on the specific type of complication and may include:
* Medications to control blood sugar levels, high blood pressure, and high cholesterol
* Lifestyle changes such as a healthy diet and regular exercise
* Surgery to repair or bypass affected blood vessels or nerves
* Dialysis for kidney failure
* In some cases, amputation of the affected limb
Preventing diabetic angiopathies involves managing diabetes effectively through a combination of medication, lifestyle changes, and regular medical check-ups. Early detection and treatment can help prevent or delay the progression of complications.
There are several types of ischemia, including:
1. Myocardial ischemia: Reduced blood flow to the heart muscle, which can lead to chest pain or a heart attack.
2. Cerebral ischemia: Reduced blood flow to the brain, which can lead to stroke or cognitive impairment.
3. Peripheral arterial ischemia: Reduced blood flow to the legs and arms.
4. Renal ischemia: Reduced blood flow to the kidneys.
5. Hepatic ischemia: Reduced blood flow to the liver.
Ischemia can be diagnosed through a variety of tests, including electrocardiograms (ECGs), stress tests, and imaging studies such as CT or MRI scans. Treatment for ischemia depends on the underlying cause and may include medications, lifestyle changes, or surgical interventions.
There are two main types of heart failure:
1. Left-sided heart failure: This occurs when the left ventricle, which is the main pumping chamber of the heart, becomes weakened and is unable to pump blood effectively. This can lead to congestion in the lungs and other organs.
2. Right-sided heart failure: This occurs when the right ventricle, which pumps blood to the lungs, becomes weakened and is unable to pump blood effectively. This can lead to congestion in the body's tissues and organs.
Symptoms of heart failure may include:
* Shortness of breath
* Fatigue
* Swelling in the legs, ankles, and feet
* Swelling in the abdomen
* Weight gain
* Coughing up pink, frothy fluid
* Rapid or irregular heartbeat
* Dizziness or lightheadedness
Treatment for heart failure typically involves a combination of medications and lifestyle changes. Medications may include diuretics to remove excess fluid from the body, ACE inhibitors or beta blockers to reduce blood pressure and improve blood flow, and aldosterone antagonists to reduce the amount of fluid in the body. Lifestyle changes may include a healthy diet, regular exercise, and stress reduction techniques. In severe cases, heart failure may require hospitalization or implantation of a device such as an implantable cardioverter-defibrillator (ICD) or a left ventricular assist device (LVAD).
It is important to note that heart failure is a chronic condition, and it requires ongoing management and monitoring to prevent complications and improve quality of life. With proper treatment and lifestyle changes, many people with heart failure are able to manage their symptoms and lead active lives.
There are several possible causes of dilated cardiomyopathy, including:
1. Coronary artery disease: This is the most common cause of dilated cardiomyopathy, and it occurs when the coronary arteries become narrowed or blocked, leading to a decrease in blood flow to the heart muscle.
2. High blood pressure: Prolonged high blood pressure can cause the heart muscle to become weakened and enlarged.
3. Heart valve disease: Dysfunctional heart valves can lead to an increased workload on the heart, which can cause dilated cardiomyopathy.
4. Congenital heart defects: Some congenital heart defects can lead to an enlarged heart and dilated cardiomyopathy.
5. Alcohol abuse: Chronic alcohol abuse can damage the heart muscle and lead to dilated cardiomyopathy.
6. Viral infections: Some viral infections, such as myocarditis, can cause inflammation of the heart muscle and lead to dilated cardiomyopathy.
7. Genetic disorders: Certain genetic disorders, such as hypertrophic cardiomyopathy, can cause dilated cardiomyopathy.
8. Obesity: Obesity is a risk factor for developing dilated cardiomyopathy, particularly in younger people.
9. Diabetes: Diabetes can increase the risk of developing dilated cardiomyopathy, especially if left untreated or poorly controlled.
10. Age: Dilated cardiomyopathy is more common in older adults, with the majority of cases occurring in people over the age of 65.
It's important to note that many people with these risk factors will not develop dilated cardiomyopathy, and some people without any known risk factors can still develop the condition. If you suspect you or someone you know may have dilated cardiomyopathy, it's important to consult a healthcare professional for proper diagnosis and treatment.
1. Heart Disease: High blood sugar levels can damage the blood vessels and increase the risk of heart disease, which includes conditions like heart attacks, strokes, and peripheral artery disease.
2. Kidney Damage: Uncontrolled diabetes can damage the kidneys over time, leading to chronic kidney disease and potentially even kidney failure.
3. Nerve Damage: High blood sugar levels can damage the nerves in the body, causing numbness, tingling, and pain in the hands and feet. This is known as diabetic neuropathy.
4. Eye Problems: Diabetes can cause changes in the blood vessels of the eyes, leading to vision problems and even blindness. This is known as diabetic retinopathy.
5. Infections: People with diabetes are more prone to developing skin infections, urinary tract infections, and other types of infections due to their weakened immune system.
6. Amputations: Poor blood flow and nerve damage can lead to amputations of the feet or legs if left untreated.
7. Cognitive Decline: Diabetes has been linked to an increased risk of cognitive decline and dementia.
8. Sexual Dysfunction: Men with diabetes may experience erectile dysfunction, while women with diabetes may experience decreased sexual desire and vaginal dryness.
9. Gum Disease: People with diabetes are more prone to developing gum disease and other oral health problems due to their increased risk of infection.
10. Flu and Pneumonia: Diabetes can weaken the immune system, making it easier to catch the flu and pneumonia.
It is important for people with diabetes to manage their condition properly to prevent or delay these complications from occurring. This includes monitoring blood sugar levels regularly, taking medication as prescribed by a doctor, and following a healthy diet and exercise plan. Regular check-ups with a healthcare provider can also help identify any potential complications early on and prevent them from becoming more serious.
There are several types of ventricular dysfunction, including:
1. Left ventricular dysfunction: This occurs when the left ventricle, which is the main pumping chamber of the heart, becomes weakened or impaired. This can lead to reduced cardiac output and can increase the risk of heart failure.
2. Right ventricular dysfunction: This occurs when the right ventricle, which pumps blood into the lungs, becomes weakened or impaired. This can lead to pulmonary hypertension and other complications.
3. Biventricular dysfunction: This occurs when both the left and right ventricles become weakened or impaired. This can lead to severe cardiac impairment and increased risk of heart failure.
Ventricular dysfunction can be diagnosed through a variety of tests, including echocardiography, stress testing, and cardiac magnetic resonance imaging (MRI). Treatment options depend on the underlying cause of the dysfunction and may include medications, lifestyle changes, or surgical interventions. In some cases, implantable devices such as pacemakers or defibrillators may be recommended to help regulate the heart rhythm and improve function.
There are many different causes of pathological dilatation, including:
1. Infection: Infections like tuberculosis or abscesses can cause inflammation and swelling in affected tissues, leading to dilatation.
2. Inflammation: Inflammatory conditions like rheumatoid arthritis or Crohn's disease can cause dilatation of blood vessels and organs.
3. Heart disease: Conditions like heart failure or coronary artery disease can lead to dilatation of the heart chambers or vessels.
4. Liver or spleen disease: Dilatation of the liver or spleen can occur due to conditions like cirrhosis or splenomegaly.
5. Neoplasms: Tumors can cause dilatation of affected structures, such as blood vessels or organs.
Pathological dilatation can lead to a range of symptoms depending on the location and severity of the condition. These may include:
1. Swelling or distension of the affected structure
2. Pain or discomfort in the affected area
3. Difficulty breathing or swallowing (in the case of dilatation in the throat or airways)
4. Fatigue or weakness
5. Pale or clammy skin
6. Rapid heart rate or palpitations
7. Shortness of breath (dyspnea)
Diagnosis of pathological dilatation typically involves a combination of physical examination, imaging studies like X-rays or CT scans, and laboratory tests to identify the underlying cause. Treatment depends on the specific condition and may include medications, surgery, or other interventions to address the underlying cause and relieve symptoms.
Some examples of pathologic constrictions include:
1. Stenosis: A narrowing or constriction of a blood vessel or other tubular structure, often caused by the buildup of plaque or scar tissue.
2. Asthma: A condition characterized by inflammation and constriction of the airways, which can make breathing difficult.
3. Esophageal stricture: A narrowing of the esophagus that can cause difficulty swallowing.
4. Gastric ring constriction: A narrowing of the stomach caused by a band of tissue that forms in the upper part of the stomach.
5. Anal fissure: A tear in the lining of the anus that can cause pain and difficulty passing stools.
Pathologic constrictions can be caused by a variety of factors, including inflammation, infection, injury, or genetic disorders. They can be diagnosed through imaging tests such as X-rays, CT scans, or endoscopies, and may require surgical treatment to relieve symptoms and improve function.
Examples of acute diseases include:
1. Common cold and flu
2. Pneumonia and bronchitis
3. Appendicitis and other abdominal emergencies
4. Heart attacks and strokes
5. Asthma attacks and allergic reactions
6. Skin infections and cellulitis
7. Urinary tract infections
8. Sinusitis and meningitis
9. Gastroenteritis and food poisoning
10. Sprains, strains, and fractures.
Acute diseases can be treated effectively with antibiotics, medications, or other therapies. However, if left untreated, they can lead to chronic conditions or complications that may require long-term care. Therefore, it is important to seek medical attention promptly if symptoms persist or worsen over time.
Cicatrix is a term used to describe the scar tissue that forms after an injury or surgery. It is made up of collagen fibers and other cells, and its formation is a natural part of the healing process. The cicatrix can be either hypertrophic (raised) or atrophic (depressed), depending on the severity of the original wound.
The cicatrix serves several important functions in the healing process, including:
1. Protection: The cicatrix helps to protect the underlying tissue from further injury and provides a barrier against infection.
2. Strength: The collagen fibers in the cicatrix give the scar tissue strength and flexibility, allowing it to withstand stress and strain.
3. Support: The cicatrix provides support to the surrounding tissue, helping to maintain the shape of the affected area.
4. Cosmetic appearance: The appearance of the cicatrix can affect the cosmetic outcome of a wound or surgical incision. Hypertrophic scars are typically red and raised, while atrophic scars are depressed and may be less noticeable.
While the formation of cicatrix is a normal part of the healing process, there are some conditions that can affect its development or appearance. For example, keloid scars are raised, thick scars that can form as a result of an overactive immune response to injury. Acne scars can also be difficult to treat and may leave a lasting impression on the skin.
In conclusion, cicatrix is an important part of the healing process after an injury or surgery. It provides protection, strength, support, and can affect the cosmetic appearance of the affected area. Understanding the formation and functions of cicatrix can help medical professionals to better manage wound healing and improve patient outcomes.
There are several different types of calcinosis, each with its own unique causes and symptoms. Some common forms of calcinosis include:
1. Dystrophic calcinosis: This type of calcinosis occurs in people with muscular dystrophy, a group of genetic disorders that affect muscle strength and function. Dystrophic calcinosis can cause calcium deposits to form in the muscles, leading to muscle weakness and wasting.
2. Metastatic calcinosis: This type of calcinosis occurs when cancer cells spread to other parts of the body and cause calcium deposits to form. Metastatic calcinosis can occur in people with a variety of different types of cancer, including breast, lung, and prostate cancer.
3. Idiopathic calcinosis: This type of calcinosis occurs for no apparent reason, and the exact cause is not known. Idiopathic calcinosis can affect people of all ages and can cause calcium deposits to form in a variety of different tissues.
4. Secondary calcinosis: This type of calcidosis occurs as a result of an underlying medical condition or injury. For example, secondary calcinosis can occur in people with kidney disease, hyperparathyroidism (a condition in which the parathyroid glands produce too much parathyroid hormone), or traumatic injuries.
Treatment for calcinosis depends on the underlying cause and the severity of the condition. In some cases, treatment may involve managing the underlying disease or condition that is causing the calcium deposits to form. Other treatments may include medications to reduce inflammation and pain, physical therapy to improve mobility and strength, and surgery to remove the calcium deposits.
1. Accessory coronary arteries: These are extra coronary arteries that arise from the aortic sinus or the pulmonary trunk and supply blood to the heart muscle.
2. Coronary artery fistula: This is an abnormal connection between two coronary arteries or between a coronary artery and another cardiac structure, such as the left atrium or ventricle.
3. Coronary artery malformations: These are abnormalities in the origin, course, or termination of the coronary arteries.
4. Coronary atherosclerosis: This is the buildup of plaque in the coronary arteries, which can lead to reduced blood flow to the heart muscle and increase the risk of heart attack.
5. Coronary vasospasm: This is a temporary narrowing of the coronary arteries, often triggered by stress or certain medications.
Coronary vessel anomalies can be diagnosed using various imaging tests such as angiography, CT scans, and MRI. Treatment options for these anomalies depend on the severity of the condition and may include medications, lifestyle changes, or surgical interventions. It is important to identify and address coronary vessel anomalies to prevent or manage cardiac conditions such as heart attack, heart failure, and arrhythmias.
MRI can occur in various cardiovascular conditions, such as myocardial infarction (heart attack), cardiac arrest, and cardiac surgery. The severity of MRI can range from mild to severe, depending on the extent and duration of the ischemic event.
The pathophysiology of MRI involves a complex interplay of various cellular and molecular mechanisms. During ischemia, the heart muscle cells undergo changes in energy metabolism, electrolyte balance, and cell membrane function. When blood flow is restored, these changes can lead to an influx of calcium ions into the cells, activation of enzymes, and production of reactive oxygen species (ROS), which can damage the cells and their membranes.
The clinical presentation of MRI can vary depending on the severity of the injury. Some patients may experience chest pain, shortness of breath, and fatigue. Others may have more severe symptoms, such as cardiogenic shock or ventricular arrhythmias. The diagnosis of MRI is based on a combination of clinical findings, electrocardiography (ECG), echocardiography, and cardiac biomarkers.
The treatment of MRI is focused on addressing the underlying cause of the injury and managing its symptoms. For example, in patients with myocardial infarction, thrombolysis or percutaneous coronary intervention may be used to restore blood flow to the affected area. In patients with cardiac arrest, cardiopulmonary resuscitation (CPR) and other life-saving interventions may be necessary.
Prevention of MRI is crucial in reducing its incidence and severity. This involves aggressive risk factor management, such as controlling hypertension, diabetes, and dyslipidemia, as well as smoking cessation and stress reduction. Additionally, patients with a history of MI should adhere to their medication regimen, which may include beta blockers, ACE inhibitors or ARBs, statins, and aspirin.
In conclusion, myocardial injury with ST-segment elevation (MRI) is a life-threatening condition that requires prompt recognition and treatment. While the clinical presentation can vary depending on the severity of the injury, early diagnosis and management are crucial in reducing morbidity and mortality. Prevention through aggressive risk factor management and adherence to medication regimens is also essential in preventing MRI.
Some examples of the use of 'Death, Sudden, Cardiac' in medical contexts include:
1. Sudden cardiac death (SCD) is a major public health concern, affecting thousands of people each year in the United States alone. It is often caused by inherited heart conditions, such as hypertrophic cardiomyopathy or long QT syndrome.
2. The risk of sudden cardiac death is higher for individuals with a family history of heart disease or other pre-existing cardiovascular conditions.
3. Sudden cardiac death can be prevented by prompt recognition and treatment of underlying heart conditions, as well as by avoiding certain risk factors such as smoking, physical inactivity, and an unhealthy diet.
4. Cardiopulmonary resuscitation (CPR) and automated external defibrillators (AEDs) can be effective in restoring a normal heart rhythm during sudden cardiac death, especially when used promptly after the onset of symptoms.
There are several types of embolism, including:
1. Pulmonary embolism: A blood clot that forms in the lungs and blocks the flow of blood to the heart.
2. Cerebral embolism: A blood clot or other foreign substance that blocks the flow of blood to the brain.
3. Coronary embolism: A blood clot that blocks the flow of blood to the heart muscle, causing a heart attack.
4. Intestinal embolism: A blood clot or other foreign substance that blocks the flow of blood to the intestines.
5. Fat embolism: A condition where fat enters the bloodstream and becomes lodged in a blood vessel, blocking the flow of blood.
The symptoms of embolism can vary depending on the location of the blockage, but may include:
* Pain or tenderness in the affected area
* Swelling or redness in the affected limb
* Difficulty breathing or shortness of breath
* Chest pain or pressure
* Lightheadedness or fainting
* Rapid heart rate or palpitations
Treatment for embolism depends on the underlying cause and the severity of the blockage. In some cases, medication may be used to dissolve blood clots or break up the blockage. In other cases, surgery may be necessary to remove the foreign substance or repair the affected blood vessel.
Prevention is key in avoiding embolism, and this can include:
* Managing underlying conditions such as high blood pressure, diabetes, or heart disease
* Avoiding long periods of immobility, such as during long-distance travel
* Taking blood-thinning medication to prevent blood clots from forming
* Maintaining a healthy weight and diet to reduce the risk of fat embolism.
The underlying cause of ACS is typically a blockage in one of the coronary arteries, which supply blood to the heart muscle. This blockage can be caused by atherosclerosis, a condition in which plaque builds up in the arteries and narrows them, or by a blood clot that forms in the artery and blocks the flow of blood.
The diagnosis of ACS is typically made based on a combination of symptoms, physical examination findings, and results of diagnostic tests such as electrocardiograms (ECGs) and blood tests. Treatment for ACS usually involves medications to dissolve blood clots and reduce the amount of work the heart has to do, as well as procedures such as angioplasty or coronary artery bypass surgery to restore blood flow to the heart.
Preventive measures for ACS include managing risk factors such as high blood pressure, high cholesterol, smoking, and diabetes, as well as increasing physical activity and eating a healthy diet. Early diagnosis and treatment of ACS can help reduce the risk of complications and improve outcomes for patients.
There are several types of hypercholesterolemia, including:
1. Familial hypercholesterolemia: This is an inherited condition that causes high levels of low-density lipoprotein (LDL) cholesterol, also known as "bad" cholesterol, in the blood.
2. Non-familial hypercholesterolemia: This type of hypercholesterolemia is not inherited and can be caused by a variety of factors, such as a high-fat diet, lack of exercise, obesity, and certain medical conditions, such as hypothyroidism or polycystic ovary syndrome (PCOS).
3. Mixed hypercholesterolemia: This type of hypercholesterolemia is characterized by high levels of both LDL and high-density lipoprotein (HDL) cholesterol in the blood.
The diagnosis of hypercholesterolemia is typically made based on a physical examination, medical history, and laboratory tests, such as a lipid profile, which measures the levels of different types of cholesterol and triglycerides in the blood. Treatment for hypercholesterolemia usually involves lifestyle changes, such as a healthy diet and regular exercise, and may also include medication, such as statins, to lower cholesterol levels.
LVH can lead to a number of complications, including:
1. Heart failure: The enlarged left ventricle can become less efficient at pumping blood throughout the body, leading to heart failure.
2. Arrhythmias: The abnormal electrical activity in the heart can lead to irregular heart rhythms.
3. Sudden cardiac death: In some cases, LVH can increase the risk of sudden cardiac death.
4. Atrial fibrillation: The enlarged left atrium can lead to atrial fibrillation, a common type of arrhythmia.
5. Mitral regurgitation: The enlargement of the left ventricle can cause the mitral valve to become incompetent, leading to mitral regurgitation.
6. Heart valve problems: The enlarged left ventricle can lead to heart valve problems, such as mitral regurgitation or aortic stenosis.
7. Coronary artery disease: LVH can increase the risk of coronary artery disease, which can lead to a heart attack.
8. Pulmonary hypertension: The enlarged left ventricle can lead to pulmonary hypertension, which can further strain the heart and increase the risk of complications.
Evaluation of LVH typically involves a physical examination, medical history, electrocardiogram (ECG), echocardiography, and other diagnostic tests such as stress test or cardiac MRI. Treatment options for LVH depend on the underlying cause and may include medications, lifestyle changes, and in some cases, surgery or other interventions.
During ventricular remodeling, the heart muscle becomes thicker and less flexible, leading to a decrease in the heart's ability to fill with blood and pump it out to the body. This can lead to shortness of breath, fatigue, and swelling in the legs and feet.
Ventricular remodeling is a natural response to injury, but it can also be exacerbated by factors such as high blood pressure, diabetes, and obesity. Treatment for ventricular remodeling typically involves medications and lifestyle changes, such as exercise and a healthy diet, to help manage symptoms and slow the progression of the condition. In some cases, surgery or other procedures may be necessary to repair or replace damaged heart tissue.
The process of ventricular remodeling is complex and involves multiple cellular and molecular mechanisms. It is thought to be driven by a variety of factors, including changes in gene expression, inflammation, and the activity of various signaling pathways.
Overall, ventricular remodeling is an important condition that can have significant consequences for patients with heart disease. Understanding its causes and mechanisms is crucial for developing effective treatments and improving outcomes for those affected by this condition.
There are two main types of systemic scleroderma: diffuse cutaneous systemic sclerosis (DCSS) and limited cutaneous systemic sclerosis (LCSS). DCSS is characterized by skin thickening and scar formation over the trunk, arms, and legs, while LCSS is characterized by skin tightening and patches of scaly skin on the hands and face.
The symptoms of systemic scleroderma can include:
* Skin hardening and tightening
* Fatigue
* Joint pain and stiffness
* Muscle weakness
* Swallowing difficulties
* Heartburn and acid reflux
* Shortness of breath
* Raynaud's phenomenon (pale or blue-colored fingers and toes in response to cold temperatures or stress)
The exact cause of systemic scleroderma is not known, but it is believed to involve a combination of genetic and environmental factors. Treatment options for systemic scleroderma include medications to manage symptoms such as pain, stiffness, and swallowing difficulties, as well as physical therapy and lifestyle modifications to improve quality of life.
In summary, systemic scleroderma is a chronic autoimmune disease that affects multiple systems in the body, causing skin hardening and thickening, fatigue, joint pain, and other symptoms. While there is no cure for systemic scleroderma, treatment options are available to manage symptoms and improve quality of life.
Synonyms: RV dysfunction
See also: Left Ventricular Dysfunction, Cardiac Dysfunction, Heart Failure
Note: This term is not a formal medical diagnosis but rather a descriptive term used to indicate the specific location of cardiac dysfunction. A more comprehensive diagnosis would require further evaluation and testing by a healthcare provider.
Coronary Thrombosis can cause a range of symptoms including chest pain, shortness of breath, lightheadedness and fatigue. The severity of the symptoms depends on the location and size of the clot. In some cases, the condition may be asymptomatic and diagnosed incidentally during a medical examination or imaging test.
Diagnosis of Coronary Thrombosis is typically made using electrocardiogram (ECG), blood tests and imaging studies such as angiography or echocardiography. Treatment options include medications to dissolve the clot, surgery to open or bypass the blocked artery or other interventional procedures such as angioplasty or stenting.
Prevention of Coronary Thrombosis includes managing risk factors such as high blood pressure, high cholesterol levels, smoking and diabetes through lifestyle changes and medications. Early detection and treatment can help reduce the risk of complications and improve outcomes for patients with this condition.
Myocardial perfusion imaging
Technetium (99mTc) sestamibi
Transition metal isocyanide complexes
Rubidium-82
Gated SPECT
Single-photon emission computed tomography
Isotopes of oxygen
Thallium
CT scan
Rubidium
Perfusion scanning
Avijit Lahiri
Microvascular angina
Cardiac stress test
Cardiac magnetic resonance imaging perfusion
Technetium (99mTc) tetrofosmin
Cardiac magnetic resonance imaging
Nitrogen-13
Rubidium-82 chloride
Purinergic signalling
Cardiac imaging
Coronary steal
ST depression
Mojette Transform
Harvey Berger
Isotopes of thallium
Regadenoson
Fluorodeoxyglycosylamine
Diabetic cardiomyopathy
Cardiovascular disease
Hyperosmolar hyperglycemic state
Perfluorocarbon emulsions
Cerebral infarction
Cardiac tamponade
Saint Boniface Hospital
Endovascular aneurysm repair
Interventional radiology
Vivian Lee
Medical ultrasound
Roberta Gottlieb
MPI
Organotechnetium compound
Indocyanine green
Myocardial infarction diagnosis
Revascularization
Radiation exposure
Physician self-referral
Hypertensive encephalopathy
Scintigraphy
Myocardial Perfusion Imaging | Service Listing | Ih
Automatic Quantification of Liver-heart Cross Talk for Quality Assessment in SPECT Myocardial Perfusion Imaging | Center for...
Angina Pectoris Workup: Laboratory Studies, Chest Radiography, Exercise Stress Testing
Congestive Heart Failure Imaging: Practice Essentials, Echocardiography, Radiography
Myocardial perfusion imaging with contrast echocardiography<...
Relationship Between Myocardial Perfusion Imaging Abnormalities on Positron Emission Tomography and Anginal Symptoms,...
Reliable segmentation of 2D cardiac magnetic resonance perfusion image sequences using time as the 3rd dimension - PubMed
WEINSTEIN H[au] - Search Results - PubMed
Viral Hepatitis Outbreaks Related to Health care | CDC
Plus it
Guarana: MedlinePlus Supplements
Publications - Yaron Rotman, M.D., M.Sc. - NIDDK
Lars Edenbrandt | Göteborgs universitet
Ammonia N-13 Myocardial Blood Flow Absolute Quantification by PET in Patients With Known or Suspected CAD (Ammonia MAP) |...
BoardVitals Nuclear Cardiology CME Board Review [2023] - CMEList
Biomarkers Search
Relation of Myocardial Perfusion Reserve and Left Ventricular Ejection Fraction in Ischemic and Nonischemic Cardiomyopathy -...
2015 videos - University of Ottawa Heart Institute
Death of tumor-related PTE by CAR combined with DD detection | VHRM
Christopher Sibley | National Institute of Biomedical Imaging and Bioengineering
RePub, Erasmus University Repository:
Cardiac Sympathetic Denervation Assessed With 123-Iodine Metaiodobenzylguanidine...
Dipyridamole Injection, USPRx only
Cardiovascular Branch | NHLBI, NIH
Products - Store - SNMMI
CDISC Clinical Data Element Glossary
What we´re reading… March 2023 » ILTS
ASE Funded Research - Project Summaries
CMS has announced a $10 million decision-support systems project - The Academy for Radiology & Biomedical Imaging Research
Portal LIS - Localizador de Informação em Saúde
SPECT4
- Design 100 consecutive patients investigated by exercise electrocardiography and diagnostic coronary arteriography underwent simultaneous inotropic stress Tc-99m sestamibi SPECT (MIBI) imaging and echocardiography. (bmj.com)
- ECG-gated images are useful for recognizing artifactual defects caused by attenuation (breast and diaphragm) and thus are useful in the quality control of SPECT imaging. (medscape.com)
- ECG-gated SPECT imaging is considered the state of the art of radionuclide myocardial perfusion imaging. (medscape.com)
- It contains seventy teaching cases, presented with relevant clinical information such as case history, imaging/study data, and myocardial perfusion SPECT images. (bvsalud.org)
Cardiac6
- Management of cardiac patients and cardiac imaging. (revespcardiol.org)
- This review aims to present a comprehensive view of full integration of artificial intelligence into the standard clinical patient management-with a focus on cardiac imaging, but applicable to all information handling-and to discuss current barriers that remain to be overcome before its widespread implementation and integration. (revespcardiol.org)
- Professor Valentin Fuster, MD, PhD, director of the Mount Sinai Heart Center, New York , says that, "A novel non-invasive cardiac imaging technology is required to further unravel and characterize the disease processes associated with atherosclerosis, in particular those associated with vulnerable plaque formation which is a major risk factor for stroke and heart attacks. (healthjockey.com)
- The aim of the current study was to evaluate stress speckle tracking to detect myocardial viability in comparison to cardiac MRI in post-STEMI patients. (who.int)
- Moreover, it carries a promising role in post-myocardial infarction risk stratification with a reasonable prediction of reversible cardiac-related hospital re-admission. (who.int)
- Thus a new based on Speckle tracking imaging zone, the greater the likelihood of future cardiac death technique, automated function imaging (AFI) allowing and events (8). (who.int)
Echocardiography13
- Objective To assess whether inotropic stress myocardial perfusion imaging, echocardiography, or a combination of the two could enhance the detection of multivessel disease, over and above clinical and exercise electrocardiographic data. (bmj.com)
- The presence of perfusion defects with MIBI imaging or of wall thickening abnormality with echocardiography in at least two coronary artery territories at peak stress was taken as diagnostic of multivessel disease. (bmj.com)
- Age (p = 0.03), MIBI imaging (p = 0.007), and echocardiography (p = 0.001) were independent predictors of multivessel disease. (bmj.com)
- Conclusions The assessment of both myocardial perfusion and contractile function by simultaneous inotropic stress MIBI imaging and echocardiography optimises the non-invasive detection of multivessel disease. (bmj.com)
- 1 The detection of flow heterogeneity forms the conceptual basis for myocardial perfusion imaging, and systolic wall thickening abnormality is readily detected by echocardiography. (bmj.com)
- As these manifestations occur before the onset of symptoms and electrocardiographic changes, it is not surprising that many studies have shown that exercise and pharmacological stress testing, in conjunction with myocardial perfusion imaging or echocardiography, is superior to electrocardiography for detecting coronary artery disease. (bmj.com)
- 6-8 Whether the combination of stress myocardial perfusion imaging and echocardiography can enhance the detection of multivessel disease in conjunction with clinical and exercise electrocardiographic variables has not previously been investigated. (bmj.com)
- Inotropic stress testing (using dobutamine or arbutamine) is a safe, accurate, and increasingly used technique for evaluating coronary artery disease, 9-14 and whether it is used in conjunction with myocardial perfusion imaging or echocardiography, its diagnostic efficacy is similar to dynamic exercise. (bmj.com)
- Echocardiography is the preferred imaging modality in patients with CHF, with 2-dimensional echocardiography recommended initially. (medscape.com)
- In a joint report by the American College of Radiology (ACR) and the American College of Cardiology Foundation (ACCF) regarding appropriate use of imaging in HF, the strongest recommendations for newly suspected HF were for echocardiography utilizing 2-dimensional (2D) transthoracic ultrasound and Doppler. (medscape.com)
- Lindner, JR & Kaul, S 2010, Myocardial perfusion imaging with contrast echocardiography . (elsevierpure.com)
- Speckle-tracking echocardiography has emerged as a unique technique for accurately evaluating myocardial function by analyzing the motion of speckles identified. (who.int)
- Dobutamine stress echocardiography was performed 4 days post-infarction accompanied with automated functional imaging analysis of left ventricle during rest and then during low dose stress. (who.int)
Viability2
Infarction1
- This prospective study included a total of 74 revascularization using M4S probe in left lateral myocardial infarction patients diagnosed with ST position. (who.int)
Positron Emission T1
- Myocardial perfusion imaging by 15O-H 2O positron emission tomography predicts clinical revascularization procedures in symptomatic patients with previous coronary artery bypass graft. (au.dk)
Systolic1
- Flow heterogeneity and systolic wall thickening abnormality are two of the earliest manifestations of myocardial ischaemia. (bmj.com)
Radiotracers1
- Myocardial perfusion imaging (MPI) is a nuclear medicine procedure that uses special radiotracers (or imaging agents) to trace how fast they are taken up by the heart muscle. (interiorhealth.ca)
Thallium1
- A type of nuclear scanning test or myocardial perfusion imaging test, the thallium stress test shows how well blood flows to the heart muscle. (heart.org)
Assessment6
- Nuclear imaging can be used in the assessment of both heart function and damage in patients with CHF. (medscape.com)
- Myocardial perfusion was assessed using the transmural perfusion ratio and visual perfusion assessment. (edu.au)
- The additional use of visual perfusion assessment and the transmural perfusion ratio both increased the specificity to 95%, with sensitivity of 87% and 71%, respectively. (edu.au)
- The area under the receiver-operating characteristic curve for coronary CTA + visual perfusion assessment was significantly higher than both coronary CTA (0.93 vs. 0.85, p = 0.0003) and coronary CTA + the transmural perfusion ratio (0.93 vs. 0.79, p = 0.0003). (edu.au)
- Per-vessel and per-patient accuracy for coronary CTA, coronary CTA + the transmural perfusion ratio, and coronary CTA + visual perfusion assessment was 83% and 83%, 87% and 92%, and 92% and 95%, respectively. (edu.au)
- When interpreted with coronary CTA, visual perfusion assessment provided superior incremental value in the detection of FFR-significant stenoses compared with the quantitative transmural perfusion ratio assessment. (edu.au)
Scan1
- and a request for a stress dose and resting dose of 201T1-thallous chloride for a myocardial perfusion scan. (ijpc.com)
Nuclear Cardiology1
- Unfortunately, implementing a stress-first approach in a nuclear cardiology laboratory involves significant challenges such as the need for attenuation correction, triage of patients to an appropriate protocol, real-time review of stress images, and consideration of differential reimbursement. (wustl.edu)
Ischemia1
- PET-MPI perfusion, MBF, percent ischemia, pharmacologic stress agent, and gated left ventricular ejection fraction/function values will be collected when available, in an anonymous fashion and uploaded into the database. (centerwatch.com)
Myocardium2
- The creation and display of functional images showing where the blood is flowing into the MYOCARDIUM by following over time the distribution of tracers injected into the blood stream. (bvsalud.org)
- Imaging blood flow to the MYOCARDIUM by following the distribution of radioactively labeled tracers injected into the blood stream. (bvsalud.org)
Computed tomography2
- Objectives: We sought to determine the accuracy of combined coronary computed tomography angiography (CTA) and computed tomography stress myocardial perfusion imaging (CTP) in the detection of hemodynamically significant stenoses using fractional flow reserve (FFR) as a reference standard in patients with suspected coronary artery disease. (edu.au)
- Computed tomography images were assessed by consensus of 2 observers. (edu.au)
Clinical7
- Research studies have demonstrated clinical value in reviewing the measured blood flow values in addition to reviewing the perfusion images of blood flow into the heart muscle. (centerwatch.com)
- This technology has also been used in a pre-clinical study to produce the first 3D imaging results. (healthjockey.com)
- The use of this technology in a pre-clinical study indicates an advanced step taken from transporting this technology from a theoretical concept to an imaging tool. (healthjockey.com)
- This program seeks to bring the most innovative technology - whether it be next-generation hardware, multiple modalities, advanced image reconstruction or signal-processing methods, new contrast agents or novel applications - to bear on important basic science and clinical issues. (wustl.edu)
- Our goal is to develop new technologies to complement the already strong research and clinical imaging activities in our community. (wustl.edu)
- Advancing novel brain imaging technologies into human studies of aging and dementia, clinical trials, and clinical practice. (wustl.edu)
- Generally, the complexity and severity of a patient's clinical condition should dictate the selection of appropriate imaging procedures or treatments. (bvsalud.org)
Diseases2
- It presents information, medical images and videos on 1350 topics and themes (from Abducens nerve to Zygote), related to biological and physical sciences, organisms, diseases, chemicals and drugs, ana. (bvsalud.org)
- Other imaging studies necessary to evaluate other co-existent diseases or other medical consequences of this condition are not considered in this document. (bvsalud.org)
Radiology1
- Radiology - Cardiothoracic Imaging. (bvsalud.org)
Detection1
- 2-4 Although these stress imaging modes show good diagnostic accuracy for the overall detection of coronary artery disease, their ability to identify multivessel involvement correctly is often suboptimal. (bmj.com)
Magnetic6
- Royal Philips Electronics has introduced a new innovation in the medical imaging technology, called the Magnetic Particle Imaging. (healthjockey.com)
- Through its combined speed, resolution and sensitivity, Magnetic Particle Imaging technology has great potential for this application, and the latest in-vivo imaging results represent a major breakthrough. (healthjockey.com)
- Senior vice president of Philips Research and head of the Healthcare research program, Henk van Houten, says that, "We are the first in the world to demonstrate that Magnetic Particle Imaging can be used to produce real-time in-vivo images that accurately capture cardiovascular activity. (healthjockey.com)
- The Magnetic Particle Imaging unites short image acquisition time with high spatial resolution to capture concentration changes that take place as the nano-particles flow in the blood stream. (healthjockey.com)
- Investigating strain rate obtained with stress speckle tracking after revascularization predicted the extent of myocardial scar, determined by contrast-enhanced magnetic resonance imaging. (who.int)
- From simple X-ray photographs to computer images produced by magnetic resonance imaging there are a whole range of different techniques available to doctors for looking inside our bodies. (open.edu)
Cardiovascular Imaging1
- JACC: Cardiovascular Imaging , 5 (11), 1097-1111. (edu.au)
Contrast1
- Background: CTP can be qualitatively assessed by visual interpretation or quantified by the transmural perfusion ratio determined as the ratio of subendocardial to subepicardial contrast attenuation. (edu.au)
Study3
- Examination involves using an echo probe at various positions or windows to obtain views of the heart (thus capturing images/videos for later playback while formally "reading" the study to come up with the findings). (wikipedia.org)
- Stress-first approaches to myocardial perfusion imaging provide diagnostically and prognostically accurate perfusion data equivalent to a full rest-stress study while saving time in the imaging laboratory and reducing the radiation exposure to patients and laboratory staff. (wustl.edu)
- Imaging techniques classified as investigational by the FDA have not been considered in developing these criteria, however, study of new equipment and applications should be encouraged. (bvsalud.org)
Modalities1
- The video clip below will introduce the major imaging modalities in current use in hospitals. (open.edu)
Quantitative1
- Further work has shown that CMR can recently emerged as a quantitative ultrasound technique differentiate between the densely bright infarct core and for accurately evaluating myocardial function by the adjacent peri-infarct zone, which appears with lower analyzing the motion of speckles identified on routine signal intensity because of the admixture of infarct and 2-dimensional sonograms (2, 3, 4). (who.int)
Patients1
- Les antécédents et les examens cliniques de 752 patients consultant dans un centre de recherche sur l'endocrinologie et le métabolisme ont été consignés et des analyses en laboratoire ont été réalisées. (who.int)
Physicians2
- While physicians have used the Ammonia PET test for many years to visualize (image) the blood flow into the heart muscle (perfusion), it is now possible to also measure the flow of blood into the heart muscle. (centerwatch.com)
- These criteria are intended to guide radiologists, radiation oncologists and referring physicians in making decisions regarding radiologic imaging and treatment. (bvsalud.org)
Diagnostic1
- Imaging techniques have long been part of the physician's diagnostic repertoire. (open.edu)
Data3
- MIBI imaging and echocardiographic data were analysed using a 12 segment left ventricular model, and each segment was ascribed to a particular coronary artery territory. (bmj.com)
- Color information plays a crucial role in digital image processing since it is a robust descriptor that can often improve data compression and simplify scene understanding for humans and automatic vision systems. (mdpi.com)
- Furthermore, the multivariate nature of color image data requires the design of appropriate models and methods at both the mathematical and percentual/computational levels. (mdpi.com)
Ultrasound2
- A transthoracic echocardiogram ( TTE ) is the most common type of echocardiogram , which is a still or moving image of the internal parts of the heart using ultrasound . (wikipedia.org)
- Ultrasound gel is used to improve the acoustic windows and increase quality of the captured images. (wikipedia.org)
Quality1
- Historical Anatomies on the Web is a digital project designed to give Internet users access to high quality images from important anatomical atlases in the Library's collection. (bvsalud.org)
Show1
- It is possible that the images will not show up clearly enough, which can cause a misdiagnosis. (wikipedia.org)
Heart3
- This breakthrough technology produces real-time images of blood flow and heart movements. (healthjockey.com)
- The device emits a silent sound wave that bounces off the heart, creating images of its chambers and valves. (heart.org)
- Medical imaging is at the heart of contemporary medical practice. (open.edu)
Test1
- It is a non-invasive test that can be done in many settings that include clinic exam room, inpatient rooms, and exam rooms dedicated to echo imaging. (wikipedia.org)
Medical6
- This course is about the scientific basis of medical imaging. (open.edu)
- Very few of us have not had some connection with the techniques and practices of medical imaging. (open.edu)
- Often, these contacts are in periods of personal drama in which the medical images chart our physical status, the management of a condition and, in some cases, our future. (open.edu)
- This video compilation is related to the medical imaging part of the course. (open.edu)
- Well the most common of all the medical imaging techniques is still the conventional X-ray. (open.edu)
- Disclaimer: The ACR Committee on Appropriateness Criteria and its expert panels have developed criteria for determining appropriate imaging examinations for diagnosis and treatment of specified medical condition(s). (bvsalud.org)
Crucial1
- La imagen cardiaca es un componente crucial en el abordaje de los pacientes cardiacos, y como tal influye en múltiples partes interrelacionadas del flujo de trabajo clínico: el contacto médico-paciente, la adquisición de imagen, el preprocesamiento y posprocesamiento de imágenes, los informes de estudios, el diagnóstico y el pronóstico, las intervenciones médicas y, por último, el desarrollo del conocimiento a través de la investigación clínica. (revespcardiol.org)
State of1
- This Topic aims to give an overview of the state-of-the-art in color image processing and provide present/future directions in several applicative contexts. (mdpi.com)
Criteria1
- Retrospective comparison of angiographic and myocardial perfusion imaging criteria for completeness. (bvsalud.org)
Artificial1
- Updates in Artificial Intelligence for Breast Imaging. (cdc.gov)
Methods1
- Research about color presents new challenges since it makes it possible to expand the currently available methods, most of which are limited to the gray-level class of images. (mdpi.com)
Contemporary1
- Imaging is a central feature of contemporary medicine. (open.edu)