A species of gram-negative, facultatively anaerobic bacteria. This organism shows remarkable pathobiologic properties: it adheres to cell surfaces, deeply penetrates into the cell, and strongly adsorbs human red blood cells and human CD4+ lymphocytes and monocytes. M. penetrans was first isolated from the urogenital tract of patients with AIDS and high frequencies of antibodies to it are seen in HIV-infected patients.
A genus of gram-negative, mostly facultatively anaerobic bacteria in the family MYCOPLASMATACEAE. The cells are bounded by a PLASMA MEMBRANE and lack a true CELL WALL. Its organisms are pathogens found on the MUCOUS MEMBRANES of humans, ANIMALS, and BIRDS.
Infections with species of the genus MYCOPLASMA.
A species of the genus MYCOPLASMA, originally isolated infrequently from the lower genital tract of humans, and possessing uncertain pathogenicity. The incognitus strain of M. fermentans has been identified in necrotizing lesions of multiple organs from AIDS and non-AIDS patients dying of an acute influenza-like disease.
A species of gram-negative bacteria causing lesions to AIR SACS and HOCK joints in TURKEYS.

Antigenic characterization and cytolocalization of P35, the major Mycoplasma penetrans antigen. (1/31)

Mycoplasma penetrans is a mycoplasma with unique morphology, recently identified in urine samples collected from HIV-infected patients. This mycoplasma has been found to be statistically associated with HIV infection, and to be cytopathic in vitro. The dominant antigen recognized during natural and experimental infections is an abundant lipoprotein, P35, which, upon extraction, segregates in the Triton X-114 detergent phase. It is used as the basis of M. penetrans-specific serological assays. Although mycoplasma lipoproteins, including M. penetrans P35, are the main antigens recognized by the host humoral immune response, very little is known about the nature of the epitopes involved. Immunoelectron microscopy revealed that all P35 is exposed at the cell surface and is distributed all over the membrane. P35 linear B-epitopes were mapped by an ELISA approach based on a set of overlapping peptides covering the entire mature polypeptide. The immunoreactivity of the peptides was first tested with sera from immunized animals. The dominant B-epitopes were found at the C- and N-terminal regions, in partial agreement with algorithmic predictions. Patient sera were evaluated with the same assay. Only some reacted with linear epitopes whereas others did not, indicating the importance of P35 nonsequential epitopes. Statistical analysis of the results allowed the definition of a set of peptides which were clearly immunodominant. Finally, the P35-encoding gene was modified by in vitro mutagenesis to allow the production and purification of a recombinant protein (rP35delta0) in Escherichia coil. The antigenicity of rP35delta0 was tested by Western blotting and compared to that of another recombinant product, rP35delta3, a truncated P35 polypeptide. Although rP35delta0 reacted with the M. penetrans-seropositive patient sera tested, rP35delta3 was only immunoreactive with one of six sera. This result confirmed that P35-nonsequential epitopes dominate during M. penetrans infection. Our results have important implications for the understanding of lipoprotein antigenicity during mycoplasma infections. In addition, the P35-derived immunodominant synthetic peptides defined in this study, as well as the purified rP35delta0, provide the antigenic material for the necessary improvement of M. penetrans serological assays.  (+info)

Mycoplasma penetrans bacteremia and primary antiphospholipid syndrome. (2/31)

Mycoplasma penetrans, a rare bacterium so far only found in HIV-infected persons, was isolated in the blood and throat of a non-HIV-infected patient with primary antiphospholipid syndrome (whose etiology and pathogenesis are unknown).  (+info)

Phase variations of the Mycoplasma penetrans main surface lipoprotein increase antigenic diversity. (3/31)

Mycoplasma penetrans is a recently identified mycoplasma, isolated from urine samples collected from human immunodeficiency virus (HIV)-infected patients. Its presence is significantly associated with HIV infection. The major antigen recognized during natural and experimental infections is an abundant P35 lipoprotein which, upon extraction, segregates in the Triton X-114 detergent phase and is the basis of M. penetrans-specific serological assays. We report here that the P35 antigen undergoes spontaneous and reversible phase variation at high frequency, leading to heterogeneous populations of mycoplasmas, even when derived from a clonal lineage. This variation was found to be determined at the transcription level, and although this property is not unique among the members of the class Mollicutes, the mechanism by which it occurs in M. penetrans differs from those previously described for other Mycoplasma species. Indeed, the P35 phase variation was due neither to a p35 gene rearrangement nor to point mutations within the gene itself or its promoter. The P35 phase variation in the different variants obtained was concomitant with modifications in the pattern of other expressed lipoproteins, probably due to regulated expression of selected members of a gene family which was found to potentially encode similar lipoproteins. M. penetrans variants could be selected on the basis of their lack of colony immunoreactivity with a polyclonal antiserum against a Triton X-114 extract, strongly suggesting that the mechanisms involved in altering surface antigen expression might allow evasion of the humoral immune response of the infected host.  (+info)

Lipid extract of Mycoplasma penetrans proteinase K-digested lipid-associated membrane proteins rapidly activates NF-kappaB and activator protein 1. (4/31)

Lipid-associated membrane proteins (LAMPs) of Mycoplasma penetrans rapidly induced macrophages to produce proinflammatory cytokines such as tumor necrosis factor alpha (TNF-alpha). Our analysis showed that the macrophage-stimulating activity of TNF-alpha production was mainly attributable to a lipid extractable component(s) in the LAMP preparation. Since induction of gene expression is normally preceded by activation of transcriptional factors that bind to their specific recognition elements located in the upstream promoter region, we examined the activity of transcriptional factors, namely, NF-kappaB and activator protein 1 (AP-1), in thioglycolate exudate peritoneal (TEP) macrophages treated with M. penetrans lipid extract of proteinase K (PK)-digested LAMPs. Initially, in the nuclei of unstimulated TEP cells, there was only a low basal level of active AP-1, and the active form of NF-kappaB could not be detected. M. penetrans lipid extract of PK-digested LAMPs activated both NF-kappaB and AP-1 in TEP macrophages within 15 min. The markedly increased activities of both factors gradually declined and dissipated after 2 h. Parallel to the rapid increase of NF-kappaB and AP-1, the TNF-alpha transcript also increased significantly 15 min after the stimulation. The high-level expression of TNF-alpha persisted over 2 h. Dexamethasone blocked the activation of both NF-kappaB and AP-1 and suppressed the production of TNF-alpha in TEP macrophages stimulated by M. penetrans lipid extract of PK-digested LAMPs. Our study demonstrates that the M. penetrans lipid extract of PK-digested LAMP is a potent activator for NF-kappaB and AP-1 in murine TEP macrophages. Our results also suggest that high-level expression of TNF-alpha in cells induced by M. penetrans lipid extract of PK-digested LAMPs is associated with rapid activation of transcriptional factors NF-kappaB and AP-1.  (+info)

Role of Mycoplasma penetrans endonuclease P40 as a potential pathogenic determinant. (5/31)

Recently, we reported the purification to homogeneity and characterization of Ca(2+)- and Mg(2+)-dependent endonuclease P40 produced by Mycoplasma penetrans (M. Bendjennat, A. Blanchard, M. Loutfi, L. Montagnier, and E. Bahraoui, J. Bacteriol. 179; 2210-2220, 1997), a mycoplasma which was isolated for the first time from the urine of human immunodeficiency virus-infected patients. To evaluate how this nuclease could interact with host cells, we tested its effect on CEM and Molt-4 lymphocytic cell lines and on peripheral blood mononuclear cells. We observed that 10(-7) to 10(-9) M P40 is able to mediate a cytotoxic effect. We found that 100% of cells were killed after 24 h of incubation with 10(-7) M P40 while only 40% cytotoxicity was obtained after 72 h of incubation with 10(-9) M P40. Phase-contrast microscopy observations of P40-treated cells revealed morphological changes, including pronounced blebbing of the plasma membrane and cytoplasmic shrinkage characteristic of programmed cell death, which is in agreement with the internucleosomal fragmentation of P40-treated cell DNA as shown by agarose gel electrophoresis. We showed that (125)I-radiolabeled or fluorescein isothiocyanate-labeled P40 was able to bind specifically in a dose-dependent manner to the cell membrane of CEM cells, which suggested that the cytotoxicity of P40 endonuclease was mediated by its interaction with the cell surface receptor(s). The concentration of unlabeled P40 required to inhibit by 50% the formation of (125)I-P40-CEM complexes was about 3 x 10(-9) M, indicating a high-affinity interaction. Both P40 interaction and cytotoxicity are Ca(2+) dependent. Our results suggest that the cytotoxicity of M. penetrans observed in vitro is mediated at least partially by secreted P40, which, after interaction with host cells, can induce an apoptosis-like death. These results strongly suggest a major role of mycoplasmal nucleases as potential pathogenic determinants.  (+info)

Phase variation among major surface antigens of Mycoplasma penetrans. (6/31)

The pathogenicity and prevalence of Mycoplasma penetrans, a Mycoplasma species recently isolated from humans, are still debated. A major P35 antigen, which is used as target epitope in serological assays, was shown to be a phase-variable lipid-associated membrane protein (LAMP). In this study, we performed a comparative analysis of the LAMP patterns from five M. penetrans clinical isolates and from the type strain. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles and immunoblots with sera serially collected from an M. penetrans-infected patient indicated that these strains expressed different LAMP repertoires. Furthermore, the intraclonal variation in the expression of LAMPs (P34A, P34B, P35, and P38) was monitored by immunoblot analysis with three specific monoclonal antibodies (MAbs) developed in this study and MAb 7 to P35. The phase variation of these LAMPs occurs in an independent manner, with frequencies of variation ranging from 10(-2) to 10(-4) per cell per generation. Consistent with their amphipathic nature, the P34B and P38 antigens were found exposed at the cell surface. The DNA sequence encoding the P38 antigen was defined and found to be related to those of the P35 gene and other putative LAMP-encoding genes, suggesting that these variable antigens are encoded by a family of related genes. Finally, the serum samples from an M. penetrans-infected patient contained antibodies that reacted with a P36 antigen expressed in different M. penetrans strains but not in the isolate recovered from this patient. This result suggested that in vivo phase variation of P36 occurred, which would support a role for these LAMP variations in avoiding the host's immune vigilance.  (+info)

The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans. (7/31)

The complete genomic sequence of an intracellular bacterial pathogen, Mycoplasma penetrans HF-2 strain, was determined. The HF-2 genome consists of a 1 358 633 bp single circular chromosome containing 1038 predicted coding sequences (CDSs), one set of rRNA genes and 30 tRNA genes. Among the 1038 CDSs, 264 predicted proteins are common to the Mycoplasmataceae sequenced thus far and 463 are M.penetrans specific. The genome contains the two-component system but lacks the essential cellular gene, uridine kinase. The relatively large genome of M.penetrans HF-2 among mycoplasma species may be accounted for by both its rich core proteome and the presence of a number of paralog families corresponding to 25.4% of all CDSs. The largest paralog family is the p35 family, which encodes surface lipoproteins including the major antigen, P35. A total of 44 genes for p35 and p35 homologs were identified and 30 of them form one large cluster in the chromosome. The genetic tree of p35 paralogs suggests the occurrence of dynamic chromosomal rearrangement in paralog formation during evolution. Thus, M.penetrans HF-2 may have acquired diverse repertoires of antigenic variation-related genes to allow its persistent infection in humans.  (+info)

Multiple promoter inversions generate surface antigenic variation in Mycoplasma penetrans. (8/31)

Mycoplasma penetrans is a newly identified species of the genus MYCOPLASMA: It was first isolated from a urine sample from a human immunodeficiency virus (HIV)-infected patient. M. penetrans changes its surface antigen profile with high frequency. The changes originate from ON<==>OFF phase variations of the P35 family of surface membrane lipoproteins. The P35 family lipoproteins are major antigens recognized by the human immune system during M. penetrans infection and are encoded by the mpl genes. Phase variations of P35 family lipoproteins occur at the transcriptional level of mpl genes; however, the precise genetic mechanisms are unknown. In this study, the molecular mechanisms of surface antigen profile change in M. penetrans were investigated. The focus was on the 46-kDa protein that is present in M. penetrans strain HF-2 but not in the type strain, GTU. The 46-kDa protein was the product of a previously reported mpl gene, pepIMP13, with an amino-terminal sequence identical to that of the P35 family lipoproteins. Nucleotide sequencing analysis of the pepIMP13 gene region revealed that the promoter-containing 135-bp DNA of this gene had the structure of an invertible element that functioned as a switch for gene expression. In addition, all of the mpl genes of M. penetrans HF-2 were identified using the whole-genome sequence data that has recently become available for this bacterium. There are at least 38 mpl genes in the M. penetrans HF-2 genome. Interestingly, most of these mpl genes possess invertible promoter-like sequences, similar to those of the pepIMP13 gene promoter. A model for the generation of surface antigenic variation by multiple promoter inversions is proposed.  (+info)

Mycoplasma penetrans is a species of bacteria that lack a cell wall and are therefore resistant to many antibiotics that target the cell wall. It is a sexually transmitted infection (STI) that can infect the urogenital tract, causing inflammation and damage to the cells lining the urinary and reproductive systems.

M. penetrans has been associated with several health problems, including urethritis (inflammation of the urethra), cervicitis (inflammation of the cervix), pelvic inflammatory disease (PID), and increased risk of HIV transmission. However, its role in these conditions is not fully understood and further research is needed to determine the exact nature of its pathogenicity.

Diagnosis of M. penetrans infection typically involves nucleic acid amplification tests (NAATs) or direct detection of the organism in clinical specimens. Treatment usually involves antibiotics such as macrolides, fluoroquinolones, or tetracyclines, although resistance to these drugs has been reported.

It is important to note that M. penetrans infection can be asymptomatic and may not cause any noticeable symptoms in some people. Therefore, it is recommended to practice safe sex and get regular STI screenings to detect and treat infections early.

Mycoplasma: A type of bacteria that lack a cell wall and are among the smallest organisms capable of self-replication. They can cause various infections in humans, animals, and plants. In humans, they are associated with respiratory tract infections (such as pneumonia), urogenital infections (like pelvic inflammatory disease), and some sexually transmitted diseases. Mycoplasma species are also known to contaminate cell cultures and can interfere with research experiments. Due to their small size and lack of a cell wall, they are resistant to many common antibiotics, making them difficult to treat.

Mycoplasma infections refer to illnesses caused by bacteria belonging to the genus Mycoplasma. These are among the smallest free-living organisms, lacking a cell wall and possessing a unique molecular structure. They can cause various respiratory tract infections (like pneumonia, bronchitis), urogenital infections, and other systemic diseases in humans, animals, and birds.

The most common Mycoplasma species that infect humans include M. pneumoniae, M. genitalium, M. hominis, and Ureaplasma urealyticum. Transmission usually occurs through respiratory droplets or sexual contact. Symptoms can vary widely depending on the site of infection but may include cough, chest pain, difficulty breathing, fatigue, joint pain, rash, and genital discharge or pelvic pain in women. Diagnosis often requires specific laboratory tests due to their unique growth requirements and resistance to many common antibiotics. Treatment typically involves macrolide or fluoroquinolone antibiotics.

"Mycoplasma fermentans" is a type of bacteria that lacks a cell wall and is commonly found as a commensal organism in the human respiratory and urogenital tracts. However, it can also cause opportunistic infections, particularly in individuals with weakened immune systems. It is known to be associated with chronic respiratory infections, inflammatory diseases, and has been suggested as a possible co-factor in the pathogenesis of certain conditions such as rheumatoid arthritis and chronic fatigue syndrome.

The medical definition of "Mycoplasma fermentans" is:
A species of small, gram-negative, pleomorphic bacteria belonging to the genus Mycoplasma, which lacks a cell wall and is capable of causing opportunistic infections in humans. It is commonly found as a commensal organism in the respiratory and urogenital tracts, but has been associated with chronic respiratory infections, inflammatory diseases, and other conditions. Its identification typically requires specialized laboratory tests, such as polymerase chain reaction (PCR) or culture-based methods.

"Mycoplasma iowae" is a species of bacteria that belongs to the genus Mycoplasma. These are the smallest free-living organisms, lacking a cell wall and possessing a unique molecular structure. "Mycoplasma iowae" is known to cause chronic respiratory disease in swine, leading to symptoms such as coughing, difficulty breathing, and reduced weight gain. It is typically transmitted through direct contact with infected animals or contaminated surfaces.

It's important to note that while "Mycoplasma iowae" can cause significant health issues in pigs, it does not pose a direct threat to human health. However, proper biosecurity measures should always be taken when working with animals to prevent the spread of infectious diseases.

No FAQ available that match "mycoplasma penetrans"

No images available that match "mycoplasma penetrans"